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Abstract: Maximal oxygen uptake (VO2max) is a determining indicator for cardiorespiratory capacity in
endurance athletes, and epigenetics is crucial in its levels and variability. This initial study examined
a broad plasma miRNA profile of twenty-three trained elite endurance athletes with similar training
volumes but different VO2max in response to an acute maximal graded endurance test. Six were
clustered as higher/lower levels based on their VO2max (75.4 ± 0.9 and 60.1 ± 5.0 mL.kg−1.min−1).
Plasma was obtained from athletes before and after the test and 15 ng of total RNA was extracted and
detected using an SYBR-based 1113 miRNA RT-qPCR panel. A total of 51 miRNAs were differentially
expressed among group comparisons. Relative amounts of miRNA showed a clustering behavior
among groups regarding distinct performance/time points. Significantly expressed miRNAs were used
to perform functional bioinformatic analysis (DIANA tools). Fatty acid metabolism pathways were
strongly targeted for the significantly different miRNAs in all performance groups and time points
(p < 0.001). Although this pathway does not solely determine endurance performance, their significant
contribution is certainly achieved through the involvement of miRNAs. A highly genetically dependent
gold standard variable for performance evaluation in a homogeneous group of elite athletes allowed
genetic/epigenetic aspects related to fatty acid pathways to emerge.

Keywords: miRNA; maximal oxygen uptake; exercise performance; endurance elite athletes; fatty
acid metabolism

1. Introduction

Maximal oxygen uptake (VO2max) is a parameter of cardiorespiratory capacity, a
crucial indicator of good health, and a determining factor for endurance performance [1,2].
Notably, heredity may play a significant role in determining the response of VO2max
to training, accounting for up to 47% of the variability [3]. Advancements in molecular
technologies that can analyze larger amounts of data have shown promise in enhancing our
understanding of molecular trainability and endurance adaptations [4,5]. But physiological
adaptation requires altering the expression of available genes and enzymes, which relies
on epigenetic mechanisms that depend, in turn, on the expression of RNAs.

Transcribed by RNApol II as a small (~22 nt) and non-coding RNA, the 2654 miRNAs
described in humans [6] play a crucial role in modulating gene expression for physiological
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responses. Although the DNA sequences that give rise to them comprise between 1 and
5% of the genome, miRNA can regulate up to 30% of protein-coding gene expression [7].
Therefore, the expression profiles of serum/plasma miRNAs and their stability can signal
essential cellular and tissue functions, making these molecules important candidates for
biomarkers, not only related to pathologies or injuries but also associated with the phys-
iological adaptations promoted by exercise, and finally, endurance performance [8–11].
The inhibitory mechanism of miRNA on mRNA expression may affect several biologi-
cal processes essential for exercise, including angiogenesis, cardiac and skeletal muscle
contraction, energy hypertrophy, inflammation, and mitochondrial metabolism [12–14].

For example, in the acute exercise of elite athletes, epigenetics is likely to contribute
to both performance and recovery. This is because the highest endurance performance
depends on the ability to sustain physical activity for a more extended period while
maintaining stable systemic glucose levels. For this, the oxidation of fatty acids during
submaximal and maximal intensity exercises is crucial and can provide a competitive
advantage. Furthermore, lipids are known to configure the primary fuel during recovery
from any activity, which results in glycogen depletion. Despite significant advancements in
our understanding of circulating biomarkers, there is a notable gap in the literature regard-
ing the role of miRNAs in response to acute exercise among elite endurance athletes [15].
These athletes exhibit unique and remarkable physiological adaptations that enable them
to perform exceptionally. This initial study aimed to examine the plasma miRNA profiles
of elite high-performance endurance athletes with similar training volumes but different
levels of VO2max in response to an acute maximal graded endurance test (GXT).

2. Materials and Methods
2.1. Study Design

Twenty-three Brazilian elite male long-distance runners, endurance specialists, were se-
lected for a cross-sectional study with two visits at intervals of 48 h/15 days (Supp. methods,
Figure S1). They had to present at least 100 km/week of training volume, two years of experi-
ence, 18 years of age, and 500 points in the World Athletics ranking. The first visit included a
medical and anthropometric evaluation in which individuals with recent orthopedic injuries or
using medications/supplements that could have affected physical performance were excluded.
During the second visit, at rest after eight hours of fasting, a blood sample was obtained
(PRE). Afterward, 60 min after a standardized breakfast, the subject performed an ergometric
protocol based on a GXT on a treadmill to determine VO2max. The Supplementary Methods
describe the protocol in detail. Immediately after the GXT, a new blood sample was obtained
(POST). The study was approved by the local Ethics Committee (59983516.0.0000.5257). Writ-
ten informed consent approval was prospectively obtained for all subjects. Patients and the
public were not involved in this research’s design, conduct, reporting, or dissemination plans.

2.2. Molecular Analysis

Peripheric blood was collected in 4 mL K2EDTA tubes to obtain plasma (3000× g;
12 min) and stored at −80 ◦C. Total RNA was obtained from 200 µL of plasma following the
manufacturer’s protocol of miRNeasy Serum/Plasma Kit (Qiagen, Hilden, Germany), and
it was evaluated using the spectrophotometer NanoDrop 2000 (Thermo Fisher Scientific,
Waltham, MA, USA). cDNA synthesis, and subsequently, the detection of 1113 miRNAs
was performed starting from 15 ng of total RNA using the SYBR-based RT-qPCR panel hsa-
miRNome miRNA Profiling Kit (System Biosciences, Mountain View, CA, USA) following
the manufacturer’s protocol in QuantStudio 5™ Real-Time System (Thermo Fisher Scientific,
Waltham, MA, USA). The non-template control (NTC), calibrators, and stably expressed
housekeeping candidate genes (U6 snRNA, RNU43 snoRNA, U1 snRNA) were evaluated.
Overall quality control of the RT-qPCR and calculation of the relative gene expression values
were performed by the GenEx software v 7.1.1.118 (MultiD Analyses, Göteborg, Sweden),
strictly following the MIQE guidelines [16] (see Supplementary Material Figure S2).
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2.3. Statistical Analysis

Physical-based variables: The Shapiro–Wilk test was used to verify the distribution,
and Levene’s test was used to verify homoscedasticity. Descriptive statistics included mean
and standard deviation. The significance level was α ≤ 0.05. Different performance groups
were compared using a t-test for independent samples.

miRNA-related variables: The Shapiro–Wilk test was applied to check for normal data
distribution. The relative expression of miRNA was compared using a two-tailed non-
paired t-test for “performance” comparisons regarding higher VO2max (HVO2) and lower
VO2max (LVO2) (PRE_HVO2_vs_LVO2, POST_HVO2_vs_LVO2); a two-tailed paired t-test for
“timepoint” comparisons PRE and POST exercise (all_PRE_vs_POST, LVO2_PRE_vs_POST,
HVO2_PRE_vs_POST); and a one-way ANOVA for “global” comparison (all_4_groups). To
prevent a false discovery rate due to multiple tests, the Benjamini–Hochberg correction was
applied. Using the whole dataset first (Supp. results, Figure S3), and subsequently, the
miRNAs significantly (p < 0.05) detected among the groups (Figure 1), distance matrix and
principal component analysis (PCA) were performed using the ClustVis tool (available at:
biit.cs.ut.ee/clustvis/—accessed on 20 May 2023).
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additional PCA showing “performance”−based clustering analysis between (D) PRE_HVO2_vs_LVO2
and (E) POST_HVO2_vs_LVO2. And finally, a global clustering analysis between (F) all_4_groups. PCA
was performed using the relative amount of RNAs significantly detected among groups. Confident
intervals are presented inside every colored ellipse.

2.4. Functional Bioinformatic Analysis

The miRNA nomenclature was adjusted and validated according to version 22.1 of
miRbase (Supp. results, Tables S1 and S2), using the original primers of every miRNA
detected. Functional bioinformatics analysis (FBA) was performed using the mirPath (v.3.0)
tool and Tarbase v7.0 from the DIANA tools [17]. FBA was performed to obtain the core
pathways affected in every comparison using up to the 20 best-ranked miRNAs significantly
differently regulated based on p-value, excluding those with log2fold differences between
−1 and 1. Pathways obtained individually were merged using the “pathways union”
mode for enrichment analysis and heatmap construction based on Fisher’s exact test for
hypergeometric distribution and false discovery rate (FDR) correction. The KEGG database
was used for pathway denomination/grouping and heatmap performing. An additional
EASE score (modified Fisher’s exact test) was applied to the results for an even more
conservative and rigorous statistical analysis.

3. Results
3.1. Physical Performance-Related Variables

Based on decreasing VO2max levels, athletes were ranked and divided into tertiles (8,
7, and 8 subjects) (supp. results, Figure S4). So, we selected six unique endurance athletes:
three samples from the first and three from the third tertiles. The total RNA levels were
clustered in to two performance groups: HVO2 and LVO2. Both groups were homogeneous
for all variables related to physical performance but clearly had different cardiorespiratory
capacities based on their VO2max levels (Table 1). HVO2 presented at least 15 mL/kg/min
more than the LVO2 group (25%). The training volume was compatible with an elite
international performance athlete, and their training experience points for some level of
endurance chronic adaptation.

Table 1. Study population characteristics at baseline.

Physical-Related Variables
n = 6

p-Value
HVO2 (n = 3) LVO2 (n = 3)

Age (years) 21.3 ± 3.5 26.6 ± 7.6 0.334
Weight (kg) 57.3 ± 1.5 66.8 ± 5.1 0.073
Height (cm) 175.3 ± 4.2 180.2 ± 3.0 0.172

Fat percentage 4.5 ± 0.3 5.9 ± 1.9 0.296
VO2max (mL.kg−1.min−1) 75.4 ± 0.9 60.1 ± 5.0 0.007 **

Weekly training volume (km) 130.0 ± 26.5 130.0 ± 26.5 0.999
Training experience (years) 5.0 ± 2.6 6.0 ± 6.9 0.827

IAAF points 725 ± 163 606 ± 101 0.340
Data are presented as mean and standard deviation. ** Significant difference (p ≤ 0.01). HVO2: higher maximum
oxygen uptake (VO2max); LVO2: lower VO2max; IAAF: International Association of Athletics Federations.

3.2. miRNA Profile in Response to Acute Exercise

Initially, we analyzed the relative quantities of plasma miRNAs for acute exercise impact
(all_PRE_vs_POST) independently of performance (n = 6). Using PCA on the whole dataset
(Supp. results, Figure S3) and on all miRNAs significantly different between groups (paired
analysis), we observed a clustering behavior (Figure 1A). An intragroup PCA clustering was
observed in HVO2_PRE_vs_POST, even with only three individuals per group (Figure 1B).
Similarly, in LVO2_PRE_vs_POST clustering was apparent (Figure 1C). The essential miRNAs
for every clustering analysis are summarized in Table 2, statistically detailed in Table S3 (Supp.
results), and intersected to the pathway related in heatmaps in Figure 2.
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3.3. miRNA Profile Related to Each Group’s Performance

Both “PRE” and “POST” miRNAs (non-paired analysis) were able to show a PCA clus-
tering between the HVO2 and LVO2 groups based on exercise performance (Figure 1D,E).
No clear clustering was observed between the four groups together (Figure 1F), but the
ANOVA analysis did not consider paired statistics between “time points”. Important
miRNAs for clustering are summarized in Table 2 and statistically detailed in Table S4
(supp. results).

3.4. Functional Bioinformatic Analysis

Essential miRNAs for every comparison were simultaneously used to obtain their
predicted or experimentally tested target genes and related pathways (Figure 2). The
heatmaps below show the significant pathways (corrected for FDR) for each comparison.
They present 9 significant pathways for the all_PRE_vs_POST comparison, 10 significant
pathways for LVO2_PRE_vs_POST, and 13 significant pathways for HVO2_PRE_vs_POST
(Figure 2A–C). Including performance evaluation, 21 pathways were important to cluster
PRE_HVO2_vs_LVO2, 6 for POST_HVO2_vs_LVO2, and 19 for all_4_groups (Figure 2D–F).
In general, pathways related to fatty acid biosynthesis/metabolism were observed in
all possible comparisons. Other pathways strongly associated with miRNAs included
extracellular matrix (ECM)–receptor interaction, lysine degradation, Hippo signaling, and
transforming growth factor (TGF-β). In Table 3, only the most strongly associated pathways
after the results underwent the EASE score conservative statistical correction are presented.
The pathways most likely to be related to acute exercise responses and performance are
highlighted in color (Figure 2, Table 3).

Table 2. Comparison of the significant miRNAs for group comparisons. Statistical results are available
in Tables S3 and S4 (supp. results).

miRNA
all_

PRE_vs_POST

Group Comparisons

HVO2
(PRE_vs_POST)

LVO2
(PRE_vs_POST)

PRE
(HVO2_vs_LVO2)

POST
(HVO2_vs_LVO2)

miR-1281 x x x x

miR-150-5p x x x x

miR-26a-5p x x x x

miR-4290 x x x x

miR-1308 x x x

miR-154-5p x x x

miR-199b-3p x x x

miR-135b-5p x x x

miR-432-5p x x x

miR-219a-1-3p x x x

miR-126-3p x x

miR-3181 x x

miR-382-5p x x

miR-486-5p x x

miR-499a-3p x x

miR-512-3p x x

miR-92a-3p x x

miR-10b-5p x

miR-1183 x

miR-1260a x

miR-1273d x
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Table 2. Cont.

miRNA
all_

PRE_vs_POST

Group Comparisons

HVO2
(PRE_vs_POST)

LVO2
(PRE_vs_POST)

PRE
(HVO2_vs_LVO2)

POST
(HVO2_vs_LVO2)

miR-1292-5p x

miR-135a-5p x

miR-18b-5p x

miR-197-3p x

miR-1975 x

miR-2110 x

miR-223-3p x

miR-30d-5p x

miR-362-5p x

miR-4270 x

miR-4286 x

miR-4313 x

miR-483-3p x

miR-500a-5p x

miR-548 x

miR-571 x

miR-766-3p x

miR-1826 x x x

miR-151a-5p x x

miR-191-5p x x

miR-23a-3p x x

miR-92b-3p x x

miR-1280 x

miR-151-3p x

miR-1825 x

miR-3138 x

miR-3172 x

miR-320a-3p x

miR-320e x

miR-323b-5p x

miR-449b-3p x

miR-572 x

miR-320b x x

miR-132-3p x

miR-185-3p x

miR-494-3p x

miR-628-3p x

miR-1290 x

miR-149-5p x

miR-195-5p x

miR-222-3p x

miR-1207-5p x

miR-1229-3p x
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Table 2. Cont.

miRNA
all_

PRE_vs_POST

Group Comparisons

HVO2
(PRE_vs_POST)

LVO2
(PRE_vs_POST)

PRE
(HVO2_vs_LVO2)

POST
(HVO2_vs_LVO2)

miR-125a-5p x

miR-1538 x

miR-15a-5p x

miR-1913 x

miR-1973 x

miR-370-3p x

miR-612 x

miR-937-3p x
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Figure 2. Heatmaps of significant pathways (Fishers’ exact test and false discovery ratio (FDR) cor-
rection) related to crucial miRNAs in response to a maximal graded endurance test (GXT) (time-
point). (A) All athletes (all_PRE_vs_POST); (B) LVO2_PRE_vs_POST; (C) HVO2_PRE_vs_POST;
(D) PRE_HVO2_vs_LVO2); (E) POST_HVO2_vs_LVO2; (F) all_4_groups (HVO2_PRE vs. HVO2_POST
vs. LVO2_PRE vs. LVO2_POST). Pathways highlighted in red represent fatty acid biosynthesis; in
orange, fatty acid metabolism; in purple, Hippo signaling; in gray, TGF-β; in yellow, lysine degradation;
and in green, other related pathways.
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Table 3. More conservative global pathways were obtained by up to 20 of the most significant key miRNAs in every comparison after Fishers’ exact test, false
discovery ratio (FDR) correction, and additional EASE score, a correction tool for multiple comparisons for strict and more conservative statistics. p-values, the
number of miRNAs involved, and their target genes are presented. Pathways highlighted in blue represent ECM-receptor interaction; in red, fatty acid biosynthesis;
in orange, fatty acid metabolism; in purple, Hippo signaling; in gray, transforming growth factor (TGF-β); in yellow, lysine degradation; and in green, protein
processes in endoplasmic reticulum (PPER) pathways. ECM: extracellular matrix; HVO2 = higher maximum oxygen uptake (VO2max); LVO2 = lower VO2max;
POST = after exercise; PRE = before exercise.

all_PRE_vs_POST LVO2_PRE_vs_POST HVO2_PRE_vs_POST
KEGG Pathway p-Value miRNAs Genes KEGG Pathway p-Value miRNAs Genes KEGG Pathway p-Value miRNAs Genes
Prion diseases <1 × 10−325 1 1 Fatty acid biosynthesis <1 × 10−325 2 1 Prion diseases <1 × 10−325 2 9

ECM-receptor interaction <1 × 10−325 3 11 ECM-receptor interaction <1 × 10−325 2 6 ECM-receptor interaction <1 × 10−325 3 11
Fatty acid biosynthesis <1 × 10−325 4 4 Fatty acid metabolism 3.02 × 10−7 2 1 Lysine degradation 1.71 × 10−5 3 14
Fatty acid metabolism <1 × 10−325 4 8 Hippo signaling pathway 1.85 × 10−4 3 41 Proteoglycans in cancer 1.55 × 10−4 4 59

TGF-beta signal pathway 9.93 × 10−4 4 33 Fatty acid biosynthesis 3.68 × 10−3 1 1
Adherens junction 6.66 × 10−6 5 34

PRE_HVO2_vs_LVO2 POST_HVO2_vs_LVO2 all_4_groups
KEGG Pathway p-Value miRNAs Genes KEGG Pathway p-Value miRNAs Genes KEGG Pathway p-Value miRNAs Genes

ECM-receptor interaction <1 × 10−325 1 7 Fatty acid biosynthesis <1 × 10−325 2 4 Fatty acid biosynthesis <1 × 10−325 3 4
Prion diseases <1 × 10−325 2 9 Hippo signaling pathway 1.26 × 10−12 4 50 Fatty acid metabolism <1 × 10−325 4 15

Proteoglycans in cancer 3.35 × 10−8 4 77 Fatty acid metabolism 9.50 × 10−11 2 15 ECM-receptor interaction <1 × 10−325 3 11
Fatty acid biosynthesis 7.78 × 10−5 1 1 Adherens junction 1.24 × 10−6 5 36 Prion diseases <1 × 10−325 1 1

Adherens junction 8.03 × 10−5 6 43 Viral carcinogenesis 7.91 × 10−6 3 70 Lysine degradation 1.09 × 10−7 3 18
Lysine degradation 1.38 × 10−4 3 12 Adherens junction 1.98 × 10−3 6 38

Arrhythmogenic right ventricular 6.42 × 10−3 2 8 Proteoglycans in cancer 5.03 × 10−3 4 57
Hippo signaling pathway 7.88 × 10−3 2 43 Viral carcinogenesis 3.35 × 10−2 4 78

Prot process in endop. reticulum 9.08 × 10−3 3 59
TGF-beta signal pathway 1.13 × 10−2 4 34

Viral carcinogenesis 1.68 × 10−2 3 71
Pathways in cancer 3.20 × 10−2 3 131
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4. Discussion
4.1. miRNAs and Elite Endurance Athletes

The 3′UTR regulatory, inhibitory transcription mechanism of miRNAs engages some
pathways mainly because of their ability to target a diverse range of genes. However,
the regulated genes may, in turn, have stimulatory or inhibiting roles concerning a high-
intensity endurance activity, for example. Therefore, the miRNA expression profile may
contribute to elucidating essential mechanisms associated with high performance [18] or
even be a promising approach toward developing individualized training strategies [11].

Detecting miRNAs before exercise reflects an athlete’s resting physiological state,
influenced by their chronic endurance adaptation. Conversely, detecting molecules im-
mediately after exercise may show variations caused by cell lysis due to micro-injuries
resulting from intense physical activity, making some of them more readily available in the
plasma [19]. After the GXT (usually 20–30 min), plasma could also capture initial cellular
responses to sustained maximum effort or even to signal the post-exercise period as the
test’s conclusion draws near. It is known that transient post-exercise changes include tran-
scription of myogenic regulators, carbohydrate and lipid metabolism-/mobilization-, and
mitochondrial metabolism-related genes [20]. Moreover, we need to highlight that skeletal
muscles are the largest organ in the body [21]. In response to a GXT, the pool of plasma
RNAs may originate from already-circulating RNAs, added to new ones primarily from
muscle, vascular, or blood cells, associated or not with apoptotic bodies, protein complexes,
extracellular vesicles, or lipoproteins [22,23]. Examining the miRNAs that comprise each
fraction may provide even more valuable insights [24].

Some detected miRNAs important for several groups or time points could hypothet-
ically belong to vital physiological pathways related to exercise or indicate an essential
degree of evolutionary conservation, as they generally appear, often irrespective of the
group or moment, in our homogeneous population [25]. In our study, miRNAs such
as miR-1281, miR-150-5p, miR-26a-5p, miR-4290, and miR-199b-3p were differently de-
tected in several of the comparisons (Table 2, Figure S5/Supp. results). miR-199b-3p and
miR-150-5p, for example, played a key role in clustering for all PRE_vs_POST exercise com-
parisons, with the latter being detected at higher levels in plasma after 10 km of running in
athletes previously [26].

Particularly, recent results connected the mir-199-3p family to the conversion of slow to
fast muscle fibers and muscle regeneration in mice [27,28], IGF1/Akt/mTOR pathways, mus-
cle regeneration in human cells, and fatty acid metabolism [29]. Additionally, the mir-199-3p
family was related to pathological cardiac hypertrophy and even physiological cardiac hyper-
trophy with increased stroke volume/VO2max, typical of endurance adaptation training [30].
On the other hand, miRNA unique to specific groups could indicate an influence on specific
pathways related to acute exercise or chronic adaptations [31]. mir-15a-5p and miR-1538,
for example, were important for performance clustering only for POST_HVO2_vs_LVO2,
while hsa-miR-195-5p and miR-1290 for PRE_HVO2_vs_LVO2; or even miR-486-5p for the
HVO2_PRE_vs_POST comparison (Table 2, Figure S5/Supp. results). Corroborating our
study, miR-486-5p was previously downregulated in athletes’ plasma after exercise and was
also related to higher VO2max levels [32].

4.2. Endurance Adaptation, Functional Analysis, and Fatty Acid-Related Pathways

The need for more profound studies in elite athletes makes our results useful for highly
adapted athletes and, to some extent, a possible target profile of plasma transcripts for
developing athletes. miRNAs are differentially expressed according to the type, intensity,
level of adaptation, and exercise volume [33]. Consequently, a valid biomarker proposal
must begin from an imperatively uniform selection of subjects. All the selected athletes were
homogeneously well-trained and experienced endurance runners (Table 1), chosen from 23
ranked athletes according to VO2max levels. This selection is crucial because managing
energy stores is critical during endurance exercises. A shift in substrate utilization from
glucose to fat is a hallmark of an endurance-trained muscle [34].
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In addition, elite athletes adapted to endurance have a higher proportion of type I
oxidative slow-twitch fibers, and a higher capillary-to-fiber ratio and mitochondrial volume
density [35]. In turn, these fibers have a higher capacity for fatty acid metabolism and
biosynthesis, contributing to maintaining physical activity for a more extended period
while preserving systemic glucose levels [36]. Interestingly, the enzyme 3-hydroxyacyl-
CoA-dehydrogenase (HADHA), involved in fatty acid oxidation, has 20% higher activity
in skeletal muscle fibers from Kenyans, a dominant ethnicity among elite long-distance
runners [36–38]. Specific populations from Kenya and Ethiopia, even more associated with
endurance performance, had lipid metabolism-enriched enriched gene sets compared to
close populations [36].

Most of the critical miRNAs related to fatty acid biosynthesis identified in our anal-
ysis were functionally associated with core enzymes: Acyl-CoA synthetase 4 (ACSL4),
acetyl-CoA carboxylase alpha (ACACA), but mainly to fatty acid synthase (FASN). FASN
plays a crucial role in all phases of fatty acid biosynthesis, including initiation, elonga-
tion, and even in the mitochondrial step (Figure S6). FBA analysis showed that FASN is
not only targeted primarily by miR-199b-3p but also by miR-4286, miR-766-3p, miR-2110,
miR-185-3p, miR-23a-3p, miR-15a-5p, and miR-125a-5p. In our data, most of those miRNAs
related to FASN were less detected after exercise (Supp. results, Table S3). This points to a
release signal for FASN and related enzymes acting for fatty acid recovery after exercise.
FASN, more available after exercise, is related to endurance performance due to fatty
acids’ ability to maintain endurance exercise. But the same miR-766-3p, miR-15a-5p, and
additionally miR-195-5p also target HADHA, involved in fatty acid oxidation. Conversely,
in POST_HVO2_vs_LVO2, miR-15a-5p levels were 23-fold higher in LVO2 (4.5 log2fold)
(Supp. results, Table S4), and the classical understanding is that lipids become the pre-
dominant fuel during recovery from exercise that results in glycogen depletion [15]. So,
higher levels of HADHA in elite athletes could result in better fatty acid oxidation and
endurance performance. Our study in elite athletes showed fatty acid-related pathways
do not solely determine endurance performance; however, their significant contribution is
certainly achieved through the involvement of miRNAs.

Other Associated Pathways

The Hippo signaling pathway was essential for clustering in LVO2_PRE_vs_POST
and for the PRE_HVO2_vs_LVO2 and POST_HVO2_vs_LVO2 performance-based compar-
isons (Table 3). Different miRNAs engage the pathway depending on the timepoint: PRE
(miR-26a-5p, miR-195-5p, and miR-135b-5p) or POST (miR-15a-5p, miR-125a-5p, miR-320b,
miR-612). As previously described, mechanic signals from endurance exercise inhibit the
Hippo pathway, releasing transcriptional coactivators (Yes-associated protein—YAP; and
transcriptional coactivator with PDZ-binding motif—TAZ) to activate genes involved in the
cell cycle and proliferation, crucial steps for tissue regeneration [39–41]. Among more than
50 target genes (Table 3), we highlighted specific kinases (LATS1/2) commonly described
in the literature [42,43] and targeted by our miRNAs. This suggests their importance
for clustering groups and exercise regulation in our endurance athletes via Hippo path-
ways. However, the diversity of plasma levels of miRNAs between groups (Supp results,
Tables S3 and S4) and their regulation of multiple genes points to this pathway’s role in
fine physiological adjustment via miRNAs.

In the HVO2_PRE_vs_POST, PRE_HVO2_vs_LVO2, and all_4_groups comparisons,
five significant miRNAs for group clustering targeted at least 18 different genes related to
lysine degradation (Table 3). Obviously, after a GXT we can expect biomarkers reflecting
heightened utilization of several fuel substrates, including amino acid catabolism. Lysine
degradation leads to the final formation of carnitine or acetyl-CoA, a core molecule for the
tricarboxylic acid (TCA) cycle and ATP production. Previous metabolomic data showed
lower plasma levels of lysine and higher levels of TCA intermediates after a marathon [31].
Our FBA for lysine degradation showed that most of our related miRNAs are present in
greater amounts before exercise, mainly the mir-92 family (Supp. results, Table S3). This
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family has at least 11 target genes directly involved in the degradation of lysine-containing
proteins and the KMT2E gene, which promotes the conversion of acetoacetyl-CoA into
acetyl-CoA. Although the trained subjects had lower mir-92a-3p levels [44], our athletes had
even less of this miRNA after exercise, signaling the need to activate the lysine degradation
pathway after exercise (Supp. results, Table S3).

TGF-β is an important regulator of muscle growth and repair. Often released during
the anti-inflammatory phase of leukocyte polarization, it is vital to produce matrix proteins
and remodel the ECM to accommodate repaired and novel myofibers after extensive
exercise or during endurance adaptation [35,45]. Training-response transcriptomic data
showed that high-responders to endurance training had tissue remodeling pathways
regulated by TGF-β as a central feature of their phenotype [46]. Previously, using a
smaller PCR panel of 72 miRNAs, amateur ultramarathon runners’ plasma showed TGF-β
as a crucial enriched pathway 30 min after running 100 km, but via different miRNAs
from our analysis. Important for the LVO2_PRE_vs_POST and PRE_HVO2_vs_LVO2
comparisons (Table 2), miR-185-3p, miR-26a-5p, miR-150-5p, miR-132-3p, miR-195-5p, and
miR-92b-3p targeted TGF-β signaling through at least 34 related genes. Although important,
the diversity in plasma miRNA levels between groups (Supp results, Tables S3 and S4),
targeting an even more significant number of genes, limited our ability to gain a unified
understanding of TGF-β′s role via miRNAs in our groups.

Five significant miRNAs (miR-432-5p, miR-154-5p, miR-382-5p, miR-512-3p, miR-185-3p)
targeted at least 11 different genes of ECM–receptor-related pathways in all comparisons except-
ing POST_HVO2_vs_LVO2. Corroborating, our data showed consistently higher miRNA ECM-
related levels before exercise (all_PRE_vs_POST, LVO2_PRE_vs_POST, HVO2_PRE_vs_POST)
or in the LVO2 group (PRE_HVO2_vs_LVO2) (Supp. results, Tables S3 and S4). Recently, robust
proteomic data showed that most ECM-related proteins increased in plasma after exercise [47,48].
In muscle tissue, a study reported that ECM-related genes were upregulated in sedentary [49]
and active subjects after acute endurance exercise, in a consistent metanalysis with more than 66
published datasets [47]. Accordingly, our data revealed a distinct amount of plasma miRNAs
targeting genes related to the ECM pathway, which supports the idea of muscles requiring ECM
remodeling for post-exercise recovery. Furthermore, this may suggest that high-performance
athletes may be better equipped to perform such remodeling.

4.3. Multifactorial Traits Challenge

It is important to highlight that in multifactorial traits that are genetically dependent, the
individual contribution of genes is usually small. Still, the combination of them can provide a
more reliable understanding [50]. Elite performance clearly depends on training-related im-
provements in physiological/biochemical processes and genetic/inherited factors. Logically,
miRNA expression or their plasma availability cannot explain all epigenetic variability, but
they appear to explain these factors very well [2]. This work provided an important screening
and unique insight to improve the knowledge of acute exercise mechanisms and to under-
stand more about biomarkers or transcriptomic predictors of elite athletes’ cardiorespiratory
capacity using serum miRNAs. The most significant miRNAs for each comparison, like in
higher-performance athletes, can be a kind of serum “target” for other ones, configuring a
good starting point for deeper investigations. Moreover, pathways regulated by the miRNAs
found were consistent with the exercise physiology background.

4.4. Perspectives

High-performance endurance athletes’ miRNA profiles could provide valuable insights
for targeted, personalized, and optimized strategies based on individual biological factors.
The miRNA profiles and their physiologic prediction effects can be used to monitor training
progress and adaptations or even to predict performance and VO2max levels. Finally, our
results indicate the possibility of nutrition adjustment based on lipid income and training levels
regarding lipid expenditures. Starting from these valuable lipid-related results, a lipidomics
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analysis with the possibility of measuring the impact of all circulating lipids directly from the
plasma is the natural follow-on from these findings.

5. Conclusions

Plasma detection and analysis of a miRNA panel were able to group unique distance
runners according to a GXT and their performance, providing some miRNA-related candi-
dates. Harmoniously to some physiological requirements of endurance performance, our
results showed that circulating miRNAs related to fatty acid metabolism might contribute to
sustaining high endurance performance and enable more efficient recovery time in elite ath-
letes. In addition to fatty acid metabolism pathways, circulating miRNAs were important
for essential amino acid metabolism, tissue repair via Hippo signaling pathways, immune
response, and ECM remodeling via TGF-β and ECM–receptor pathways in response to
endurance exercise and adaptation. Choosing a highly genetically dependent gold standard
variable for evaluating endurance performance (VO2max) in a homogeneous group of elite
athletes allowed genetic/epigenetic aspects to emerge, paving a scientific path for more
profound targeted physiological and molecular interventions based on precision medicine.

6. Limitations

Updates in miRNA knowledge have provided corrected annotations for some RNAs
previously annotated as miRNAs. Some were important for clustering our athletes, but they
were not miRNAs and were not included in the FBA. This does not exclude the possibility
that they could be important for the exercise field. The miRNA target databases like Tarbase,
beyond the in silico prediction and some experimentally validated material, may contain
some data derived from experimental cancer research, and this could partially limit the abil-
ity to analyze a wide range of miRNA roles in different biological processes. Furthermore,
no mRNA transcriptomics or proteomic data were used to contribute to the validation of
our miRNA targets. Although bioinformatics is a prominent and revolutionary field, our
functional analysis is preliminary and conceptual, pointing to more profound, practical,
targeted applications. Finally, while our initial findings with six unique individuals are
promising, a larger sample size would allow for more robust conclusions and significance
levels. Thus, to avoid the confounding variables cited for a bioinformatic approach, new
studies should follow database updates, check the applicability of data available in systems
biology, and look for validation of previous in silico indications using new methods.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15081088/s1, Supplementary methods and Supplementary
results and Supplementary references. Figure S1: Schematic representation of subjects’ participation
and blood samples obtained; Figure S2: Most stably expressed miRNAs across the dataset; Figure S3:
All dataset Non-supervised Principal Component Analysis (PCA) graphs showing “timepoint”
based clustering analysis between groups; Figure S4: Athletes participating in the study ranked
from their decreasing levels of VO2max. In red HVO2 athletes. In blue, LVO2 athletes; Figure S5:
Venn diagram regarding 20 key miRNAs for the clustering of every group; Figure S6: Fatty acid
Biosynthesis pathway (hsa00061) from KEGG database; Table S1: Nomenclature of key miRNAs for
every comparison; Table S2: Non-used RNA for miRNA functional bioinformatic analysis because
they are not miRNA in the newest database version; Table S3: Up to 20 more significant miRNAs
with log2Fold change differences < −1 or >1 for every comparison in Paired analysis; Table S4: Up to
20 more significant miRNAs with log2Fold change differences < −1 or >1 for every comparison in a
Non-Paired analysis.
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