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Abstract: The growing adoption of behind-the-meter (BTM) photovoltaic (PV) systems, electric
vehicle (EV) home chargers, and heat pumps (HPs) is causing increased grid congestion issues, par-
ticularly in power distribution grids. Leveraging BTM prosumer flexibility offers a cost-effective and
readily available solution to address these issues without resorting to expensive and time-consuming
infrastructure upgrades. This work evaluated the effectiveness of this solution by introducing a novel
modeling framework that combines a rolling horizon (RH) optimal power flow (OPF) algorithm
with a customized piecewise linear cost function. This framework allows for the individual control
of flexible BTM assets through various control measures, while modeling the power flow (PF) and
accounting for grid constraints. We demonstrated the practical utility of the proposed framework in
an exemplary residential region in Schutterwald, Germany. To this end, we constructed a PF-ready
grid model for the region, geographically allocated a future BTM asset mix, and generated tailored
load and generation profiles for each household. We found that BTM storage systems optimized
for self-consumption can fully resolve feed-in violations at HV/MV stations but only mitigate 35%
of the future load violations. Implementing additional control measures is key for addressing the
remaining load violations. While curative measures, e.g., temporarily limiting EV charging or HP
usage, have minimal impacts, proactive measures that control both the charging and discharging of
BTM storage systems can effectively address the remaining load violations, even for grids that are
already operating at or near full capacity.

Keywords: behind-the-meter assets; flexibility; smart grid; grid congestion; optimal power flow

1. Introduction
1.1. Motivation

Europe has set ambitious climate targets, aiming to install 600 GW of PV capacity,
double the deployment of HPs, and achieve a 30% market share of EVs by 2030 [1]. This
transformation, primarily occurring at the BTM level, is adding significant stress to power
distribution grids, leading to grid congestion, which often manifests as equipment over-
loading and can accelerate grid degradation [2–5].

To address grid congestion and consistently deliver high-quality, uninterrupted power
to supplied end consumers, distribution system operators (DSOs) often implement infras-
tructure upgrades. However, these upgrades are capital-intensive, particularly if they occur
before the existing equipment has reached the end of its service life. Moreover, they are
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time-consuming on a large scale, potentially lagging behind the rapid adoption of BTM
assets [6].

On the other hand, this transformation creates a new category of BTM prosumers.
Leveraging the flexibility of these prosumers can present a cost-effective and readily avail-
able solution for mitigating grid congestion [7]. To investigate the effectiveness of this
solution, we introduce an integrated approach, which models the future power distribution
grid in a specific region and evaluates the potential of BTM prosumer flexibility and various
control measures to effectively mitigate grid congestion issues.

1.2. Related Work

Levering flexibility to mitigate grid congestion issues is attracting significant research
interest. The authors of [8] explored five different flexibility options and evaluated their
capacity to reduce the need for grid infrastructure upgrades from a techno-economic
perspective. In [7], the authors introduce a framework for procuring prosumer flexibility,
enabling DSOs to mitigate the need for grid expansion measures. Similar concepts were
also investigated in [9,10]. A study [11] suggests that implementing control strategies for
flexible BTM assets can effectively prevent grid congestion. Our work builds upon this
study by integrating a power distribution grid and analyzing a large section of a system
(more than 300 households), rather than focusing only on individual households.

Geographic information system (GIS)-based approaches have been previously used for
energy system modeling. The FlexiGIS platform, as proposed in [12], leverages the spatial
data extracted from open-source databases, e.g., OpenStreetMap, to optimize flexibility
option costs and operation in urban areas. This platform has also been used in [13,14] for
optimal battery storage allocation. While these works did not consider the power distri-
bution grid, this aspect was addressed in the comprehensive GIS-based study proposed
in [15]. Our approach builds upon this study by integrating rooftop PVs, EV home chargers,
and battery and thermal storage alongside HPs.

To model the behavior and management of prosumer flexibility, several approaches,
including OPF-based algorithms, have been proposed. A study [16] proposes an OPF-
based algorithm to optimize flexible asset scheduling within microgrids. The concept
of flexibility in microgrids was also investigated in [17] using, however, mixed integer
linear programming (MILP). In [18], the authors present an approach for integrating sizing,
placement, and operational strategies for battery storage into OPF. This concept was further
investigated in [19], taking into account various penetration levels of wind power and load
scales, and in [20] using MILP and mixed integer nonlinear programming.

1.3. Contributions

In this paper, we present a novel approach for assessing how BTM prosumer flexibility
can mitigate grid congestion issues in future power distribution grids. To this end, we
determined the future BTM asset mix for a specific region and geographically allocated
the assets to the households. We used existing algorithms and tools as well as open-source
data to collect and prepare the necessary input data. This included constructing a PF-
ready grid model of the existing infrastructure and generating tailored load demand and
generation profiles for each household. We introduce a modeling framework that uses an
RH OPF algorithm to control flexible BTM assets over time without perfect foresight while
considering grid constraints.

We applied the proposed approach in a case study of a residential region in Schutter-
wald, Germany. This study shows that the approach can quantify the impact of future BTM
asset penetration on grid congestion issues with minimal input data. We then analyzed
these issues and evaluate various control measures for flexible BTM assets to identify the
most effective solutions.

The remainder of the paper is structured as follows: The proposed approach is pre-
sented in Section 2. The simulation experiments are outlined in Section 3. In Section 4,
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we summarize the results, discuss the limitations, and present potential avenues for fu-
ture work.

2. Materials and Methods

The proposed approach comprises three key parts. First, the BTM asset mix is deter-
mined for both a status quo and a future scenario. Second, the input data required for the
proposed modeling framework are collected and prepared. Third, the modeling framework
for controlling BTM prosumer flexibility is applied. Note that the approach, graphically
described in Figure 1, is automated and transferrable to different regions with similar
infrastructure. Moreover, it is versatile for different data availability scenarios, e.g., if the
actual grid model and/or measurements are available, they can be directly used.

BTM asset mix modeling

MV/LV transfomer

LV grid

Load & generation profile PF-ready grid model Reduced stress HV/MV station
OPF 

RH 

Figure 1. Schematic describing the workflow of the proposed approach.

2.1. Status Quo and Future Behind-the-Meter Asset Mix

When determining the BTM asset mix for a specific region, we considered two different
scenarios: one for the status quo (year 2024) and another for the future (year 2030).

In the status quo scenario, we considered rooftop PVs as the only type of BTM asset.
We assumed a 25% penetration rate, reflecting the current level of rooftop PV adoption in
Schutterwald, Germany. Based on this rate, we randomly selected households behind each
MV/LV station and geographically allocated the rooftop PVs. We determined this scenario
to estimate the status quo load on the HV/MV station, which was then used to establish
the threshold for grid congestion detection (Section 3.1).

In the future scenario, we used a more generalized approach, integrating a wider
range of BTM assets, i.e., rooftop PVs, Level 2 EV home chargers, HPs, and both battery
and thermal storage. These assets vary in their degree of flexibility, as outlined in Table 1.
Battery and thermal storage are fully flexible, allowing complete control by the OPF
algorithm within the modeling framework. EV home chargers and HPs are partially flexible,
i.e., temporary reductions in their usage can be enforced when necessary. Household load
and rooftop PVs, on the other hand, have a fixed electric load or generation profile.

Table 1. Summary of the BTM asset mix for the future scenario.

Asset Type Flexibility Level Avg. Penetration
MV/LV Station (No. Households)

Reference Focus PV Focus EV

Household load Fixed 100% 85 157 77
Rooftop PV Fixed 47% 39 73 46
EV charger (Level 2) Partial 26% 17 51 15
Heat pump Partial 40% 34 62 30
Battery storage Full 47% 39 73 46
Thermal storage Full 19% 17 22 19

The projected penetration rates of each asset were extrapolated from the targets
established in the REPowerEU plan [1]. Similar to the status quo scenario, we randomly
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selected households behind each MV/LV station based on these penetration rates and
geographically allocated the assets to the households. Note that in this work, battery
storage systems were only allocated to households with a rooftop PV, whereas thermal
storage systems were only allocated to households with both a rooftop PV and HP.

To increase the diversity of the future BTM asset mix, we slightly varied the projected
penetration rates of rooftop PVs and EV home chargers at two out of the three available
MV/LV stations. Precisely, one MV/LV station (“Focus PV” in Table 1) shows an increased
trend in rooftop PV adoption of 60%, while another MV/LV station (“Focus EV” in Table 1)
experiences a higher installation rate of EV home chargers of 33%. The remaining MV/LV
station (“Reference” in Table 1) represents the projected average penetration rates. The
details of the future scenario are summarized in Table 1.

2.2. Input Data

In the following, we outline the procedures for collecting and preparing the input data
for the application of the proposed modeling framework.

2.2.1. Generating a Grid Model for Power Flow Simulations

We considered an exemplary residential region in Schutterwald, Germany, comprising
one 25 MVA HV/MV station, two 0.63 MVA MV/LV stations, one 0.4 MVA MV/LV station,
and 319 households.

The locations and nameplate capacities of the HV/MV station and the MV/LV stations
were extracted from the open-source MV-Oberrhein power grid available in [21]. We
obtained the locations and living areas of the households using a custom extension for the
Overpass API [22] developed in Python 3.10, which automatically fetches information from
OpenStreetMap [23] based on the region’s coordinates.

Since we assumed that detailed information about the LV power grid is not available,
we used the algorithm from [24] to produce a synthetic estimate of the system (Figure 2).
The generated power grid was assumed to represent the existing infrastructure. While it
may not precisely align with the actual system, it serves as the benchmark for applying the
proposed modeling framework. To explicitly account for uncertainty, this procedure can be
also extended to generate a probability distribution including several potential candidates.

Figure 2. The grid model used for the experiments, shown on a geographical map. This system
includes the LV power grid estimated in this work and the MV power grid from [21] supplying it.

We generated the synthetic estimate as follows:

Step 1. Using the custom extension for Overpass API, we automatically fetched the
street layout of the region.

Step 2. We construcedt a network of the region by linking the street layout with the
nearest node of the MV/LV stations and households. Then, we eliminated all
redundant nodes, e.g., additional nodes of the MV/LV stations and households
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that were not connected to the street layout. In the following, this network is
referred to as the base graph.

Step 3. We applied the approach proposed in [24] to produce a possible assignment
of the end consumers to the available MV/LV stations while adhering to the
base graph.

Step 4. We derived the grid topology by applying a minimum spanning tree algorithm
and pruning all edges not leading to a household or MV/LV station node, as
proposed in [24].

Step 5. We developed a PF-ready grid model by specifying the technical parameters for
the grid assets using pandapower [21].

2.2.2. Household Load and Generation Profiles

We used an automated approach to create load and generation profiles with config-
urable granularity tailored to the households to which they were geographically assigned.
In this work, all load and generation profiles are configured with a 15-minute granular-
ity. Similarly to Section 2.2.1, the application of this approach was necessary since we
assumed that actual measurements are not available. However, if measured profiles for all
households are available, this step can be omitted, and the measured profiles can be used
instead.

Electric Base Load Profiles

We relied on an open-source dataset, featuring exemplary German energy consump-
tion profiles from [25], to produce the electric base load profiles for individual households
as of today. To this end, for each household i ∈ {1, . . . , N}, where N is the total number of
households, we randomly selected a profile from [25] and normalized it according to its
inherent total energy consumption. Then, we scaled the resulting normalized profile by
adapting the formula provided in the context of [26] for dimensioning residential household
energy consumption

Ei = Eavg ×
Ai

Aavg
(1)

where Eavg is the average residential energy consumption in Germany, Ai is the living area
of a household i, and Aavg is the average residential living area in Germany. Finally, we
derived the electric base load profiles for the individual households by transforming the
estimated energy consumption data into load profiles.

Thermal Base Load Profiles

To generate the thermal load profiles, we adopted an approach similar to the one
outlined in the previous paragraph. First, we derived the normalized thermal load profile
for the region of interest using NASA’s MERRA-2 weather dataset [27] and the methodology
introduced in [28]. Then, for each household i with living area Ai, we assumed compliance
with the Efficiency House 40 standard [29] and adjusted the normalized profile by a factor of
40 kWhthermal / m2 ×Ai. Finally, we introduced slight random fluctuations and temporal
shifts to each resulting profile to reduce cross-correlation effects between households.
Note that a thermal load profile was only generated for households equipped with HPs.
Moreover, the resulting thermal load profile represents a household’s requirements for
space heating and hot water generation rather than the operation of the HP.

Electric Generation Profiles

We determined the generation data for the region of interest by using NASA’s MERRA-2
weather dataset [27] and identifying key parameters, e.g., incident irradiance on PV modules
and temperature influences, as described in [30]. After normalizing the resulting generation
data, we adjusted it according to a predefined PV capacity. For simplicity, we assumed that
all households within the region of interest had rooftop PVs with 6.6 kW PV capacity in the
status quo scenario and 8 kW PV capacity in the future scenario.
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Electric Vehicle Charging Profiles

We used the agent-based modeling approach proposed in [31] to generate the profiles
for all households equipped with EV home chargers. The charging capacity is adjustable;
though, for simplicity, we assumed that all residential EV chargers within the region of
interest have a uniform maximum power of 11 kW.

2.3. Modeling Framework

The proposed modeling framework (see the flowchart in Figure 3) consists of four
key components, described in more detail in the subsections below: (1) modeling of BTM
battery and thermal storage systems over time, (2) an RH OPF algorithm equipped with a
customized piecewise linear cost function for flexible BTM asset control, (3) curative control
measures for EV home chargers and HPs, and (4) proactive control measures for BTM
storage systems. The framework was developed in Python 3.10, primarily leveraging the
pandapower and Pandas libraries. Its design is highly modular, allowing each component
to operate as a standalone module that can be used independently or in conjunction
with others.

Modeling framework

Proactive control
measures

Controller electric
storage

Storage systems
Controller thermal

storageEV home charger HP

Grid constraints

RH OPF

BTM asset control via  & cost parameters

Input data

PF-ready grid model Load & generation profiles BTM asset mix

Curative control
measures

Figure 3. Flowchart describing the input data and workflow of the proposed modeling framework.

Note that while AC OPF is supported, we used DC OPF in this study due to its
significantly shorter runtime. Moreover, we evaluated the load at the HV/MV station using
both AC OPF and DC OPF over an exemplary one-week period. We found that the load
simulated with AC OPF is generally slightly higher than that simulated using DC OPF.
However, the discrepancy is negligible, i.e., less than 5%.

2.3.1. Modeling of Storage Systems

In this work, we considered a BTM system (Figure 4) that included both battery and
thermal storage systems. While pandapower can fundamentally model a storage system, it
does not dynamically update its state of charge (SOC) during power flow calculations. We
addressed this limitation by developing a control module that updates the SOC, as well as
the charging and discharging power for both the battery and thermal storage at each time
step along the RH.
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then the charging power is adjusted to 1/∆t ∗ (Estor, cap − Estor(t)). 226

While the control module for battery storage is straightforward, developing the one 227
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7 We obtain the COP for the region of interest using ambient temperature data and the methodology introduced
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) thermal power.

Let Estor, cap be the capacity of a storage system and pstor(t) be its power (positive
when charging and negative when discharging) at timestamp t. We calculate the SOC of
the storage system at timestamp t as

SOC(t) = SOC(t − 1) +
[

Estor(t − 1) + (∆t ∗ pstor(t))
Estor,cap

]
, (2)

where Estor(t− 1) is the energy remaining in the storage system from the previous timestamp,
and ∆t is the length of a timestamp, e.g., ∆t = 0.25 for input data with 15-min granularity.

The charging and discharging powers of a storage system are initially set as pre-
defined fixed values. However, if a storage system is nearing depletion during the RH,
i.e., Estor(t) ≤ ∆t ∗ pstor(t), the discharging power is adjusted to min(1/∆t ∗ Estor(t), pstor(t)).
In contrast, if a storage system is nearing full capacity, i.e., Estor(t) ≥ Estor, cap − (∆t ∗ pstor(t)),
then the charging power is adjusted to 1/∆t ∗ (Estor, cap − Estor(t)).

While the control module for battery storage is straightforward, developing one for
thermal storage requires more extensive work. As can be seen in Figure 4, we used the HP
as the interface between the thermal and electric loads of a household, making it the only
asset capable of charging thermal storage. Moreover, during discharge, the thermal storage
is specifically tailored to exclusively address the thermal load demand.

To model these functionalities, we synchronized the maximum charging power of the
thermal storage with the thermal power of the HP. Then, during discharge, we dynamically
calculated an upper bound based on the current thermal load demand. Note that the con-
version of thermal load to electric load was achieved using the time-dependent coefficient
of performance (COP), which was determined for the region of interest using ambient
temperature data and the methodology introduced in [28]. This conversion is inherent in
the developed control module of thermal storage and is key for correctly updating its SOC.

In this work, we considered 16 kWhelectric lithium-ion battery storage systems for
storing electric energy from rooftop PVs or the grid, along with 11.6 kWhthermal thermal
storage tanks (the thermal storage capacity was derived from an assumed volume of 1000 L
for the water tank) for storing thermal energy from the HPs.

2.3.2. Behind-the-Meter Control of Flexible Assets

To control flexible BTM assets, we made two key assumptions: First, both battery
and thermal storage optimize self-consumption [32]. Second, due to the higher versatility
of battery storage, which can supply multiple electric BTM assets including HPs, we
prioritized charging battery storage before thermal storage. On the other hand, when
discharging, thermal storage is discharged before battery storage.

To establish this control strategy with OPF, we define a piecewise linear cost function
fpwl,n(p) and cost parameters for the power p supplied by the grid and the storage systems
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(see Table 2). Since an HP is used for charging thermal storage, the actual charging costs of
thermal storage include both the operational costs of the HP and the direct costs associated
with charging the thermal storage. Note that the cost parameters do not represent actual
real-world energy costs. Instead, they were virtual values used exclusively to establish a
control strategy of the flexible assets. Moreover, in the context of an RH, the defined cost
parameters generally remain constant over time but can be dynamically adjusted, e.g., for
implementing proactive control measures (Figure 5). Given the defined cost parameters,
the OPF algorithm optimizes fpwl,n(p) at each timestamp along the RH as

min ∑
n∈{grid, battery storage, thermal storage}

fpwl,n(p) (3)

while accounting for grid constraints. A flowchart describing the workflow of the proposed
RH OPF algorithm is shown in Figure 5.

Start

Define the cost function fpwl,n(p)

Timestamp t ∈ {1, . . . , T}

Calculate SOC(t) using SOC(t − 1)

Calculate charging
& discharging power

Proactive?

OPF

Adjust cost parameters of
grid & storage systems

Cost parameters

Next timestamp? Stop

no

yes

yes no

Figure 5. Flowchart describing the workflow of the proposed RH OPF algorithm for simulations over
T timestamps. The dashed blocks (

Version August 7, 2024 submitted to Energies 8 of 18

In this work, we consider 16 kWhelectric lithium-ion battery storage systems for storing 238

electric energy from rooftop PV or the grid, along with 11.6 kWhthermal
8 thermal storage 239

tanks for storing thermal energy from the HPs. 240

Start

Define the cost function fpwl,n(p)

Timestamp t ∈ {1, . . . , T}

Calculate SOC(t) using SOC(t − 1)

Calculate charging
& discharging power

Proactive?

OPF

Adjust cost parameters of
grid & storage systems

Cost parameters

Next timestamp? Stop

no

yes

yes no

Figure 5. Flowchart describing the workflow of the proposed RH OPF algorithm for simulations over
T timestamps. The dashed blocks ( ) represent the additions introduced in this work.

241

2.3.2. Behind-the-Meter Control of Flexible Assets 242

To control BTM flexible assets, we made two key assumptions. First, both battery and 243

thermal storage optimize self-consumption [32]. Second, due to the higher versatility of 244

battery storage, which can supply multiple electric BTM assets including HPs, we prioritize 245

charging battery storage before thermal storage. On the other hand, when discharging, 246

thermal storage is discharged before battery storage. 247

To establish this control strategy with OPF, we define a piecewise linear cost function 248

fpwl,n(p) and cost parameters for the power p supplied by the grid and the storage systems9
249

(see Table 2). Note that the cost parameters do not represent actual real-world energy costs. 250

Instead, they are virtual values used exclusively to establish a control strategy of the flexible 251

assets. Moreover, in the context of an RH, the defined cost parameters generally remain 252

constant over time but can be dynamically adjusted, e.g., for implementing proactive control 253

measures (Figure 5). Given the defined cost parameters, the OPF algorithm optimizes 254

fpwl,n(p) at each timestamp along the RH as 255

min ∑
n∈{grid, battery storage, thermal storage}

fpwl,n(p) (3)

8 The thermal storage capacity was derived from an assumed volume of 1000 liters for the water tank.
9 Since an HP is used for charging thermal storage, the actual charging costs of thermal storage include both the

operational costs of the HP and the direct costs associated with charging the thermal storage.

) represent the additions introduced in this work.

Table 2. Cost parameters used to control BTM storage systems using the RH OPF algorithm.

Asset Mode Cost Parameter

Grid Feed-in −0.7
Load 0.7

Battery storage Charge 0.2
Discharge −0.6

Heat pump (HP) Load 0.25

Thermal storage Charge 0.04
Discharge −0.04
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2.3.3. Modeling the Curative Control Measures

We implemented two curative control measures based on the guidelines outlined in
§ 14a EnWG, which allow DSOs in Germany to reactively (1) reduce EV charging or (2)
reduce HP usage up to 4.2 kW per controllable unit.

These measures were implemented as follows. Based on a day-ahead forecast at
the HV/MV station, we first identified potential grid congestion and determined the
critical hours. Since an actual forecast was not available in the context of this work, we
used a pseudo-forecast derived from performing a PF simulation of the future scenario
without BTM storage systems.

If congestion is identified in the forecast, then the first curative measure, denoted as
CurA, reduces the maximum charging power of all EV home chargers in the region from
11 kW to 3.7 kW starting from the onset of the identified issue until the end of the day. Let
t0 ∈ {1, . . . , Tday} be the first timestamp in the day-ahead forecast where grid congestion is
identified. Let pEV be the load profile of an EV home charger during this period, with a
total charging energy of EEV. We calculate the controlled charging profile pEV, CurA for all
timestamps t ∈ {1, . . . , Tday} as

pEV, CurA(t) =

{
pEV(t) if t < t0

3.7 kW if t0 ≤ t ≤ Tday
. (4)

If the controlled EV charging profile does not satisfy the total required charging energy
by the end of the day, i.e., EEV > ∆t ∗∑t0≤t≤Tday

3.7 kW , then the remaining load is charged
at the start of the next day using the original charging power, e.g., see Figure 6 (Top).
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10 Since an actual forecast was not available in the contest of this work, we used a pseudo-forecast derived from
performing a PF simulation of the future scenario without BTM storage systems.

Figure 6. Curative control measures. (Top) CurA reduces the original EV charging value to a
predefined minimum power during periods of forecasted grid congestion. This approach requires
longer charging times to compensate for the deferred energy. (Bottom) CurB reduces the original
thermal load demand signal during periods of forecasted grid congestion, but an increased thermal
load is required afterward to compensate for the deferred energy.

The second curative measure, denoted as CurB, temporarily reduces HP usage to 30%
of its maximum capacity for two hours [33] from the onset of the congestion period. Let
pthermal be the thermal load profile of a household during grid congestion with maximum
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thermal power pthermal, max and total energy Ethermal. We calculate the controlled thermal
load demand signal pthermal, CurB for all timestamps t ∈ {1, . . . , Tday} as

pthermal, CurB(t) =

{
pthermal(t) if t < t0

0.3 ∗ pthermal, max if t0 ≤ t ≤ T2h
, (5)

where T2h ∈ {1, . . . , Tday} is the last timestamp of the two-hour interval starting from t0
during which CurB is deployed.

After this interval, the deferred thermal energy, i.e., Ethermal − ∆t ∗ ∑t0≤t≤T2h
0.3 ∗

pthermal, max, is compensated within the next six hours (an official compensation time is
not specified in § 14a EnWG; the six-hour duration used in this study is an estimated
assumption), e.g., see Figure 6 (Bottom).

Note that the settings of both curative measures can be adjusted.

2.3.4. Modeling the Proactive Control Measures

Two proactive control measures were investigated in this work. The first measure,
denoted as ProA, involves proactively charging the BTM storage systems. The second
measure, denoted as ProB, involves controlled discharging of the BTM storage systems.
The two measures can be applied individually or together. In this work, we considered two
scenarios: (1) ProA only and (2) both ProA and ProB.

Conceptually, these measures follow a similar approach to the curative control mea-
sures described in Section 2.3.3. Regarding ProA, we first identify grid congestion in the
day-ahead forecast and extract the critical hours. Then, we define the grid cost parameter
cgrid(t) for a suitable time interval Tcharge ⊂ {1, . . . , Tday} (a time interval before the start
of the identified grid congestion where the load on the HV/MV station is also expected to
be low) as

cgrid, ProA(t) =

{
0.0 if t ∈ Tcharge

cgrid(t) else
(6)

to enable the charging of BTM storage systems ahead of the identified grid congestion,
even when PV generation is insufficient, see, e.g., Figure 7 (Top).
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Figure 7. Proactive control measures. (Top) ProA increases the charging capacity of the storage
systems before a forecasted grid congestion. (Bottom) ProA and ProB increase the charging capacity
before forecasted grid congestion and start discharging at the onset of the congestion period.
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is an estimated assumption.

Figure 7. Proactive control measures. (Top) ProA increases the charging capacity of the storage
systems before a forecasted grid congestion. (Bottom) ProA and ProB increase the charging capacity
before forecasted grid congestion and start discharging at the onset of the congestion period.
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Regarding ProB, we define the discharge cost parameter of the storage systems
cstor, discharge(t) for all timestamps t ∈ {1, . . . , Tday} as

cstor, discharge, ProB(t) =

{
−1.0 if t < t0

cstor, discharge(t) t0 ≤ t ≤ Tday
(7)

to start discharging the BTM storage systems at the start of the identified grid congestion,
e.g., see Figure 7 (Bottom).

To implement these measures within the modeling framework, a control module that
updates the grid cost parameters over time was developed and integrated into the RH OPF
algorithm, see Figure 5. Moreover, the functionality of the control modules for BTM storage
systems was extended to include the adjustment of the storage discharge cost parameters
over time.

3. Results

In the following, we demonstrate how leveraging BTM prosumer flexibility with
appropriate control measures can successfully mitigate grid congestion in future power
distribution grids. First, we assessed the impact of transitioning from the status quo BTM
asset mix to the future BTM asset mix with the existing infrastructure. Using the proposed
modeling framework, we then investigated six different scenarios of flexible BTM asset
control to address the identified grid congestion issues.

All experiments were performed using a standard Lenovo laptop equipped with an
Intel i7-12800H CPU.

3.1. Grid Congestion Detection

In this work, we focused on detecting grid congestion in the form of overloading at
the HV/MV station level. Given that we only considered three MV/LV stations behind
the HV/MV station and the actual HV/MV station supplies many more, we could not
determine the overload threshold based on its specified nameplate capacity. Instead, we
derived it from the maximum peak load of the HV/MV station under current conditions.
We calculated this load by performing a PF simulation based on the settings and generated
profiles of the status quo scenario. The rationale for using this threshold for the future
scenario was to ensure that the load on the HV/MV station remained consistent with
today’s level despite the projected increase of BTM assets.

As future violations depend on the peak stress level at which the grid is currently
operating, we distinguished between three different levels for detecting overloading: (1) safe
(a grid in the specified region operating today up to 90% of the allowed limit), (2) near-critical
(up to 95%), and (3) critical (up to 100%).

This distinction was achieved by adjusting the previously described threshold based
on the margin between the status quo peak load and the capacity of the HV/MV substation.

3.2. Future BTM Asset Mix Impact on Today’s Power Distribution Grid

To investigate the impact of the future BTM asset mix on today’s power distribution
grid, we performed a PF simulation and identify grid congestion issues, as outlined in
Section 3.1.

Figure 8a,b show the identified load and feed-in violation instances throughout the
year and day for a grid critically stressed today. As can be seen, load violations predomi-
nantly occur during winter months in the evening or late at night. This can be attributed
to the surge in power used as people return home in the evenings, as well as potential EV
charging and increased demand for heating in winter. On the other hand, feed-in violations
primarily occur around mid-day and during spring and summer due to the increased PV
generation and the lack of flexible BTM assets to absorb the excess generated energy.
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Figure 8. Instances of (a) annual and (b) daily load and feed-in violations identified for a grid critically
stressed today when subjected to the BTM asset mix of the future scenario.
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Figure 8. Instances of (a) annual and (b) daily loads and feed-in violations identified for a grid
critically stressed today when subjected to the BTM asset mix in the future scenario.

These findings are further substantiated in Figure 9 (red bars), which shows the count
of 15 min intervals with either load or feed-in violations at the HV/MV station throughout
the year. As evident, several load and feed-in violations are likely in 2030 if the grid is
already critically stressed today. The count reduces as the margin between the status quo
peak load and the capacity of the substation increases.
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Figure 9. Annual count of load and feed-in violations at the HV/MV station for all six scenarios of
BTM flexible asset control (storage denoted as Stor, curative denoted as Cur and proactive denoted as
Pro).
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Figure 9. Annual count of load and feed-in violations at the HV/MV station for all six scenarios of
flexible BTM asset control (storage denoted as Stor, curative denoted as Cur, and proactive denoted
as Pro).

3.3. BTM Storage Systems

In the first scenario of flexible BTM asset control, ws incorporate both battery and
thermal storage systems. In the following, we refer to this scenario as the 2030 Stor scenario.

As shown in Figure 9 (blue bars), integrating storage systems effectively mitigates
feed-in violations and decreases the frequency of load violations substantially, e.g., by 35%
for a grid critically stressed today. This improvement can be partially attributed to the
high penetration rate and large capacity of the battery storage systems considered in this
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work, which we expect to be available by 2030. However, storage systems alone do not
completely mitigate all load violations. During the winter months, when PV generation is
low, these assets are scarcely charged. Moreover, since we assumed that they are operated
using self-consumption optimization, they discharge as soon as the electricity demand
exceeds the current generation of the rooftop PVs. Particularly with low charging, this
mechanism can lead to storage systems being depleted before the evening and night peak
hours, when the grid is more likely to experience overload.

3.4. BTM Storage Systems with Curative Control Measures

In the second and third scenarios of flexible BTM asset control, we attempted to
address the remaining load violations in the 2030 Stor scenario by implementing curative
measures that temporarily restrict EV charging or HP usage.

As evident in Figure 9, CurA (green bars) marginally improves overloading, while
CurB (gray bars) has a negligible impact and, in cases where the grid is safe or near-critical,
can even be detrimental. The limited improvement resulting from controlling EV charging
can be attributed to its low aggregated impact on the HV/MV station. This is due to two
main factors: First, the projected penetration rate of EV home chargers is lower compared
to that of other BTM assets. Second, multiple EV charging events rarely coincide to the
same extent as, e.g., with HP usage. Note that this impact may change when considering
public charging stations.

While limiting EV charging has a marginal yet positive impact on overload, Figure 10
demonstrates how restricting HP usage during forecasted peak hours can aggravate over-
loading. As can be seen, implementing this control measure successfully reduces grid stress
during the two designated hours when the HPs operate at a lower capacity. The deferred
thermal load demand, however, is compensated by running the HPs with higher capacities
over the following six hours (cold load pickup), often creating several load violations that
did not previously occur.
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Figure 10. Annual number of load violations in 2030 for a grid critically stressed today, comparing
scenarios with storage systems only and with both storage systems and CurB.

3.5. BTM Storage Systems with Proactive Control Measures

Since curative measures only marginally mitigate the remaining load violations in the
2030 Stor scenario, we attempted to resolve them by implementing different combinations
of proactive control measures in the last scenarios of flexible BTM asset control.

As shown in Figure 9, implementing ProA alone (gold bars) has a marginal impact.
This is because the BTM storage systems continue to optimize self-consumption, leading to
their depletion before the load violation occurs.

In contrast, the combination of ProA and ProB—where both the charging and discharg-
ing of the BTM storage systems are controlled—effectively eliminates nearly all identified
load violations in the 2030 Stor scenario, see Figure 9 (purple bars). Even for grids that are
critically stressed today, the combination of both proactive measures can resolve up to 90%
of the identified load violations.
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Proactive Control Measures with Controlled HP Usage

Figure 9 shows that even by integrating both proactive control measures, a few load
violations persist for grids operating at or near critical stress levels today. These violations
primarily occur at night-time, mainly due to heating demands.

As shown in Section 3.4, we found that while CurB is ineffective in reducing load
violations on its own, it can successfully address night-time (after 23:00) load violations.
During this time, HPs can operate at higher capacity due to the reduced household load,
allowing the deferred thermal load demand to be compensated without causing additional
violations. As a result, integrating CurB with ProA and ProB eliminates all load violations
across all three grid stress levels, see Figure 9 (cyan bars).

4. Conclusions

In this work, we investigated the potential of BTM prosumer flexibility for mitigating
grid congestion issues in future power distribution grids.

To achieve this, we introduced a modeling framework that employs an RH OPF al-
gorithm and a customized piecewise linear cost function to control flexible BTM assets of
individual prosumers over time without perfect foresight, while accounting for grid con-
straints. This framework is part of an integrated approach that also includes constructing a
PF-ready grid model for a specific region, determining the future BTM asset mix for 2030,
geographically allocating these assets to households and generating tailored load and gener-
ation profiles for each household. This approach is versatile and can be applied in different
data availability scenarios. When the actual grid model and measurements are available,
they are directly used. If this information is missing, as in this work, the approach can still
be applied to provide preliminary estimates of the future stress on the grid and assess the
potential of BTM prosumer flexibility to mitigate identified grid congestion issues.

We applied the proposed approach to an example of a residential region in Schutter-
wald, Germany, comprising an HV/MV station, three MV/LV stations, and 319 households.
Our findings suggest that BTM storage systems optimized for self-consumption are not
sufficient for mitigating future stress on power distribution grids. Precisely, while inte-
grating BTM storage systems can mitigate feed-in violations, only 35% of the detected
load violations are resolved in a grid that is critically stressed today. To avoid costly and
time-consuming infrastructure upgrades on a large scale, additional control measures can
be implemented. Curative control measures based on the guidelines in § 14a EnWG that
limit EV charging and HP usage have a minimal impact, i.e., resolving, respectively, an
additional 11% and 1% of the detected load violations when implemented alongside BTM
storage systems. On the other hand, proactive measures that control the charging and
discharging of BTM storage systems can effectively address the remaining load violations,
especially when combined with reduced HP usage to mitigate load violations at night-time.

To summarize, this paper introduced the following:

(1) A novel approach for evaluating how BTM prosumer flexibility can address grid
congestion issues in a specific region, using an RH OPF algorithm and a customized
piecewise linear cost function.

(2) We modeled both the battery and, for the first time to the best of our knowledge,
thermal storage systems as flexible BTM assets controllable by the RH OPF algorithm.

(3) The key conclusions derived from applying the proposed approach are as follows:
(a) BTM storage systems alone are insufficient to mitigate grid congestion issues in
future power distribution grids, (b) curative measures based on existing guidelines
have minimal impacts, and (c) proactive measures controlling both the charging and
discharging of BTM storage systems are necessary to effectively address these issues.

4.1. Discussion and Limitations

In this work, we demonstrated that grid congestion issues in future power distribution
grids can be addressed by leveraging BTM prosumer flexibility. While long-term infrastruc-
ture upgrades will likely still be necessary, the proposed measures for controlling flexible
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BTM assets offer a valuable short-term solution. Precisely, the implementation of these
measures can provide DSOs with additional time to upgrade the existing infrastructure,
potentially postponing these upgrades until the end of the service life of the grid equipment,
thereby saving significant investment costs.

This study focused on the growing adoption of rooftop PVs, Level 2 EV home chargers,
HPs, and storage systems. However, new relevant BTM assets may emerge in the future,
e.g., air conditioning systems. The modular design of our approach supports the integration
of additional BTM assets, which can be seamlessly incorporated into the BTM asset control
algorithm by designing appropriate cost parameters.

Moreover, the components of the proposed approach can be exchanged if necessary.
For example, while our approach is based on pandapower, it can be adapted to other power
system modeling tools, provided they offer a comparable OPF algorithm that supports the
proposed modeling framework.

The input data used in this work were synthesized from open-source information spe-
cific to a single region. The results may vary when using real-world data and considering
regional differences, e.g., the structure and operation of a balanced European-style grid
differ from those of an asymmetric USA-style grid. To validate the universal applicabil-
ity of our approach, additional experiments using real-world data from various regions
are necessary.

The proposed control measures for mitigating grid congestion rely on (1) the widespread
adoption of BTM storage systems and (2) the willingness of prosumers to engage in these
measures. The latter point is particularly important and deserves further discussion, as it
may affect residents’ quality of life.

During periods of grid congestion, EV home chargers may charge more slowly,
and buildings may experience reduced heating as HPs are temporarily operated at reduced
capacity. Moreover, storage systems no longer optimize self-consumption, with discharging
starting only at the onset of grid congestion. As a result, any energy needed by the residents
prior to grid congestion must be supplied by the grid and billed accordingly. This raises
questions about how to motivate prosumers to engage in these control measures. One
potential solution would be to subsidize the installation of BTM storage systems in grids
critically stressed today and include a contract clause requiring the prosumers to participate
in the control measures.

4.2. Future Work

There are several avenues for future work. We are actively engaged in expanding the
grid congestion assessment and analysis of the HV/MV station. The power distribution
grid considered in this work was synthetic and modeled after a European-style system. It
would be interesting to migrate the proposed framework to other grid types, e.g., USA-style
grids, as well as real-world grids. Moreover, the focus of this study was exclusively on
single-family households that were uniform in age and energy refurbishment. It would be
also interesting to include different residential household types, e.g., multifamily house-
holds with different ages and energy refurbishments, as well as commercial buildings,
and determine their impact on HV/MV stations. We plan to enhance the current assign-
ment of BTM assets, demands, and demand profiles to households by implementing a
more sophisticated approach that reflects different characteristics of the buildings. Finally,
we used a pseudo-forecast when implementing the control measures. Integrating a proper
forecasting approach and accounting for the uncertainty that comes with the forecast are
also worth investigating.
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DSO Distribution system operator
GIS Geographic information system
HV High voltage
MV Medium voltage
LV Low voltage
PF Power flow
OPF Optimal power flow
RH Rolling horizon
AC Alternating current
DC Direct current
COP Coefficient of performance
API Application programming interface

References
1. Commision, E. Renewable Energy Targets. 2023. Available online: https://energy.ec.europa.eu/topics/renewable-energy_en

(accessed on 22 May 2024)
2. Cossent, R.; Gómez, T.; Frías, P. Towards a future with large penetration of distributed generation: Is the current regulation of

electricity distribution ready? Regulatory recommendations under a European perspective. Energy Policy 2009, 37, 1145–1155.
[CrossRef]

3. van der Welle, A.J.; de Joode, J. Regulatory road maps for the integration of intermittent electricity generation: Methodology
development and the case of The Netherlands. Energy Policy 2011, 39, 5829–5839. [CrossRef]

4. Pepermans, G.; Driesen, J.; Haeseldonckx, D.; Belmans, R.; D’haeseleer, W. Distributed generation: Definition, benefits and issues.
Energy Policy 2005, 33, 787–798. [CrossRef]

5. IEEE Standard C57.91-2011; Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators. Institute of
Electrical and Electronics Engineers: New York, NY, USA, 2011.

6. Commision, E. Grids, the missing link—An EU Action Plan for Grids. 2023. Available online: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=COM%3A2023%3A757%3AFIN&qid=1701167355682 (accessed on 22 May 2024).

7. Spiliotis, K.; Gutierrez, A.I.R.; Belmans, R. Demand flexibility versus physical network expansions in distribution grids. Appl.
Energy 2016, 182, 613–624. [CrossRef]

8. Resch, M.; Bühler, J.; Schachler, B.; Sumper, A. Techno-economic assessment of flexibility options versus grid expansion in
distribution grids. IEEE Trans. Power Syst. 2021, 36, 3830–3839. [CrossRef]

9. Ramos, A.; De Jonghe, C.; Gómez, V.; Belmans, R. Realizing the smart grid’s potential: Defining local markets for flexibility. Util.
Policy 2016, 40, 26–35. [CrossRef]

10. Esmat, A.; Usaola, J.; Moreno, M.Á. Distribution-level flexibility market for congestion management. Energies 2018, 11, 1056.
[CrossRef]
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