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Abstract

This thesis reports on the implementation of a multi-qubit network register consist-
ing of rubidium atoms trapped at the center of an optical cavity. It is based on the
combination of a single atom addressing and positioning system, which was built
in the course of this thesis, with the previously existing setup. The new system
enables the generation of optical tweezers to trap and position atoms and to address
individual atoms to generate atom-photon entanglement. In this thesis, the tweezers
are used to create atomic arrays of up to six atoms in one and two dimensions. This
tweezer-based preparation of atomic arrays increases the array preparation efficiency
by orders of magnitude compared to the previously used probabilistic atom prepara-
tion method. Using the individual atom addressing, the atoms are then sequentially
addressed to generate entangled atom-photon pairs. By using a multiplexing proto-
col, we increase the entanglement generation-to-detection efficiency to ∼ 90 % and
to an in-fiber efficiency of 97.4(6) %.
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Introduction

It was suggested for the first time by Manin in 1980 [1] and Feynman in 1982 [2] that
quantum mechanical systems and specific quantum algorithms could be simulated
more efficiently on a quantum computer than on classical computers. This sugges-
tion led to the development of the first quantum algorithms in the following years,
e.g., the Deutsch-Jozsa algorithm [3], Shor’s algorithm [4], and Grover’s algorithm
[5]. At the same time, experimental groups started to investigate the first quan-
tum mechanical systems that could be used as potential platforms for the physical
implementation of quantum computers. As a result, the first elementary quantum
algorithms [6, 7] and controlled NOT gates (CNOT) [8–10], which form together
with single-qubit operations a set of universal quantum logic gates for quantum
computing [11, 12], were demonstrated.

However, as for classical computers, error correction [13–19] is required for quantum
algorithms to be executed reliably on quantum computers. All quantum algorithms
are composed of elementary operations and each of these elementary operations has
a specific error probability. If the error probabilities of the individual operations are
too high, error correction is not possible. However, if the error probabilities are be-
low a certain threshold, the errors can be corrected using error correction protocols.
Error correction is based on the idea to encode the quantum information of one log-
ical qubit over many physical qubits, rendering the information highly redundant.
As a result, in practice, robust, fault-tolerant quantum computers will need thou-
sands or millions of qubits [19, 20], which poses a big experimental challenge. Even
though first quantum error correction protocols have already been shown on differ-
ent platforms [21–28], the realization of a physical system with a sufficient number
of qubits for fault-tolerant quantum computing in a useful scenario has still to be
implemented.

One way to circumvent this big experimental challenge - the implementation of
a single fault-tolerant quantum computer with a very large number of qubits - is
distributed quantum computing [29–31], where the quantum computer is integrated
into a quantum network [32, 33]. In this case, each network node represents a com-
puting module and contains a large register of stationary qubits for storing and
processing quantum information. The individual computing modules are connected
via quantum channels. This allows the modules to interact via the exchange of
photonic qubits. In such a distributed quantum computer, the different comput-
ing modules then perform quantum computations together and make up the entire
quantum computer. Such networks would not only allow for distributed quantum
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computing, but also potentially allow different quantum network applications, such
as clock synchronization [34, 35], secure communication [36] and precision sensing
[37]. First small, elementary quantum networks consisting of two or three nodes
[38–43] as well as elementary quantum gates between different modules have al-
ready been experimentally demonstrated [44, 45].

The basis for most of the quantum networking applications is the efficient gen-
eration and distribution of entanglement between network nodes. Experimentally,
entanglement between light and matter [46, 47], as well as between matter qubits
[41, 42, 48–50] has already been demonstrated over large distances. In a typical
protocol for entanglement distribution between matter qubits, one first entangles
the stationary qubits of the register at a network node with the optical photons.
These entangled photons are then sent across the network and used to create en-
tanglement between stationary qubits at the different network nodes. However, the
efficient generation of entanglement between photons and matter qubits requires
that the matter qubits are placed in a high-finesse cavity. Therefore, much effort
has been put in the past years into coupling different quantum mechanical emitters
to an optical resonator. As a result of this effort, entanglement generation between
stationary qubits in optical resonators and photons has already been demonstrated
for different experimental platforms, such as ions [46, 51, 52], neutral atoms [53],
Rydberg superatoms [54], semiconductor spins [55, 56], rare-earth ions [57], and SiV
in diamond [58]. However, the number of qubits in these registers was limited to
a maximum of three. The implementation of large network registers in an optical
resonator is still an outstanding challenge.

In parallel to the developments in the fields of quantum computing and quantum
information processing, atom trapping techniques based on optical tweezers have
been developed. Optical tweezers are highly focused laser beams that are used to
capture, move, and precisely position tiny, micrometer-sized objects [59–61]. For the
first time, a single atom was trapped in optical tweezers by the group of Philippe
Grangier [62] in 2001. It became soon obvious that this method of trapping neutral
atoms has big potential in the fields of quantum computing and quantum networks,
as it allows for the creation of defect-free atomic arrays. Already in 2016, three dif-
ferent experimental groups successfully created arrays of tens of atoms, which were
arranged in arbitrary one- and two-dimensional configurations [63–65]. To prepare
these arrays, atoms were stochastically loaded from a magneto-optical trap into ar-
rays of optical tweezers and subsequently rearranged within the tweezers until the
desired defect-free configuration was realized. Ever since these first experiments, the
number of atoms in such tweezer arrays has been dramatically increased, and arrays
of more than hundreds [66, 67] or even thousands of atoms have been created[68].

These results suggest that optical tweezers combined with resonators could be used
to create quantum network nodes consisting of large atomic arrays. In that case,
the individual atoms could be efficiently entangled with photons and subsequently
entangled to different network nodes. The main experimental challenges in combin-
ing optical tweezers with optical resonators are the limited optical access due to the
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mirrors of the optical resonator and the realization of a high cooperativity for each
individual atom. Several groups have already managed to merge optical tweezers
and optical resonators and created arrays of about ten atoms [69–71], but they have
not yet proven the control over the individual atoms. However, the control over
individual atoms is mandatory for the envisioned applications in quantum networks
[72]. In the present work, we demonstrate this missing feature: We create one- and
two-dimensional atomic arrays at the center of a resonator and control the indi-
vidual atomic qubits with a single atom addressing and positioning system, which
was built during this thesis. We demonstrate the control over the individual atoms
by entangling the individual atoms of the array with optical photons generated in
a vacuum-stimulated Raman adiabatic passage (vSTIRAP). Using a multiplexing
scheme, we increase the generation-to-detection efficiency of the atom-photon en-
tanglement generation process to about 90 % and to more than 97 % in fiber. These
values suggest that we approach the deterministic generation of atom-photon entan-
glement, which would allow to overcome the fundamental limits on communication
rates in quantum networks which are given by intrinsic optical losses and the length
of the communication channels [73].

The thesis is structured as follows: In Chapter 1, I describe the experimental
setup and the basic experimental techniques that were required in the course of the
thesis. Chapter 2 describes the single-atom addressing system and how it can be
used to load atomic arrays. Finally, in Chapter 3, I will discuss the individual con-
trol over the qubits of the atomic arrays by generating atom-photon entanglement
and the scalability of our system.
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Chapter 1

A single quantum network node

1.1 Vacuum chamber and cavity system

This section gives a brief summary of the experimental setup. A more detailed
description of the setup can be found in previously published PhD theses [74–77].
The core of the experimental setup is the optical cavity within vacuum chamber. It
is shown in Fig. 1.1. The 87Rb dispenser is indicated by the circled white A. The
dispenser provides the 87Rb that we use for the experiment. It is controlled by an
external current which heats up the dispenser. This leads to the evaporation and
the release of 87Rb into the vacuum chamber. The dispenser is constantly kept on
during the operation of the experiment and floods the chamber with rubidium to
ensure a sufficiently high 87Rb background pressure for reliable atom preparation.
The rubidium atoms are then initially trapped and cooled with a magneto-optical
trap, which is located at a distance of 14 mm from the cavity center. After the
MOT-phase, the atoms are transferred with a running wave dipole trap (transfer
trap) to the cavity center and transferred in a two-dimensional optical lattice (see
section 2.3). The cavity (zoomed in, top right, represented by the orange cone)
consists of two mirrors with transmissivities of T=3(1) ppm and T=92(3) ppm. As
one of the mirrors has a higher transmissivity, photons within the cavity predomi-
nantly exit the cavity through the mirror with the higher transmission, referred to
as outcoupling mirror. The light-matter interaction in a cavity is characterized by
three important rates, namely the cavity field decay rate κ, the atomic polarization
decay rate γ and the light-matter coupling strength g. The total field decay rate κ is
the sum of the decay rate through the outcoupling mirror κout = 2π × 2.3 MHz and
the decay rate due to round-trip losses or photons leaving the cavity through the
low transmissivity one κloss = 2π × 0.2 MHz, i.e., κ = κout + κloss = 2π × 2.5 MHz.
γ = 2π × 3 MHz is the atomic polarization decay rate. The atom-cavity coupling
rate is given by g, which is as g =

√
d2ω

2ε0h̄V
, where d is the transition dipole matrix

element of the relevant transition, ω is the corresponding transition frequency, ε0
is the vacuum permittivity and V is the cavity mode volume The radius of cur-
vature of the mirrors is 50 mm, giving a waist of w0 = 29 µm (1/e2 radius of the
intensity) for the fundamental TEM00 mode. For this mode, the Rayleigh range is
zR = 3.386 mm. As the distance of the mirrors L is 485(1) µm, which is negligibly
small compared to the Rayleigh range, the waist can be assumed to be constant
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CHAPTER 1. A SINGLE QUANTUM NETWORK NODE

over the entire length of the cavity. Using this assumption, the mode volume of
the electric field mode can be calculated as V = πw2

0/4L = 3.203 × 10−13 m3. This
gives a theoretical maximum atom-cavity coupling of g = 2π × 8.1 MHz for the
|52S1/2, F=2, mF =2〉 → |52P3/2, F=3, mF =3〉 transition and a maximum value of
g = 2π × 5.2 MHz for the |52S1/2, F=1, mF = − 1〉 → |52P3/2, F=1, mF =0〉 transi-
tion. For the transition |52S1/2, F=2, mF =2〉 → |52P3/2, F=3, mF =3〉 transition, we
measure a coupling constant of g = 2π × 7.8(2) MHz, which is only approximately
4 % below the theoretical maximum. The slightly lower value can be partially ex-
plained by the spatial distribution of the atomic wave function1, which leads to an
averaging of the g value. For the atom-photon entanglement generation, we mea-
sure a value of 2π × 4.9(7) MHz (see section 1.6). The three rates κ, γ and g can be
combined in a single expression, the cooperativity C := g2

2κγ
. If the dominating rate

is the light-matter coupling strength, i.e., g > (κ, γ), the system is in the so-called
strong coupling regime. In this regime, a normal mode splitting can be observed
[78]. Additionally, a high cooperativity C is advantageous for many applications in
quantum information processing, e.g., the efficient atom-photon entanglement gen-
eration (see section 3.1.3) or the implementation of a controlled phase gate [79]. The
cavity is mounted in a length-tunable piezo tube, which is used to actively stabilize
the cavity length using a PID locking scheme. The same light that we use to stabi-
lize the cavity length is used as a blue-detuned intracavity trap. Depending on the
used cavity configuration (see section 1.3), the wavelength of the intracavity trap
is either 388.869 593 THz (emission) or 388.863 250 THz (gate). The wavelength of
the intracavity trap is chosen such that the atoms are positioned at a position of
maximum coupling at the center of the cavity (see Fig. 3.12). The free spectral
range ∆F SR can be determined using the length L of the cavity and the speed of
light c by ∆F SR = c

2L
= 309 GHz at 780 nm, giving a finesse of F = 61 000(2000).

The most important cavity parameters and rates are summarized in Table 1.1. The
cavity holder is designed to ensure optical access from all sides. A summary of the
beam configuration is given in section 1.3.

1for the motional ground state, the standard deviation of the atomic position is 20 nm ≤ σx ≤
25 nm, depending on the trap frequency
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CHAPTER 1. A SINGLE QUANTUM NETWORK NODE

A

Figure 1.1: Photography of the vacuum chamber and the optical cavity
with the dispenser. The atoms are released into the chamber from the current
driven dispenser (indicated by circled white A), which is externally controlled and
constantly kept on during experimental operation . The released atoms are then
trapped in a magneto-optical trap and subsequently transferred to the center of
the optical cavity (top right corner, zoomed in), as described in 2.3. The cavity is
mounted in a piezo tube, which is used to control the length and, consequently, the
resonance frequency of the optical cavity. The parameters of the cavity are listed
in Table 1.1. The cavity holder is designed such that optical access from all sides is
possible, see Fig. 1.5.The photography was taken from [80, 81] and modified.
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CHAPTER 1. A SINGLE QUANTUM NETWORK NODE

Table 1.1: Cavity parameters and relevant decay rates for our system.

cavity parameters
cavity length L 485(1) µm
free spectral range (at 780 nm) 309 GHz
Finesse F 61 000(2000)
mirror Transmission T1 & T2 92(3) ppm & 3(1) ppm
round trip loss 102(3) ppm
mode waist (TEM00 mode) 29 µm

rates & cooperativity
total cavity field decay rate κ 2π × 2.5 MHz
decay rate outcoupling mirror κout 2π × 2.3 MHz
atomic polarization decay rate γ 2π × 3 MHz
theoretical atom-cavity coupling g for

|F=2, mF =2〉 → |F ′=3, mF =3〉 2π × 8.1 MHz
|F=1, mF =±〉 → |F ′=1, mF =0〉 2π × 5.2 MHz

1.2 Level scheme of 87Rb and qubit
The experiments in this thesis were performed with 87Rb atoms. 87Rb is part of the
group of alkali metals and possesses only one valence electron, which lies in the 5s or-
bital. From this 5s ground state, the electron can be excited to the 52P1/2 state and
the 52P3/2 excited states, which are dipole-allowed optical transitions. These tran-
sitions, which are the 52S1/2 → 52P1/2 D1 line at 794.978 nm and 52S1/2 → 52P3/2
D2 line at 780.241 nm, form together the D-line fine structure doublet. The val-
ues used here and in the following of this section are taken from [82]. In 87Rb,
there are many more optical transitions, but in this thesis, we only perform ex-
periments using the D-line fine structure doublet. The nuclear angular momentum
of 87Rb is I = 3/2. Therefore, the ground state 52S1/2 is split into two hyperfine
states |F=1〉 and |F=2〉. The excited states 52P1/2 and 52P3/2 are split into two
(|F=1〉 and |F=2〉) and four (|F=0〉, |F=1〉, |F=2〉 and |F=3〉) hyperfine states.2
The hyperfine states themselves are split into 2F + 1 magnetic sublevels (ranging
from mF = − F, . . . , mF =0, . . . , mF =F ) and, for the bare atom, the sublevels are
degenerate in energy. However, the trapping potentials induce a light shift and lift
the degeneracy for some of the sublevels and, therefore, these are non-degenerate
[83]. The overall structure of these levels, including the light shifts, is in Fig. 1.2,

2In this thesis, if the exact fine structure level is not indicated, we will indicate the excited
states with a prime, e.g., |F ′=2〉 refers to a hyperfine state of one of the excited states, whereas
|F=2〉 refers to the hyperfine ground states. If it is not clear from the context which excited fine
structure level is being referred to, the exact fine structure level is specified.
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CHAPTER 1. A SINGLE QUANTUM NETWORK NODE

where we give the light shifts of the individual magnetic sublevels with respect to
the hyperfine levels and the hyperfine energy shift with respect to the fine structure
levels. The number in MHz on top of each magnetic level indicates the induced
light shift. These numbers are partly obtained by spectroscopic measurements and
partly by calculations. During the experimental sequence, we apply a magnetic
guiding field along the cavity axis (y-axis), which induces an (anomalous) Zeeman
shift given by ∆E(F, mF ) = µBgF mF B, where µB is the Bohr magneton, gF the
Landé g-factor, mF the magnetic sublevel and B the magnitude of the magnetic
field. The energy shifts on the ground states induced by the Zeeman effect are
shown in Fig. 1.3. As the Landé g-factor has opposite signs for |F=1〉 and |F=2〉
for the ground state 52S1/2 in 87Rb, the energy shifts of the hyperfine levels have an
opposite sign. The atomic qubit that we use for the generation of the atom-photon
entanglement in chapter 3 is circled in red. The qubit states are |F=1, mF =1〉 := |↑〉
and |F=1, mF = − 1〉 := |↓〉 of the 52S1/2 ground state. For the experiments in this
thesis, we use a magnetic guiding field which induces a single Zeeman splitting of
2π × 100 kHz, which leads to a frequency splitting of the qubit of 2π × 200 kHz.
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F ′ = 3
52P3/2

42 MHz
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D2-line
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377.170 THz
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−302 MHz
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2.563 GHz

−4.272 GHz

52P1/2

52S1/2

mF = −3 mF = −2 mF = −1 mF = 0 mF = 1 mF = 2 mF = 3

F ′ = 2

F ′ = 1
F ′ = 0

F ′ = 2

F ′ = 1

F = 2

F = 1

Figure 1.2: Level scheme of the ground state 52S1/2 and the excited states
52P3/2 and 52P1/2 of 87Rb, including the light shifts for our experimental
parameters. The atoms are trapped in a two-dimensional optical lattice with one
1064 nm and one 770 nm standing wave trap. However, the 1064 nm trap is mostly
responsable for the induced light shifts of the individual levels. The induced light
shift for each individual Zeeman sublevel with respect to the bare atomic levels is
indicated by the numbers on top of each level in MHz. As expected, the red-detuned
trap shifts the excited states towards higher and the ground states towards lower
energies. The values given here are for a beam waist of 13 µm and a power of 1 W
of the 1064 nm trap. The numbers for the bare atomic levels and the transition
frequencies are taken from [82].
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−48 MHz

mF = −2

F = 2

F = 1

52S1/2

gF = 1/2

gF = −1/2

−48 MHz

∆E = µBgF mF B

∆E = 2π × 100 kHz

mF = −1 mF = 0 mF = 1 mF = 2

|↓〉
|↑〉

Figure 1.3: Zeeman shift of the ground states of 87Rb. On top of the light
shift induced by the lattice, the applied magnetic guiding field induces a Zeeman
shift, that depends on the specific magnetic sublevel. The energy shift of the indi-
vidual sublevels is given by ∆E=µBgF mF B=±0.7 MHz

G mF B [82], where the positive
and negative sign account for the different Landé g-factors gF = ± 1/2 of the |F=1〉
and |F=2〉 hyperfine ground states. By choosing the magnetic guiding field ap-
propriately, we set a single Zeeman splitting of 2π × 100 kHz. The qubit used in
chapter 3 for atom-photon entanglement is circled in red. The qubit states are
|F=1, mF =1〉 := |↑〉 and |F=1, mF = − 1〉 := |↓〉.

14



CHAPTER 1. A SINGLE QUANTUM NETWORK NODE

1.3 Two configurations for the cavity
The experiments that were performed in the QIP group of the quantum dynamics
division in the past few years are based on two key operations: The generation
of an optical photon using a so-called vSTIRAP (see section 1.6) and a controlled
phase gate between an atom and a photon [77]. The experiments based on the con-
trolled phase gate [75, 84–86] were mainly performed on the QGate experiment and
the experiments based on the photon generation were mainly performed with the
sister-experiment, the Pistol experiment, which has a very similar design [53, 87,
88]. However, both experiments, QGate and Pistol, can be used in both experimen-
tal configurations, i.e., to either generate photons with the vSTIRAP or implement
an atom-photon phase gate. For example, in a combined experiment between both
setups [45], both experiments were used in the ”gate” configuration. For each of the
two configurations, the optical cavity must be stabilized at a different resonance fre-
quency. Fig. 1.4 shows both frequency configurations in a level scheme. To perform
the controlled phase gate between an atom and a photon, the cavity is on resonance
with the transition |52S1/2, F=2, mF =2〉 → |52P3/2, F=3, mF =3〉. This transition is
selected because it comes with many advantages, as, for example, a high coupling to
the cavity and an effective state initialization and readout. Therefore, for some of the
experiments in this thesis, where, for example, an efficient state readout was needed,
we used this gate configuration. In Fig. 1.4, this transition is indicated by the blue
arrow and the frequency ωgate. For the photon generation, called ”emission” configu-
ration, many different configurations were used in the past years. For the experiment
described in chapter 3, we used the same configuration as in [88]. In this config-
uration, the cavity is not on resonance with a specific transition, but detuned by
2π × 200 MHz with respect to the transition |52S1/2, F=1〉 → |52P3/2, F=1, mF =1〉,
see Fig. 1.4, indicated by the red arrow ωemission. Unless explicitly state, the cavity
is in this emission configuration throughout the whole thesis.
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|F=2〉

|F ′=0〉
|F ′=1〉

|F ′=2〉
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∆ = 2π × 200 MHz

52S1/2

52P3/2
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780.241 nm

mF = −3

mF = −2

mF = −1
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mF = 1

mF = 2

mF = 3
|F=1〉

Figure 1.4: Resonance frequency of cavity for photon emission and atom-
photon phase gate. The setup is used in two different cavity configurations, which
we call “gate” configuration and “emission” configuration. In the gate configura-
tion, the cavity is on resonance with the |F=2, mF =2〉 → |F ′=3, mF =3〉 transition
and the setup can be used to implement a controlled atom-photon phase gate [77].
In the emission configuration, the cavity is detuned by 2π × 200 MHz from the
|F=1, mF =0〉 → |F ′=1, mF = ± 1〉 transition and can be used for the vSTIRAP to
generate atom-photon entanglement, see section 1.6.

1.4 Trap configuration and beam arrangement

In this section we discuss the configuration of the traps as well as the spatial ar-
rangement of all the incident beams that serve different purposes, like cooling, state
initialization or single qubit rotations. The overall beam configuration is shown in
Fig. 1.5. For trapping the atoms, we use a two-dimensional optical lattice. The
lattice consists of a red-detuned, linearly polarized, retro-reflected standing wave
trap, which runs orthogonal to the cavity axis, along the x-axis, at 1064 nm. We
employ roughly 1 W of power, giving a trap frequency of several hundred kHz at a
beam waist of w0 = 13 µm. Additionally, we use a blue-detuned standing wave trap
that runs along the cavity axis (y-axis) at 770 nm, which forms together with the
1064 nm standing wave trap the two-dimensional optical lattice. The beam waist
of the 770 nm is the same as the waist of the cavity TEM00 mode and is there-
fore 29 µm. The blue-detuned intracavity trap is used to stabilize the cavity length
(see section 1.1) as well as to spatially confine the atoms to positions of maximum
coupling (see 3.1.3). In former experiments, there was an additional blue-detuned,
retro-reflected standing wave trap along the z-axis. However, this trap had to be
removed, as it would have made it impossible to add the addressing systems due
to space constraints. For the cooling of the atoms, we use a pair of linearly polar-
ized, counterpropagating beams in a lin⊥lin configuration for polarization gradient
cooling (including the necessary repumper to bring the population back from |F=1〉
to |F=2〉 via the excited state |52S3/2, F=2〉). The cooling beams impinge from
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opposite directions under 45◦in the x−y−plane. In this configuration, we observe
typically a storage time of approximately 60 s for a single atom. Single qubit rota-
tions are implemented with a pair of Raman beams that run parallel to the 1064 nm
standing wave axis. The beam waist of the Raman beams is w0 = 82 µm [89]. The
π-polarized pump beam that we use to initialize the atom in |F=2, mF =0〉 as well
as the global vSTIRAP beam also run along this axis, but from the opposite direc-
tion. Both the state initialization and the global vSTIRAP beam have a waist of
about 35 µm. The σ+-polarized pump light to initialize the atoms in |F=2, mF =2〉
is sent along the quantization axis (resonator axis) and coupled into the cavity
through the highly reflective cavity mirror. The light used for the state detection
in the gate configuration runs parallel to the cooling light and the repumper under
45◦ in the x − y-plane. It is σ+ + σ−-polarized and drives the cycling transition
|F=2, mF =2〉 → |F=3, mF =3〉 (see section 1.7). Light from the addressing setup
is sent through the objective and is incident along the z-axis. The beam waist of
the addressing beam is 1.40(5) µm and therefore allows the addressing of individual
atoms at 780 nm (see section 2.2.3). An overview about the beam waists of the
individual beams is given in Table 1.2.

Table 1.2: Overview of the different beam waists. All the waists are indicated
as 1/e2 intensity radius.

beam waist w0 (µm)

TEM00 mode of cavity 29
global Raman 82
cooling light 35
state detection 35
repumper 35
addressing 1.40(5)
state initialization in |F=2, mF =0〉 35
global vSTIRAP 35
1064 nm standing wave trap 13
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770 nm

state initialization
in |2, 0〉 and global vSTIRAP

cooling, repumper and SD
at 45◦

objective

pump into |2, 2〉

addressing z
1064 nm

x

y

global Raman

Figure 1.5: Spatial configuration of the incident beams. The 1064 nm and
770 nm standing wave traps for trapping run along the x-axis (orthogonal to the
cavity axis) and the y-axis, respectively. The beams for cooling, the repumper and
the state detection beams for the gate configuration (see section 1.3) impinge under
45◦ in the x−y−plane. The global Raman, the global vSTIRAP and the π-polarized
beam for the optical pumping in |F=2, mF =0〉 are all propagating along the same
axis as the 1064 nm standing wave trap axis (x-axis). To address individual atoms,
the light is sent through the objective along the z-axis. Since pure σ+-polarized light
can only be incident along the quantization axis, the light to initialize the atoms in
|F=2, mF =2〉 is coupled into the resonator along the cavity axis.
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1.5 Single qubit rotations

The basics of the single qubit rotations are discussed in this section. Details can
be found in [89, 90]. Fig. 1.6 shows the working principle of the single qubit ro-
tations. It is based on a stimulated Raman transition between the ground states
|F=1, mF =1〉 and |F=2, mF =2〉 of 87Rb. Two light fields, called probe and con-
trol, couple the two ground states |F=1, mF =1〉 and |F=2, mF =2〉 via an excited
state. The probe and control field are both detuned by the same amount ∆, the so-
called single-photon detuning, from the excited state and the two-photon detuning
is selected so that δ = 0, i.e. the states |F=1, mF =1〉 and |F=2, mF =2〉 are in two-
photon resonance with the two-photon resonance frequency ω|F =1,mF =1〉→|F =2,mF =2〉.
If the single-photon detuning ∆ is large, i.e. |∆| � |δ|, |Ωc|, |Ωp|, the excited state
is not populated during the transfer and the level scheme is reduced to an effective
two-level system, allowing for a coherent population transfer between the ground
states [91]. This way of implementing single qubit rotations was already used in
Manuel Uphoff’s thesis [90] as well as in previous experiments performed on this
setup in the past. However, in these experiments, a maximum of two atoms was
used, whereas in the present work up to six atoms are used. This changes the ex-
perimental requirements and we have therefore decided to build a new version of
the Raman setup. The first change is that the Raman does not impinge anymore
under 45◦ in the x−y−plane. Instead, it runs parallel to the 1064 nm standing wave
trap. The waist of the Raman beams in the new setup is about 82 µm (1/e2 radius
of intensity). This way, we ensure a homogeneous intensity distribution of the Ra-
man beams in the area of the atoms. In addition, the wavelength of the Raman
laser is changed to 788.24 nm, giving a single photon detuning ∆ that minimizes the
differential light shift induced by the Raman lasers. The combination of the homoge-
neous intensity distribution across all atoms and the minimal differential light shift
ensures that we do not have to track the phases of the individual atoms and correct
for any phase differences between the atoms. In the previous version of the setup,
the induced differential light shift was typically on the order of a few kHz, which
made it necessary to track the phase evolution of the individual atoms. Tracking the
phase evolution of each atom would be very challenging for multiple atoms or even
impossible with the current setup. To reduce the phase noise, the light for the probe
and the control beam both stem from the same laser. The ground state splitting
in 87Rb is 6.8 GHz. To generate this frequency difference between probe and con-
trol, we use an electro-optic modulator (EOM) and combine it with acousto-optic
modulators (AOM). The polarization of the probe is set to π and the polarization
of the control is set to σ+ + σ−. This allows for Raman transitions between mag-
netic sublevels of the ground states with ∆mF = ± 1 are possible. However, in this
configuration transitions between several Zeeman levels of the 87Rb ground states
can be driven simultaneously. Therefore, we apply a magnetic guiding field along
the cavity axis, which induces a Zeeman splitting (see section 1.2) and leads to a
frequency selectivity of the transitions. This means that one can drive individual
transitions only when setting the two-photon frequency ω correctly. Fig. 1.7 shows
a measurement of Rabi oscillations on the transition |F=1, mF =1〉 → |F=2, mF =2〉
for the two-photon frequency ω|F =1,mF =1〉→|F =2,mF =2〉. More details about the new
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Figure 1.6: Working principle of single qubit rotations using stimu-
lated Raman transitions. Here, we illustrate the transition |F=1, mF =1〉 →
|F=2, mF =2〉. The polarization configuration of the probe (π-polarized) and the
coupling (σ+ + σ−) beams allows for transitions with ∆mF = ±1. However, due to
the Zeeman shift induced by the magnetic guiding field, the degeneracy of the mag-
netic sublevels are is lifted and transitions between individual magnetic sublevels can
be driven by setting the two-photon detuning δ appropriately. If the single-photon
detuning ∆ is sufficiently large((|∆| � |δ|, |Ωc|, |Ωp|)), the λ-scheme is effectively
reduced to a two-level system, allowing for the coherent transfer between individual
magnetic sublevels.[91].

Raman setup can be found in [89].
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Figure 1.7: Example of Rabi oscillations between |F=2, mF =2〉 →
|F=1, mF =1〉. The atoms are initialized in the state |F=2, mF =2〉. Afterwards,
coherent oscillations between the states |F=2, mF =2〉 and |F=1, mF =1〉 are driven
using stimulated Raman transitions. In this example, the period of the Rabi oscil-
lations is T = 46.70(7) µs. For the selected magnetic sublevels, the coherence time
is typically on the order of several hundreds of µs.

1.6 Photon & Entanglement generation

In this section, the principle of photon generation is explained. It is based on a
process called vacuum stimulated Raman adiabatic passage (vSTIRAP) [92, 93].
The same principle can also be used to generate atom-photon entanglement (APE)
or even photon-photon entanglement [53]. The underlying principle is illustrated
in Fig. 1.8A. The required level scheme to implement the vSTIRAP is a lambda
system with two ground states |g1〉 and |g2〉 and one excited state |e〉. One of the
ground states, in our case |g1〉, is coupled to the excited state |e〉 via a control field
with Rabi frequency Ω. The same excited state is coupled to the second ground
state |g2〉 via the cavity with the atom-cavity coupling g. The frequency of the
cavity and the frequency of the control light field are both detuned by the value ∆
with respect to the excited state |e〉 and the two-photon detuning is δ = 0, i.e., the
transition |g1〉 → |g2〉 is in two-photon resonance. After initializing the system |g1〉,
the population can be coherently transferred from |g1〉 to |g2〉 using the two light
fields and the coherent emission of a photon into the cavity mode is stimulated. The
same process can be used to entangle the polarization of the generated photon to the
internal atomic states of the atom: If the excited state couples to two atomic ground
states with coupling constants gσ+ and gσ− , but different polarizations, i.e. σ+ and
σ−, the polarization of the generated photon is entangled to the internal atomic
state after the photon emission. In part B of Fig. 1.8, we show how this process can
be implemented using the level structure of 87Rb. At first, the atom is initialized
in |F=2, mF =0〉 := |0〉 and transferred into the states |F=1, mF =1〉 := |↑〉 and
|F=1, mF = − 1〉 := |↓〉 after the stimulated emission of the photon. If gσ+ = gσ−
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Figure 1.8: Photon and entanglement generation. A Photon generation
scheme. The two ground states, |g1〉 and |g2〉, of a λ-scheme are coupled to the
excited state |e〉 via a control field and the cavity mode, respectively. The transition
|g1〉 → |g2〉 is on two-photon resonance, i.e., δ = 0. The resonance frequency of the
cavity and the frequency of the control light field are both detuned by the same
value ∆ from the excited state, the single-photon detuning. As the population is
coherently transferred from |g1〉 to |g2〉 in a vSTIRAP process, the emission of a
photon into the cavity mode is stimulated. B The level scheme is extended to
multiple levels. If the initial state |0〉 is coupled equally to the two states |↑〉 and
|↓〉, i.e. gσ+ = gσ− , the final state is |Ψfinal〉 = 1√

2 (|σ+, ↑〉 + |σ−, ↓〉). This is
the maximally entangled Bell state with the polarization of the generated photon
entangled to the internal atomic state of the atom.

(as it is the case for our cavity), the atom ends up with equal probabilities in either
|↑〉 or |↓〉 and the generated entangled state is

Ψfinal = 1/
√

2
(
|↑, σ+〉 + exp(iφ) |↓, σ−〉

)
. (1.1)

The phase φ depends on the phase of the control field and the chosen geometry.
If the phase is exp(iφ) = 1, the generated state is the maximally entangled Bell
state |Ψ+〉. We employ a single-photon detuning ∆ of 2π × 200 MHz, see section
3.1.2. This presented scheme corresponds to the protocol that we use in chapter 3
to generate APE.

1.7 State detection in the gate configuration
In the gate configuration (see section 1.3), the atomic qubit is stored in the states
|F=1, mF =1〉 and |F=2, mF =2〉 and a state detection scheme needs to be able to
differentiate between these two states. As both states are separated in frequency
by the ground state splitting of roughly 6.8 GHz, we can use a fluorescence state
detection scheme. In such a scheme, we collect the fluorescence from the atom when
sending light resonant with the cavity frequency ω|F =2,mF =2〉→|F ′=3,mF =3〉. This light
excites population from the |F=2〉 hyperfine state, but population in |F=1〉 is not
excited. Purcell enhancement leads to a rate of γc = g2/κ (when atom and cavity are
on resonance) at which photons are emitted into the cavity, giving an enhancement
of γc = 2Cγ [94, 95]. The transition |F=2, mF =2〉 → |F ′=3, mF =3〉 is a cycling
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Figure 1.9: State detection in gate settings. The state detection protocol is
based on a fluorescence detection scheme. The cavity and the state detection light
are on resonance with the transition |↑〉 → |F ′=3, mF =3〉. A If the atom is in the
state |↑〉, the state detection light excites the atom, and subsequently fluorescence
is emitted from the atom and collected through the cavity B If the atom is in |↓〉,
the atom is not excited and no fluorescence is emitted, i.e. the atom remains dark.

transition and, therefore, the atom can be excited many times before decaying into
the |F=1〉 hyperfine state, where it remains dark. The state detection light is sent
onto the atoms from both sides, i.e., in a counter-propagating way, to reduce heating
or even atom loss due to radiation pressure [94], see Fig. 1.5. The number of detected
clicks while the state detection light is on, allows to distinguish between the states
|F=1, mF =1〉 and |F=2, mF =2〉. Overall, this state detection scheme allows for a
fast state readout on the order of a couple of µs and we achieve a state detection
fidelity higher than 99.5 % if the atom is trapped in the two dimensional lattice
(1064 nm and 770 nm standing wave traps) and we use the global state detection
beam with a beam waist of 30 µm. However, if the state detection light is injected
onto the atoms using the addressing setup, the state detection fidelity is lower. The
main reason for that is the jumping of the atoms in the lattice, which happens on
a time scale faster than our imaging rate ( one picture in 300 ms), see section 3.2.2.
This means that the addressing is not always aiming at the position of the atom and
therefore the average number of photons detected during the state detection interval
drops when the atom is in the state |F=2, mF =2〉 compared to the global state
detection beam. This means that it is not always possible to differentiate between
the two hyperfine ground states, since the average number of detected photons in
the state detection |F=1, mF =1〉 is similar to the one in the state |F=2, mF =2〉.
However, in this thesis, we work with the atom in the emission configuration most of
the time and, therefore, we have not further investigated the reason for this heating
mechanism and the reduction of the fidelity.
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Chapter 2

Addressing setup, optical tweezers
& generation of atomic arrays

A big part of this thesis was the extension of the existing QGate experiment with
a so-called single atom addressing and positioning setup. This new addressing and
positioning setup is supposed to enable two things:

• The creation of optical tweezers. Optical tweezers are highly focused
laser beams that can be used to trap and move individual atoms. Such optical
tweezers allow for the creation of arrays of atoms in the cavity and to overcome
the limitations of the previously implemented, probabilistic loading scheme.

• The individual addressing of single atoms. By using highly focused
laser beams, individual atoms can be addressed without any crosstalk between
neighboring atoms in atomic arrays. This ability allows to to perform certain
operations in an array of atoms only on a single atom instead of on the entire
array globally. These possible operations are, for example, the generation of
atom-photon entanglement, controlling the coupling of individual atoms to the
resonator or gates on individual qubits, e.g., the controlled atom-photon phase
gate or qubit rotations. In the previously existing version of the setup, there
was no such strongly focused laser beam and it was only possible to perform
these operations globally, i.e., on all atoms simultaneously.

However, the new setup had to be integrated into the existing setup without affecting
the experimental possibilities already implemented [74–77]. The resulting design of
the new addressing system is described in this chapter of the thesis. Additionally,
the main features of the optical tweezers and the addressing and positioning system
are described and characterized, and we explain how we use them to load atomic
arrays into the resonator.

2.1 Addressing and positioning setup
The final design of the setup can be seen in Fig. 2.1. The pre-existing part is
circled with the blue dashed line. We built the new setup on a breadboard which
we placed on top of the existing setup. This was necessary due to the limited spaced.
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At the heart of the new addressing setup are the two two-dimensional acousto-optic
deflectors (2D AOD) (model DTSXY-400 from AA OPTO-ELECTRONIC). Each
two-dimensional AOD consists of two one-dimensional AODs mounted orthogonally.
AODs are based on the acousto-optic effect [96] and are used to deflect light beams
at a desired angle θ, depending on the frequency of the applied acoustic wave. By
changing the frequency inputs of each one of the two AODs, the 2D AOD can scan a
two-dimensional grid. The model we use is able to scan angles of several 10 mrad for
wavelengths in the range of 770 nm to 810 nm. The two 2D AODs in our setup serve
different purposes: One of the two generates the static tweezers for the initial atom
loading, called static tweezers. The other one generates movable tweezers for the
rearrangement of the atoms (see section 2.3). The 2D AOD of the movable tweezers
is also used to address the individual atoms. It is possible to generate a single atom
addressing beam in the wavelength range of 770 nm to 810 nm with the movable
tweezers, as the input to this optical path comes from a combination setup in which
light of different wavelengths can be combined. In contrast, the 2D AOD of the
static tweezers is only used at the wavelength of the tweezers. The deflected output
beams of the two 2D AODs are then centered for all output angles of the AODs
on the back aperture of the imaging and addressing objective (NA = 0.42) using a
4f system. The angle of incidence on the objective θobj is given by the deflection
angle θAOD of the AOD divided by the magnification M , i.e., θobj = θAOD

M
, where

the magnification M is defined as the ratio between the focal lengths of the lenses
in the 4f system. Hence, the angle of incidence on the objective θobj is controlled
by changing the input frequency of the AODs. This change in angle then translates
into a movement of the tweezers in the plane of the atoms. In our setup, there are
two 4f systems for the two 2D AODs, because of to the different optical paths that
we use to generate the tweezers. In the path of the movable tweezers, the focal
length of the first lens of the 4f system is f1,mov = 125 mm. In the path of the static
tweezers, the focal length of the first lens is f1,static = 100 mm. The lenses have dif-
ferent focal lengths, as there is not enough space in the path of the static tweezers
on the breadboard to use a lens with a longer focal length. Both tweezer beams
are superimposed after the first lens in each path using a PBS and then share their
optical path from the PBS to the objective. Therefore, both optical paths share
the second lens of the 4f system. This lens has a focal length of f2 = 1000 mm.
Because of the difference in focal length of the first lens in both optical paths, both
paths have a different magnification. The path of the static beam has a magnifi-
cation of Mstatic = 10 and the movable beam has a magnification of Mmovable = 8.
Therefore, this results in different beam waists for the two beams on the back of
the objective and therefore also slightly different beam waists in the focus of the
addressing objective, which corresponds to the plane of the atoms. The objective
was specially designed for our setup and is described in more detail in [97]. The
waists of the tweezers are discussed in more detail in section 2.2.3. After the second
lens, there is a dichroic mirror (custom-made by SCHOTT) to separate the fluores-
cence from the atoms and the incoming addressing beam or tweezers. The Schott
mirror fulfills some special requirements, such as an angle of incidence of 30◦ and a
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Figure 2.1: Sketch of addressing and positioning system and setup. The
system is built on top of the previously existing setup (circled in blue) . It used
to generate optical tweezers and address individual atoms. We use two different,
two-dimensional acousto-optic deflectors (AODs) to generate static and movable
tweezers. The movable tweezers and single atom addressing beam are generated
with one AOD and the other AOD is used to generate the static tweezers array.
An AOD deflects an input beam, depending on the applied RF frequency using the
acousto-optic effect. A 4f system together with the imaging and addressing objective
then converts this deflection into a movement of the beam in the plane of the atoms.
A dichroic mirror, called Schott mirror, reflects the incident light of the addressing
and positioning setup, but transmits the fluorescence of the atom. The transmitted
fluorescence is used to image the atoms with an electron-multiplying charged coupled
device (EMCCD) camera. The images are analyzed with computer software . This
way, we determine the positions of the atoms, which are then converted into a
frequency and communicated to the AWG which outputs the corresponding RF
signals for individual addressing or array preparation.
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Figure 2.2: Spectrum of the dichroic mirror (Schott mirror). We use a
dichroic mirror, to spectrally separate the collected fluorescence of the atom and
the light of the addressing system. As the angle of incidence of the beam from the
addressing and positioning setup is 30◦, we had the mirror manufactured externally
by the company Schott. The most important requirements were a transmission of
approximately 90 % at 780 nm, a high reflection in the wavelength range 770 nm to
810 nm, and a surface flatness better than L

10 on the reflective side to ensure good
beam quality in reflection. The plot shows the transmission curves for p, s and
unpolarized light.

surface roughness on the reflective side below λ/10 to ensure a good beam quality
in reflection. The spectral properties of the dichroic mirror can be seen in Fig. 2.2.
It acts as a dichroic mirror that transmits the fluorescence of the atoms at 780 nm
and reflects light at wavelengths in the range of the optical tweezers. The Schott
mirror reflects light below 780 nm as well, which allows, for example, to address the
transitions |5P3/2〉 → |5D3/2〉 and |5P3/2〉 → |5D5/2〉. The fluorescence from cooling
the atoms is collected through the imaging objective and subsequently transmitted
through the dichroic mirror. Afterwards, it is focused with a lens onto the chip of an
electron-multiplying charge-coupled device (EMCCD) camera, which is connected
to a computer. This way, we generate images of the atoms, which are analyzed with
self-written LabVIEW software, that we use to determine the position of the atoms.
By trapping an atom in the optical tweezers and moving it precisely to different po-
sitions in the resonator (see section 2.2.4), we can assign to each pixel of the images
a certain input frequency of the AOD. This allows to obtain a frequency-to-pixel
conversion and allows toprecisely address individual atoms. The frequency input
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Figure 2.3: One-dimensional tweezer array generated with an arbitrary
waveform generator (AWG, M3202A from Keysight). A Multi-tone RF sig-
nal. To avoid too high RF power, the phases of the individual frequency components
are selected as in [98]. B Frequency spectrum of the RF signal from part A. C Image
taken with a CCD camera of the five optical tweezers generated with the RF signal
in A.

to the AODs is generated by an arbitrary waveform generator (Keysight M3202A).
To address an individual atom at a certain position in the atomic plane, we trans-
mit the calculated frequency corresponding to the pixel to the arbitrary waveform
generator, which then outputs the corresponding RF signal. As the atoms move
in the between different lattice sites, it is necessary to follow the movement of the
atoms. Therefore, we continuously take images of the atoms every 300 ms, evaluate
the position of the atoms and adjust the frequencies to follow the movement of the
atoms. For the creation of arrays of optical tweezers, we drive the static AOD with
multiple radio-frequency tones. The phases of the individual frequency components
are selected as in [98] to avoid damaging the AOD because of too high RF power.
This is shown in Fig. 2.3. In part A, we show the multi-tone RF signal. In part
B, there is the corresponding RF spectrum, and in C, an image taken with a CCD
camera showing the generated five optical tweezers.
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2.2 Characterizing the addressing and positioning
setup & the optical tweezers

In this section, we characterize the most important properties of the optical tweezers
and the addressing and positioning system. These properties are the trapping times
and frequencies, the beam shape and the precision with which we can position
atoms using the optical tweezers. The measurements are all taken with the movable
tweezers (see 2.3). The static tweezers were only added to the setup after these
measurements were taken. Since the optical components used to generate the static
tweezers are very similar, the static tweezers have similar properties and, therefore,
we decided not to characterize them.

2.2.1 Beam shape

To determine the shape of the addressing beam, we load a single atom into the
two-dimensional standing wave lattice and address the atom through the addressing
system using state detection light (see section 1.7). By scanning the input RF signal
of one AOD, we scan the position of the addressing beam along one axis of the two-
dimensional grid spanned by the AODs in the atomic plane with axes xf and yf ,
which is rotated by an angle α with respect to the horizontal, see Fig. 2.4. The
beam shape of the addressing beam can then be determined by collecting the emitted
fluorescence of the atom in the cavity mode while the beam position is scanned over
the atom. Fig. 2.4 shows a typical beam profile for scans along the xf (A) and yf (B)
axes of the two-dimensional AOD. Along both axes, the beam shape is a Gaussian
beam. Fitting the data with a Gaussian shape gives a waist of wxAOD

= 1.48(10) µm
and wyAOD

= 1.77(12) µm along the xAOD and yAOD, respectively, which is a slightly
asymmetric beam. As the atoms are moving within the standing wave traps, the
data were post-selected to use only data in which the atom did not move. These
measurements were made at an early stage of the work presented in this thesis. The
waist was further decreased and the alignment optimized during this thesis. The
final beam waists are w0,|| = 1.40(5) µm and w0,⊥1.38(3) µm, see section 2.2.3.

2.2.2 Trapping times

To determine the trapping time of the atoms, we trap the atoms in the optical
tweezers and cool the atoms until they are lost. We check if the atoms are lost by
taking a picture every 300 ms with our imaging system and our self-written image
evaluation software. The trapping time depends on many different parameters, e.g.,
the tweezer power or the cooling parameters. Fig. 2.5 shows a typical scan of the
trapping time versus tweezer power for a tweezer wavelength of 800.12 nm. The
trapping time peaks at about 3.65 mW and decreases again for higher powers. This
decrease is unexpected, as an increase in trapping power should not reduce the
storage time. During this thesis, we have continuously changed the optical setup,
e.g., we changed the wavelength of the light for the optical tweezers, realigned the
optical tweezers, or changed the lens configurations of the 4f system. These changes

29



Addressing setup, optical tweezers & generation of atomic arrays

x

y

xAOD

yAOD

α

A

116 118 120 122
yAOD (MHz)

0

25

50

75

cl
ick

s

B

114 116 118 120 122
xAOD (MHz)

0
50

100
150
200

cl
ick

s
C

Figure 2.4: Rotation of addressing system in the atomic plane and beam
shape of addressing beam. A The axes along which the beams of the addressing
system move in the plane of the atoms are rotated by an angle α with respect to
the horizontal. If the the input RF frequency of one of the AODs is scanned, the
addressing beam moves along the xAOD or yAOD axis. By injecting state detection
light into the addressing system and collecting the fluorescence through the cavity
while scanning the input RF frequencies, the beam shapes along the yAOD axis
B and yAOD C can be measured. From the data, we determine the beam waists
to be wxAOD

= 1.48(10) µm and wyAOD
= 1.77(12) µm along the xAOD and yAOD,

respectively, which is a slightly asymmetric beam. During this thesis, the alignment
was optimized and the lens configuration was changed, giving a smaller beam waist
in the end, see section 2.2.3.
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Figure 2.5: Trapping times in movable tweezers versus optical power.
Changing the optical power of the tweezers changes the trap depth of the tweezers
and therefore results in different trapping times. The trapping time peaks at about
3.5 mW and decreases for higher optical powers. This decrease is unexpected, as
increasing the trap depth should not reduce the storage time. The storage time
is influenced by many different parameters, e.g., the lens configuration of the 4f -
system, the alignment, or the cooling parameters. During this thesis, we tested a
lot of different settings and observed storage times in the range of 15 s to 30 s. This
measurement was taken for a tweezer wavelength of 800.12 nm.

all influenced the trapping time. However, for all the settings tested, the trapping
time was in the range of 15 s to 30 s.

2.2.3 Trap frequencies, waist & trap depth
In this section, we describe the measurement of the trap frequency of the movable
optical tweezers. The measurements were taken with a wavelength of λ = 800.12 nm.
In order to be able to assign a trap frequency to the tweezers, the tweezer potential
is approximated as a harmonic oscillator. This approximation is valid, as long as
the stays at the bottom of the tweezer potential, which is ideally the case. With this
approximation and assuming a Gaussian beam shape for the tweezers, the parallel
trap frequency ν|| (along the propagation direction of the tweezers) is given by

ν|| = 1
2π

√
2U

mz2
R

, (2.1)

and the perpendicular trap frequency ν⊥ (perpendicular to the propagation direction
of the tweezers) by

ν⊥ = 1
2π

√
4U

mw2
0
. (2.2)

Here, U is the trap depth, m is the atomic mass, w0 is the beam waist, and zR is
the Rayleigh range. To then measure the trap frequency, we modulate the tweezer
potential sinusoidally at a frequency ν. If the modulation frequency ν corresponds
to twice the parallel or perpendicular trap frequency, i.e., ν = 2ν|| or ν = 2ν⊥, the
atom is ejected from the tweezers because of parametric heating. Therefore, we
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scan the modulation frequency ν while measuring the probability for the atom to
not be ejected from the trap, i.e., the survival probability. The survival probability
for different modulation frequencies is measured in three steps. First, we check if
an atom is trapped in the tweezers with an initial fluorescence detection SD1 (see
section 1.7). Then we modulate the potential. Afterwards, we check if the atom is
still in the optical tweezers with a second fluorescence detection SD2. From this,
we determine the survival probability P (SD2|SD1) of the atom in the tweezers at
the corresponding modulation frequency, i.e., the probability of detecting an atom
in SD2 after the modulation given that an atom was detected in SD1 before the
modulation. This experimental sequence for measuring the trap frequencies is shown
in Fig. 2.6 A. The results of the measurement are shown in Fig. 2.6 B and C. We
see the expected drop of the survival probability and we measure trap frequencies
of ν⊥ = 137.5(4) kHz and ν‖ = 17.7(4) kHz for a power of 4.2 mW.

From the perpendicular (parallel) trap frequency ν⊥ (ν||), the beam waist w0 (the
Rayleigh range zR) and the trap depth can be determined. By measuring the trap
frequency for different powers Ptrap, one can use the following relationship to fit the
result and determine the beam waist w0 (Rayleigh range)[99]

w0 =
(

h̄Γ
mν2

Ptrap

πIsat

(
Γ

3δ1
+ 2Γ

3δ2

))1/4

. (2.3)

Here, Isat is the saturation intensity of the D2 line, ν is the trap frequency, γ is
the linewidth of the D2 line and δ1 and δ2 are the detuning between the wavelength
of the optical tweezers and the D1 and D2 lines. We determine the parallel and
perpendicular trap frequency for different powers and obtain from the fit a waist
of w0,⊥1.384(3) µm using the perpendicular trap frequency and a Rayleigh range of
zR,‖ = 7.634(5) µm (corresponding to a waist of 1.394(5) µm) using the parallel trap
frequency ν||, see Fig. 2.6 D and E. The fit includes measurement uncertainties in
both the power P and the measured trap frequencies ν⊥ and ν‖. From w0,⊥ and
zR,‖, we are able to calculate the parameter M2 = 1.015(9), which indicates that
the beam is highly Gaussian. Using 0.42λ/NA [97], we calculate the diffraction
limited waist of the objective, which is 1.08 µm1. However, we use an input beam
with a waist (w0 = 4 mm) that is smaller than the maximum and therefore we
expect a beam waist of 1.26(23) µm. The measured waist is within the error range
of the expected value. As we know the trap frequency and the beam waist, we can
determine the trap depth. It is approximately 1 mK for a power of 4.2 mW at a
wavelength of 800.12 nm. However, as we use an array of optical tweezers to load
the array of atoms, the number of individual tweezers is which we can generate is
limited at this wavelength due to the power required per tweezer. To overcome this
limitation, we use a wavelength of 797 nm instead. At this wavelength, we only need
1 mW to 2 mW per tweezer to achieve a comparable trap depth.

1Note that here we use NA = 0.31 instead of NA = 0.42 as given in 2.1, as the cavity reduces
the NA in one direction
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Figure 2.6: Measurement of the trap frequency and the waist for the
movable tweezers A Experimental sequence. At the beginning, we check if an
atom is trapped in the tweezers with a fluorescence detection (SD1) (see section
1.7). Then, we modulate the power of the tweezers and check if the atom survived
the modulation with another fluorescence detection (SD2). The probability that
the atom survived, given that it was present in SD1, i.e., P (SD2|SD1), is mea-
sured for different modulation frequencies ν of the tweezer power. If ν = 2ν⊥ or
ν = 2ν‖, the atom is ejected from the trap due to parametric heating. In B is
the measurement for the perpendicular trap frequency, in C for the parallel trap
frequency, giving ν⊥ = 137.5(4) kHz and ν‖ = 17.7(4) kHz at 4.2 mW of optical
power. From the perpendicular D and parallel trap E frequency for different optical
powers, we determine the beam waist using equation (2.3). The fit gives a waist of
w0,‖ = 1.40(5) µm and a Rayleigh range of zR,‖ = 7.634(5) µm (corresponding to a
waist of 1.394(5) µm), which indicates a highly Gaussian beam with M2 = 1.015(9).
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2.2.4 Positioning
When loading multiple atoms without optical tweezers, i.e. with the previous prob-
abilistic loading method, the distance between neighboring atoms cannot be con-
trolled. However, controlling this distance is necessary to generate ordered atomic
arrays. Optical tweezers allow for the precise positioning of atoms in the cavity.
This capability is what we demonstrate in this section.

To move the atoms precisely to any desired position in the cavity, we first have
to perform a frequency-to-pixel calibration, for which we use our EMCCD camera.
From this calibration, we obtain a map φ that assigns to each pixel (px, py) a RF
input frequency pair for the AOD (fx, fy), i.e., φ(px, py) = (fx, fy). To obtain this
map, we measure for several pairs of pixels (px, py) the corresponding frequency pairs
(fx, fy). To obtain a reliable frequency-to-pixel conversion, it is necessary that the
pairs of pixels are distributed over the entire cavity area. To measure the frequencies
that correspond to the pairs of pixels. we trap an atom in the tweezers and move it
to a specific position by applying a specific frequency pair to the AOD and record
the corresponding atomic position in pixels. We repeat this for each frequency pair
a couple of hundred times. This is shown in Fig. 2.7. In this Fig., we show the
recorded positions for twelve different frequency pairs. The conversion from pixel
to position is obtained by using a conversion factor of 0.464(4) µm/pixel from a
previous measurement of the pixel size. In part B of Fig. 2.7, we show a zoomed
in version (circled in red in part A of the figure) of the measured positions for one
frequency pair. Using this data set, we compute the full map φ, which also includes
the rotation angle α between the grid spanned by the 2D AOD and the horizon-
tal. We obtain α = 14.60(5)◦. Additionally, we calculate the standard deviation
(indicated by the blue circle) of the measured positions with respect to the center.
We obtain σx = 47(5) nm and σy = 46(6) nm. These standard deviations give us
the positional deviation when repeatedly moving an atom to the same position. We
attribute the uncertainty mostly to the error of the fit of the atomic position and
therefore the obtained value is an upper bound of the positioning error. We can use
this capability to precisely position the atom inside the cavity to resolve the beating
pattern of the cavity mode, which we demonstrate in the following section.

When placing an atom inside a cavity, the transmission coefficient of the electric
field through the cavity is given by [100] [101]

t(y) = 2√
κlκr(i∆a + γ)

(i∆c + κ)(i∆a + γ) + g2(y) . (2.4)

Here, κ, κl and κr are the total cavity field decay rate and the decay rates through
the left and right mirrors, γ is the polarization decay rate, ∆a = ωa − ω is the de-
tuning of the resonance of the atom ωa with respect to the frequency of the driving
laser ω, ∆c = ωc − ω is the detuning of the resonance of the cavity ωc with respect
to the frequency of the driving laser ω and g is the coupling of the atom to the
resonator. As the electric field mode of the cavity is a standing wave, the coupling
g between cavity and atom oscillates along the cavity axis. Therefore, the intensity
transmission T (y) = |t(y)|2 of the cavity is position-dependent. For that reason, the
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Figure 2.7: Frequency-to-position conversion. To be able to precisely position
the atom in the cavity, we have to measure a map φ, that assigns to each pair of
pixels (px, py) a frequency pair (fx, fy) , i.e. φ(px, py) = (fx, fy), and vice versa. We
find this map by repeatedly moving the atoms to different positions in the cavity, as
we apply different input frequency pairs to the 2D AOD and record the position of
the atoms by fitting the fluorescence images, see A. In B, there is a zoom (circled
in red in part A) into the position measurements for one frequency pair. From this,
we calculate a standard deviation (indicated by the blue circle) of σx = 47(5) nm
and σy = 46(6) nm when repeatedly moving one atom to the same position. The
positioning uncertainty results from the uncertainty of the fit of the atomic position
and gives, therefore, an upper bound on the position uncertainty. From the fit, we
obtain an angle of 14.60(5)◦ for the rotation between the grid spanned by the 2D
AOD and the horizontal.
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transmission of the cavity can be modulated by trapping an atom inside the optical
tweezers and moving the atom along the cavity axis.

In the following, we use this modulation to demonstrate a positioning resolution
with our optical tweezers better than λ/2. We show this by moving an atom along
the cavity axis while we record the transmission through the cavity for different
positions along the cavity axis during a probe light interval. To probe the cavity,
we use |σ+〉-polarized and both the cavity and the probe beam are set to resonance
with the transition |F=2, mF =2〉 → |F ′=3, mF =3〉, i.e. we work in the gate config-
uration (gate configuration, see section 1.3). At the beginning of each cavity probe
interval, the atomic population is randomly distributed in the ground states. If the
atom is located at an intensity maximum of the cavity field along the cavity axis,
the σ+-polarized cavity probe beam and a repumper from |F=1〉 to |F=2〉 optically
pump the atom to |F=2, mF =2〉, because the scattering of a probe photon increases,
on average, the magnetic sublevel. As the coupling g increases towards the end of
the probe interval at positions of maximum intensity of the cavity field, the cavity
transmission reduces, see Fig. 2.8 A. In Fig. 2.8 B, we plot the ratio between the
number of clicks in the last 5 µs c2 and the first 5 µs c1 of the pumping interval, i.e.,
c2/c1, versus the position of the atom in the cavity. On the x-axis of the plot is the
distance yAOD, over which we move the atom with the optical tweezers. We deter-
mine this distance with the previously measured frequency-to-position conversion.
If the atom is moved along the cavity axis, we expect to see a modulation period
of the ratio c2/c1 of λc/2 = 780 nm/2 = 390 nm. However, from the fit we obtain a
modulation period of 404(2) nm. This difference can be explained by the rotation
of the coordinate system of the 2D AOD with respect to the cavity axis. By fitting
the data from Fig. 2.8 B using the model of equation (2.4), we find a rotation angle
of 15(1)◦, which is in good agreement with the angle of 14.60(5)◦ obtained from the
calibration measurement. The blue shaded curve indicates the error on the atomic
position of σx = 47(5) nm. In this measurement, we show that we are able to resolve
the positions of maximum and minimum coupling between the atom and the cavity
and that we can position the atom within nodes and antinodes of the intracavity
trap, i.e., with a higher resolution than λ/2. This resolution is only possible when
the atoms are trapped in the optical tweezers. When we transfer the atoms back
into the two-dimensional lattice for the entanglement generation, the atoms move
at most by 328 nm, which is the maximum distance to the closest antinode of the
two-dimensional lattice.

2.2.5 Extraordinary polarization components of the tweez-
ers

The results presented so far were all satisfying and made us hope that we could
perform experiments with the atoms trapped in the optical tweezers. However, the
atoms have to be strongly confined in the cavity to a position of maximum cou-
pling. Hence, it is necessary to focus the optical tweezers strongly. If a linearly
polarized beam is focused to a waist size of the order of the wavelength, the beam
diverges strongly near the focus and longitudinal polarization components arise [102,
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Figure 2.8: Transmission T through the cavity during optical pumping
and modulation of the transmission ratio c2/c1 along the cavity axis. A
By sending σ+ light along the cavity axis, the atomic population is optically pumped
to the state |F=2, mF =2〉, when the atom is located at a position of maximum cavity
field intensity. Therefore, the coupling g increases during the pumping interval and
consequently the transmission T through the cavity decreases (see equation (2.4)).
The click ratio c2/c1 is defined as the ratio between the number of detected clicks
at the end of the pumping interval c2 (indicated by the orange shaded area) and
the number of detected clicks at the beginning of the pumping interval c1 (indicated
by the blue shaded area), i. e., c2/c1. B The click ratio c2/c1 versus the distance
yAOD. The transmission through the cavity is position- dependent and therefore the
pumping ratio is modulated as the atom is moved with the tweezers over the distance
yAOD. As the optical tweezers do not move parallel to the cavity axis, the periodicity
of the modulation of the click ratio is 404(2) nm instead of λC/2 = 390 nm, as
expected. This difference stems from the rotation of the coordinate system of the
2D AOD with respect to the cavity axis. From the fit, we obtain for the rotation
an angle of 15(1)◦, which is in good agreement with the 14.60(5)◦ obtained from
the frequency-to-position conversion (see Fig. 2.7). For the positioning of the atom
with the tweezers we use an error of σx = 47(5) nm from the frequency-to-position
conversion (blue shaded area).
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103], resulting in an elliptical polarization. This is problematic as these near-focus
extraordinary polarization components induce large virtual magnetic fields, which
strongly influence the coherence properties of the qubit. Therefore, many of the
groups that are working with optical tweezers, encode their qubit in clock tran-
sitions which are insensitive to virtual magnetic fields [104–106]. Unfortunately,
this is not possible for the protocol used in chapter 3 to generate the atom-photon
entanglement, as we have to use the magnetic field sensitive |F=1, mF = ±1〉 and
|F=2, mF = ±2〉-states. For that reason, we decided to use the tweezers only for the
preparation of the atomic arrays and to then transfer the atoms during the experi-
mental sequence into the 2D optical lattice, as in the 2D lattice the extra-ordinary
polarization components are suppressed because of the larger beam waist.
To show the influence of the extra-ordinary polarization components in the tweezers
and the suppression of these in the lattice, we measure Raman spectra with the atom
in the optical tweezers and in the optical lattice. To measure a Raman spectrum,
we initialize the atom in the ground state |F = 1〉. Then, we switch on the Raman
lasers, which transfers the population from |F = 1〉 to |F = 2〉 if the two-photon
detuning is set correctly. The polarization of the Raman lasers is set such that only
transitions from |F = 1, mF0〉 to |F = 2, mF = mF0 ± 1〉, i.e. ∆mF = ±1, are al-
lowed. After the Raman transfer to |F = 2〉, the population in |F = 2〉 is read out.
The probability P (|F = 2〉). which is the probability to have transferred the atom
to |F = 2〉 with the Raman, is measured. As we apply a magnetic guiding field, a
Zeeman splitting is induced. This splits up the resonance frequencies for transitions
between different mF states from |F = 1〉 to |F = 2〉. By scanning the two-photon
frequency δ of the Raman transition and reading out the population in |F = 2〉, we
resolve the different Raman transitions. As the polarization is set such that only
∆mF = ±1 transitions are possible, a spectrum with four peaks is expected, which
correspond to the four possible transition frequencies between the individual mF

states [77]. Such a Raman spectrum can be seen in Fig. 2.9 for an atom in the
optical lattice in A and for an atom in the optical tweezers in B. The linewidth of
the individual transitions is much larger in the optical tweezers. In addition, a fifth
peak appears in the spectrum of the atom in the optical tweezers, which is created by
driving the transition |F = 1, mF = 0〉 to |F = 2, mF = 0〉. This transition should
not be possible in this polarization configuration of the Raman lasers, but, due to
the extraordinary near-focus polarization components of the optical tweezers the
effective magnetic field is rotated and therefore additional transition can be driven.
The data shown here were measured during Franz von Silva-Tarouca’s master’s the-
sis and a more detailed discussion of the topic can be found in [89]. The drastic
difference between these two spectra clearly shows the advantages of the optical lat-
tice for experiments with magnetic field sensitive states. For this reason, we decided
to transfer the atoms into the optical lattice after the preparation of the atoms.
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Figure 2.9: Raman spectra measured with the atom trapped in the two-
dimensional optical lattice and in the optical tweezers. A Spectrum with
atom trapped in the optical lattice. In this case, only the expected four transitions
are driven by the Raman lasers. B Spectrum with atom trapped in optical tweezers.
The extraordinary near-focus polarization components in the optical tweezers cor-
respond to a rotation of the effective magnetic field and a fifth transition between
|F = 1, mF = 0〉 and |F = 2, mF = 0〉 (labeled with 5 in the plot) can be driven.
The linewidth of the individual transitions is also much larger in the optical tweez-
ers than in the optical lattice, in which the unwanted polarization components are
suppressed. The data shown were measured during Franz von Silva-Tarouca’s mas-
ter’s thesis [89].
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2.3 Creating one- and two-dimensional atomic ar-
rays

Before the implementation of the addressing and positioning setup, loading arrays
of atoms was a probabilistic process. Even though it was possible to load a large
number of atoms into the cavity, the number of atoms and the distance between
the atoms was random. For this reason, only experiments with at most two atoms
were possible, as the probability to prepare arrays with more than three atoms
was already lower than 0.5 %. Fig. 2.10 shows the loading probability for the
probabilistic loading scheme without optical tweezers. However, future quantum
network nodes, require large arrays of atoms. One of the reasons for building the
addressing and positioning setup was that it is supposed to enable the loading of
larger arrays.

We tried two approaches to achieve the intended increase in loading efficiency. The
first approach was to use the tweezers to move the atoms over the 1064 nm standing
wave trap and sort them into the desired arrays shape. However, with this approach,
we did not obtain the desired results. We were not able to prepare arrays with more
than five atoms because of a too low success probability. The reason for this is
that the atoms heat up as they are moved over the 1064 with the tweezers, which
leads to atom loss. However, we did not find out the reason for the atom heating.
We therefore tried a second approach for the array preparation. In this approach,
we load the atoms directly from the MOT into an array of optical tweezers and
then sort them within this array into the desired shape. This approach gave us
the desired results and allowed us to load up to seven atoms simultaneously. In
the following sections, we will describe this loading process. First, we describe the
stochastic loading of the optical tweezers and, afterwards, the rearrangement of the
atoms within the array. Both steps are shown in Fig. 2.11.

2.3.1 Stochastic loading of the static tweezer array
This section describes the first part of the preparation protocol for the atomic arrays,
the stochastic loading of the static tweezer array. It is illustrated in Fig. 2.11. The
stochastic loading starts with the trapping and cooling of the atoms in a magneto-
optical trap (MOT). Details of our MOT can be found in [107]. In a typical cold
atom tweezer experiment without a small mode-volume optical cavity, the atoms are
loaded into the tweezers directly from the MOT [liu2023, 64, 65]. However, in our
setup, the cavity together with the piezo-tube in which the cavity is mounted severely
restrict the optical access. Therefore, it is impossible to load a MOT directly at the
cavity center, where the tweezers are located. For this reason, the MOT is created
14 mm away from the center of the resonator. After the MOT phase, the atoms are
transported into the resonator using a running wave dipole trap at 1064 nm. For this
purpose, the transport trap is focused exactly between the center of the resonator
and the position of the MOT. This focused beam generates a Gaussian potential
in which the atoms oscillate. After running through the potential exactly once, the
atoms reach the cavity center after 70 ms. In the previously used loading scheme,
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Figure 2.10: Loading probability for the previously used stochastic load-
ing. In the stochastic loading scheme, the success probability decays exponentially.
For two atoms, the success probability is approximately 2.5 %, and for three atoms,
it is already lower than 0.5 %. Due to the low probability to successfully load more
than two atoms, experiments with the stochastic loading were limited to at most
two atoms.

the atoms were then directly transferred from the transfer trap into the 1064 nm
trap. In this case, there is no possibility to control the relative positioning of the
atoms. However, in our new tweezer-based loading scheme, the atoms move over
the static tweezer array at the cavity center and are trapped stochastically in the
individual tweezer using our cooling light, which is switched on during the entire
array preparation. Each individual optical tweezer has a trap depth of approximately
1 mK. The trap depth of the individual tweezers varies, because the diffraction
efficiency of the AOD is not constant for all deflection angles. The beam waist of
the transfer trap at the center of the resonator is approximately w0 = 72 µm [107],
within which the atoms can be located. Since this waist is large compared to the
spatial extent of the one- or two-dimensional tweezer array (10 µm to 15 µm), the
probability of loading atoms directly from the transport trap into the tweezers is
rather low. To increase the loading probability of the atoms in static array, we
switch on the standing wave trap at 1064 nm for a short amount of time during the
transport, in which we keep the atoms trapped during the experimental sequence.
This trap has a waist of ∼ 12 µm. For that reason, the spatial expansion of the
atoms is reduced compared to the the expansion in the transport trap, which leads
to a significantly higher loading probability of the tweezers. Another important
factor for increasing the loading probability is the alignment of the tweezer array
with respect to the transfer trap. To increase the loading probability, it is important
that one axis of the two-dimensional array is overlapped with the transfer trap. For
this reason, we mounted the static tweezers array AOD on a rotation mount and
aligned it such that one axis of the static tweezers array and the transfer trap are
overlapped, see Fig. 2.12. This way, the static tweezers are loaded stochastically.
In Fig. 2.13 we show a typical loading distribution of the number of atoms for a
two-dimensional static array.
The average number of atoms loaded is n = 6.4(6). This number depends on the
number of tweezers in the array and is not constant, but fluctuates over time (time
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Figure 2.11: Loading scheme with tweezers including the timing. A Spatial
configuration of the MOT, the transfer trap and the optical resonator. The MOT
is prepared outside of the cavity and the atoms are transferred into the resonator
using a running wave dipole trap at 1064 nm. There, the atoms are moving over the
tweezers and are cooled into the static array of the individual tweezers. This way, the
static tweezers are stochastically loaded. Based on image evaluation, the initially
stochastically loaded atoms are sorted into the desired array configuration in the
static tweezers. For the sorting, we use the movable tweezers. If the arrangement
is successful, the atoms are transferred into the two-dimensional lattice. The two-
dimensional lattice consists of two standing wave traps at 770 nm (along the cavity
axis) and 1064 nm (orthogonal to the cavity axis). B Timing of the sequence. The
entire sequence is divided into three major steps: the loading of the static tweezer
array, the rearrangement of the atoms and the transfer of the atoms into the two-
dimensional lattice. The actual experimental science sequence is described in more
detail in chapter 3.
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Figure 2.12: Rotation of static tweezers Array vs. transfer trap. A Tweezer
array is rotated relative to the transfer trap, which leads to a reduced average number
of loaded atoms. To increase this loading average , the spatial overlap of the static
tweezer array with the transfer trap (indicated by the yellow line consisting of atoms)
has to be maximized. B Transfer trap and the tweezer array overlap. Therefore,
the loading probability is increased.
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Figure 2.13: Loading statistics for a two-dimensional tweezer array. The
loading into the static tweezers from the transfer trap is a stochastic process, which
is described by a Poissonian distribution for the number of atoms. In the shown
example, the average number of loaded atoms is n = 6.4(6).
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Figure 2.14: Images of stochastically loaded one-dimensional tweezer ar-
rays. After the MOT phase, the atoms are transported to the center of the cavity
in the running wave transfer trap. There, they move over the static tweezer array
and are trapped in the tweezers using our cooling light. Since this is a stochastic
loading process, the number of atoms that are trapped as well as which tweezers are
filled is different for each loading process, as shown in the different images.

scale of days to weeks), because of several reasons, e.g., the drift in the spatial overlap
between the transfer trap and the MOT. The result shown in 2.13 is therefore only an
example, but typically we achieve loading numbers n > 5.5. The distance between
neighboring tweezers in the static tweezers array is in the range of 5 µm to 10 µm. At
smaller distances, the neighboring tweezers start to interfere with each other and the
average number of loaded atoms decreases. At the same time, the number of tweezers
that can be generated, when the distance between neighboring tweezers is large, is
much lower. This is because the efficiency of the AOD is maximum at the center
frequency and drops for frequencies that are further away from the center frequency.
When using small distances between neighboring optical tweezers, many tweezers
are generated in a frequency range close to the center frequency. However, when
using larger distances between neighboring tweezers, many tweezers are generated
at frequencies with a small efficiency and the number of tweezers is therefore limited
by the optical laser power. In Fig. 2.14 we show typical arrangements after loading
atoms in the individual tweezers for a one-dimensional static array. The number and
the positions of the atoms change for every loading attempt. To create one- and
two-dimensional ordered arrays with a precise number of atoms, we implemented an
atom sorting procedure, which we describe in the next section.

2.3.2 Rearranging the atoms

Rearranging the atoms is the second step in the whole process of the array prepa-
ration, shown in Fig. 2.11. To rearrange the atoms, we use both two-dimensional
AODs of our setup (see section 2.1). We use the static AOD to create the array
in which the atoms are initially trapped after the loading and we use second AOD
to create the movable optical tweezers. The movable tweezers are used to move
atoms between the individual optical tweezers of the static array. This principle is
illustrated in Fig. 2.15. The rearrangement of the atoms starts after the stochastic
loading of the static tweezers. First, an image is taken to analyze which tweezers
are filled and which atoms need to be moved to achieve the desired array configura-
tion. To move an atom, we superimpose the movable tweezers with the single static
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tweezers from which we want to remove the atom. We then linearly ramp up the
power of the movable tweezers within 10 ms, such that Umov ≈ 3Ustatic, and cool the
atom in the movable tweezers. Then, the atoms are moved to the target tweezers at
a speed of vmov ≈ 5 µm

ms along the shortest possible way, but in a manner that they
never move over the other static tweezers. The atoms are then reloaded back into
the target tweezer. To do this, the two tweezers are again superimposed and the
potential of the static tweezers is linearly ramped down to Umov = 0. Multiple atoms
can be moved within the time that we need to take one picture (300 ms). The next
picture is then used to check if the movement attempt was successful. If a movement
attempt failed, but there are still enough atoms trapped in the static tweezers array,
the rearrangement process is repeated. The arrangement of the atoms takes 1 s to
2 s, because the atoms are arranged sequentially. The rearrangement protocol is
optimized such that the distance over which the atoms are moved and the number
of movements are minimized. However, moving the atoms does not work perfectly.
The probability with which the movement of an atom works depends on several fac-
tors, like the moving speed vmov, the trap depth of the movable tweezers Umov, the
the cooling parameters, the timing of reloading between static and movable tweez-
ers and the distance over which the atom must be moved. We have scanned these
parameters and maximized the movement success probability to be approximately
90 % per atom per move, depending on the distance. In Fig. 2.16, we show our final
results for sorting the atoms. In both A and B, we show histograms of the loading
statistics before and after the rearrangement of the atoms. A shows the statistics
for a target array consisting of n = 2 and B the statistics for n = 3 atoms. In both
cases the final distributions have a large peak at the target number of atoms and a
success probability of over 80 % is achieved. This means that we successfully gener-
ate the desired atom array in the static tweezers in more than 80 % of the loading
processes, i.e., per MOT. The statistics shown do not yet include the transfer of the
atoms into the 1064 nm standing wave trap from the tweezers, but the probability
of this transfer is close to 100 %.

2.3.3 Results of the array preparation

Fig. 2.17 A shows the success probability for the different methods we investigated.
The success probability PT with the optical tweezers beats the old probabilistic
method PT by several orders of magnitude. With the old, probabilistic method we
were limited to experiments with at most two atoms, but now protocols with up
to seven atoms are possible. The maximum number of atoms is mostly limited by
the initial number of atoms loaded into the static array. It is usually about n ≈ 6,
see Fig. 2.13. This means that there are only a few events where the number
of initially loaded atoms is high enough to start the rearrangement process at all.
In addition, the storage time T of 15 s to 30 s, which scales for n atoms as ∼ T

n
,

limits the number of movement attempts that we can perform. Besides the array
preparation with the tweezers, we added the success probability Pover1064 for moving
the atoms over the 1064 nm. This method already works better than probabilistic
loading, but is much worse than preparing the arrays using only the optical tweezers.
Nevertheless, both methods significantly increase the rate at which atomic arrays
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Figure 2.15: Rearrangement protocol. A Stochastically loaded array after MOT
transfer. The image is analyzed with the self-written LabView software and the
necessary steps for the rearrangement of the atoms are calculated. B Rearrangement
of the atoms. The movable tweezer is used to rearrange the atoms into the desired
configuration. For the transfer from the static to the movable tweezers, the trap
depth of the movable tweezers is ramped up linearly to about three times the depth
of the static tweezers. The moving speed vmov is about 5 µm

ms . Steps A and B are
repeated until the desired configuration is reached, see C.
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Figure 2.16: Comparison of the atom number distributions before and
after the rearrangement with the movable tweezers. The initial and final
atom number distributions are shown for a target array size of n = 2 (A) and of
n = 3 (B) atoms. The initial, Poissonian distributions have an average atom number
of approximately n = 6 atoms and are then transformed into a distribution with a
clear peak at the desired atom number. In both cases, the maximum probability is
higher than 80 %. The atoms are rearranged into the desired shape within the static
tweezers by moving the atoms with the movable tweezers and removing unneeded
atoms, if necessary.
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can be prepared. This is shown in part B of Fig. 2.17, where we plot the ratios
PT /PP and Pover1064/PP of the success probabilities for different numbers of atoms
for the different methods. To get an estimate of the success probabilities for arrays
with more than five atoms, we extrapolated the success probabilities using the fitting
parameters obtained from the fits for up to four and five atoms. We extrapolate an
increase in the ratio Pover1064/PP by a factor of 1 × 102 when moving the atoms over
the 1064 nm trap. For the preparation with the tweezers, we extrapolate a factor
larger than 1 × 104 for the ratio PT /PP . This increase in the success probability by
four orders of magnitudes suggests that the preparation of larger arrays is likely in
the future, especially, since the maximum number of atoms is mostly limited by the
average number of atoms initially loaded in the stochastic array and the movement
of the atoms, both of which can still be improved.
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Figure 2.17: Success probabilities for different loading schemes and ratio of
loading rates versus number of atoms. A Success probability of array prepara-
tion versus number of atoms for different preparation schemes. The previously used
probabilistic loading scheme (orange markers) gives the worst results and at most
two atoms can be prepared. Moving the atoms with the tweezers over the 1064 nm
trap (blue markers) increases the maximum number of atoms to five. However, the
success probabilities are still lower than for the preparation with the tweezer arrays
(green markers). The tweezer arrays allow to prepare up to seven atoms with a
probability of more than 10 %, which is higher than the probability for two atoms in
the probabilistic case. B Ratio of the success probabilities for the different loading
methods. Pover1064/PP and PT /PP show the effect of the tweezers on the success
probabilities of the array preparation. The rates are increased by a factor of 1 × 102

(Pover1064/PP ) and 1×104 ( PT /PP ). The factors are estimated by extrapolating the
success probabilities Pover1064 and PP .
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Chapter 3

A multi-qubit register

In this chapter, I describe the experimental implementation of a quantum network
register. I start by describing how we entangle the internal atomic state of a single
atom from an atomic array with the polarization of a photon. We start by explain-
ing the basic steps of the entanglement generation process with the experimental
protocol for a single atom (see Section 3.1). Then, in section 3.2, we extend the
protocol to multiple atoms in one and two dimensional arrays and show how mul-
tiplexing can increase the efficiency and rate of atom-photon entanglement (APE)
generation. Afterwards, I discuss the experimental imperfections in section 3.3 and
give a short outlook on the necessary improvements required to scale up the register
to larger qubit numbers, see section 3.4. The results presented in this chapter are
published in [108].

3.1 Atom-Photon Entanglement with a single atom
In this section, I describe the protocol to entangle the internal state of a single atom
and the polarization of the generated photon. The resulting entangled state will
be the Bell state |Ψ+〉. The experimental sequence used to generate this entangled
state is displayed in Fig. 3.1. Each step of the sequence is explained in detail in
the following individual subsections. The most important steps are the atom initial-
ization in the state |F=2, mF =0〉 through optical pumping (part A in Fig. 3.1, see
subsection 3.1.1), the atom-photon entanglement generation using a vSTIRAP (part
B, see subsection 3.1.2) and the photonic and atomic state readout (see subsection
3.1.4). The atomic and photonic state readout is a multi-step process (parts C-F).
We use two metrics, the efficiency η and the fidelity F , to evaluate the generated
entangled state. Therefore, I also discuss the photon generation efficiency and its
limiting factors (see section 3.1.3) as well as at how to determine the fidelity between
the generated state ρ and the state |Ψ+〉 (see subsection 3.1.5).

3.1.1 Optical pumping into |F=2, mF =0〉
At the beginning of the sequence, the atom is initialized in the state |F=2, mF =0〉 :=
|0〉, as shown in part A of Fig 3.1. To do this, we use π-polarized light reso-
nant with the |52S1/2, F=2〉 → |52P1/2, F=2〉 transition and a repumper resonant
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Figure 3.1: Experimental sequence for the generation and characterization
of atom-photon entanglement (APE) with a single atom. The atom is
initialized in |F=2, mF =0〉 with optical pumping at the beginning of the sequence
(part A). Afterwards, a vSTIRAP is used to generate APE between the polarization
of the emitted photon and the internal atomic state (part B). To determine the
fidelity, we then read out the internal atomic state in a multi-step process. In this
process, the atomic state is mapped to a readout photon by single qubit rotations
(parts C-E ), an atomic state transfer (part F) and a second vSTIRAP (part G).
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with the transition |52S1/2, F=1〉 → |52P3/2, F=2〉. Both beams propagate along
the same axis as the 1064 nm standing wave trap (see Fig. 1.5). The underlying
idea for the optical pumping is to use that the transition |52S1/2, F=2, mF =0〉 →
|52P1/2, F=2, mF =0〉 is dipole-forbidden. Therefore, the population in the state |0〉
is not excited when using π-light. However, the population in all other magnetic
sublevels of |F=2〉 of the hyperfine ground state can be excited by the π-light. If
the atom is excited with π light, the mF state does not change during the excita-
tion. However, in the subsequent decay, the mF state can change. This leads to the
accumulation of the population in the |F=2, mF =0〉 state during the pumping pro-
cess. If during the pumping process the atomic state decays to |F=1〉, the repumper
brings the population back into |F=2〉 via the excitation to the |F ′=2〉 level. For the
pumping, the D1 line is used, as the splitting between the hyperfine states |F=1〉
and |F=2〉 of the |52P1/2〉 fine structure state is larger (816 MHz) than the hyperfine
splittings of the |52P3/2〉 fine structure state (267 MHz between |F ′=2〉 and |F ′=3〉
and 157 MHz between |F ′=2〉 and |F ′=1〉), which suppresses unwanted scattering.
At the end of the pumping process, we switch off the repumper for a short amount of
time, typically 3 µs to 5 µs, and keep only the π-polarized pump light on. This emp-
ties all the magnetic sublevels |F = 2, mF 6= 0〉 and therefore no photon is emitted
during the subsequent vSTIRAP pulse. Switching off the repumper only reduces the
efficiency of the generation process, but not the fidelity. This way, we can initialize
the atom in the desired state. To determine the pumping efficiency, we compare the
two efficiencies P|F =2〉 and P|F =2,mF =0〉 of the photon generation process. P|F =2〉 is
the efficiency to generate a photon after initializing the atom in |F=2〉 when we only
use the repumper. P|F =2,mF =0〉 is the efficiency to generate a photon after pumping
into |F=2, mF =0〉. The ratio P|F =2,mF =0〉/P|F =2〉 gives the efficiency of the pumping
process. In our case, the efficiency of the entire pumping process is 80(5) %. The
limit for the efficiency of this pumping process is, unfortunately, not known. A lower
limit for the pumping fidelity can be obtained by looking at the correlations in ZZ

detection basis (see section 3.1.5) and is 98 %. With our beam configuration (see
section 1.3), multiple atoms can be initialized simultaneously, as the beams for the
optical pumping have a beam waist of approximately 35 µm and therefore all atoms
in the cavity are homogeneously illuminated.

3.1.2 vSTIRAP & Atom-photon Entanglement

The basic principle to generate atom-photon entanglement has already been ex-
plained in section 1.6. The level structure with the relevant levels and detunings
is displayed again in Fig. 3.3. After the initial optical pumping into |F=2, mF =0〉
(see section 3.1.1), we address the atom with π-polarized light with the addressing
system and generate a photon using a vSTIRAP pulse. This process transfers the
atom into one of the two states |F=1, mF = ± 1〉. The polarization of the generated
photon, called the signal photon, depends on the state in which the atom is after the
photon emission. If the atom is in the state |↓〉 := |F=1, mF = − 1〉, the photon is
σ+-polarized and if the atom ends up in the state |↑〉 := |F=1, mF =1〉, the photon
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Figure 3.2: Optical pumping into |F=2, mF =0〉 := |0〉. To initialize the atom
in |0〉, we send π-polarized light that is resonant with the transition |F=2〉 →
|52P1/2, F=2〉 and a repumper resonant with |F=2〉 → |52P3/2, F ′=2〉 transition.
Due to angular momentum selection rules, the excitation from |F=2, mF =0〉 with
π-polarized light is forbidden. However, population from all the other magnetic sub-
levels of |F=2〉 can be excited. The excitation with π-light does not change the mF

state, but during the subsequent decay the magnetic sublevel can change (indicated
by the blue wavy lines). This way, the population accumulates in |0〉 during the
optical pumping interval. If the population decays to |F=1〉, the repumper trans-
fers the population back from |F=1〉 to |F=2〉 by excitation to the |F ′=2〉 state.
At the end of the pumping sequence, the repumper is switched off. This removes
the remaining population in |F=2〉 and only reduces the efficiency of the photon
generation process, but not the fidelity.
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is σ−-polarized. Hence, we generate the state

|Ψ+〉 = 1√
2
(
|σ+, ↓〉 + |σ−, ↑〉

)
. (3.1)

The fidelity between the generated state ρ and |Ψ+〉 for a single atom is F =
86.6(5) % and the generation-to-detection efficiency is ηoverall = 33.2(3) % (see sec-
tion 3.1.3). These results were obtained with a single-photon detuning ∆ of 2π ×
200 MHz with respect to the states |F ′=1, mF = ± 1〉, as in [109]. The choice of
this detuning ∆ is relevant when working with multiple atoms, as it affects the
fidelity of the generated state with the Bell state |Ψ+〉 as well as the photon gen-
eration efficiency. This is because in the case of multiple atoms, previously ad-
dressed atoms are in the state |F=1〉 and a photon emitted in the cavity mode
may be scattered off these atoms. Therefore, the detuning ∆ must be chosen
sufficiently large such that the unwanted scattering is suppressed, since the scat-
tering rate scales as g2/∆. However, if the detuning is too large, the fidelity de-
creases. This is because besides the transition |F=2, mF =0〉 → |F ′=1, mF =0〉, the
transition |F=2, mF =0〉 → |F ′=3, mF =0〉 is dipole-allowed, too (the transitions
|F=2, mF =0〉 → |F ′=0, mF =0〉 and |F=2, mF =0〉 → |F ′=2, mF =0〉 are dipole-
forbidden). However, the excitation to |F ′=3, mF =0〉 is unwanted, because after a
subsequent decay to |F=2〉, the atom may be excited again from a different state
than |F=2, mF =0〉, which would lead to a reduction of the fidelity. To suppress
this excitation, the detuning ∆ has to be small compared to the hyperfine splitting
between |F ′=1〉 and |F ′=3〉. Therefore, the single-photon detuning has to be set
as large as possible,but still be small compared to the hyperfine splitting between
|F ′=1〉 and |F ′=3〉. This considerations led to the choice of ∆ = 2π × 200 MHz
with respect to the states |F ′=1, mF = ± 1〉. The exact procedure for measuring the
fidelity is described in section 3.1.5. Throughout the entire experimental sequence,
the atom is trapped in the two dimensional optical lattice, since the coherence time
of the atomic qubit is significantly longer in the lattice than in the optical tweez-
ers. The optical lattice consists of the 1064 nm standing wave trap and the 770 nm
standing wave trap. The influence of the blue-detuned 770 nm trap on g as well as
the factors influencing the efficiency of the photon generation process are described
in section 3.2.2.

3.1.3 Efficiency to generate and detect a single photon
In the following sections, three different definitions for the entanglement genera-
tion efficiency are used: The generation-to-detection efficiency ηoverall, the in-fiber
detection efficiency ηfiber, and the intrinsic generation efficiency P . The intrinsic
generation efficiency is the efficiency to produce a photon at the output port of
the cavity. The in-fiber efficiency ηfiber is the product of the intrinsic efficiency
P , the optical pumping efficiency (80(5) %) of the atom in |F=2, mF =0〉, and the
fiber-coupling efficiency into the first fiber behind the cavity (92(3) %), see Fig. 3.4.
The generation-to-detection efficiency is includes the overall transmission and de-
tection efficiency of the superconducting nanowire single photon detectors, i.e. the
total transmission, the detection efficiency and the optical pumping efficiency are
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Figure 3.3: Configuration of cavity and vSTIRAP scheme for photon
generation. The cavity is detuned by ∆ from the transition |F=1, mF =0〉 →
|F ′=1, mF =1〉. The control light addresses the transition |F=2, mF =0〉 →
|F ′=1, mF =1〉 with the same detuning ∆. Therefore, the transition is on two-photon
resonance and both light fields together drive the atomic population from the state
|F=2, mF =0〉 to the states |F=1, mF = ± 1〉. The single-photon detuning ∆ is set to
2π × 200 MHz to suppress unwanted scattering of the generated photons off atoms
that were not addressed, as in [109].

included. Therefore, ηoverall = Pξ, where ξ is the product of the optical pumping
efficiency and the total propagation efficiency of the setup, as well as the detector
efficiencies. The intrinsic photon generation efficiency P is given by [110, 111]

P = κout

κ

2C

2C + 1 , (3.2)

where κout is the field decay rate through the outcoupling mirror, κ the total field
decay rate of the cavity, and C the cooperativity, defined as C = g2/(2κγ). For
the transition used in this protocol, we obtain g = 2π × 5 MHz. Therefore, the
cooperativity is C = 1.66, which gives an intrinsic efficiency of P = 70 % ((κ, κout) =
2π × (2.5, 2.3) MHz). To obtain the final generation-to-detection efficiency ηoverall,
all the optical losses and the detection efficiency have to be included. Fig. 3.4 shows
the optical path behind the cavity and the detection setup with the most important
optical components. After a photon has exited the cavity, it is coupled into an optical
fiber that brings it to the detection setup. To optimize the fiber coupling, a pair of
lenses is installed in front of each fiber. The detection setup consists of waveplates
for setting the polarization correctly, an electro-optic modulator (EOM) for fast
switching of the detection basis (see section 3.1.4), and a PBS. The output ports of
the PBS lead via an optical fiber to highly efficient superconducting nanowire single
photon detectors (SNSPD). Since the efficiency of the SNSPDs depends on the
polarization, waveplates are installed in front of each fiber (not shown) to maximize
the detection efficiency. The optical pumping efficiency, the optical losses of all the
individual components and the detector efficiencies together are ξ = 51(6) %, which
gives a generation-to-detection efficiency of ηoverall = 36(4) % for a single atom. In
the experiment, we measure an efficiency of ηoverall = 33.2(3) %, which agrees well
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Figure 3.4: Optical beam path from cavity to detectors. After exiting the
cavity, the photons are coupled into an optical fiber that leads to the polarization-
resolving detection setup. The polarization basis of the detection setup is set with
a combination of waveplates (not shown) and a polarizing beam splitter (PBS).
The PBS deflects orthogonal polarizations (indicated by the different colors of the
propagating pulses) into different output ports. The output ports are connected
to the superconducting nanowire single photon detectors (SNSPDs). The electro-
optical modulator (EOM) allows for fast switching between the XX and Y Y bases.
The overall propagation and detection efficiency is 64(6) %.

with the values obtained from measuring the losses. From this, we calculate an
in-fiber efficiency of ηfiber = 48(5) %.

3.1.4 Raman pulses & State readout

To determine the fidelity (see section 3.1.5) of the generated state ρ with the Bell
state |Ψ+〉, we measure the correlations between the polarization of the photonic
qubit (signal photon) and the internal atomic state in three different bases, namely
XX = Xa ⊗ Xp, Y Y = Ya ⊗ Yp and ZZ = Za ⊗ Zp. The definitions of the different
bases are in Table 3.1. The photonic qubit is measured with our polarization-
resolving detection setup (see Fig. 3.4). However, reading out the atomic qubit is
not as simple. To readout the atomic qubit, the qubit is mapped on the polarization
of a second photon, called the readout photon. This polarization is then measured
again with our detection setup. The final measured correlations are therefore cor-
relations between the polarization of the signal photon and the polarization of the
readout photon. For the mapping of the atomic qubit to the readout photon, multi-
ple Raman rotations of the atomic qubit are required. In this section, these rotations
are discussed. The basic principle of Raman transitions in our experiment is already
explained in section 1.5.

The total scheme of the readout, including the final readout photon, is shown in
Fig. 3.5. The atomic readout sequence starts after the detection of the signal pho-
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Atomic bases Photonic bases

Za = {|↑〉 , |↓〉} Zp = {|R〉 := |σ+〉 , |L〉 := |σ−〉}

Ya = {|↑y〉= 1√
2 (|↑〉 + i |↓〉) ,

|↓y〉= 1√
2 (|↑〉 − i |↓〉)}

Yp = {|A〉= 1√
2 (|R〉 + i |L〉) ,

|D〉= 1√
2 (|R〉 − i |L〉)}

Xa = {|↑x〉= 1√
2 (|↑〉 + |↓〉) ,

|↓x〉= 1√
2 (|↑〉 − |↓〉)}

Xp = {|H〉= 1√
2 (|R〉 + |L〉) ,

|V 〉= 1√
2 (|R〉 − |L〉)}

Table 3.1: Definition of the atomic and photonic bases. The table displays
the definitions used in equations (3.8) and (3.9).

ton. This detection projects the atomic qubit on an eigenstate of the corresponding
measurement basis, e.g. in the ZZ basis the atomic qubit is projected either on |↑〉
or |↓〉. These two basis states can be read out by transferring the population from
the state |↑〉 to |F=2, mF =2〉 and the state |↓〉 to |F=2, mF = − 2〉 with a Raman
transfer and the generation of a photon afterwards with a vSTIRAP (parts F and
G in Fig. 3.5). The polarization of the generated photon is |σ−〉, if the internal
atomic state is |↑〉 and |σ+〉 if, the internal atomic state is |↓〉. This way, we can
unambiguously assign the basis states of Za to the polarization of the generated
photon and read out the atomic state. For the measurement in Xa (Ya), the atom
is projected after the detection of the signal photon either on |↑x〉 (|↑y〉) or on |↓x〉
(|↓y〉). These basis states are superposition states of the basis states of Za. In order
to be able to use the same readout protocol as in the Za basis, we must first perform
a π/2 pulse to map the basis states of Xa and Ya to the basis states of Za, i.e. to
map the states |↑x〉 and |↑y〉 to |↑〉 and the states |↓x〉 and |↓y〉 to |↓〉. This mapping
corresponds to a π/2 pulse (with different phases for the XX and Y Y basis) between
the states |F = 1, mF = 1〉 (|↑〉) and |F = 1, mF = 1〉 (|↓〉), which have a difference
in magnetic sublevels of ∆mF = 2. However, a Raman pulse with ∆mF = 2 is not
possible with high fidelity for the parameters that we have chosen [112]. Therefore,
we have to split this π/2 pulse into three individual pulses (parts C-E in Fig. 3.5):

(i) First, we perform a π pulse from |↑〉 to |F=2, mF =0〉 := |0〉. After this pulse,
the qubit is no longer stored in the Za = {|↓〉 \ |↑〉} basis, but in the states |↓〉
and |0〉. For this pulse, the two-photon frequency is ω|↑〉→|0〉 = 6.8 GHz + ωL

(for definition, see section 1.5).

(ii) Second, a π/2 pulse between |↓〉 and |0〉 with two-photon frequency ω|0〉→|↓〉 =
6.8 GHz−ωL and phase difference of ∆Φ = 90◦ for the bases XX or Y Y . This
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|↑〉 → |F =2, mF =2〉
|↑〉 → |F =2, mF =2〉

|↑〉|↓〉
|0〉

|↑〉
|0〉

readout photonπ/2 pulse|↑〉 → |0〉 |0〉 → |↑〉

σ+ σ−π π

788.24 nm 788.24 nm 788.24 nm 788.24 nm D2-line

|↑〉
|0〉

|↑〉|↓〉
|0〉

|↑〉|↓〉
|0〉

53 µs 26 µs 53 µs 43 µs 1.5 µs

C D E F G

π/2-pulse for XX and Y Y basis

|↓〉|↓〉

Figure 3.5: Readout scheme for atomic qubit. To read out the atomic qubit,
the internal atomic state is mapped on the polarization of a second photon, called
the readout photon. For this mapping, we perform multiple single qubit rotations,
which depend on the measurement basis. In ZZ, we perform only one state transfer
(part F) and then generate the readout photon. This way, the basis states |↑〉 and
|↓〉 of the ZZ basis are unambiguously assigned to the polarization of the readout
photon. For the readout in the XX and Y Y basis, we first map the basis states of
the respective basis (pulses C to E) to the basis states of the ZZ and then continue
with the same readout protocol as for the ZZ basis (parts F and G).

results in the following map

1√
2

(|↓〉 + |0〉) → |0〉 (3.3)

1√
2

(|↓〉 − |0〉) → |↓〉 (3.4)

1√
2

(|↓〉 + i |0〉) → |0〉 (3.5)

1√
2

(|↓〉 − i |0〉) → |↓〉 . (3.6)

(iii) Last, a π pulse between |0〉 and |↑〉 to store the qubit in the basis states of the
Za basis again, i.e. in |↓〉 and |↑〉.

The phase Φ of the pulse (ii) for the readout in Xa and Ya differs by 90◦ and there-
fore needs to be adjusted precisely. After pulse (i) of the three-part pulse, the qubit
evolves at the frequency ω|0〉→|↓〉. However, the RF-frequency of the Raman laser os-
cillates at ω|↑〉→|0〉. Thus, the qubit in |↓〉 \ |0〉 accumulates a phase of Φ(T ) = 2TωL

with respect to the Raman Laser, where T is the time elapsed between the end of
the atomic state transfer to |0〉 and the time at which the two-photon frequency is
changed from ω|↑〉→|0〉 to ω|0〉→|↓〉. By scanning the time T , at which the phase is
changed between the two different frequencies, one can find the correct time T0 (and
therefore the correct phase Φ0 = Φ(T0)) for the second rotation pulse (ii). This time
corresponds to the time at which the desired correlations between the polarization of
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Figure 3.6: Probability P (L|D) to detect the readout photon in |L〉, con-
ditioned on detecting the signal photon in |D〉 versus the phase ΦRF of
the π/2-pulse for the state readout in XX and Y Y . A π/2 pulse between |↓〉
and |↑〉 needs to be performed to map the Xa and Ya to the Za basis for the state
readout. The correct phase ΦRF = 2ωLT of this rotation is found by maximizing
the correlations between the polarization of the signal and the polarization of the
readout photon while scanning the switching time T at which the two-photon fre-
quency is switched from ω|↑〉→|0〉 to ω|0〉→|↓〉. In the shown example, the probability
to detect a |L〉 polarized readout photon after a |D〉 polarized signal photon, i.e.
P (L|D), is maximized. As the phase ΦRF differs by 90◦ for XX and Y Y ,the timing
must be scanned for both bases.

the signal photon (measured in either Xp or Yp) and the polarization of the readout
photon (measured in Zp) are maximized. This is shown in Fig. 3.6. For both the
XX and Y Y basis, the timing must be scanned. After this π/2−pulse, the qubit is
stored again in the Za basis and can be read out with a state transfer and another
vSTIRAP pulse, as in the Za basis.

To read out the polarization of the generated photons, we use a polarization-resolving
detection setup. This setup is shown in Fig. 3.4. It consists of an electro-optical
modulator (EOM), a polarizing beam splitter (PBS) and multiple waveplates (not
shown) for adjusting the polarization. The output ports of the PBS are connected
to superconducting nanowire single photon detector (SNSPD). The PBS deflects
orthogonal polarizations into two different optical paths and. This way, it defines
the detection basis. By adding additional waveplates in front of the PBS, arbitrary
detection bases can be set, i.e. the bases XX, Y Y , and ZZ. However, the wave-
plates do not allow fast switching of the detection basis. Therefore, we use the
additional EOM to switch the polarization basis between the signal and the read-
out photon. The EOM imprints a phase on a specific polarization of a photonic
qubit while it propagates through the crystal of the EOM. This imprinted phase
is controlled externally with a TTL signal. This can be used, to switch between
two different polarization detection bases. The detection basis needs to be switched
between the detection and the readout photons. For the readout photon we only
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need Zp = {|R〉 , |L〉} as detection basis. For the signal photon we need either ZP ,
Yp = {|A〉 , |D〉} or Xp = {|H〉 , |V 〉}, depending on the measurement basis. The
TTL signal can therefore be used to quickly (< 1 µs) switch the detection basis be-
tween Xp and Zp or Yp and Zp for the signal and readout photon. To switch between
Xp and Yp, we adjust the settings of the waveplates by hand.

3.1.5 Fidelity
The fidelity F of the generated state ρ with the Bell state |Ψ+〉 is given by F =
Tr(|Ψ+〉 〈Ψ+| ρ) = 〈Ψ+| ρ |Ψ+〉. To determine this fidelity, we measure correlations
between the polarization of the signal photon and the atomic state in three different
bases, namely XX, Y Y and ZZ. We define XX = Xa ⊗ Xp, Y Y = Ya ⊗ Yp and
ZZ = Za ⊗ Zp. The bases are defined in Table 3.1. In the ZZ basis, the generated
state can be expressed as

|Ψ+〉 = 1√
2

(|R, ↑〉 + |L, ↓〉) (3.7)

and in XX and Y Y as

|Ψ+〉 = 1√
2 (|H, ↑x〉 + |V, ↓x〉) (3.8)

|Ψ+〉 = 1√
2 (|D, ↑y〉 − |A, ↓y〉) . (3.9)

This means, for example, that in XX correlations between the atomic states |↑x〉
and |↓x〉 and the polarization states |H〉 and |V 〉 have to be measured. How to read
out the individual states is explained in section 3.1.4. The correlations are then used
to calculate the two-qubit Stokes parameters Sxx, Syy and Szz, which are defined as
[113]

Sxx = P↑x,H − P↑x,V − P↓x,H + P↓x,V (3.10)
Syy = P↑y ,A − P↑y ,D − P↓y ,A + P↓y ,D (3.11)
Szz = P↑,R − P↑,L − P↓,R + P↓,L, (3.12)

where Pjj stands for the probability to measure the state |j, j〉 and Pj,j + Pj,−j +
P−j,j + P−j,−j = 1. From these two-qubit Stokes parameters, we obtain the fidelity
by

F = 1
4 (1 + Sxx + Syy − Szz) . (3.13)

Hence, by measuring the correlations in the different bases, we are able to determine
the fidelity F of the generated Bell State. For a single atome, we obtain a value
of F = 86.6(5) % for a single atom. Typical values for Szz are in the range of
0.95 to 0.97 and for Sxx and Syy in the range of 0.7 to 0.75. The values in the
ZZ basis are significantly higher than the ones in XX and Y Y . Several factors
are responsible for this: the additional π/2 pulse between |↑〉 and |↓〉, the photon
acceptance window τ and the coherence time. How these factors influence the fidelity
is discussed in section 3.3.
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3.2 Atom-photon entanglement generation with
atomic arrays

Now that we have explained how to generate and measure atom-photon entangle-
ment between the internal atomic state of a single atom and the polarization of a
photon, we use the same protocol to generate APE for arrays of atoms. When work-
ing with atomic arrays, crosstalk can in principle become a huge problem. Therefore,
we start by measuring the crosstalk between neighboring atoms and use this mea-
surement to determine the optimal inter-atomic distance, see subsection 3.2.1. Once
we have found the optimal distance, we load one- and two-dimensional arrays and
investigate the performance of our qubit register in terms of our two metrics, effi-
ciency and fidelity, while we increase the system size (subsection 3.2.2). Afterwards,
we show how we use the quantum register to increase the efficiency of the APE
generation using a multiplexing protocol (subsection 3.2.3).

3.2.1 Crosstalk
The distance between adjacent atoms is an important parameter when working with
multiple atoms in an optical cavity. As all atoms must couple to the cavity field, all
atoms of the array must be placed within the cavity mode. Therefore, if the distance
between neighboring atoms is unnecessarily big, the maximum size of the atomic
array in the cavity is unnecessarily reduced. On the other hand, if the distance
between the neighboring atoms is too small, the fidelity of individual operations can
potentially decrease due to crosstalk. For example, when generating atom-photon
entanglement, the emission of a photon may be stimulated from a non-addressed
atom, which might be partially illuminated by the addressing beam if the distance
between neighboring atoms is too small. The polarization of this generated photon
does not correlate with the internal atomic state of the actually addressed atom and
this therefore leads to a reduction of the fidelity. Hence, it is important to find the
correct distance between neighboring atoms that leads to the maximum number of
atoms in the resonator mode while keeping the crosstalk as small as possible. To
find this optimum distance, we placed two atoms at different interatomic distances
∆x in the range of 3 µm to 17.5 µm along the x-axis (orthogonal to the cavity) in
the resonator and measured the fidelity F for each atom for each distance. We then
calculate the average fidelity F for each interatomic distance. The results of this
measurement are shown in Fig. 3.7. The blue dashed line indicates the average
fidelity F of both atoms, and the blue shaded area indicates the range of values
within one standard deviation (0.4 %). We see that for the measured distances the
fidelity F is independent from the distance ∆x of the neighboring atoms. How-
ever, for small distances between the atoms, the preparation efficiency of the atomic
arrays decreases because of interference effects from neighboring optical tweezers.
The interference of neighboring tweezers leads to modified, arbitrary potential land-
scapes, distorted spatial wave functions of the atoms, and an increased hopping rate
between adjacent tweezers. This is detrimental to the preparation of ordered arrays.
Similar interference effects were observed in [114]. We therefore chose a distance of
5.5 µm between neighboring atoms. This distance is the minimum distance between
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Figure 3.7: Crosstalk between adjacent atoms. To determine the crosstalk
between neighboring atoms, we measure the average fidelity F of two atoms for
interatomic distances ∆x in a range of 3 µm to 17.5 µm. The average fidelity is
constant and within the entire range and we observe no decrease of the fidelity due
to crosstalk. Since the preparation efficiency decreases for interatomic distances
below 5.5 µm, we set the distance between neighboring atoms for the multi-atom
experiments to 5.5 µm.

neighboring atoms for which interference effects from adjacent optical tweezers can
be neglected. With this distance of ∆x = 5.5 µm, we perform the following experi-
ments.

3.2.2 Scalability of the atomic register
In this subsection, we discuss the scalability of our network register. Scalability
describes to the ability to increase the size of a system. However, being able to in-
crease the size of the system does not mean that the system is truly scalable, since,
for example, the error rate in a system may increase as more qubits are added to
the system. To correct for this potential increase in error rate, additional error cor-
rection qubits would be needed. If these additional error correction qubits also need
error correction, the experimental overhead could become unmanageable, making
the system unscalable. Therefore, scalability does not only describe the ability to
increase the size of the system, but also the ability to increase the size of the system
while maintaining a constant error rate. For our register, both the fidelity and the
APE generation efficiency of the individual atoms could be affected by a higher num-
ber of qubits in the register due to, for example, decoherence, position-dependent
differences when addressing the atoms or coupling to the resonator. Therefore, to
show the scalability of our system, it is important to demonstrate that both quan-
tities are independent from the number of qubits in the register.

To characterize the efficiency and fidelity of our system, we first need to extend
the experimental sequence from a single atom to multiple atoms. Therefore, we re-
place the single vSTIRAP pulse of the previous sequence with N subsequent vSTI-
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Figure 3.8: Full experimental sequence for N atoms. The only difference
between the sequence with multiple atoms and the sequence for a single atom (see
Fig. 3.1) is the number of vSTIRAP pulses. For N atoms, N vSTIRAP pulses are
required to generate the signal and the readout photon. This way, ideally N photons
are generated and each of the photons is entangled with the internal atomic state of
one of the N atoms. The individual pulses are separated in time and therefore the
photons are in different temporal modes.

RAP pulses to individually address all N atoms of the atomic array, see Fig. 3.8.
The individual vSTIRAP pulses are separated in time by about 15 µs , given by the
switching time of the AOD. This way, we ideally generate N photons, each entangled
with the internal atomic state of the addressed atom, in N different temporal modes.

To demonstrate that the efficiency and fidelity are both independent from the num-
ber of atoms in the register, we measure both quantities for one-dimensional atomic
arrays with up to six atoms. This is shown in Fig. 3.9. These results have to be com-
pared to the fidelity and the efficiency for a single atom. As described in section 3.1.3,
the efficiency for generating and detecting a single photon is ηoverall = 33.2(3) % and
the fidelity is 86.6(5) %. We observe that the fidelity F of the generated entan-
gled states in the atomic arrays remains almost at the same level as for the single
atom for each individual atom. This can be seen in the almost constant average
fidelity F for all numbers of atoms. For example, the average fidelity for six atoms
is 85.5(4) %. The average fidelity is shown in Fig. 3.10 A, including (in blue) the
standard deviation of about 0.7 %.

However, the efficiency does not remain constant for all the atoms. We see a decrease
in efficiency for the outer atoms, which is, however, expected. As the efficiency is
related to the cooperativity C, see equation (3.2), and since the coupling g decreases
when the atoms are located at outer positions in the array orthogonal to the cavity

63



A multi-qubit register

5.5µm

x

y

Figure 3.9: Photon detection efficiencies ηi, fidelities F and atom pictures
for one to six atoms in a one-dimensional array. For each atom, we measure
the fidelity F and the generation-to-detection efficiency ηoverall. The fidelity is almost
constant for each individual atom (see also Fig. 3.10). However, the efficiency
decreases for the atoms that are further away from the center of the cavity. This
decrease is expected because of the reduction in cooperativity when the coupling
becomes smaller, as it is the case for the outer atoms.
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Figure 3.10: Average fidelity F vs. the number of atoms and position-
dependent entanglement generation efficiency ηoverall along the x-axis. A
The average Fidelity F remains almost constant for up to six atoms with a standard
deviation of less than 0.7 %. B The entanglement generation and detection efficiency
ηoverall depends, as described in equation (3.2), on the position of the atom in the
cavity along the x-axis(orthogonal to the cavity). Here, we show the efficiency of a
single atom for different distances to the cavity center dxx,c. We use a fitting model
that includes the finite cavity waist w0, the cavity QED parameters g, κ, κout, γ, and
uses only ξ (the product of the total transmission and detection efficiency with the
optical pumping efficiency) as a free fitting parameter. By fitting the measured data,
we obtain ξ = 48.6(13) %, consistent with the measured value of 51(6) %.
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axis, the efficiency also decreases. This is depicted in Fig. 3.10 B, which shows how
the overall entanglement generation and detection efficiency ηoverall depends on the
distance dcc,x of a single atom from the cavity center along the x-axis. As expected,
the maximum is in the center of the cavity and the efficiency decreases when the
atom is positioned away from the center. To demonstrate that the efficiency behaves
as expected, we fit the data with the model from equation (3.2), using ξ as the only
free parameter. We obtain ξ = 48.6(13) %, consistent with the measured value of
51(6) %.

Due to the finite temperature of the atoms, the atoms hop between different lattice
sites, especially along the cavity axis. This affects the APE generation efficiency,
as the efficiency to generate atom-photon entanglement depends heavily on precise
addressing. Therefore, we have to follow the hopping of the atoms. The rate of this
hopping is below 1 Hz. Therefore, for each picture (rate is 3 Hz), we determine the
atomic positions of all the atoms in the array and update the RF frequencies that
we send to the AOD that we use for the addressing of the atoms. As we observe
that the measured efficiencies for each atom are close to the theoretical maximum,
the hopping is currently not limiting the scalability of our setup.

With these measurements, we show that we can position six atoms in a line along the
x-axis in the resonator and neither fidelity nor efficiency behave in an unexpected
way. However, the number of atoms along this axis is limited by the finite mode
waist of the cavity of w0 = 30 µm. Therefore, to show that our register can poten-
tially accommodate a larger number of atoms, atoms must also be positioned along
the y-axis, i.e. two-dimensional arrays must be prepared. Two two-dimensional ar-
rays consisting of two and four atoms are shown in Fig. 3.11. In the same Fig.,
the entanglement generation efficiency and the fidelity for the individual atoms are
depicted as well. As with the one dimensional array, no reduction in fidelity can
be seen in the two-dimensional case. However, the efficiency of the atoms along the
cavity axis is again position-dependent as C ∝ g2 and g itself oscillates along the
cavity axis as it is proportional to the amplitude of the electric field mode of the
cavity. This mode is a standing wave and it is resonant with the atomic transition
frequency λcav = 780 nm. However, as we use a blue intracavity trap at 770 nm
for the spatial confinement of the atoms, the atoms are not necessarily trapped at
a position of maximum g along the entire cavity axis. The frequency of the blue
trap is set such that at the center of the cavity an intensity minimum of the blue
trap coincides with a maximum of photon generation efficiency, but this changes
along the cavity axis. This is illustrated in Fig. 3.12, where we plot the intrinsic
photon generation efficiency P and the intensity I770 of the 770 nm trap versus the
position in the cavity in different areas along the cavity axis. At the center of the
cavity, the maximum photon generation efficiency coincides with an antinode of the
blue-detuned intracavity trap (plot A), which repeats again after ∼ 32 µm (plot D).
Between these two positions, the atom, however, is not trapped at positions of max-
imum photon generation efficiency. For example, after ∼ 16 µm (plot C) the atom is
trapped at a position of minimum coupling. when the atom is positioned at 5.5 µm
(plot B) away from the cavity center, the intrinsic generation efficiency drops by
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approximately 25 %, i.e. if at the center the detection efficiency η is 33.2(3) %, the
efficiency drops to 24.9(1) %. This efficiency can be increased, however, by using a
wavelength of the intracavity trap closer to the resonance frequency of the cavity.

However, the number of atoms that we can position along the y-axis is limited
in the current setup due to the beam waist of the 1064 nm standing wave trap. The
beam waist is 13 µm. This limitation could be overcome by using several such stand-
ing wave traps in parallel, which would allow us to further increase the number of
atoms that that can be stored. In section 3.4, we discuss in more detail what needs
to be done to scale the register to larger system sizes, and what the ultimate limits
are.

67



A multi-qubit register

x

y

5.5µ
m

5.5µm

Figure 3.11: Photon detection efficiencies ηi, fidelities F and atom pictures
for the two-dimensional configurations. Since the number of atoms along the x-
axis (orthogonal to the cavity axis) is limited, increasing the register along the y-axis
is the key step to achieve larger register sizes. The upper picture shows a 2x1 array
along the y-axis and the lower picture shows a 2x2 array. Both pictures include the
fidelity and the efficiency for each individual atom. The fidelity F remains constant
for each individual atom along the y-axis. However, the efficiency decreases slightly
for the atoms that are positioned at 5.5 µm from the cavity center (upper atoms)
because of the decrease in cooperativity resulting from our trap configuration, see
Fig. 3.12.
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Figure 3.12: Intrinsic photon generation efficiency P and intensity of
the intracavity trap I770 vs. position along the cavity axis. As the wave-
lengths of the intracavity trap and the cavity mode differ, the position of maximum
photon generation efficiency P and the antinodes of the intracavity trap do only
coincide at specific positions. As the atoms are always trapped at the antinodes
of the blue-detuned intracavity standing wave trap, the generation efficiency P is
position-dependent along the y-axis with a period of ∼ 32 µm. The frequency of the
intracavity trap is set such that at the center of the cavity P is maximum [77].
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3.2.3 Multiplexed atom-photon entanglement generation
The deterministic distribution of entanglement between two distant network nodes is
a necessary capability for quantum networks, but it has not yet been demonstrated
until today. In this section, we describe how a quantum network register can be
useful in bringing us closer to achieving this capability. In a typical protocol (see
Fig. 3.13) for entanglement distribution two nodes A and B, entanglement is first
created between a quantum memory and a photon at one node, e.g., node A. The
entangled photon is then sent via an optical fiber to node B, where it is used to
establish entanglement between the quantum memory at node B and the memory
at node A. However, such an entanglement distribution process is inherently lossy,
which is why a repeat-until-success strategy must be applied. In such a strategy,
a successful attempt is indicated by a so-called herald. The result of the attempt
is then sent to node A with a classical communication signal that propagates from
node B to node A at most at the speed of light. Hence, a new entanglement attempt
can only be made after the result of the previous attempt has been communicated
between the nodes. As the transmission speed of the entangled photon and the
measurement outcome is at most the speed of light, the travel time of the signals
limits the repetition rate of the entanglement attempts. The limit for the repetition
rate is given by c/L, where L is the distance between the nodes.1 As the limit upper
limit for the rate is given by the speed of light, it is system-independent and the
same for all possible implementations of a quantum memory. Already at distances
in the range of L ≈ 100 km, the upper limit for the entanglement distribution rate
in heralded schemes is limited to 1 kHz [115]. However, using n quantum memories
simultaneously, allows to increase the rate by a factor of n, as a new entanglement
attempt can already be started during the travel time of the photons in the network.

In addition to increasing the rate, multiplexing also increases the efficiency of gener-
ating entanglement. In our setup, the efficiency to generate and detect entanglement
is ηoverall = 33.2(3) % and the efficiency to generate and fiber-couple ηfiber = 48(5) %
for a single atom. For N emitters, the efficiency η (η here stands for both the in-fiber
efficiency ηfiber and the generation-to-detection efficiency ηoverall) that at least one of
the emitters emits a photon is given by η=1 −∏N

i (1 − ηi), where ηi is the efficiency
of the i-th emitter. The protocol in Fig. 3.8 represents a multiplexing protocol
with up to six atoms. We can use it to experimentally verify the expected increase
of the efficiency and the entanglement rate. Figure 3.14 shows the experimental
results. It indicates that both the efficiency η and the average number of photons
N increase with the number of emitters. It shows that the average photon num-
ber n scales almost linearly with the number of emitters and the maximum average
photon number n = 1.88(1) is achieved for six atoms , which is an almost five-fold in-
crease compared to a single atom. The maximum generation-to-detection efficiency
is ηoverall = 88.6(1) % and the maximum in-fiber efficiency is ηfiber = 97.4(6) %. The

1For the protocol described here, the maximum repetition rate is actually c/(2L), since both
the entangled photon and the classical signal must be exchanged. However, in a configuration in
which both parties entangle a photon with their quantum memory and send the entangled photon
to an intermediate station, where an optical bell state measurement is performed to entangle both
quantum memories, the mentioned rate of c/L can be achieved.
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3: Memory-memory entanglement & herald
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Figure 3.13: Typical scheme for heralded entanglement distribution be-
tween two parties A and B. The protocol starts by entangling (entanglement
is represented by the blue infinity sign) one quantum memory with a photon (red
wavy arrow). This photon is transmitted through an optical fiber and used at node
B to establish entanglement between the two quantum memories at the nodes A
and B. The steps 1-3 are probabilistic and therefore a herald is needed to signal the
failure or success of the attempt. For the deterministic distribution of entanglement,
a repeat-until-success strategy has to be used. However, the communication time
required to share the result of the attempt limits the rate at which entanglement
attempts can be started.

in-fiber efficiency is calculated from the overall detection efficiency ηoverall by cor-
recting for the overall detection and transmission efficiency of 70(7) %. This result
demonstrates that multiplexing is a promising tool for the deterministic distribution
of entanglement in quantum networks.
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Figure 3.14: Increase of the efficiencies ηoverall and ηfiber and the average
number of photons n through multiplexing. Efficiencies ηoverall and ηfiber (A)
and average number of photons n (B) versus number of atoms. The theoretical
efficiency of detecting at least one photon for N emitters is calculated using the for-
mula ηoverall = 1−∏N

i (1−ηoverall,i), where ηoverall,i is the overall efficiency of the i-th
atom. We measure a maximum overall detection efficiency ηoverall (in-fiber efficiency
ηfiber) of 88.6(1) % (97.4(6) %) for six atoms, compared to 33.2(3) % (48(5) %) for
a single atom. The in-fiber efficiency is calculated from the overall efficiency, us-
ing a corrected in-fiber efficiency of 70(7) % instead of the overall propagation and
detection efficiency. The average number of photons n increases almost linearly to
a maximum of 1.88(1). As a guide for the eye, we have added a blue curve in B
that connects the individual data points. The plot is taken from [108] and has been
modified.
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3.3 Analysis of Experimental Imperfections
In the presented experiment, we measure a fidelity of F = 86.6(5) % for a single
atom. However, in the twin experiment, the pistol experiment, fidelities of 97.1(1) %
have been observed [116]. In principle, comparable values should be possible in our
experiment. There are several reasons for the lower fidelity: the temporal shape
of the photon, the coherence time, state preparation and readout, the π/2-pulse
between |↑〉 and |↓〉, and the polarization settings (π-polarization) for the vSTIRAP-
pulse with the addressing. In the next two subsections, we discuss the two main
sources for the infidelity: the temporal shape of the photon and the coherence
time. The polarization settings for the addressing beam, which may be a source
for large infidelities, are discussed in section 3.3.3. For the atom preparation and
state readout, we estimate an entanglement infidelity of 2.7(2) %. We attribute the
remaining 2.5 % of infidelity to the π/2 pulse between |↑〉 and |↓〉.

3.3.1 Temporal shape of the photon
The temporal shape of the generated photon is extensively discussed in [93]. A
typical temporal shape of a photon that we generate is shown in 3.15. After the
detection of the photon at time tdet, the atomic qubit is projected onto an eigen-
state of the respective measurement basis. In XX and Y Y , this corresponds to a
superposition state

|Ψatom〉 = 1√
2

(|↑〉 + exp(iφ) |↓〉) . (3.14)

The atomic state |Ψatom〉 then evolves freely in time interval T̃ up to the time tπ/2,
at which the three-part π/2 pulse begins, i.e., T̃ = tπ/2 − tdet. As the states |↑〉
and |↓〉 are energetically separated by twice the Larmor frequency, the qubit evolves
at this frequency 2 × ωL = 2π × 200 kHz. As the temporal distribution of the
emission time of the photon tdet therefore is non-zero, the temporal distribution for
the time interval T̃ during which the atomic state evolves freely is non-zero as well.
This leads to a phase uncertainty ∆φ of the atomic state |Ψatom〉 at the beginning
of the π/2 pulse, resulting in infidelities in the π/2 pulse and consequently in the
generated atom-photon entangled state ρ. This infidelity can be reduced, however,
by only accepting photons within a certain time window, which reduces the phase
uncertainty at the beginning of the π/2 pulse. We therefore only accept photons
within a time window of τ = 1.25 µs. Using this time window, we calculate a
theoretical maximum for the fidelity of F = 96.2 %. Theoretically, we could reduce
the time window even further and therefore increase the maximum fidelity, but this
would lower the photon generation efficiency. Another option is to increase the
power of the vSTIRAP pulse, as it makes the photon shorter in time. However, we
observe again an unknown heating effect that reduces substantially the storage time
of the atoms when we increase the power.

3.3.2 Coherence time
In the XX and Y Y bases, the atomic qubit is stored in a coherent superposition of
|↑〉 and |↓〉 until after the pulse (ii) of the three-part π/2-pulse (see section 3.1.4).
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Figure 3.15: Typical photon shape for a photon generated with the ad-
dressing system. The non-zero temporal distribution of the photon gives an un-
certainty in the phase of the atomic state after the free-evolution of the atomic state
after the detection of the generated photon. This uncertainty translates into a re-
duction of the fidelity. By only accepting photons that were detected in a detection
window, the phase uncertainty can be reduced and the fidelity reduction decreased.
For the chosen time detection window of 1.25 µs, the theoretical maximum for the
fidelity is F = 96.2 %.

Thus, the coherence time affects the fidelity. The coherence time has a larger effect
on the fidelity when qubits are added to the register, as the time duration of the
experimental sequence becomes longer. To investigate the effect of the coherence
time on the fidelity, we measure the coherence time in the XX basis. For this
measurement, we use the protocol described in section 3.1 and look at the amplitude
of the oscillations that we obtain when scanning the switching time T of the two-
photon frequency from ω||↑〉〉→|0〉 to ω|0〉→|↓〉, see subsection 3.1.4. We record several
such oscillation curves for different starting times tstart, i.e., the time at which we
start scanning the switching time of the two-photon frequency. For the curves with
later starting times, we observe a decay in the amplitude of the oscillations. From
this exponential decay we extract a coherence time of 1050(50) µs, see Fig. 3.16.
Initially, the coherence time in our setup was shorter. To increase the coherence time,
we implemented a feed-forward mechanism to correct for the intrinsic 50 Hz magnetic
field noise induced by the power line. The feed-forward mechanism extended the
coherence time by a factor of 2 to 3. Since the first and the last atom are addressed at
different times, the decoherence affects the individual atoms differently. For example,
for the case of six atoms, the fidelity of the atom that we addressed decreases by
4.5 % and the fidelity of the atom that we addressed last by 1.5 %. On average, the
coherence time gives a 1.5 % to 3.5 % reduction of the fidelity, depending on the
number of atoms.
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Figure 3.16: Coherence time of the qubit in the states |↑〉 and |↓〉 measured
in the XX basis. Each of the points in the plot corresponds to the amplitude of
a phase scan, see Fig. 3.6, for a different starting time tstart of the scan of the
switching time T of the two-photon frequency of the three-part π/2-pulse. We fit an
exponential decay to the points and obtain a coherence time of 1050(50) µs. With
this coherence time, the infidelity from decoherence is on average 1.5 % to 3.5 %,
depending on the number of atoms.

3.3.3 Polarization of the addressing beam

As we observed strong polarization effects in coherent processes when we investigated
single qubit rotations with the addressing system (see subsection 2.2.5), polarization
is a potential candidate for big infidelities. For the vSTIRAP, we need pure π-
polarization in the addressing beam. To set the polarization to π, we start by
optically pumping the atom in |F = 2, mF = 2〉 of the ground state (see section
2.2.4). Afterwards, we send light resonant with |F=2〉 → |52P1/2, F=1〉 through the
addressing onto the atoms. If this light is perfectly π-polarized, it excites population
from all mF sublevels of the |F=2〉 ground state, except for the mF = 2 sublevel.
Therefore, the polarization of the light can be adjusted to π by looking at the
remaining population in |F=2, mF =2〉. By minimizing this population, we find the
best possible polarization setting, i.e., the purest π polarization. We minimize the
population by comparing the population in |F=2, mF =2〉 before and after sending
in the light that has to be set to π polarization, using the state read-out described
in subsection 1.7. Using this technique, we set the polarization of the global beam
(w0 = 35 µm) along the 1064 axis and for the vSTIRAP of the addressing system. To
compare the polarization settings of the addressing with the global beam, we look at
the ratio Pmax to Pmin. Here, Pmax stands for the polarization setting at which the
maximum population remains in |F=2, mF =2〉 and Pmin for the polarization setting
at which the minimum population remains in |F=2, mF =2〉. For the global beam,
we obtain a ratio Pmax/Pmin ≈ 65, but for the addressing system we only observe
Pmax/Pmin < 10. This difference suggests that the fidelity of the generated state
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should be lower with the addressing system. However, we measure almost the same
fidelities for the global vSTIRAP and the addressing system. We therefore estimate
the infidelities from the polarization settings to be smaller than 1 %.

3.4 Scalability to larger system sizes
So far, the maximum number of atoms that we used in our register is six in one
dimension and four in two dimensions. However, the size of these arrays is much
smaller than the size of the atomic arrays that have been generated in free-space
experiments in recent years. This raises the question of how much our system can
still be increased.

The maximum number of qubits in a system is usually given by practical limi-
tations, such as the available laser power or the available space for the qubits. In
our system, the maximum number of atoms in the register is given by the length
of the cavity and the beam waist of the cavity mode. The length of the cavity is
486 µm and the waist is 30 µm (1/e2 intensity radius). However, the field of view of
the objective currently limits the area in which atoms can be trapped to a smaller
region, approximately to a range of 200 µm along the cavity axis. This means that
with an interatomic distance of 5.5 µm, there should be space for about 200 atoms
in our register, see Fig. 3.17. However, more improvements have to be implemented
so that we can work with O(100) atoms in our cavity and improve the performance
of our register:

1. Coherence time. For the six atom case that we showed, the coherence time
already affects the fidelity of the individual atoms. Therefore, the coherence
time needs to be prolonged when increasing the system size. In the neighbor-
ing experiment, the pistol experiment, coherence times of 20 ms were already
achieved by using dynamical decoupling [88]. With this coherence time, a
fidelity of ∼ 96 % could be achieved for the atom that was addressed first in a
register of 100 atoms.

2. Hopping of the atoms. At the moment, the hopping of the atoms is not
yet a limitation as the APE generation efficiency is at the theoretical max-
imum. But in order to achieve this maximum efficiency, we need to follow
the position of the atoms with our addressing system. We therefore evaluate
each image (3 Hz) and afterwards adjust the RF frequencies of the AOD for
each atom. However, the atom hopping rate increases as the number of atoms
in the system increases. Tracking the atoms therefore becomes a challenge,
because for large system sizes the hopping rate of the atoms would be higher
than the imaging rate. The ratio of imaging rate versus hopping rate can be
improved, however, by increasing the imaging rate, given that we achieve a
better signal-to-noise ratio of our imaging system. In addition, the atoms can
be cooled to the motional ground state by Raman sideband cooling, which has
already been shown in our setup [117]. Cooling the atoms to the motional
ground state reduces the hopping rate and reduces the need for a faster imag-
ing system.
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3. Loading of the atoms. In Fig. 2.17 in chapter 2, the loading rate already
decreases for six or seven atoms. However, this decrease is due to the fact that
the average number of loaded atoms is between 5 and 6 atoms per attempt.
This number is comparable to the size of the atomic arrays that we use. This
effect combined with our low probability of success when moving atoms (∼
90 %/atom, depending on the moving distance) leads to the decrease in the
loading rate. However, both the average number of loaded atoms and the
moving probability can still be improved in the future and the results of other
groups show that big improvements should be possible here.

4. Limited cavity mode waist. The mode waist of the cavity is 30 µm and
therefore only about 6 to 7 atoms fit into the cavity mode along the x-axis (or-
thogonal to the cavity). However, this limitation can be overcome by shuffling
atoms in a coherent way in and out of the cavity mode. In this scenario, larger
arrays along the x-axis would be prepared from which only six to seven atoms
would simultaneously couple to the cavity and the remaining atoms outside
of the cavity mode would serve as an atomic reservoir. The atoms in the
reservoir could be shuffled coherently into the cavity mode when needed, as
demonstrated in [118]. Shuffling atoms is advantageous compared to a larger
cavity waist, as increasing the cavity waist leads to a reduction of the cooper-
ativity C (for a constant finesse). Therefore, when increasing the cavity waist,
the finesse would have to be increased to achieve a comparable cooperativity
which is typically complicated without reducing the photon escape efficiency
κout/κ (see equation (3.2)), which would lead to a decrease in the intrinsic
photon production efficiency P .

5. Temporal shape of the photon. Right now, the photon is rather long
and on the order of 1.5 µs. This leads to a limitation for the fidelity and for
the efficiency as the photon acceptance window is shorter than the temporal
width of the photon. The infidelity results from the finite width of the tem-
poral shape of the emitted photon which translates into an uncertainty of the
phase of the atomic state in the bases XX and Y Y . At the same time, this
phase uncertainty can also be seen as a reduction in the indistinguishability
of the generated photons in the superposition bases due to the two different
frequencies (separated by twice the Larmor frequency ωL) of the polariza-
tion states |R〉 =

∫
R f(t) exp(i2ωLt)â†

R(t) |0〉 dt and |L〉 =
∫

R f(t)â†
L(t) |0〉 dt,

with the vacuum state |0〉, the temporal mode function of the photon f(t)
and the creation operator â†. In |R〉, there is an additional phase factor, i.e.
exp(i2ωLt). Only for ωL = 0, the photons are perfectly indistinguishable in
all bases. However, this phase can be compensated for by using an EOM. An
EOM imprints a phase shift on one specific polarization, where the magnitude
and sign of the phase shift depend on the applied voltage. If the voltage is
ramped up linearly ( ∝ 2ωLt), the phase difference between the two polariza-
tions can be compensated. This solution has already been implemented in the
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Figure 3.17: Illustration of the theoretically largest possible area in which
atoms can be positioned. The number of atoms in the cavity is limited by the
field of view (200 µm) of the objective along the y-axis and the waist (w0 = 30 µm)
of the cavity mode along the x-axis. This area provides space for approximately
more than 200 atoms. However, in the current state of the setup the waist of the
1064 nm of 13 µm is limiting the number of atoms. This limit can be overcome by
increasing the waist or installing multiple standing wave traps along the x-axis.

neighboring laboratory.
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Summary and Outlook

In this doctoral thesis, we have extended the existing QGATE experiment with a
so-called single atom addressing and positioning system. This new system allows
for the generation of optical tweezers and the precise positioning and addressing of
individual atoms, which we use to generate of atomic arrays at the center of our
cavity. In addition, we use our system to manipulate the state of individual atoms
within the arrays using a single atom addressing beam. We use these two new ex-
perimental capabilities to implement a quantum network register that consists of up
to six atoms and generate atom-photon entanglement with a multiplexing scheme.
This results in the almost deterministic generation of atom-photon entanglement.
The single atom addressing and positioning system and the implementation of the
network register are described in detail in the individual chapters of this thesis:

In chapter 2, we first describe the setup of the new single-atom addressing and po-
sitioning system and how we use it to generate atomic arrays. With the new setup,
we generate optical tweezers and implement a new protocol for loading atoms: We
start by loading atoms stochastically into the static tweezers array and then rear-
range the atoms into the desired array configuration with a second, movable optical
tweezer. This loading protocol increases the loading efficiency by up to four orders
of magnitude and allows us to arrange the atoms in one- and two-dimensional array
configurations. At the moment, arrays of up to seven atoms can be prepared. The
maximum number of atoms is mainly limited by the initial number of atoms that
are loaded in the static tweezers array and the success probability of moving the
atoms. Both these limitations can be improved in future experiments.

Afterwards, in chapter 3, we demonstrate the generation of atom-photon entan-
glement. To do this, we use a single-atom addressing beam to generate a photon
in a vSTIRAP process. The polarization of the generated photon is entangled with
the internal atomic state of the addressed atom. The photon and the atom are in
the entangled Bell state |Ψ+〉. For a single atom, the entanglement generation-to-
detection efficiency is 33.2(3) % and the fidelity of the entangled state with the Bell
state |Ψ+〉 is 86.6(5) %. We show that the fidelity is almost constant when arrays of
up to to six atoms are loaded in an array orthogonal to the cavity axis. However, the
entanglement generation efficiency drops for atoms which are located further away
from the cavity center, since the cooperativity decreases for these atoms. This limits
the number of atoms that can be positioned orthogonal to the cavity axis. Toover-
come this limitation, it is necessary to demonstrate that we are able to prepare
arrays of atoms in two-dimensional configurations. In these configurations, atoms
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are positioned along the cavity axis as well and we show that both the fidelity and
the efficiency behave as expected in the two-dimensional case, too. Afterwards, we
demonstrate that the register can be used to increase the generation-to-detection ef-
ficiency of photon generation for six atoms to up to 88.6(1) % (in fiber to 97.4(6) %)
using a multiplexing protocol. In conclusion, we show that the fidelity is indepen-
dent from the number of atoms and the specific array configuration and that the
entanglement generation efficiency can be drastically improved by multiplexing. As
we show that we are able to prepare two-dimensional arrays, we show the key step
towards being able to position atoms in the entire cavity area. This capability allows
the preparation of larger atomic arrays. The necessary steps to increase the size of
the register are described in section 3.4.

The combination of atomic arrays with the ability to address individual atoms opens
up many experimental possibilities in the future. One example is the generation of
multiplexed, heralded atom-atom entanglement. For this purpose, crossed fiber cav-
ities [119, 120], photon reflection schemes [85] or Bell state measurements [121–124]
could be used. Another option is the implementation of a multi-atom CNOT gate.
The multi-atom CNOT gate is an extension of the already implemented CNOT gate
between two atoms [75]. The capability to address single atoms also allows to light
shift the energy levels of specific atoms, which would allow to control the detuning of
the light shifted atoms with respect to the cavity. Control over this detuning can be
used to implement a CNOT gate between specific pairs of atoms in an atomic array
[77]. Another option is to implement the photon generation scheme that I described
in this thesis on the D1 line. This way, the CNOT gate and the photon generation
can be combined, which would allow for many more experimental protocols.

As demonstrated in this thesis, with only six atoms atom-photon entanglement
generation efficiencies of 97 % in fiber can be achieved. However, this generation
efficiency could be increased to even higher values as the cavity has room for ap-
proximately 200 atoms. Additional atoms could be trapped outside the cavity mode
and serve as an atomic reservoir. By shuffling atoms in and out of the cavity mode,
this number can even be further increased. If such large registers are successfully im-
plementatied, the deterministic entanglement generation and distribution between
different network nodes could be realized. As the essential experimental capabili-
ties for quantum repeater nodes have already been demonstrated with our platform
[88], multiplexed quantum repeater nodes are within reach. Such repeater nodes
would reduce the requirements on the coherence time of the quantum memories
at the nodes [125]. Besides the deterministic generation of atom-photon entangle-
ment, having a large register at each node also allows for the possibility to generate
multiple entangled atom pairs between different network nodes. This would enable
entanglement distillation or entanglement purification. In entanglement distillation
or purification, the unavoidable effects of decoherence in entanglement distribution
are mitigated by distilling an entangled pair of higher entanglement fidelity from
several pairs of entangled atoms [126–128]. The results presented in this thesis to-
gether with the examples given in this outlook suggest that the work presented in
this thesis is laying the foundation for potentially large quantum network registers,
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that combine the deterministic generation of atom-photon entanglement, all-to-all
connectivity between register qubits, and the quantum memory capabilities that are
required to implement multiplexed quantum repeater networks.
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Probleme im Elektronikraum hatte, gab es immer einen, der einem weiterhelfen
konnte.

Zum Glück mussten wir uns in unserer Gruppe dank unserer Techniker –
Johannes, Tom, Florian, Tobias und Markus – nicht allein um die vielen
mechanischen und elektronischen Probleme kümmern. Eure Unterstützung und
Hilfe bekommt nicht immer die Anerkennung, die sie verdient, denn ohne euch
würde oft gar nichts funktionieren. Vielen Dank für die stets kompetente, aber
mindestens genauso sympathische Unterstützung während meiner Zeit hier.

Und natürlich möchte ich mich bei meiner Familie und vor allem bei meinen Eltern
bedanken. Ihr habt mich bei all meinen Unternehmungen immer unterstützt und
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