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Abstract: High-speed electric drive units promise improved power density and, theoretically, driving
range of battery electric vehicles. An essential step of the development process is extensive testing of
the drive unit on a test rig. In particular, at a high rotational speed level, experimental testing can
be challenging. This paper describes a test rig for investigating the overall function of a high-speed
drive unit and the transmission’s efficiency and dynamics. The high-speed drive unit developed in
the Speed4E research project was the reference drive unit. The test rig is based on the concept of
electrical power circulation. Thus, the test rig can be used universally for different drive unit designs
and operating modes. A reaction torque measurement unit was developed to enable measurements
at high rotational speeds. Simultaneously, this unit allows robust measurements at low costs. The
expected measurement uncertainties of torque, rotational speed, transmission efficiency, and power
losses were calculated using the Monte Carlo method. The results demonstrate that the developed
torque measurement unit combines precise torque measurement with a robust design and low costs,
making it competitive with state-of-the-art solutions for torque measurement at high speeds.

Keywords: electric drive units; experimental testing; electric vehicles

1. Introduction

Electric drive units (EDUs) comprise an electric motor, power electronics, and transmis-
sion. Operating the motor at high rotational speeds enables a reduction in its volume and
mass and, thus, costs [1,2], promising improved power density and, theoretically, driving
range of battery electric vehicles (BEVs). Today, the maximum speed for series applications
is up to approx. 20,000 rpm [3–6]. However, at a certain speed, costs may increase due
to the expensive technology necessary [2]. Also, with increasing speed, the transmission
needs to be designed with a higher total gear ratio, which typically causes the transmission
to have an increased volume, mass, and cost [1]. Nevertheless, an essential step of the de-
velopment process is evaluating the drive unit’s overall function, efficiency, and dynamics.
A recently published study [7] identified and compared three basic methods for testing
EDUs: testing within the vehicle using chassis roll or chassis hub dynamometers or outside
the vehicle on a dedicated test rig. Testing the EDU on a test rig is considered the most
complex but robust and complete method since it requires more specialized knowledge and
effort but enables highly accurate and flexible testing of the separate components [7]. In
contrast, in-vehicle testing is considered straightforward but less flexible. Testing can also
be performed on-road, which is proposed to efficiently benchmark commercial vehicles [8].
However, extensive investigations on the test rig are required to gain fundamental insights
into the function and behavior of the EDU. The test rig concept is usually chosen based
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on the aim of the investigations and the drive unit’s design. The electrical power circula-
tion concept (see Figure 1 (left)) has been used in various studies [9–11] since it enables
investigations on the entire drive unit. Additionally, this concept enables the testing of
different drive unit designs. A generator absorbs the power on the transmission output.
The electrical power is typically fed back to the grid. A brake can also be used instead to
reduce the electrical set-up’s complexity [12]. This concept also allows investigations into
the shifting process of multi-speed transmissions. The input and output torque need to
be measured to determine the transmission efficiency. In contrast, the mechanical power
circulation concept (see Figure 1 (right)) has been widely applied for investigations on just
the transmission [10,13–16]. This concept is also known as back-to-back configuration. The
transmissions are preloaded through a torque-loading device. The external motor provides
the rotational speed and the total torque losses of the system. This results in a smaller
motor to run the tests. In the case of two identical transmissions combined in the power
loop, the efficiency of the transmission can be easily determined based on the loss torque
and load torque without the need for further investigations on the reaction transmission.
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Generally, both test rig concepts have proven suitable for powertrain testing. However,
the trend towards higher speeds poses new challenges for powertrain testing. In particular,
investigations on efficiency require high accuracy, meaning there is a small amount of
uncertainty allowed in the measurements.

This study aimed to develop a test rig for investigating the function, efficiency, and
dynamics of electric drive units with speeds of up to 50,000 rpm. Using a test rig enables
researchers and engineers to gain fundamental knowledge and investigate the drive unit’s
components’ behavior at high speeds. The high-speed drive unit developed in the Speed4E
research project (see Section 2.1) was the reference drive unit. Determining the measurement
uncertainty according to the GUM method (see Section 2.2) was also part of this study.

2. Materials and Methods
2.1. Reference Drive Unit

In the Speed4E research project, a high-speed drive unit was developed, designed, and
investigated to improve the driving range of BEVs. This includes developing a drive unit
with a maximum input speed of 50,000 rpm, integrating the drive unit into a test vehicle,
and applying holistic thermal management based on a water-containing fluid [17,18].
Figure 2 shows a rendering of the drive unit. The drive unit is based on an architecture with
two electric motors and a three-speed transmission. This architecture provides additional
degrees of freedom to increase efficiency through an intelligent operating strategy.

The power electronics are placed on top of the electric motors and comprise purpose-
built SiC (silicon carbide) modules capable of switching frequencies of up to 42 kHz. A
high-voltage battery supplies the power electronics at a nominal voltage level of 800 V. Two
types of electrical motors are used for this research. Therefore, the individual characteristics
of each motor can be exploited. Figure 3 shows the schematic structure of the high-speed
transmission consisting of two sub-transmissions (ST) and a planetary differential (D).
Sub-transmission 1 (ST1) is driven by an induction motor (IM or EM1). In contrast, sub-
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transmission 2 (ST2) is driven by a permanent magnet synchronous motor (PMSM or EM2).
Both sub-transmissions mesh with the external gearing of the differential. ST1 has a fixed
gear ratio and consists of a planetary gear stage and a helical gear stage (iST1 = 27.5). The
high-ratio planetary gear stage leads to a compact design of ST1. ST2 provides two speeds
and consists of three helical gear stages. The first speed (iST2,1 = 36.2) provides a high
overall gear ratio to ensure high torque at low speeds. The second speed (iST2,2 = 20.4) is
designed as an overdrive, enabling the drive unit’s operation in a more efficient range of
the PMSM at high vehicle speeds. The shifting of the dog clutch is performed by a linear
actuator. The electric motors take on the synchronization and traction bridging.
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2.2. Measurement Uncertainty

In order to determine the uncertainty of the measurements, the methods described in
the Guide to the Expression of Uncertainty in Measurements (GUM) are used. These methods
include the standard GUM method described in ISO/IEC GUIDE 98-3:2008 [19] and the so-
called Monte Carlo method (MCM) described in ISO/IEC GUIDE 98-3/SUPPL1:2008 [20].
Both methods are based on model equations, representing the measurement chain and con-
taining all quantities contributing to the measurement uncertainty. This work established
model equations of all necessary measurement chains (input, output, and drag torque).
The standard GUM method relies on the propagation of uncertainties via Pythagorean
Addition and the assumption of the validity of the Central Limit Theorem. It is, therefore,
widely used for linear systems. However, for non-linear systems, systems with few or
non-independent input quantities, or dominating uncertainty components, it can yield
invalid results. In this case, the MCM is used frequently, either to confirm the results of the
standard method or as a standalone approach. The MCM is based on a high number M of
random draws from within the probability density function (PDF) of the input quantities.
These draws are inserted in the model equation, which results in a PDF of the output
variable. Based on the output variable, the expanded measurement uncertainty U of the
output variable can be determined with a desired confidence interval p.

Preliminary results for the output torque measurement with the standard GUM
method have shown dominating uncertainty components. Even though only minor differ-
ences were found compared to the MCM, the MCM was chosen to determine the uncertainty.
The MCM leads to higher computational effort due to the high number of required calcu-
lations; however, there is no risk of invalid results [21]. Furthermore, there is no need for
a partial derivation of the model equation required for the standard method, which can
reduce computational effort, especially for complex model equations.

Many contributing factors must be considered to estimate the measurement uncer-
tainty accurately. Unfortunately, not all parameters influencing the measurement can be
precisely described, quantified, or even identified. Therefore, gathering as much infor-
mation as possible about the measurement system and the surrounding environment is
necessary. This work uses literature research, previous investigations, and information
from equipment manufacturers (e.g., datasheets or calibration certificates) to quantify the
known uncertainty factors. For the unknown quantities, assumptions are necessary. These
are as follows:

1. Systematic errors: As the test rig is situated in a controlled environment and mea-
surements are conducted only in stationary operating modes (except for driving
cycle measurements), remaining systematic errors not already compensated by the
design are also assumed to be stationary. Therefore, the influence of systematic errors
on the test results can be minimized by performing an offset correction before the
experiments. Systematic errors are, therefore, neglected. As the deviation caused
by hysteresis is given in the datasheets/calibration protocols of the transducers, it is
included in the uncertainty estimation.

2. Rotational inertia: Due to the developed measurement principle of the input torque
(see Section 3.4), the angular acceleration of the rotors of the electric motors can
influence the torque measurement. However, as most experiments are conducted
during stationary conditions and constant input speeds, the rotors are not accelerated
or decelerated. Therefore, the rotational inertia of the rotors and other rotating masses
is neglected.

3. Correlation: The quantities influencing the measurement uncertainty are assumed to
not be correlated.

The measurement uncertainty is determined for all measurement chains based on the
information given in the datasheets and/or calibration certificates of the used components
(“Type B evaluation of standard uncertainty” [19]), unless otherwise stated. The mea-
surement uncertainties for the transmission efficiency and power loss are also calculated.
These two quantities are not measured directly but are calculated based on the measured
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torque and speed values. For all quantities, the measurement uncertainty is calculated for
a confidence level of 95.45%. All calculations were done with MATLAB (Mathworks Inc.,
Natickm, MA, USA).

For a better understanding, the measurement uncertainties are initially calculated only
for ST1 in Section 4.3 before presenting the results for the complete transmission using
both sub-transmissions in Section 4.5. Furthermore, the measurement uncertainties for
averaging over multiple measurements and for driving cycles are discussed in Section 4.6.

3. Test Rig Design
3.1. Requirements

This study aimed to develop a test rig to investigate the overall function of a drive
unit and the efficiency and dynamics of high-speed transmission. Hence, the electrical
power circulation test ring concept was chosen. For testing on the test rig, the configuration
of the drive unit was slightly different compared to the vehicle configuration described
in Section 2.1. The investigations focused on evaluating the efficiency and NVH (noise,
vibration, harshness) behavior of the transmission and the separate sub-transmissions.
Thus, both sub-transmissions were driven by a PMSM (nmax = 50,000 rpm, Tmax = 43 Nm)
on the test rig to allow the maximum input speed. Figure 4 shows the output torque maps
for different transmission set-ups. The maximum output torque of approx. 3000 Nm is
reached when both sub-transmissions are driven with maximum torque and in the first
speed of ST2. The maximum output speed of approx. 2450 rpm is reached in the second
speed of ST2.
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3.2. Test Rig Layout

Figure 5 shows the mechanical layout of the test rig in standard configuration. In the
center of the test rig lies the drive unit, consisting of the electric motors (EM1 and EM2)
and the high-speed transmission (ST1, ST2, D, and shifting actuator S). In traction mode,
the power at the transmission output is absorbed by two identical load machines (LM1
and LM2, operating in generator mode). The load machines are directly connected to the
transmission output to avoid parasitic losses resulting from, e.g., support bearings. The
load machines can absorb a maximum output torque of approx. 3200 Nm without further
speed or torque adjustments. This results in a compact test rig design. The maximum speed
of the load machines is 2500 rpm. Hence, according to Figure 4, all operating points of the
drive unit can be tested with the chosen load machines. Using two load machines enables
setting different transmission output speeds to simulate cornering. The electrical power
generated is fed back to the grid via a regenerative power supply unit. On the test rig, the
power electronics of the drive unit are supplied by an 800 V DC voltage source instead
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of a high-voltage battery to enable uninterrupted testing. In coast mode, the drive unit is
driven by one of the load machines. In this case, the drive unit’s electric motors are loaded
via braking resistors.
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The cooling of the drive unit’s electric components and the lubrication of the trans-
mission are handled by two separate units. All rotating parts are covered to guarantee
safe operation.

The investigations require measurement of the input and output torque, among other
things. The measurement points (MP) for the torque and speed measurements are marked
in Figure 5. Particularly, efficiency investigations require high accuracy, meaning there
should be small measurement uncertainty for torque measurements. One option to reduce
the measurement uncertainty is to adjust the sensor’s measuring range for measurements
in the partial-load range. The output torques and speeds (MP3 and MP4 in Figure 5) are
measured via torque flanges (accuracy class 0.05) with an integrated magnetic rotational
speed measuring system. Both load machines have different torque transducers to adapt
the measurement range. At MP3, a torque transducer with a nominal torque of 1000 Nm
is installed. In contrast, a torque transducer with a nominal torque of 2000 Nm is applied
at MP4. Consequently, the differential has to be locked for loads higher than 2000 Nm.
As the output torque is measured with two different torque transducers in the standard
configuration, the total torque must be split between the load machines LM1 and LM2 to
prevent overloading or damaging the torque transducers. This is achieved by a control
loop. The reaction torques at the inputs (MP1 and MP2 in Figure 5) are measured via
force transducers (accuracy class 0.02) with a nominal force of 200 N (see Section 3.4). For
the efficiency investigations, the drive unit is equipped with various temperature sensors
(see Section 5.1). The investigations of NVH behavior use accelerometer sensors placed at
specific housing positions (see Section 5.1).

3.3. Test Rig Configurations and Operating Modes

The configuration of the test rig can be adjusted for investigations in the partial-load
range. Depending on the output torque to be investigated, one of the load machines can be
disconnected. In the low-load range, LM1 is connected to the output of the transmission
(see Figure 6), resulting in a load range of up to 1000 Nm. In the mid-load range, LM2
is connected to the output of the transmission (see Figure 7), resulting in a load range
of 1000 Nm to 2000 Nm. For investigations of the drag losses of the drive unit, LM2 is
connected to the output of the transmission (see Figure 8) and operates as a motor in
this case. At MP5, a torque transducer (accuracy class 0.001) with a nominal torque of
50 Nm is installed. The torque transducer is interchangeable to depict nominal torque
levels over multiple magnitudes of the drag torque. The electric motors can be unmounted
to investigate only the drag losses of the transmission. Table 1 lists the configurations and
corresponding load ranges.
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Table 1. Configurations of the test rig.

Configuration Mode Connected Load Machines Load Range

Low-load (see Figure 6) Traction LM1 From 0 to 1000 Nm
Mid-load (see Figure 7) Traction LM2 From 0 to 2000 Nm
Standard (see Figure 5) Traction LM1 + LM2 From 0 to 3000 Nm
Drag loss (see Figure 8) Coast LM2 From to 10/50/100 Nm

With this test rig, tests in different modes can be run. The input torques and output
speed can be manually set in manual mode. In automatic mode, a set of pre-programmed
load points is run automatically. Also, different cycles like WLTC can be performed.
Figure 9 shows the front view of the test rig in the mid-load configuration.
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3.4. Input Torque Measurement

Due to the high input speeds of up to 50,000 rpm, the measurement of the input
torque is a significant challenge. Furthermore, extensive testing requires a robust torque
measurement system. At the given speeds, the in-line measurement of the input torque via a
torque sensor applied between the motor shaft and the input shaft of the corresponding sub-
transmission is generally possible. However, it is associated with high costs due to the high-
speed spinning sensor. For investigations in the partial-load range, one has to exchange the
expensive sensor to adapt the measurement range. A significant advantage, however, is the
simple mechanics required to install the sensor. Compared to other measurement concepts,
more axial space is required. In contrast, the measurement of the reaction torque using a
force transducer is unaffected by the rotational speed. Here, the torque generated by the
rotatably mounted electric motor is supported by a lever of a known length. The measured
force and the lever arm length can be used to calculate the input torque. In contrast to the
in-line torque measurement, this concept requires more complex mechanics. Interference
effects caused by hydraulic connections, cables, and bearings must be considered to prevent
systematic measurement errors. Furthermore, this measurement principle is not suitable
for dynamic torque measurements due to the inertia of the stator and the rotor. The force
transducer can be easily replaced for investigations in partial-load ranges to adapt the
measurement range. As no dynamic torque measurements are required, and the installation
space is limited, the reaction torque measurement is most suitable and is therefore used.
Consequently, the power electronics are not mounted to the electric motors in the test rig
set-up to guarantee the rotational degree of freedom of the electric motors.

Figures 10 and 11 show different assembly states of the input torque measurement
unit. Figure 10a displays the electric motor with its cables for the power supply and
the connections for cooling the rotor and the stator. Figure 10b shows Assembly State 1.
The stator of the electric motor is supported by bearings in the stationary housing (see
Positions A and B). However, the rotational movement of the stator is almost zero. In this
specific case, the bearing losses are high according to Stribeck’s curve and can oscillate
vigorously. Therefore, two deep-groove ball bearings are combined, resulting in a triple
ring bearing (see details in Figure 10c,d). In this way, the bearing losses can theoretically be
eliminated by driving the middle rings in opposite directions. The lever is integrated in the
support part of Position A. Figure 10e shows Assembly State 2. A stepper motor drives
each middle ring via a round belt. The speed of the middle rings is set to 20 rpm. Eccentric
masses can be mounted to balance the static torques and calibrate the force transducer (see
Figure 10f). The input torque measurement unit allows robust measurements at low costs.
For investigations in the partial-load range, the force transducer can easily be replaced by a
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geometrically identical transducer with an adapted measuring range. Bellows coupling is
used to connect the electric motor to the input shaft.
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Figure 11. Assembly states of input torque measurement unit: (a) front and back views: Assembly
State 3; (b) isometric view: final assembly.

Figures 10f and 11a show different views of Assembly State 3. The high-precision
force transducer is mounted with a normal distance l to the axis of rotation. The outlets of
the rotor and stator cooling are radially positioned. Therefore, the outlets theoretically do
not influence the measurement. A highly flexible hose is used for the rotor cooling axial
inlet. Figure 11b shows the final assembly state. The cables and the inlet hose for the stator
cooling are helically arranged (see Figure 9) to reduce the mechanical resistance associated
with the tilting of the motor.

4. Estimation of Measurement Uncertainty
4.1. Measurement Set-Up

A simplified overview of the measurement set-up is shown in Figure 12. The input
torques of both electric motors are measured at MP1 and MP2 using S2M force transducers
by HBM (Darmstadt, Germany) [22] with a nominal force of 200 N. The transducer can
be used for tension and compression forces, which allows torque measurement during
regenerative braking. The measurement is free from parasitic forces, as the transducer is
mounted with ball joints, which only allow forces in the intended measurement direction.
The transducer is based on an S-shaped body, whose deformation is measured by strain
gauges arranged in a Wheatstone Bridge Circuit. A designated signal amplifier from the
same manufacturer supplies the bridge circuit with the required voltage and processes the
force signal. The amplifier scales the force signal of the transducer to a range of ±10 V.

Depending on the operation mode, T40B transducers by HBM [23] for the output
torque measurement (MP3 and MP4) and/or a DRFL-III transducer by ETH (Gschwendt,
Germany) [24] for drag torque measurement (MP5) are mounted directly between the load
machines and the output shafts of the transmission. Elastic couplings and shafts with
l/d >> 1 are used between the transmission output, the transducers, and the load machines
to minimize the effect of parasitic forces or torques influencing the measured torque. The
deformation of the transducer bodies is measured by strain gauges. The electrical power
needed for the measurement circuit and the measurement signals are transmitted wirelessly
between the rotating shaft and the stationary housing. While the drag torque transducer
is equipped with bearings to support the rotating shaft, the output torque transducers
require no bearings for the rotor, which is supported by the output shafts. The bearings in
the drag torque transducer introduce friction into the measurement chain, which has to
be considered when estimating the measurement uncertainty. Both types of transducers
provide a scaled voltage signal between ±10 V, proportional to the measured torque.
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Figure 12. Measurement chains for torque and speed measurements.

Rotational speed can be measured via the output torque transducer, which provides a
square-wave signal with 1024 impulses per revolution. The period duration between two
impulses is measured to deduce the rotational speed. The rotational speed is only measured
at the output shafts, as the input speeds can be calculated via the known gear ratios of each
sub-transmission and the currently selected gear. If experiments are conducted with an
unlocked differential, for the uncertainty calculations, it is assumed that both output shafts
rotate at the same speed.

All analog signals are digitized and recorded by a data acquisition system (DAQ)
via an analog-to-digital converter (ADC). The frequency of the rotational speed signal is
measured with a digital input/output module (DIO). Three transducers with different
nominal torques Tnom of 10, 50, and 100 Nm are available to precisely measure drag torque
over multiple magnitudes. Similarly, for the output torque, two variants of the transducer
are used, with nominal torques Tnom of 1000 and 2000 Nm, respectively (see Section 3.3).

4.2. Calculation of Measurement Uncertainty

To calculate the measurement uncertainty using the MCM described in ISO/IEC
GUIDE 98-3/SUPPL1:2008 [20], it is first necessary to identify the quantities contributing
to the uncertainty. Additionally, it is essential to know the probability density function
(PDF) of the uncertainty component. The datasheets and calibration certificates of the used
components are used for this. With the help of the sensors’ calibration certificates, the
measurement device’s accuracy can be traced back to the national standard for a specific
measurement unit (e.g., 1 m or 1 kg), which, in turn, is correlated to the SI Unit system.
The deviations stated in the datasheets or certificates are given in relation to the input or
output quantities of the device (e.g., force or voltage). Therefore, deviation amplitudes that
are absolute (i.e., not dependent on the currently measured value) have to be converted to
torque values. These values are multiplied by the respective gain factor of the component
within the measurement chain (e.g., the length of the lever arm l or the gain factor of the
amplifier) to achieve this. Relative deviation amplitudes based on the currently measured
value can be used as they are. Table 2 shows the uncertainty types caused by the used
components, including their absolute or relative magnitude and type of PDF.

The torque transducers were calibrated according to VDI/VDE 2646 [25]. The force
transducers were calibrated according to the German National Metrology Institute’s DKD-
R 3-3 guideline [26]. The respective manufacturers performed all the calibrations. Most
component datasheets and/or calibration certificates state temperatures (or temperature
ranges) at which the given deviations were determined and are valid. Any operation at
other temperatures (or outside the temperature ranges) leads to additional deviations dur-
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ing the measurements. An operating temperature of 22 ◦C was chosen for all components,
as the test environment is air-conditioned. Even though the temperature lies within the
allowed ranges of the measurement equipment, deviation from the temperature during
calibration was considered if the resulting uncertainty was given.

As the transducer shaft for the drag torque measurement (MP5) is supported by a
bearing on each side, the bearing friction on the transmission side influences the mea-
surement. During a previous experimental investigation of the bearing losses, the used
transducer model showed torque deviations between 0 and a maximum of 0.02 Nm within
the required speed range. However, the deviations appeared randomly with no correlation
to the rotational speed. To cover the range, the expected value µ was set to 0.01 Nm, and
the interval half-width of the uniform distribution to 0.01 Nm.

Table 2. The sources of deviations δ in the used components and their magnitude. The relative
values are given as % of the measured value. The expected value µ for each uncertainty is zero if
not otherwise declared. The magnitude values correspond to the interval half-width “a” for uniform
distributions or the standard deviation σ for normal distributions.

Component
and Source

of Deviation

Force
Transducer

(δTI)

Output
Torque

Transducer
(δTO)

Drag Torque
Transducer

(δTDrag)

Amplifier
ADC

(δTAmp)

Amplifier
ADC

(δTAmp)

ADC
(δTADC,i)

DIO
(δn)

Non-
linearity

8 · 10−4 Nm
(uniform)

6 · 10−5 · Tnom
(uniform)

1 · 10−3 · Tnom
(uniform)

5 · 10−3 Nm
(uniform)

4.9 · 10−2 Nm
(uniform)

2 · 10−2%
(uniform)

/

Temperature 2.8 · 10−3%
(uniform)

2.4 · 10−2%
(uniform)

10−3%
uniform)

10−3%
(uniform)

1.2 · 10−3 Nm
(uniform)

/ /

Hysteresis 10−3%
(uniform)

included in
linearity

1 · 10−3 · Tnom
(uniform)

/ / / /

Noise / / / 8 · 10−3 Nm
(uniform)

6 · 10−2 Nm
(uniform)

3.81 · 10−5 ·
Tnom

(normal)
/

Resolution / / / 2.3 · 10−8 Nm
(uniform)

9.6 · 10−4 Nm
(uniform)

/ /

Repeatability 2 · 10−2%
(uniform)

3 · 10−4 · Tnom
(normal)

/ / / / /

Other
Creeping:

8 · 10−3 Nm
(uniform)

/

Friction:
10−2 Nm
(uniform,

µ = 10−2 Nm
) 1

/ / /

Counter dev.:
5 · 10−5 · n +

n2

78125−n
(uniform) 2

1 Determined during previous investigations; 2 calculated according to Ref. [27].

The deviation influencing the rotational speed measurement (counter deviation) at
MP3 and MP4 stems from two sources. Firstly, the oscillator base clock of the DAQ used to
measure the time between two impulses can deviate by 50 ppm from the nominal value of
80 MHz. Secondly, a phase shift between the base clock and the speed signal can cause a
deviation of ±1 impulses of the base clock. The impact of this second deviation depends
on the number of impulses per revolution, the rotational speed, and the base clock itself.

In order to quantify the measurement uncertainty of the measured values, the devia-
tions δ of the components of each measurement chain have to be combined. During this
step, even small deviations should not be neglected, as they could have a large impact
at certain operating points. A model equation for each measurement chain is generated,
which serves as a mathematical representation. Equation (1) represents the input torque
measurement T1/2,m at transmission input 1 or 2. The index m denotes the measured torque
value, which is the sum of the actual force value F1/2,a (the index a denotes actual values)
multiplied by the lever arm length l and the contributing deviations δ. The sources of
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uncertainty (non-linearity, temperature, hysteresis) for each component are added together,
i.e., in δTF, for the deviation sources of the force transducer.

T1/2,m = F1/2,a · l + δTI + δTAmp + δTADC,1/2 (1)

Similarly, the model equations for the remaining measurement chains (output torques
T3/4,m, output rotational speed n3/4,m, and drag torque TDrag,m) can be created (see
Equations (2)–(4)).

T3/4,m = T3/4,a + δTO + δTADC,3/4 (2)

n3/4,m = n3/4,a + δn (3)

TDrag,m = TDrag,a + δTDrag + δTADC,5 (4)

In contrast to the previous model equations, not all deviations contributing to the drag
torque measurement have an expected value µ of zero.

The model equations above all represent physical quantities that can be measured
directly or indirectly in the case of the input torque. More abstract quantities like trans-
mission efficiency η and power loss PLoss cannot be measured directly and have to be
calculated with the measured torque and speed values. Equations (5) and (6) show the
model equations for these quantities. The indices 1, 2, 3 and 4 correspond to MP1 to MP4.

ηm = (T3,m + T4,m)/(T1,m · iST1 + T2,m · iST2) (5)

PLoss,m = (T1,m · iST1 + T2,m · iST2 − T3,m − T4,m) · n3/4,m · 2π/60 (6)

As these quantities are based on the previously discussed torque and speed measure-
ments (see Equations (1)–(4)), all of the deviations influencing these measurements also
contribute to the efficiency and power loss uncertainty.

To calculate the expanded measurement uncertainty U for all measurement chains with
the MCM, each model equation has to be evaluated M times. Each evaluation simulates a
measurement and is based on random samples for each deviation source by the respective
PDF. During each evaluation, the theoretical measured value is calculated. All M values
represent the distribution of these simulated measurements. Based on this distribution, the
expected value µ and a symmetrical uncertainty interval can then be calculated for a desired
confidence level p, which states how probable it is for the actual value to be within the
given interval and represents the expanded uncertainty U. For this work, a confidence level
of p = 95.45% was chosen, as it is commonly used for reporting measurement uncertainty.
Based on the value of p, a number of M = 220, 000 iterations is chosen in accordance with
GUM [20]. This procedure is repeated for each operating point.

The expected uncertainty U is calculated for input torque values from −60 to 60 Nm
and input speed values from 500 to 50,000 rpm.

4.3. Results of Measurement Uncertainty Analysis for ST1

To aid in understanding the results of this analysis, the measurement uncertainty
estimation results in this section are given for experiments during which only ST1 is in
use. In this case, ST2 is not engaged. Figure 13 shows the absolute and relative measure-
ment uncertainties for the input torque, the output torque, the rotational speed, and the
drag torque. Negative measured values are omitted, as the measurement uncertainty is
independent of the sign of the measured quantities.
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Figure 13. Expected absolute (black) and relative (red) measurement uncertainties for ST1.

It can be observed that the estimated absolute uncertainty Uabs of the input torque is
primarily independent of the applied torque. This can be explained by the dominating effect
of two deviation sources which together account for more than 90% of the measurement
uncertainty: the deviation because of noise and the deviation because of the non-linearity
of the ClipX DAC. Both sources are based on absolute reference values and, therefore,
independent of the currently applied torque.

A similar behavior can be found for the drag torque, where the two dominating factors
(hysteresis and non-linearity) are also absolute values based on the nominal torque. They
account for more than 90% of the uncertainty of the transducers with a nominal torque of
50 and 100 Nm. For the smallest transducer (Tnom = 10 Nm), the bearing friction deviation
is an additional absolute dominating source of deviation. All three sources account for at
least 95% in all possible torque ranges.

For the total output torque, the measurement uncertainties Uabs are shown for the
low-load, mid-load, and standard test rig configurations. A consistent split of 1/3 of the
total output torque at MP3 and 2/3 at MP4 is assumed.

Comparing the output torque uncertainties for the range from 0 to 1000 Nm, it is
visible that the measurement uncertainty is lowest when using only the smallest transducer
at MP3. The standard configuration with both transducers at MP3 and MP4 leads to the
largest measurement uncertainties in this region, which is why operation of the standard
configuration in this region should be avoided. A similar result can be shown by compar-
ing mid-load and standard configurations between 1000 and approx. 1400 Nm. However,
above 1400 Nm, measurement at both MPs (standard configuration) results in a smaller
uncertainty compared to measurement at only MP4 (mid-load configuration). This can be
explained by the torque split, which results in a reduced torque at each transducer. The
overall uncertainty is reduced in combination with the significantly lower measurement
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uncertainty of the 1000 Nm transducer. Even though this effect is significant when compar-
ing the absolute measurement uncertainty, the difference is minimal in comparison with
the respective torque values, which is why the relative measurement uncertainty Urel is
only slightly affected by this. The dominating uncertainty factors for the output torque
measurement are the transducers’ repeatability and temperature deviations and the ADC’s
non-linearity. The repeatability deviation is responsible for almost 90% of the expected
uncertainty at torque values close to zero. As it is based on the nominal torque Tnom, its
influence decreases with increasing torque values. At the same time, the transducer tem-
perature deviation and the ADC non-linearity gain influence, as they are based on actual
torque values. Both sources are responsible for 56.4% of the total expected uncertainty
at Tnom.

The expected relative torque measurement uncertainties Urel are naturally large for
small torque values. At operating points very close to 0 Nm at the input or output,
determining if the actual torque is positive or negative is often impossible because the
uncertainty band is larger than the measured value. However, for most of the operating
regions of each transducer, relative errors smaller than 0.5% are expected, reaching 0.14% for
the input torque, 0.16% for the drag torque, and 0.05% for the output torque measurements.

The rotational speed measurement only depends on one uncertainty factor δnNI,DI (see
Equation (3)), which contains two terms (see Table 2). As the absolute measurement uncer-
tainty Uabs nearly shows a square law characteristic, the relative measurement uncertainty
Urel increases nearly linearly with the rotational speed, in contrast to the torque measure-
ments. However, the relative uncertainty of the speed signal with a maximum expected
uncertainty of 0.43% is significantly smaller than the achievable torque uncertainties.

4.4. Expected Uncertainties for Efficiency and Power Loss Measurements at ST1

Using the model Equations (5) and (6), the results of the measurement uncertainty
estimation of the torque and speed measurements can be further used to determine the
efficiency and power loss of ST1. As the theoretical maximum output torque (no losses)
is approx. 1600 Nm, the mid-load configuration of the load machines is chosen for the
calculations (single 2000 Nm torque transducer). Additionally, in this case, ST2 is not used,
which leads to a simplification of the model equations:

ηa = T4,a/(T1,a · iST1) (7)

PLoss,a = (T1,a · iST1 − T4,a) · n4,a · 2π/60 (8)

For the calculation of the expected measurement uncertainty, the M draws from the
distributions of the input quantities can be reused here. The results are interpreted in the
same way.

To determine the output torque for a given input torque, simulated results of the
transmission efficiency are applied. The simulation results in a discrepancy between
positive and negative torque values, as the losses in normal operation mode are different
than during regenerative braking. As transmission efficiency cannot be calculated at an
input torque of 0 Nm; values of ±0.5 Nm are used instead. As efficiency simulation is not
the main focus of this work and is merely necessary to generate realistic efficiency and
power loss values, it is not described in detail. A more in-depth description of a similar
approach for the same transmission can be found in Ref. [18].

The expected measurement uncertainty of the efficiency measurement is shown in
Figure 14. Even though the input speed n1 at MP1 is not measured directly, it is used to
denote the operating point in conjunction with the input torque T1.
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percentages (ratio between two values), as the efficiency itself is given as a percentage.

Figure 14 shows that the absolute efficiency measurement uncertainty Uabs is virtually
independent of the input speed. Only at minimal torque values can a dependency on speed
be observed. This is not caused by the uncertainty of the rotational speed itself, which is not
required to calculate the efficiency according to Equation (7), but rather, by the efficiency
computation, which results in different efficiencies at different rotational speeds. At small
input torque values, the expected measurement uncertainty reaches values of approx. 19.7%
for torque values of 0.5 Nm. The dominating sources of uncertainty are the noise deviation
(min. 49%) and the non-linearity deviation (min. 33%) of the amplifier DAC.

While the absolute uncertainty can be calculated for all operating points, the expected
relative uncertainty Urel cannot be calculated reasonably in some cases. For high rotational
speeds and very low torque values, the simulated efficiency of the transmission is zero
because the power losses are higher than the total input power. The relative uncertainty
would be infinite at those operating points and can therefore not be shown. Naturally, the
values for Urel near this region are also very large, as the simulated efficiency is almost zero.
However, in large regions of the operating spectrum, the relative uncertainty is very small
and reaches a minimum of approx. 0.14% for the maximum input torque at all speeds.

Figure 15 shows the absolute measurement uncertainty for the power loss.
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In comparison with the results of the efficiency measurement, the absolute expected
uncertainty of the power loss measurement shows a different characteristic. At the same
time, the relative uncertainty of the power loss measurement is significantly higher (be-
tween approx. 6% and 250%). Both effects can be explained by calculating the power
loss (see Equation (8)). Although the rotational speed features a very small measurement
uncertainty, the torque measurements are multiplied by the rotational speed, amplifying
the uncertainty for increasing rotational speeds. This higher relative uncertainty can be
explained by the subtraction of the output power from the input power. As the trans-
mission is designed to be as efficient as possible, there is no large difference between the
input and output values at most operating points. The power loss is, therefore, a relatively
small value in comparison. However, the absolute measurement uncertainties of input
and output power are combined via Pythagorean Addition. The result is an even larger
overall uncertainty, which yields a large relative uncertainty in relation to the power loss.
For example, the operating point’s highest relative uncertainty of 250% (T1 = 0.5 Nm,
n1 = 500 rpm) features a power loss of 1.9 W and an absolute uncertainty of 4.75 W.

Even though the expected uncertainty of the speed influences the power loss measure-
ment, it only contributes marginally to the total uncertainty. The dominating factors and
their influence are almost identical to the efficiency measurement (amplifier DAC noise
deviation: min. 50%; amplifier DAC non-linearity deviation: min. 33%).

One of the main reasons for using the MCM instead of the standard GUM method
was the presence of dominating factors and the uncertainty about the distribution of the
measured uncertainties. To address this aspect, Figure 16 shows normalized histograms
of the expected measurement uncertainties Uabs of the input and output torque and the
efficiency and power loss of ST1 for one exemplary operating point. It can be seen that
the input torque distribution calculated via the MCM does not follow a normal distribu-
tion. This can be attributed to the two dominating uncertainty factors (DAC noise and
non-linearity), which are not normally distributed. While the output torque shows a greater
resemblance to a normal distribution, the shape deviates from it, which is especially visible
around the expected value µ. At this investigated operating point, the three dominating
deviation sources are the repeatability (normal distribution), the ADC non-linearity, and the
temperature deviation of the transducer (uniform distributions). The efficiency and power
loss measurement distributions also show slight deviations from a normal distribution.
Here, the distributions are more similar to the input torque than the output torque, corre-
sponding with the dominant factors present: the DAC noise and non-linearity deviation at
the transmission input.
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Figure 16. Normalized histograms containing the MCM results for the measurement chains of input
torque, output torque, efficiency, and power loss at the operating point T1 = 60 Nm, n1 = 20, 000 rpm,
in mid-load configuration.

These results show that MCM usage is required to accurately estimate the measure-
ment uncertainties of the considered test rig. However, if required, the calculated PDFs are
similar enough to a normal distribution to allow realistic, rough estimates of measurement
uncertainties with the standard GUM method.

4.5. Expected Uncertainties for Efficiency and Power Loss Measurements of Complete Transmission

This section describes the expected measurement uncertainty of the complete trans-
mission. The estimated uncertainties are given only for positive input torque values, as
the efficiency and power loss can currently not be calculated in coast mode, during which
the load machine drives the transmission. In this case, the power is split between the
two sub-transmissions, which is currently impossible to model in the simulation tool
used. Therefore, coasting mode is neglected from here on. The expected measurement
uncertainties are calculated assuming that the load machines are configured for mid-load
experiments to allow comparison between the results of ST1 and the complete transmission.

In regular operation, the transmitted power of each sub-transmission is combined at
the differential stage. To improve efficiency, an optimal power distribution between ST1
and ST2 can be calculated for the required total input power. This is achieved with the
so-called split factor, which specifies the power split between the two transmission inputs.
At a split factor of 1, the required power is supplied solely by EM1, while at a split factor of
0, EM2 provides all the required power. This varying load distribution has to be considered
when calculating the estimated measurement uncertainty. However, examinations have
shown that the split factor has almost no influence on the measurement uncertainty of the
input torque. This can be explained by the dominating uncertainty factors within the input
measurement chains, as these are not dependent on the actual torque values but on the
operational range of the measurement equipment. Therefore, the split factor is assumed to
be 0.5 in all cases. Figure 17 shows the expected absolute and relative uncertainty of the
efficiency measurement for the complete transmission in the first speed. For visualization,
the input torques of EM1 and EM2 are combined into a theoretical total input torque T1,th
at the input of ST1, which would result in the same input power.



Vehicles 2024, 6 1433

Vehicles 2024, 6, FOR PEER REVIEW 19 
 

 

For visualization, the input torques of EM1 and EM2 are combined into a theoretical total 
input torque 𝑇ଵ,୲୦ at the input of ST1, which would result in the same input power. 

  

Figure 17. The expected absolute (left) and relative (right) transmission efficiency uncertainties for 
the complete transmission (ST2 in the first speed). The lower two graphs show an enlarged section 
of the upper graphs. 

The results shown are limited to a range from 0 to approx. 36,500 rpm at ST1, as in 
the first speed, ST2 reaches the maximum input speed of 50,000 rpm. The estimated abso-
lute uncertainty spans a range from 0.19 percentage points at 𝑇ଵ,୲୦  =  75 Nm to a maxi-
mum of 35 percentage points at 𝑇ଵ,୲୦ = 0.5 Nm and 𝑛ଵ = 1000 rpm. The expected relative 
measurement uncertainty reaches values of less than 0.2% at maximum torque. Close to 
the region where the calculated efficiency is zero (missing data points on the lower right), 
the relative expected uncertainty values are very high as the efficiency decreases to zero. 

An interesting observation is the abrupt change in absolute uncertainty in the region 
of 20,000–25,000 rpm. While the absolute uncertainty is mostly independent of the rota-
tional speed above and below this region, a significant uncertainty decrease can be ob-
served, especially at small input torques. It is suspected that the underlying calculation of 
the power loss causes this phenomenon. Morhard et al. [18] state that for different circum-
ferential speeds of the transmission components, different approaches to calculating 
squeezing losses are available. The transition from one approach to the other causes in-
creased power losses, which affects the calculated overall power loss and efficiency. This, 
in turn, influences the output torque, leading to a change in measurement uncertainty. 
However, this change does not visibly influence the relative measurement uncertainty, as 
torque and absolute torque measurement uncertainty are changing simultaneously. 

The results of the efficiency measurement uncertainty estimation while ST2 is in the 
second speed are shown in Figure 18. The results for the absolute measurement uncer-
tainty also show an abrupt change, similar to the results in the first speed (Figure 17), but 
at a higher rotational speed. In the left graph (absolute uncertainty), the change from one 
calculation approach to the other is also visible, but at a higher range of 40,000–45,000 

Figure 17. The expected absolute (left) and relative (right) transmission efficiency uncertainties for
the complete transmission (ST2 in the first speed). The lower two graphs show an enlarged section of
the upper graphs.

The results shown are limited to a range from 0 to approx. 36,500 rpm at ST1, as in the
first speed, ST2 reaches the maximum input speed of 50,000 rpm. The estimated absolute
uncertainty spans a range from 0.19 percentage points at T1,th = 75 Nm to a maximum
of 35 percentage points at T1,th = 0.5 Nm and n1 = 1000 rpm. The expected relative
measurement uncertainty reaches values of less than 0.2% at maximum torque. Close to
the region where the calculated efficiency is zero (missing data points on the lower right),
the relative expected uncertainty values are very high as the efficiency decreases to zero.

An interesting observation is the abrupt change in absolute uncertainty in the region of
20,000–25,000 rpm. While the absolute uncertainty is mostly independent of the rotational
speed above and below this region, a significant uncertainty decrease can be observed,
especially at small input torques. It is suspected that the underlying calculation of the power
loss causes this phenomenon. Morhard et al. [18] state that for different circumferential
speeds of the transmission components, different approaches to calculating squeezing losses
are available. The transition from one approach to the other causes increased power losses,
which affects the calculated overall power loss and efficiency. This, in turn, influences the
output torque, leading to a change in measurement uncertainty. However, this change does
not visibly influence the relative measurement uncertainty, as torque and absolute torque
measurement uncertainty are changing simultaneously.

The results of the efficiency measurement uncertainty estimation while ST2 is in the
second speed are shown in Figure 18. The results for the absolute measurement uncertainty
also show an abrupt change, similar to the results in the first speed (Figure 17), but at
a higher rotational speed. In the left graph (absolute uncertainty), the change from one
calculation approach to the other is also visible, but at a higher range of 40,000–45,000 rpm.
The absolute and relative uncertainties are slightly lower than in the first speed, as the
smaller gear ratio in the second speed of ST2 leads to reduced output torque.
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the complete transmission (ST2 in the second speed). The lower two graphs show an enlarged section
of the upper graphs.

Figures 19 and 20 show the absolute and relative measurement uncertainty of the
power loss measurement in the first and second speeds, respectively. Similar to the results
for ST1, the absolute power loss uncertainty for the complete transmission mainly depends
on the input speed. It reaches maximum values of 600 W in the first speed and 628 W in
the second speed at maximum torque and rotational speed. The relative measurement
uncertainty at these operation points reaches its minimum at 3.7% for both gears. In
contrast, the maximum values lie at minimal torque and speed (207% in the first speed and
162% in the second speed). The abrupt drop-off of the relative measurement uncertainty
at rotational speeds of 20,000–25,000 rpm in the first speed and 40,000–45,000 rpm in
the second speed is attributed to the change mentioned above to a different calculation
approach of the squeezing losses.
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4.6. Measurement Uncertainty for Averaging and Driving Cycles

In the previous sections, the measurement uncertainties are always given under the
assumption that only one measurement is taken at each operating point. The uncertainties
can, however, be further decreased by averaging over multiple measurements. In this
case, if a normal distribution is assumed, the measurement uncertainty can be reduced
roughly by a factor of

√
N when conducting N independent measurements, similar to the

calculation of the estimated standard error of the mean (SEM). For a typical measurement
scheme, the mean of 600 measurements per minute is calculated for each operating point,
resulting in a measurement uncertainty reduced by a factor of approx. 24.5. This factor can
be applied to all previously shown results for typical measurement schemes. Of course,
this factor is only valid for normally distributed quantities. Nevertheless, it gives a good
indication of the potential increase in accuracy when averaging, as the calculated PDFs of
the measured quantities are close to normal. In practice, however, the uncertainties of the
successive measurements cannot be assumed to be completely independent, so the given
factor should be seen as a theoretical lower limit to the measurement uncertainty.

Even though the test rig is intended for measurements in stationary conditions, one
can attempt to calculate the measurement uncertainty for efficiency measurements during
driving cycle tests. In this case, the rotor inertia of EM1 and EM2 influence the measured
input torque, as it causes additional reaction forces at MP1 and MP2. This can be considered
a systematic error and can be compensated, as the rotational inertia and the acceleration
are known. While this might also introduce random deviations, they are neglected for now,
as their magnitude is unknown. The energy consumption of the cycle can be considered
another virtual measurement chain, which is the sum of the energy consumption in each
time step. The overall measurement uncertainty can be calculated via the Pythagorean
Addition of the uncertainties at each time step. For the WLTC Class 3 driving cycle,
measurements are taken every second. Assuming the same independent uncertainty at
each time step, an uncertainty reduced by a theoretical factor of

√
1800 ≈ 42.4 can be

achieved. Based on simulative results for the WLTC cycle using the efficiency data of ST1
of the transmission and a vehicle model, the energy consumption (disregarding the motor
and power electronic efficiencies) for the cycle and operating points at each time step were
calculated. The calculated overall energy consumption including measurement uncertainty
is 13.055 ± 0.006 kWh/100 km ( p = 95.45%), which is a relative measurement uncertainty
of 0.043%. Even though this value does not represent the energy consumption in reality, it
indicates the measurement uncertainty to be expected for driving cycle measurements.



Vehicles 2024, 6 1436

5. Test Procedures
5.1. Investigation of Efficiency, Drag Torque, and Thermal Management

The principle of power difference measurement is used for investigations on trans-
mission efficiency. Here, the efficiency η of ST1 is derived through a relative comparison
of the measured output torque T4 to the measured input torque T1 under consideration
of the transmission ratio i according to Equation (7). The mid-load configuration of the
test rig is used for this. Before a test run, a sufficiently long heat-up phase is needed to
ensure that the system temperatures are leveled out. At high injection temperatures up to
60 ◦C, a heat-up phase of 60 minutes before testing is recommended. During the efficiency
investigations, it was noticed that the acting speed has a far more pronounced influence
on the power losses and, thus, temperature than the acting torque. This is due to the
investigated water-containing fluid. Water-containing fluids generally have a very low
coefficient of friction combined with increased dynamic viscosity [28]. As both no-load and
load-dependent power losses are temperature-sensitive, a test run should be completed
without a standstill to avoid cooling down the transmission. As speed was found to be the
primary influence on the temperature level, efficiency maps were derived by increasing the
input torque stepwise at a constant speed. Each input torque level was held for 5 minutes,
whereas the last 3 minutes were averaged to derive the efficiency value. Generally, the
measurements were repeated once, and the average value from two measurements was
used for the analysis. Exemplary results of efficiency measurements at ST1 are shown
in Figure 21.

Vehicles 2024, 6, FOR PEER REVIEW 23 
 

 

 
Figure 21. Exemplary results of efficiency measurements at ST1 and the corresponding measure-
ment uncertainty for a single measurement. 

Here, two experiment runs for input torque values of 5 and 30 Nm are compared. As 
the measurement uncertainty is mostly independent of the input speed 𝑛ଵ, the expected 
absolute uncertainty for a singular measurement at 5 Nm is approx. 1.7 percentage points 
and 0.3 percentage points at 30 Nm. However, as for each operating point, if 1800 meas-
urements are conducted, the uncertainty could, in theory, be reduced by a factor of ap-
prox. 42.4 to 0.04 (5 Nm) and 0.07 percentage points (30 Nm). In practice, the measure-
ments can most probably not be considered independent from each other. Therefore, the 
uncertainty for a single measurement can be used to estimate the upper bound of the 
measurement uncertainty. 

A more detailed discussion of the measurement results can be found in Ref. [29]. Drag 
torque measurements are performed to derive the influence of the highest speeds on the 
no-load power losses. Here, the electric machines can either be installed or dismounted. 
The load machine is used for setting the speed of interest. Various temperature sensors 
(i.e., thermocouples and resistance thermometers) allow for investigations on the thermal 
management system. Temperature sensors in the power electronics and the electric mo-
tors track the component and coolant temperatures at the inlet and outlet. That way, the 
impact of adjusted coolant flow rates and the coolant temperature level can be assessed, 
and critical temperatures can be avoided. Temperature sensors in the transmission track 
the inlet and outlet temperatures of the oil, the temperature of the ring gear, and the tem-
peratures of the outer rings of the bearings. That way, conclusions on frictional develop-
ment in the planetary gear stage and the bearings can be drawn, and critical temperatures 
can be avoided. Adding highly accurate sensors for voltage and current measurements 
could also measure the efficiency of power electronics and electric motors. Using global 
efficiency optimization, measured component temperature and component efficiencies 
can be used to optimize the whole drive unit further. Additionally, a holistic thermal man-
agement approach with a mono-fluid cooling circuit could be investigated on that test rig. 
This means that a water-containing fluid can be used as a coolant for power electronics 
and electric motors and as a lubricant for the transmission in a mono-fluid thermal man-
agement cycle. Such thermal management can use the dissipated heat of electric compo-
nents directly to heat the oil inlet temperature, leading to increased transmission effi-
ciency. Additionally, components such as pumps, pipes, and coolant/oil amount can be 
reduced, leading to further package, cost, and CO2 advantages. 

  

𝑝 = 95.45 %
𝑇ଵ = 5 Nm (Run 1)𝑇ଵ = 5 Nm (Run 2) 𝑇ଵ = 30 Nm (Run 1)𝑇ଵ = 30 Nm (Run 2)

𝜗ை௜௟ = 40°C

Ef
fic

ie
nc

y 
𝜂in %

Rotational speed 𝑛ଵ in 1000 rpm

Figure 21. Exemplary results of efficiency measurements at ST1 and the corresponding measurement
uncertainty for a single measurement.

Here, two experiment runs for input torque values of 5 and 30 Nm are compared. As
the measurement uncertainty is mostly independent of the input speed n1, the expected ab-
solute uncertainty for a singular measurement at 5 Nm is approx. 1.7 percentage points and
0.3 percentage points at 30 Nm. However, as for each operating point, if 1800 measurements
are conducted, the uncertainty could, in theory, be reduced by a factor of approx. 42.4 to 0.04
(5 Nm) and 0.07 percentage points (30 Nm). In practice, the measurements can most proba-
bly not be considered independent from each other. Therefore, the uncertainty for a single
measurement can be used to estimate the upper bound of the measurement uncertainty.

A more detailed discussion of the measurement results can be found in Ref. [29]. Drag
torque measurements are performed to derive the influence of the highest speeds on the
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no-load power losses. Here, the electric machines can either be installed or dismounted.
The load machine is used for setting the speed of interest. Various temperature sensors
(i.e., thermocouples and resistance thermometers) allow for investigations on the thermal
management system. Temperature sensors in the power electronics and the electric motors
track the component and coolant temperatures at the inlet and outlet. That way, the impact
of adjusted coolant flow rates and the coolant temperature level can be assessed, and critical
temperatures can be avoided. Temperature sensors in the transmission track the inlet and
outlet temperatures of the oil, the temperature of the ring gear, and the temperatures of
the outer rings of the bearings. That way, conclusions on frictional development in the
planetary gear stage and the bearings can be drawn, and critical temperatures can be
avoided. Adding highly accurate sensors for voltage and current measurements could also
measure the efficiency of power electronics and electric motors. Using global efficiency
optimization, measured component temperature and component efficiencies can be used
to optimize the whole drive unit further. Additionally, a holistic thermal management
approach with a mono-fluid cooling circuit could be investigated on that test rig. This
means that a water-containing fluid can be used as a coolant for power electronics and
electric motors and as a lubricant for the transmission in a mono-fluid thermal management
cycle. Such thermal management can use the dissipated heat of electric components directly
to heat the oil inlet temperature, leading to increased transmission efficiency. Additionally,
components such as pumps, pipes, and coolant/oil amount can be reduced, leading to
further package, cost, and CO2 advantages.

5.2. Investigation of Dynamics

The acoustic and vibration behavior of transmission systems play an even more critical
role in electromobility compared to conventional drives since the masking effect of an
internal combustion engine is eliminated. This results in significantly more stringent
requirements for the NVH behavior of the transmission system and the gearing. One
factor that further tightens these requirements is the increased max. transmission input
speed compared to conventional drives, which is in the range of up to 20,000 rpm in series
applications [3]. With a maximum input speed of up to 50,000 rpm, the transmission of
the reference drive unit is thus well above the speed range standard in the state of the
art. These investigations into NVH behavior aim to investigate excitation mechanisms in
different speed ranges and identify ways of countering these excitation sources. Airborne
acoustic measurements can also be performed with the proposed test set-up. This requires
the test cell to be equipped and prepared in accordance with the DIN 45635-1 [30] and DIN
45635-23 [31] standards.

These investigations are conducted with acceleration sensors mounted on the housing
surface, which record the vibrations during linear speed ramp-ups at a constant load. Due
to the high input speeds and, thus, the wide frequency band of the gear excitation results,
the sensors are evaluated in the frequency range of 0 to 20,000 kHz. A detailed description
of the test evaluation and results can be found in Ref. [32]. In general, it can be stated that the
NVH behavior in the low-speed range of 0 to approx. 10,000 rpm is primarily determined
by global natural modes of the shaft-bearing system, as well as by natural frequencies of the
housing. This is because in this speed range, the excitation frequencies of the gear teeth are
low, and the critical eigenmodes mentioned are usually also in the lower frequency range of
0 to approx. 5 kHz. If the drive speed increases significantly above 10,000 rpm, the natural
frequencies of the individual gears become the focus of NVH investigations. These are
primarily torsional natural frequencies at which the wheel bodies of the gear stages vibrate
against each other. If these natural frequencies coincide with the frequency of the gear
excitation of the meshing, this typically results in resonance and strong vibration excitation.
However, NVH-optimized gears can significantly reduce excitation in this critical speed
range. These investigations further show that the vibration excitation of the input stage
decreases again when the speed is increased further. In this so-called supercritical operating
range, rotor dynamic excitations with the first, second, and third rotor-speed order develop
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into the determining excitation source for the reference drive unit. These low-frequency
excitations reach significant vibration amplitudes, especially in the speed range above
40,000 rpm. On the other hand, gear excitation plays only a subordinate role since the
acceleration levels drop sharply, and the gear excitation frequencies, up to and above
20 kHz, are already above the frequency range humans can perceive.

6. Discussion

The test rig was successfully used to investigate the function, efficiency, and dynamics
of the Speed4E drive unit. Essential results are summarized in Refs. [17,29,32].

The reaction torque measurement concept was chosen for extensive testing at speeds
of up to 50,000 rpm. This concept requires more complex mechanics and is more sensitive
to external interference effects than the in-line torque measurement concept. Additionally,
the reaction torque measurement concept is unsuitable for dynamic torque measurements.
However, this measurement concept allows robust and low-cost measurements.

The estimation of the measurement uncertainty of the test rig yielded promising
results. At most operating points, the expected relative measurement uncertainty is well
below one percent for efficiency measurements, with a confidence interval of 95.45%.
However, the power loss (difference in input and output power) shows a rather high
relative uncertainty due to the propagation of the uncertainties of all measurement chains.
This result shows that it is prudent to look at both the absolute and the relative expected
uncertainty when determining the accuracy of a measurement system. The dominating
uncertainty factors identified were the non-linearity and the noise uncertainty components
of the force transducer amplifier DAC. In order to improve measurement uncertainty, an
amplifier with a more suitable signal processing system is necessary.

While the power split factor at the transmission input has almost no influence on the
overall uncertainty, the measurement uncertainty can be further improved by selecting the
output torque split between both load machines in the standard configuration. For this
work, a constant split was assumed; however, automatically selecting the output torque
split could minimize the measurement uncertainty for the output torque measurement.
However, this would only lead to a marginal increase in measurement accuracy, as the
output torque measurement chains are not a source of dominant uncertainty factors.

While this paper only focuses on random deviations and errors, systematic deviations
cannot always be compensated for in practice. An example of such a deviation would be
the lever arm length. Even though the test environment is strictly controlled, temperature
changes can still occur, influencing the arm length and the input torque measurement.
While the lever arm length is relatively short, only a rather high temperature difference
should cause significant deviations regarding the already considered factors. This should
be investigated in more detail during practical experiments.

Most experiments are conducted in stationary conditions, so multiple measurements
are available for each operating point. The measurement uncertainty can be further de-
creased by averaging over many independent measurements.

7. Conclusions

This paper describes a set-up for investigating the overall function of a high-speed
drive unit and the transmission’s efficiency and NVH behavior. The high-speed drive unit
developed in the Speed4E research project was used as a reference drive unit. The test rig is
based on the electrical power circulation concept. Thus, the test rig can be used universally
for different drive unit designs and operating modes. A reaction torque measurement
unit was developed to enable measurements at high rotational speeds. Simultaneously,
this unit allows robust measurements at low costs. First investigations were performed
to show the function of the test rig and its separate components. Additionally, the mea-
surement uncertainty was determined according to the GUM Monte Carlo method for
the operating spectrum of the transmission. This includes the uncertainty for the mea-
sured input and output torques, drag torque, rotational speed, transmission efficiency,
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and power loss. Furthermore, dominant uncertainty factors were identified, and how the
measurement uncertainty can be further decreased by conducting multiple measurements
was investigated.
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Abbreviations

ADC Analog-to-digital converter
BEV Battery electric vehicle
D Differential
DAC Digital-to-analog converter
DAQ Data acquisition system
DIO Digital input/output module
EM Electric motor
EDU Electric drive unit
GUM Guide to the Expression of Uncertainty in Measurements
LM Load machine
MCM Monte Carlo method
MP Measuring position
PDF Probability density function
S Shifting actuator
SEM Standard error of the mean
ST Sub-transmission
WLTC Worldwide Harmonized Light Vehicles Test Cycle

Nomenclature

Symbol Unit Meaning
F N Force
i - Gear ratio
l mm Lever arm length
n rpm Speed
p % Confidence level
P W Power
t S Time
T Nm Torque
U Nm, rpm, W, % Expanded measurement uncertainty
δ Nm, rpm Deviation
η % Efficiency
µ Nm, W, % Expected value
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