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Abstract— The compound wire-tap channel is studied, which
is based on the classical wire-tap channel with the channel from
the source to the destination and the channel from the source
to the wire-tapper taking a number of states, respectively. This
channel can also be viewed as the wire-tap channel with mul-
tiple destinations and multiple wire-tappers, i.e.,multicast with
multiple wire-tappers The source wishes to transmit information
to all destinations and wants to keep the information secret
from all wire-tappers. For the discrete memoryless compound
wire-tap channel, lower and upper bounds on the secrecy
capacity are derived and are shown to match for the degraded
channel. The parallel Gaussian compound wire-tap channel
is further studied, for which the secrecy capacity and the
characterization of an optimal power allocation are obtained.
The secrecy degree of freedoms(d.o.f.) is also derived, which
connects the secure communication rate in the higBNR regime
to secure networking coding for deterministic networks. Finally,
the multi-antenna (i.e., MIMO) compound wire-tap channel is
studied. The secrecy capacity is established for the degraded
MIMO compound wire-tap channel and an achievables.d.o.f.
is given for the general MIMO compound wire-tap channel.

I. INTRODUCTION

nel that may take a number of states, and reliable co

corresponding to the channel from the source to one des-
tination and each source-to-wire-tapper channel state-cor
sponding to the channel from the source to one wire-tapper.
The source wants to transmit information to all the destina-
tions and needs to keep the information secret from all wire-
tappers. Such a model is also referred to asbidicast with
multiple wire-tappers. From this viewpoint, the compound
wire-tap channel provides a general framework that indude
a number of models studied previously as special cases.
These models include the parallel wire-tap channel with two
wire-tappers studied in [2], [3], the fading wire-tap chalsn
with multiple wire-tappers studied in [4], and the wire-tap
channel with multiple receivers studied in [5].

In this paper, we first study the discrete memoryless
compound wire-tap channel, for which we provide lower and
upper bounds on the secrecy capacity. We further show that
these two bounds match for the degraded compound wire-
tap channel and we hence obtain the secrecy capacity for
this channel. The lower bound (achievable secrecy rate) has
the worst-case interpretation, i.e., it is limited by thersey

d%te of the destination-wire-tapper pair when the destinat
"Was the worst channel state and the wire-tapper has the best

munlcatllg n needs lto tt;? gu_ar;"ttnteed r;o matlt?_r Wh'qh IStatlfﬁannel state. However, since the source input scheme needs
occurs. For example, this might occur for réal-ime WIrBIeS,, 54 ce the rates of all channel states, none of the channe

communications when the source has no knowledge of t
channel state, but zero performance outage needs to

guaranteed subject to a stringent delay constraint. In thgsh

paper, we are interested in the compound channel with

'ﬁates may achieve its best secrecy rate. We further dliestr

Bse results by using parallel Gaussian wire-tap channels
d multi-antenna compound wire-tap channels.

3For the parallel Gaussian compound wire-tap channels,

wire-tapper that receives outputs from a compound channglh 5qqme there is one destination and there are multiple

that may also take a number of states. Now the source
not only needs to guarantee reliable communication to t%

destination, but also needs to prevent the information fro
being known by the wire-tapper. This is a generalization
Wyner’s wire-tap channel [1] to the case of multiple chann
states.

The compound wire-tap channel can also be viewed

&

re-tappers. The channel from the source to the destimatio
nsists of a number of independent subchannels and each
ire-tapper may have access to a subset of these subchannels
ith noisier outputs with respect to the outputs at the dasti

n from the corresponding subchannels. One application o
this channel is to wideband wireless communication systems
Rich as FDM communications in which transmission is over

W

th_e wire-tap chgnnel with multiple desti_nati_ons and mistip a number of frequency bands, and the wire-tappers can tune
wire-tappers with each source-to-destination channek stgpir receivers to access some of these frequency bands.
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obtain the secrecy capacity and the characterization of an
optimal source power allocation among the subchannels to
achieve the secrecy capacity. To further illustrate owltes

we study the secrecy degree of freedos.6.f.) which
characterizes how the secrecy capacity scales WwitlsNR.

We show that thes.d.o.f. depends only on the total number

of subchannels and the maximal number of subchannels that
one wire-tapper can access. It is somewhat interestingttaat
s.d.o.f. does not depend on the total number of subchannels
that all wire-tappers can access, and does not depend on the
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Fig. 1. Compound wire-tap channel

number of wire-tappers either. We observe that there is aWe note that the channel transition probability distribu-
connection between thed.o.f. and secure network coding tions are indexed by(j, k) pairs forj = 1,...,J and
studied in [6]. However, thes.d.o.f. is defined for noisy k = 1,..., K, and the channel can be in one of thes&
Gaussian channels while secure network coding addresstates. We assume that the channel remains in the same state
deterministic networks. during the entire transmission. We further assume that the

For the multi-input multi-output (MIMO) compound wire- channel state is known at the corresponding receiverssbut i
tap channel, we first provide the secrecy capacity for theot known at the transmitter. However, we note that having
degraded MIMO compound wire-tap channel. We then studfhe channel state information at the receivers comes at no
the general MIMO compound wire-tap channel, for which wesost in this time-invariant channel model. No matter which
propose an input scheme and derive an achievalle.f. state occurs, the source node wants to transmit information
based on this scheme. Comparing with the MIMO channelt a certain rate to the destination and wishes to keep the
without wire-tappers, the.d.o.f. of the MIMO compound information secret from the wire-tapper.
wire-tap channel is reduced by the maximal dimension of Definition 2: A (2"#,n) code for the compound wire-tap
the projection of wire-tap channel matrices on the vectathannel consists of the following:
space spanned by the eigenvectors corresponding to nonzere A message setV = {1,2,...,2"} with the message
eigenvalues of channel matrices to the destination. Wadurt W uniformly distributed ovedV;
illustrate our result by an example channel which can be
changed to an equivalent parallel Gaussian compound chan
nel with a precoding scheme and tkd.o.f. can hence be , ,
achieved with the scheme that we provide for the correspond-® +/ decoders.f;: Vi — WU, each of which maps
ing parallel Gaussian compound channel. a received sequencg to a message’) € W for

The paper is organized as follows. In Section II, we J=1,...,J.
introduce the model of the compound wire-tap channel. In The error probability when the channel state to the desti-
Section IIl, we present our results on the discrete memssylenation is;j and the message is sent is defined as
compound wire-tap channel. In Section IV, we provide _
the results on the secrecy capacity and thko.f. for the P j(w) = Pr {ﬁ)(]) # w} ()
parallel Gaussian compound wire-tap channel. In Section V, N
we provide our results on the MIMO compound wire-tap’i”d the average block error probability when the channel

channel. In the last section, we give concluding remarks. State to the destination isis

e An encoder:)V — X, which maps each message
“w € W to a codeworde™ € X"

II. CHANNEL MODEL 2"k

1
We consider the following compound wire-tap channel Fej = onR Z Pe j(w). ()
model. w=t
Definition 1: A discrete memoryless compound wire-tap The secrecy level of the messagjé at the wire-tapper
channel consists of one finite channel input alphakiet/  when the channel state to the wire-tappek is defined by

finite channel output alphabeds, ..., Y, K finite channel the following equivocation rate:

output alphabetsz,,..., Zx, and a set of the transition 1

probability distributions —H(W\|Zp). (4)
n

i 2| forj=1,...,J; andk=1,.... K (1 . . . . . .
Py, 2l7) J @) A rate-equivocation paifR, R.) is achievable if there

wherex € X is the channel input from the sourcg, € J;  exists a sequence ¢2"%,n) codes with the average error
is one of the possible channel outputs at the destinatiah, aprobabilities

2z, € Z5 is one of the possible channel outputs at the wire-

tapper. Pe(z.) —0 forj=1,...,J



asn goes to infinity and with the equivocation rate satisfyingn (6) is the secrecy capacity of the wire-tap channel with
the transition probability distributiop(y;, z|z) [8, Corol-

R, < lim lH(W|Z,?) fork=1,...,K. lary 2]. But the secrecy capacity of the compound wire-
noeen tap channel is less than the secrecy capacity of any of the
In this paper, we are interested in the case of perfepossible channel states. ]
secrecy, i.e.,R = R.. A secrecy rateR is achievable if We note that it may not be possible to achieve the upper

the rate-equivocation pa{i, R) is achievable. Theecrecy bound given in Theorem 2 in general. This is because the

capacity is defined to be the maximum achievable secreciput scheme needs to balance the rates that can be achieved

rate. for all channel states, and consequently, none of the channe
Remark1: The compound wire-tap channel can also b&tates can achieve its best rate. This can also be seen from

interpreted as a wire-tap channel with multiple destinmtio the achievable rate in (5). The input distributipfu, ) that

and multiple wire-tappers, where eakh corresponds to the maximizes the minimum of the secrecy rates of all channel

output at one destination and eagh corresponds to the states may not be optimal for any single state.

output at one wire-tapper. The source wants to transmit the We next give an example channel in which the lower

same message to all the destinations and needs to keep #¢ind given in Theorem 1 can be shown to be the secrecy

message secret from all wire-tappers. We refer to this systecapacity. We say that the compound wire-tap channel is

asmulticast with multiple wire-tappers. degraded if the transition probability satisfies the Markov
chain relationships:
IIl. DISCRETEMEMORYLESSCOMPOUND WIRE-TAP X Y, =7 )
CHANNELS

forall j =1,...,J andk = 1,..., K. For the degraded

In the following, we provide lower and upper bounds onqh6nd wire-tap channel, we have the following capacity
the secrecy capacity of the compound wire-tap channel. theorem.

Theorem1: The following secrecy rate is achievable for Theorem3: The secrecy capacity of the degraded com-

the compound wire-tap channel: pound wire-tap channel is given by
R = max {m_inI(U;Yj) —max I(U; Zk)} C = max {minI(X;X/j) —max I(X; Zk)}
’ ) (5) Pt ‘ (®)
= max min [I(U;Yj) — I(U; Zk)] = max min {I(X;Yj) —I(X; Zk)]
Jk p(z) gk
where the maximum is over all distributiongu, z) that Proof: The achievability follows from Theorem 1 by
satisfy the Markov chain relationships: setting U = X. The converse follows because for each

channel staté;, k) and an input distributiop(z), an upper
U—-X—(Y;,Z) forj=1,...,Jandk=1,... K. bound

Theorem 1 can be interpreted as a worst case result, R, <I(X;Y;) — I(X; Zy) 9
because the secrecy rate should be achievable no matter . . .

. : can be derived as given in [1]. ]
which channel state occurs. If we view the system as a
multicast with multiple wire-tappers, the worst destipati IV. PARALLEL GAUSSIAN COMPOUND WIRE-TAP
and the best wire-tapper dominate the secrecy rate. The CHANNELS

details of the proof are omitted due to the space limitations |, thjs section, we view the compound wire-tap channel as
Proof: (outline) We first show that there exists a codemyticast with multiple wire-tappers (see Fig. 2). We focus

book that consists of a number of subcodebooks (similgyn the case in which = 1 and K > 1, i.e., one destination

to [1]). Each destination can successfully decode over thg,q g wire-tappers. We further assume that the channel

entire codebook, but all wire-tappers can successfullpdec from the source to the destination is the parallel Gaussian

only within each subcodebook. Hence the source maRfannel with NV independent subchannels, and the outputs
messages to different subcodebooks to confuse the wirgs the subchannels at the destination are given by

tapper and achieve perfect secrecy. The encoding scheme
and equivocation rate computation are similar to thosergive =~ Ya = Xa + Wa, for a=1,....,N, (10)

in [7]. u whereW1,..., W, are independent Gaussian random vari-

Theorem2: An upper bound on the secrecy capacity ohpjes with variances?, . . ., w?. We note that for this model,
the compound wire-tap channel is given by Y1, ..., Yy indicate the outputs at the destination from ffie
subchannels, and do not indicate the outputs corresportaling
different channel states or different destinations. Thac®
input is subject to the average power constrdmt.e.,

R = min max [I(U; Y;) — I(U; Zk)] (6)

Jik p(u,a)p(y;,zklz)
Proof: It can be seen that

max [I(U;Yj)fI(U;Zk)] ;iiE[ i‘]gpa (11)

p(u,z)p(y;,2k|T) i=1 a=1



X > Y and
CX, > Y,
X q Y. | Ry, (P*) < R (P*) for all k € B¢,
Source |} . i ¢ | Destination
3 | . Y where
X =Y R EN: Liog (14 Fa > Liog (14 Lo
= —lo — | = —lo —
ee e - Z k — 2 g wg 2 g 'U]%a
g Z“ | Wire-Tapper 1 a= a€ Ay
. R . for k = 1,..., K. Hence the optimal power allocatiaR*
Lt can be obtained by searching over all sBt® find the one
_,zf: Wire-Tapper K- that satisfies the above conditions.
Proof: The proof is similar to the argument in [9,
Fig. 2. Parallel compound wire-tap channel with one destinaand K Lemma 2]. |
wire-tappers We note that the parallel Gaussian compound wire-tap

channel is a more general model than the model in [3] in that

the number of wire-tappers is arbitrary, each wire-tappay m
where i is the symbol time index. We assume that eacRCC€SS an arbitrary number of subchannels, and the source is
wire-tapper can access some subchannels. On letting: ~ @llowed to allocate power among the subchannels to achieve

{1,...,N} include all indices of the subchannels that wirePetter secrecy rate. We also note that the parallel Gaussian
tapperk can access, the outputs at wire-tappeare given compound wire-tap channel reduces to the Gaussian/fading
by wire-tap channel with multiple wire-tappers studied in ]

there is only one subchannel.
To gain more insight into the secrecy capacity, we consider
where V,, for a € A are independent Gaussian randonine rate at which the secrecy capacity scales WigtsNR. In
variables with variances2,. We further assume thaf’, > particular, we define the secrecy degree of freedom (s.d.o.f
w? for all a € Ay as
. . ) C(SNR)
For the parallel Gaussian compound wire-tap channel, we sd.of. = lim $—————
have the following secrecy capacity. S\R—o0 3 log SNR

Theorem4: The secrecy capacity of the parallel Gaussiaghere without loss of generality, we choose as the

Zra = Xa + Via, for ac A (12)

(14)

compound wire-tap channel is given by reference noise level and defi6BR = .
C= max min Corollary 1: Assume the maximum_ number of subchan-
SN P,<P K nels that one wire-tapper can access.i§ he secrecy degree

N P 1 P (13) of freedom of the parallel Gaussian compound wire-tap
[Z 3 log (1 + ‘;) - Z 3 log (1 + 2“) channel is given by
w v

a=1 a a€Ay ka

sd.of. =N — L. (15)
Proof: The achievability follows by applying Theorem
4 and choosing®, = P/N for a =1,...,N. The converse

N(O_’Pa)' The converse _fOHOWS from [9, Theorem 2] by1‘ollows by considering only the wire-tappérthat accesses
setting Ry = 0 for each wire-tapper. I, subchannels, i.e|,As| = L. Then

To obtain the secrecy capacity of the parallel Gaussian

Proof: The achievability follows from Theorem 1
by choosing independenky,..., X, with each X, €

compound wire-tap channel, we need to solve the “max- 1 P,
min” optimization problem in (13), i.e., we need to derive C= Nm?}DX<P Z Qlog (1 + wz)
the optimal power allocation. We use = (Pi,..., Py) =TT Lag Ay “
to indicate a source power allocation amaNgsubchannels 1 P, 1 P,
where each component indicates the power allocated for the > [2 log (1 + wz) —5log (1 + 1,2)}
corresponding subchannel. The following theorem characte a€Ak ¢ e
izes the optimal power allocation. < Z llog (1 + P2>

Theorem5: The power allocatio®* that maximizes (13) agAr 2 Wa
and hence achieves the secrecy capacity for the parallel 1 P 1 P
Gaussian compound wire-tap channel satisfies the following + Z [2 log (1 + ) — 5 log <1 + 2 )}
necessary and sufficient condition. For some a€Ay ka

B={by,....bpu} C{1,..., K}, = @ log SNR + o(log SNR)

(16)

where the last inequality follows because each term
Ry, (P) = Rp,(P)=---=Ry,,(P) in the summand is an increasing function &f,, and

P* maximizes
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o(log SNR)/log SNR — 0 asSNR — oo. Hence we obtain

sdof. =|A;| =N — L.

17)

TABLE |
MESSAGES TRANSMITTED OVER TWO TIME SLOTS FORXAMPLE 2

time 1 time 2
subchannel 1 X1 =W, & K1 & Ky | X12 = K3
subchannel 2 X5, = Wo @ Ko @ K3 | Xog = K,
subchannel 3 X3, = W3 K3 ® Ky | X320 = K3
subchannel 4 X1 =W, @ K, ® Ky | X42 = Ko

We let the source message BE = (Wy,...,Wn_1),

where Wy, ..., Wx_, are i.i.d. and uniformly distributed
over the sef0, ...,2"%—1}. We also generate a key random
variableK that is independent di/;, ..., Wx_1, and is also
uniformly distributed over the s€, ..., 2" — 1}. Define

the operationd to be “addition modul®™”. We transmit

Wi K,...,Wxn_1 & K over the firstV — 1 subchannels,
respectively, using a capacity achieving code for each sub-
channel, and transmit” over theNth subchannel. It is clear

Remark2: The s.d.o.f. depends only on the maximum that the destination can decodé © K, ..., Wy ® K and

number of subchannels that one wire-tapper can access, dadand hence can decodé?, ..

., Wx_1. For each wire-

does not depend on the total number of subchannels that @pper, if it accesses th&'th channel, it decodes onli’

wire-tappers access. This is because the wire-tapperstdo a9d does not know any information abodf;, . .

Wi

cooperate with each other. This implies that, even if everf the wire-tapper accesses one of the fist- 1 subchannels,
subchannel is accessed by some wire-tapper, positivef.

is still possible if none of the wire-tappers accesses asitll does not get any information abolf, . .
of the subchannels. This can also be seen from the followidd’ = (W1, ..

examples.

it decodes onlylV; @ K which is independent ofV;, and
., Wn_1. Hence,
., Wx_1) can be transmitted to the destination
at the rate(NV — 1)R with perfect secrecy, and.d.o.f. =

Remark3: The s.d.o.f. does not depend on the numberN — 1.

of wire-tappers.

Example2: The parallel channel consists of four sub-

We note that thes.d.o.f. in Corollary 1 is similar to the channels, and each wire-tapper can access at most two
secure rate given in [6, Theorem 2] for multicast networksubchannels.
based on network coding. However, we note that Corollary It follows from Corollary 1 that thes.d.o.f. = 2 for
1 is applicable for noisy Gaussian channels while the secuExample 2. To achieve thed.o.f. in this case, we need to use
rate given in [6, Theorem 2] is derived for deterministictwo time slots. We letV = (W1, W, W5, W) indicate the

networks.

source message with each component uniformly distributed

We now illustrate some examples for which simpleover the sef0,...,2" — 1}, whereR is given in (18). We
schemes that achievesi.o.f. can be easily constructed. Forgenerate four key random variablés , K», K3, K, that are
general parallel Gaussian compound wire-tap channels, thied. and uniformly distributed over the sga, ..., 2% —1},
scheme given in [6] may be applied to achievéo.f. based and are independent d¥. The transmission scheme over

on linear code multicast over a finite field.

two time slots is shown in Table |I.

In the following examples, we consider the parallel Gaus- |t can be shown that no wire-tapper can get any infor-
sian compound wire-tap channel, where the noise terms gfation about any component of the messé&ijeby access-
all subchannels have the same variance Hence,SNR =
P/(Nw?). We assume that if a wire-tapper accesses ongv,, W,, Ws, W,) can be transmitted to the destination at
subchannel, it receives the same output from this subchantige average rate &fR with perfect secrecy, and thel.o.f. =
as the destination. Based on these assumptions, we consigler

the following examples.

Example 1. Each wire-tapper can access only one sub-

channel (see Fig. 3).

It follows from Corollary 1 thats.d.o.f. = N — 1 for

ing only two subchannels. Therefore, the messéige=

V. MIMO ComMPOUNDWIRE-TAP CHANNELS

In this section, we view the compound wire-tap channel

Example 1. We now give a simple scheme to achieve iais a multicast transmission tb destinations withX wire-
We allocate the source power equally for all subchannels&appers. Furthermore, we assume that the source, the des-
Each subchannel can hence support the following rate

1
R= ilog(l—&—SNR).

(18)

tinations, and the wire-tappers are equipped with multiple
antennas, and study how multiple antennas affect the secrec
capacity.



We let N, indicate the number of transmit antennas ofollowing bound for any(j, k) pair by referring to [11,
the source,N; indicate the number of receive antennas oSec. Ill]:
the destinations, andv,, indicate the number of receive
antennas of the wire-tappers. We note that although we
assume all destinations have the same number of antennas
and all wire-tappers have the same number of antennas, dugan be shown that Gaussiah; maximizes the preceding
analysis below is also applicable without this assumptioRound if the covariance matrix ok ; is fixed to be Kx .
The channel input-output relationship at one time instant iTherefore, we have the following bound

1 n
R. < o 2—’(£¢%Xj,z‘|lk,i)- (24)

given by 151 [+ HEK, H”|
Yy=HX+W; for j=L...Ji o “= 22 P GK, a7
Zk:GkX‘FKk for kil,,K, (a) 1 |I+H(%ZZL:1K£>HT| (25)
where H; for j = 1,...,J and Gy, for k = 1,..., K are =358 I+ G (£, Ky, ) GT|
fixed matrices, andV,,..., W ; andV,,...,V , are ii.d. ®) 1 I+ HQHT|
Gaussian random vectors with identity variance matrices. W < 5 log W
assume that the source input is subject to an average power
constraint where(a) and(b) follow from the degradedness assumption,
1 ZE [X?Xi] <p (20) the constraint (23), and some matrix properties [ ]
n 4
=1 B. General MIMO Compound Wre-tap Channels
wherei is the symbol time index. In this subsection, we study the general MIMO compound

In the following, we first study the degraded MIMO yjre-tap channel defined in (19), where we do not make the
compound wire-tap channel, and then study the genergle degradedness assumption.

MIMO compound wire-tap channel. We use the following pBased on Theorem 1 by choosifg= X ~ N(0,Q), it
notations associated with matrices. We use 0 to indicate 5 easy to see that the following secrecy rate is achievable.
that A is a positive semidefinite matrix4 >~ 0 to indicate Lemmal: For the general MIMO compound wire-tap
A is a positive definite matrix, and = B to indicate that channel, an achievable secrecy rate is given by
A — B is a positive semidefinite matrix. The symbetsand

< indicate the oppositive meanings to thoseofand -, 1 |+ H;QH]

. = in - log ————~—. 26
respectively. Q;Qzéfwf%@)gp Mo o8 |l + GLQGT| (26)
A. Degraded MIMO Compound Wire-tap Channels In general, the maximization problem in (26) is difficult

i i ) to solve. To gain some insight, we study thé.o.f. defined
As in [10], we define the MIMO compound wire-tap as in (14), but witlSNR = P/N..

channel to belegraded if for each (4, k) pair, there exists a B J T
matrix D;j, such thatD;,H; = G and D;, D, < 1. Itis We letr = Rank (3, Hj Hj)v and{u,,...,u,} be
easy to check that for eadh, k) pair, the channel satisfies the eigenvectors of S7_, H] H; that correspond to nonzero

the Markov chain relationshigl — Y, — Z;. eigenvalues. In fact, if we lefu;, ... @jrﬂ} be the eigen-
Theorem®6: The secrecy capacity of the degraded MIMOvectors oijTHj that correspond to nonzero eigenvalues,
compound wire-tap channel is given by: then (u;q, . .. ,yj”) forj =1,...,J together span the same
AT vector space a$u,,...,u,}.
C = 1 |1+ H;QH, | (21) We let {u,,,...,uy } be the eigenvectors of

max min - log —————~

Q: Q=0 Tr(Q<P 3k 27 | + GrQGy | >/, HTH; that correspond to zero eigenvalues. We
Proof: (outline) We need only to show that the secrecyurther let

capacity is given by

in*IO —_— =
k2 BT+ GhQGT

J
if the input is subject to the following covariance matrix Trr _ 1 A ur
p J 9 ZlHj Hj=[U U*] { On. } [ ( (28)
i=

U=[u-u] and Ut=|u, uy]. 27
(22)  Then

constraint UL)T

1 n
o ZK& 2Q. (23) where A, denotes the diagonal matrix with the eigenvalues
i=1 of Z‘.]:lHjTHj as the diagonal components, afig,_,
where Kx, indicates the covariance matrix &f; at symbol denotes the all-zero matrix with dimensioN, —7) x (N —
time i. Theorem 6 then follows by maximizing (22) over allr).
Q) that satisfy the power constraint, i.€r(Q) < P. We now letl be a subset ofl1,2,...,r}, and assumé& =
The achievability follows from Theorem 3 by choosing{ii,...,l |} where|L| indicates the number of components
X ~ N(0,Q). To show the converse, we first have then the set£. We then let£¢ denote the complement of



L with respect to the sef1,2,...,r}, and assumel® = and the channel vectorg’ for &k = 1,..., K to the wire-
{4,.. .J’HL‘}. Let tappers are linearly independent.
From Corollary 2, it is clear that an achievabld.o.f. is
(29)  equal to M-1, becausH is of full rank andRank(g; U) = 1.
We now show how we can achieve this degree of freedom.
We first consider the case wheén = M. Let

Uy, = {@h ”'Qllﬁ\} and Upe = [@l,l Uy

r—icl]

Finally, we let

Q=11 g i 4
L= 77 Ug Ul;c U 0 U c G — 7._ 35
1£] 0| @whHr T (35)
0) Im
and obtain Note thatG is of full rank due to the assumptions, and is

hence invertible.
We first do a precoding for channel input and €t =

P
‘I-‘:—HjQﬁHJT’ = ’I+ f(HjUL)T(HjUg)
(31) G~'U. The channel hence becomes

I£]

P
‘[—F GkQﬁGg| = ‘I—F m(GkUg)T(GkUL) . Y = HG*lQ_FE
Hence Z (36)
lim ——ORC]  pank(H,U,) — Rank(GyUy) M
SNR—oc 5 log SNR We now letY’ = GH~'Y and obtain the following
. (32) equivalent channel
Therefore, we have the following theorem. ) )
Theorem7: An achievable secrecy degree of freedom of Y =U+W
the MIMO compound wire-tap channel is given by Al 37)
. e =U+V.
sd.of. > max min {Rank(HjUL) - Rank(GkUg)} (33) Znr
From the choice of the input covariance matf)xin (30), We now have an equivalent channel which is a parallel

we note that the beamforming directions of the channel irGaussian compound wire-tap channel with subchannels

puts are chosen to be along the eigenvecto@él1 HjTHj in which each wire-tapper has access to one subchannel. It

that correspond to nonzero eigenvalues. Eacldaticates is easy to see that each subchannel can support one degree

the directions for which the source allocates the power, araf freedom. Hence we can use a scheme similar to that in

hence corresponds to one power allocation strategy. Tixample 1 and achieved.o.f. = M — 1.

optimal achievable.d.o.f. can be obtained by searching over If the number of wire-tappers i < M, we can

all power allocation strategies. We note thiink(H;U,z) artificially add M — K wire-tappers such that the resulti6y

and Rank(GU,) in (33) can be interpreted as the dimen-matrix is of full rank. In this way, we may only losed.o.f..

sions of the projections off; and G, respectively, onto the However, we can use the same scheme as above and still

vector space spanned by the column vectoré/pf Hence achieves.d.o.f. = M — 1.

the achievable.d.o.f. is determined by the geometry of the

channel matrices to the destinations and wire-tappers.
For the special case wheh= 1, i.e., only one destination, ~ In this paper, we have studied the compound wire-tap

and so the channel matrix to the destinatiort/is- becomes channel, which provides a general framework for exam-

the rank ofH” H and hence the rank d&f. We should always ining multicast communication with multiple wire-tappers
choosel = {1,...,r}, and the resulting.d.o.f. is given in We have obtained lower and upper bounds on the secrecy

the following corollary to Theorem 7. capacity for the general compound wire-tap channel and have
Corollary 2: For the MIMO compound wire-tap channel established the secrecy capacity for the degraded channel.
with .7 = 1, an achievable secrecy degree of freedom is give¥Ve have further obtained the secrecy capacity for the igdrall

VI. CONCLUSIONS

by Gaussian and degraded MIMO compound wire-tap channels.
s.d.of. > min {Rank(H ) — Rank(GkU)} (34) The secrecy rate/capacity in general has a worst-case inter

k pretation.
whereU is the matrix whose columns are the eigenvectors We have also introduced the notion of the secrecy degree
of HT H corresponding to nonzero eigenvalues. of freedom, which captures the most important factors that
We now consider an example. affect the scaling behavior of the secrecy rate at high

Example 3: Consider the MIMO compound wire-tap SNR. For the parallel Gaussian compound channel, we have
channel where/ = 1 and K > 1. We assume the source demonstrated that thed.o.f. depends only on the maximum
and the destination hav&/ antennas, and each wire-tappemumber of subchannels that one wire-tapper can access, and
has one antenna. We further assuikie< M. We assume does not depend on the number of wire-tappers. For the
that the channel matri¥! to the destination is of full rank, MIMO compound wire-tap channel, we have shown that the



achievables.d.o.f. is determined by the geometries of the
matrices describing the channels to the destinations ared wi
tappers. We have also demonstrated that there are simple
schemes to achieve thed.o.f. in many cases via a few
example channels.
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