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Abstract 

The Force Density Method (FDM) is an effective form-finding approach for exploring structural forms 
in equilibrium based on a given topology and under specified boundary conditions and external forces. 
Its nonlinear extension, the Non-Linear Force Density Method (NLFDM), was developed to enable 
structures to satisfy user-defined constraints. However, controlling the NLFDM is often challenging due 
to the difficulty in defining a suitable initial force density set that does not lead to degenerate results. In 
contrast, the Combinatorial Equilibrium Modelling (CEM) method offers an interactive and intuitive 
form-finding process for discrete networks, which offers a relatively high level of stability for designing 
mixed tension-compression structures. This paper reviews NLFDM and CEM and introduces an 
adaptive form-finding workflow for constrained discrete networks in static equilibrium that combines 
the two methods. CEM is employed to generate the initial structure and the force density set to be used 
as an input for NLFDM, thereby enhancing the controllability of the overall form-finding process; 
NLFDM ensures the speed and accuracy of the constraint-based optimization process. A case study is 
used to illustrate the proposed form-finding workflow. 

Keywords: Form-finding, Non-Linear Force Density Method, Combinatorial Equilibrium Modelling, initial force density set, 
constraint-based structural optimization 

1. Introduction 
The form-finding process allows the generation of new structural forms using either physical or digital 
models (Boller and D'Acunto [1]). This process entails determining the equilibrium shape of a structure 
for a given input topology and specified boundary conditions and applied loads. Different ways to solve 
the equilibrium problem for discrete networks lead to different form-finding methods within the realm 
of digital form-finding. These methods can be broadly classified into three categories: stiffness matrix 
methods, geometric stiffness methods, and dynamic equilibrium methods (Veenendaal and Block [2]). 
To satisfy user-defined constraints (e.g., the length or force magnitude in specific members or reaction 
forces at the supports), these methods are extended by integrating optimization processes. This paper 
focuses on two geometric stiffness methods, namely the Force Density Method (FDM) (Schek [3]) with 
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its extension, the Non-Linear Force Density Method (NLFDM) (Schek [3], Malerba et al. [4], Aboul-
Nasr and Mourad [5]), and the Combinatorial Equilibrium Modelling (CEM) method (Ohlbrock and 
D’Acunto [6], Ohlbrock et al. [7]), aiming to develop an adaptive form-finding workflow for constrained 
discrete networks.  

By introducing the notion of force density, representing the force-to-length ratio, the FDM (Schek [3]) 
addresses the form-finding of discrete networks by solving a set of linear equations. For a given 
topological diagram TF (Figure 1 left), which provides the connectivity of different members, vertices 
are categorized into two groups: fixed vertices Vf and free vertices Vv. Connections between vertices are 
represented as edges E. Based on TF, given the coordinates vector Cf of the fixed vertices Vf and the 
external forces matrix Pv applied to the free vertices Vv, the FDM generates the structural form FF 
(Figure 1 right) after assigning an initial force density set q to all edges E. The Non-Linear Force Density 
Method (NLFDM) (Schek [3], Malerba, et al. [4], Aboul-Nasr and Mourad [5]) is used when user-
defined constraints, like lengths and force magnitudes of the edges, are taken into consideration. 
NLFDM deals with multi-constraints form-finding problems with the help of a gradient-based 
optimization algorithm. The speed and accuracy of this method are guaranteed by directly employing 
the exact mathematical expression for gradient-based optimization calculations. 

 
Figure 1: FDM topological diagram of a truncated pyramid-like structure (left); result of the form-finding 

process based on the FDM (right) 

In contrast, CEM (Ohlbrock and D’Acunto [6], Ohlbrock et al. [7]) introduces additional information 
on the topological diagram TC (Figure 2 left) to guide the form-finding process for discrete networks. In 
TC, vertices are categorized into three types: origin vertices Vo, normal vertices Vn, and support vertices 
Vs. All edges E are separated into trail edges Et and deviation edges Ed, and the user can freely assign 
the combinatorial state (tension or compression) of their internal forces. The polylines that originate 
from an origin vertex and terminate at a support vertex are called trails. The segments of trails are trail 
edges Et. Deviation edges Ed link vertices on different trails. Based on TC, under the external force 
vector P on all vertices, the structural form FC (Figure 2 right) is constructed sequentially from the 
position Co of the origin vertices Vo by assigning the trail length λ and deviation force magnitude μ for 
the Et and Ed, respectively. As the form-finding process of CEM follows a linear sequence from the Vo 
to the Vs, the form-finding process presents a high level of stability, especially for a complex 
combination of tension-compression internal forces. Two extensions for CEM have been developed to 
solve structures with user-defined constraints. One extension uses the finite difference approximation 
method to calculate the gradient and then employs a gradient-based local optimization algorithm for 
optimization (Ohlbrock et al. [7]). While this method is straightforward to implement, it can suffer from 
numerical instability because the choice of step size can significantly influence the accuracy of gradients. 
To solve this problem, the second extension (Pastrana et al. [8]) utilizes the Automatic Differentiation 
(AD) (Baydin et al. [9]) method for gradient calculations, resulting in a quicker and more precise 
optimization process. 
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Figure 2: CEM topological diagram of a truncated pyramid-like structure (left); result of the form-finding 

process based on the CEM (right) 

NLFDM and extended CEM framework are effective form-finding methods for constrained discrete 
networks. However, neither NLFDM nor the extended CEM framework has achieved a fast and accurate 
optimization process that is also easily controllable by the user. Although the use of symbolic 
differentiation (SD) (Baydin et al. [8]) has enhanced the speed and accuracy of NLFDM, designers might 
face challenges in defining an initial set of force densities that meets user expectations for subsequent 
NLFDM control. This difficulty arises from the abstract concept of force density and the highly non-
linear correlation between the generated structural forms and the initial force density set. In the extended 
CEM framework, while CEM provides an intuitive and interactive form-finding process for defining the 
initial structure, CEM's sequential and iterative form-finding process does not make form-finding 
particularly computationally efficient, especially compared to NLFDM. Given the complementary 
characteristics of NLFDM and CEM, this research develops a controllable, fast, and accurate form-
finding workflow for constrained discrete networks by integrating these two methods. 

2. Method 

2.1. Workflow 
The proposed form-finding workflow that combines CEM and NLFDM is illustrated in Figure 3. The 
design requirements consist of two categories: 1. constraints (e.g., the length of the member, the force 
of the member, and the reaction force acting on the fixed nodes), which can be satisfied exactly, and 2. 
desired objectives (e.g., a reasonable shape to avoid degenerate solution) which depend on the designer’s 
needs. Based on the given structural topology Tc, desired objectives DO, constraint parameters R, and 
the corresponding prescribed values Rp, the form-finding process is as follows: in the first step, the 
designer manually adjusts the input parameters directly in CEM to generate an initial structure that aligns 
with DO and ensure the constraint parameters R reach the corresponding prescribed values Rp within a 
user-defined maximum finite difference value ε0 between R and  Rp. Then, the force density set q0 

computed from this initial structure serves as the input for NLFDM. In the second step, NLFDM is 
applied to ensure the structure satisfies the constraints precisely. If the final structure fails to fulfill the 
DO (such as substantial changes in overall form) or if NLFDM does not achieve constraint satisfaction 
within the convergence threshold ε, which is nearly zero, the designer needs to redefine a smaller ε0 to 
bring the initial structure closer to the fulfillment of the constraints. Following this adjustment, the above 
steps are repeated iteratively until a solution is found or convergence is achieved.  
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Figure 3: The proposed form-finding workflow based on the combination of CEM and NLFDM 

2.2. Optimization method and constraints 
In local optimization problems, the choice of initial values and the method for gradient calculations are 
crucial factors that significantly influence the optimization process's controllability, speed, and accuracy. 
In this workflow, CEM visualizes the manual process of searching for an appropriate initial force density 
set while aligning with the desired design objectives by adjusting its concrete input parameters, thus 
ensuring great control over the entire process. NLFDM enhances the speed and accuracy of the 
optimization process by utilizing exact mathematical expressions to compute gradients. As in NLFDM-
related research, Newton's method with quadratic convergence speed is adopted in this workflow. At 
every iteration, the variation of the optimization variables is calculated by minimizing the square of the 
increment (Schek [3]).  

If requested by the design problem, constraint planes can be introduced in the initial CEM form-finding 
process to anchor nodes onto designer-defined planes. To maintain these constraints in the final structure, 
these are introduced into NLFDM in compliance with Newton’s method. As shown by Schek [3], the 
constrained problems are solved using Newton’s method to find the roots of Equation 1. As a 
combination of coordinate constraints, the plane or line constraint is introduced into NLFDM using Ai, 
Bi, Ci, and Di as the combination coefficients. The plane constraint function is represented by Equation 
2. The gradient of this function with respect to q is obtained using Equation 3 in which 𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝒒𝒒
,  𝜕𝜕𝑦𝑦𝑖𝑖
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provided by Aboul-Nasr and Mourad [5]. 
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 𝒈𝒈 = 𝑹𝑹 − 𝑹𝑹𝒑𝒑 = 𝟎𝟎 (1) 

 𝑔𝑔𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 +  𝐵𝐵𝑖𝑖𝑦𝑦𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑧𝑧𝑖𝑖 + 𝐷𝐷𝑖𝑖 = 0 (2) 

 𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕𝒒𝒒

= 𝐴𝐴𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝒒𝒒

+  𝐵𝐵𝑖𝑖
𝜕𝜕𝑦𝑦𝑖𝑖
𝜕𝜕𝒒𝒒

+ 𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧𝑖𝑖
𝜕𝜕𝒒𝒒

 (3) 

where 𝑔𝑔𝑖𝑖,  represents the ith constraint equation in 𝒈𝒈 corresponding to the ith node, with coordinates xi, 
yi, and zi, respectively, lying in the ith plane in which plane coefficients are Ai, Bi, Ci, and Di, respectively. 

3. Implementation: a spiral staircase 
Figure 4 shows a topological diagram and boundary conditions of a staircase, which is taken here as a 
case study to illustrate the proposed form-finding workflow. The project's objective is to design a 
staircase reaching a height of 3 meters, consisting of 20 steps, each measuring 0.15 meters in height and 
1.0 meters in width. The external force applied on each normal vertex is 1kN. Besides, the footprint area 
of the staircase is limited to the surface Π (Figure 4(b)). Based on this design requirements, a spiral 
staircase configuration is employed to ensure an elegant and efficient design. 

3.1. Form-finding using CEM + NLFDM 
Using the proposed form-finding workflow, the form of the staircase is obtained through the following 
steps: initially, the CEM topology (Figure 5a) of this staircase is established by labeling Chord 1, Chord 
2, and the step edges as tension trail edges, compression trail edges, and compression direct deviation 
edges, respectively. According to the design requirements, the constraints parameters are separated into 
3 groups: Rz denotes the z coordinates of the nodes of the steps, Rl is the length of the step edges, and Rc 
is the fixed nodes' position. Since each step needs to be horizontal and 0.15 meters high, the 
corresponding prescribed values Rzp for Rz are obtained. Rl has the prescribed value Rlp, which is a vector 
of ones since each step is 1.0m in width. The design coordinates Rcp for Rc are shown in Figure 4b. By 
adjusting the input parameters of the CEM layer by layer, the CEM sequentially builds the overall 
structure over Π (Figure 5b). The coordinates CO of origin nodes, the external force PO applied to original 
nodes, and the deviation force magnitude μ are listed in Table 1, Table 2, and Table 3, respectively. 
Since CEM can get the correct trail length λ based on simple geometric calculations when nodes are 
limited to certain planes (Ohlbrock and D’Acunto [6]), the constraint planes for all steps can be directly 
applied to the nodes. Subsequently, the derived force density set (Figure 5c) from this structure is utilized 
as the initial set for NLFDM, to which the plane and length constraints (Schek [3]) for each step are 
applied. Newton's method is the optimization algorithm with a convergence threshold ε set at 1×10-6. 
The optimization process concludes in 56 milliseconds on an Intel i9-10900K CPU. Figure 5d displays 
the result, confirming compliance with design constraints while retaining a form closely aligned with 
the initial structure.  

3.2. Form-finding using NLFDM alone 
A second experiment is carried out to compare the proposed workflow with a conventional one that 
employs NLFDM only. Within the NLFDM form-finding process, adjusting the force density value in 
each edge individually to achieve the desired form poses a considerable challenge. Therefore, as shown 
in Figure 4 (a), all edges are categorized into three groups (Chord 1, Chord 2, Step) according to their 
respective static role in the staircase. The same force density value is uniformly applied to all edges in 
each group for form-finding purposes. Table 4 lists four initial force density sets for NLFDM related to 
four case studies. The convergence threshold ε is set to 1×10-6. The plane constraint and length constraint 
are applied in this process. The corresponding initial and final structures are depicted in Figure 6.  

Setting the force density in Chord 1 to 30 kN/m (Case 1) results in structures that do not fulfill the design 
objectives (Figures 6a and 6b). Increasing the force density in Chord 1 from 30 kN/m to 50 kN/m (Case 
2) brings about a complete change in the resulting form, demonstrating significant non-linearity of the 
method. However, when the force density in Chord 1 is further increased from 50 kN/m to 70 kN/m 
(Case 3), the initial and final structures shift to the opposite side (Figures 6e and 6f). Therefore, 
identifying suitable initial force density values in FDM for the three groups of edges to meet designers' 
requirements poses a challenge. Only the initial force density set of Case 4 can yield a reasonable final 
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result. In summary, utilizing CEM to search for the initial force density value is quick and efficient, 
unlike trial-and-error adjustments to different force density sets as in NLFDM alone. Furthermore, while 
grouping edges can greatly simplify and speed up searching for a reasonable form compared to 
individual adjustment of each edge’s force density, designers might miss numerous opportunities to 
explore novel design solutions.  

 
 (a) Topological diagram of the staircase: edges are grouped into three categories: Chord 1, Chord 2, and Step 

  
(b) Boundary conditions of the staircase 

Figure 4: Configuration of the staircase 

Table 1: Positions CO of origin nodes [m] 

 Cx Cy Cy 

v0 -1.00 0.00 3.00 

v21 0.00 0.00 3.00 

Table 2: External forces PO applied to origin nodes [kN] 

 Px Py Pz 

v0 142.4 63.6 65.1 

v21 -114.5 -67.4 -104.6 
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Table 3: Deviation forces μ [-kN] 

e58 e57 e56 e55 e54 e53 e52 e51 e50 e49 e48 e47 e46 e45 e44 e43 e42 e41 e40 

39.1 40.2 41.2 42.3 43.4 44.5 45.5 46.6 47.7 48.8 49.8 50.9 52.0 53.0 54.1 55.2 56.3 57.3 58.4 

 

  
(a) CEM topology of the staircase 

                    
(b) Initial structural form generated by CEM (c) Force density distribution in the initial structure 

 

  
(d) Final structural form optimized by NLFDM 

Figure 5: Form-finding based on the proposed workflow 
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Table 4: Four initial force density sets for NLFDM [kN/m] 

 Chord 1 Chord 2 Step 
Case 1 30 -70 -10 
Case 2 50 -70 -10 
Case 3 70 -70 -10 
Case 4 40 -70 -5 

   
(a) Case 1: initial structural form (b) Case 1: final structural form 

   
(c) Case 2: initial structural form of Case 2 (d) Case 2: final structural form 

  
(e) Case 3: initial structural form (f) Case 3: final structural form 
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(g) Case 4: initial structural form (h) Case 4: final structural form 

Figure 6: Four initial structural forms and corresponding NLFDM form-finding results 

3.3. Form-finding using CEM alone 
For a comparative analysis between NLFDM and the extended CEM framework in which AD is used 
for gradient calculations, the same initial structure (Figure 4 a) is used as the starting point of the 
optimization process. In addition to those constraints applied in NLFDM, node position constraints need 
to be added to the extended CEM framework to ensure CEM’s support nodes reach fixed positions. A 
convergence threshold of 1×10-6 is set, with SLSQP (Kraft [10]) serving as the optimization algorithm. 
The result, comparable to the one in Figure 4, is shown in Figure 7. Convergence is achieved within 
17.5 seconds, with a threshold of 1×10-2 rather than 1×10-6. In contrast to the proposed form-finding 
workflow, this process is considerably slower and less accurate, indicating NLFDM's efficiency as an 
optimization method for CEM.  

  
Figure 7: Result of the form-finding based on the extended CEM framework 

4. Conclusion 
This paper presented an adaptive form-finding workflow for constrained discrete networks in the 
conceptual design phase based on CEM and NLFDM. In this workflow, CEM is used to generate a user-
expected initial structure. Then, NLFDM ensures precise satisfaction of the constraints by utilizing the 
force density set computed from this initial structure as the initial values. Compared to the NLFDM 
form-finding process alone, this workflow offers greater controllability as CEM serves as the initial 
structure generator to align with the design requirements. At the same time, NLFDM tends to be faster 
and more accurate than the extended CEM alone. As a result, this adaptive form-finding workflow 
facilitates a controllable, rapid, and accurate form-finding process for constrained discrete networks. 
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By introducing new optimization constraints, targets, or algorithms, this workflow can be enhanced in 
terms of integrity, automation, and controllability. In this context, implementing new constraints to 
guarantee the smoothness of the result would be one possible improvement. 
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