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Abstract

In many scientific and engineering disciplines, physical systems are characterized by the in-
tricate interplay of multiple physical processes. Simulations for this complex scenarios are
used to validate theoretical models and hypotheses, allowing for better alignment between
theoretical predictions and real-world observations. This work addresses the complexities
and challenges inherent in simulating multi-physics phenomena, including thermal-fluid in-
teractions, structural dynamics, and multi-time scale processes, using the smoothed particle
hydrodynamics (SPH) method.

The first part of this thesis introduces a robust SPH framework designed to effectively
simulate thermal-fluid-structure interaction (TFSI) problems. This framework incorporates
strong coupling at material interfaces and utilizes techniques such as kernel modifications
and multi-time stepping to enhance computational accuracy and efficiency. This newly in-
tegrated method is applied to study the thermal augmentation owing to the existence of
vortices induced by different immersed structure configurations. The detailed heat and vor-
tex information obtained by the present SPH TFSI solver indicates that the FSI reinforces the
heat transfer via vortexes interaction with fluid within the boundary layer. Through simula-
tions, this study demonstrates the versatility and potential of the mesh-free SPH approach for
complex industrial heat transfer applications.

The second part of the thesis addresses the challenges associated with modeling plate and
shell structures with large aspect ratios, particularly when thickness variations are present.

A new adaptive smoothed particle hydrodynamics (ASPH) approach is proposed, integrat-
ing a fully dimensional model with a framework for anisotropic particle resolution. Several
numerical experiments, including an example focused on the deformation of a porous film
caused by uneven internal fluid pressure along its thickness, are performed to evaluate the
method’s computational precision and efficiency. The comparison of the results with bench-
mark data and conventional isotropic SPH models shows strong alignment, supporting the
effectiveness of the ASPH method across diverse applications.

In the third part, the thesis explores the intricacies of multi-time scale coupling, which
is crucial for accurately simulating processes that evolve at different time scales. An explicit
multi-time step algorithm is proposed within the SPH framework, combined with a solid
dynamic relaxation scheme to address the challenges of achieving equilibrium in fast solid
response processes. This innovative approach allows for efficient simulations by decoupling
processes with distinct time scales, significantly reducing computational time while ensuring
the reliability of results.

Collectively, this thesis presents significant advancements in SPH methodologies for sim-
ulating complex fluid and solid dynamics, contributing valuable insights and tools for a wide
range of industrial and scientific applications. The findings highlight the versatility of SPH
in addressing diverse challenges in multi-physics simulations and establish a foundation for
future research in this evolving field.
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Zusammenfassung

In vielen wissenschaftlichen und ingenieurtechnischen Disziplinen sind physikalische Sys-
teme durch das komplexe Zusammenspiel mehrerer physikalischer Prozesse gekennzeichnet.
Simulationen für diese komplexen Szenarien werden verwendet, um theoretische Modelle
und Hypothesen zu validieren, was eine bessere Abstimmung zwischen theoretischen Vorher-
sagen und realen Beobachtungen ermöglicht. Diese Arbeit befasst sich mit den Komplex-
itäten und Herausforderungen, die mit der Simulation von Mehrphysikphänomenen verbun-
den sind, einschließlich thermischer-fluiddynamischer Wechselwirkungen, Strukturmechanik
und Multi-Zeit-Skalen-Prozessen, unter Verwendung der Methode der geglätteten Partikelhy-
drodynamik (SPH).

Der erste Teil dieser Dissertation stellt ein robustes SPH-Rahmenwerk vor, das entwick-
elt wurde, um Probleme der thermischen-fluid-strukturellen Wechselwirkung (TFSI) effek-
tiv zu simulieren. Dieses Rahmenwerk integriert eine starke Kopplung an Materialgrenzen
und nutzt Techniken wie Kernmodifikationen und Multi-Zeit-Schritte, um die Rechenleis-
tung und Effizienz zu steigern. Diese neu integrierte Methode wird angewendet, um die
thermische Verstärkung aufgrund der Existenz von durch verschiedene eingetauchte Struk-
turkonfigurationen induzierten Wirbeln zu untersuchen. Die detaillierten Wärme- und Wirbe-
linformationen, die von dem präsentierten SPH-TFSI-Löser gewonnen wurden, zeigen, dass
die Fluidstrukturwechselwirkung (FSI) den Wärmeübergang durch die Wechselwirkung von
Wirbeln mit Fluid innerhalb der Grenzschicht verstärkt. Durch Simulationen demonstriert
diese Studie die Vielseitigkeit und das Potenzial des maschinenfreien SPH-Ansatzes für kom-
plexe industrielle Wärmeübertragungsanwendungen.

Der zweite Teil der Dissertation befasst sich mit den Herausforderungen, die mit der
Modellierung von Platten- und Schalenstrukturen mit großen Seitenverhältnissen verbun-
den sind, insbesondere wenn Dickenvariationen vorhanden sind. Eine adaptive Methode der
geglätteten Partikelhydrodynamik (ASPH) wird entwickelt, die ein anisotropes volldimen-
sionales Modell mit einem anisotropen Partikelauflösungsrahmen integriert. Eine Reihe von
numerischen Beispielen, zusammen mit einer spezifischen Anwendung, die die Deformation
eines porösen Films aufgrund nichtuniformen inneren Fluiddrucks in Dickenrichtung betrifft,
werden durchgeführt, um die rechnerische Genauigkeit und Effizienz der vorgeschlagenen
ASPH-Methode zu bewerten. Vergleichende Analysen unserer Ergebnisse mit Referenzdaten
und traditionellen isotropen SPH-Lösungen zeigen enge Übereinstimmungen und bestätigen
die Eignung der vorliegenden ASPH-Methode in verschiedenen Szenarien.

Im dritten Teil untersucht die Dissertation die Komplexität der Mehrzeit Skalierungskop-
plung, die entscheidend ist für die genaue Simulation von Prozessen, die sich in unter-
schiedlichen Zeitrahmen entwickeln. Ein expliziter Mehrzeit-Schritt-Algorithmus wird in-
nerhalb des SPH-Rahmenwerks vorgeschlagen, kombiniert mit einem dynamischen Entspan-
nungsschema für feste Stoffe, um die Herausforderungen der Erreichung des Gleichgewichts
in schnellen Reaktionsprozessen von festen Stoffen zu bewältigen. Dieser innovative Ansatz
ermöglicht effiziente Simulationen, indem Prozesse mit unterschiedlichen ZeitAUH 2h 15mi-
rahmen entkoppelt werden, was die Rechenzeit erheblich verkürzt und gleichzeitig die Zu-
verlässigkeit der Ergebnisse gewährleistet.

Insgesamt stellt diese Dissertation bedeutende Fortschritte in den SPH-Methodologien zur
Simulation komplexer Fluid- und Festkörperdynamik vor und bietet wertvolle Erkenntnisse
sowie Werkzeuge für ein breites Spektrum industrieller und wissenschaftlicher Anwendun-
gen. Die Ergebnisse heben die Vielseitigkeit von SPH bei der Bewältigung vielfältiger Her-
ausforderungen in Mehrphysik-Simulationen hervor und legen eine Grundlage für zukünftige
Forschungen in diesem sich entwickelnden Bereich.
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Chapter 1

Introduction

1.1 Numerical simulation and methods

1.1.1 Multi-physics problems

In many scientific and engineering disciplines, physical systems are characterized by the in-
tricate interplay of multiple physical processes, such as fluid flow, thermal dynamics, elec-
tromagnetic fields, and structural mechanics. The challenge of capturing multi-physics inter-
actions stems from the fact that each physical domain often obeys its own governing equa-
tions and has distinct time and spatial scales. For example, in aerospace engineering, the
aerodynamics of an aircraft is influenced not only by fluid dynamics but also by structural
deformation and heat transfer due to varying thermal loads. In biomedical engineering, the
movement of blood through arteries depends on fluid dynamics as well as the elastic proper-
ties of vessel walls. Accurately modeling such systems is crucial for designing robust solutions
and predicting the behavior of complex devices and natural systems [30, 34, 77, 80]. Having
emerged as an essential tool in this context, Numerical multi-physics simulations are used to
validate theoretical models and hypotheses, allowing for better alignment between theoreti-
cal predictions and real-world observations.

However, even has had a profound impact on fundamental science and engineering re-
search, numerical simulation of multi-physics problems, for example, thermal-fluid-structure
interaction (TFSI), still presents significant challenges due to the simultaneous involvement
of fluid dynamics, solid deformation, and heat transfer. Specifically, in these systems, fluid
pressure induces solid vibrations, which then affect the flow field and alter the temperature
distribution within the fluid. The motion of the solid, driven by the fluid, influences both flow
and temperature dynamics. The complex, nonlinear, and time-dependent interactions, partic-
ularly with large deformations and moving fluid-solid interfaces, create significant challenges
for numerical simulations [49]. To date, two primary methods have been applied to address
TFSI problems: (i) grid-based approaches, where the domain is divided into grids and the
governing equations are solved over these discrete elements, and (ii) mesh-free methods,
which are gaining increasing attention, where particles carry physical properties and the
equations are solved within a Lagrangian framework [30].

In mesh-based methods, two main approaches are commonly discussed in the literature.
The first is the monolithic approach, such as the arbitrary Lagrangian-Eulerian (ALE) method,
where the fluid and solid equations are solved simultaneously within a unified solver. Despite
its widespread use in TFSI simulations [1, 22, 65], ALE requires a remeshing process as the
material interface evolves over time, which adds to the computational complexity and cost
[47]. The second approach is the partitioned method, where a computational solid dynamics
(CSD) solver is paired with a computational fluid dynamics (CFD) solver to independently
resolve the solid and fluid equations, with a fluid-structure interaction (FSI) coupling solver
managing the interface. One example is the immersed boundary method (IBM), where the

1
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(a) (b)

(c) (d)

Figure 1.1: Multi-physics problems: (a) surface temperature distribution of a cylindrical Li-Ion Battery [77], (b)
multiscale simulation of crack propagation in silicon [34], (c) TFSI simulation [30], (d) schematic of multiscale
blood clot modeling [80].

structure is embedded in the fluid, reducing remeshing costs during simulations [73]. How-
ever, IBM requires adjustments to the motion equations to ensure displacement continuity
and force equilibrium at the fluid-solid interface.

Figure 1.2: Particle interaction and the kernel function.

Mesh-free methods offer a highly attractive alternative for simulating not only TFSI prob-
lems but also other complex multi-physics systems, due to their inherent ability to handle
moving interfaces. One such method, Smoothed Particle Hydrodynamics (SPH), was initially
developed by Lucy [51], along with Gingold and Monaghan [25], for astrophysical simula-
tions. In SPH, the continuum is represented by a set of particles, each carrying properties
like mass, velocity, pressure, and density. These particles interact using kernel-based inter-
polation, where a smoothing kernel is employed to approximate field quantities and their
derivatives. The meshless nature of SPH allows it to effectively tackle complex geometries
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and large deformations, which are often difficult to manage with traditional grid-based ap-
proaches. Different with Eulerian methods that depend on fixed spatial grids, SPH uses a
Lagrangian framework that follows particle motion, providing natural advantages for captur-
ing advection and accurately modeling free-surface dynamics.

In more recent decades, SPH method has proven particularly useful for problems involv-
ing multiphase flows [55, 70, 72, 82], solid mechanics [43, 56, 86], fluid-structure inter-
actions [28, 35, 36, 53], and scenarios involving highly dynamic or fragmented geometries
[23, 41]. Applications such as modeling wave breaking, dam breaks, and multiphase mixing
benefit from the ability of SPH to represent free surfaces and interfaces without the need
for explicit tracking. Furthermore, SPH has been successfully employed in areas such as
expansion, impact analysis, and biofluid simulations, where the interaction of complex phys-
ical processes plays a critical role. In recent years, advancements in computational power
and algorithmic efficiency have expanded the applicability of SPH to increasingly complex
and realistic scenarios. These developments have enhanced its predictive capability, mak-
ing SPH a powerful tool for both academic research and industrial applications. As multi-
physics problems continue to demand more sophisticated modeling approaches, SPH’s ability
to seamlessly handle complex couplings and large deformations makes it a method of con-
siderable interest for modern numerical simulations. Comprehensive reviews are available in
Refs. [27, 45, 52, 85].

1.2 SPH application and modification

1.2.1 TFSI simulation

In terms of thermal and mass diffusion, SPH has been effectively applied to simulate heat
conduction [11, 71], convection [59, 79], and phase-change heat transfer problems [14].
For instance, Yang et al. [79] employed SPH to model natural convection, exploring how
variations in Prandtl and Rayleigh numbers affect flow behavior. Vishwakarma et al. [76]
used SPH to simulate heat conduction in irregular geometries, demonstrating that the method
produces temperature profiles consistent with those obtained from commercial software such
as Fluent, where grid-based approaches can encounter difficulties. Farrokhpanah [14] intro-
duced an SPH-based model that considers transient heat conduction, specifically incorporat-
ing latent heat during the solidification process. These studies highlight SPH’s capability to
accurately model temperature distributions in both fluids and solids. Hosain et al. [30] fur-
ther applied SPH to several heat transfer scenarios, such as heat conduction in water, heat
transfer in laminar flow between plates, and heat exchanger tubes. Their SPH results were
within the range of data obtained using the Finite Volume Method (FVM) and were validated
against analytical models. However, their study did not address FSI coupling effects. Long
[49] extended SPH’s application by coupling it with the edge-based smoothed finite element
method (ES-FEM) to handle TFSI problems, where ES-FEM was used for solid structures and
SPH for fluid dynamics. To manage fluid-structure interaction, a ghost particle algorithm
was employed, facilitating the resolution of fluid-structure conjugate heat transfer. While
SPH shows strong potential in heat transfer applications, its use in TFSI problems remains
somewhat under-explored in the literature. Moreover, many existing studies incorporate SPH
alongside other methods to simulate fluid-structure interactions and heat transfer, which can
add complexity and increase computational demands.

Therefore, we developed a strongly coupled SPH solver within a unified SPH framework
to explore heat transfer enhancement using vortex generators. Several algorithms were em-
ployed to ensure numerical accuracy and stability, including a Riemann-based solver for fluid
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Figure 1.3: Schematic diagram of a heat transfer channel with a probe R in the middle of the channel located
downstream.

dynamics, correction of derivatives in the total Lagrangian formulation for structural defor-
mation, a multi-time stepping approach, the position-based Verlet scheme, and a second-
order Runge-Kutta integrator for thermal simulations. To validate the SPH thermal and FSI
solver, we first simulated heat transfer in a micro-channel and a fluid-structure interaction
(FSI) case. Following this, we combined the thermal and FSI solvers to simulate a heat trans-
fer channel featuring different vortex generators, analyzing the simultaneous interaction of
heat transfer, fluid vortices, and solid deformation. The results demonstrated that the devel-
oped SPH TFSI solver excels at capturing thermal-fluid dynamics in TFSI scenarios, revealing
the intricate relationship between vortex behavior and cooling efficiency. This study not only
extends the application of the SPH method to TFSI problems but also introduces a versa-
tile multi-physics solver capable of addressing a variety of industrial heat transfer challenges.
The analysis further assesses SPH’s effectiveness in modeling heat transfer in complex geome-
tries, offering a foundation for optimizing heat transfer processes in numerous engineering
contexts.

1.2.2 multi-time scale coupling

Despite its broad applicability, SPH exhibits limitations when addressing multi-scale coupling
problems prevalent in diverse engineering domains, especially in scenarios involving rapid
solid dynamics [8]. A major issue is the significant difference in time scales between fast and
slow processes, which continues to pose difficulties for numerical simulations [37]. To handle
multi-time scale problems, implicit, explicit, or hybrid coupling schemes can be used [5, 48].
The implicit scheme is particularly advantageous as it allows for the use of larger time steps
during time integration [5, 19, 63], enabling a monolithic approach to address both fast
and slow processes simultaneously. For example, Zhao [88] utilized an implicit Newmark
scheme to simulate fluid flow through porous elastic solids, where the dynamics of the solid
and the diffusion of the fluid happen on different time scales. Similarly, Gaston [17] used
an implicit scheme to study the interactions between fluid dynamics, chemical reactions, and
structural mechanics in a reactor. However, the implicit approach requires solving equations
by inverting the stiffness matrix at every time step [18, 74], which significantly increases
computational costs and memory requirements [69].

For enhancing computational efficiency, techniques involving explicit scheme are often
preferred for addressing multi-time scale coupling problems due to their direct time integra-
tion and straightforward numerical formulation [6, 29, 64, 78]. By partitioning the mesh
into subdomains and the governing equations into subsystems, explicit-implicit and explicit-
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explicit partitions have been used to solve coupled-field dynamic problems, allowing multi-
time step integrating with staggered solution procedures [3, 4, 32]. However, in systems
displaying widely different characteristic response times, this methodology demands a large
amount of staggered steps and frequent data exchanges per time step, making it econom-
ically challenging to apply to complex three-dimensional problems [15]. Explicit schemes
have also been employed to simulate processes like material stretching and necking, where
the load is applied over a long period, but the material’s dynamic response occurs rapidly [13,
67]. Since the real-world load occurs over a long time scale, the simulation time must match
this duration. However, the small stable time step sizes required for fast dynamic processes
in explicit schemes mean that millions of time steps are often needed to simulate the full pro-
cess, posing practical difficulties. To shorten the simulation time, the loading rate is typically
increased artificially [9]. However, using an unrealistically high loading rate can introduce
limitations and inaccuracies in the results [81], highlighting the importance of carefully bal-
ancing loading rates to maintain the accuracy of simulations. We implemented a multi-time

Figure 1.4: Multi-time scale coupling simulation using implicit scheme, from Ref. [12].

stepping algorithm in SPH, specifically designed to handle slow and fast processes by assign-
ing large and small time steps, respectively. The method organizes time integration into two
loops: an outer loop for slow processes using a larger time step, and an inner loop for fast
solid dynamics with a smaller time step. However, the small time steps required for the fast
processes can lead to numerous iterations of solid stress relaxation within a single outer loop
cycle, which reduces computational efficiency. To mitigate this issue, a dynamic relaxation
method based on an implicit operator splitting scheme [89] was introduced to speed up the
convergence of the fast dynamic process toward equilibrium. To test the performance and
efficiency of the algorithm, we first conducted simulations on a manuscript torsional case and
tensile tests, covering both two-dimensional and three-dimensional examples. Following this,
the algorithm was applied to simulate fluid diffusion in porous media coupled with elastic
deformation, which is relevant to processes in chemical reactors such as the fuel cells of bat-
teries. In these systems, fluid mixtures diffuse through a Nafion membrane, a slow process
that affects battery performance by altering fluid concentration and membrane deformation.
The results indicate that the developed algorithm offers significant improvements in both
accuracy and computational efficiency compared to existing numerical methods.

1.2.3 Thin plate and shell structure

In spite of the aforementioned developments, SPH method faces challenges in simulating
thin plate and shell structures. Plate and shell structures, characterized by one dimension
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being much smaller than the other two, have been studied using meshless methods such as
the element-free Galerkin approach [33, 39, 40] and the reproducing kernel particle method
[10, 42, 61, 62, 68]. In the SPH framework, reduced-dimensional models are often em-
ployed for simulating thin structures [24, 50, 54, 87], where these structures are typically
discretized using a single layer of particles to optimize computational efficiency. However,
reduced-dimensional models are not suitable for cases that require consideration of variations
in the reduced thickness direction. For example, when dealing with a thin porous membrane
partially filled with fluid, which is common in the fuel cells of batteries [26, 58], nonuniform
fluid concentrations necessitate finer resolution in the thickness direction to accurately cap-
ture the variations in fluid pressure. Although traditional full-dimensional SPH models with
isotropic resolutions can handle such scenarios, the application of SPH to thin structures in-
volving parameter variation in the thickness direction remains limited. This is primarily due
to the significant computational cost involved, driving the need for the use of anisotropic
resolutions.

Figure 1.5: Schematic view of a thin structure.

Considering anisotropic particle resolution in SPH, particle spacing in the larger dimen-
sion of thin structures is significantly greater than in the thickness direction. With this
type of anisotropic discretization, the use of an isotropic smoothing kernel, which defines
a spherical domain of influence in SPH, becomes inadequate. To address this, the adap-
tive smoothed particle hydrodynamics (ASPH) method, a variant of SPH that incorporates
anisotropic smoothing kernels, is introduced as a more suitable approach. The idea of using
anisotropic smoothing kernels in SPH was first proposed by Gingold and Bicknell [7] for the
study of cosmological dynamics. Later, Owen et al. [60] enhanced the ASPH method by intro-
ducing a mathematical formulation that replaced the scalar smoothing length—responsible
for defining spherical kernels—with a smoothing tensor, allowing for the creation of ellip-
soidal kernels through localized linear coordinate transformations. M. Liu and G. Liu [44]
applied the ASPH approach to simulate micro-channel flows characterized by a high length-
to-width ratio, where the adaptive kernel aligned with the geometry, reducing computational
time. ASPH, with its more generalized elliptical influence domain, has also been used to sim-
ulate high-strain Lagrangian solid dynamics, particularly where anisotropic volume changes
are observed [46]. In addition, Fu et al. [16] introduced the use of ellipsoidal kernels in
ASPH, which enabled the particle distribution to adapt to anisotropic target functions. How-
ever, to the best of my knowledge, the application of ASPH for modeling thin structures has
yet to be explored in the literature.

We expanded the application of the ASPH method to simulate thin structures by incorpo-
rating anisotropic resolutions. In this approach, the smoothing kernel is defined in conjunc-
tion with a linear transformation tensor, resulting in the particle’s support domain forming
an ellipsoidal region instead of a spherical one. Additionally, the correction matrix used
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for ensuring first-order consistency in the kernel gradient was adjusted to account for the
anisotropic kernel within the total Lagrangian framework of ASPH.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter 2 summaries the theories and
governing equations for fluid dynamics, diffusion dynamics, solid mechanics including the
elastic and nonlinear hardening plastic solid characteristics and fluid structure interaction in
porous media. The corresponding SPH discretization of these governing equations and ASPH
theory for thin plate and shell are described in Chapter 3. Chapter 4 presents a detailed
exposition of the proposed multi-time stepping algorithm, incorporating dynamic relaxation.
Finally, Chapter 5 presents concluding remarks and recommendations for future work are
given.





Chapter 2

Physical models and governing equations

2.1 Solid equations

2.1.1 Motion and deformation

In this section, we briefly outline the essential physical principles of solid deformation, as well
as the relevant notations and symbols used in the total Lagrangian framework. The analysis
focuses on a solid body, denoted as B, which occupies two regions: R0 and R, corresponding
to the body’s configuration at initial time t0 (where t = 0) and at time t, respectively. In the
initial configuration R0, the position of a material point is expressed as X ∈ R0, while in the
current configuration, it is denoted as x ∈ R. The motion of the solid body is described by
an invertible mapping, φ, which transforms the material point X to its position in the current
configuration, x = φ(X, t), as illustrated in Figure 2.1. The Lagrangian velocity of a material
point is thus defined by v(X, t) = dφ(X,t)

d t . The deformation gradient, denoted as F, measures
the extent of deformation from the reference configuration to the deformed configuration
and is derived from the displacement vector u= x−X according to the equation:

F=
dx
dX
=∇0u+ I, (2.1)

where∇0 represents the gradient operator in the reference configuration, and I is the identity
matrix.

Figure 2.1: Finite deformation process on a body B

Derived from the fundamental conservation laws of mass and momentum, within the
Lagrangian framework, the governing equations for solid are expressed as follows

¨

ρ = ρ0
1
J

ρ0
dv
d t =∇

0 · PT .
(2.2)

9
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where ρ represents the density in the current configuration R, and ρ0 is the density in the
initial configuration R0. The Jacobian determinant J = det(F) denotes the local volume
change, where J > 1 reflects expansion and J < 1 represents contraction. The term v indicates
velocity, while T represents the matrix transposition. The first Piola-Kirchhoff stress tensor,
P, which relates to the stress in the reference configuration, can be calculated as:

P= FS, (2.3)

where S is the second Piola-Kirchhoff stress tensor. For isotropic, linear elastic materials, the
second Piola-Kirchhoff stress tensor S can be given by

S = λ tr (E) I+ 2µE, (2.4)

where E is the Green-Lagrangian strain, determined by

E =
1
2

�

FFT − I
�

. (2.5)

Here, λ and µ are the Lamé parameters. The key material properties include Young’s mod-
ulus E, Poisson’s ratio ν, shear modulus G = µ, and bulk modulus K = λ + 2µ

3 , which are
interrelated through the following equations

E = 2G (1+ ν) = 3K (1− 2ν) , (2.6)

2.2 Fluid and diffusion equations

In thermal fluid-structure interaction (TFSI) problems, the thermal fluid is considered as
incompressible and viscous. The governing equations consist of the mass conservation and
momentum balance equations

¨dρ
dt = −ρ∇ · v
dv
dt =

1
ρ

�

−∇p+η∇2v
�

+ FS:p + FS:v , (2.7)

where ρ, v, p, and η represent the fluid density, velocity, pressure, and dynamic viscosity,
respectively. The terms FS and FS denote the forces exerted by the solid on the fluid due to
pressure and viscosity. Under the weakly-compressible assumption, a linear equation of state
is employed to approximate the pressure based on density variations, allowing us to simulate
incompressible flow, as shown below [57]:

p = c2(ρ −ρ0), (2.8)

where c is the artificial speed of sound, determined by the specific case, and ρ0 is the refer-
ence density [57]. For the solid part of the TFSI problem, an isotropic and linearly elastic
material model is adopted for the vortex generator. Therefore, the solid equations discussed
earlier are applicable here as well. In terms of heat transfer, the governing equation follows
Fourier’s law, describing the rate of temperature change. To simplify the analysis and main-
tain focus on the core aspects, we neglect any external heat sources. Consequently, the heat
transfer equations are formulated as follows

dT
dt
=∇ · (

k
ρcp
∇T ), (2.9)

where T is the temperature, k the thermal conductivity coefficient and cp the specific heat
capacity.
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2.3 Fluid transportation coupling porous media deformation

To capture the coupled behavior of fluid transport within porous media alongside the elastic
deformation of the porous membrane, a fluid-structure interaction (FSI) model is proposed.
This model considers the concurrent fluid flow through the porous solid material, leading
to increased fluid pressure and the corresponding deformation of the solid structure. In this

solid void liquid
macroscopic solid

Figure 2.2: Partially saturated porous medium.

model, the heterogeneous material is treated as a continuous solid medium that contains uni-
formly distributed small voids, characterized by a homogeneous porosity denoted as c. When
a fluid interacts with this medium, it infiltrates these small pores, leading to the formation of
a mixture comprising both solid and fluid components, as depicted in Figure 2.2. To stream-
line this model, we employ the approach suggested by Zhao [88] to establish a momentum
equation for the mixture. In this mixture model, state variables such as solid density ρs,
locally fluid density ρl , solid velocity vs, and fluid saturation ec are defined, allowing the fluid
velocity to be computed in relation to the solid velocity.

2.3.1 Mass and momentum equations

In the context of a representative volume element dV , the macroscopic porosity c is defined
as the ratio of the total pore volume dV p to dV , represented mathematically as c = dV p

dV . Note
that the condition 0 < c < 1 is applicable in all instances. When a porous solid contains a
partial saturation of fluid, the level of fluid saturation ec can be expressed as

ec =
dV l

dV
, (2.10)

where dV l signifies the volume of fluid present in the representative element dV . It follows
that ec will always be less than or equal to the maximum possible saturation c, i.e., ec ≤ c. The
locally effective fluid density ρl , defined as the mass of the fluid per unit volume, varies with
the degree of fluid saturation and can be expressed as

ρl =
dml

dV
=

dml

dV l

dV l

dV
= ρL

ec, (2.11)

where dml denotes the mass of the fluid contained within dV , ρL the fluid density, which
is assumed to remain constant for incompressible fluids. For a porous solid that is partially
saturated with fluid, the total linear momentum M in the region R can be expressed as the
sum of the momentum from the fluid and the solid, represented by the equation:

M= ρv= ρlvl +ρsvs, (2.12)
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where ρ and v refer to the total density and velocity respectively, vl the velocity of fluid, ρs

and vs the density and velocity of dry porous solid. Given the disparity between vl and vs, the
fluid flux q across the boundary ∂ V of the element can then be described as

q= ρl(vl − vs). (2.13)

It is clear that when there is no fluid movement through the boundary, the fluid flux satisfies
q= 0, ensuring that the fluid mass within a given element remains constant. Fluid mass and
momentum transfer between the microscopic solid components occur as fluid moves from
areas with higher saturation levels to those with lower saturation. Consequently, within a
mixture element dV , the linear momentum balance indicates that the change in momentum
M is influenced by two main factors: the stress applied to the element and the fluid flux
of linear momentum represented by vl ⊗ q across the boundary ∂ V . Here, the symbol ⊗
denotes the outer product of two vectors or tensors. Thus, the conservation of the total linear
momentum for the mixture can be formulated as follows:

dM
d t
=∇ ·σ −∇ ·

�

vl ⊗ q
�

, (2.14)

where σ denotes the Cauchy stress acting on the solid within the mixture. The stress σ is
composed of the Cauchy stress σs due to the deformation of the solid and the pressure stress
σl attributed to the fluid phase, as discussed in the following section 2.3.3.

2.3.2 Fick’s law

In a partially saturated solid, the variations in fluid saturation drive the movement of fluid
from regions with higher fractions to those with lower fractions. The resulting fluid flux
conforms to Fick’s law, expressed as:

q= −Dρl∇ec, (2.15)

which indicates that the fluid flux is proportional to the diffusivity D, the effective fluid
density ρl , and the gradient of fluid saturation ec. Consequently, the time derivative of the
fluid mass within the volume element dV can be related to the fluid flux q across the boundary
∂ V , represented as:

dρl

d t
= −∇ · q. (2.16)

2.3.3 Effective stress on solid

Building on the work of [2, 20, 21, 38], the total stress acting on the solid is the combination
of the Cauchy stress σs due to deformation and the pressure stress σl arising from the fluid
phase, expressed as:

σ = σs +σl = σs − plI. (2.17)

Here, pl represents the fluid pressure. For hyper-elastic materials, the constitutive equation
for the solid component is given by:

σs = 2µe+λtr(e), (2.18)
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where the Eulerian-Almansi finite strain tensor e can be computed as:

e=
1
2
(I− FT F). (2.19)

The Lamé parameter λ can be derived from the shear modulus µ and the bulk modulus K as
follows:

λ= K −
2µ
3

. (2.20)

The fluid pressure is determined solely by the level of fluid saturation within the porous
solid, represented as a function pl = pl(ec), which can be expressed as:

pl = C(ec −ec0), (2.21)

where C is a material constant and ec0 is the initial saturation. Further details can be found in
[2].





Chapter 3

Methodology

3.1 Theory and basics of SPH

As a Lagrangian, SPH tracks the motion of individual particles, meaning it represents compu-
tation domain as a collection of particles that carry properties such as mass, velocity, density,
and internal energy. Each particle interacts with its neighbors to perform simulations. The
fundamental concept of SPH involves the use of a smoothing kernel, which is a continuous
function that defines the influence of neighboring particles. The kernel function W , which
typically has the following properties: compact Support, normalization and symmetry, inte-
grates the contributions of neighboring particles to compute physical properties. A continuum
property function f (r) at particle i can be approximated by averaging over the neighboring
particles using the kernel function, presented as

f (r) =
∑

j

Vj f jW
�

ri j , h
�

=
∑

j

m j

ρ j
f jW (ri j , h), (3.1)

where Vj is the particle volume of particle j, ri j = ri − r j the distance between particles i, j,
and m j and ρ j are the particle mass and density respectively. Correspondingly, the particle
approximation for the derivative of the function f (r) at particle i is expressed as

∇ f (r)≈
∫

Ω

∇ f (r)W (ri − r, h)dV

= −
∫

Ω

f (r)∇W (ri − r, h)dV ≈ −
∑

j

Vj f j∇iWi j .
(3.2)

Here, ∇iWi j = ∇iW (ri j , h) = ei j
∂Wi j

∂ ri j
represents the gradient of the SPH kernel function with

respect to the direction of the distance vector ei j =
ri j
ri j

. Referring to [84], the strong form
of Eq. (3.2) is applied when defining the local structure of a field. In the strong form, the
gradient ∇ f is computed by taking the difference between the values of f at particles i and j,
multiplied by the kernel gradient. Involving the explicit evaluation of the gradient of f based
on the particle positions, it can be calculated as

∇ fi = fi∇1+∇ fi ≈
∑

j

Vj∇iWi j fi j , (3.3)

Furthermore, to provide a smoother approximation of the gradient, which can be beneficial
in simulations with irregular particle distributions or large variations in particle properties,
the weak form approximation of Eq. (3.2) is applied as

∇ fi =∇ fi − fi∇1≈ −2
∑

j

Vj
efi j∇iWi j , (3.4)

15
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where efi j =
fi+ f j

2 . This form is based on the weighted averaging of the field gradient over
the particle’s neighbors using the kernel function. In practice, it is often derived from the
principle of minimizing errors in the approximation of the field’s derivatives.

3.2 SPH discretization for fluids and solids

By utilizing Eqs. (3.3) and (3.4), the governing equations for the fluid can be discretized
following the approach described in [31]:

(dρi
dt = 2ρi

∑

j
m j
ρ j
(vi −evi j)∇iWi j

dvi
dt = −

∑

j m j
pi+p j
ρiρ j
∇iWi j + 2

∑

j m j
η
ρiρ j

vi j
ri j

∂Wi j

∂ ri j
+ FS:p

i + FS:v
i

, (3.5)

where evi j =
vi+v j

2 is the average velocity.
To discretize solid mechanics, the undeformed initial configuration is treated as the refer-

ence state. Firstly, one has the gradient of the kernel function ∇0
aWab as

∇0
aWab =

∂W
�

|r0
ab|, h

�

∂ |r0
ab|

e0
ab. (3.6)

To ensure first-order consistency, a correction matrix B0 is employed, as proposed in [66, 75]:

B0
a =

�

∑

b

Vb

�

r0
b − r0

a

�

⊗∇0
aWab

�−1

, (3.7)

where indices a, b denotes solid particles. As previously stated, using the superscript (•)0, the
correction matrix B0

a is computed once in the initial reference configuration. The momentum
conservation equation, as expressed in Eq. (2.2), can then be approximated in its strong form
as follows:

dva

dt
=

2
ma

∑

b

V 0
a V 0

b P̃ab∇0
aWab + FF :p

a + FF :v
a , (3.8)

where P̃ab is the averaged first Piola-Kirchhoff stress of the particle pair (a, b) defined as

P̃ab =
1
2

�

PaB0
a + PbB0

b

�

. (3.9)

The first Piola-Kirchhoff stress tensor is influenced by the deformation gradient tensor F,
which is derived from the displacement field as follows:

Fa =

�

∑

b

Vb (ub − ua)⊗∇0
aWab

�

B0
a + I. (3.10)

3.3 Discretization of fluid-structure and thermal coupling

To handle the fluid-structure interaction, the flexible structure is treated as a moving bound-
ary for the fluid, with a no-slip boundary condition applied. In this scenario, the forces
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exchanged between the fluid and the solid are resolved using a strong two-way coupling ap-
proach. At the fluid-structure interface, the displacement, velocity, and forces are assumed to
be consistent. To ensure this, the density-weighted inter-particle averaged pressure is used

pia =
piρ

d
a + pd

aρi

ρi +ρd
a

(3.11)

when computing the pressure force between a fluid-solid particle pair (i, a). Following the
method of Zhang et al. [83], the pressure and viscous forces exerted on a fluid particle i are
computed as:

FS:p
i = −2

∑

a

ViVapia∇iW (ria) (3.12)

and

FS:v
i = 2

∑

a

ηViVa
vi − vd

a

ria

∂W (ria)
∂ ria

, (3.13)

respectively. The imaginary pressure pd
a and velocity vd

a are determined using the structure’s
surface normal vector na as follows:

¨

pd
a = pi +ρimax(0, (g− dva

d t ) · na)(ria · na)
vd

a = 2vi − va
. (3.14)

Momentum conservation between fluid particles i and solid particle a is achieved along the
centerline of the interacting particle pair (i, a), due to the anti-symmetric nature ∇iW (ria) =
−∇aW (rai) and the symmetric formulation of the inter-particle averaged pressure. The pres-
sure and viscous forces in Eq. (3.8) are obtained by applying the relationships FF :p

a = −FS:p
i

and FF :v
a = −FS:v

i .
The heat diffusion in the SPH discretized form of Eq. (2.9) is expressed as:

dTi

dt
=

1
ρcp
(
∑

j

m j

ρ j

4kik j

ki + k j

Ti j

ri j

∂Wi j

∂ ri j
+
∑

a

ma

ρa

4kika

ki + ka

Tia

ria

∂Wia

∂ ria
), (3.15)

where Ti only refers to fluid particles. The subscript j and a refer to contributions from
neighboring fluid and solid particles within the support domain of particle i. The temperature
differences are defined as Ti j = Ti − T j and Tia = Ti − Ta.

3.4 SPH discretization for fluid-structure interaction

In the discretization process of the fluid-structure interaction model, each particle is associ-
ated with its position xn = φ(X, tn) at time tn, along with an initial representative volume V 0

that divides the initial domain of the macroscopic solid. The deformation gradient Fn for the
solid phase is recorded to facilitate the update of the solid’s current volume Vn and its density
ρs

n. Furthermore, the fluid properties such as mass ml
n, saturation level ean, and density-

weighted fluid velocity relative to the solid qn are also tracked. The fluid mass equation of
particle i, expressed in Eq. (2.16), is discretized as

dml
i

dt
= 2Vi

∑

j

m j

ρ j
(qi − q j)∇̃iWi j . (3.16)



18 3 Methodology

With the updated fluid mass, ρl is obtained subsequently through (2.11). Accordingly, based
on Eq. (2.11) and Eq. (2.15), the fluid saturation ea and the fluid flux q is updated in the
particle form as

qi = −Kρl Vi

∑

j

m j

ρ j
(eci −ec j)∇̃iWi j . (3.17)

With the fluid flux and stress calculated, we can derive discrete formulations for the mo-
mentum balance equation, as represented in Eq. (2.14), which can be expressed as follows:

dMi

d t
= 2

∑

j

Vj(σi +σ j)∇̃iWi j − 2
∑

j

Vj(v
l
i ⊗ qi + vl

j ⊗ q j)∇̃iWi j , (3.18)

where σi and σ j are the stress tensors of particles i and j. We then determine the updated
solid velocity vs by employing the definition of total momentum provided in Eq. (2.12). In
this formulation, the total density of the mixture is given by the sum of the solid and fluid
densities ρ = ρs +ρl , expressed as

vs =
M− q
ρ

=
M− q
ρs +ρl

. (3.19)

Subsequently, the fluid velocity vl is obtained by applying Eq. (2.13) as

vl = vs −
q
ρl

. (3.20)

3.5 ASPH theory

As an extension of the standard SPH, adaptive Smoothed Particle Hydrodynamics (ASPH)
introduced spatial adaptivity in the smoothing length, h, used to define the size of a particle’s
interaction region. In the standard SPH method, the smoothing length remains constant for
each particle, which can lead to inaccuracies when dealing with problems that involve large
variations in density, pressure, or velocity fields. ASPH addresses these limitations by ad-
justing the smoothing length ans kernel functions to simulate the problems with anisotropic
particle volume changes.

3.5.1 ASPH principles

In reference to [60], the position vector r used in standard isotropic SPH is extended to a
normalized form η in ASPH by applying a linear transformation tensor G. This transformation
is defined as η= Gr, which alters the kernel function representation to W (η) =W (Gr). Under
this framework, the ASPH kernel value is computed as W ′(Gr) while the kernel maintains the
normalization condition:

1=

∫

W (η)dη=

∫

W ′(Gr)dr=

∫

||G||W (η)dr. (3.21)

A discrete approximation of the continuous field f based on the contributions from neighbor-
ing particles can be written as

fi =
∑

j

||G||Vj f jW
�

ηi −η j

�

=
∑

j

||G||
m j

ρ j
f jW (ηi −η j), (3.22)
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where ηi j = ηi −η j is the normalized particle distance vector pointing from particle j to i.
Furthermore, the gradient of the kernel function ∇W (η) can be represented as

∇W (η) =∇W ′(Gr) =
∂W (Gr)
∂ r

=
∂η

∂ r
∂W
∂η

= G
η

η

∂W
∂η

. (3.23)

This formulation takes into account the anisotropic scaling applied to the kernel, where the
transformation matrix G relates the particle positions to the normalized vector within the
ASPH framework. Consequently, a weak form of the derivative of a variable field f at particle
i can be written as

∇ fi =∇ fi − fi∇1≈ −2
∑

j

||G||Vj
efi j∇iWi j , (3.24)

where efi j = ( fi + f j)/2 is the inter-particle average value.
Defined as a linear transformation that converts from real spatial coordinates r to nor-

malized coordinates η, the matrix G is influenced by both geometric scaling and rotational
transformations. This includes smoothing lengths h in different directions and the rotation
angle θ between the axes and the actual reference frame. Further details can be found in the
work of Owen et al. [60]. In the case of two dimensions, G is given by

G=

�

h−1
1 cos2 θ + h−1

2 sin2 θ (h−1
1 − h−1

2 ) cosθ sinθ
(h−1

1 − h−1
2 ) cosθ sinθ h−1

1 sin2 θ + h−1
2 cos2 θ

�

. (3.25)

where h1 represents the smoothing length along the semimajor axis and h2 along the semimi-
nor axis of an ellipse, and θ is the angle of rotation of the semimajor axis relative to the real
reference frame. Detailed information can be found in the reference paper [60].

(a)

(b) SPH isotropic resolution

(c)

Figure 3.1: (a)Schematic view of a thin structure, (b) SPH isotropic resolution, (c) elliptical smoothing kernel.

For a thin structure with a large aspect ratio between its length and thickness, R= l/d, as
shown in Figure 3.1a, normally an isotropic SPH discretization with a scalar smoothing length
h is applied, as illustrated in Figure 3.1b, the yellow particles represent the support particles
of the red particle. In order to ensure numerical accuracy and computational stability, a
minimum number of neighboring particles is required in each direction. As the aspect ratio



20 3 Methodology

R increases, this leads to a higher number of particles, which in turn raises computational
costs. However, when using the ASPH method with anisotropic resolution, the traditional
spherical support domain is replaced with an elliptical one in two-dimensional simulations.
This adjustment allows for different smoothing lengths to be applied along each axis, as
shown in Figure 3.1c, which reduces the number of particles and significantly decreases
computational demands.

3.5.2 Kernel functions in ASPH

In this thesis, the Wenland kernel function is utilized, along with its first derivative. These
kernel formations can be reformulated to align with the anisotropic ellipsoidal smoothing
kernel as follows:

W v−D(η) = Av−D

�

(1− η
2 )

4(1+ 2η), 0≤ η≤ 2
0, η > 2

(3.26)

∇W v−D(η) = Av−DG
η

η

�

−5η(1− η
2 )

3, 0≤ η≤ 2
0, η > 2

(3.27)

∂W v−D(η)
∂ η

= Av−D||
Gη
η
||
�

−5η(1− η
2 )

3, 0≤ η≤ 2
0, η > 2

(3.28)

where v means the dimension and

A1−D =
3
4
||G||, A2−D =

7
4π
||G||, A3−D =

21
16π
||G||. (3.29)

Benefiting from the tensor G, the displacement between two particles is mapped to the gen-
eralized position vector η, the norm of which is compared with the cutoff radius to calculate
the kernel function and kernel gradient value. Using normalized position vector η rather
than r/h in the discretization of quantities, the expression of dynamic equations in SPH and
ASPH are identical.

3.5.3 Correction of the derivatives

For simulating solid mechanics, the first-order consistency is needed to be satisfied. There-
fore, a correction tensor B is introduced to the initial undeformed configuration within the
total Lagrangian framework, as described in [66, 75]. This is expressed as:

F0
i =

 

∑

j

Vj

�

r0
j − r0

i

�

⊗∇0
i Wi j

!

B0
i = I, (3.30)

Equivalently, we have:

I=
∑

j

Vj

�

r0
j − r0

i

�

⊗ (∇0T

i Wi jB
0
i ) =

∑

j

Vj

�

r0
j − r0

i

�

⊗ (B0T

i ∇
0
i Wi j)

T . (3.31)

Since the correction with respect to the initial material coordinates is realized by applying B
to the gradient symbol as

∇̃0 = B0T

i ∇
0, (3.32)
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Using Eq. (3.30) and the tensor G, the correction matrix B0 for particle i in ASPH is computed
as:

B0
i =

 

∑

j

Vj

�

r0
j − r0

i

�

⊗∇0
i Wi j

!−1

=

 

∑

j

Vj

�

r0
j − r0

i

�

⊗ (Gi
ηi j

ηi j

∂W
∂ ηi j

)

!−1

. (3.33)

In the total Lagrangian formulation, the neighborhood of particle i is defined based on the ini-
tial configuration, and this set of neighbors remains fixed throughout the simulation. Clearly,
B is computed once under the initial reference configuration.

3.6 Multi-time step algorithm

In multi-time scale coupling involving solid dynamic problems, different time scales coex-
ist. A multi-time step algorithm using an explicit scheme to accommodate various time scale
processes is developed. Considering the fluid transportation coupling with porous solid defor-
mation, the slow processes, fluid transport, are integrated with larger time step sizes, while
the fast solid dynamics with smaller ones. With small time step size, the solid dynamics cou-
pling with a damping scheme evolves to a quasi-equilibrium state. As the explicit integration
operator is conditionally stable, a time step criterion∆ts is required in solid simulation, given
by

∆ts = 0.6 min

 

h
cs + |vs|max

,

√

√

√

h

|dvs
dt |max

!

, (3.34)

where the artificial sound speed of a solid structure is denoted as cs =
p

K/ρs. The time step
for internal fluid transport evolution is allowed to be much larger. According to the Fick’s
law, the maximum time step allowed for explicit time stepping of diffusion is characterized
as [11]

∆td = 0.5
h2

D
, (3.35)

stating that the time step is mainly limited by the parameter D and the kernel smoothing
length h.

The multi-time step algorithm consists of two loops, an outer loop governing the overall
dynamic progression through incremental execution of transportation relaxation denoted by
g, and an inner loop describing the evolution of solid dynamics with k representing each
stress relaxation step, as shown in fig. 3.2. Within one transport time step ∆td , the time
integration of structure should be computed as k0 = [

∆td
∆ts
]+1 times. To optimize computation

time, the inner loop is executed with a damping term to dissipate the kinetic energy and
accelerate the relaxation of the solid transient response. Referring to Zhu’s work [89], a
viscous damping term fv is added to the solid momentum equation as

dv
d t
= fs + g+ fv , (3.36)

where the added damping term fv can be discreized as

fv
a =

η

ρa
∇2

av=
2η
ma

∑

a

V 0
a V 0

b (va − vb)∇0
aWab, (3.37)
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Figure 3.2: Flowchart of the iterative scheme in multi-time step algorithm.

where η is the dynamic viscosity, and for structures η is determined by the material properties
and the physical shape of the solid body. Solid governing equations with additional damping
are solved a small number of times k until the kinetic energy is reduced to a sufficiently
small value Ek, marking the achievement of the equilibrium state of the system. After the
equilibrium state of the solid deformation is achieved in the inner steps, a new outer step
initiates and this iterative process is repeated until the conclusion of the designated physical
computation time.



Chapter 4

Summaries of publications

In this chapter, the relevant publications of this thesis are briefly summarized

4.1 An integrative SPH method for heat transfer problems involving fluid-
structure interaction

Xiaojing Tang, Chi Zhang , Oskar Haidn, and Xiangyu Hu

4.1.1 Summary of the publication

Thermal-fluid-structure interaction (TFSI) problems usually pose numerical complications in
grid-based methods, which require remeshing scheme as the material interface changes. In
this paper, an integrated smoothed particle hydrodynamics (SPH) solver with strong coupling
scheme at the material interface is introduced to investigate the TFSI problem. Some algo-
rithms including the Riemann-based solver for fluid equations, correction of the derivatives
for structure deformation and multi-time stepping algorithm, position-based Verlet scheme,
and the second-order Runge-Kutta integrator scheme for thermal simulation are adopted to
guarantee numerical accuracy and stability.

In the present work, heat transfer process occurs between the solid wall and fluid. The
SPH discretized form of the heat diffusion of Eq. (2.9) can be represented as

dTi

dt
=

1
ρcp
(
∑

j

m j

ρ j

4kik j

ki + k j

Ti j

ri j

∂Wi j

∂ ri j
+
∑

a

ma

ρa

4kika

ki + ka

Tia

ria

∂Wia

∂ ria
), (4.1)

where Ti only refers to fluid particles. The subscript j and a respectively indicates contribu-
tion from neighboring fluid and solid particles within the compact support of particle i. Also
Ti j = Ti − T j and Tia = Ti − Ta are the temperature difference.

In the simulation, we coupled heat transfer and FSI solvers together to simulate a heat
transfer channel with different vortex generators and observe how heat transfer, fluid vor-
tex, and solid deformation occur simultaneously. The stable temperature contours in four
different cases are shown in fig. 4.1. The results show that the present SPH TFSI solver has a
unique advantage in capturing the thermal fluid dynamics in TFSI problems, and can clearly
explain the inner relation between vortex regime and cooling performance. The aim of this
work is not only to extend the usage of the SPH method to TFSI applications, but also to
provide a more flexible multi-physics solver which exhibits the possibility to address a wide
range of industrial heat transfer problems.
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Figure 4.1: Stable temperature contours in four different cases.

4.1.2 Individual contributions of the candidate

This article was published in the international peer-reviewed journal Acta Mechanica Sinica. I
contributed to this work by developing the method and writing the corresponding computer
code for its implementation. I performed the simulations, analyzed the results, and authored
the manuscript for publication.
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4.2 Simulating plate and shell structures with anisotropic resolution us-
ing adaptive smoothed particle hydrodynamics

Xiaojing Tang, Dong Wu, Zhentong Wang, Oskar Haidn, Xiangyu Hu

4.2.1 Summary of the publication

To capture variations in the thickness direction of thin plate and shell structures, which the
reduced-dimensional models fail to do, while simultaneously mitigating computational costs,
an anisotropic full-dimensional model, integrated with an adaptive smoothed particle hydro-
dynamics method (ASPH), is developed.

The smoothing kernel is defined coupled with a linear transformation tensor, and thus
the support domain of one particle turns out to be an ellipsoid area, rather than a spherical
domain. Following Ref. [60], the position vector r in the traditional isotropic SPH, is gen-
eralized to a normalized form η in ASPH through a linear coordinate transformation tensor
G. This transformation is expressed as η = Gr, resulting in the representation of the kernel
function W (η) = W (Gr). The normalization undergoes a change: SPH: η = r/h → ASPH:
η= Gr. With the gradient of the kernel function ∇W (η) being expressed as

∇W (η) =∇W ′(Gr) =
∂W (Gr)
∂ r

=
∂η

∂ r
∂W
∂η

= G
η

η

∂W
∂η

, (4.2)

Furthermore, the correction matrix applied to the kernel gradient for first-order consistency
is modified accordingly by integrating the nonisotropic kernel within the total Lagrangian
framework in ASPH.

Numerical examples, including both two and three-dimensional cases are presented to
comprehensively examine the ASPH method. Considering a thin flat plate with different
anisotropic ratios, the simulated deformation evolution is illustrated in fig. 4.2. The nondi-
mensionalized deflection variation of the central point of the plate against time for all sim-
ulation condition is depicted in fig. 4.3. It is observed that the position of the center point
remains consistent across all anisotropic ratios, converging to the SPH solution, but saving a
great amount of time demonstrating both accuracy and high efficiency.

(a) SPH method (b) ASPH method with anisotropic ratio = 2.0

(c) ASPH method with anisotropic ratio = 4.0 (d) ASPH method with anisotropic ratio = 8.0

Figure 4.2: 2D thin plate: the deformation at the final time instant colored by von Mises strain from SPH and
ASPH with different anisotropic ratios.
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Figure 4.3: 2D thin plate: the nondimensionalized y position of the very center point of the beam, from SPH and
ASPH with different anisotropic ratios.

4.2.2 Individual contributions of the candidate

This article was published in the international peer-reviewed journal Engineering Analysis
with Boundary Elements. My contribution to this work involved conceptualization, develop-
ing the methodology writing the corresponding computer code for its implementation, and
performing the investigation. I handled data curation, conducted simulations, analyzed the
results, and was responsible for the original manuscript for publication.
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4.3 An explicit multi-time stepping algorithm for multi-time scale cou-
pling problems in SPH

Xiaojing Tang , Dong Wu, Zhentong Wang, Oskar Haidn, Xiangyu Hu

4.3.1 Summary of the publication

Simulating physical problems with multi-time scale coupling presents a considerable chal-
lenge due to the concurrent solution of processes with different time scales. To address this
inherent conflict in the muti-time scale coupling problems, we propose an explicit multi-time
step algorithm within the framework of smoothed particle hydrodynamics (SPH), coupled
with a solid dynamic relaxation scheme, to quickly achieve equilibrium state in the compar-
atively fast solid response process. Two loops, specifically an outer and an inner loop, are
organized to accommodate these respective time steps for effective time integration. Specif-
ically, the slow process is integrated with a large time step in the outer loop, while the fast
solid dynamic process coupling with a dynamic relaxation with a considerably smaller time
step in the inner loop.

Without compromising the momentum conservation of the system, a viscous damping
term fv is added to the solid momentum equation as

dv
d t
= fs + g+ fv , (4.3)

where fs and g represents the acceleration due to the surface and body forces.
This algorithm is applied to simulate the evolution of fluid diffusion in porous media

coupled with elastic deformation. The deformation colored by water saturation at different
time instants is shown in fig. 4.4. The obtained results, as plotted in fig. 4.5, demonstrate
that the proposed algorithm outperforms previous numerical methods and experiments in
terms of both accuracy and efficiency.

(a) t = 450s, top side view (b) t = 1500s, top side view

Figure 4.4: 3D fluid-structure interaction: the deformation colored by water saturation at different time instants.

4.3.2 Individual contributions of the candidate

This article was accepted in the international peer-reviewed journal Communications in Com-
putational Physics. My contribution to this work included conceptualization, developing the
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Figure 4.5: 3D fluid-structure interaction: bending amplitude of the center point compared with experimental data
and results from other numerical models.

methodology development, coding for implementation, and conducting the investigation. I
also managed data curation, performed simulations, analyzed the results, and prepared the
original manuscript for publication.



Chapter 5

Conclusions

This thesis explores the broader application potential of Smoothed Particle Hydrodynamics
(SPH) in addressing multi-physics problems, solid mechanics, and multi-time scale coupling
processes. By refining the SPH method, developing robust frameworks and innovative al-
gorithms, this work demonstrates the versatility and effectiveness of SPH in simulating cou-
pled thermal-fluid-structure interaction (TFSI), multi-scale processes, and the behavior of
anisotropic materials like plates and shells.

The first part of the thesis introduced a new SPH-based methodology to simulate TFSI
problems effectively, incorporating strong coupling at material interfaces and advanced tech-
niques like kernel modification and multi time stepping. The solver is initially validated
using two benchmark tests: one for heat transfer in a micro-channel and another for a fluid-
structure interaction (FSI) case. Once validated, the study investigates the enhancement
of heat transfer caused by vortices generated by various immersed structures. Leveraging
the distinct capability of capturing the moving interface in thermal-fluid-structure interac-
tions (TFSI), the solver effectively demonstrates the connection between vortex behavior and
thermal dynamics. The findings indicate that heat transfer enhancement is significantly in-
fluenced by the interaction between vortices and the thermal boundary layer. This method’s
success in analyzing heat transfer and vortex interactions underscores its applicability to
complex industrial scenarios.

To simulate plate and shell structures with variations in thickness, we utilized an Adap-
tive Smoothed Particle Hydrodynamics (ASPH) method that incorporates an anisotropic el-
lipsoidal smoothing kernel along with an anisotropic resolution scheme. This approach has
allowed us to effectively model thin structures with large aspect ratios, especially those that
necessitate adequate resolution in the thickness direction to capture variations that reduced-
dimensional models cannot address. By leveraging fewer particles while achieving first-order
consistency, the proposed ASPH method demonstrates both efficiency and comparable accu-
racy to conventional full-dimensional SPH methods in various static and dynamic contexts.

Lastly, the thesis tackled the intricacies of multi-time scale coupling by proposing an ex-
plicit multi-time step algorithm within the SPH framework. This algorithm, combined with a
dynamic relaxation scheme, enabled efficient simulations of processes that evolve at different
time scales, significantly reducing computational time without compromising accuracy. This
approach enables the early termination of the solid stress relaxation inner loop, preventing
unnecessary calculations. The performance of the algorithm is evaluated through three types
of multi-time coupling problems: a manufactured torsional case, nonlinear hardening bar
stretching, and fluid diffusion within porous media interacting with solid deformation. The
results indicate both high accuracy and a considerable decrease in computational time.

The findings indicate that this integrative SPH approach effectively models intricate in-
dustrial scenarios where conventional mesh-based techniques become less applicable. Future
work will focus on further exploration and enhancement of both SPH and ASPH methods for
a wider range of applications.
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Here, the peer-reviewed journal publications of the present work are attached.
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Thermal-fluid-structure interaction (TFSI) problems usually pose numerical complications in grid-based methods because of the
coexistence of fluid dynamics, solid kinematics and heat transfer. In this paper, an integrated smoothed particle hydrodynamics
(SPH) solver with strong coupling scheme at the material interface is introduced to investigate the TFSI problem. Some efficient
techniques inclusive of kernel modification in the total Lagrangian formulation for solid dynamics and multi-time stepping for
fluid structure interaction (FSI) are integrated to increase the computational accuracy and efficiency. Also the position-based
Verlet scheme is applied to achieve the strict conservation of momentum. A two-stage Runge-Kutta integrator scheme is used
to solve the heat diffusion equation. Two simulation cases are performed to test the present method including the numerical
examples of heat transfer in a micro-channel and a FSI case. The heat transfer performance is investigated and quantified with
different vortex generators in a heated channel flow. The detailed heat and vortex information obtained by the present SPH TFSI
solver indicates that the FSI reinforces the heat transfer via vortexes interaction with fluid within the boundary layer. This study
demonstrates the versatility and potential of the mesh-free SPH approach for industrial heat transfer applications involving vortex
generators with large structure deformation.

Smoothed particle hydrodynamics, Heat transfer analysis, Thermal-fluid-structure interaction, Vortex generator
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1. Introduction

Heat transfer phenomena widely exist in various fields in-
cluding aerospace, automobile industry, and electronic en-
gineering [1-3]. As low heat transfer rates may decrease
the working efficiency and reduce the lifetime of heat ex-
changer devices, tremendous attempts have been performed
to increase the heat transfer efficiency, for example introduc-
ing passive or active vortex generators [4-6], which enhance
mixing and heat transfer.

The study of heat transfer strengthening is usually diffi-
cult when coming to the thermal-fluid-structure interaction
(TFSI) problem, where the fluid dynamics, solid deforma-
tion and heat transfer are involved together. Fluid induced

*Corresponding author. E-mail address: c.zhang@tum.de (Chi Zhang)
Executive Editor: Fei Xu

solid movements influence the flow and temperature fields.
The intrinsic non-linearity and time-dependent nature involv-
ing large structure deformations and moving solid-fluid in-
terface pose a great challenge to numerical simulation [7].
Up to date, two main methods have been employed to simu-
late the TFSI problem: (1) the mainstream grid-based meth-
ods, where the continuum domain is discretized into grids
and over which the conservative equations are solved; (2)
the newly developing mesh-free based methods, where parti-
cles with physical quantities are introduced to solve the cor-
responding equations within the Lagrangian framework, is
seeing the growing interests [8].

For mesh-based methods, two approaches are introduced
in literature. The first one is the so-called monolithic method
such as the arbitrary Lagrangian Eulerian (ALE) method in
which the fluid and solid equations are resolved simultane-
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ously within a single solver. Although ALE has been widely
used in the study of TFSI problems [9-11], a remeshing
scheme is necessary as the material interface changes with
time, increasing the algorithmic complexity and the compu-
tational cost [12]. The second one is the partitioned approach
where usually a computational solid dynamics (CSD) solver
is combined with a computational fluid dynamics (CFD)
solver to solve flow and solid equations respectively and
a FSI coupling solver is applied accordingly. One of this
approach is the immersed boundary method (IBM) where
the structure is surrounded by fluid and reduce the costs of
remeshing in the simulation process [13]. However, in IBM,
modification of the motion equations is required to satisfy
the displacement consistency and force matching at the fluid-
solid interface.

As an alternative, the meshless methods are very attractive
in simulating TFSI problems owing to its natural convenience
in handling the moving interface. As one of such methods,
the smoothed particle hydrodynamics (SPH) is initially de-
veloped by Lucy [14] and Gingold et al. [15] for studying
astrophysical problems. In more recent decades, the SPH
method has been widely applied to simulate industrial appli-
cations such as single- and multi-phase flows [16-18], large
strain analysis [19-21] and FSI [22-25]. Comprehensive re-
views are available in Refs. [26-29]. Regarding the ther-
mal and mass diffusion, SPH has been used successfully in
modeling heat conduction [30, 31], convection [32, 33] and
phase-change heat transfer problems [34]. Specifically, Yang
et al. [32] modeled the natural convection to see how Prandtl
and Rayleigh numbers influence the flow states via the SPH
method. Vishwakarma et al. [35] applied SPH to predict the
heat conduction in irregular geometries where problems may
occur if using grid-based methods. They conclude that the
temperature profiles prove the method have a good agreement
with those obtained through commercial software, i.e., Flu-
ent. Farrokhpanah et al. [34] introduced and evaluated a new
SPH scheme to simulate model transient heat conduction,
taking latent heat into account during solidification. These
studies show that the SPH method is able to model and ana-
lyze temperature fields accurately within fluid or solid. Also,
Hosain et al. [8] studied different heat transfer examples,
involving heat conduction in water, heat transfer in laminar
flowing fluid between plates and heat exchanger tubes. Com-
pared with the results obtained from finite volume method
(FVM), the SPH solutions are within the data range and the
SPH is also validated by analytical solutions. However, they
did not consider the FSI coupling effects. Long et al. [7] cou-
pled the SPH method with the edge based smoothed finite
element method (ES-FEM) to tackle TFSI problems where
the ES-FEM is adopted to simulate solid and SPH to fluid.
To handle FSI coupling, a ghost particle algorithm is adopted

and fluid-structure conjugate heat transfer is resolved accord-
ingly. Although the SPH method shows great potential in the
heat transfer studies, its application in TFSI is relatively lim-
ited in the literature to the best knowledge of the authors.
Moreover, most of this literature are dependent on coupling
SPH with other methods to simulate the fluid-structure and
heat transfer, which increases the numerical complexity and
computational efforts.

In this article, a strongly coupled SPH solver is presented
to investigate the heat transfer enhancement with vortex gen-
erators. The solver of thermal diffusion equation is imple-
mented in the open-source code SPHinXsys https://www.
sphinxsys.org [36]. Some algorithms including the Riemann-
based solver for fluid equations, correction of the deriva-
tives in the total Lagrangian formulation for structure de-
formation and multi-time stepping algorithm, position-based
Verlet scheme, and the second-order Runge-Kutta integrator
scheme for thermal simulation are also adopted to guaran-
tee numerical accuracy and stability. In the simulation, first,
we simulated a micro-channel heat transfer and a FSI case to
validate the present SPH thermal and FSI solver. Then, we
coupled these two solvers together to simulate a heat trans-
fer channel with different vortex generators and observe how
heat transfer, fluid vortex, and solid deformation occur simul-
taneously. These numerical examples show that the present
SPH TFSI solver has a unique advantage in capturing the
thermal fluid dynamics in TFSI problems, and can clearly
explain the inner relation between vortex regime and cool-
ing performance. The aim of this work is not only to ex-
tend the usage of the SPH method to TFSI applications, but
also to provide a more flexible multi-physics solver which
exhibits the possibility to address a wide range of industrial
heat transfer problems. The analysis and results also evaluate
the capabilities of SPH in simulating heat transfer with com-
plex geometries in a detailed way, providing a basis for the
heat transfer optimization in many engineering applications
process.

2. Governing equations

In the TFSI problem, the thermal fluid is considered as in-
compressible and viscous, and the governing equations are
the mass conservation and momentum balance equation ex-
pressed as


dρ
dt
= −ρ∇ · v,

dv
dt
= 1
ρ

(
−∇p + η∇2v

)
+ FS :p + FS :v,

(1)

where ρ, v, p, η are the density, the velocity, the pressure, the
dynamics viscosity and FS :p and FS :v the forces generated
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from solid working on the flowing fluid due to the pressure
and viscosity. Under the weakly-compressible assumption,
we introduce a linear equation of state (EoS) to character-
ize the pressure via the variation of density to approximately
simulate the incompressible flow as shown below [37]:

p = c2(ρ − ρ0), (2)

where the artificial speed of sound c is defined dependent on
the cases and ρ0 is the initial density [37].

The deforming structure is considered to be elastic and the
corresponding governing equations derived from the balance
laws are mass and momentum conservation. Based on the
continuum mechanics, the displacement u of a martial point
is defined as u = r − r0. Here, r and r0 denote the position
of a material point in deformed and initial reference configu-
ration, respectively. To characterize the structure kinematics,
the deformation tensor F is applied. According to the defini-
tion, F is calculated with the unit matrix I from

F = ∇0u + I. (3)

We mark that all operators and quantities carrying superscript
(·)0 are corresponding to the undeformed initial configura-
tion. With the Lagrangian framework assumption, the gov-
erning equations of elastic structure read


ρ = ρ0
1
J
,

ρ0 dv
dt
= ∇0 · PT + FF:p + FF:v.

(4)

In the above, Jacobian J = det(F). In contrast to the Cauchy
stress which points the force measured in the deformed con-
figuration, named as the first Piola-Kirchhoff stress tensor, P
relates stress within the initial configuration and T is the ma-
trix transposition. Also, pressure force FF:p and viscous force
FF:v correspond to those in fluid equation. To obtain P, we
introduce the Green-Lagrangian strain E which characterizes
the extent of deformation given by

E =
1
2

(
FFT − I

)
. (5)

In this work, the isotropic and linearly elastic material is used
to describe the vortex generator and thus we can write the
second Piola-Kirchhoff stress tensor S which is symmetric,
via the relation as

S = λ tr (E) I + 2µE, (6)

with Lamé parameters λ and µ. Usually, the key material co-
efficients include the Young’s modulus E, the Poisson ratio
ν, the shear modulus G, and the bulk modulus K and each of
them is dependent on the others as

E = 3K (1 − 2ν) , (7)

G =
E

2 (1 + ν)
. (8)

Finally, the first Piola-Kirchhoff stress tensor P is calculated
through

P = FS = F[λ tr (E) I + 2µE]. (9)

For the heat transfer process, the governing equation re-
lates to the temperature rate following the Fourier law. For
ease of simulating and to focus attention on the main points,
no external heat source is considered. Thus the heat transfer
equations can be expressed as

dT
dt
= ∇ ·

(
k
ρcp
∇T

)
, (10)

where T is the temperature, k the thermal conductivity coef-
ficient and cp the specific heat capacity.

3. Methodology

3.1 Theory and fundamental of SPH

In the SPH method, physical properties are approximated
based on the integral representation over neighboring parti-
cles. The discrete form of a continuously defined function
f (r) at particle i is presented as

f (r) =
∑

j

V j f jW
(
ri j, h

)
=

∑

j

m j

ρ j
f jW(ri j, h), (11)

where i, j represent the particle indices and V j is the parti-
cle volume. The smoothing function function W(ri j, h), with
the smoothing length h deciding the support area, is radially
symmetric concerning the particle position ri. The particle
distance ri j = ri − r j. Also, m j and ρ j are the particle mass
and density respectively. Correspondingly, the particle ap-
proximation for the derivative of the function f (r) at particle
i is expressed as

∇ f (r) ≈
∫

Ω

∇ f (r)W(ri − r, h)dV

= −
∫

Ω

f (r)∇W(ri − r, h)dV

≈ −
∑

j

V j f j∇iWi j. (12)

Here, ∇iWi j = ∇iW(ri j, h) = ei j
∂Wi j

∂ri j
stands for the gradient of

the kernel function regarding the particle distance ri j = ri−r j

and unit vector ei j =
ri j

ri j
. Following Ref. [36], when defin-

ing the local structure of a field, a strong form of Eq. (12) is
usually applied as follows:

∇ fi = fi∇1 + ∇ fi ≈
∑

j

V j∇iWi j fi j, (13)
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where fi j = fi − f j is the difference within the particle pair
(i, j). Furthermore, to ensure the conservation of a variable
at the surface, the weak form approximation of Eq. (12) is
applied as

∇ fi = ∇ fi − fi∇1 ≈ −2
∑

j

V j f̃i j∇iWi j, (14)

where f̃i j =
fi+ f j

2 is the average value of particle pair (i, j).

3.2 SPH discretization for fluid and solid

With Eqs. (13) and (14) in hand, the governing equation of
the fluid can be discretized as [38]


dρi

dt
= 2ρi

∑

j

m j

ρ j
(vi − ṽi j)∇iWi j,

dvi

dt
= −

∑

j

m j
pi + p j

ρiρ j
∇iWi j + 2

∑

j

m j
η

ρiρ j

vi j

ri j

∂Wi j

∂ri j

+ FS :p
i + FS :v

i ,

(15)

where ṽi j =
vi+v j

2 is the average velocity. Direct implemen-
tation of Eq. (15) results in spurious pressure fluctuation
as the pressure is calculated through the EoS of Eq. (2),
leading to numerical instability. To remedy this issue, sev-
eral algorithms, e.g., artificial viscosity [15], diffusive term
in continuity equation [39] and Riemann-based scheme [40]
have been proposed in literature. In this work, we apply the
Riemann-based SPH [40], while only apply the Riemann-
based diffusive term in the continuity equation other than
both the mass and the momentum conservation. In this
case, the artificial damping intrinsically introduced by the
Riemann solver is decreased as viscous flows with a low
Reynolds number is considered herein. It is worth noting
that even Eq. (15) also works for hydrodynamic negative
pressure field, but one needs a remedy to address the tensile
instability issue. In this paper, the transport-velocity formu-
lation is applied [41].

Subsequently, we use v∗ = U∗ei j + (̃vi j − Ũei j) to replace
ṽi j in continuum equation

dρi

dt
= 2ρi

∑

j

m j

ρ j
(vi − v∗)∇iWi j, (16)

where U∗ is the solution of inter-particle Riemann problem
along the unit vector ei j. Ũ = UL+UR

2 is inter-particle average
where UL and UR are respectively left and right states. More
details about the Riemann solution are available in Ref. [42].

To discretize the solid mechanics, we consider the initial
undeformed configuration to be the reference state. First,
aiming at restoring 1st order consistency, a correction matrix
B0 [43, 44] is adopted as

B0
a =


∑

b

Vb

(
r0

b − r0
a

)
⊗ ∇0

aWab


−1

, (17)

where indices a, b represent solid particles and ∇0
aWab is the

gradient of the kernel function given by

∇0
aWab =

∂W
(
|r0

ab|, h
)

∂|r0
ab|

e0
ab. (18)

As mentioned before, with the superscript (·)0, B0
a is com-

puted only once under the initial reference configuration.
Also the neighborhood of particle a is defined relating to the
initial configuration and this set of neighboring particles re-
mains fixed throughout the entire simulation. Then, the mo-
mentum conservation in Eq. (4) can be approximated in the
strong form as

dva

dt
=

2
ma

∑

b

V0
a V0

b P̃ab∇0
aWab + FF:p

a + FF:v
a , (19)

where P̃ab is the averaged first Piola-Kirchhoff stress of the
particle pair (a, b) defined as

P̃ab =
1
2

(
PaB0

a + PbB0
b

)
. (20)

Note that the first Piola-Kirchhoff stress tensor is dependent
on the deformation tensor F which is computed from

Fa =


∑

b

Vb (ub − ua) ⊗ ∇0
aWab

 B0
a + I. (21)

3.3 Treatment of fluid-structure and thermal coupling

In the fluid-structure coupling, the flexible structure is con-
sidered to be a moving boundary for the fluid by imposing a
no-slip boundary condition. In this case, the fluid force ex-
erted on the solid, and vice versa is resolved in a strong two-
way coupling pattern. At the interface, the displacement, ve-
locity and force of fluid-structure interface are supposed to be
consistent. To ensure this compatibility, the density-weighted
inter-particle averaged pressure

pia =
piρ

d
a + pd

aρi

ρi + ρ
d
a

(22)

is adopted when calculating the pressure force between the
fluid-solid particle pair (i, a). Following Zhang et al. [45],
the pressure and viscous force exerting on a fluid particle i
are calculated from

FS :p
i = −2

∑

a

ViVa pia∇iW(ria) (23)

and

FS :v
i = 2

∑

a

ηViVa
vi − vd

a

ria

∂W(ria)
∂ria

, (24)
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respectively. With the normal vector of structure surface na,
we characterize the imaginary pressure pd

a and velocity vd
a

through


pd
a = pi + ρimax

[
0,

(
g − dva

dt

)
· na

]
(ria · na),

vd
a = 2vi − va.

(25)

The momentum conservation is fulfilled between fluid par-
ticles i and solid particle a along the center line of this in-
teracting particle pair (i, a) due to the anti-symmetric prop-
erty ∇iW(ria) = −∇aW(rai) and the symmetric expression of
inter-particle averaged pressure. Then, the condition of the
continuity of normal stresses across the fluid-structure inter-
face is enforced. Correspondingly, the pressure and vis-
cous forces in Eq. (19) can be obtained accordingly through
FF:p

a = −FS :p
i and FF:v

a = −FS :v
i .

In the present work, heat transfer process occurs between
the solid wall and fluid. Without exchanging any heat with
fluid, flexible structure inside the flow only plays a role in
generating vortices to mix the cold and hot stream. We con-
sider the wall with constant temperature which is higher than
that of the fluid, implying that the fluid always takes heat
away from the contacting walls. Then the SPH discretized
form of the heat diffusion of Eq. (10) can be represented as

dTi

dt
=

1
ρcp


∑

j

m j

ρ j

4kik j

ki + k j

Ti j

ri j

∂Wi j

∂ri j

+
∑

a

ma

ρa

4kika

ki + ka

Tia

ria

∂Wia

∂ria

 , (26)

where Ti only refers to fluid particles, implying that only the
fluid experiences temperature evolution. The subscripts j and
a respectively indicate contribution from neighboring fluid
and solid particles within the compact support of particle i.
Also Ti j = Ti − T j and Tia = Ti − Ta are the temperature
difference. It is worth noting that the TFSI is straightfor-
wardly coupled in Eq. (26) without introducing any other
treatment, demonstrating the advantage of the present inte-
grative method. According to Cleary and Monaghan [30],
where heat conduction discretizations among different mate-
rials are analyzed, the present discretization of Laplacian of
the temperature is spatially second order accurate and more
details are referred to Ref. [30].

Compared with the original SPH form of heat conduction,
an improved conduction term is applied in Eq. (26). The
modified average value of thermal conductivity enables the
above formulation to model more general heat transfer prob-
lems. With an explicit conductivity, the heat flux is consis-
tent across the material interfaces naturally. Therefore, vari-
ous materials with largely different conductivity can be cou-
pled and specific heats are ensured to be accurately predicted.

Temperature dependent conductivity can also be easily im-
plemented. For the sake of verification and simplicity, the
fluid and solid conductivity is the same value ki = ka, as we
can pay more attention to the relationship between the fluid
vortex and heat mixing scheme rather than the material dif-
ference.

3.4 Time integration scheme

Following Ref. [46], a multi-time stepping scheme for in-
tegrating the FSI coupling is adopted herein. The compu-
tations of solid, fluid and heat dynamics may be executed
several times within one time step to obtain the synchronized
solutions between these physics, achieving a strong coupling.
First of all, the dual-criteria time step is applied for the time
integration of fluid to increase the computational efficiency.
Specifically, fluid particle advection and acoustic speeds de-
termine two time-step criteria named as ∆tad and ∆tac respec-
tively given by


∆tad = 0.25 min
(

h
Umax

,
h2

ν

)
,

∆tac = 0.6
h

c + Umax
.

(27)

For the explicit integration of thermal diffusion equation, the
maximum time step is given by

∆td = 0.5
ρcph2

k
. (28)

The particle interaction configuration is updated once within
an advection time step and the smaller value between the
acoustic and thermal diffusion criteria controls the frequency
of fluid state updating. In our simulation cases, ∆td is larger
than ∆tac. Consequently, during each advection time step
∆tad, several pressure, density and heat transfer relaxation
processes are performed with the acoustic time-step size of
∆tac. In the physical relaxation process, the position-based
Verlet scheme is applied [45]. At the beginning of the ad-
vection step, the viscous force is computed. During each ad-
vection time step, several acoustic time steps are integrated.
Specifically, intermediate density and position are first com-
puted as


ρ
n+ 1

2
i = ρn

i +
1
2
∆tac

dρi

dt
,

rn+ 1
2

i = rn
i +

1
2
∆tacvi

n.

(29)

Then, the acceleration induced by the pressure term is calcu-
lated and the fluid particle velocity at the next time step can
be obtained by

vn+1
i = vn

i + ∆tac
dvi

dt
. (30)
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Finally, the new velocity is employed to update the position
of fluid particles at the new time step. Also, the density of
fluid particles is updated as



rn+1
i = rn+ 1

2
i +

1
2
∆tacvi,

ρn+1
i = ρ

n+ 1
2

i +
1
2
∆tac

dρi

dt
.

(31)

In an acoustic time step, heat transfer equation is also solved
to update the temperature field. An explicit, two-stage
second-order Runge-Kutta integrator scheme is applied as
[47]



T
′
= T n + ∆tacR(T n, tn),

T
′′
= T

′
+ ∆tacR(T

′
, tn+1),

T n+1 =
T n + T

′′

2
,

(32)

where T
′

and T
′′

are the intermediate temperature values be-
tween T n and T n+1, R(T, t) = dT

dt the temperature change
rate. This two-stage Runge-Kutta scheme has the advantage
of being able to start the computation without any special de-
vices, while retaining its accuracy and being easy to imple-
ment, especially when compared with implicit time-stepping
methods. Within one ∆tac, solid kinematics is calculated as
κ =

∆tF
ac
∆tS + 1 times with the solid time-step criterion ∆tS given

by

∆tS = 0.6 min



√
h

| dv
dt |max

,
h

|v|max + cS

 , (33)

where cS =
√

K
ρ

is the artificial speed of sound for solid.
Since different time steps are employed in the coupling,
force-calculation mismatch in the FSI may be encountered.
To solve this issue, referring to Ref. [45], we introduce a
modified acceleration d̃va

dt and a single averaged velocity ṽa

for solid particles. Thus the imaginary pressure pd
a and ve-

locity vd
a in Eqs. (22) and (24) are modified to


pd

a = pi + ρimax
[
0,

(
g − d̃va

dt

)
· na

]
(ria · na),

vd
a = 2vi − ṽa.

(34)

In structure integration, index κ indicates the individual time
step, which processes from 0 to κ − 1. First, note that the
change rate of deformation gradient dFa

dt can be calculated
based on the initial configuration through

dFa

dt
=


∑

b

V0
b (vb − va) ⊗ ∇0

aWab

 B0
a. (35)

The intermediate deformation tensor, density and particle po-
sition are updated as



Fκ+
1
2

a = Fκa +
1
2
∆tS dFa

dt
,

ρ
κ+ 1

2
a = ρ0

a
1
J
,

rκ+
1
2

a = rκa +
1
2
∆tS va.

(36)

Subsequently, the pressure force generated from fluid work-
ing on structure, together with the viscous force from ambi-
ent fluid previously obtained, are applied to update the veloc-
ity of solid as

vκ+1
a = vκa + ∆tS dva

dt
. (37)

At last, the deformation tensor and position of solid particles
of next time step are updated with


Fκ+1
a = Fκ+

1
2

a +
1
2
∆tS dFa

dt
,

ρκ+1
a = ρ0

a
1
J
,

rκ+1
a = rκ+

1
2

a +
1
2
∆tS va

κ+1.

(38)

4. Numerical tests

In this section, two benchmark tests, i.e., heat transfer in a
micro-channel and flow passes a flexible beam clamped to a
fixed cylinder, are first studied to validate the present method.
Then, the integrated method is applied to study the heat trans-
fer enhancement with introducing different vortex generators.
In the simulation, the thermal properties of the working fluid
are assumed to be constant and independent of the tempera-
ture variation. For all cases, we applied the Wendland kernel
with h = 1.3dp, where dp is the initial particle spacing.

4.1 Channel heat transfer

We consider heat transfer in a Poiseuille flow, which is
widely used as a benchmark where analytical data and nu-
merical solutions are available for quantitative comparison.
Following Ref. [8], a two-dimensional (2D)-horizontal in-
finitely long channel with a width of 2 mm is considered as
shown in Fig. 1. The infinite length allows the thermal and
velocity profile to fully develop. A temperature reset zone
has been placed at the upstream region of the channel flow
inlet with a constant initial temperature setup of 20◦C. The
top and bottom wall temperature are constantly set to be 20◦C
and 40◦C, respectively. The constant thermal fluid properties
are listed in Table 1. Following Zhang et al. [45], a periodic
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Cold water Heated wall Cold wall Thermal boundary layer

Thermal inlet profile Velocity inlet profile

40°C

20°C

20°C 2 mm R

Figure 1 Schematic diagram of a heat transfer channel with a probe R in
the middle of the channel located downstream.

Table 1 Working fluid information

Properties Values

Density (kg/m−3) 1000

Kinematic viscosity (m2/s) 1.0 × 10−6

Thermal conductivity (W/(m K)) 0.6

Heat capacity (J/(kg K)) 4182

boundary condition is implemented for the channel and a 20
dp length inflow buffer region is adopted for velocity relax-
ation. We exert no-slip conditions on the both side walls. To
achieve a laminar channel flow state, the Reynolds number
Re = U0H/ν = 10 and a parabolic velocity profile is imposed
in the buffer region as

U(y) =
1.5U(t, y)(H − y)y

H2 , (39)

with a start-up smoothing procedure

U(t, y) =


0.5U0[1.0 − cos(0.5πt)], if t ≤ 2.0 s,

U0, otherwise.
(40)

In this case U0 = 0.01 m/s. The bottom wall corresponds to
y = 0 and H is the channel width.

Figure 2 describes the vorticity and temperature contours
at different time instants obtained by the present SPH solver.
Only slight vortices occur in this bare channel since there
are no disturbances present. As a consequence, the thermal
layer thickness increases steadily in the downstream direc-
tion. Figure 3a shows the fully developed velocity profile and
its comparison with the analytical solution, behaving good
agreement. The temperature development at probe R over
time is portrayed in Fig. 3b. Compared with the reference
solution obtained by the FVM thermal solver of Hosain et al.
[8], there is hardly any difference noted in the temperature
profile. Generally, the efficiency and accuracy of the present
SPH thermal solver are demonstrated.

For rigorous validation, we conduct a convergence study
by applying different particle resolutions. Figure 4 portrays
the mean square error (MSE) analysis between the SPH sim-
ulation and analytical solution by varying particle spacing.
Clearly, the MSE decreases rapidly with the particle refine-
ment. Also, the temperature profiles along the channel width
at different time instances are observed and shown in Fig. 5.
Note that when particle resolution is not enough refined as
dp = 10 × 10−5 of the red line, the fluid temperature near
the wall cannot be depicted accurately. As the resolution in-
creases, the fluid temperature approaches the wall tempera-
ture as the blue line dp = 2.5 × 10−5 shows where the up-
per point is 40◦C and lower 20◦C, respectively. Obviously,
the results obtained by the present SPH thermal solver are
in good congruence with that by the FVM solver. The tem-
perature development indicates that the SPH thermal solver
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Figure 2 Heat transfer channel: a vorticity and b temperature contours at different times.
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a

b

Figure 3 Heat transfer channel with particle spacing dp = 5.0×10−5: a ve-
locity profile and its comparison with analytical solution and b temperature
evolution and its comparison with FVM solution [8].

reaches satisfactory accuracy when the particle spacing value
is dp = 5 × 10−5.

4.2 Fluid-structure interaction

Following Refs. [46, 48], a well-documented 2D benchmark
where a flexible beam clamped with the back surface of a
rigid cylinder is tested herein. The physical configuration
and computational setup of this problem are depicted in Fig.
6. With the cylinder diameter D being the characterized pa-
rameter, we set a L = 11D length and W = 4.1D width fluid
domain. The cylinder is placed slightly off-center at 2.0D
away from the bottom wall and 1.3D the inlet to induce a
motion in the flexible beam in the early stage of simulation.
Given the definition of the thickness bh = 0.2D and length of
bl = 3.5D, the elastic beam is attached to the rear surface of
the cylinder. Comparatively soft beam is obtained with the
Poisson ratio ν = 0.4 and Young’s modulus E = 1.4 × 103

under the isotropic linear elastic material assumption. Other
governing quantities are the solid to fluid density ratio DR =
ρs
ρ f
= 10 and the Reynolds number Re = DU0ρ f

ν
= 100. For

this case, an obvious oscillation would be observed under the
wave of the flowing fluid. The uniform particle distribution
has the same initial particle spacing dp = 0.05D for both
fluid and solid. Similar with that in Sect. 4.1, a parabolic in-

5×10−5 0.0001 0.00015 0.0002

dp

M
S
E

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

Figure 4 Velocity MSE between simulation and analytical solution with
different particle spacing.

let velocity profile is adopted, while the dimensionless veloc-
ity U0 = 1.5 and ts = 2.0 herein and the artificial speed of
sound c0 = 20U0. No-slip condition is prescribed on the both
side walls and the fluid solid interface.

In the early stage of the simulation, the elastic beam expe-
riences a minor vibration and the extent of deformation be-
comes larger due to the force from the ambient fluid. As the
simulation progresses, the beam shows a regular oscillation,
meaning that the self-sustaining state is achieved. Figure
7 depicts four snapshots of color contours considering von
Mises stress for solid and vorticity for fluid during this equi-
librium state. The formed vortices and wavelike beam de-
formation show a similar pattern to the observations in Refs.
[45, 48, 49] and the results are within the data range of the
literature. Figure 8 displays the evolution in time of the hori-
zontal and vertical displacement and the motion curve of the
beam tip point P labeled in Fig. 6. We can conclude that
the beam deforms slightly in the firstly dimensionless time
period of 20, but then the elastic beam enters into a equi-
librium regime rapidly with a constant oscillation frequency
when the simulation time approaches 40. In terms of the mo-
tion history of point P, similar with Ref. [45], a eight-shaped
curve is formed and the frequency ratio concerning the y-
axis and x-axis displacement is approximately 1:2. In addi-
tion, as reported in Table 2, we have quantitatively compared
the displacement and frequency values from present solution
to those given in other studies. With relatively small dis-
crepancy, the values respectively converge to 0.92 and 0.178,
showing good correspondence with those from previous sim-
ulations [45,48,49], validating the ability an accuracy of this
solver to model FSI problems.

4.3 Thermal-fluid-structure interaction

Finally, this newly-integrated method is applied to study the
thermal augmentation owing to the existence of vortices in-
duced by different immersed structure configurations. We



X. Tang, et al. Acta Mech. Sin., Vol. 39, 722248 (2023) 722248-9

Location along channel width (m)

T
em

p
er

at
u

re
 (

°C
)

0 0.0005 0.001 0.0015 0.002
20

25

30

35

40

SPH dp = 10×10−5

SPH dp = 5×10−5

SPH dp = 2.5×10−5

FVM

0
20

25

30

35

40

0
20

25

30

35

40

T
em

p
er

at
u

re
 (

°C
)

T
em

p
er

at
u

re
 (

°C
)

Location along channel width (m)

Location along channel width (m)

0.0005 0.001 0.0015 0.002

0.0005 0.001 0.0015 0.002

SPH dp = 10×10−5

SPH dp = 5×10−5

SPH dp = 2.5×10−5

FVM

SPH dp = 10×10−5

SPH dp = 5×10−5

SPH dp = 2.5×10−5

FVM

a

b

c

Figure 5 Heat transfer channel: the temperature profile along the channel
width at different times with different particle spacing. The SPH results are
compared with those obtained by the FVM in Ref. [8]. a t = 0.5 s; b t = 2.0
s; c t = 5.0 s.

Constrained cylinder Elastic beam

Water Wall Velocity profile

11D

1.3D

4.1D

D = 1

bh = 0.2D

bl = 3.5D

OutletInlet

Figure 6 Geometric parameters of the 2D case involving a free beam
clamped to a fixed cylinder.

consider the heat transfer problem, where different vortex
generators as illustrated in Table 3 are involved in a channel

a

b

c

d

Figure 7 Fluid-structure interaction: four snapshots of color contours con-
sidering von Mises stress for solid and vorticity for fluid during this equilib-
rium state.

flow. The channel has a length of 31D and width of 4.0D
with D denoting the cylinder diameter. Also the attached
beam length is 3.5D. Other parameters are the same with
that in the FSI case. The heat diffusion constant is set to be
K = k

ρcp
= 0.001. The same velocity and thermal inflow pro-

file as what mentioned in the heat transfer case are imposed
herein. In order to examine the accompanying effect of vor-
ticity dynamics on thermal augmentation efficiency, channel
visualizations presenting stable temperature and vortex con-
tours in four different cases are shown in Figs. 9 and 10.
Obviously, in the bare heat transfer case, with a stable flow-
ing regime, hardly any vortex alongside the boundary wall
arises. Consequently, as the flowing fluid progresses down-
stream, the thermal boundary layer becomes thicker and hin-
ders the removing of thermal energy of the fluid besides the
walls. In the other cases, vortices periodically shed behind
the rigid cylinder or the elastic beam or the both, preventing
the growth of the thermal boundary layer and leading to a
better heat transfer performance. To be specific, in case II,
when flowing fluid encounters the obstacle cylinder, a class
of symmetric vortices periodically occurs. These vortices in-
teract with the channel walls, interrupting the accumulation
of thermal energy and taking more heat from the walls than
that in the bare one. While in case III, a similar pattern exists
but the thermal augmentation undergoes minor changes com-
pared with that of case II. This is attributed to the presence
of the fixed beam attached to the cylinder, which prevents the
formation of vortex groups. Thereby, existing vortices are
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Figure 8 Fluid-structure interaction: a free beam clamped to a fixed cylin-
der. a Deflection of point S in x-direction, b deflection of point S in y-
direction, and c the motion curve of point S .

Table 2 Fluid-structure interaction: the oscillation amplitude and frequency
from the present solution compared with previous results

Methods Frequency Amplitude in y-axis

Turek and Hron [48] 0.19 0.83

Bhardwaj and Mittal [49] 0.19 0.92

Zhang et al. [45] 0.189 0.86

Present 0.178 0.92

stretched to become long but weak and have a relatively defi-
cient interruption on the thermal energy accumulating. Also,
a strong interaction between the vortices and wall shear lay-

Table 3 Four channels configuration

Channel

configuretions
Channel I Channel II Channel III Channel IV

Cylinder No Yes Yes Yes

Beam No No Yes-Solid Yes-Flexible
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Figure 9 Stable vorticity contours in four different cases.
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Figure 10 Stable temperature contours in four different cases.

ers happens in the case IV. The oscillating beam disrupts the
localization of shedding vortices and delivers these segments
to interact with the boundary layers, leading to a remarkable
mixing of the central cold fluid with the hot fluid.

For a better illustration of TFSI regime, the instantaneous
snapshots of the vorticity and temperature fields of case IV
are depicted in Figs. 11 and 12, respectively. Without exter-
nal force, the flowing fluid exerts periodic force on the beam,
leading to the oscillation of the flexible beam and generating
a train of vortices behind it. From the vorticity contour, it is
observed that these relatively large and strong vortices are ca-
pable of penetrating into the central currents in the channel.
In the downstream direction, these vortices coalesce together
and dissipate slightly, imposing a continuous effect on the
mixing. This finding can also be deduced in Fig. 12. With
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Figure 11 Vorticity contours at different time instants of case IV where an
elastic beam is attached to a rigid cylinder.
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Figure 12 Temperature contours at different time instants of case IV where
an elastic beam is attached to a rigid cylinder.

large-scale vertical velocity, these vigorous vortex structures
of opposite rotation break the cold fluid into smaller el-
ements. These small elements cause disorder within the
boundary layer, taking the hot fluid along the walls into
the central cold stream. Furthermore, the oscillatory na-
ture of these vortices continuously interrupt the formation of
the thermal boundary layer. Consequently, the greatest heat
transfer enhancement is achieved.

To have a more clear comparison, vorticity profiles calcu-
lated on different vertical lines of a fully developed flow at
the final state of t = 100 in four cases are plotted in Figs.
13 and 14. Generally, the largest vortex scale is observed
in case IV, resulting in obvious temperature variation along
the channel width and the most efficient heat mixing. Obvi-

ously, hardly any vortex occurs in case I, and cold fluid re-
mains in the channel center without any disruption. In other
three cases, vortices shed behind vortex generators and even
though being damped as they travel downstream as shown
over different vertical lines in Fig. 13, a better mixing of hot
and cold fluid and a more uniform temperature distribution
are observed in Fig. 14. Focusing on the upper and lower
fluid zone near the hot walls in cases II, III, IV, the pres-
ence of small vortex elements close to the hot walls plays
an important role in removing heat, causing the decrease of
fluid temperature compared with that in case I as shown in
Fig. 14. In the zone immediately behind the vortex generator
corresponding to the vertical line x = 5, large vortex scales
are observed in cases II, III, IV and great heat transfer rate
is achieved since there is a noticeable increase in fluid tem-
perature near the walls, denoting that the fluid near the wall
absorbs the heat energy and transports it to the downstream.
When vortices travel downstream, large vortices break into
small but evenly distributed elements, leading to a more uni-
form mixing. This conclusion is especially vivid in case IV as
a more corrugated temperature distribution regime presents
in the middle of the channel.

To quantitatively assess the heat transfer enhancement, an
instantaneous local Nusselt number is defined by

Nu = −∇T
W

Tw − Tm
, (41)

where ∇T denotes the local temperature gradient at the chan-
nel wall boundary, Tw the wall temperature, Tm the average
temperature of the fluid, and W the non-dimensional channel
width. Figure 15 compares the Nusselt numbers along the
wall when the flow is fully developed. Overall, local Nu de-
creases along the channel length, indicating the enhancement
is weakened downstream. In case I, Nu decreases monoton-
ically due to the presence of an increasing thermal bound-
ary layer, while in the other three cases, corrugated varia-
tions of Nu are observed. This regime is attributed to the
oscillation interaction between vortices and walls. Nu in-
creases where vortices are present, illustrating an augmenta-
tion of heat transfer. Downstream from the vortex generator,
damped vortices lead to an abatement of the interaction be-
tween walls and vortices. Consequently, Nu decreases in the
other three cases. In case III, the fixed beam suppresses and
limits the effect of the vortex dynamics by interrupting the
shedding frequency in view of the previous discussion. Case
IV performs the best in all of the cases. The oscillating beam
strengthens the mixing process, having a great influence on
Nu even at the outlet of the channel.

To determine the mixing rate of hot and cold fluids, a mix-
ing coefficient D in the whole channel is defined in Eq. (42).
It is the ratio of local-globally average temperature difference



X. Tang, et al. Acta Mech. Sin., Vol. 39, 722248 (2023) 722248-12

V
o

rt
ic

it
y

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

-0.5

0

0.5

1

Location along channel width Location along channel width

Location along channel width Location along channel width

V
o

rt
ic

it
y

-1

-0.5

0

0.5

1

V
o

rt
ic

it
y

-1

-0.5

0

0.5

1

V
o

rt
ic

it
y

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.5 1 1.5 2 2.5 3 3.5 4

Case I
Case II
Case III
Case IV

Case I
Case II
Case III
Case IV

Case I
Case II
Case III
Case IV

Case I
Case II
Case III
Case IV

a b

c d

Figure 13 Vorticity distributions along the channel width at different vertical lines. a Line x = 5; b line x = 15; c line x = 20; d line x = 30.
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and globally average temperature, representing the standard
deviation of fluid temperature.

D =

√√√
1
N

N∑

j=1

(
T j − Tavg

Tavg

)
, (42)

where N is the total particle number in the channel. Figure
16 exhibits the development of mixing rate D over time in
four cases. A more uniform distribution of temperature is ob-
tained as time goes, which can be concluded from the distinct
decrease of standard mixing deviation in all cases. Cases II,
III, and IV reach the bottom point within a time period of 20,
showing a maximum mixing efficiency as the disordered vor-
tices dominate the combing process, then approach the fully
developed value. It is reasonable that mixing index D in case
IV stabilizes at the lowest value, suggesting the most efficient
mixing. The basis of such classification has been explained
before.

5. Conclusion

In this paper, an integrative SPH solver is developed to study
the TFSI problem. The solver is first validated by two bench-
marks of heat transfer in a micro-channel and a FSI case.
Having the validation in hand, heat transfer enhancement of
vortices generated by different immersed structures is stud-
ied. With the unique advantage of capturing the moving in-
terface in TFSI, the present solver clearly reveals the rela-
tionship between the vortex regime and the thermal dynam-
ics, concluding that heat transfer augmentation is strongly
dependent on vortex-thermal boundary layer interaction. The
vortices penetrate into the central currents and break the cold
fluid into smaller elements, which disrupt the thermal bound-
ary layers continuously and take hot fluids into the central
cold streams. A local Nusselt number and mixing index in

20 40 60 80 100

t

D

150

200

250

300

350

500

450

400

Case I

Case II
Case III

Case IV

Figure 16 Variations of mixing index D as a function of time in four cases.

the channels are used to quantify the localized heat transfer
performance and the fluid mixing rate respectively. Results
show that each configuration with vortex generators in chan-
nel enhances heat transfer efficiency, with the flexible beam
clamped to a fixed cylinder giving the best results over the
other three cases. The study demonstrates that this integrative
SPH method shows a good capability of capturing the ther-
mal dynamics behavior in complex industrial cases, where
traditional mesh-based methods reach their limits of applica-
bility. The present SPH TFSI method can be extended for
more realistic engineering problems, which is our continuing
work.
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一一一种种种耦耦耦合合合SPH方方方法法法求求求解解解涉涉涉及及及流流流固固固耦耦耦合合合的的的热热热传传传导导导问问问题题题
唐晓静,张驰, Oskar Haidn,胡湘渝

摘要 由于流体动力学、固体运动学和传热的共存,热-流体-结构相互作用(TFSI)问题通常在基于网格的方法中造成数值复杂性.

本文介绍了一种在材料界面处具有强耦合方案的耦合光滑粒子流体动力学(SPH)求解器来研究TFSI问题.本方法耦合了一些有效的

技术,包括固体动力学拉格朗日公式中的核修改和流体结构相互作用(FSI)的多时间步进,以提高计算精度和效率;还应用基于位置

的Verlet积分格式来实现严格的动量守恒;两级龙格 . 本文执行了两个模拟案例来测试本方法,包括

微通道中传热的数值示例和FSI案例,在加热通道流中使用不同的涡流发生器研究和量化传热性能.本SPH-TFSI求解器获得的详细热

量和涡流信息表明, FSI通过涡流与边界层内的流体相互作用来加强传热. 这项研究证明了无网格SPH方法在涉及具有大结构变形的涡

流发生器的工业传热应用中的多功能性和潜力.

库塔积分方案用于求解热扩散方程



48 A Original journal papers

A.2 Paper II

Xiaojing Tang, Dong Wu, Zhentong Wang, Oskar Haidn, Xiangyu Hu

Simulating plate and shell structures with anisotropic resolution using adaptive
smoothed particle hydrodynamics

In Engineering Analysis with Boundary Elements, Volume 167, Pages 105886, 2024,

DOI:https://doi.org/10.1016/j.enganabound.2024.105886

Copyright ©2024 Elsevier. Reprinted with permission



Contents lists available at ScienceDirect

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

Simulating plate and shell structures with anisotropic resolution using
adaptive smoothed particle hydrodynamics
Xiaojing Tang, Dong Wu, Zhentong Wang, Oskar Haidn, Xiangyu Hu ∗

Technical University of Munich, School of Engineering and Design, Boltzmannstraße 15, Garching, 85748, Germany

A R T I C L E I N F O

Keywords:
Adaptive smoothed particle hydrodynamics
Plate and shell structures
Full-dimensional models
Reduced-dimensional models
Anisotropic resolution
Anisotropic kernel

A B S T R A C T

When simulating plate and shell structures characterized by large aspect ratios, reduced-dimensional models
are frequently employed due to their notable reduction in computational overhead in contrast to traditional
isotropic full-dimensional models. However, in scenarios involving variations in the thickness direction, where
adequate resolution in this dimension is required, reduced-dimensional models exhibit limitations. To capture
variations in the thickness direction while simultaneously mitigating computational costs, an anisotropic
full-dimensional model, integrated with an adaptive smoothed particle hydrodynamics method (ASPH), is
developed for simulating behaviors of plate and shell structures in this study. The correction matrix, which is
applied to ensure the first-order consistency, is modified accordingly by incorporating the nonisotropic kernel
into it within the total Lagrangian framework of ASPH. A series of numerical examples, along with a specific
application concerning the deformation of a porous film due to nonuniform internal fluid pressure in the
thickness direction, are conducted to assess the computational accuracy and efficiency of the proposed ASPH
method. Comparative analyses of our results against reference data and traditional isotropic SPH solutions
demonstrate close agreements, affirming the suitability of the present ASPH method across various scenarios.

1. Introduction

The smoothed particle hydrodynamics (SPH) method has gained
increasing interest as an alternative to mesh-based methods [1–4].
Based on the principle of using particles to discretize the computation
domain, SPH has been widely applied to simulate fluid-flows [4–7],
fluid–solid interaction [8–10], and solid mechanics [11–15] includ-
ing the mechanical behavior of plate and shell structures [16–19] in
recent years. Plate and shell structures, characterized by one dimen-
sion significantly smaller than the other two, have been explored in
the literature using meshless methods like the element-free Galerkin
formulation [20–22], and the reproducing kernel particle method [23–
27]. Within the SPH framework, the reduced-dimensional models are
commonly used in simulating the thin structures [28–31]. Specifically,
these thin structures are discretized by a single layer of particles in SPH
to reduce computation time. However, the reduced-dimensional models
are not applicable in some specific situations involving parameter
variations in the reduced thickness direction. For instance, in scenarios
where a thin, porous membrane is partially filled with fluid, which is
extensively observed in the fuel cell of battery [32,33], the presence
of nonuniform fluid concentration necessitates fine resolution in the
thickness direction to accurately represent deviations of fluid pressure.

∗ Corresponding author.
E-mail addresses: xiaojing.tang@tum.de (X. Tang), dong.wu@tum.de (D. Wu), zhentong.wang@tum.de (Z. Wang), oskar.haidn@tum.de (O. Haidn),

xiangyu.hu@tum.de (X. Hu).

While the traditional full-dimensional or volume-particle SPH method
with isotropic resolutions can address this issue, as far as the authors
knowledge, the application of thin structure involving the parameter
variation in the thickness direction is still limited, since it often entails
high computational costs, which promotes the adoption of anisotropic
resolutions.

In the context of anisotropic particle resolution within SPH, the
particle spacing along the large aspect of thin structures is much
larger than that along the thickness direction. With such anisotropic
discretization, adopting an isotropic smoothing kernel which defines
a spherical influence domain in SPH becomes unsuitable. To main-
tain consistency, the adaptive smoothed particle hydrodynamics(ASPH)
method, a variant of SPH incorporating anisotropic smoothing kernels,
is considered. The strategy of anisotropic smoothing kernels in SPH
was initially introduced by Bicknell and Gingold [34] to study the
cosmological dynamics. Then, Owen et al. [35] refined the ASPH
formulation in a mathematical formalism, replacing a scalar smoothing
length, which defines a spherical interpolation kernel, with a smoothing
tensor to identify ellipsoidal kernels through the use of a locally linear
transformation of coordinates. Liu and Liu [36] employed the ASPH
method to simulate micro-channel flows with high length width ratio
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where the adaptive kernel conforms to the geometry, thereby saving
computational time. With a more generalized elliptical influence do-
main, ASPH has been used to simulate high-strain Lagrangian solid
dynamics, where anisotropic volume changes occur [37]. By intro-
ducing the concept of ASPH with ellipsoidal kernels, Fu et al. [38]
facilitated a relaxation of particle distribution towards an anisotropic
target functions. However, to the best of the authors knowledge, the
utilization of ASPH in the modeling of thin structures has not yet been
documented.

In this paper, the concept of ASPH is extended to simulate thin
structure problems in the combination with anisotropic resolutions.
The smoothing kernel is defined coupled with a linear transformation
tensor, and thus the support domain of one particle turns out to be
an ellipsoid area, rather than a spherical domain. Furthermore, the
correction matrix applied to the kernel gradient for first-order consis-
tency is modified accordingly by integrating the nonisotropic kernel
within the total Lagrangian framework in ASPH. The reminder of this
paper is organized as follows. Section 2 summaries the theory and
governing equations for elastic solid mechanics, along with a fluid–
structure interaction model for porous media deforming. Additionally,
this section covers previous knowledge of ASPH and the description
of anisotropic discretization. In Section 3, the correction matrix evolv-
ing the nonisotropic kernel and the discretized governing equations
within the total Lagrangian integration are presented. Section 4 outlines
six numerical examples, including both two-dimensional and three-
dimensional cases to comprehensively examine the ASPH method. The
results obtained using the proposed method are compared with those
from SPH method. Finally, Section 5 presents concluding remarks.
The source code and data necessary for replicating this numerical
simulations presented in this work can be accessed through SPHinXsys,
an open-source multi-physics SPH library, available at https://www.
sphinxsys.org.

2. Governing equations and ASPH theory

2.1. Continuum kinematics

2.1.1. Motion and deformation
In this section, we concisely introduce the fundamental physical

concepts of solid deformation, along with the relevant notations and
symbols within the total Lagrange framework that we use in the sub-
sequent models. Our analysis considers a solid body  that occupies
two regions: 0 and , representing the body configurations at time
𝑡0 (where 𝑡 = 0) and 𝑡, respectively. In the initial configuration 0,
the position vector of a material point is denoted by 𝐗 ∈ 0, while
in the current configuration 𝐱 ∈ . The motion of the solid body,
represented by the invertible mapping 𝜙, transforms a material point 𝐗
to its corresponding vector 𝐱 = 𝜙(𝐗, 𝑡), as shown in Fig. 1. Accordingly,
the Lagrangian velocity of a material point is given by 𝐯(𝐗, 𝑡) = 𝑑𝜙(𝐗,𝑡)

𝑑𝑡 .
The deformation gradient 𝐅, which characterizes the deviation of a
material point from its initially undeformed position to its deformed
position, can be calculated from the displacement vector 𝐮 = 𝐱 − 𝐗 by
the following equation:

𝐅 = 𝑑𝐱
𝑑𝐗

= ∇0𝐮 + 𝐈, (1)

where ∇0 denotes the gradient operator defined in the initial reference
configuration, 𝐈 the unit matrix.

2.1.2. Solid dynamics equations
The relevant governing equations are derived from the conservation

laws of mass and momentum, while accounting for the characteristics
of elastic materials. With the Lagrangian framework assumption, the
governing equations of elastic structure read
{
𝜌 = 𝜌0

1
𝐽

𝜌0
𝑑𝐯
𝑑𝑡 = ∇0 ⋅ 𝐏𝑇 .

(2)

where 𝜌 and 𝜌0 are the densities in the current configuration  and
the initial configuration 0, respectively. The corresponding Jacobian
determinant term 𝐽 = det(𝐅) indicates the local volume gain 𝐽 > 1
or loss 𝐽 < 1. 𝐯 denotes the velocity, and 𝑇 the matrix transposition
operator. Here, the first Piola–Kirchhoff stress tensor 𝐏, relating to the
stress within the initial configuration, can be obtained by

𝐏 = 𝐅𝐒, (3)

where 𝐒 is the symmetric second Piola–Kirchhoff stress tensor. In
the case of isotropic and linear elastic material behavior, 𝐒 can be
determined through the following

𝐒 = 𝜆tr (𝐄) 𝐈 + 2𝜇𝐄, (4)

where 𝐄 is the Green–Lagrangian strain, given by

𝐄 = 1
2
(
𝐅𝐅𝑇 − 𝐈

)
. (5)

Here, 𝜆 and 𝜇 denoting the Lamé parameters. Usually, the key material
properties include the Young’s modulus 𝐸, Poisson ratio 𝜈, shear mod-
ulus 𝐺 = 𝜇, bulk modulus 𝐾 = 𝜆+2𝜇∕3, and each of them is dependent
on the others as

𝐸 = 2𝐺 (1 + 𝜈) = 3𝐾 (1 − 2𝜈) , (6)

2.1.3. Fluid–structure interaction equations
Considering a porous media partially filled with a fluid, following

Refs. Gawin et al. [39], Korsawe et al. [40], Atkin and Craine [41], and
Zhao and Papadopoulos [42], the presence of fluid induces pressure,
leading to a deformation of the structural solid in the media. The total
first Piola–Kirchhoff stress tensor 𝐏 acting on the solid is the sum of 𝐏𝑠
and the fluid pressure stress 𝐏𝑙, written as:

𝐏 = 𝐏𝑠 + 𝐏𝑙 = 𝐅𝐒 − 𝐽𝝈𝑙𝐅−𝑇 = 𝐅𝐒 − 𝐽𝑝𝑙𝐅−𝑇 , (7)

where 𝝈𝑙 is the Cauchy stress arising from the fluid, and 𝑝𝑙 = 𝐶𝑐
represents the fluid pressure, with 𝐶 being a material constant, 𝑐 the
fluid saturation in the porous media. With the fluid dynamics adhering
to the principles of diffusion, the evolution of the fluid saturation in
the porous media can be expressed as
𝑑𝑐
𝑑𝑡

= ∇ ⋅ (𝐷∇𝑐), (8)

indicating that the fluid saturation variation is proportional to the
diffusivity 𝐷.

2.2. ASPH method

Derived from smoothed particle hydrodynamics (SPH) method, the
adaptive smoothed particle hydrodynamics (ASPH) method is predi-
cated on an integral formulation, wherein pertinent physical quantities
are approximated via the integration of neighboring particles, but the
kernel function being evolved is adaptive. Compared with the SPH
method established in general coordinates, an ellipsoidal kernel is
used in ASPH to simulate problems with anisotropic particle volume
changes, which can be portrayed as a localized, linear shift of coor-
dinates. This shift transforms the coordinates to a system where the
anisotropic volume changes appear uniform in all directions. This trans-
formation is described by a tensor 𝐆, which involves tensor smoothing
lengths and angles of rotation between the kernel and real frames.
Consequently, ASPH can be used to simulate scenarios, which isotropic
SPH smoothing algorithm is seriously mismatched to.

2.2.1. Fundamental and theory of ASPH
Following Ref. Owen et al. [35], the position vector 𝐫 in the tra-

ditional isotropic SPH, is generalized to a normalized form 𝜼 in ASPH
through a linear coordinate transformation tensor 𝐆. This transforma-
tion is expressed as 𝜼 = 𝐆𝐫, resulting in the representation of the
kernel function 𝑊 (𝜼) = 𝑊 (𝐆𝐫). In contrast to the isotropic kernel, the
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Fig. 1. Finite deformation process on a body .

normalization undergoes a change: SPH: 𝜼 = 𝐫∕ℎ → ASPH: 𝜼 = 𝐆𝐫. It is
evident that SPH can be regarded as a degenerate case of ASPH, where
the tensor 𝐆 becomes diagonal with a constant component of 1∕ℎ.

Under such notations, the ASPH kernel value is obtained by 𝑊 ′(𝐆𝐫)
and the kernel has the normalization property of

1 = ∫ 𝑊 (𝜼)𝑑𝜼 = ∫ 𝑊 ′(𝐆𝐫)𝑑𝐫 = ∫ ‖𝐆‖𝑊 (𝜼)𝑑𝐫. (9)

Here, ‖𝐆‖𝑑𝐫 = 𝑑𝜼, where ‖𝐆‖ is the determinant term ‖𝐆‖ = det(𝐆).
The discrete form of one continuously defined function 𝑓 at a particle
𝑖 is stated as

𝑓𝑖 = ∫ 𝑓𝑊
(
𝜼𝑖 − 𝜼

)
𝑑𝜼 = ∫ 𝑓‖𝐆‖𝑊 (𝜼𝑖 − 𝜼)𝑑𝐫, (10)

where 𝑖 is the particle index and 𝜼𝑖 the normalized particle position. By
introducing the particle summation, Eq. (10) can be modified to

𝑓𝑖 =
∑
𝑗
‖𝐆‖𝑉𝑗𝑓𝑗𝑊

(
𝜼𝑖 − 𝜼𝑗

)
=
∑
𝑗
‖𝐆‖𝑚𝑗

𝜌𝑗
𝑓𝑗𝑊 (𝜼𝑖 − 𝜼𝑗 ), (11)

where 𝑉𝑗 is the volume of the 𝑗th neighboring particle, 𝑚𝑗 and 𝜌𝑗 the
particle mass and density, respectively, 𝜼𝑖𝑗 = 𝜼𝑖 − 𝜼𝑗 the normalized
particle distance vector pointing from particle 𝑗 to 𝑖.

In addition, with the gradient of the kernel function ∇𝑊 (𝜼) being
expressed as [35]

∇𝑊 (𝜼) = ∇𝑊 ′(𝐆𝐫) = 𝜕𝑊 (𝐆𝐫)
𝜕𝐫

= 𝜕𝜼
𝜕𝐫
𝜕𝑊
𝜕𝜼

= 𝐆𝜼
𝜂
𝜕𝑊
𝜕𝜼

, (12)

one has the approximation of derivative of a variable field 𝑓 at particle
𝑖 by

∇𝑓𝑖 ≈ ∫𝛺 ∇𝑓 (𝐫)𝑊 (𝐫𝑖 − 𝐫, ℎ)𝑑𝑉

= −∫𝛺 𝑓 (𝐫)∇𝑊
′ (𝐆 (

𝐫𝑖 − 𝐫
))
𝑑𝑉

= −‖𝐆‖∫𝛺 𝑓 (𝐫)∇𝑊 (𝜼)𝑑𝑉 ,

(13)

Incorporating the particle summation, Eq. (13) can be modified into a
weak form as

∇𝑓𝑖 = ∇𝑓𝑖 − 𝑓𝑖∇1 ≈ −2
∑
𝑗
‖𝐆‖𝑉𝑗𝑓𝑖𝑗∇𝑖𝑊𝑖𝑗 , (14)

where 𝑓𝑖𝑗 = (𝑓𝑖 + 𝑓𝑗 )∕2 is the inter-particle average value. The weak-
form approximation of the derivative is applied when computing sur-
face integration with respect to a variable for solving its conservation
law. In contrast with the weak form, Eq. (13) can be rewritten in the
strong form as

∇𝑓𝑖 = 𝑓𝑖∇1 + ∇𝑓𝑖 ≈
∑
𝑗
‖𝐆‖𝑉𝑗𝑓𝑖𝑗∇𝑖𝑊𝑖𝑗 , (15)

where 𝑓𝑖𝑗 = 𝑓𝑖−𝑓𝑗 is the inter-particle difference value. The strong form
approximation of the derivative is used to determine the local structure
of a field.

Considering a spatially varying smoothing tensor, which is linked
to the rotation angle of the semimajor axis of the support domain,
the kernel function is individually defined for each particle. Thus, the
kernel function needs to be symmetrized to ensure the conservation
of quantities such as linear momentum. The symmetrization of kernel
function 𝑊𝑖𝑗 and the gradient of which between two particles 𝑖 and 𝑗
can be implemented as the averaged formalism as

𝑊𝑖𝑗 =
1
2
(𝑊 (𝜼𝑖,𝑖𝑗 ) +𝑊 (𝜼𝑗,𝑖𝑗 )), ∇𝑊𝑖𝑗 =

1
2
(∇𝑊 (𝜼𝑖,𝑖𝑗 ) + ∇𝑊 (𝜼𝑗,𝑖𝑗 )), (16)

where

𝜼𝑖,𝑖𝑗 = 𝐆𝑖𝐫𝑖𝑗 , 𝜼𝑗,𝑖𝑗 = 𝐆𝑗𝐫𝑖𝑗 . (17)

Since the quantities are expressed by the integration of a series of
neighboring particles (each with the individual information including
positions 𝑟𝑗 , volume 𝑉𝑗) in both ASPH and SPH, the solid dynamic equa-
tions could be derived in ASPH using the same approach as that in SPH.
The point is to express quantities in terms of the normalized position
vector 𝜼 and replace the kernel gradient by a new one consisting of
tensor 𝐆 as in Eq. (12).

2.2.2. Transformation tensor 𝐆
Defined as a linear transformation that maps from real position

space (𝐫) to normalized position space (𝜼), 𝐆 is determined by the
coupling of the geometrically scaling transformation and the rotational
transformation, involving the smoothing lengths in different directions
and the rotation angle of the axes deviated from the real frame.
Detailed information can be found in the reference paper [35]. For a
two-dimensional case, with ℎ1 denoting the length in semimajor axis
direction and ℎ2 in the semiminor axis in an ellipse, 𝜃 being the rotation
angle of the semimajor axis compared to the real frame, 𝐆 is given by,

𝐆 =
[
ℎ−11 cos2 𝜃 + ℎ−12 sin2 𝜃 (ℎ−11 − ℎ−12 ) cos 𝜃 sin 𝜃
(ℎ−11 − ℎ−12 ) cos 𝜃 sin 𝜃 ℎ−11 sin2 𝜃 + ℎ−12 cos2 𝜃

]
. (18)

If a kernel frame is consistent with the real frame, in other words,
rotation angle 𝜃 = 0, 𝐆 can be simplified into

𝐆 =
(
ℎ−11 0
0 ℎ−12

)
. (19)

While for a more complex three-dimensional case, with a vector
(ℎ1, ℎ2, ℎ3) representing the smoothing lengths along different axes in
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the kernel frame, and the rotation angle (𝜔,𝜓, 𝜒) between the kernel
frame and the real (𝑥, 𝑦, 𝑧) frames, 𝐆 can be expressed as

𝐆 =
⎛⎜⎜⎝

𝐺11 𝐺21 𝐺31
𝐺21 𝐺22 𝐺32
𝐺31 𝐺32 𝐺33

⎞⎟⎟⎠
, (20)

where the six elements are defined as

𝐺11 = ℎ−11 𝜔2
1𝜓

2
1 + ℎ−12

(
𝜔1𝜓2𝜒2 − 𝜔2𝜒1

)2 + ℎ−13
(
𝜔1𝜓2𝜒1 + 𝜔2𝜒2

)2 ,
𝐺21 = ℎ−11 𝜔1𝜔2𝜓

2
1 + ℎ−12

(
𝜔1𝜓2𝜒2 − 𝜔2𝜒1

) (
𝜔2𝜓2𝜒2 + 𝜔1𝜒1

)

+ ℎ−13
(
𝜔2𝜓2𝜒1 − 𝜔1𝜒2

) (
𝜔1𝜓2𝜒1 + 𝜔2𝜒2

)
,

𝐺31 = −ℎ−11 𝜔1𝜓1𝜓2 + ℎ−12 𝜓1𝜒2
(
𝜔1𝜓2𝜒2 − 𝜔2𝜒1

)
+ℎ−13 𝜓1𝜒1

(
𝜔1𝜓2𝜒1 + 𝜔2𝜒2

)
,

𝐺22 = ℎ−11 𝜔2
2𝜓

2
1 + ℎ−12

(
𝜔2𝜓2𝜒2 + 𝜔1𝜒1

)2 + ℎ−13
(
𝜔2𝜓2𝜒1 − 𝜔1𝜒2

)2 ,
𝐺32 = −ℎ−11 𝜔2𝜓1𝜓2 + ℎ−12 𝜓1𝜒2

(
𝜔2𝜓2𝜒2 + 𝜔1𝜒1

)
+ℎ−13 𝜓1𝜒1

(
𝜔2𝜓2𝜒1 − 𝜔1𝜒2

)
,

𝐺33 = ℎ−11 𝜓2
2 + ℎ−12 𝜓2

1𝜒
2
2 + ℎ−13 𝜓2

1𝜒
2
1 .

(21)

Here, for a angle 𝑎 (𝑎 = 𝜔,𝜓 or 𝜒), 𝑎1 = cos 𝑎 and 𝑎2 = sin 𝑎. When
𝜔 = 𝜓 = 𝜒 = 0,

𝐆 =
⎛
⎜⎜⎝

ℎ−11 0 0
0 ℎ−12 0
0 0 ℎ−13

⎞
⎟⎟⎠
. (22)

Clearly, SPH can be considered as a special case of ASPH with ℎ1 =
ℎ2 = ℎ3 = ℎ and 𝜔 = 𝜓 = 𝜒 = 0. Tensor 𝐆 is only needed to
be calculated once. After 𝐆 is initialized, the kernel expressions are
accordingly determined.

2.3. Kernel function with anisotropic smoothing

In the following cases, we use the Wenland kernel function and its
first derivative which can be further written to match the anisotropic
ellipsoidal smoothing kernel as

𝑊 𝑣−𝐷(𝜂) = 𝐴𝑣−𝐷
{
(1 − 𝜂

2 )
4(1 + 2𝜂), 0 ≤ 𝜂 ≤ 2

0, 𝜂 > 2
(23)

∇𝑊 𝑣−𝐷(𝜂) = 𝐴𝑣−𝐷𝐆𝜼
𝜂

{
−5𝜂(1 − 𝜂

2 )
3, 0 ≤ 𝜂 ≤ 2

0, 𝜂 > 2
(24)

𝜕𝑊 𝑣−𝐷(𝜂)
𝜕𝜂

= 𝐴𝑣−𝐷‖𝐆𝜼
𝜂

‖
{
−5𝜂(1 − 𝜂

2 )
3, 0 ≤ 𝜂 ≤ 2

0, 𝜂 > 2
(25)

where 𝑣 means the dimension and

𝐴1−𝐷 = 3
4
‖𝐆‖, 𝐴2−𝐷 = 7

4𝜋
‖𝐆‖, 𝐴3−𝐷 = 21

16𝜋
‖𝐆‖. (26)

Benefiting from the tensor 𝐆, the displacement between two particles
is mapped to the generalized position vector 𝜼, the norm of which
is compared with the cutoff radius to calculate the kernel function
and kernel gradient value. Using normalized position vector 𝜼 rather
than 𝐫∕ℎ in the discretization of quantities, the expression of dynamic
equations in SPH and ASPH are identical.

2.4. Anisotropic resolution and support domain

Considering a thin structure with a high aspect ratio of length
and thickness 𝑅 = 𝑙∕𝑑, showing in Fig. 2(b), with an isotropic SPH
discretization drafted in Fig. 2(a) (a cross section is used for an exam-
ple), there is a minimal neighboring particle number in each direction
to guarantee the numerical accuracy, and thus a large R would lead
to a large amount of particles, increasing the computation efforts.
Therefore, an anisotropic arrangement 𝑑𝑝𝑥 ≠ 𝑑𝑝𝑦 ≠ 𝑑𝑝𝑧 is required
to reduce the total particle number, as depicted in Fig. 2(c).

As for the definition of neighboring particles, in standard SPH with
a scalar smoothing length ℎ, the influence area of any given particle
is typically represented by a sphere with a radius 𝑟, where usually
2ℎ ≤ 𝑟 ≤ 3ℎ. However, in a simulation adopting the anisotropic
resolution, a sphere influence domain sampling isotropic interpolation

may result in either an excessive or insufficient coverage of neighboring
particles, depending on the magnitude of the smoothing length ℎ. This
issue is illustrated in Fig. 3, focusing on a two-dimensional scenario.
In the ASPH method, the conventional spherical support domain is
substituted with an ellipsoidal shape in three-dimensional simulations
or an ellipse in two-dimensional contexts. These shapes allow for
different smoothing lengths to be applied along each axis, as depicted in
Fig. 4. Furthermore, to match curved structures accurately, the support
domain has to be rotated in ASPH simulations, as revealed in Fig. 4(b),
which means the transform tensor 𝐆 varies on each particle, resulting
in individually defined kernel functions.

3. ASPH discretization

3.1. Correction of the derivatives

To discretize the solid mechanics, we employ the initial undeformed
configuration as the reference. First, aiming to restore 1st-order consis-
tency, the configuration of particle 𝑖 is corrected with a tensor 𝐁 in the
total Lagrangian formalism, expressed as [43,44]

𝐅0
𝑖 =

(∑
𝑗
𝑉𝑗
(
𝐫0𝑗 − 𝐫0𝑖

)
⊗ ∇0

𝑖𝑊𝑖𝑗

)
𝐁0
𝑖 = 𝐈, (27)

where 𝐫0𝑖 and 𝐫0𝑗 denote the positions of particles 𝑖 and 𝑗 in the reference
configuration. Equivalently,

𝐈 =
∑
𝑗
𝑉𝑗
(
𝐫0𝑗 − 𝐫0𝑖

)
⊗ (∇0𝑇

𝑖 𝑊𝑖𝑗𝐁0
𝑖 ) =

∑
𝑗
𝑉𝑗
(
𝐫0𝑗 − 𝐫0𝑖

)
⊗ (𝐁0𝑇

𝑖 ∇0
𝑖𝑊𝑖𝑗 )𝑇 . (28)

The gradient correction 𝐁 is operated over ∇0 to correct the kernel. We
define

∇̃0 = 𝐁0𝑇
𝑖 ∇0, (29)

where the symbol ∇̃0
𝑖 represents the corrected approximation of the

differential operator with respect to the initial material coordinates.
From Eq. (27), involving the tensor 𝐆, the correction matrix 𝐁0 of
particle 𝑖 in ASPH can be consequently calculated as:

𝐁0
𝑖 =

(∑
𝑗
𝑉𝑗

(
𝐫0𝑗 − 𝐫0𝑖

)
⊗ ∇0

𝑖𝑊𝑖𝑗

)−1

=

(∑
𝑗
𝑉𝑗

(
𝐫0𝑗 − 𝐫0𝑖

)
⊗ (𝐆𝑖

𝜼𝐢𝐣
𝜂𝑖𝑗

𝜕𝑊
𝜕𝜂𝑖𝑗

)

)−1

. (30)

In total Lagrangian formulation, the neighborhood of particle 𝑖 is
defined in the initial configuration, and this set of neighboring parti-
cles remains fixed throughout the entire simulation. Therefore, 𝐁0

𝑖 is
computed only once under the initial reference configuration.

3.2. Corrected governing equations discretization

Considering the kernel correction, the momentum conservation in
Eq. (2) can be approximated in the weak form as
𝑑𝐯𝑖
𝑑𝑡

= 2
𝜌𝑖

∑
𝑗
𝑉𝑗 𝐏̃𝑖𝑗∇0

𝑖𝑊𝑖𝑗 , (31)

where 𝜌𝑖 represents the density of particle 𝑖, 𝐏̃𝑖𝑗 is the averaged first
Piola–Kirchhoff stress of the particle pair (𝑖, 𝑗), and to keep the con-
servative of particles, the correction matrix 𝐁0𝑇 is performed on each
particle, thus 𝐏̃𝑖𝑗 is stated as

𝐏̃𝑖𝑗 =
1
2

(
𝐏𝑖𝐁0𝑇

𝑖 + 𝐏𝑗𝐁0𝑇
𝑗

)
. (32)

Note that in the anisotropic algorithm, considering the unsymmetrical
smoothing kernel in different directions, 𝐁0𝑇 instead of 𝐁0 is conducted
on the kernel gradient operation.
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Fig. 2. Schematic view of a thin structure (a), isotropic resolution (b), anisotropic resolution (c).

Fig. 3. Isotropic and anisotropic resolutions with large and small kernel smoothing length ℎ in SPH.

Fig. 4. Elliptical smoothing kernel (a) and rotated elliptical smoothing kernel (b) with an anisotropic discretization.

The first Piola–Kirchhoff stress tensor is dependent on the defor-
mation tensor 𝐅, referring to Eq. (27), the time derivative of which is
computed from

𝑑𝐅𝑖
𝑑𝑡

=

(∑
𝑗
𝑉𝑗

(
𝐯𝑗 − 𝐯𝑖

)
⊗ ∇0

𝑖𝑊𝑖𝑗

)
𝐁0
𝑖 . (33)

Referring to the work of Español and Revenga [45], the discretized form
of the fluid diffusion equation Eq. (8), within the 𝐫 coordinate system

can be expressed as follows:

(∇2𝑐)𝐫 = 2𝐷 ∫
[
𝑐(𝐫) − 𝑐

(
𝐫′
)]

𝑟
𝜕𝑊 (𝐫)
𝜕𝑟

𝑑𝐫 +  (
ℎ2

)
. (34)

Following the methodology of Tran-Duc et al. [46], upon implementing
the coordinate transformation 𝐫 = 𝐆−1𝜼, the relationship between the
weight functions 𝑊 (𝜼) and 𝑊 (𝒓) is given by

𝑊 (𝐫) = 1
‖𝐆−1‖𝑊 (𝜼) , (35)
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and

𝑟 = 𝜂‖𝐆−1𝐞𝜼‖, (36)

with 𝐞𝜼 = 𝜼∕𝜂 being the unit vector. Utilizing Eqs. (35) and (36), we
obtain
𝜕𝑊 (𝐫)
𝜕𝑟

= 1
‖𝐆−1‖

𝜕𝑊 (𝜼)
𝜕𝜂

𝜕𝜂
𝜕𝑟

= 1
‖𝐆−1‖

1
‖𝐆−1𝐞𝜼‖

𝜕𝑊 (𝜼)
𝜕𝜂

.
(37)

Consequently, considering 𝑑𝐫 = ‖𝐆−1‖𝑑𝜼, Eq. (34) can be reformulated
in the transformed 𝜼 coordinates systems as

∇2𝑐 = 2∫
[
𝑐(𝜼) − 𝑐

(
𝜼′
)]

𝜂‖𝐆−1𝐞𝜼‖2
𝜕𝑊
𝜕𝜂

𝑑𝜼 +  (
ℎ2

)
. (38)

Eq. (38) can be discretized using a particle approximation, yielding

(∇2𝑐)𝑖 = 2
∑
𝑗
𝑉𝑗
𝑐𝑖𝑗
𝜂𝑖𝑗

1
‖𝐆−1𝐞𝑖𝑗‖2

𝜕𝑊
𝜕𝜂𝑖𝑗

, (39)

where 𝑐𝑖 − 𝑐𝑗 denotes the saturation difference of particles 𝑖 and 𝑗,
𝐞𝑖𝑗 = 𝜼𝑖𝑗∕𝜂𝑖𝑗 , with 𝜂𝑖𝑗 = ‖𝜼𝑖 − 𝜼𝑗‖ being the normalized distance.

4. Numerical examples

In this section, we apply this anisotropic kernel algorithm into
different cases to test the accuracy and efficiency. Firstly, we use the
two dimensional oscillating beam with different anisotropic resolutions
and corresponding kernel feature to test the accuracy and validate
the convergence. Secondly, we simulate the deformation of two and
three dimensional flat thin plate to test the efficiency and compare the
results with those from SPH method. Then, we apply the anisotropic
kernel with rotation tensor to simulate the deformation of two dimen-
sional curved shell and three dimensional curved thin roof. Finally, the
fluid–structure interaction membrane is simulated to show the specific
application of ASPH method. In all cases, simulation using SPH method
are carried out for result comparisons. We apply ℎ2 = 1.15𝑑𝑝 and
ℎ1 = 𝑟ℎ2 with 𝑑𝑝 being the particle spacing in the thickness direction.

4.1. Oscillating beam

For the first example, we consider a thin oscillating plate, which has
been previously analyzed both theoretically [47] and numerically [48,
49] in the literature. A planar beam is modeled with one edge fixed
by layers of particles, allowing the body to bend freely. This beam has
a length of 𝐿 = 0.2 m, perpendicular to the fixed edge, and thickness
𝐻 = 0.02 m. With the length edge of plate aligned parallel to the 𝑥-axis,
the end of this beam is subjected to a initial velocity profile defined as
𝑣𝑦(𝑥) = 𝑉𝑓

𝐹 (𝑥)
𝐹 (𝐿) 𝑐0, where the constant 𝑉𝑓 = 0.05 m∕s, and

𝐹 (𝑥) = (cos 𝑘𝐿 + cosh 𝑘𝐿)(cosh 𝑘𝑥 − cos 𝑘𝑥)

+ (sin 𝑘𝐿 − sinh 𝑘𝐿)(sinh 𝑘𝑥 − sin 𝑘𝑥), (40)

where 𝑘 is the wave number, related with 𝐿 as 𝑘𝐿 = 1.875. The
plate properties are taken as Young’s modulus 𝐸 = 2.0 MPa, density
𝜌 = 1000.0 kg∕m3, Poisson ratio 𝜈 = 0.3975. In this simulation, the
particle spacing along the 𝑥-axis (𝑑𝑝𝑥) and 𝑦-axis (𝑑𝑝𝑦) is uniformly set
at 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 0.002 m in SPH method. In ASPH approach, we define an
anisotropic ratio 𝑟 = 𝑑𝑝𝑥∕𝑑𝑝𝑦 to characterize the anisotropic resolution
and the particle volume is expressed by 𝑑𝑝𝑥 𝑑𝑝𝑦. The simulation of
the oscillating beam is conducted by using both the standard SPH
algorithm and ASPH with varying anisotropic kernel function ratios
corresponding to different 𝑟 values to ensure the neighboring particle
number remains consistent across different scenarios.

Using the ASPH method with anisotropic ratio 𝑟 = 4.0, particle
number in 𝑦 direction (the vertical direction) 𝑁𝑦 = 10, Fig. 5 illustrates
snapshots of the beam deformation colored by von Mises strain at

Fig. 5. 2D oscillating beam: the deformation colored by von Mises strain at different
time instants within the first oscillation period using ASPH with anisotropic ratio r =
4.0, 𝑁𝑦 = 10.

different time instances within the first oscillation period. Fig. 6 shows
the deformed configuration colored by von Mises strain when time =
1.0 s using SPH and ASPH methods with different anisotropic ratios
r = 2.0, 4.0, 8.0. Clearly, the contours exhibit consistent deformation
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Fig. 6. 2D oscillating beam: the deformation colored by von Mises strain at t = 1.0 s from SPH and ASPH with different anisotropic ratios.

Fig. 7. 2D oscillating beam: the von Mises strain contours at t = 1.0 s from SPH and ASPH (r = 8.0) with high resolutions.

patterns and stress distributions across both methods, regardless of
the anisotropic ratios. To test the accuracy, the convergence tests are
performed. We increase the resolution to 𝑁𝑦 = 40 when using SPH and
𝑁𝑦 = 80 for ASPH with anisotropic ratio r = 8.0. The resultant results
revealing the von Mises strain contours at time t = 1.0 s is represented
in Fig. 7, illustrating a closely matched deformation pattern. Taking
the anisotropic ratio 𝑟 = 4.0 and 𝑟 = 8.0 as examples, we maintain
𝑟 constant while varying the total particle with four different particle
distribution densities 𝑁𝑦 = 𝐻∕𝑑𝑝𝑦 = 10, 𝑁𝑦 = 𝐻∕𝑑𝑝𝑦 = 20, 𝑁𝑦 =
𝐻∕𝑑𝑝𝑦 = 40, and 𝑁𝑦 = 𝐻∕𝑑𝑝𝑦 = 60 with 𝑑𝑝𝑥 = 4𝑑𝑝𝑦 and another
four different resolutions with 𝑟 = 8.0, 𝑑𝑝𝑥 = 8𝑑𝑝𝑦. Fig. 8 plots
the vertical displacement of the midpoint at the end of this beam
as a function of time. With increasing particle density, the disparity
in the amplitude and frequency of the oscillations between different

resolutions diminishes rapidly, indicating a convergence pattern with
both two ratios. The converged results obtained from SPH and ASPH
with r being 4.0 and 8.0 respectively are presented in Fig. 9. Three
sets of results are visually indistinguishable in both the horizontal and
vertical displacement of the midpoint at the beam end, validating the
reliability of the ASPH method. To assess the accuracy and efficiency of
this ASPH method quantitatively, cases with 𝑁𝑦 = 20 applying various
anisotropic ratios are investigated. A comparison of the particle number
𝑁 , the first oscillation period 𝑇 , computation time 𝑡 as well as the
difference of 𝑇 between two methods is presented in Table 1. Evidently,
pronounced computation time is saved while maintaining convergence.
For instance, with an anisotropic ratio 𝑟 = 4, the particle number is
reduced to a quarter of that in SPH algorithm, but the difference is
merely 0.022%, nearly negligible.
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Fig. 8. 2D oscillating beam: convergence test of different particle spacing with different anisotropic ratios.

Fig. 9. 2D oscillating beam: comparisons of the converged result obtained from SPH and the present ASPH method with different anisotropic ratios.

Table 1
2D oscillating beam: quantitative comparison of the accuracy and efficiency of this
present ASPH algorithm with different anisotropic ratios.

Method 𝑁 𝑡 (s) Time saved 𝑇 Difference

SPH 4400 111.59 – 0.2718 –
ASPH ratio = 2.0 2200 56.21 49.63% 0.2718 0.0%
ASPH ratio = 4.0 1100 30.65 72.53% 0.2726 0.022%
ASPH ratio = 8.0 540 18.21 83.68% 0.2522 0.053%

4.2. 2D thin flat plate

In this section, a thin flat plate with length being 𝐿 = 508 mm,
width 𝑊 = 25.4 mm is considered. A neo-Hookean material with
Young’s modulus 𝐸 = 53779.1 MPa, density 𝜌 = 1600.0 kg∕m3, Poisson
ratio 𝜈 = 0.3 is employed for this structure. This pate is subjected to
a uniform upward pressure 𝑝 = 0.01𝐸 with both sides constrained,
implying zero displacement (𝑢𝑥 = 𝑢𝑦 = 0) along all edges. To show
the time evolution of the deformation, this plate is modeled using
the proposed ASPH method with anisotropic ratio = 4.0, 𝑁𝑦 = 10,
i.e., 𝑑𝑝𝑥 = 4 𝑑𝑝𝑦 = 4 𝑊 ∕𝑁𝑦. The physical simulation time is 0.8s. The
simulated deformation evolution is illustrated in Fig. 10, illustrating
the upward bending of the plate under the applied load. A consistent
trend is observed across different configurations. Furthermore, we im-
plemented other three computations using the isotropic SPH method
and the present ASPH with different ratios corresponding to varying

particle anisotropy. The stable configurations at the final time instants
are shown in Fig. 11. It is observed all simulations exhibit similar
behavior in terms of strain distribution and deformation pattern.

The nondimensionalized deflection variation of the central point of
the plate against time for all simulation condition is depicted in Fig. 12.
It is observed that the position of the center point remains consistent
across all anisotropic ratios. Notably, compared to the SPH solution,
the present ASPH method yields results of good quality, demonstrating
both accuracy and high efficiency.

4.3. 3D thin flat plate

Similarly, a 3D thin flat plate with equal length and width dimen-
sions of 𝐿 = 𝑊 = 508 mm, and a thickness of 𝐻 = 25.4 mm, is
simulated to assess the performance of the ASPH method. The same
material model as the one used in the 2D plate simulation is employed,
with identical parameter values. with all edges constrained by layers
of particles 𝑢𝑥 = 𝑢𝑦 = 𝑢𝑧 = 0, an upward pressure load is applied
to this flat plate uniformly. Clearly, a large ratio of the length versus
thickness necessitates a substantial number of particles if an isotropic
particle spacing is applied. Under the upward pressure load, the final
deformation configurations colored by von Mises strain, simulated
using both SPH method and ASPH with anisotropic resolutions, are
illustrated in Fig. 13. The particle number in the 𝑧 direction is set as 𝑁𝑧
= 10, with 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 𝑟 𝑑𝑝𝑧 = 𝑟 𝐻∕𝑁𝑧, and anisotropic ratio 𝑟 is varied
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Fig. 10. 2D plate: the deformation colored by von Mises strain at different time instants under the pull force using ASPH with anisotropic ratio = 4.0, 𝑁𝑦 =10.

Fig. 11. 2D thin plate: the deformation at the final time instant colored by von Mises strain from SPH and ASPH with different anisotropic ratios.

as 𝑟 = 2.0, 𝑟 = 4.0 and 𝑟 = 8.0, respectively. Similarly strain distribution
and deformation patterns are observed across all four cases.

To facilitate a more clear observation, the time histories of the
nondimensionalized displacement in the 𝑧 direction at the center of
the plate for various ASPH anisotropic ratios are depicted in Fig. 14.

With consistent load values and boundary conditions, the lines repre-
senting SPH and ASPH results coincide at the latter stage of simulation,
i.e., the final stable results converge to the same value after slight
fluctuations. Table 2 concludes the specific results values from these
four cases including the particle number 𝑁 , computation time 𝑡 as well
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Fig. 12. 2D thin plate: the nondimensionalized 𝑦 position of the very center point of
the beam, from SPH and ASPH with different anisotropic ratios.

Table 2
3D thin flat plate: quantitative comparison of the accuracy and efficiency of this present
ASPH algorithm with different anisotropic ratios.

Method 𝑁 𝑡 (s) Time saved z/H Difference

SPH 428 490 2366.97 – 3.314 –
ASPH ratio = 2.0 114 490 630.13 73.38% 3.338 0.75%
ASPH ratio = 4.0 32 490 230.61 90.26% 3.343 0.85%
ASPH ratio = 8.0 10 240 94.69 96.0% 3.320 0.18%

as the difference of the nondimensionalized deflection in the 𝑧 direction
compared with the SPH method. From this table, it can be inferred that
the anisotropic kernel algorithm reduces both the number of particles
and the computational time. Despite small deviations existing among
different ASPH ratios, the results from ASPH are all very close to
those from SPH method, with the difference no exceeding 2%, while
achieving notable time savings.

4.4. 2D shell

Aiming to demonstrate the applicability of this ASPH method to
curing structures, another test involving a 2D section of a cylindrical
shell which is degenerated from a 3D roof, is simulated. The shell has
a radius of 𝑅 = 100 m and the angle from the left edge to the right edge
of 𝛼 = 20◦, resulting in an arc length of 𝐿 = 𝛼𝑅 = 34.88 m, while the
thickness 𝐻 = 1 m, meaning the aspect ratio of length versus thickness
is 34.88. Employing an elastic material model with Young’s modulus
𝐸 = 432 MPa, density 𝜌 = 36.0 kg∕m3, Poisson ratio 𝜈 = 0.3, the shell is
subjected to uniform gravity as 𝑝 = 144 KPa, while the side edges are
clamped with layers of particles. The particle number in the 𝑦 direction
is set to 𝑁𝑦 = 6, resulting in a particle spacing of 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 𝐻∕6 in
SPH and 𝑑𝑝𝑥 = 𝑟 𝑑𝑝𝑦 in ASPH, where 𝑟 = 2.0, 4.0 and 8.0 are considered
respectively in this case.

With a simulation time of 𝑡 = 0.8 s, Fig. 15 portrays the initial
and finally stable configurations of this shell modeled using both SPH
method and ASPH method with anisotropic ratios of 𝑟 = 2.0, 4.0, and
8.0. Evidently, the deformation pattern obtained from SPH and ASPH
exhibit good agreement. With increased resolution, a comparison of
von Mises strain contours at the final time step is undertaken, utilizing
SPH with 𝑁𝑦 = 12 and ASPH (with anisotropic ratio r = 8) with 𝑁𝑦 =
48, as depicted in Fig. 16. This comparison reveals a closely matched
deformation pattern. Furthermore, considering the temporal evolution
of von Mises strain at the end of the shell, derived from SPH and

Table 3
3D roof: quantitative comparison of the accuracy and efficiency of this present ASPH
algorithm with different anisotropic ratios.

Method 𝑁 𝑡 (s) Time saved z/H Difference

SPH 183 119 7686.64 – 4.137 –
ASPH ratio = 2.0 47 459 2158.19 71.92% 4.236 2.42%
ASPH ratio = 4.0 12 599 551.77 92.82% 4.345 5.03%
ASPH ratio = 8.0 3569 146.82 98.09% 4.396 6.26%

ASPH with the same number of particles in the 𝑥-direction, is plotted in
Fig. 17, illustrating identical stable solutions. For a quantitative assess-
ment, we present the nondimensionalized vertical displacements of the
shell midpoint against time, obtained from two methods with differing
r, as shown in Fig. 18(a). Additionally, to validate the accuracy, the
converged outcomes from both SPH and ASPH methods with r = 8
are illustrated in Fig. 18(b). The outcomes derived from these two
methodologies exhibit good agreement, affirming the reliability and
robustness of the ASPH approach.

4.5. 3D thin roof

We consider a thin roof having the same physical configuration as
the two dimensional shell, consisting of a radius of 𝑅 = 100 m, 𝛼 = 20◦
and thickness of 𝐻 = 1 m but in three-dimensional with a width
of 𝑊 = 20 m. The same elastic material model as that used in the
two-dimensional shell is applied, with Young’s modulus 𝐸 = 432 MPa,
density 𝜌 = 36.0 kg∕m3, and Poisson ratio 𝜈 = 0.3. In this model, the roof
motion is induced by a uniform gravity pressure applied on the whole
roof, represented by 𝑝 = 144 kPa, while hinged boundary conditions are
applied at the straight edges perpendicular to the 𝑦 direction. The initial
spacing between particles in the 𝑧 direction is set to 𝑑𝑝𝑧 = 𝐻∕6 = 0.1667
m, resulting in a particle spacing of 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 𝑑𝑝𝑧 = 0.1667 m in SPH
method. and 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 𝑟 𝑑𝑝𝑧 in ASPH. Similarly, simulations are
carried out in four different cases 𝑟 = 2.0, 4.0, and 8.0.

The initial and finally stable states of the roof under SPH and ASPH
with different anisotropic ratios are displayed in Fig. 19. Although quite
similar results are observed in both methods, it should be noted that the
particle number is significantly reduced by using ASPH method. The
accuracy of this ASPH method numerical simulation is typically mea-
sured by the nondimensionalized z-displacement of the central point
of the roof, plotted in Fig. 20(a). Despite showing different oscillating
pattern, the static solutions from four cases are closely converged. With
increasing resolution in ASPH (r = 8), the difference between results
significantly diminishes, as presented in Fig. 20(b). The converged
ASPH result (𝑁𝑧 = 24) closely aligns with the converged SPH result
(𝑁𝑧 = 9), affirming the reliability of the ASPH method. Table 3 lists the
comparison of different parameters in numerical format. Generally, the
results obtained by ASPH method differ from those obtained with the
SPH code by between 5% and 10%. The largest discrepancy, yielded by
ASPH with anisotropic ratio r = 8.0 is typically around 6.26%, which
is acceptable considering 98.09% reduction in computation time. With
an anisotropic ratio of 𝑟 = 2.0, using ASPH method saves 71.92%
of computation time with only a 2.42% difference compared with
SPH method. Absolutely, a smaller anisotropic ratio results in a closer
solution. Furthermore, the accuracy is expected to improve with an
increased resolution.

4.6. 3D thin membrane with internal pressure

In this section, we consider a biological case consisting a thin,
porous membrane partially filled with fluid, causing deformation under
internal pressure. The membrane is square-shaped with a length and
width of 𝐿 = 𝑊 = 2.5 mm and a thickness of 𝐻 = 0.125 mm, with
the boundary sides being constrained to fix it in place. The central
part of the membrane is in contact with a fluid droplet occupying
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Fig. 13. 3D thin plate: the deformation colored by von Mises strain from SPH and ASPH with different anisotropic ratios.

a circular region with a radius of 𝑅 = 0.15𝐿. To ensure a smooth
transition, the fluid saturation 𝑐 follows a function of 𝑐 = 𝑐0 (1−𝑅2∕𝑅2

0),
where 𝑐0 = 0.4, and 𝑅 denotes the distance of particles from the center
point of the membrane in 𝑥 − 𝑦 plane, yielding to 𝑅 < 𝑅0. Given
the thin nature but real thickness of the membrane, we assume the
upper half part is filled with fluid. This nonuniform concentration of
fluid necessitates fine enough resolution in the thickness direction to

represent this deviation. A shell model with only one layer particle
fails to indicate this difference, hence promoting the application of the
present ASPH method. The solid material is considered as an elastic
Nafion membrane, with water serving as the fluid. The physical prop-
erties and material parameters of this membrane are listed in Table 4,
obtained from previous research papers [32,33]. In the simulation,
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Table 4
Fluid–structure interaction: physical material parameters value of Nafion film.
Source: Data estimated from [32,33].
Parameters 𝜌 (kg∕m3) Pressure coefficient 𝐶 (MPa) Young modulus (MPa) Poisson ratio

Value 2000 3.0 8.242 0.2631

Fig. 14. 3D thin plate: the nondimensionalized 𝑧 position of the very center point of
the beam, from SPH, ASPH with different anisotropic ratios.

without specific explanation, eight particles are placed in the vertical
direction in all cases.

The fluid distribution contour of the membrane using ASPH with
an anisotropic ratio of 2.0 is depicted in Fig. 21, outlining the effect
area of internal pressure. The finally stable snapshots of this mem-
brane, colored by von Mises strain, obtained using SPH and ASPH with
different anisotropic ratios are displayed in Fig. 22. The presence of
the fluid droplet in the upper central region generates fluid pressure,
as explained in Eq. (7), leading to a localized bending in the central
region. The simulations produce quite similar results in all four cases
but note that the particle number is remarkably reduced by using ASPH
method. The nondimensionalized swelling degree versus time of the
very center point of the membrane is plotted in Fig. 23(a). With small
ratios, the displacements are closely converged, expect for a relatively
large deviation when the anisotropic ratio 𝑟 = 8.0. This discrepancy
arises because, as 𝑟 increases, the resolution in the 𝑥−𝑦 plane decreases
when the particle number in the 𝑧 direction is fixed, resulting in a
initially lower fluid saturation, and consequently decreasing internal
pressure. When we increase the resolution to 16 particles in the 𝑧
direction and subsequently increase particle number in 𝑥 − 𝑦 plane, it
becomes evident that the swelling degree simulated from ASPH with
𝑟 = 8.0 immediately approaches that from 𝑟 = 4.0. Additionally, the
converged result obtained from ASPH with anisotropic ratio being 8.0
(𝑁𝑧 = 24) corresponds well with the converged result of SPH (𝑁𝑧 =
16), as presented in Fig. 23(b), validating the reliability of the ASPH
method.

The efficiency of the proposed ASPH is demonstrated through Ta-
ble 5, which presents a quantitative comparison of the ASPH against the
SPH approach in terms of total particle number 𝑁 , computation time 𝑡,
nondimensional displacement of the center point in the 𝑧 direction. The
results reveal that employing anisotropic resolution gains a great re-
duction in computation time, demonstrating a notable improvement in

efficiency with the ASPH approach. Specifically, when the anisotropic
𝑟 = 2.0, the computational time is reduced by 72.14%, with only a
0.49% difference in comparison with the SPH method. The analysis
of deflection in the 𝑧 direction reveals that the maximum discrepancy
of the present ASPH model compared to the reference SPH solution is
about 34.42% when anisotropic 𝑟 = 8.0, while decreasing 4.05% when
𝑟 = 4.0. This difference is primarily attributed to the inferior resolutions
in 𝑥 − 𝑦 plane in cases with high 𝑟, which fail to adequately represent
fluid saturation difference, rather than the error generated by the ASPH
method itself.

Considering the diffusion process of the fluid inside this film, ob-
tained from previous research paper [32,33], the diffusion coefficient
is set as 1.0 × 10−10(m2∕s). In this simulation, adopting ASPH method
with anisotropic ratio r = 4.0, the particle spacing is set as 𝑑𝑝𝑧 = H/6
= 2.083 ×10−2 mm and 𝑑𝑝𝑥 = 𝑑𝑝𝑦 = 4 𝑑𝑝𝑧. The fluid saturation and
von Mises strain contours at different time instants are depicted in
Fig. 24 respectively, showing the variations of the physical parameters
in the thickness direction. To be more specific, the variation of fluid
saturation and the von Mises strain along the central-vertical line at
different time instants are plotted in Fig. 25.

5. Conclusion

By adopting an ASPH method with anisotropic ellipsoidal smoothing
kernel coupled with the anisotropic resolution scheme, we have ob-
tained a solution for simulating thin structures with large aspect ratios,
particularly for those requiring sufficient resolution in the thickness di-
rection to present quantities deviation, which the reduced-dimensional
models fail to capture. By using fewer particles while maintaining 1st-
order consistency, the proposed ASPH method demonstrates efficiency
and equivalent accuracy compared to traditional full-dimensional SPH
methods in both static and dynamic scenarios. Further investigation of
this ASPH method for more applications is the subject of future work.
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Fig. 15. 2D shell: the deformation colored by von Mises strain from SPH and ASPH with different anisotropic ratios at time = 0 s and time = 0.8 s.

Fig. 16. 2D shell: the comparison of the von Mises strain contours at the final time step yielded by SPH and ASPH.

Fig. 17. 2D shell: the time history of von Mises strain at the end of the shell yielded by SPH and ASPH.
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Fig. 18. 2D shell: the comparison of the nondimensionalized 𝑦 displacement of the very center point of the curved shell.

Fig. 19. 3D roof: the deformation colored by von Mises strain from SPH and ASPH with different anisotropic ratios at time = 0 s and time = 2.0 s.
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Fig. 20. 3D roof: the nondimensionalized z displacement comparison of the very center point of the curved roof.

Fig. 21. 3D thin membrane with internal pressure: the sketch of fluid distribution in the membrane using ASPH with anisotropic ratio = 2.0.

Table 5
3D thin membrane with internal pressure: quantitative comparison of the accuracy and efficiency of this present ASPH
algorithm with different anisotropic ratios.
Method 𝑁 𝑡 (s) Time saved z/H Difference

SPH, 𝑁𝑧 = 8 223 111 1958.85 – 1.432 –
ASPH ratio = 2.0, 𝑁𝑧 = 8 60 551 545.68 72.14% 1.439 0.49%
ASPH ratio = 4.0, 𝑁𝑧 = 8 17 671 161.66 91.74% 1.374 4.05%
ASPH ratio = 8.0, 𝑁𝑧 = 8 5837 52.63 97.31% 0.939 34.42%
ASPH ratio = 8.0, 𝑁𝑧 = 16 35 344 650.32 66.80% 1.373 4.06%
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Fig. 22. 3D thin membrane with internal pressure: the deformation colored by von Mises strain from SPH and ASPH with different anisotropic ratios.
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Fig. 23. 3D thin membrane with internal pressure: the comparison of nondimensionalized z-displacement of the very center point of the membrane.

Fig. 24. 3D thin membrane with diffusion: fluid saturation and von Mises strain contours of the membrane at different time instants using ASPH with anisotropic ratio r = 4.0.
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Fig. 25. 3D thin membrane with diffusion: the fluid saturation and von Mises strain along the thickness direction at the central-vertical line of the membrane at different time
instants using ASPH with anisotropic ratio r = 4.0.
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An explicit multi-time stepping algorithm for multi-time scale

coupling problems in SPH

Xiaojing Tang, Dong Wu, Zhentong Wang, Oskar Haidn, Xiangyu Hu∗

TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany

Abstract

Simulating physical problems with multi-time scale coupling presents a considerable
challenge due to the concurrent solution of processes with different time scales. This
complexity arises from the necessity to evolve large time scale processes over long physi-
cal time, while simultaneously small time step sizes are required to unveil the underlying
physics in shorter time scale processes. To address this inherent conflict in the muti-
time scale coupling problems, we propose an explicit multi-time step algorithm within
the framework of smoothed particle hydrodynamics (SPH), coupled with a solid dy-
namic relaxation scheme, to quickly achieve equilibrium state in the comparatively fast
solid response process. To assess the accuracy and efficiency of the proposed algorithm,
a manuscript torsional example, two distinct scenarios, i.e., a nonlinear hardening bar
stretching and a fluid diffusion coupled with Nafion membrane flexure, are simulated.
The obtained results exhibit good agreement with analytical solution, outcomes from
other numerical methods and experimental data. With this explicitly multi-time step
algorithm, the simulation time is reduced firstly by independently addressing different
processes being solved under distinct time step sizes, which stands in contrast to the
implicit counterpart, and secondly decreasing the simulation time required to achieve
a steady state for the solid by incorporating the dynamic relaxation scheme.

Keywords: SPH, Multi-time scale coupling, Multi-time step algorithm, Dynamic
relaxation, Multi-physics problem

1. introduction

Smoothed Particle Hydrodynamics (SPH), a typically mesh-free method, which is
originally introduced by Lucy [1], Gigold and Monaghan [2] for studying astrophysical
problems, has been widely applied to simulate fluid-flows [3–6], solid mechanics [7–11],
fluid-structure interaction (FSI) [12–15], etc., in recent years. Comprehensive reviews
can be found in Refs. [16–20]. Despite its broad applicability, SPH exhibits limita-
tions when addressing multi-scale coupling problems prevalent in diverse engineering
domains, particularly in scenarios involving the rapid dynamic response of solids [21].
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The large disparity in the time scales between fast and slow processes posts a continuing
challenge to numerical simulations [22].

To solve multi-time scale problems, the implicit, explicit or two schemes coupling
can be applied [23, 24]. The implicit scheme offers the advantage of using a larger time
step in the time integration process [23, 25, 26], enabling the monolithic scheme to
simultaneously solve the equations for both fast and slow processes. For instance, Zhao
[27] utilized an implicit Newmark scheme to simulate fluid flow through a porous elastic
solid, where solid dynamics and fluid diffusion occur at different time scales. Similarly,
Gaston [28] employed an implicit scheme to analyze the coupling behavior among fluid
dynamics, chemistry, and structural mechanics in a reactor. However, since the implicit
scheme necessitates the inversion of the stiffness matrix for solving equations at each
time step [29, 30], this approach incurs substantial computational costs and demands
significant memory resources [31].

For enhancing computational efficiency, techniques involving explicit scheme are
more favorable for addressing multi-time scale coupling problems due to its direct time
integration and straightforward numerical formulation [32–35]. By partitioning the
mesh into subdomains and the governing equations into subsystems, explicit-implicit
and explicit-explicit partitions have been used to solve coupled-field dynamic problems,
allowing multi-time step integrating with staggered solution procedures [36–38]. How-
ever, in systems displaying widely different characteristic response times, this method-
ology demands a large amount of staggered steps and data transfers per time step,
rendering the treatment of realistic three-dimensional problems economically unfeasible
[39]. Some researchers have employed explicit scheme to simulate material stretching
and necking, where the load is applied over a long time period while the material’s
dynamic response is instant and fast [40–42]. Since the realistic load is applied in a
long time scale, a correspondingly long physical simulation time is expected. However,
with a quite small stable time step size allowed in explicit scheme for the fast process,
a substantial number of time steps, often reaching millions, is typically necessary to
simulate the entire process, presenting practical challenges. To reduce the overall simu-
lation time, loading rate is usually increased artificially [41]. Nevertheless, the adoption
of high non-realistic loading rate may lead to certain limitations and inaccuracies in the
simulation results [43], underscoring the delicate balance required in managing loading
rates for accurate simulations.

This paper presents a multi-time stepping algorithm in SPH, where distinct large
and small time steps are tailored to the slow and fast processes within the simulation,
respectively. Two loops, specifically an outer and an inner loop, are organized to ac-
commodate these respective time steps for effective time integration. Specifically, the
slow process is integrated with a large time step in the outer loop, while the fast solid
dynamic process with a considerably smaller time step in the inner loop. However, the
small time step for the fast process may result in numerous iterations of solid stress
relaxation within a single outer loop, leading to diminished computational efficiency.
To address this issue, a dynamic relaxation method based on an implicit operator split-
ting scheme [44] is incorporated to accelerate the convergence rate of the fast dynamic
process towards an equilibrium state. To evaluate the performance and computational
efficiency of the proposed algorithm, simulations of a manuscript torsional example and
tensile tests, including two-dimensional and three-dimensional cases, are firstly carried
out. Subsequently, the algorithm is applied to simulate the evolution of fluid diffu-
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sion in porous media coupled with elastic deformation. This fluid-structure coupling
process occurs in chemical reactors, such as the fuel cell of a battery, where a fluid
mixture diffuses through a Nafion membrane, which is a slow process, impacting bat-
tery performance through variations in fluid concentration and membrane deformation.
The obtained results demonstrate that the proposed algorithm outperforms previous
numerical methods in terms of both accuracy and efficiency.

The reminder of this paper is structured as follows. Section 2 summaries the theo-
ries and governing equations for nonlinear hardening plastic solid mechanics and fluid-
structure interaction in porous media. The corresponding SPH discretization is de-
scribed in Section 3. Section 4 presents a detailed exposition of the proposed multi-
time stepping algorithm, incorporating dynamic relaxation. In Section 5, the physical
problems are outlined, and the results obtained using the proposed algorithm are com-
pared with those derived from previous methods and experiments. Finally, Section 6
presents concluding remarks. The source code and data for this numerical simulation
work are available in SPHinXsys, an open-source multi-physics SPH library, accessed
at https://www.sphinxsys.org.

2. Governing equations

In this section, the fundamental principles and concepts of solid dynamics are ini-
tially presented to establish the principal mass and momentum equations for solids,
as they are applicable to both scenarios of elastic-plastic solid stretching and fluid-
structure interaction in porous media. Subsequently, the specific models for hardening
elastic-plastic behavior and fluid-structure interaction are provided separately.

2.1. Total Lagrangian of solid dynamics

In this section, we provide a concise introduction to solid dynamics within the
framework of total Lagrange formulation. The analysis focuses on a solid body B,
spanning two regions: R0 andR, representing the body configurations at time t0 (t = 0)
and t, respectively. In the initial configuration R0, the position vector of a material
point is denoted as X ∈ R0, while in the current configuration, it is represented as
x ∈ R. The motion of the solid body is characterized by the invertible mapping φ, which
transforms a material point X to its corresponding vector x = φ(X, t), as illustrated
in Figure. 2.1. Based on this definition, the Lagrangian velocity of a material point
is defined as v(X, t) = ∂φ(X,t)

∂t
. The deformation gradient F, which characterizes the

deviation of a material point from its initially undeformed position to its deformed
position, can be computed from the displacement vector u = x−X as

F =
∂x

∂X
= ∇0u + I, (1)

where I is the unit matrix, and the superscript (•)0 accounts for quantities in the initial
reference configuration. The corresponding Jacobian determinant term J = det(F)
indicates the local volume gain J > 1 or loss J < 1. The governing equations of solid
deformation within the total Lagrange framework are derived as

{
ρ = ρ0 1

J

ρ0 dv
dt

= ∇0 ·PT
, (2)

3



3

2X

X
X1

0

dX

�
(t)x3

x2

x1

dx = F dX x = Φ(X,t) 

�

Figure 2.1: Finite deformation process on a body B.

where ρ and ρ0 are the densities in the current configuration R and the initial config-
uration R0, respectively, v the velocity and P the first Piola-Kirchhoff stress tensor.
Different from the Cauchy stress σ, which characterizes the force measured in the
deformed configuration, P relates to stress within the initial configuration, and the
relationship between these two stresses is

P = JσF−T = τF−T , (3)

where τ is the Kirchhoff stress tensor, utilized in the hardening plastic model to calcu-
late P, obtained from the constitutive relation in Appendix A. The Cauchy stress σ is
employed to represent the overall stress acting on the solid in the fluid-structure inter-
action model subsequently determine P as elaborated in Appendix B, with a detailed
explanation of their relationship provided in the subsequent section.

2.2. Fluid-structure interaction

For the coupled phenomena involving fluid diffusion in porous media concurrent with
elastic deformation of the porous membrane, we introduce a fluid-structure interaction
model. This model accounts for the simultaneous diffusion of fluid through the porous
solid, resulting in heightened fluid pressure and deformation of the solid structure.
In this model, the heterogeneous body is considered as a continuous solid medium

solid void liquid
macroscopic solid

Figure 2.2: Partially saturated porous medium.

containing uniformly distributed small voids with a homogeneous porosity denoted by
c. Upon interaction with a fluid, the fluid permeates into these small pores and diffuses
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within the medium, driven by the fluid concentration gradient, resulting in the creation
of a mixture consisting of solid and fluid components, as illustrated in Figure 2.2. To
simplify this model, we adopt the methodology proposed by Zhao [27] to formulate a
momentum equation for the mixture, with the fluid dynamics adhering to the principles
of diffusion.

2.2.1. Mass and momentum equations

With a porosity c and fluid saturation level c̃ (as defined in Appendix B.1), the
locally effective fluid density ρl can be expressed as

ρl = ρLc̃, (4)

where ρL is the fluid density. For a porous solid partially-saturated by fluid, the total
linear momentum M in the regionR is the sum of fluid momentum and solid momentum

M = ρv = ρlvl + ρsvs, (5)

where ρ and v are the total density and velocity respectively, vl the velocity of fluid,
ρs and vs the density and velocity of dry porous solid. Due to the difference between
vl and vs, the fluid flux q on the element boundary ∂V , considering a representative
volume element dV , can then be expressed as

q = ρl(vl − vs). (6)

Obviously, if there is no fluid passing through the boundary, q = 0, and the fluid mass
in an element remains conserved. The transfer of fluid mass and momentum between
micro-scale solid constituents happens when fluid flows from regions with higher fluid
saturation to those with lower saturation. Therefore, within an element dV of the
mixture, the balance of linear momentum implies that the time derivative of momentum
M is determined by two factors. One is the stress exerted on the element, and the other
is the fluid flux of linear momentum vl ⊗ q on the boundary ∂V , where the symbol ⊗
means the outer product of two vectors or tensors. It follows that the conservation of
total linear momentum of the mixture can be expressed as

dM

dt
= ∇ · σ −∇ ·

(
vl ⊗ q

)
, (7)

where σ represents the Cauchy stress in the mixture acting on the solid. σ is determined
by Cauchy stress σs due to deformation and the pressure stress σl resulting from the
presence of the fluid phase, which is elaborated in Appendix B.2.

2.2.2. Fick’s law

In a partially saturated solid, variations in fluid saturation drive fluid movement
regions with higher fluid fraction to those with lower fractions, and the resulting flux
follows the Fick’s law as

q = −Dρl∇ã, (8)

indicating that the fluid flux is proportional to the diffusivity D, the effective fluid
density ρl, as well as the gradient of the fluid saturation c̃. Consequently, the time
derivative of fluid mass within an element dV is attributed to the fluid flux q across
the element boundary ∂V , written as

dρl

dt
= −∇ · q. (9)
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3. SPH implementation

In SPH, the continuum is discretized into a set of Lagrangian particles, each car-
rying various properties such as mass, position, velocity, and other attributes. The
discretization of a variable field is achieved by employing SPH particles, and the me-
chanics are approximated by modeling the interactions among these particles using a
kernel function. In this section, we transform the governing equations of two previously
discussed models into SPH discretization.

3.1. SPH discretization for solid dynamics

To discretize the solid mechanics, we utilize the initial undeformed configuration as
the reference. First, aiming to restore 1st order consistency, a correction matrix B0

[45, 46] of particle a is adopted as

B0
a =

(∑

b

V 0
b

(
r0
b − r0

a

)
⊗∇0

aWab

)−1

, (10)

where V 0
b represents the initial volume of the neighboring particle b, r0

a and r0
b denote the

positions of particles a and b in the reference configuration, and ∇0
aWab is the gradient

of the kernel function given by

∇0
aWab =

∂W (|r0
ab|, h)

∂|r0
ab|

e0
ab, (11)

where e0
ab is a unit vector pointing from particle a to b. In total Lagrangian formulation,

the neighborhood of particle a is defined in the initial configuration, and this set of
neighboring particles remains fixed throughout the entire simulation. Additionally,
B0
a is computed only once under the initial reference configuration. The momentum

conservation in Eq. (2) can be approximated using the strong-form approximation of
the spatial derivative [47, 48] as

dva
dt

=
2

ρ0
a

∑

b

V 0
b P̃ab∇0

aWab, (12)

where ρa represents the density of particle a, P̃ab is the averaged first Piola-Kirchhoff
stress of the particle pair (a, b), stated as

P̃ab =
1

2

(
PaB

0T

a + PbB
0T

b

)
. (13)

With a symmetric smoothing kernel, B is considered to be symmetric. Note that the
first Piola-Kirchhoff stress tensor is dependent on the deformation tensor F, approxi-
mated using the weak-form approximation of the spatial derivative [47, 48] as

F =

(∑

b

V 0
b (ub − ua)⊗∇0

aWab

)
B0
a + I, (14)

and the time derivative of F is computed from

dFa

dt
=

(∑

b

V 0
b (vb − va)⊗∇0

aWab

)
B0
a, (15)

where va and vb denote the velocities of particles a and b.
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3.2. SPH discretization for fluid-structure interaction

In the fluid-structure interaction model discretization, each particle carries the lo-
cation xn = φ(X, tn) at time tn, along with an initial representative volume V 0 that
partitions the initial domain of the macroscopic solid. The deformation gradient Fn of
the solid phase is stored to update the solid current volume Vn and density ρsn. Ad-
ditionally, the fluid mass ml

n, saturation ãn, and density-weighted velocity of the fluid
relative to solid qn are stored. The fluid mass equation Eq. (9) of particle i is discretized
as

dml
i

dt
= 2Vi

∑

j

mj

ρj
(qi − qj)∇̃iWij. (16)

Note that with the Eq (1), we have the relation of gradient kernel function in the
total Lagrangian and updated Lagrangian ∇̃iWij = B0T

i F−1∇0
iWij. Once fluid mass

is updated, the locally effective fluid density ρl is obtained subsequently. According
to Eq. (42) and Eq. (8), we update the fluid saturation ã and the fluid flux q in the
particle form

qi = −KρlVi
∑

j

mj

ρj
(c̃i − c̃j)∇̃iWij. (17)

With the fluid flux and the stress in hand, we obtain discrete formulations for the
momentum balance Eq. (7) as

dMi

dt
= 2

∑

j

Vj(σi + σj)∇̃iWij − 2
∑

j

Vj(v
l
i ⊗ qi + vlj ⊗ qj)∇̃iWij, (18)

where σi and σj are the stress tensors of particles i and j. We then compute the
updated solid velocity vs using the total momentum definition Eq. (5), where the total
density of the mixture is the sum of the solid and fluid densities ρ = ρs + ρl, written as

vs =
M− q

ρ
=

M− q

ρs + ρl
. (19)

Subsequently, the fluid velocity vl is calculated using Eq. (6) as

vl = vs − q

ρl
. (20)

4. Multi-time step algorithm

In multi-time scale coupling involving solid dynamic problems, different time scales
coexist. A multi-time step algorithm using an explicit scheme to accommodate various
time scale processes is introduced in this section. In this approach, the slow processes,
e.g., stretch loading and fluid diffusion, are integrated with larger time step sizes, while
the fast solid dynamics with smaller ones. With small time step size, the solid dynamics
evolves to a quasi-equilibrium state. Further, to reduce the stress relaxation time of solid
dynamics, a damping scheme is applied to accelerate the attainment of the equilibrium
state.
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4.1. Multi-time criteria

As the explicit integration operator is conditionally stable, a time step criterion ∆ts
is required in solid simulation, given by

∆ts = 0.6 min

(
h

cs + |vs|max
,

√
h

|dvs

dt
|max

)
, (21)

where the artificial sound speed of a solid structure is denoted as cs =
√
K/ρs. In multi-

time scale coupling problems, considering that the solid dynamic relaxation process is
comparatively fast, ∆ts is usually limited to a small value. Conversely, the time step
for internal diffusion evolution or stretch loading is allowed to be much larger. For the
tensile test simulation, we divide the stretching process into NS steps and the time step
is

∆tl =
Tt
NS

, (22)

where Tt is the entire process time of the tensile test, and ∆tl accordingly the time
step for stretch loading. Similarly, for the fluid-structure interaction, according to the
Fick’s law, the maximum time step allowed for explicit time stepping of diffusion is
characterized as [49]

∆td = 0.5
h2

D
, (23)

stating that the time step is mainly limited by the diffusivity constant D and the kernel
smoothing length h. To address the difference between these time step sizes for various
time scale processes, we present a multi-time step algorithm to simulate these processes
respectively with an iterative scheme.

4.2. Iterative scheme

Figure 4.1 summarizes the iterative scheme of the proposed multi-time step algo-
rithm schematically. This algorithm consists of two loops, an outer loop governing the
overall dynamic progression through incremental execution of prescribed displacements
or diffusion relaxation denoted by g, and an inner loop describing the evolution of solid
dynamics with k representing each stress relaxation step. The loading or diffusion crite-
rion ∆tl or ∆td regulates the external force exerting or the fluid diffusion process while
∆ts determines the frequency of solid stress relaxation. Within one external loading
time step ∆tl or diffusion time step ∆td, the time integration of structure should be

computed as k0 = [
∆tl/d
∆ts

]+1 times. With a limited ∆ts and much larger ∆tl and ∆td, k0

is supposed to be considerably large and potentially resulting in a significant number of
iteration steps in the computation of solid dynamics, increasing the computation time.

Upon achieving a static state in solid dynamics, the inner loop concludes, marking
the commencement of another outer loop. Therefore, to optimize computation time,
the inner loop is executed with a damping term to dissipate the kinetic energy and
accelerate the relaxation of the solid transient response. Solid governing equations with
additional damping are solved a small number of times k until the kinetic energy is
reduced to a sufficiently small value Ek, marking the achievement of the equilibrium
state of the system. Specific criteria values for the kinetic energy are established in
different cases according to the reference energy which represents the system properties.
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Figure 4.1: Flowchart of the iterative scheme in multi-time step algorithm.

In the simulations, we decrease the criteria values until the equilibrium state is achieved
and the results converge. After the equilibrium state of the solid deformation is achieved
in the inner steps, a new outer step initiates and this iterative process is repeated until
the conclusion of the designated physical computation time.

4.3. Damping scheme

As mentioned previously, achieving equilibrium for a dynamic system can be ex-
cessively time-consuming in SPH method with explicit time-stepping. To mitigate this
issue, we adopt the approach proposed by Zhu et al. [44] and introduce an artificial
viscosity-based damping term into the stress relaxation to dissipate the extra kinetic
energy. Without compromising the momentum conservation of the system, a viscous
damping term fv is added to the solid momentum equation as

dv

dt
= f s + g + fv, (24)

where f s and g represents the acceleration due to the surface and body forces, the added
damping term fv can be discreized in the total Lagrangian form as

fva =
η

ρa
∇2
av =

2η

ma

∑

a

V 0
a V

0
b (va − vb)∇0

aWab, (25)

where η is the dynamic viscosity, and for structures η is determined by the material
properties and the physical shape of the solid body, defined as η = β

4

√
ρEL, with L

9



denoting the characteristic length scale and β a parameter related to the body shape in
specific problems. Note that, β may vary to change the speed of reaching the equilibrium
with larger β accelerating the relaxation process to the final state. For further details,
readers can refer to Zhu’s work [44].

5. Numerical examples

In this section, firstly, a manufactured torsional deformation test case is conducted
to validate the robustness of the present multi-time step algorithm in SPH for problems
including large torsional deformations. Several tests, including the stretching-necking
and the fluid diffusion coupling solid deformation in two and three dimensions, are
simulated using the present method to demonstrate its accuracy and efficiency.

5.1. Manufactured torsional deformation

This section presents a generalized vortex example, featuring a ring centered at
the origin (x = y = 0) with an inner radius of Ri = 0.75 m and an outer radius
of Ro = 1.25 m. The ring is considered to be elastic and material parameters are
taken as Young’s modulus E = 103 Pa, initial density ρ = 1000 kg/m3, Poisson’s
ratio ν = 0.3. As described in [50–52], given a prescribed deformation field initially,
the loading force required to achieve this deformation can be analytically determined,
according to the momentum governing equations. In this numerical simulation, using
the present algorithm, the loading body force is imposed on the SPH particles with
position constrained boundaries. Consequently, the present SPH algorithm can be
verified by comparing the postulated deformation field with the numerical solution.
The superimposed deformation is purely angular and the rotation angle α, which is
dependent on the radial coordinate of the material point, is a function of radius R and
time t, written as

α(R, t) = g(t)h(R),

where h(R) controls the radial deformation field and g(t) the deformation magnitude
h(R) = 1 − 32(R − 1)2 + 256(R − 1)4 and g(t) = t α0/t0, where α0 is the maximum
imposed rotation angle, taken as 10◦ and t0 is the total simulation time. Given this
deformation field, the stresses P can be obtained according to the constitution relation.
For a quasi-static problem, the momentum equation involving the body force fb is in
the form of

dP

dt
+ ρfb = 0.

Consequently, the mathematical expression of fb in the polar coordinate is written as

br = µA2

4ρo
R( tα0

t0
)2 (−64(R− 1) + 1024(R− 1)3)

2
, (26)

bθ = −32µA
ρo

tα0

t0
(−45 + 188R− 240R2 + 96R3) . (27)

The derivation is detailed in the reference [51] and the Appendix A in [50]. The body
force is applied on the ring over 10 equal load steps within a simulation time of t0 = 100
s, coupling with the damping algorithm to obtain a smooth deformation field. Using
the multi-time step coupling algorithm, the time step for the body force applying is
defined as Dt = 10 s, while the stress relaxation time step is determined by the material
properties. After each body force loading, stress relaxation coupled with damping is

10



(a) (b)

Figure 5.1: Manufactured torsional deformation: the analytical (a) and numerical (b) final deformed
configuration colored by the magnitude of displacement.

performed. Following the work of Zhu [44], the damping ratio is η = 150 kg/(m·s) with
β = Ri/R0.

With a the particle spacing dp = (Ro − Ri)/ 20 = 0.05 m, the deformed state at
peak rotation angle obtained using the multi-time step algorithm aligns well with the
prescribed deformation field, as illustrated in Figure. 5.1. Figure 5.2 presents the dis-
placement magnitude comparison of particles in the radial direction at x = 0 at the final
time instant. Negligible difference is observed between the superimposed displacement
and the numerical result. To quantitatively verify the accuracy, the relative error in
terms of the displacement is computed as

ERR =

√∑
Np
||upn − upa||2∑
Np
||upa||2

, (28)

where upn and upa represent the displacement vectors obtained by the simulation and
analytical solution of particle p respectively, Np the particle number. The relative error
results at the peak rotation angle α = α0 for a variety of particle spacing of dp = 0.1,
0.05, 0.025, 0.0125 m is shown in Figure 5.3. It can be seen that the relative error
decreases progressively as the particle domain resolution is refined.

To determine the point of equilibrium, we monitor the ratio of kinetic energy Ek to
strain energy U . Equilibrium is deemed achieved when this ratio is damped below a
defined threshold value. While the strain energy is defined as U = 1

2
(σxεx+σyεy+τxyεxy)

and the maximum strain energy Umax occurs at the final state. We set a energy criterion
Ek = 1.0%Umax initially and decrease this criterion step by step until the relative error is
converged. Figure 5.4 shows the variation of displacement with different kinetic energy
criteria. The results suggest that the convergence is obtained when Ek = 0.02%Umax.

With a physical simulation time of t0 = 100 s,due to the time step size limitation
in explicit scheme, the number of loading steps NL and stress relaxation times Ns

performed in the simulation are expected to be NS = Ns = t0/∆ts = 5.37 × 105.
With this multi-time criteria algorithm, the loading steps is decreased to be NS = 10
and benefiting from the damping, the relaxation times is reduced to Ns = 7.32 × 104,
increasing the commutation efficiency.
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Figure 5.2: Manufactured torsional deformation: the comparison of normalized displacement magni-
tude in the radial direction at t = 100 s and x = 0.
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Figure 5.3: Manufactured torsional deformation: plot of the normalized displacement magnitude error
as a function of the particle spacing obtained using the multi-time step algorithm.
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5.2. Necking of a two-dimensional bar

The standard tensile necking test simulation has been previously studied in the
existing literature [53–56], offering both experimental and numerical results for com-
parative analysis. The test sample, with dimensions PL = 53.334 mm in length and

Table 5.1: Necking test simulation: physical material parameters.

Parameters Value

Density 7850 kg/m3

Shear modulus 80.1938 Gpa

Bulk modulus 164.21 Gpa

Initial flow stress 450 MPa

Saturation flow stress 715 MPa

Saturation exponent 16.93

Linear hardening coefficient 129.24 MPa

PH = 12.826 mm in width, is subjected to stretching from its side edges under in-
creasing uniaxial displacement. As the specimen undergoes elongation, a concurrent
reduction in width is observed. A slight imperfection (1.8% reduction) is imposed ini-
tially at the center part of this sample as shown in Figure 5.5 to trigger the necking
phenomenon. The specimen is composed of a elastic deformation depicted by the Neo-
Hookean law and a plastic governed by the nonlinear isotropic hardening law. The
material parameters are given in Table 5.1. A total stretching of 10 mm is achieved
through a symmetric displacement boundary conditions. Three layers of particle are
subjected to the specified boundary condition. Compared with experimental timescales
of around 2 minutes, the simulation is conducted over a physical time of t = 100 s, with
stretching steps NS = 10000 and a corresponding velocity v = 0.05 mm/s. This differs
from references where velocities are usually increased to approximately 1 m/s to reduce
the physical time to 1.5 × 10−3 s. After each stretch loading step, stress relaxation
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Figure 5.5: 2D tensile necking: geometry and initial and boundary condition setup.

coupled with damping is performed. The damping ratio is set to an experienced value
of η = 3.0× 104 kg/(m·s) with β = PH/PL.

Figure 5.6 illustrates the deformation evolution colored by von Mises strain at var-
ious time instances under a spatial resolution dp = PH/40 = 0.32065 mm. The corre-
sponding von Mises strain at various time instances contour are depicted in Figure 5.7.
A clear necking pattern is observed at the center of the specimen, aligning with that
observed in both experimental studies and other numerical investigations [54–56]. The
specimen undergoes three distinct stages: elastic strain, succeeded by uniform plastic
strain, and ultimately necking strain. Figure 5.8 plots the radial evolution of the
central region where necking occurs, as a function of the imposed stretching displace-
ment. The result is compared with those from Ref. [56], where Q1, mixed Q1/P0,
Q2 and Q3 (employing different mesh discretization and element types) are utilized to
model this test. As time advances and the sample elongates, the radius displacement
of the central part increases linearly, while after necking occurs, it experiences a rapid
escalation. Figure 5.9 depicts the evolution of the reaction force over time. Following
a short elastic response, characterized by the initial straight line, the specimen tran-
sitions into the stage of uniform plastic deformation, displaying a smooth increase in
the reaction force. During this stage, plastic deformation slowly propagates and shows
a homogeneous state throughout the specimen. Eventually, when the boundary dis-
placement reaches a critical value, necking occurs in the central part, and the reaction
force reaches its peak value. Subsequently, the deformation shifts to a mode where the
plastic effect is concentrated in the central zone, resulting in a declining reaction force,
which is more obvious in the subsequent three-dimensional case. A convergence study
with progressively refined spatial resolution is conducted. Figure. 5.10 presents the
radial displacement and the reaction force versus the imposed displacement for three
resolutions: Ny = PH/dp = 20, Ny = PH/dp = 40, Ny = PH/dp = 60. The results
indicate that the differences between various solutions diminish as the spatial resolution
increases, observed in terms of both reaction force and radial displacement.

Here, the elastic energy Ee is set as the refer energy, which is calculated using the
formula Ee = 1

2
F∆x, with F = 8000 N and the stretching length ∆x = 10 mm serving

as reference values representing the maximum elastic energy attainable by the system,
as the reaction force almost reaches 8000 N throughout the entire stretching process,
as shown in Figure 5.9. To investigate the impact of the normalized kinetic energy
threshold on simulation results, a series of stretching simulations with varying criteria
were conducted. Figure 5.11 plots the variation in radial displacement and reaction force
for different kinetic energy criteria when dp = PH/40, which suggests that 1‰Ee is an
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Figure 5.6: 2D tensile necking: the deformation colored by von Mises strain at different time instants.
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Figure 5.7: 2D tensile necking: the deformation colored by von Mises stress at different time instants.
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Figure 5.9: 2D tensile necking: the evolution of the reaction force versus the imposed vertical displace-
ment.
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Figure 5.10: 2D tensile necking: radius displacement (a) and the loading force (b) convergence with
different spatial resolutions.

appropriate kinetic energy criterion value for computational efficiency, as the difference
between the criteria 1‰Ee and 0.2‰Ee is minimal. Note that both the comparison to
reference results and convergence analyses are conducted under kinetic energy criterion
of 1‰Ee.
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Figure 5.11: 2D tensile necking: radius displacement (a) and the loading force (b) convergence with
different kinetic energy criteria.

The evolution of the kinetic energy after one stretching step at four different time
instants, as evaluated by the elastic energy Ee, is depicted in Figure 5.12. As expected,
here is a fluctuation in kinetic energy due to the stretching force. After each stretching
event, the kinetic energy initially increases, followed by a decrease to a certain criterion
value of 1‰Ee, attributable to the applied damping effects. The relative kinetic energy
at the end of each stretching step approaches 1‰Ee, indicating that the system reaches
equilibrium.

With a physical simulation time of t = 100s, due to the time step size limitation
in explicit scheme, the number of stretching times NS and stress relaxation times Ns

performed in the simulation are expected to be NS = Ns = t/∆ts = 4.43 × 109.
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Figure 5.12: 2D tensile necking: evolution of kinetic energy evaluated by the elastic energy after one
stretching at different time.

With this multi-time criteria algorithm, initially, the number of stretching time steps
is reduced from 4.43× 109 to NS = 1.0× 104. Subsequently, the stress relaxation times
are decreased from 4.43× 109 to Ns = 1.23× 106 in this case by coupling the damping
term to accelerate equilibrium attainment. Table 5.2 lists a comparison of the stress
relaxation iterations performed in straightforward and multi-time step algorithms and
quantifies the efficiency of the proposed algorithm compared to the straightforward
one in terms of stretching NS and stress relaxation iterations Ns, with the same total
particle number Np. It is obvious that the proposed algorithm yields a drastic reduction
in computation time.

Table 5.2: 2D tensile necking: quantitative validation of the efficiency of this multi-time step algorithm.

algorithm Np NS Ns Ndamping

straightforward algorithm 6948 4.43× 109 4.43× 109 -

multi-time step algorithm 6948 1.0× 104 1.23× 106 1.23× 106

5.3. Necking of a three-dimensional bar

Further, a three-dimensional necking analysis of a cylindrical bar is conducted, a
scenario previously investigated by Simo and Armero [53, 57], de Souza Neto et al.
[54], Elguedj and Hughes [56]. The same geometry of radius 6.413 mm and length
53.334 mm with a slight reduction (1.8%) in the center of the bar as in the previous
2D case is considered. The loading is applied using displacement control, with a total
stretching displacement of 6 mm applied on both side surfaces of the bar. The same
material properties in Table 5.1 and elastic-plastic response as that applied in previous
two-dimensional case are employed herein. In this case, initial particle spacing dp =
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0.3 mm resulting in a total particle number of approximately Np = 2.5 × 105. With
physical time of t = 100 s and stretching stepsNS = 10000, the corresponding stretching
velocity is 0.06 mm/s, allowing the problem to be simulated in a real stretching rate.
The damping ratio utilized is η = 3.0× 104 kg/(m·s).

(a) 0s (b) 50s

(c) 80s (d) 100s

Figure 5.13: 3D tensile necking: the deformation colored by von Mises strain at different time instants.

Contour plots of the von Mises strain at different time instants from various per-
spectives are illustrated in Figure 5.13-5.14. Figure 5.15 illustrates the deformation
evolution colored by von Mises stress and the plastic strain at various time instances,
showing similar patterns with those in the reference [41]. The final plots display the
deformed shape of the specimen at the final stage of the simulation, indicating the
occurrence of necking in the center of the specimen. Based on these figures, we can
infer the deformation evolution of this specimen: initially, the boundary conditions
enabled the specimen to maintain a uniform elastic response in the short stage of the
loading history; subsequently, in the post-peak regime, a diffuse necking mode emerged,
ultimately leading to the formation of shear bands at high strain levels. These bands
accumulated plastic deformations, ultimately resulting in the final necking even failure
of the specimen. The evolution of this pattern is well-reproduced by the force and de-
formation data presented in Figures 5.16 and 5.17, which agrees well with experimental
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(a) 0s (b) 50s (c) 80s (d) 100s

(e) 0s (f) 50s (g) 80s (h) 100s

Figure 5.14: 3D tensile necking: the deformation colored by von Mises strain at different time instants,
(a)-(d) top view of the quarter specimen, (e)-(h) top-side view of the half specimen.

(a) 0s (b) 50s (c) 80s (d) 100s

(e) 0s (f) 50s (g) 80s (h) 100s

Figure 5.15: 3D tensile necking: the deformation colored by von Mises stress (a)-(d) and the corre-
sponding plastic strain (e)-(h) at different time instants.
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findings.
Specially, Figure 5.16 compiles the numerical data of the radius displacement, nor-

malized by the initial radius, versus the length displacement, normalized by the initial
bar length. The results are compared with experimental data and solutions reported
in other works [41, 53, 58, 59]. The results obtained with the present method are in
good agreement with the experimental and numerical data. The reaction force curve
obtained from this simulation is presented in Figure. 5.17 along with the results from
other numerical works. While a slight difference is observed in the later stages, po-
tentially attributed to the hourglass mode, the overall trend of the result curve aligns
well with that of the references. Although this hourglass phenomenon cannot be fully
removed in this study, which is also observed in prior research that utilized standard 3D
elements in FEM [54], further improvements will be implemented in the future research.
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Figure 5.16: 3D tensile necking: the evolution of radial displacement of the central part compared
with the reference [54, 56, 60].

As for determining the achievement of the static state, similar to the previous 2D
case, the kinetic energy criterion is derived from the elastic energy Ee = 1

2
F∆x, where

the load force is denoted as F = 80000 N, the rough reaction force value observed in
Figure 5.17, and the stretching length ∆x = 0.014 m. Employing the same method as
in the 2D case, the results converge when the kinetic energy is reduced to 1‰Ee. To
assess the efficiency of the proposed algorithm, we computed the relaxation iterations
and the results are summarized in Table 5.3. Evident reduction is obtained in stress
relaxation times, saving the computation time significantly.

Table 5.3: 3D tensile necking: quantitative validation of the efficiency of this multi-time step algorithm.

algorithm Np NS Ns Nd

straightforward algorithm 250852 2.219 2.21× 109 -

multi-time step algorithm 250852 1.0× 104 3.21× 105 3.21× 105

22



imposed vertical displacement (mm)

re
ac

ti
o
n
 f

o
rc

e 
(k

N
)

0 2 4 6
0

20

40

60

80

Comsol manual

E. A. de Souza Neto et.al. (2005)

T. Elguedj, T.J.R. Hughes (2014) Q2

Rodrguez­Ferran, A et.al. (2002)

Present

Figure 5.17: 3D tensile necking: the overall evolution of the reaction force versus the imposed vertical
displacement compared with the reference [54, 56, 60].

5.4. Two-dimensional fluid-structure interaction

In this section, we perform a two-dimensional simulation of fluid diffusion coupling
with porous solid deformation to validate the efficiency of the presented method. As
illustrated in Figure 5.18, a thin porous beam with a length of L = 10.0 mm and width
of W = 0.125 mm is considered. The left and right sides are constrained to prevent
any curling or movement. The simulation starts with a fluid droplet contacting the
center part of the beam, extending to a length of 0.3L. This contact continues for 10
seconds while the total physical time is set to 100 seconds. Given the slender nature of
the beam, we assume that initially, all pores in the upper half part are filled with fluid.
As mentioned earlier, the relationship between fluid saturation c̃ and solid porosity c
is 0 ≤ c̃ ≤ c < 1. For this 2D and 3D cases discussed later, we assume a solid porosity
of c = 0.4, implying that the fluid saturation c̃ in the central part(0.5W × 0.3L) is
constrained to c̃ = c = 0.4 for the initial 10 seconds, while in other regions c̃0 = 0.0.

1

W

L

c =  0 c =  0.4

Figure 5.18: 2D fluid-structure interaction: physical configuration of the thin porous beam.

In alignment with the experimental setup, the solid material is modeled as a porous
and elastic Nafion membrane, with water serving as the fluid. The physical properties
and material parameters of this membrane are listed in Table 5.4. The pressure coef-
ficient C has been calibrated to fit the experimentally measured flexure curves, while
other parameters are obtained from previous research papers [61, 62]. In the simu-
lation, eight particles are placed in the vertical direction, with a particle spacing of
dp = W/8 = 1.5625 × 10−2 mm. In this simulation, an experienced damping ratio of
η = 10η0 = 400 kg/(m·s) in the damping term is utilized.

With the specified conditions, the simulation produces a deformed configuration
colored by fluid saturation, illustrated in Figure 5.19. Initially, the presence of a water
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Figure 5.19: 2D fluid-structure interaction: the deformation colored by fluid saturation at different
time instants.
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Table 5.4: Fluid-structure interaction: physical material parameters value of Nafion film. Data esti-
mated from Motupally and Goswami [61, 62].

Parameters ρ (kg/m3) D (m2/s) Pressure coefficient C (MPa) Young modulus (MPa) Poisson ratio

Value 2000 1.0× 10−10 3.0 8.242 0.2631
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Figure 5.20: 2D fluid-structure interaction: bending amplitude of the beam at different time instants.

droplet in the upper central region induces fluid pressure, as explained in Eq. 46, leading
to a localized bending in the central region. As time progresses, the saturation difference
drives continuous water diffusion, causing an increase in the total water content within
the porous solid and resulting in a rising flexure. This is also depicted in Figure 5.20,
which records the vertical position y versus the horizontal x position of the beam at
different time instants. After the contact concludes, no additional water is introduced
into the beam, and the central water gradually flows into the side areas. The fluid
saturation shows a smooth transition from the center to the surrounding area, as evident
in Figure 5.19. Consequently, a more uniform pressure distribution develops, resulting
in a smoother flexure of the beam as shown in Figure 5.20 in the later period. Given the
the particle number in the y direction as Ny = 4, 8,12, 16 respectively, the convergence
test in terms of the resolution is carried out, as illustrated in Figure 5.21. The difference
of beam bending amplitude at the final instant show a tendency to decrease as particle
spacing becomes finer.

To establish the density kinetic energy criterion Ek, we utilize the pressure from
water, pl, stated in Eq. 46, as the reference since fluid pressure induces beam swelling.
To evaluate the effect of the relative density kinetic energy threshold on the simulation
results, a series of simulations are conducted with various criteria Ek. The final bending
amplitude of the beam with different kinetic energy criteria is presented in Figure
5.22. Observations reveal that with a relatively large criterion value of Ek = 5%pl, the
equilibrium state is not achieved and the energy is not fully eliminated with a relatively
light deformation. Conversely, using a very small criterion value leads to unnecessary
calculation steps, increasing computation time. Therefore, it is concluded that the
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Figure 5.21: 2D fluid-structure interaction: the final bending amplitude convergence with different
resolutions.
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Figure 5.22: 2D fluid-structure interaction: bending amplitude convergence with different density
kinetic energy criteria.

26



stress iterations

E
k 

/ 
p

l (
%

)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

Figure 5.23: 2D fluid-structure interaction: the density kinetic energy variation within the diffusion
period when t = 20s valuated by the water pressure pl.

appropriate density kinetic energy criterion value for this 2D case is 0.05%pl.
Referring to Figure 5.23, the evolution of the density kinetic energy during the

diffusion period when t = 20s, evaluated by the water pressure pl, is presented. Due to
water pressure, the density kinetic energy firstly experiences a peak after one diffusion
performance, followed by a rapid decrease to a predetermined criterion value of 0.05%
pl, as set earlier, which is attributed to the damping effects. The relative density kinetic
energy approaches 0.05%pl at the end of each diffusion step, indicating that the velocity
almost vanishes, and equilibrium is achieved.

The efficiency of the proposed approach is demonstrated through Table 5.5, provid-
ing a quantitative comparison of the algorithm against the straightforward approach in
terms of diffusion and stress relaxation iterations ND, Ns with a total particle number
Np. The results reveal a great reduction in computation iterations, thus demonstrating
the significant improvement in efficiency achieved by the proposed approach.

Table 5.5: 2D fluid-structure interaction: quantitative validation of the efficiency of this multi-time
step algorithm.

algorithm Np ND Ns Nd

straightforward algorithm 1336 1.58×107 1.58×107 -

multi-time step algorithm 1336 125 3.25×105 3.25×105

5.5. Three-dimensional fluid-structure interaction

Next, we explore fluid diffusion coupling swelling in a three-dimensional film, specif-
ically the diffusion of water within a porous Nafion membrane. This system has been
previously investigated numerically by Zhao [27] and experimentally by Goswami [62].
This reference thin porous body takes the form of a polymer film with an x-y plane of di-
mensions Lx = 10.0 mm, Ly = 10.0 mm and a height of Lz = 0.125 mm. Four boundary
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sides are constrained to prevent any curling or movement. The physical parameters are
consistent with those listed in Table 5.4, and the initial conditions resemble those em-
ployed in the two-dimensional case. The central square part of the membrane in contact
with water occupies a region of dimensions 0.3Lx×0.3Ly×0.5Lz, and this contact lasts
for 450 seconds, with the total physical time set to 2500 seconds. No fluid is allowed
to diffuse out from the membrane. The fluid saturation c̃ in the central square part is
constrained to c̃ = c = 0.4 for the initial 450 seconds, while in other regions c̃0 = 0.
With 4 particles set in z direction, the particle spacing dp = W/4 = 3.125× 10−2 mm.
In the stress relaxation process of the simulation, the experienced damping ratio is set
to η = 10η0 = 400 kg/(m·s). Regarding the convergence study of density kinetic energy
criteria, following the same method as in the 2D case, the 3D case has a converged
criterion value of Ed = 0.1% pl. In order to provide a more accurate representation of
the experiment, the evaporation process is taken into consideration, acknowledging the
gradual loss of water over time. During the initial period, deformation and flexure man-
ifest, and subsequently, as the fluid mass diminishes from the membrane, a restoration
of the original shape is observed.

Figure 5.24 illustrates membrane deformation colored by water saturation at differ-
ent time instants. Over the first 450 seconds, the water amount continues to increase,
leading to a rising flexure, as depicted in Figure 5.25, which records the time history of
the height z of the central point. Once the contact period concludes, with no further
water addition, central water gradually flows into the side areas. Concurrently, water
evaporates from the membrane, resulting in a rapid decrease in water pressure and a
corresponding reduction in flexure, as indicated by the blue line in Figure 5.25 beyond
450 seconds.

Figure 5.25 also presents corresponding data points from Goswami’s experimental
measurements [62] and results from other numerical models, showcasing the swelling
degree of the central point versus different time instants. Evidently, the numerical
simulation results exhibit good agreement with experimental results, capturing the
deformation amplitude pattern, reproducing the increasing flexure during the water
contact period and the subsequent decrease after the contact phase, consistent with
saturation variations.

Drawing from the previous discussion, the optimal large outer time step is deter-
mined by the diffusion constant and the smoothing length, while the small inner time
step is influenced by the material properties of the solid. Ideally, the outer time step
allowed in principle is hundreds or thousands of times larger than the inner time step
size allowed. However, in the standard explicit algorithm, the time step is limited
to the smaller one, resulting in the execution of numerous stress relaxation steps and
consuming a substantial amount of time. In the presented method, first, diffusion is
performed with the larger time step, while stress relaxation is executed multiple times
with damping effects until the kinetic energy threshold is reached. Our approach saves
time in two ways. Firstly, the number of diffusion relaxation times is reduced since
multi-time step algorithm allows diffusion to be performed with its own time step in
the outer loop. Secondly, once the kinetic energy criterion is satisfied, equilibrium is
considered achieved, and the inner loop is halted accordingly, avoiding unnecessary
stress relaxation calculations. Figure 5.26 indicates the stress iterations Ns during this
3D simulation. There is a rapid increase in the initial 450 seconds when the fluid is in
contact with the film, and then a slower increase in the later stages. Table 5.6 presents
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(a) t = 450s, front view (b) t = 1500s, front view

(c) t = 450s, top side view (d) t = 1500s, top side view

(e) t = 450s, top view (f) t = 1500s, top view

Figure 5.24: 3D fluid-structure interaction: the deformation colored by water saturation at different
time instants.
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the quantitative efficiency of our new algorithm compared to the straightforward one,
by listing the diffusion iterations ND and Ns separately. As shown in the table, both
iterations are significantly reduced, representing a substantial improvement in saving
computation time.

Table 5.6: 3D fluid-structure interaction: quantitative validation of the efficiency of this multi-time
step algorithm.

algorithm membrane ND Ns Nd

straightforward algorithm 60552 1.5×1010 1.5×1010 -

multi-time step algorithm 60552 1.25×105 2.89×106 2.89×106

6. Conclusion

This paper proposed an approach employing a multi-time step algorithm to address
multi-time coupling problem involving solid dynamics. In this algorithm, the explicit
scheme in time integration is utilized to simplify the solving of the equation system.
Inner and outer loops with different time step sizes are conducted to accommodate
various time scale process. A crucial aspect of this algorithm is the incorporation of
a kinetic energy criterion to determine the equilibrium attainment of solid dynamics,
along with a damping term to expedite this equilibrium process, This allows for the
premature termination of the inner loop of solid stress relaxation, thereby avoiding
redundant computations. Three types of multi-time coupling problem, including a
manufactured torsional example, nonlinear hardening bar stretching and fluid diffusion
in porous media coupling solid deformation are simulated to assess the performance
of this algorithm. Results demonstrate both accuracy and a significant reduction in
computation time. Furthermore, the application of this algorithm in practical fluid
diffusion coupling hydrogel deformation paves the way for simulating complex multi-
physics problems of multi-time scales in the field of complex chemistry reaction.
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Appendix A Plasticity theory and nonlinear hardening plastic model

In this appendix, we present the J2 plasticity theory coupling with a hardening
elastic-plastic model to determine the plastic deformation. In A1, we describe the
multiplicative decomposition technique for the material deformation. A2 presents the
constitutive relation in this model. To describe the strain-stress evolution, the flow rule
and a hardening plastic model is stated in A3. Then a return mapping algorithm is
given in A4 to explain the time integration of strain and stress.

A.1 Multiplicative decomposition technique

To characterize the elastoplastic model, we adopt the flow plasticity theory, allowing
for the multiplicative decomposition of total strain into elastic and plastic components
[53, 63]. Using this technique, F can be written as the product of its elastic volumetric
part Fe and plastic deviatoric part Fp:

F = FeFp. (29)

And be, the elastic part of the left Cauchy-Green tensor b = FFT , is defined as be =
FeFe T . When strains are within the elastic range, F = Fe and b = be. For plasticity
analysis, the plastic Lagrangian tensor Cp is introduced as

Cp = Fp TFp. (30)

The relationship between be and Cp can be described as

be = FCp−1FT . (31)

Additionally, to adhere to the volume preserving assumption in plasticity, we assume
that the determinant of the plastic deformation part det(Fp) = 1.

A.2 Constitutive relation

According to the theoretical framework proposed by Simo and Hughes [53], and
adopting an isotropic stress response assumption, the elastoplastic constitutive model
incorporates a nonlinear elastic strain energy function, decomposed into volumetric and
deviatoric parts as

W = Wv(J) + Ws(b
e
), (32)

where b
e

is the elastic part of volume-preserving left-Cauchy Green tensor. The volu-
metric part, weighted by the bulk modulus K, is given by

Wv(J) =
1

2
K[

1

2
(J2 − 1)− ln J ]. (33)

The deviatoric part, related to the shear modulus µ, is obtained by

Ws(b
e
) =

1

2
µ[Tr(b

e
)−D]. (34)

Here, D = {1,2,3} depends on the dimension of the problem. With E denoting Young’s
modulus and ν the Poisson ratio, the bulk and shear moduli are interconnected through
the relationship:

E = 2µ (1 + ν) = 3K (1− 2ν) . (35)
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With the energy function Eq. (32) in hand, the Kirchhoff stress tensor, representing
the stress response, can be formulated as

τ =
∂W

∂Fe
FeT =

κ

2

(
J2 − 1

)
I + µ dev(b

e
), (36)

where the two terms on the right-hand side correspond to the volumetric and shear
stresses, respectively. Note that in the equations above, the expression

T = [det(T)]−1/3T (37)

indicates the volume preserving treatment for a tensor T. Additionally,

dev(T) = T− Tr(T)

3
I (38)

represents the trace free part of the tensor T, i.e., Tr[dev(T)] = 0.

A.3 Flow rule and hardening plasticity model

With the flow plasticity theory, a flow rule is needed to determine the orientation
and magnitude of plastic deformation. In this paper, the classical J2 flow theory, also
known as the Mises–Huber yield condition proposed by Hube and von Mises [64], is used
to model plastic stress-strain evolution. This theory states that the plastic behavior
is governed by the deviatoric part of the Kirchhoff stress tensor τ , represented by
the second term µ dev(b

e
) on the right side of Eq. (36). For simplicity, we define

s = dev(τ ) = µ dev(b
e
), and the normalized tensor of s is given by ŝ = s/s, where the

magnitude scalar s = ‖s‖F is computed using the Frobenius norm ‖.‖F .
In mechanical engineering, isotropic work-hardening plastic behavior is frequently

encountered. To incorporate this behavior, a scalar yield function f(τ , α) that depends
on the hardening function k(α) is introduced, where α represents the equivalent plastic
strain. The yield function is formulated as

f(τ , α) = ‖ dev(τ )‖F −
√

2

3
k(α) = s−

√
2

3
k(α), (39)

where k(α) is defined by a nonlinear isotropic hardening law, as proposed by Simo et
al. [53, 56]:

k(α) = σ0 + (σ∞ − σ0) [1− exp(−δα)] +Hα, (40)

Here, σ0 represents the initial flow stress, also called yield stress, σ∞ the saturation
flow stress, δ the saturation exponent (δ > 0), and H the linear hardening coefficient.
The yield function f establishes the yield surface when f = 0, and classifies the purely
elastic response when f < 0. When the yield condition is violated (f > 0), the stress
response to deformation consists of both plastic and elastic components. Once the
deformation enters the plastic regime, the material cannot revert to its original shape,
undergoing a permanently plastic deformation.
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A.4 Return mapping algorithm

To integrate the material deformation over time, the return mapping algorithm,
which has been widely applied in literature [59, 65–68], is applied here. In this algo-
rithm, the deviatoric part of the Kirchhoff stress tensor spre = dev(τ pre) = µ dev(b

e,pre
)

is obtained using the predicted update of be,pre, considering only the elastic strain. The
yield condition is then checked using Eq. (39) to determine if plastic deformation oc-
curs. If f < 0, the strain in the current step remains elastic, and the predicted update
be,pre is considered acceptable. Otherwise, plastic correction (returning map) is intro-
duced to obtain the final be and s for the next step. The framework of this algorithm
is presented in Agorithm 1.

Appendix B Fluid-structure interaction model

In this appendix, we reference Zhao’s algorithm [27] to provide a concise overview of
the porosity assumption for porous media model and its associated relations, including
porosity and fluid saturation (B.1), as well as stress relations (B.2). In this mixture
model, the definition of state variables including solid density ρs, locally fluid density
ρl, solid velocity vs, and fluid saturation c̃ enables the fluid velocity to be calculated
with reference to the solid velocity. This simplified approach is practically significant,
notably reducing the system complexity by eliminating the necessity for two separate
sets of equations to describe the fluid and solid separately.

B.1 Porosity and fluid saturation

Considering a representative volume element dV , the macroscopic porosity c is de-
fined as the ratio of the total volume of the pores dV p to dV , yielding c = dV p

dV
. Note

that 0 < c < 1 holds for all cases. When the porous solid is partially saturated by fluid,
the fluid saturation level c̃ can be defined as

c̃ =
dV l

dV
, (41)

where dV l denotes the fluid volume in the representative element dV . Clearly, c̃ is
always less than or equal to the maximum possible saturation c, i.e., c̃ ≤ c. The
locally effective fluid density ρl, defined as the mass of the fluid per unit volume, varies
depending on the extent of fluid saturation and can be expressed as

ρl =
dml

dV
=
dml

dV l

dV l

dV
= ρLc̃, (42)

where dml represents the mass of the fluid within dV , ρL the fluid density which is
assumed to be a constant for incompressible fluids.

B.2 Effective stress on solid

Following [69–72], the total stress acting on the solid is the sum of Cauchy stress σs

due to deformation and the pressure stress σl due to the presence of the fluid phase,
written as:

σ = σs + σl = σs − plI. (43)
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where pl is fluid pressure. For a hyper-elastic material, the constitutive equation for
the solid component is given by

σs = 2µe + λtr(e)I, (44)

where the Eulerian-Almansi finite strain tensor e can be evaluated by

e =
1

2
(I− FTF). (45)

The Lamé parameter λ can be calculated via shear modulus µ and bulk modulus K as
λ = K − 2µ

3
.

The fluid pressure solely depends on the fluid saturation level within the porous
solid element, represented by a function pl = pl(c̃). The relationship between fluid
diffusion and the solid deformation satisfies a fundamental principle: The correlation
between fluid diffusion and solid deformation adheres to a fundamental principle: as
fluid flows out of a given zone, the saturation level decreases, resulting in a drop of
pressure, and consequently, the material tends to contract inwardly. Conversely, when
fluid penetrates a porous solid area, there exists a higher saturation level corresponding
to a stronger pressure, leading to a material expansion. In the present model, this
behavior is described mathematically by applying a linear relation, taking the form

pl = C(c̃− c̃0), (46)

where C is a material constant, c̃0 the initial saturation. Details can be referred to [72].
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Algorithm 1: Return mapping algorithm for J2 flow theory with nonlinear
isotropic hardening.

1 Update deformation tensor

Fn+1 = ∆t
dF

dt
, Fn+1 = [det(Fn+1)]−1/3Fn+1

2 Predict the elastic

b
e,pre

n+1 = Fn+1C
n−1

p F
T

n+1, spren+1 = µdev(b
e,pre

n+1 )

3 Check the von Mises criterion

fpren+1 = spren+1 −
√

2

3
k(αn)

4 if fpren+1 ≤ 0 then
5 Elastic state, Set (.)n+1 = (.)pren+1, go to 10.
6 else
7 Perform 9 (the return mapping).
8 end
9 Compute the normlized shear modulus

µ̃ =
1

3
Tr(b

e,pre

n+1 )µ

Initiate
∆γ = 0

Compute ∆γ so that

f̂(∆γ) =
∥∥strialn+1

∥∥−
√

2

3
k

(
αn +

√
2

3
∆γ

)
− 2µ̄∆γ = 0

ŝ = spren+1/s
pre
n+1

Return mapping

sn+1 = spren+1 − 2µ̃∆γŝ, αn+1 = αn +

√
2

3
∆γ

10 Update stress

Jn+1 = det(Fn+1), τn+1 =
κ

2

(
J2
n+1 − 1

)
I + sn+1, Pn+1 = τn+1F

−T
n+1

11 Update local configuration

b
e

n+1 =
1

µ
sn+1 +

1

3
Tr
(
b
e, pre

n+1

)
I, C

n+1

p = F
−1

n+1b
e

n+1F
−T

n+1
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