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Abstract—Information theory is developed for dispersion-free
fiber channels with distributed optical amplification (OA). Au-
tocorrelation functions are derived and used to characterize the
spectral broadening of propagating signals, to upper bound the
output power of bandlimited receivers, and to upper bound the
output entropy and capacity of receivers with white noise. The
output power of bandlimited receivers is shown to scale at most
with the square-root of the average signal launch power if the OA
bandwidth is held fixed. The capacity thus scales at most as one-
half the logarithm of the launch power. However, in practice the
OA bandwidth should exceed the propagating signal bandwidth
to compensate attenuation. It is shown that there is a power
threshold beyond which this is not possible and the model loses
practical relevance. Nevertheless, for the mathematical model an
upper bound on capacity is developed when the OA bandwidth
scales as the square-root of the launch power, in which case the
capacity scales at most as the inverse fourth root of the launch
power.

I. INTRODUCTION

One obstacle to understand the capacity of optical fiber is
that nonlinearity and distributed optical amplification (OA)
cause spectral broadening that is difficult to characterize. One
approach to make progress is to study simplified models that
retain the essential features of spectral broadening. The model
studied here is dispersion-free fiber with distributed OA.

There are two existing approaches to proceed. The first is by
Mecozzi [1] who derived the per-sample statistics of the chan-
nel, including the channel conditional probability distribution.
Turitsyn et al. [2], and Yousefi and Kschischang [3], rederive
this distribution with other methods. They further argue that,
for large launch power P , the per-sample capacity is the same
as the capacity of an additive white Gaussian noise (AWGN)
channel with a direct detection receiver, i.e., capacity is closely
approached with intensity modulation, and grows as 1

2 logP
for large P . Refined results were recently posted in [4], [5].

A second approach considers the entire received waveform.
Tang [6], [7] studied the auto- and crosscorrelation functions
of the channel input and output signals when the input signals
are Gaussian and stationary, and in particular when the input
signals are sinc pulses with complex and circularly symmetric
Gaussian modulation. The autocorrelation function defines the
signal power spectral density (PSD) that lets one study spectral
broadening. Tang used the PSD to evaluate Pinsker’s capacity
lower bound [8] for wavelength division multiplexing (WDM)
and per-channel receivers without cooperation.

II. OA BANDWIDTH AND WAVEFORM RECEIVERS

The per-sample model is attractive because one has closed-
form expressions for the statistics. However, the model has
several limitations. First, the per-sample statistics do not cap-
ture spectral broadening, and this tempts one to consider only
the launch signal bandwidth rather than the propagating signal
bandwidth1. The propagating signal bandwidth W grows with
the launch power P and a practical requirement is that the OA
bandwidth B exceed W to compensate attenuation, i.e., one
requires B ≥ W . However, we show that there is a P beyond
which B does not exceed W and the model loses practical
relevance.2 The growth of W is due to signal-noise mixing
that cannot be controlled by waveform design.

Second, a per-sample receiver has infinite bandwidth while
practical receivers are bandlimited. In other words, a per-
sample analysis takes limits in a particular order: first the
receiver bandwidth is made infinite and then P is made large.
However, for a given system the receiver bandwidth is fixed,
and changing the order of limits (first P is made large) can
change the capacity scaling.

Third, the per-sample model ignores correlations in the
received waveform, and this can lead to suboptimal receivers.
In fact, we show that a three-sample receiver achieves infinite
capacity for any P for the model studied in [1], [2], [3]. The
per-sample rate 1

2 logP thus underestimates capacity.3 This
issue will also appear for the nonlinear Schrödinger equation
(NLSE) with dispersion, nonlinearity, and distributed noise.

The result may be understood as follows: the noise in the
model of [1] has limited bandwidth, and by sending signal
energy in the noise-free spectrum one achieves large rate,
cf. [10, Thm. 5]. The reader may expect that an obvious fix
is to add white (thermal or electronic) noise to the channel
or receiver models. However, the per-sample capacity is then
zero. This conundrum shows that reasonable and precise noise

1There are many reasonable definitions for bandwidth. We use a common
one, namely the length of the frequency range centered at the carrier frequency
that contains a specified fraction of the signal power.

2The short article [9] also argues that the model of [1] may be impractical
for large P . The arguments are based on qualitative and empirical observations
concerning spectral broadening and signal-noise mixing.

3The potential for capacity increase was noted in [3, Sec. VIII] but without
recognizing the extent of the effect, i.e., that the noise model is unreasonable.
Hence, the main conclusions in [3, Sec. VIII] should be treated with caution,
namely that the capacity of dispersion-free fiber grows as 1

2
logP , and that

a potential peak of spectral efficiency curves is due to deterministic effects
only, and not due to signal-noise mixing.
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models, device models, and spectral analyses are needed when
analyzing capacity, e.g., see [11, Sec. IX.A-B].

Based on these observations, we conclude that one must
study the waveform model, and not only the per-sample
model. We proceed by studying two-sample statistics for the
waveform channel. We additionally place practical constraints
on the OAs, transmitter, and receiver. First, we model the
receiver as performing projections with white noise, e.g.,
due to thermal noise. Second, the receiver has either finite
bandwidth or finite time resolution. Finally, we study OA
bandwidth that grows with the propagating signal bandwidth.
The detailed derivations for the results can be found in [12].

III. ORGANIZATION

The talk is organized as follows. We begin by reviewing
AWGN channels and the fiber models under study. We next
point out limitations of the latter models for capacity analyses
and present receiver models that remedy these problems some-
what. We develop bounds on the output power of our receiver
models for general waveforms. The bounds show that the
model loses practical relevance beyond some power threshold
because the OA bandwidth no longer exceeds the propagating
signal bandwidth.

Although the model is not practical at large signal launch
power, we use the power bounds to establish capacity bounds.
Our approach is to scale the OA bandwidth at the same rate
as the spectral broadening when the OA bandwidth does not
scale (the actual scaling must be faster and does not catch up
to the spectral broadening). We show that the capacity scales
at most as the inverse fourth root of the launch power. This
bound is likely far above the true capacity but it establishes the
presence of a nonlinear Shannon limit under certain practical
device and OA requirements.
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