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Abstract: Trajectory optimization is an essential tool for the high-fidelity planning of missions in
aerospace engineering in order to increase their safety. Robust optimal control methods are utilized in
the present study to address environmental or system uncertainties. To improve robustness, holistic
approaches for robust trajectory optimization using sensitivity minimization with system feedback
and predicted feedback are presented. Thereby, controller gains to handle uncertainty influences
are optimized. The proposed method is demonstrated in an application for UAV trajectories. The
resulting trajectories are less prone to unknown factors, which increases mission safety.
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1. Introduction

In order to plan trajectories in aerospace missions, optimal control methods can deliver
highly detailed trajectories that can serve to analyze system performance or as reference
trajectories for tracking purposes. For increased safety, environmental or system-related
uncertainties must be considered in trajectory planning. Robust optimal control methods
take these uncertainties into account and provide robust trajectories that are less prone
to disturbances, i.e., under disturbances in model parameters, the trajectory deviations
are reduced. Two key techniques in application-oriented studies are the stochastic and
deterministic approaches.

In statistical approaches, it is assumed that the uncertainty underlies a statistical
distribution. Hence, probability or chance constraints can be imposed, requiring a particular
event to happen with at least a given probability. Studies on this can be found in [1], where
robust transition trajectories of an electric Vertical Take-off and Landing (eVTOL) aircraft
are calculated considering uncertainties in wind estimations. There, a stochastic collocation
approach combined with general Polynomial Chaos (gPC) is used. In [2], the authors
propose to evaluate chance constraints via kernel density estimation, similarly as in [3]
coupled with Markov Chain Monte Carlo sampling. The main challenge in these methods
is the high computational effort in calculating probabilities and their gradients.

In deterministic approaches, uncertainties are considered to appear deterministically
in the dynamic system. One approach here is semi-infinite optimization [4], wherein
constraints are imposed on all realizations of an uncertain parameter, making the solution
feasible for a set of disturbances and optimal for the ideal parameter value. However, these
problems require high computational effort to be solved due to the complex constraints,
including worst-case considerations.

Another approach is sensitivity minimization [5,6], wherein sensitivities are minimized
within the cost function, reducing the dependency of a state of interest concerning an
uncertain model parameter. Thereby, the system states’ or cost variations under parameter
deviations are reduced, i.e., the robustness of the resulting trajectories is increased. In the
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mentioned studies, sensitivity minimization is applied to a Rayleigh system [5] and to
robustify reentry trajectories regarding the heat flux under uncertain air density [6].

It is important to note that the mentioned studies are limited to open-loop optimal
control. However, in many applications, it is essential to consider a closed-loop system in
the optimization to describe a realistic behavior and exploit the full performance.

In gradient-based optimal control methods, incorporating a closed-loop system model
is usually not suitable for the differentiability requirements of the optimization methods.
Three main approaches to tackle this problem are discussed in [7]. In summary, one
approach may be to smooth a given controller for use in optimization. However, the
controller behavior may not be perfectly reproduced after modification, as discussed in [8],
and the resulting trajectories are then limited to this one control strategy. Another approach
is presented in [9,10], wherein an explicit controller is designed in the optimization process
considering Lyapunov and eigenvalue stability constraints. The advantage here is that
specific requirements for the controller can be set during optimization. Nevertheless,
the procedure to obtain the optimal trajectory and control design highly depends on the
considered system.

Another challenge is the consideration of stability of linear time-variant (LTV) systems.
There are stability criteria, e.g., the fulfillment of the Riccati equation [11,12]. Nevertheless,
the incorporation into an optimization problem is not straightforward since the Riccati
equation needs to be solved.

An optimization-based state feedback approach is Model Predictive Control (MPC) [13].
Here, cyclic re-optimization of the controls starting from the current state yields a feedback
control law. By this, deviations from the optimal trajectory can be taken into account and
can ideally be corrected. However, resolving the optimization problems can be computa-
tionally expensive. Instead of recalculating the optimal solution, post-optimal sensitivities
can be used to linearly approximate the state and control history for solution updates as
in [14]. Here, the post-optimal sensitivities describe the change in the optimal solution
regarding parameter value changes.

An approach combining sensitivity minimization with feedback is presented in [15,16].
Here, the open-loop sensitivity minimization approach is extended by control sensitivity
terms regarding state feedback, such that the controls can be updated linearly according to
state feedback. The control sensitivities are subject to optimization. The effectiveness of the
method is presented in an academic example. The authors propose only the state feedback
incorporation in case a feedforward cannot be determined, as parameter perturbations may
not be measurable.

The approach of a linear control update with optimized gains is advantageous since,
in the early development stages of new systems, performance assessment via trajectory
optimization is possible without the actual usage of a fully developed controller. Further-
more, it provides a holistic optimization of trajectories and controller gains, which fully
exploits system performance.

In the paper at hand, the sensitivity minimization approach is combined with state
feedback and predicted feedback under the assumption that parameter values can be
estimated during flight. In detail, generic control update terms considering state feedback
and predicted feedback are introduced into the trajectory optimization problem appearing
in the sensitivity differential equations. Thereby, the update terms improve sensitivity
reduction and trajectory robustness compared to open-loop considerations. The proposed
method is applied to a practically relevant UAV trajectory optimization problem of high
dimension and is validated by closed-loop simulations.

This study is structured as follows. In Section 2, the theoretical background of robust
open-loop optimal control using sensitivity minimization is presented. Afterwards, the
closed-loop sensitivity minimization approach incorporating control updates is introduced
in Section 3. An application example for UAV robust trajectory optimization is presented
in Section 4. This study is concluded in Section 5.
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2. Robust Open-Loop Optimal Control with Sensitivity Minimization

In this subsection, an open-loop optimal control problem formulation with sensitivity
penalty is presented according to [5,6,17]. The considered time horizon of the trajectories
to be optimized is denoted by T = [t0, t f ] ⊆ R. Let x : T → Rnx be the state history and
u : T → Rnu the control history. The parameter vector is denoted by p ∈ Rnp . Then, the
robust open-loop optimal control problem statement is as follows:

min
x,u,t f

J(x(t0), x(t f ), t f ) +
∫ t f

t0

nx

∑
i

np

∑
j

wi,jSi,j(t)2 dt (1)

subject to the dynamic constraints

ẋ(t) = f(x(t), u(t); p) (2)

with f : Rnx ×Rnu → Rnx , the sensitivity differential equation for S : T → Rnx ×Rnp with
S(t) := ∂x

∂p (t) according to [17]

Ṡ(t) =
∂f
∂x

(t)S(t) +
∂f
∂p

(t), S(t0) =
∂x
∂p

(t0), (3)

the initial and final boundary conditions

ψ(x(t0), x(t f ); p) = 0 (4)

with ψ : Rnx ×Rnx → Rnψ and inequality constraints

cineq(x(t), u(t); p) ≤ 0 (5)

for all t ∈ T with cineq : Rnx ×Rnu → Rnineq . Here, J represents a Mayer cost function, which
depends only on initial and final states and the free final time. The cost function here is
formulated with a sensitivity penalty with weights wi,j ∈ R, which can be chosen to find a
trade-off between optimality and robustness. The higher the sensitivity weights, the higher
the robustness. Please note that increased robustness usually leads to increased nominal
costs J compared to the minimal cost value resulting from only minimizing J. Solving
the robust optimal control problem delivers an open-loop control history u, which can be
utilized to obtain a state history x, which is less prone to deviations in the parameters p
as studied in [5,6]. It is worth noting that the open-loop sensitivity does not include any
terms describing the controls’ dependencies on parameters.

In the following section, the open-loop approach is extended to closed-loop modeling
to increase robustness.

3. Robust Closed-Loop Optimal Control with Sensitivity Minimization

Since, in practice, a closed-loop system is considered, it is meaningful to also consider
a closed-loop system in robust optimal control. As discussed in the literature review in
Section 1, few approaches exist to incorporate feedback into the optimization routine due
to demanding differentiability requirements. In this section, an extension of the open-
loop sensitivity minimization approach presented in Section 2 is given by modeling a
linear control update with state feedback and predicted feedback. The idea of a linear
feedback controller is based on [15,16] and is extended by a feedback prediction. The main
advantage is that a realistic system behavior is mapped by the closed-loop system, which
increases the usability of the optimized trajectories in real-life scenarios. Furthermore, the
proposed approach holistically optimizes trajectories and controller gains, exploiting the
full performance spectrum of the system. The extension to the predicted feedback offers
more flexibility in using either actual system feedback or the prediction when uncertainties
can be estimated during flight.
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3.1. Sensitivity Formulation with Feedback

A common approach to design a linear feedback control law is presented in the
following. Let P ⊂ Rnp be the set of possible parameter realizations and p0 ∈ P be the fixed
nominal parameter vector. The optimal open-loop control for problem (1)–(5) is denoted by
u(·; p0) : T → Rnu . The control update u : T ×Rnx × P → Rnu is based on the first-order
Taylor approximation:

u(t, x, p) ≈ u(t; p0) +
∂u(t; p0)

∂x
(x(t; p)− x(t; p0)) +

∂u(t; p0)

∂p
(p − p0), (6)

where x(·; p) : T → Rnx describes the perturbed state trajectory at parameter value p. In
the approach proposed by [15,16], new control variables

Kx(t) :=
∂u(t; p0)

∂x
(7)

with Kx : T → Rnu ×Rnx , which represent the control sensitivities, are introduced using the
fact that the state feedback is the deviation that is to be eliminated, and hence, a feedforward
can be omitted. This enables the determination of an optimal control update rule

ux(t, x; p) = u(t; p0) + Kx(t)(x(t; p)− x(t; p0)) (8)

with ux : T ×Rnx → Rnu . Thereby, the sensitivity differential equation in (3) extends to

Ṡ(t) =

(
∂f
∂x

(t) +
∂f
∂u

(t)Kx(t)
)

S(t) +
∂f
∂p

(t), (9)

S(t0) =
∂x
∂p

(t0). (10)

Additionally, problem (1)–(5) is extended by limit constraints on the newly introduced
control variables, i.e.,

Kx,lb ≤ Kx(t) ≤ Kx,ub (11)

with Kx,lb, Kx,ub ∈ Rnu×nx . Since the gains Kx can be considered as design parameters, the
limits can be chosen iteratively until satisfactory results are obtained to meet the control
constraints given in (5).

3.2. Closed-Loop Sensitivity Minimization Problem with Predicted Feedback

In case the values of the uncertain parameters can be determined during flight, the
approach of updating controls presented in Section 3.1 can be reformulated by making use
of the fact that the states x(t; p) under parameter influences can locally be approximated
with the help of the sensitivities from (9). The approximation is given by

x(t; p) ≈ x(t; p0) + S(t)(p − p0). (12)

The replacement in (8) leads to the control update formulation as follows:

up(t, p) = u(t; p0) + Kx(t)S(t)(p − p0) (13)

with up : T × P → Rnu . Compared to a feedforward term ∂u(·;p0)
∂p (p − p0), which is not

utilized in this study, the predicted feedback term has time-varying limits under (11), and
can be interpreted to be weighted with the sensitivities. The less the state is expected to
deviate, the smaller the gain limit that will reduce the control effort as smaller sensitivities
result in smaller corrections. Furthermore, this formulation provides flexibility in using the
predicted or actual feedback due to the relation in (12). This can be useful in cases wherein
there is a loss of measurements, e.g., loss of GPS signals due to jamming, where the control
can still be updated based on previous estimations. From an implementation perspective,
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this formulation eases the transference of the nominal control limits given in (5) to the
updated control (13) as the values for the control update, namely the sensitivities and upper
and lower bounds of the parameters, are available within the optimization. Finally, note
that, in the feedback implementation (8), a full state feedback is assumed, whereas in the
predicted feedback approach (13) all that is needed is a good estimation of the constant
vector p.

Under the assumption that a bounded set of uncertainty realizations is considered
with plb ≤ p ≤ pub and that the worst-case trajectory deviations are realized at these
bounds, the following constraints are imposed on the control updates:

cineq(x(t), up(t, plb); plb) ≤ 0, (14)

cineq(x(t), up(t, pub); pub) ≤ 0 (15)

for all t ∈ T .

4. Application to UAV Trajectory Optimization

The proposed approach from Section 2 is applied to a UAV climb trajectory optimiza-
tion problem wherein flight time and sensitivities are minimized. The dynamic model of a
fixed-wing UAV is based on [18] and given by

ẋ(t) = V(t) cos χ(t) cos γ(t) (16)

ẏ(t) = V(t) sin χ(t) cos γ(t) (17)

ḣ(t) = V(t) sin γ(t) (18)

χ̇(t) =
L(t) sin µ(t)

mV(t) cos γ(t)
(19)

γ̇(t) =
L(t) cos µ(t)− mg cos γ(t)

mV(t)
(20)

V̇(t) =
T(t)− D(t)

m
− g sin γ(t), (21)

where x, y, h describe the positional coordinates, χ the course angle, γ the flight path
angle and V the velocity. Furthermore, m is the mass of the vehicle, g the gravitational
acceleration and µ the bank angle. The thrust, lift and drag are given by

T(t) = δT(t)Tmax (22)

L(t) =
1
2

ρV(t)2SCL(t) (23)

D(t) =
1
2

ρV(t)2S
(

CD0 + kCL(t)2
)

(24)

with δT being the thrust lever position, Tmax the maximum thrust of the vehicle, ρ the air
density, S the reference area, CD0 the zero-lift drag coefficient, k the induced drag factor
and CL the lift coefficient. The values of the model parameters are given in Table 1.

Table 1. Model parameter values.

Parameters Values

m 6 kg
g 9.81 m/s
ρ 1.225 kg/m3

Tmax 70.632 N
S 0.7 m2

CD0 0.015
k 0.02
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The state and the controls are defined to be

x = (x, y, h, χ, γ, V)⊤ (25)

u = (CL, µ, δT)
⊤. (26)

4.1. Case 0: Nominal Problem Formulation

The maneuver is a climb in minimum time after transition to start a particular mission
at a given altitude:

min
x,u,t f

t f (27)

such that the initial and final boundaries in Table 2 are fulfilled.

Table 2. State and control limits and initial boundary conditions.

Symbol Unit Lower
Bound

Upper
Bound

Initial
Value

Final
Value

States x m 0 ∞ 0 -
y m 0 ∞ 0 -
h m 0 ∞ 30 100
χ deg −60 60 0 0
γ deg −30 30 0 0
V m/s 0 20 17 17

Controls CL - 0 1 - -
µ deg −30 30 - -
δT - 0 1 - -

Control Rates ĊL 1/s −0.1 0.1 - -
µ̇ deg/s −30 30 - -
δ̇T 1/s −0.1 0.1 - -

Furthermore, flight time is limited to 10 s to allocate enough flight time for the mission.
This optimal control problem is solved with FALCON.m [19], which is an optimal control
framework in MATLAB. It is based on direct collocation methods [17] using Trapezoidal
integration.

Since aerodynamic parameters, in this case the drag coefficient CD0 , are usually es-
timated based on wind tunnel and CFD data, they may be subject to uncertainty. It is
assumed that the drag coefficient CD0 can deviate by 30 % and that the most probable
values of the realizations of CD0 are in the interval P = [0.0105, 0.0195].

If the actual parameter values differ from the ideal values assumed in the model, the
actual trajectory using the optimal controls may significantly change. For this reason, the
robust optimal control methods presented in Section 2 are applied. Robustness of along-
track position may be essential for specific scenarios, e.g., to ensure separation between
vehicles and reduce the collision risk. Therefore, the aim is to minimize the deviations in
the positional state x with respect to the parameter CD0 by minimizing the sensitivity

Sx :=
∂x

∂CD0

. (28)

For validation, simulations with worst-case deviations in CD0 are conducted. In detail,
the following methods are applied and compared.

4.2. Case 1: Problem Formulation for Open-Loop Sensitivity Minimization

In order to robustify the trajectory in Section 4.1, open-loop sensitivity minimization
as presented in Section 2 is conducted as a benchmark for the proposed methods. Therefore,
the cost function is modeled as
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min
x,u,t f

t f +
∫ t f

t0

Sx(t)2 dt. (29)

The constraints regarding the states and controls are equal to those of case 0 in
Section 4.1.

4.3. Case 2: Problem Formulation for Closed-Loop Sensitivity Minimization with Feedback

To improve robustness, the method using state feedback as in Section 3.1 is applied.
The cost function is given by (29) and the same as in the open-loop sensitivity minimization
case 1. New controls are introduced, namely the time-dependent gains Kx(t) ∈ Rnu×nx .
They are limited by the lower and upper bounds

−0.5 ≤ Kx(t) ≤ 0.5 (30)

in order to map the limitations of the controller. The post-optimal simulations are conducted
with the updated control (8). An estimation of feasible gain limits can be made by analyzing
the magnitude of the estimated deviation S(t)(p − p0).

4.4. Case 3: Problem Formulation for Closed-Loop Sensitivity Minimization with Predicted Feedback

Under the assumption that the drag coefficient can be estimated during flight by
energy estimations, the predicted feedback formulation is applied. Therefore, similarly to
the feedback case in Section 4.3, the gains Kx(t) ∈ Rnu×nx are introduced with the same
bounds as in (30). In this case, the control update in (13) is utilized in the post-optimal
simulations. Furthermore, control update constraints as in (14) and (15) are imposed with
the same values as in Table 2. Analogously, the same rate constraints as for the nominal
controls are applied to the worst-case control updates.

An overview of the compared cases is given in Table 3.

Table 3. Overview of compared cases for robust optimal control of the maneuver given in Section 4.1.

Case 0 Case 1 Case 2 Case 3

Cost Function (27) (29) (29) (29)
Gain Limits - - (30) (30)
Control Update Rule - - (8) (13)
Control Update
Constraints - - - (14), (15)

4.5. Numerical Results

The optimization using the open-loop and closed-loop sensitivity minimization leads
to the optimal state and control trajectories depicted in Figure 1 and Figure 2, respectively.
In the open-loop sensitivity minimization case 1, the optimization can find optimal controls
that reduce the sensitivity of the x-position and the other system states due to system
interdependencies (see Figure 3a). The sensitivity reduction can also be observed in the
simulated trajectories under variations in CD0 (see Figure 1). In the nominal case 0, the
variations in the x-position are up to 3 m, whereas in the open-loop sensitivity minimal case
1, the values vary up to 1 m. The direct influence of CD0 on V, which directly influences the
other system states, suggests that the optimization found a solution reducing the sensitivity
of V. Indeed, the solution with a sensitivity penalty on SV shows the same maneuver
structure. This suggests that a reduced velocity is more robust. To meet the final boundary
conditions in Table 2, the velocity increases by the end of the maneuver.

Compared to the nominal case 0, where the flight time is 9.05 s, flight time increases to
the upper time limit of 10 s when minimizing sensitivities in the open-loop case 1 due to
the trade-off between optimality and robustness. The significant increase in the final time
can mathematically be explained by the sensitivity having a higher order of magnitude
than the final time. For this reason, the sensitivity penalty considerably influences the
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overall cost (29) and leads to an optimal solution, which may allow for an increased final
time compared to the nominal case. Please note that, for increased time optimality, the
weights of the sensitivities in (29) could be decreased. For comparability to the subsequent
closed-loop cases described in Table 3, the weights are fixed for all cases.

In the closed-loop optimal solutions depicted in Figure 2, the sensitivities can further
be reduced by a magnitude of around 10 to 1000. The sensitivity reduction can also be
observed in the simulations since the deviations between the simulated trajectories at
perturbed values of CD0 are decreased. In the feedback case 2 and the predicted feedback
case 3, the deviations in the x-position are reduced to be below 1 cm. Taking into account
that a reasonable estimator can reduce the uncertainty in the drag estimation during
flight to 5 %, simulations employing disturbed parameter values for the control updates
have shown to reduce the x-position deviations up to 15 cm, hence still showing good
performance in terms of robustness. Therefore, the simulations using an ideal parameter
estimation are depicted for comparability with the benchmark method. Notably, the closed-
loop robust optimal trajectories are similar to the nominal open-loop optimal trajectory
without sensitivity minimization. Due to the nature of a closed-loop system, the overall
magnitude of sensitivities is smaller, as depicted in Figure 3b, having a negligible impact
on the overall cost. Hence, a solution with a nearly minimum final time can be found.
Specifically, the flight time for case 2 is 9.05 s and for case 3 is 9.07 s. This indicates that the
closed-loop solutions allow for increased optimality while being robust. Furthermore, both
closed-loop solutions in Figure 3b show high concordance. This indicates that the predicted
feedback leads to the desired validity of the prediction and underscores the effectiveness
of the proposed predicted feedback method. The effect of the control update constraints
according to (14) and (15) and Table 2 can be observed in the differences in the gains. Due
to the fact that the updated controls in case 2 are already close to fulfilling these constraints,
there is a slight difference to the updated controls in case 3. Although the gains vary rapidly
over time, the constraints ensure that the updated controls are feasible.

case 0 (optimal)

case 0 (simulation)

case 1 (optimal)

case 1 (simulation)

0

0.5

Figure 1. Optimal states and controls (solid) for the open-loop cases 0 and 1. The dashed lines are
simulated trajectories for cases 0 (grey) and 1 (purple) after worst-case variations of CD0 by 30 %.
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-0.5

0

0.5
case 2 (optimal)

case 2 (simulation)

case 3 (optimal)

case 3 (simulation)

Figure 2. Optimal states and controls (solid), including the controller gains, for the closed-loop cases
2 and 3. The dashed lines are simulated trajectories for cases 2 (orange) and 3 (cyan) after worst-case
variations of CD0 by 30 %.

case 0

case 1

(a) Open-loop sensitivities.

case 2

case 3

(b) Closed-loop sensitivities.
Figure 3. Sensitivities of states with respect to variations in CD0 in (a) the open-loop system for the
nominal case 0 (grey) and sensitivity minimized case 1 (purple), and (b) the closed-loop system with
feedback (case 2, orange) and predicted feedback (case 3, cyan).

5. Conclusions

In this study, a methodology for robust trajectory optimization under uncertain-
ties via sensitivity minimization considering state feedback and predicted feedback is
presented and applied to a practical trajectory optimization problem for UAV. Thereby,
time-dependent controller gains are optimized together with system state trajectories and a
nominal control, where a nominal cost function and sensitivities of a state of interest are



Aerospace 2024, 11, 640 10 of 11

minimized. The proposed closed-loop method enhances trajectory robustness with a better
trade-off in optimality and robustness, further enabling the efficient inclusion of control
update constraints. Further research can be directed to compare the feedback approaches
with the inclusion of a pure feedforward term. Moreover, it may be of interest to analyze
the potential of the closed-loop approaches in applications considering unstable systems.
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