
Technical University of Munich
School of Computation, Information and Technology
Chair of Electronic Design Automation

Implementation and Analysis of the One-Pass Architectural Syn-
thesis for Continuous-Flow Microfluidic Lab-on-a-Chip Systems

Research Internship Report

Hui Deng

Technical University of Munich
School of Computation, Information and Technology
Chair of Electronic Design Automation

Implementation and Analysis of the One-Pass Architectural Syn-
thesis for Continuous-Flow Microfluidic Lab-on-a-Chip Systems

Research Internship Report

Hui Deng

Advisor : Meng Lian
Advising Professor : Prof. Dr.-Ing. Ulf Schlichtmann
Topic issued : 22.04.2024
Working period : 22.04.2024 - 20.09.2024

Hui Deng
Arcisstraße 21
80333 München

Abstract

In recent years, the emergence of continuous-flow microfluidic technology has revolutionized
fields such as biochemistry and biomedicine . On these microscale lab-on-chip systems, complex
biochemical analyses—such as DNA analysis and drug discovery—can be performed automat-
ically and efficiently without the need for manual intervention. Over the past few years, the
automated design of such chips has become a significant research focus due to the high com-
plexity of analytical protocols and chip architectures, with numerous studies dedicated to the
design automation of these chips. The current mainstream approach divides the chip design
process into four independent tasks: binding, scheduling, placement, and routing. However, the
lack of communication between these separate stages often leads to failures in the automated
design process.

To address these issues, a novel automated design flow called BigIntegr for continuous-flow
microfluidic lab-on-chip systems was proposed in [1]. The paper claims that this process inte-
grates all design steps into a unified ”organic whole,” allowing tasks such as binding, scheduling,
placement, and routing to be seamlessly synchronized and executed in a combinatorial manner,
thereby eliminating gaps between the design stages. Consequently, efficient and cost-effective
biochip architectures can be generated without the need for design adjustments or modifica-
tions. However, the mathematical derivations provided in [1] are somewhat vague, and the
lack of practical implementation code raises concerns about the validity of the data and the
feasibility of the model.

To investigate and assess the feasibility of this approach, this thesis analyzes and improves the
model based on the mathematical derivations provided in [1] and successfully re-implements
the model. According to the test results, the effectiveness and practical value of the modified
automated flow have been demonstrated.

Keywords: design automation, code implementation, Continuous-flow microfluidic

biochips (CFMBs)

Contents

1. Introduction 7
1.1. Motivation . 7
1.2. Objective and contribution . 8
1.3. Organization . 8

2. Background 9
2.1. Continuous-flow microfluidic biochips introduction 9
2.2. One-Pass Architectural Synthesis for CFMBs introduction 10

2.2.1. limitations on current biochip design automation methods 10
2.2.2. One-Pass Architectural Synthesis . 10

3. Analysis of BigIntegr 13
3.1. Mathematical constraints analysis . 13
3.2. Corner cases analysis . 22

4. Implementation of design automation softawre based on BigIntegr 25
4.1. Environment configurations . 25
4.2. Software development . 26

4.2.1. Design of custom header files . 26
4.2.2. Design of input formats . 30
4.2.3. Software functions implementation . 32
4.2.4. Design of output formats and test case 36

5. Experimental results 37
5.1. test case 1 . 37
5.2. test case 2 . 40

6. Conclusion 43
6.1. Result conclusion . 43
6.2. Future work . 43

Bibliography 44

3

List of Figures

1.1. chip synthesis flow [1]. 7

2.1. Structure of a continuous-flow microfluidic biochip (a) and front view of the
structure (b) [6]. 9

2.2. Design failure occurring when performing the physical-level synthesis based on
optimal architecture-level synthesis [1]. 10

2.3. Illustration of a complete one-pass synthesis flow for biochip architecture [1]. . 11

3.1. Symbols frequently used in the synthesis flow [1]. 13

4.1. The necessary C++ standard libraries required for the software. 27
4.2. Header files included in each files. 27
4.3. Class declaration. 28
4.4. Device class declaration. 29
4.5. Function declaration. 29
4.6. Global variables. 30
4.7. Input format. 31
4.8. Main function of the software. 32
4.9. Input-reading function of the software. 33
4.10. Prepare function of the software. 33
4.11. Variable construction function of the software. 34
4.12. Constraints construction function of the software. 34
4.13. Gurobi API function. 35
4.14. Output function. 35
4.15. Output format. 36

5.1. Sequential graph of test case 1. 38
5.2. Test case 1 input. 38
5.3. Operation scheduling result of test case 1. 39
5.4. Placement & routing result of test case 1. 40
5.5. Test case 2 input. 41
5.6. Operation scheduling result of test case 2. 42
5.7. Placement & routing result of test case 2. 42

4

List of Tables

5.1. Device library of test case 1 . 37
5.2. Design constraints of test case 1 . 38
5.3. Device binding result of test case 1. 39
5.4. Device library of test case 2 . 40
5.5. Device binding result of test case 2. 41
5.6. Design result information. 42

5

1. Introduction

1.1. Motivation

The automation of Continuous-flow microfluidic biochips (CFMBs) architecture design is a
complex multi-objective optimization problem. To better optimize key metrics such as assay
completion time, chip area, channel length, and channel intersections, the design flow of CFMBs
is typically divided into several stages, including binding, scheduling, placement, and routing
and the first two stages are part of the architecture-level synthesis, while the latter stages
are referred to as physical-level synthesis [1]. To efficiently automate the generation of cost-
effective biochip architectures, it is essential to systematically consider all design tasks, as the
outcomes of these steps are closely interrelated. Designing each chip step in isolation introduces
significant information shifts in subsequent steps as shown in figure 1.1, which may lead to a
decline in solution quality or even design failure. To address these challenges, [1] claims to
propose a novel approach to CFMB design automation. This method synthesizes all four steps
simultaneously, executing them in a unified manner and enhancing the exchange of information
between tasks [1]. By doing so, it eliminates the gaps between different design phases, ensuring
the correctness and efficiency of the final solution while avoiding unnecessary delays in design
convergence [1].

[1] presents this new CFMB design automation flow as an Integer Linear Programming (ILP)
problem and lists the corresponding mathematical expressions. However, upon further exam-
ination, many of these mathematical formulations are logically unclear and ambiguous, and
several corner cases are not addressed. Additionally, no implementation code for the proposed
flow is provided.

Inspired by these observations, this thesis aims to verify the validity of the model proposed in [1]
through code replication. The effectiveness and practicality of the model were evaluated across
multiple design tasks. Furthermore, this thesis improves the model to better accommodate
various corner cases, enhancing its robustness and applicability.

Figure 1.1.: chip synthesis flow [1].

7

1. Introduction

1.2. Objective and contribution

To re-implement and improve the chip synthesis process proposed in [1], this thesis employs
C++ as the tool for code implementation and Gurobi as the linear programming solver, de-
signing a miniature design automation software based on BigIntegr. This software accepts
text data as input, where the data must be formatted to include device information, the pro-
tocol of the assay to be realized, modeled as a directed acyclic graph G(O,E) and design
constraints like maximal chip area. Based on the input, the software automatically designs
the chip architecture according to the specified requirements and outputs the results in text
format.

Through extensive testing, this thesis improves and validates the effectiveness of the re-
implemented synthesis design and proposes methods to address corner cases.

1.3. Organization

The organization of the rest part of the paper is as follows. Section 2 provides an overview
of continuous-flow microfluidic biochips and the background of the automated design of such
chip architectures, enabling readers to better understand the implementation of the synthesis
process. Section 3 outlines the mathematical expression behind the model, along with the code
details, and identifies shortcomings in the model proposed in [1] while offering improvements.
Section 4 presents the development process and details of the automated design software im-
plemented in this thesis. Section 5 presents the test results, and Section 6 summarizes the
findings and suggests areas for future improvements and further exploration.

8

2. Background

In this section, the principles of continuous-flow microfluidic biochips and the foundational
background of automated chip architecture design are introduced to provide readers with a
clearer understanding of the subsequent implementation of the synthesis process.

2.1. Continuous-flow microfluidic biochips introduction

Continuous-flow microfluidic biochips (CFMBs), often referred to as lab-on-a-chip systems,
have garnered significant attention from both academic and industrial researchers over the
past ten years [2]. On these microscale platforms, complex biochemical analyses, such as point-
of-care diagnostics [3], can be conducted automatically and concurrently. Unlike traditional
laboratory equipment that relies on manual operation, CFMBs offer distinct benefits, such as
reduced size, improved reliability and precision, as well as lower usage of expensive samples
and reagents [4].

Fluid flow control in CFMBs is achieved through the precise manipulation of flexible mem-
branes, referred to as microvalves [1]. These microvalves are constructed from polydimethyl-
siloxane (PDMS), a commonly utilized elastomer [5]. By using microvalves as building blocks,
various microfluidic devices, including mixers and chambers, can be developed [7]. Through
the programming of predetermined control sequences, a wide array of biochemical assays can
be executed automatically on the biochip [1].

The schematic and control principle of the biochip are illustrated in Figure 2.1 [6]. Microvalves
are positioned at the intersections of the control and flow channels. When the valve is closed, an
external pressure source injects air into the control channel through the control port, pushing
the membrane downward into the flow channel, thereby blocking fluid movement [1]. Con-
versely, once the pressure is released, fluid transport within the flow channel resumes [1].

Figure 2.1.: Structure of a continuous-flow microfluidic biochip (a) and front view of the struc-
ture (b) [6].

9

2. Background

2.2. One-Pass Architectural Synthesis for CFMBs introduction

2.2.1. limitations on current biochip design automation methods

With the advancements in microfabrication technology, the integration density of biochips can
now reach nearly one million valves per square centimeter [8], significantly increasing the com-
plexity of biochip design. To facilitate large-scale integration processes for biochips, recent
years have seen a focus on researching and developing automated design methodologies for
highly complex biochips [9]. The current mainstream research on chip design typically involves
executing and optimizing one design task independently, such as resource binding, operation
scheduling, device placement, and channel routing [1]. However, due to the independent nature
of these steps—with no exchange of design results or constraint information—these methods
often lead to a decline in the quality of chip architecture design or even impractical solutions
[1]. For instance, as demonstrated in Figures 3 and 4 of [1], when design steps are executed
separately—such as considering architecture-level synthesis and physical-level synthesis inde-
pendently—an optimal binding and scheduling scheme for the bioassay may be derived during
the architecture-level synthesis process, but the design may fail during the physical-level syn-
thesis process [1]. This indicates that an optimal solution at one stage does not necessarily
guarantee the overall optimal design, and the lack of information exchange between steps can
easily result in suboptimal solutions or design failures.

Figure 2.2.: Design failure occurring when performing the physical-level synthesis based on
optimal architecture-level synthesis [1].

2.2.2. One-Pass Architectural Synthesis

To overcome the aforementioned issues, [1] proposes a one-pass synthesis flow called BigIntegr
for CFMBs, which considers all design steps of CFMBs simultaneously [1]. This approach aims
to eliminate the information gaps that arise when design steps are executed independently.

As illustrated in Figure 2.3, upon providing the appropriate input data, the proposed one-pass
synthesis flow successfully generates the biochip architecture automatically.

10

2. Background

Figure 2.3.: Illustration of a complete one-pass synthesis flow for biochip architecture [1].

The automatic design of a chip architecture for a given bioassay using BigIntegr requires three
types of input, which include:

1) Sequencing graph showing the protocol of the assay to be realized G(O,E), where a vertex
oi ∈ O represents a biochemical operation with a weight indicating its duration and an edge
ei,j ∈ E specifies the dependency between operations;

2) A device library D used to facilitate the execution of operations in G, where a device di ∈ D
is represented by a rectangular box of size wi × hi featuring input/output ports along its
boundary;

3) Design constraints like the maximal chip area, device resource and so on [1].

BigIntegr simultaneously analyzes and executes all design steps to achieve the chip architecture
design automatically. Consequently, the objectives of the aforementioned design steps can be
outlined as follows:

11

2. Background

1) Binding: Determine a binding function Φ : O → D such that each operation in the sequenc-
ing graph is assigned to a specific device for execution;

2) Scheduling: Establish the start and end times for each operation in G, ensuring that the
completion time of the bioassay is minimized;

3) Placement: Position the assigned devices at precise locations on the chip plane, ensuring
that the chip area adheres to the specified constraints;

4) Routing: Design optimal connections between devices to minimize chip costs, including
channel length and intersections [1].

The proposed one-pass synthesis flow is modeled as an Integer Linear Programming (ILP)
problem, wherein each of the design steps is expressed through a series of mathematical in-
equalities. The specific mathematical formulation of BigIntegr will be discussed in detail in
Chapter 3.

12

3. Analysis of BigIntegr

As the mathematical model of BigIntegr presented in [1] are not sufficiently clear, this chapter
focuses on discussing and analyzing the formulation and improvement of the BigIntegr’s math-
ematical expressions. Additionally, it discusses the corner cases and limitations that were not
adequately covered in [1].

3.1. Mathematical constraints analysis

The proposed one-pass synthesis flow is formulated as an Integer Linear Programming (ILP)
problem, meaning the model is composed of a series of linear constraints. The improved
mathematical model of BigIntegr presented in this study consists of 32 constraints, with each
constraint comprising multiple specific and precise mathematical expressions that can be used
as Gurobi input [10]. The optimization objective is also included within these constraints. Our
constraints collectively address the following design tasks in chip design automation, including
resource binding, operation scheduling, device placement, and channel routing, within a one-
pass synthesis process. In addition, the symbols used in [1] to represent the design results at
each stage of the complete synthesis flow are shown in Figure 3.1. Besides, the symbols used
in the improved model are not included here and will be introduced in detail later.

Figure 3.1.: Symbols frequently used in the synthesis flow [1].

13

3. Analysis of BigIntegr

The first constraint addresses the binding of biochemical operations. In [1], it is stated that
each biochemical operation oi ∈ O must be assigned to a specific device in D. However,
the constraints presented in [1] only ensure that each operation is bound to one device in D,
without imposing any restrictions on the type of device to which it is bound. To this end, the
revised constraint is formulated as follows:∑

dk∈D
bi,k = 1,

∑
dk∈Dp

bi,k = 1, ∀oi ∈ O, (3.1)

where D represents the entire device library while Dp denotes the set of devices of the same
type as the operation oi.

Constraints (2) in [1] is part of the scheduling task. it ensures that the transportation tasks Pj,i,1

and Pj,i,2 must be performed sequentially, if device doi is still occupied by another operation
when transporting out(oj) and storage is required to temporarily cache out(oj) [1]. Since the
mathematical expressions in [1] are accurate, they are omitted in this section.

Constraint (3) in [1] ensures that the corresponding multi-input tasks of operation oi must
be performed separately. Since the description in [1] is vague, constraint (3) is linearized using
big M method [11] as

∀ej,i, eh,i ∈ E :

tePj,i,2
≤ tsPh,i,2

+ (1− λj,h,i) ·M,

tePh,i,2
≤ tsPj,i,2

+ (1− λj,h,i) ·M,

tePj,i,3
≤ tsPh,i,3

+ (1− λj,h,i) ·M,

tePh,i,3
≤ tsPj,i,3

+ (1− λj,h,i) ·M,

(3.2)

where λj,h,i is a 0-1 variable indicating the input order of out(oj) and out(oh) regarding d(oi).

Constraint (4), (5) and (6) are part of the scheduling task. Their functionalities are described
as follows:
1) Constraint (4) ensures that the execution of oi can only begin once all preceding input tasks
have been completed;
2) Constraint (5) ensures that the execution time of each operation adheres to the specified
duration in the sequencing graph, where toi is the duration of operation oi;
3) Constraint (6) ensures that the transportation of out(oi) can only begin once the execution
of oi has been completed [1]. Since the mathematical expressions in [1] are accurate, they are
omitted in this section.

Constraint (7) in [1] ensures that the corresponding multi-output tasks of operation oi must
be performed separately. Since the description in [1] is vague, this study linearize it using big

14

3. Analysis of BigIntegr

M method [11] into four inequalities as

∀ei,h, ei,q ∈ E :

tePi,q,1
≤ tsPi,h,1

+ (1− µi,h,q) ·M,

tePi,h,1
≤ tsPi,q,1

+ (1− µi,h,q) ·M,

tePi,q,3
≤ tsPi,h,3

+ (1− µi,h,q) ·M,

tePi,h,3
≤ tsPi,q,3

+ (1− µi,h,q) ·M,

(3.3)

where µi,h,q is a 0-1 variable indicating the output order of oi.

Constraint (8) in [1] is part of the scheduling task. it ensures that all operations must be
completed before the bioassay is finished[1]. Since the mathematical expressions in [1] are
accurate, they are omitted in this section.

Constraint (9) in [1] can achieved by setting boundaries of Gurobi variables. Constraints (10)
and (11) in [1] ensure that all allocated devices, including the storage, are placed within the
specified chip area and do not overlap. Since the description in [1] is vague, we linearize
constraint (10) using big M method [11] as follows:

∀oi, oj ∈ O, i ̸= j :∑
d∈D

S(i,j),k ≥ 1− (1− q̄ si,j) ·M,∑
d∈D

S(i,j),k ≤ q si,j ·M,

q̄ si,j = q si,j

xrui ≤ xlbj + (1− q r di,j + q̄ si,j) ·M,

xruj ≤ xlbi + (1− q l di,j + q̄ si,j) ·M,

yrui ≤ ylbj + (1− q u di,j + q̄ si,j) ·M,

yruj ≤ ylbi + (1− q b di,j + q̄ si,j) ·M,

q r di,j + q l di,j + q u di,j + q b di,j ≥ 1− q̄ si,j ·M,

xrus ≤ xlbj + q r ss,j ·M,

xruj ≤ xlbs + q l ss,j ·M,

yrus ≤ ylbj + q u ss,j ·M,

yruj ≤ ylbs + q b ss,j ·M,

q r ss,j + q l ss,j + q u ss,j + q b ss,j ≤ 3,

(3.4)

where q r di,j , q l di,j , q u di,j , q b di,j , q r ss,j , q l ss,j , q u ss,j , q b ss,j are
0-1 variables indicating whether devices and storage overlap in the right, left, up, or down
directions, respectively. Here, binary variables q si,j , q̄ si,j indicates whether

∑
d∈D S(i,j),k

15

3. Analysis of BigIntegr

is larger than zero or not. Further, constraint (11) ensures S(i,j),k is a 0-1 variable representing
whether oi and oj are bound to a device dk, which is correct in [1] and omitted in this section.

Constraint (12) in [1] ensures that if two operations oi and oj are bound to the same device,
and oi executed first, the execution of oj can only begin once the fluids from oi have been fully
removed. We linearize constraint (12) using big M method [11] as follows:

∀eu,j , ei,h ∈ E :

tsj ≤ tei + q exi,j ·M,

tsPu,j,2
≥ tsPi,h,1

− (2− q si,j − q exi,j) ·M,

tsPu,j,2
≥ tsPi,h,3

− (2− q si,j − q exi,j) ·M,

tsPu,j,3
≥ tsPi,h,1

− (2− q si,j − q exi,j) ·M,

tsPu,j,3
≥ tsPi,h,2

− (2− q si,j − q exi,j) ·M,

(3.5)

where q exi,j is 0-1 variable representing the sequential execution order of oi and oj on the
same device.

Constraints (13), (14), (15), (16), and (17) in [1] are part of the binding and placement task.
Their functionalities are described as follows:
1) Constraint (13) ensures that if a device dk is assigned to an operation oi in the binding
scheme, the placement of dk on the chip must match its dimensions, where wk and hk are the
width and height of dk;
2) Constraint (14) ensures that if a storage is needed, the placement of storage on the chip
must match its dimensions, where ws and hs are the width and height of storage;
3) Constraint set 15 ensures that ls is a 0-1 variable representing whether a storage is intro-
duced;
4) Constraint (16) ensures that the total area occupied by the allocated devices in the binding
stage does not exceed the available chip area;
5) Constraint (17) ensures that lk is a 0-1 variable indicating whether dk is allocated for exe-
cuting operations [1]. Since the mathematical expressions in [1] are accurate, they are omitted
in this section.

Constraints (18)–(23) in [1] are part of the routing task and represent the most complex portion
of BigIntegr, as well as the least clearly described section in [1]. To improve and express
constraint (18) more accurately, this study first introduces a method to represent gx,y ∈ Ndk ,
For any grid gx,y not occupied by a device, if any of its neighboring grids is occupied by device
dk, then gx,y is considered a neighbor of device dk. The neighboring grids of gx,y refer to the
four adjacent grids (above, below, left, and right). Thus, constraint (18) can be revised and
expanded as follows:

• these inequalities firstly ensure that binary variable g
d(oj)
x,y indicates whether a grid gx,y

16

3. Analysis of BigIntegr

is occupied by a device d(oj):

∀ej,i ∈ E, ∀gx,y ∈ R :

x ≥ xruj + u− q g l
d(oj)
x,y ·M,

y ≥ yruj + u− q g b
d(oj)
x,y ·M,

x ≤ xlbj + q g r
d(oj)
x,y ·M,

y ≤ ylbj + q g u
d(oj)
x,y ·M,

g
d(oj)
x,y ≥ q g l

d(oj)
x,y + q g b

d(oj)
x,y + q g r

d(oj)
x,y + q g u

d(oj)
x,y − 3,

(3.6)

• these inequalities ensure that binary variable q N
d(oj)
x,y is 0-1 variable indicating whether

a grid gx,y is neighbor of device d(oj), i.e. gx,y ∈ Nd(oj):

x ≤ xruj + ḡ
d(oj)
x,y ·M,

y ≤ yruj + ḡ
d(oj)
x,y ·M,

x− u ≤ xlbj − ḡ
d(oj)
x,y ·M,

y − u ≤ ylbj − ḡ
d(oj)
x,y ·M,

g
d(oj)
x−u,y + g

d(oj)
x+u,y + g

d(oj)
x,y−u + g

d(oj)
x,y+u ≤ q N ∃Nd(oj)

x,y ·M,

g
d(oj)
x−u,y + g

d(oj)
x+u,y + g

d(oj)
x,y−u + g

d(oj)
x,y+u ≥ 1− (1− q N ∃Nd(oj)

x,y) ·M,

q N
d(oj)
x,y ≥ ḡ

d(oj)
x,y + q N ∃Nd(oj)

x,y − 1,

q N
d(oj)
x,y ≤ q N ∃Nd(oj)

x,y ,

q̄ N
d(oj)
x,y ≥ ḡ

d(oj)
x−u,y + ḡ

d(oj)
x+u,y + ḡ

d(oj)
x,y−u + ḡ

d(oj)
x,y+u + ḡ

d(oj)
x,y − 5,

ḡ
d(oj)
x,y + g

d(oj)
x,y = 1,

q N
d(oj)
x,y + ḡ

d(oj)
x,y = 1,

(3.7)

• these inequalities ensure that
∑

gx,y∈Nd(oj)
g
Pj,i,1
x,y = 1:

qd(oj) N g
Pj,i,1
x,y ≤ g

Pj,i,1
x,y ,

qd(oj) N g
Pj,i,1
x,y ≤ q N

d(oj)
x,y ,

qd(oj) N g
Pj,i,1
x,y ≥ g

Pj,i,1
x,y + q N

d(oj)
x,y − 1,

Sumd(oj) N g
Pj,i,1
x,y =

∑
gx,y∈R

qd(oj) N g
Pj,i,1
x,y ,

Sumd(oj) N g
Pj,i,1
x,y ≤ 1 + (1− ρj,i) ·M,

Sumd(oj) N g
Pj,i,1
x,y ≥ 1− (1− ρj,i) ·M,

(3.8)

17

3. Analysis of BigIntegr

• similarly, these inequalities ensure that
∑

gx,y∈Nds
g
Pj,i,1
x,y = 1:

x ≥ xrus + u− q g ldsx,y ·M,

y ≥ yrus + u− q g bdsx,y ·M,

x ≤ xlbs + q g rdsx,y ·M,

y ≤ ylbs + q g udsx,y ·M,

gdsx,y ≥ q g ldsx,y + q g bdsx,y + q g rdsx,y + q g udsx,y − 3,

x ≤ xrus + ḡdsx,y ·M,

y ≤ yrus + ḡdsx,y ·M,

x− u ≤ xlbs − ḡdsx,y ·M,

y − u ≤ ylbs − ḡdsx,y ·M,

gdsx−u,y + gdsx+u,y + gdsx,y−u + gdsx,y+u ≤ q N ∃Nds
x,y ·M,

gdSx−u,y + gdSx+u,y + gdSx,y−u + gdSx,y+u ≥ 1− (1− q N ∃Nds
x,y) ·M,

q Nds
x,y ≥ ḡdsx,y + q N ∃Nds

x,y − 1,

q Nds
x,y ≤ q N ∃Nds

x,y,

q̄ Nds
x,y ≥ ḡdsx−u,y + ḡdsx+u,y + ḡdsx,y−u + ḡdsx,y+u + ḡdsx,y − 5,

ḡdsx,y + gdsx,y = 1,

q Nds
x,y + ḡdsx,y = 1,

qds N g
Pj,i,1
x,y ≤ g

Pj,i,1
x,y ,

qds N g
Pj,i,1
x,y ≤ q Nds

x,y,

qds N g
Pj,i,1
x,y ≥ g

Pj,i,1
x,y + q Nds

x,y − 1,

Sumds N g
Pj,i,1
x,y =

∑
gx,y∈R

qds N g
Pj,i,1
x,y ,

Sumds N g
Pj,i,1
x,y ≤ 1 + (1− ρj,i) ·M,

Sumds N g
Pj,i,1
x,y ≥ 1− (1− ρj,i) ·M.

(3.9)

The meaning of variables symbols are described as follows:

• q g l
d(oj)
x,y , q g b

d(oj)
x,y , q g r

d(oj)
x,y , q g u

d(oj)
x,y are 0-1 variables indicating whether a grid

is positioned to the left, right, above, or below a device’s right, lower, left, or upper
boundaries, respectively.

• g
d(oj)
x,y is 0-1 variable indicating whether a grid gx,y is occupied by a device d(oj).

• ḡ
d(oj)
x,y is 0-1 variable indicating whether a grid gx,y is not occupied by a device d(oj).

18

3. Analysis of BigIntegr

• u denotes the length of a grid cell, which is typically defined as 1 unit.

• x, y is the cartesian coordinates of the upper-right corner of the grid, and (x−u, y), (x+
u, y), (x, y − u), (x, y + u) represents the cartesian coordinates of the upper-right
corners of the neighboring grids of gx,y.

• q N ∃Nd(oj)
x,y is 0-1 variable indicating whether there exists a neighbor grid of a grid gx,y

is neighbor of device d(oj).

• q N
d(oj)
x,y is 0-1 variable indicating whether a grid gx,y is neighbor of device d(oj).

• q̄ N
d(oj)
x,y is 0-1 variable indicating whether a grid gx,y is not neighbor of device d(oj).

• qd(oj) N gPj,i,k is 0-1 variable representing whether a grid gx,y is neighbor of device d(oj)
and occupied by transportation Pj,i,k with k = 1, 2, 3.

• Sumd(oj) N g
Pj,i,k
x,y with k = 1, 2, 3 is integer variable indicating sum of qd(oj) N gPj,i,k

with k = 1, 2, 3 of all grids in chip.

• symbols with indices such as ds have similar meanings to the aforementioned variables
but refer to storage instead of the device d(oj).

• symbols with indices such as d(oi) have similar meanings to the aforementioned variables
but refer to device that has parent operations instead of the device d(oj) that has child
operations.

It is important to note that the constraints applied to d(oj) must also be applied to d(oi),
although they are not listed here.

Constraint (19) in [1] is also unclear. Based on the representation of gx,y ∈ Ndk mentioned in
constraint (18), we introduce the following constraints to represent gx,y /∈ Nd(oj) ∪NS .

∀ej,i ∈ E, ∀gx,y ∈ R :

q notN
Nd(oj)

,NS

x,y ≥ q̄ N
d(oj)
x,y + q̄ Nds

x,y − 1,

q notN
Nd(oj)

,NS

x,y ≤ q̄ N
d(oj)
x,y ,

q notN
Nd(oj)

,NS

x,y ≤ q̄ Nds
x,y,

(3.10)

where q notN
Nd(oj)

,NS

x,y is 0-1 variable indicating gx,y /∈ Nd(oj) ∪NS . After that, constraint (19)
can be described as

g
Pj,i,1

x−u,y + g
Pj,i,1

x+u,y + g
Pj,i,1

x,y−u + g
Pj,i,1

x,y+u ≤ 2 + (2− g
Pj,i,1
x,y − q notN

Nd(oj)
,NS

x,y) ·M,

g
Pj,i,1

x−u,y + g
Pj,i,1

x+u,y + g
Pj,i,1

x,y−u + g
Pj,i,1

x,y+u ≥ 2− (2− g
Pj,i,1
x,y − q notN

Nd(oj)
,NS

x,y) ·M.
(3.11)

19

3. Analysis of BigIntegr

Constraints (20) and (21) in [1] have also been improved. These constraints are similar to con-
straints (18) and (19), representing the routing method between device d(oj) and the storage,
but specifically for transaction Pj,i,2 instead of Pj,i,1. Therefore, the details are not elaborated
here.

Constraints (22) and (23) in [1] have likewise been refined. These constraints are slightly
different to constraints (18) and (19), representing the routing method between device d(oj)
and device d(oi) regarding transaction Pj,i,3. Thus, Constraint (22) can be formulated as

∀ej,i ∈ E, ∀gx,y ∈ R :

qd(oj) N g
Pj,i,3
x,y ≤ g

Pj,i,3
x,y ,

qd(oj) N g
Pj,i,3
x,y ≤ q N

d(oj)
x,y ,

qd(oj) N g
Pj,i,3
x,y ≥ g

Pj,i,3
x,y + q N

d(oj)
x,y − 1,

Sumd(oj) N g
Pj,i,3
x,y =

∑
gx,y∈R

qd(oj) N g
Pj,i,3
x,y ,

Sumd(oj) N g
Pj,i,3
x,y ≤ 1 + (q̄ si,j + ρj,i) ·M,

Sumd(oj) N g
Pj,i,3
x,y ≥ 1− (q̄ si,j + ρj,i) ·M,

qd(oi) N g
Pj,i,3
x,y ≤ g

Pj,i,3
x,y ,

qd(oi) N g
Pj,i,3
x,y ≤ q Nd(oi)

x,y ,

qd(oi) N g
Pj,i,3
x,y ≥ g

Pj,i,3
x,y + q Nd(oi)

x,y − 1,

Sumd(oi) N g
Pj,i,3
x,y =

∑
gx,y∈R

qd(oi) N g
Pj,i,3
x,y ,

Sumd(oi) N g
Pj,i,3
x,y ≤ 1 + (q̄ si,j + ρj,i) ·M,

Sumd(oi) N g
Pj,i,3
x,y ≥ 1− (q̄ si,j + ρj,i) ·M.

(3.12)

Constraint (23) can be formulated as

∀ej,i ∈ E, ∀gx,y ∈ R :

q notN
Nd(oj)

,Nd(oi)

x,y ≥ q̄ N
d(oj)
x,y + q̄ Nd(oi)

x,y − 1,

q notN
Nd(oj)

,Nd(oi)

x,y ≤ q̄ N
d(oj)
x,y ,

q notN
Nd(oj)

,Nd(oi)

x,y ≤ q̄ Nd(oi)
x,y ,

g
Pj,i,3

x−u,y + g
Pj,i,3

x+u,y + g
Pj,i,3

x,y−u + g
Pj,i,3

x,y+u ≤ 2 + (2− g
Pj,i,1
x,y − q notN

Nd(oj)
,Nd(oi)

x,y) ·M,

g
Pj,i,3

x−u,y + g
Pj,i,3

x+u,y + g
Pj,i,3

x,y−u + g
Pj,i,3

x,y+u ≥ 2− (2− g
Pj,i,3
x,y − q notN

Nd(oj)
,Nd(oi)

x,y) ·M,

(3.13)

where q notN
Nd(oj)

,Nd(oi)

x,y is 0-1 variable indicating gx,y /∈ Nd(oj) ∪Nd(oi).

Constraints (24), (25) in [1] are part of the scheduling task. Their functionalities are described
as follows:

20

3. Analysis of BigIntegr

1) Constraint (24) ensures that scheduling should be linked to the routing results to accurately
calculate the transportation latencies Pj,i,k between devices when determining the start times
of operations;
2) Constraint (25) ensures that transportation tasks sharing the same grid cells cannot be
executed simultaneously; Since the mathematical expressions in [1] are accurate, they are
omitted in this section.

Constraints (26) and (27) in [1] are part of the routing and placement tasks. Constraints (26)
ensures that flow channels cannot pass through grid cells that are already occupied by devices
during the routing process. However, the constraints presented in [1] lack clarity and do not
account for storage considerations. Therefore, this study corrects and improves constraint (26)
as

∀oj , oi ∈ O, ∀gx,y ∈ R :

g
d(oj)
x,y + gcx,y + gdSx,y ≤ 1

gd(oi)x,y + gcx,y + gdSx,y ≤ 1,

(3.14)

and correct constraint (27) as

∀gx,y ∈ R, ∀ej,i ∈ E :

1− (1− gcx,y) ·M ≤
∑

ej,i∈E
(g

Pj,i,1
x,y + g

Pj,i,2
x,y + g

Pj,i,3
x,y),

∑
ej,i∈E

(g
Pj,i,1
x,y + g

Pj,i,2
x,y + g

Pj,i,3
x,y) ≤ gcx,y ·M,

(3.15)

where gcx,y is a 0-1 variables representing whether grid gx,y is occupied by a flow channel.

Constraints (28) and (29) in [1] represent the optimization objectives and are formulated in
this study as

min(αtE + β
∑
gx,y

gcx,y + γ
∑
gx,y

grx,y), (3.16)

where α, β and γ are three weighting factors and are set to 0.3, 0.3, and 0.4 respectively.

Constraints (30), (31), and (32) in [1] are additional improvements and supplements introduced
in this study, ensuring that grx,y is a 0-1 variable representing whether grid gx,y forms a channel
intersection on the chip. Constraints (30) and (31) can be formulated as follows:

∀ej,i, ej1,i1 , ej2,i2 ∈ E, ∀gx,y ∈ R, ∀gx′,y′ ∈ Ngx,y :

qgx−u,y ci1,j1i2,j2
+ qgx+u,y ci1,j1i2,j2

+ qgx,y−u ci1,j1i2,j2
+ qgx,y+u ci1,j1i2,j2

≤ (1− qgx,y crossi1,j1i2,j2
) ·M,

qgx−u,y ci1,j1i2,j2
+ qgx+u,y ci1,j1i2,j2

+ qgx,y−u ci1,j1i2,j2
+ qgx,y+u ci1,j1i2,j2

≥ 1− qgx,y crossi1,j1i2,j2
·M,

21

3. Analysis of BigIntegr

qgx,y ci1,j1i2,j2
≥ 1− (2− gc(x,y),(i1,j1) − gc(x,y),(i2,j2)) ·M,

gc(x,y),(i1,j1) + gc(x,y),(i2,j2) ≥ 2− (1− qgx,y ci1,j1i2,j2
) ·M,

grx,y ≤ qgx,y crossi1,j1i2,j2
,

grx,y ≤ qgx,y ci1,j1i2,j2
,

grx,y ≥ qgx,y crossi1,j1i2,j2
+ qgx,y ci1,j1i2,j2

− 1,

g
Pj,i,1
x,y + g

Pj,i,2
x,y + g

Pj,i,3
x,y ≤ gc(x,y),(i,j) ·M,

g
Pj,i,1
x,y + g

Pj,i,2
x,y + g

Pj,i,3
x,y ≥ 1− (1− gc(x,y),(i,j)) ·M.

(3.17)

The meaning of variables symbols are described as follows:

• g(x− u, y), g(x+ u, y), g(x, y − u), g(x, y + u) represents neighboring grids of gx,y,
i.e. gx′,y′ ∈ Ngx,y . Ngx,y is the set of neighbor cells of gx,y on the grid.

• qgx,y ci1,j1i2,j2
is 0-1 variables representing if grid gx,y is occupied by channel for transporta-

tion Pi1,j1,k and Pi2,j2,k.

• gc(x,y),(i,j) is 0-1 variables representing if grid gx,y is occupied by channel for transportation
Pi,j,k.

• qgx,y crossi1,j1i2,j2
is 0-1 variable representing if each neighboring grid gx′,y′ of gx,y is occupied

for no more than one transportation, e.g. transportation Pi1,j1,k and Pi2,j2,k.

• grx,y is 0-1 variable representing whether grid cell forms a channel intersection.

Constraint (32) addresses and restricts the corner cases where g(x
′, y′) is outside the chip

boundaries, and these limitations can be achieved by setting the boundaries for Gurobi vari-
ables.

The improved constraints mentioned above constitute the ILP mathematical model for the
one-pass synthesis flow.

3.2. Corner cases analysis

The model presented in [1] does not account for certain corner cases. For example, constraint
(12) assumes that every operation has both input and output, without considering input/output
devices. Such devices only have input or output, and thus the model needs to be adjusted.
Additionally, constraint (26) does not take into account that storage also occupies space, which
has been corrected in this study.

22

3. Analysis of BigIntegr

Furthermore, constraint (30) does not introduce or restrict gc(x,y),(i,j). Therefore, this study

introduces constraint (31) to limit gc(x,y),(i,j), which is defined as a 0-1 variable representing
whether grid gx,y is occupied by a channel for transportation Pi,j,k.

23

4. Implementation of design automation softawre based on
BigIntegr

In this section, the methods and details of developing design automation software based on
BigIntegr using C++ and Gurobi [10] are presented. The software takes text data as input,
which must be formatted to include device information, the protocol of the assay to be realized,
modeled as a directed acyclic graph G(O,E) and design constraints like maximal chip area.
Based on the input, the software automatically generates the biochip architecture as required
and outputs the results in text format.

4.1. Environment configurations

To successfully develop and execute the proposed design automation software, it is essential to
first consider the code compilation platform, compiler, code editing tools, and the installation
and use of Gurobi. Accordingly, the objectives of the aforementioned environment configura-
tions can be summarized as follows:

• In this study, Ubuntu 20.04 is chosen as the compilation platform because, when us-
ing common g++ compilers such as MinGW64 on Windows 10, incompatibilities with
the Gurobi solver library such as undefined reference may arise. Based on testing and
information from the official documentation, using Linux platform as the compilation
platform eliminates these compatibility issues with Gurobi [10].

• For the g++ compiler, this study utilizes GCC version 9.4.0 (Ubuntu 9.4.0-1ubuntu1 20.04)
to leverage the features of C++11. If the g++ compiler version is too low, errors may
occur during the compilation of libraries or header files. To avoid such issues, it is rec-
ommended to use GCC version 4.8.0 or higher. The command g++ -v can be used in
the Linux terminal to verify the successful installation of the compiler and to check the
compiler version.

• This study utilizes Visual Studio Code (VS Code) as the code editor due to its support for
various extensions that enable real-time detection of syntax and spelling errors, as well
as its efficiency in managing C++ source and header files. Upon initial configuration, it
is necessary to include the Gurobi library in the compiler’s search path and specify the
g++ compiler to prevent compilation errors.

• The installation of Gurobi [10] requires the registration of an academic account on the
official website, followed by obtaining a license. Upon downloading and extracting the

25

4. Implementation of design automation softawre based on BigIntegr

package, the environment variables must be configured in accordance with the official
documentation, and the license must be activated. To utilize Gurobi [10], the path to
the Gurobi library should be appropriately included in the g++ compilation commands.
For instance, the command used to compile the code into an executable file is as follows:
g++ -std=c++11 -m64 -g -o BigInteger 3 MILP BigInteger 3.cpp

-I/home/ge23qoc/FP code/gurobi11.0.2 linux64/gurobi1102/linux64/include

-L/home/ge23qoc/FP code/gurobi11.0.2 linux64/gurobi1102/linux64/lib

-lgurobi c++ -lgurobi110 -lpthread -lm

Once the development environment is configured and the necessary tools are installed, program
development can commence.

4.2. Software development

The successful design and development of chip design automation software using C++ requires
careful consideration of several components, including the necessary C++ libraries, custom
header files developed for this study, CPP files based on BigIntegr, and input/output files.
The development process for this software can be summarized in four key steps:

1) Identify and select the required C++ standard libraries, and create custom header files to
support the implementation of core software functions.

2) Since the input data is provided in the form of text files, it is essential to define a specific
input format to streamline the development of data reading functions.

3) Develop the main CPP files based on BigIntegr to implement the essential functionality of
the software.

4) Design test cases and generate output files for validation and performance assessment.

4.2.1. Design of custom header files

The header file should include the following components:

• The necessary C++ standard libraries required for the software.

• Gurobi variable Class definitions needed for integration with the Gurobi solver.

• Various class definitions necessary for the implementation of BigIntegr.

• Organization and declaration of variables used to store design results at each stage of the
complete synthesis flow in each class.

26

4. Implementation of design automation softawre based on BigIntegr

• Declarations of relevant functions and global variables, including the global parameters
required for the Gurobi solver’s optimization process.

Thus, two header files named class BigInteger.h and globalVariable BigInteger.h are
created to develop the software.

As illustrated in Figure 4.1, the C++ standard libraries required for the software, primar-
ily sourced from the Standard Template Library (STL), have been incorporated into class

BigInteger.h. These libraries are essential for defining the variables necessary for the model’s
construction and for enabling the utilization of various functions required throughout the de-
velopment process.

Figure 4.1.: The necessary C++ standard libraries required for the software.

To avoid multiple inclusion of header files, a header guard can be employed, or alterna-
tively, as shown in Figure 4.2, class BigInteger.h can be included within globalVariable

BigInteger.h. The main CPP file of the software only needs to include globalVariable

BigInteger.h and the Gurobi C++ library header file gurobi c++.h.

(a) header files of globalVariable BigInteger.h (b) header files of BigInteger.cpp

Figure 4.2.: Header files included in each files.

After including the necessary libraries, as shown in Figure 4.3, the variable classes required for
the Gurobi solver, as well as other classes, where variable members used to store design results
at each stage of the complete synthesis flow, must be declared.

27

4. Implementation of design automation softawre based on BigIntegr

Figure 4.3.: Class declaration.

Figure 4.3 illustrates the implementation of the variable class required by the Gurobi solver.
Each variable has its own type and value boundaries, and the results computed by the Gurobi
solver are stored in the intrval member.

The classes declared for operations, devices, storage, grids and chip primarily include collections
of Gurobi variables, categorized and established according to the mathematical expressions of
BigIntegr. These variables are instantiated in the BigInteger.cpp file and are used to store
the design results at each stage of the complete synthesis flow.

Taking the device class as an example, as illustrated in Figure 4.4, the device class includes
variables for storing information such as the name and dimensions of a device. It also contains
Gurobi variables representing the chip architecture design results associated with the device.
In the inputRead function of the BigInteger.cpp file, these classes are instantiated based on
the input to represent specific devices. The final design results for each device, at every stage
of the complete synthesis flow, are stored in the Gurobi variables associated with the respective
device instances.

Declarations of relevant functions and global variables, including the global parameters required
for the Gurobi solver’s optimization process, are included in globalVariable BigInteger.h.

28

4. Implementation of design automation softawre based on BigIntegr

Figure 4.4.: Device class declaration.

As shown in Figure 4.5, eight functions related to the creation of BigIntegr are declared. These
functions are used for reading from the input file, creating and modifying objects not generated
by the input, generating model variables, building model constraints, displaying debugging
information on the screen, displaying output information on the screen, writing output to files,
and invoking the Gurobi solver to obtain the design results.

Figure 4.5.: Function declaration.

Figure 4.6 illustrates the global variables required for building the software, as well as the
parameters and global variables necessary for constructing the constraints of BigIntegr. The
instances generated by the previously mentioned classes are stored within the collections repre-

29

4. Implementation of design automation softawre based on BigIntegr

sented by these global variables. Additionally, the information pertaining to BigIntegr is stored
in the relevant global variables. This information forms the basis for the one-pass synthesis
flow used by the Gurobi solver to solve the model. Once the Gurobi solver is invoked, the
design results at each stage of the complete synthesis flow are stored in the Gurobi variables
contained within the instances held by the global variables.

Figure 4.6.: Global variables.

4.2.2. Design of input formats

The input for the chip design automation software based on the BigIntegr is provided in a
specific text format. Figure 4.7 presents an example of such a text input, which includes design
constraints, such as the chip’s name and dimensions, the device library containing information
such as the storage device’s name, length, and height, as well as the details of the sequencing
graph. The information provided in Figure 4.7 indicates the following:

1) the design is carried out on a chip named chip1, with the chip layout restricted to a 7x7
unit grid;

2) The storage device is named storage, with a width of 2 units and a height of 1 unit;

3) a device named d1 functions as a mixer, with a width of 3 units and a height of 1 unit;
a device named d2 functions as a mixer, with a width of 4 units and a height of 2 units;
a device named d3 functions as a heater, with a width of 1 unit and a height of 2 units;

30

4. Implementation of design automation softawre based on BigIntegr

a device named d4 functions as a detector, with a width of 1 unit and a height of 1 unit;
Devices named dio1 and dio2 serve as input/output ports, each with a width of 1 unit and
a height of 1 unit;

4) o1 represents a mixing operation with an execution time of 2 seconds and can be bound to
two devices, d1 and d2;
o2 represents a heating operation with an execution time of 3 seconds and can be bound to
a single device, d3;
o3 represents a heating operation with an execution time of 1 second and can be bound to
a single device, d4;
io1 and io2 represent input/output operations with an execution time of 1 second each, and
can be bound to two devices, dio1 and dio2, respectively;

5) io1 has no parent operations and one child operation, o1;
o1 has one parent operation, io1, and one child operation, o2;
o2 has one parent operation, o1, and one child operation, o3;
o3 has one parent operation, o2, and one child operation, io2;
io2 has one parent operation, o3, and no child operations

Figure 4.7.: Input format.

In practice, the device library, sequencing graph, and chip area information are supplied to the
software using this input format, allowing for the automated design and generation of the chip

31

4. Implementation of design automation softawre based on BigIntegr

architecture.

4.2.3. Software functions implementation

After defining the header files and input format, the next step is to develop the CPP files,
which implement the various functionalities of the software. As shown in Figure 4.8, aside
from the namespace and macro definitions, the first implementation is the main function,
which demonstrates the complete execution process of the software.

Figure 4.8.: Main function of the software.

The software first reads the input data from the text file and performs some preprocessing
before beginning model construction. Initially, Gurobi variables are created to store the results
at each stage of the complete synthesis flow. The mathematical constraints of the model are
then established, as the proposed one-pass synthesis flow is formulated as an Integer Linear
Programming (ILP) problem, meaning the model consists of a series of mathematical constraint
expressions. Once the model is constructed, the software invokes the Gurobi solver to solve
the problem, with the final results output both in text format and displayed on the screen.

The following parts provide a detailed explanation of the functionality and implementation of
each component function:

• Figure 4.9 illustrates the structure of part of the input-reading function, which reads
information from the input and then constructs the corresponding class instances, sub-
sequently used for creating and storing Gurobi variables.

• Figure 4.10 illustrates the structure of part of the pre-processing function, which creates
an instance of the grid class for each grid on the chip based on the Cartesian coordinates

32

4. Implementation of design automation softawre based on BigIntegr

Figure 4.9.: Input-reading function of the software.

of the upper-right corner. Additionally, it constructs a set of neighboring grids for each
grid to facilitate subsequent processing.

Figure 4.10.: Prepare function of the software.

• Figure 4.11 illustrates the structure of part of the model-variable construction function.
This function creates Gurobi variables associated with the design for each class instance,
assigning parameters such as index, type, and boundaries to facilitate solving by the
Gurobi Solver. For example, minTimeExe represents the total execution time of the
bioassay and is part of the chip architecture’s optimization objective, where a smaller
value is preferred. In this function, the software creates a global Gurobi variable for
minTimeExe, with a boundary of 0 to 150 and an integer type.

33

4. Implementation of design automation softawre based on BigIntegr

Figure 4.11.: Variable construction function of the software.

• Figure 4.12 illustrates the structure of part of the model-constraints construction func-
tion, which builds each mathematical constraint for BigIntegr. As shown, nCons repre-
sents the index of the current constraint for the Gurobi solver. After transforming the
mathematical expression, variables are placed on the left side of the inequality, with con-
stants on the right. Finally, the constraint sense is set, where mapcs[nCons] is assigned
a value of 1 for greater equal, 0 for equal, and -1 for less equal.

Figure 4.12.: Constraints construction function of the software.

• Figure 4.13 illustrates the structure of part of the Gurobi invocation function. This
function submits BigIntegr, constructed by the model-constraints construction function,
to the Gurobi solver for computation. The results at each stage of the complete synthesis
flow are then stored in the result members of the respective Gurobi variables, which were

34

4. Implementation of design automation softawre based on BigIntegr

created by the model-variable construction function.

Figure 4.13.: Gurobi API function.

• Figure 4.14 shows a code snippet of the output-on-screen function. This function outputs
the results stored in the members of the Gurobi variables, representing the results at each
stage of the complete synthesis flow, to the terminal. Optionally, the output can also be
saved in a text file.

Figure 4.14.: Output function.

The six functions described above constitute the complete functionality of the design automa-
tion software. With appropriate and well-structured input, the software can generate the
detailed chip architecture, which is then output in text format.

35

4. Implementation of design automation softawre based on BigIntegr

4.2.4. Design of output formats and test case

The complexity of the test case is closely related to the design time. To reduce computation
time, a simplified test case, as shown in Figure 4.7, was used as mentioned earlier. The results
obtained from the calculation are presented in Figure 4.15.

Figure 4.15.: Output format.

The chip architecture can be drawn based on the detailed design results, which are presented
in section 5.

36

5. Experimental results

In this section, the study presents the results of the chip architecture generated by the improved
mathematical model of BigIntegr for different input cases.

5.1. test case 1

In this example, the given assay begins with 1 fluid sample as input, which is processed through
3 operations (i.e., o1 - o3), and ultimately outputs the fluid at the designated output device.
A device library consisting of 6 devices with varying dimensions is provided to execute the
operations in the assay. Additionally, the chip layout is constrained to a 7-unit by 7-unit
region, and the fluid flow velocity is set at 1 unit per second. The grid length is defined as 1
unit.

The input required for constructing the chip architecture includes several key components, such
as the device library, which specifies the available devices and their respective dimensions; the
sequential graph, which defines the sequence of operations that must be performed; and the
design constraints, which impose limits on the chip layout, such as size and resource usage.
These elements are crucial for accurately generating the chip architecture, and their details are
illustrated as follows.

• The device library of test case 1 is shown in table 5.1.

available device dimension(unit2)

d1: mixer1 3 × 1

d2: mixer2 2 × 4

d3: heater 1 × 2

d4: detector 1 × 1

dio1: input/output port 1 × 1

dio2: input/output port 1 × 1

Table 5.1.: Device library of test case 1

• The design constraints of test case 1 is shown in table 5.2.

37

5. Experimental results

Design constraints Information

chip available area 7 × 7 (unit2)

grid area 1 × 1 (unit2)

storage area 2 × 1 (unit2)

fluid flow velocity 1 unit per second

Table 5.2.: Design constraints of test case 1

• The sequential graph of test case 1 is shown in Figure 5.1.

Figure 5.1.: Sequential graph of test case 1.

• Figure 5.2 illustrates the input format for this test case.

Figure 5.2.: Test case 1 input.

38

5. Experimental results

After 66.77 seconds of computation, the software produced the following optimal one-pass
synthesis results:

• The results of the device binding task are shown in Table 5.3.

operation device

input(input/output) dio1

o1(mix) d1

o2(heat) d3

o3(detect) d4

output(input/output) dio2

Table 5.3.: Device binding result of test case 1.

• The results of the operation scheduling synthesis task are shown in Figure 5.3.

Figure 5.3.: Operation scheduling result of test case 1.

• The results of placement & routing synthesis task are shown in Figure 5.4.

39

5. Experimental results

Figure 5.4.: Placement & routing result of test case 1.

5.2. test case 2

In this example, the device library is shown in Table 5.4. Figure 5.5 illustrates the input format

available device dimension(unit2)

d1: mixer1 3 × 1

d2: mixer2 2 × 4

d3: heater1 1 × 2

d4: heater2 2 × 2

d5: detector1 1 × 2

d6: detector2 1 × 3

dio1: input/output port 1 × 1

dio2: input/output port 1 × 1

Table 5.4.: Device library of test case 2

for this test case.

After 98.30 seconds of computation, the software produced the following optimal one-pass
synthesis results:

40

5. Experimental results

Figure 5.5.: Test case 2 input.

• The results of the device binding task are shown in Table 5.5.

operation device

input(input/output) dio1

o1(mix) d2

o2(heat) d3

o3(detect) d5

output(input/output) dio1

Table 5.5.: Device binding result of test case 2.

• The results of the operation scheduling synthesis task are shown in Figure 5.6.

• The results of placement & routing synthesis task for case 2 are shown in Figure 5.7.

The architecture design result information is summarized in Table 5.6.

41

5. Experimental results

Figure 5.6.: Operation scheduling result of test case 2.

Figure 5.7.: Placement & routing result of test case 2.

Test case runtime chip area execution of bioassays

test case 1 66.77s 10 (unit2) 12s

test case 2 98.30s 15 (unit2) 12s

Table 5.6.: Design result information.

42

6. Conclusion

6.1. Result conclusion

This study introduced an improved mathematical model of BigIntegr for chip design automa-
tion, addressing several shortcomings of the original approach. The enhancements focused on
clarifying ambiguous constraints and incorporating corner case considerations, which were pre-
viously overlooked. Key improvements were made in areas such as device binding, operation
scheduling, and routing, with particular attention given to storage and boundary conditions.
By integrating these refinements, the proposed one-pass synthesis flow was able to generate
optimized chip architectures for various input cases, as demonstrated through test case results.
These enhancements not only improve the accuracy and reliability of automated chip design
but also contribute to advancing the development of continuous-flow microfluidic biochip sys-
tems.

Through implementation and multiple tests, the effectiveness of the improved mathematical
model of BigIntegr proposed in this study has been validated.

6.2. Future work

While the improved mathematical model of BigIntegr has demonstrated its effectiveness in chip
design automation, there remain several areas for further exploration. One potential direction
is to enhance the scalability of the model, optimizing its performance for larger and more
complex bioassay protocols.

Current test results indicate that for highly complex chip architectures, the software’s design
time is excessively long. Future work will focus on further streamlining the model to enhance
its speed, thereby broadening its applicability across a wider range of biochip technologies more
complex bioassay protocols.

43

Bibliography

[1] Xing Huang, Youlin Pan, Zhen Chen, Wenzhong Guo, Robert Wille, Tsung-Yi Ho, and Ulf
Schlichtmann. Bigintegr: One-pass architectural synthesis for continuous-flow microfluidic
lab-on-a-chip systems. In 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pages 1–8, 2021.

[2] X. Huang, T.-Y. Ho, W. Guo, B. Li, K. Chakrabarty, and U. Schlichtmann, “Computer-
aided design techniques for flow-based microfluidic lab-on-a-chip systems,” ACM Comput.
Surv., vol. 54, no. 5, pp. 1–29, 2021.

[3] C. D. Chin, T. Laksanasopin, Y. K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang,
H. Moore, R. Rouse, G. Umviligihozo et al., “Microfluidics-based diagnostics of infectious
diseases in the developing world,” Nature medicine, vol. 17, no. 8, pp. 1015–1019, 2011.

[4] N. Convery and N. Gadegaard, “30 years of microfluidics,” Micro and Nano Engineering,
vol. 2, pp. 76–91, 2019.

[5] M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic micro-
fabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, no. 5463,
pp. 113–116, 2000.

[6] Y. Zhu, X. Huang, B. Li, T.-Y. Ho, Q. Wang, H. Yao, R. Wille, and U. Schlichtmann,
“Multicontrol: Advanced control logic synthesis for flow-based microfluidic biochips,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10, pp. 2489–2502,
2020.

[7] T. Thorsen, S. J. Maerkl, and S. R. Quake, “Microfluidic large-scale integration,” Science,
vol. 298, no. 5593, pp. 580–584, 2002.

[8] I. E. Araci and S. R. Quake, “Microfluidic very large scale integration (mvlsi) with inte-
grated micromechanical valves,” Lab on a Chip, vol. 12, no. 16, pp. 2803–2806, 2012.

[9] K.-H. Tseng, S.-C. You, J.-Y. Liou, and T.-Y. Ho, “A top-down synthesis methodology
for flow-based microfluidic biochips considering valve-switching minimization,” in Proc.
Int. Symp. Phys. Des., 2013, pp. 123–129.

[10] Gurobi Optimizer Reference Manual, Gurobi Optim., Inc., Beaverton, OR, USA, 2013.
[Online]. Available: http://www.gurobi.com

44

Bibliography

[11] I. Griva, S. G. Nash, and A. Sofer, Linear and Nonlinear Optimization 2nd Edition.
Philadelphia, PA: Society for Industrial, 2008. doi: 10.1137/1.9780898717730.

45

	Introduction
	Motivation
	Objective and contribution
	Organization

	Background
	Continuous-flow microfluidic biochips introduction
	One-Pass Architectural Synthesis for CFMBs introduction
	limitations on current biochip design automation methods
	One-Pass Architectural Synthesis

	Analysis of BigIntegr
	Mathematical constraints analysis
	Corner cases analysis

	Implementation of design automation softawre based on BigIntegr
	Environment configurations
	Software development
	Design of custom header files
	Design of input formats
	Software functions implementation
	Design of output formats and test case

	Experimental results
	test case 1
	test case 2

	Conclusion
	Result conclusion
	Future work

	Bibliography

