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Abstract— Recently developed PdE outer bounds on the capac-
ity region of classical networks are extended to networks with
broadcasting, interference, and noise. Examples demonstrate that
the new bounds improve on cut-set bounds.

I. INTRODUCTION

Consider a directed graph N = (V, E) with vertex set V
and edge set E . We interpret this graph in progressively more
general ways.

• Classical networks: Every vertex u represents a processor
that transmits a different xu,v into each of its outgoing
edges (u, v). The edges represent channels, and the
channel (u, v) has capacity Cu,v and is usually taken to
be noise-free. The channels are “orthogonal” in the sense
that there is no interference between them.

• Aref networks: Every vertex u broadcasts a common xu

into its outgoing edges. The output yu,v of edge (u, v)
is a deterministic function hu,v(xu) of xu. This type of
network is also known as a deterministic relay network
with no interference [2], [5].

• Relay networks with no interference and with indepen-
dent edge noise: Similar to Aref networks except that the
output yu,v is some noisy function hu,v(xu, zu,v) where
zu,v is a realization of the noise random variable Zu,v .
The Zu,v are independent across edges.

• Relay networks with independent vertex noise: Every
vertex u broadcasts a common xu into its outgoing edges.
Let Eu be the set of edges terminated by vertex u and
let V(Eu) be the set of vertices from which these edges
emanate. Vertex u receives a common output yu that is
some function hu(xV(Eu), zu) where zu is a realization
of the noise random variable Zu. The Zu are independent
across vertices.

The purpose of this paper is to generalize recently developed
progressive d-separating edge set bounds (or PdE bounds [4])
for classical networks to all of the above networks. This
paper is organized as follows. In Sec. II, we review existing
PdE bounds. In Sec. III, we describe how these bounds can
generalize to other networks. Sec. IV concludes the paper.

II. PRELIMINARIES

We use the network model described in [4, Sec. 3] where
the network is governed by a clock that ticks N times.
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We write XN = X(1), X(2), . . . , X(N). The noisy classical
network has K messages Wk, k = 1, 2, . . . ,K, |E| channel
input sequences XN

u,v , |E| channel output sequences Y N
u,v ,

|E| noise sequences ZN
u,v , and Dk channel estimates Ŵ

(i)
k ,

i = 1, 2, . . . , Dk, for k = 1, 2, . . . ,K. The message Wk has
rate Rk bits per clock tick, it originates at source vertex sk, and
it is destined for the sink vertices {tk(1), tk(2), . . . , tk(Dk)}

where tk(i) 6= sk for all i. The message estimate Ŵ
(i)
k is

generated at vertex tk(i).
We review the PdE bound for classical networks [4, Sec. 3].

This bound begins with:
• a set of edges Ed

• a set of sources Sd

• an ordering of the source indices in Sd via a one-to-one
mapping π(·) from {1, 2, . . . , |Sd|} to Sd, where |Sd| is
the cardinality of Sd.

We use the notation XEd
= {Xu,v : (u, v) ∈ Ed}, and

similarly for YEd
and ZEd

. The PdE bound was developed
in [4] by using a functional dependence graph (FDG) G that
is a modified version of N . Let SC

d be the complement of Sd

in {1, 2, . . . ,K} and let EC
d be the complement of Ed in E .

The following describes the PdE bound.
1) (Initialization) Consider the FDG G for N that has

vertices and edges representing the channel input, noise,
and output sequences, the messages and their estimates.

• Remove all vertices and edges in G except those
encountered when moving backward one or more
edges starting from any of the vertices representing:
(1) Y N

Ed
and (2) some choice of non-empty subset

of {Ŵ (i)
k : i = 1, 2, . . . , Dk} for all k ∈ Sd.

• Further remove the edges coming out of the ver-
tices representing ZN

EC

d

and WSC

d

, and successively
remove edges coming out of vertices and on cycles
that have no incoming edges, excepting source ver-
tices. Call the resulting graph GEd

. Set k = 1.
2) (Iterations) If Wπ(k) is not disconnected (in an undi-

rected sense) from one of its estimates Ŵ
(i)
π(k), i =

1, 2, . . . , Dk, then stop (one has no bound). If Wπ(k)

is disconnected (in an undirected sense) from all of its
estimates then:

• Remove the edges coming out of the vertex repre-
senting Wπ(k).
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Fig. 1. A network graph N .
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Fig. 2. An FDG for a classical network with the graph in Fig. 1.

• Successively remove edges coming out of vertices
and on cycles that have no incoming edges, except-
ing source vertices. Call the resulting graph GEdW k

π
.

3) (Termination and Bound) Increment k. If k ≤ K go to
the previous step. If k = K + 1, then we have

∑

k∈Sd

Rk ≤
∑

e∈Ed

Ce. (1)

For example, consider the network depicted in Fig. 1 that
has two source-destination pairs. The FDG G for this network
with noisy channels is shown in Fig. 2 (we have not labeled
the four noise vertices). The cut-set bound gives

R1 ≤ min{C1,2 + C1,3, C1,3 + C2,3} (2)
R2 ≤ min{C2,3, C3,1}. (3)

For the PdE bound, consider the choice Ed = {(1, 3), (2, 3)},
Sd = {1, 2}, and [π(1), π(2)] = [1, 2]. We find that

R1 + R2 ≤ C1,3 + C2,3 (4)

which can be stronger than (2) and (3). It was known that (4)
applies to routing, but it applies to network coding [1] as well
(see [4]). We remark that the cut-set bounds (2) and (3) are
also PdE bounds with different choices of Sd, Ed, and π(·).

III. APPLICATION TO OTHER NETWORKS

A. Aref Networks

Our first extension of the PdE bound is for Aref networks.
Let V(Ed) and V̄(Ed) be the respective sets of vertices from
which the edges Ed emanate and terminate in N (note that
V(Ed) and V̄(Ed) are not necessarily disjoint). Let V̄u(Ed) be
the set of vertices that terminate the edges in Ed that emanate
from u. The procedure described above remains the same, but
rather than (1) we now have the bound

∑

k∈Sd

Rk ≤
∑

u∈V(Ed)

H(Yu,V̄u(Ed)). (5)
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Fig. 3. An FDG for an Aref network with the graph in Fig. 1.

for some choice of independent Xu, u ∈ V . For example, the
cut-set bound for the graph in Fig. 1 gives

R1 ≤ min{H(Y1,2 Y1,3), H(Y1,3) + H(Y2,3)} (6)
R2 ≤ min{H(Y2,3), H(Y3,1)}. (7)

For the PdE bound, consider the FDG in Fig. 3 when the
network is noise-free. For Ed = {(1, 3), (2, 3)}, we have
V(Ed) = {1, 2} and V̄(Ed) = {3}. The bound (5) thus gives

R1 + R2 ≤ H(Y1,3) + H(Y2,3). (8)

We remark that (8) includes (4) as a special case if the Aref
network happens to be a noise free classical network [5].

B. Relay Networks with No Interference and with Independent
Edge Noise

Consider next relay networks with no interference, like Aref
networks, but where every edge has independent noise. These
networks model problems where only one transmitter uses a
time and/or frequency slot at once. The procedure described
above remains the same, but rather than (1) we now have

∑

k∈Sd

Rk ≤
∑

u∈V(Ed)

I(Xu;Yu,V̄u(Ed)). (9)

for some choice of independent Xu, u ∈ V . For example, we
can replace (8) with

R1 + R2 ≤ I(X1;Y1,3) + I(X2;Y2,3). (10)

C. Relay Networks with Independent Vertex Noise

Consider next relay networks with interference but where
every vertex has independent noise. Let s(Sd) = {sk : k ∈
Sd} and let s(Sd)

C be the complement of s(Sd)
C in V . The

procedure described above changes because we require that Ed

have the property that if (u, v) ∈ Ed then (w, v) ∈ Ed for all w

with (w, v) ∈ E . We must further replace ZEC

d

with ZV̄(EC

d
).

With these changes, we have the bound
∑

k∈Sd

Rk ≤ I(XV(Ed);YV̄(Ed) |XV̄(Ed)∩s(Sd)C ) (11)

for some choice of jointly distributed Xu, u ∈ V . For example,
the cut-set bound for the graph in Fig. 1 gives

R1 ≤ min{I(X1;Y2Y3|X2X3), I(X1X2;Y3|X3)} (12)
R2 ≤ min{I(X2;Y3|X1X3), I(X3;Y1|X1)}. (13)
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Fig. 4. An FDG for a relay network with the graph in Fig. 1 when there is
independent vertex noise.

For the PdE bound, consider the FDG in Fig. 4 and note
that Ed = {(1, 3), (2, 3)} is permitted. Note further that vertex
v’s transmit symbols XN

v can interfere with its own received
symbols Y N

v , as depicted by the functional dependence of
Y N

v on XN
v for all v. We thus have V(Ed) = {1, 2, 3}

and V̄(Ed) = {3}. We further have s(Sd) = {1, 2} and
s(Sd)

C = {3} so that (11) gives

R1 + R2 ≤ I(X1X2;Y3 |X3). (14)

IV. CONCLUDING REMARKS

We have generalized the applicability of PdE bounds to
networks other than classical networks. We remark that ex-
tensions to general relay networks are possible but then seem
to give only cut-set bounds. It would be useful to have
other approaches for applying the PdE concept to general
memoryless relay networks.
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APPENDIX

We prove the validity of the PdE bound for relay net-
works with independent vertex noise. The proofs for the
other two networks are similar. Recall that Wk is associated
with the vertices (sk, tk(1), tk(2), . . . , tk(Dk)), and that we
are considering some subset V̂k of the vertices tk(i), i =
1, 2, . . . , Dk. We write the corresponding subset of estimates
as Ŵk(V̂k). Similarly, we denote the incoming edges of the
vertices in V̂k by Êk.

The first steps are the same as in [4, Appendix]. For reliable
communication, Fano’s inequality [3, p. 39] requires that

∑

k∈Sd

Rk ≤
∑

k∈Sd

1

N
I(Wk; Ŵk(V̂k))

=

|Sd|
∑

k=1

1

N
I(Wπ(k); Ŵπ(k)(V̂π(k)) ). (15)

We define W k−1
π = [Wπ(1),Wπ(2), . . . ,Wπ(k−1)] and bound

I
(

Wπ(k); Ŵπ(k)(V̂π(k))
)

≤ I(Wπ(k); Ŵπ(k)(V̂π(k)) Y N
Ed

ZN
EC

d

WSC

d

W k−1
π )

= I(Wπ(k); Ŵπ(k)(V̂π(k)) Y N
Ed

| ZN
EC

d

WSC

d

W k−1
π )

= I(Wπ(k);Y
N
Ed

| ZN
EC

d

WSC

d

W k−1
π ) (16)

where the last step follows because success in step 2) of the
PdE procedure implies that

I(Wπ(k); Ŵπ(k)(V̂π(k)) | Y
N
Ed

ZN
EC

d

WSC

d

W k−1
π ) = 0 (17)

via fd-separation. Inserting (16) into (15), and applying the
chain rule for mutual information, we have

∑

k∈Sd

Rk ≤
1

N
I(WSd

;Y N
Ed

| ZN
EC

d

WSC

d

). (18)

We continue as follows:

I(WSd
;Y N

Ed
| ZN

EC

d

WSC

d

)

=

N
∑

n=1

I(WSd
;Y

(n)
Ed

| Y n−1
Ed

ZN
EC

d

WSC

d

)

(a)
=

N
∑

n=1

I(WSd
;Y

(n)
Ed

| Y n−1
Ed

ZN
EC

d

WSC

d

Xn
V̄(Ed)∩s(Sd)C )

≤
N

∑

n=1

I(WSd
X

(n)
V(Ed);Y

(n)
Ed

| Y n−1
Ed

ZN
EC

d

WSC

d

Xn
V̄(Ed)∩s(Sd)C )

(b)

≤
N

∑

n=1

[

H(Y
(n)
Ed

| X
(n)

V̄(Ed)∩s(Sd)C
) − H(Y

(n)
Ed

| X
(n)
V(Ed))

]

=

N
∑

n=1

I(X
(n)
V(Ed);Y

(n)
Ed

| X
(n)

V̄(Ed)∩s(Sd)C
)

(c)
= N · I(X

(Q)
V(Ed);Y

(Q)
Ed

| X
(Q)

V̄(Ed)∩s(Sd)C
Q)

≤ N · I(X
(Q)
V(Ed);Y

(Q)
Ed

| X
(Q)

V̄(Ed)∩s(Sd)C
) (19)

where (a) follows because Xn
V̄(Ed)∩s(Sd)C is a function of

Y n−1
Ed

and WSC

d

, (b) follows because Y
(n)
Ed

is a function

of X
(n)
V(Ed) and noise, and (c) follows by choosing Q to

be uniform over {1, 2, . . . , n}. We can now use standard
arguments (see [3, Sec. 14.10]) to show that there is a joint
distribution on Xu, u ∈ V , such that (11) is satisfied for all
choices of Ed, Sd, and π(·) for which the PdE procedure gives
a rate bound.
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