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Abstract
Outer bounds for the discrete memoryless multiple-access relay channel (MARC) are

obtained that exploit the causal relationship between the source and relay inputs. A novel
offset encoding technique that facilitates window decoding at the destination is presented
for a decode-and-forward strategy, where the relay decodes the source messages before
forwarding to the destination. A compress-and-forward strategy for the MARC and an
amplify-and-forward strategy for the Gaussian MARC are also presented.

1 Introduction
The multiple-access relay channel (MARC) is a model for network topologies where multiple
sources communicate with a single destination in the presence of a relay node [1]. Examples of
such networks include hybrid wireless LAN/WAN networks and sensor and ad hoc networks
where cooperation between the nodes is either undesirable or not possible, but one can use an
intermediate relay node to aid communication between the sources and the destination. We
present capacity bounds for such networks by applying and extending several known results
from network information theory.

The classic single-source relay network was introduced and studied by van der Meulen [2].
Cover and El Gamal [3] developed two fundamental coding strategies for the relay channel and
obtained the capacity for the physically degraded case. Recently, there has been an increased
focus on networks with one or more relays as models for wireless ad hoc and sensor networks
[4–10]. However, the successful deployment of any such network lies in its ability to support
multiple users simultaneously and not only one. We consider here the MARC model as a
specific multi-user relay network. The paper [1] (see also [11]) presents an outer bound on the
capacity of the MARC using cut-sets. The paper also presents an achievable rate region for the
Gaussian MARC that is extended in [6] using block Markov encoding and backward decoding
as a decode-and-forward (DF) strategy for the discrete memoryless (d.m.) MARC.

In this paper, we obtain potentially tighter outer bounds on the capacity of the d.m. MARC.
We also present a new code construction using offset encoding for the DF strategy that facil-
itates the more practical window decoding [10] at the destination while achieving the same
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rate region as in [6]. We also present the compress-and-forward (CF) strategy as an extension
of [3, theorem 6] and the amplify-and-forward (AF) strategy for the Gaussian MARC. The pa-
per is organized as follows. In Section 2, we define the d.m. MARC and derive outer bounds on
its capacity region. In Section 3, we present an offset encoding technique for the DF strategy
and a rate region for the CF strategy. We illustrate the results with two examples in Section 4
and conclude with Section 5.

2 MARC: Model and Upper Bounds

2.1 Model
The M-source discrete memoryless MARC consists of M messages Wm , M + 1 channel
inputs Xmi and two channel outputs YM+1,i and YM+2,i where i = 1, 2, . . . , n is a time index,
and M message estimates Ŵm, m ∈ [1,M ]. The input Xmi is a function of the message Wm

at the mth source while XM+1,i, the relay’s input to the channel, is a causal function of its
received symbols, Yi−1

M+1 = (YM+1,1, YM+1,2, . . . , YM+1,i−1). Finally, the n channel outputs at
the destinationYn

M+2 = (YM+2,1, YM+2,2, . . . , YM+2,n) are used to jointly decode the messages
from all M sources as (Ŵ1, Ŵ2, . . . , ŴM). The channel is assumed to be time-invariant and
memoryless and is represented by the conditional probability distribution

p(yM+1, yM+2|x1, x2, . . . xM , xM+1) (1)

The message Wm is uniformly distributed in the set [1, 2Bm ] and the Wm from all M sources
are jointly independent. The capacity region CMARC of an M-source MARC is defined as the
closure of the set of rate tuples (R1, R2, . . . , RM), where Ri = Bm/n, such that destination
can decode the M source messages with an arbritrarily small positive error probability � [1].

2.2 Upper Bounds on Capacity of d.m. MARC
Let S = {1, 2, . . . ,M} be a set of source indices and define X(G) = {Xm : m ∈ G ⊆ S}.
Let Gc be the complement of G in S. Define Y M

= (YM+1, YM+2), X
M
= (X1, X2, . . . , XM),

andV M
= (V1, V2, . . . , VM). The capacity region CMARC is shown in [11] to be contained in the

union of the set of rate tuples (R1, R2, . . . , RM) that satisfyX
m∈G

Rm ≤ min
¡
I(X(G);Y|X(Gc),XM+1, U), I(X(G), XM+1;YM+2|X(Gc), U)

¢
(2)

for all G ⊆ S, where the union is over all input distributions p(u) ·
³QM

i=1p(xi|u)
´
· p(xM+1|

x1, x2, . . . , xM , u) and U has an alphabet U of size |U| ≤ 2M+1 − 2.

We present a (potentially) tighter bound on CMARC by taking into account the causal rela-
tionship between the source and relay inputs.

Theorem 1 CMARC is a subset of the union of the sets ofM-tuples (R1, R2, . . . , RM) satisfying

X
m∈G

Rm ≤ min

⎛⎝ I(X(G);Y|X(Gc),V(Gc),XM+1, U),
I(X(G),XM+1;YM+2|X(Gc),V(Gc), U),

H(X(G)|V(G), U)

⎞⎠ (3)



for allG ⊆ S where the union is over all probability distributions p(u)·
³QM

i=1p(vi|u)p(xi|vi, u)
´
·

p(xM+1|v1, v2, . . . , vM , u).

Proof. The proof follows along the lines of the cut-set bounds of [12, theorem 14.10.1] that
are modified to take into account the independent sources. Additionally, instead of eliminating
the past source inputs, we set Vmi

M
= Xi−1

m , m ∈ [1,M ], i ∈ [1, n], to obtain the boundsX
m∈G

Rm ≤
1

n

nX
i=1

µ
H(Yi|Yi−1,Xi

(Gc),XM+1,i)−
H(Yi|Yi−1,Xi

(S),XM+1,i)

¶
(4)

≤ 1

n

nX
i=1

I(Yi;X(G)i|X(Gc)i,V(Gc)i, XM+1,i) (5)

Similarly, we haveX
m∈G

Rm ≤
1

n

nX
i=1

I(YM+2,i;X(G)i, XM+1,i|X(Gc)i,V(Gc)i) (6)

Lastly, we quantify the dependence of Xmi on Vmi in a manner similar to [13] as

Rm ≤
1

n

nX
i=1

H(Xm,i|Vm,i) (7)

The joint distribution of the random variables (r.v.’s)Xi,Vi,Yi, and XM+1,i can then be written
as

p(Xi,Vi, XM+1,i,Yi) =

µ
MQ

m=1

p(Vmi)p(Xmi|Vmi)

¶
· p(XM+1,i|Vi)p(Yi|Xi, XM+1,i) (8)

Finally, we simplify (5), (6), and (7) using a time-sharing r.v. U to obtain the bounds in (3) for
an input distribution p(u) ·

³QM
m=1p(vm|u)p(xm|vm, u)

´
· p(xM+1|v1, v2, . . . , vM , u).

3 Coding Strategies

3.1 Decode-and-Forward Strategy

An achievable strategy for the white Gaussian MARC is presented in [1] by extending the code
construction in [3, theorem 5] to multiple sources. The strategy, called decode-and-forward,
is extended to the d.m. MARC in [6] (see also [8]) using a combination of regular Markov
encoding at the sources and relay and backward decoding [14] at the destination. The resulting
rate region is the set of M-tuples (R1, R2, . . . , RM) that, for all G ⊆ S, satisfyX

m∈G
Rm ≤ min

µ
I(X(G);YM+1|X(Gc),V(S), XM+1),
I(X(G), XM+1;YM+2|X(Gc),V(Gc))

¶
(9)

for an input distribution
³QM

m=1p(vm)p(xm|vm)
´
· p(xr|v1, v2, . . . , vM).

While regular Markov encoding simplifies codebook design, backward decoding has the
disadvantage that the destination decodes only after the entire block of B messages from each
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Figure 1: Offset encoding for a M-MARC with offset order π = (1, 2, . . . ,M)

source is received over B + 1 blocks. Recently, for single-source multi-relay channels, Xie
and Kumar [10] combined regular Markov encoding with a more practical moving window
decoding at the destination. For the MARC, however, a straightforward application of this
technique fails to achieve all rates of (9). To fix this, we introduce an offset encoding scheme
that offsets the M source transmissions by one block per user. The advantage of this approach
is that we achieve the rates of (9) with a delay of M + 1 transmit blocks per message rather
than B + 1, as is required for backward decoding. Note that M is usually much smaller than
B.

The code construction uses regular block Markov encoding as in [8] such that the mth

source uses the codewords xm(wm, sm), vm(sm) in each block b ∈ [1, B] where wm is the
new message sent in the block and sm is the message from the previous block with sm,wm ∈
[1, 2nRm]. In each such block, the relay sends the codeword xM+1(s1, s2, . . . , sM). Let π denote
some offset order (permutation) of the source indices. Without loss of generality, we choose
π = (1, 2, . . . ,M). Then themth source, m ∈ [1,M ], sends the messages (wm1, wm2, . . . , wmB),
each of nRm bits, over B consecutive blocks, starting from the mth block, using the codewords
described above. The resulting message to codeword mapping for an M-source MARC with
offset encoding is shown in Fig. 1.

Fix the input distribution as in (9). The relay decodes the source messages at the end of
each block. Then, for reliable decoding at the relay, we requireX

m∈G
Rm ≤ I(X(G);YM+1|X(Gc),V(S), XM+1) (10)

for all G ⊆ S. The destination uses a sliding window of length M + 1 to jointly decode the
M source messages (w1b, w2b, . . . , wM,b), b ∈ [1, B]. Thus, the set of bth messages from the
sources in G ⊆ S, w(G),b, are decoded using the blocks [b, b +M ] as w(G),b =

Tb+M
j=b W

(j)
(G),b,

whereW(j)
(G),b is the set of bth messages decoded in the jth block from sources in G [10].



For the sake of simplicity, we first consider M = 2; the offset order is now π = [1, 2]. The
message pair (w1b, w2b) is decoded reliably as described above using blocks [b, b+ 2] if

R1 ≤ I(X1;Y4|X2, V1, V2, X3) + I(V1,X3;Y4|X2, V2) (11)
= I(X1, X3;Y4|X2, V2) (12)

R2 ≤ I(X2;Y4|X1, V1, V2, X3) + I(V2;Y4) (13)
R1 +R2 ≤ I(V2;Y4) + I(X2, V1,X3;Y4|V2) + I(X1;Y4|X2, V1, V2, X3) (14)

= I(X1, X2,X3;Y4) (15)

The sum rate can also be written as

R1 +R2 ≤ I(V2, X2;Y4) + I(X1,X3;Y4|X2, V2) (16)

resulting in a corner point where source 1 achieves its maximum rate in (12) if the rate achieved
by the second source at this point, I(V2, X2;Y4), is less than its maximum in (13). Observe that
we have

I(V2, X2;Y4) = I(V2;Y4) + I(X2;Y4|V2) (17)
≤ I(V2;Y4) +H(X2|V2)−H(X2|Y4,X1, V1, V2) (18)
= I(V2;Y4) + I(X2;Y4|X1, V1, V2, X3) (19)

where (19) results from the Markov relationship X2 → V2 → X3 and independence of sources.
Thus, for the offset order π = [1, 2], we obtain a corner point where the first source in the offset
order is decoded after the second and achieves its maximum rate. For π = [2, 1], we similarly
obtain the corner point where source 2 is decoded last and achieves its maximum rate. The
above two corner points are the same as those resulting from the second bound in (9), obtained
via backward decoding, for M = 2. The non-corner points are achieved by time-sharing, and
thus, for M = 2, we obtain the same rate bounds at the destination as backward decoding.

Extending the analysis to M > 2 sources, we write the set G as G = ∪M+1
k=1 Gk,where

Gk = {gk, gk−1} with gk = k if the kth source belongs to G and gk−1 = k − 1 if the (k − 1)th
source belongs to G; if the kth ((k − 1)th) source does not belong to G, gk (gk−1) is set to ∅.
Thus, G1 = {g1} and GM+1 = {gM}. Then the rate bounds using window decoding are given
as

X
m∈G

Rm ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ
I(Xg2 ;YM+2|X(S\G2∪{1}),V(S),XM+1)
+ΣM

k=3I(Xgk , Vgk−1 ;YM+2|X(Ak),V(Bk))

¶
g1 = ∅⎛⎝ I(X(G1);YM+2|X(S\G1),V(S),XM+1)

+I(Xg2, Vg1 ,XM+1;YM+2|X(S\G2),V(S\{g1}))
+ΣM

k=3I(Xgk , Vgk−1;YM+2|X(Ak),V(Bk))

⎞⎠ g1 6= ∅
(20)

where

Ak =

½
[k + 1,M ]
[k,M ]

gk 6= ∅
gk = ∅

, Bk =

½
[k,M ]

[k − 1,M ]
gk−1 6= ∅
gk−1 = ∅

k ∈ [3,M ] (21)

By expanding the expressions in (20), it can be seen that for all sets G of the form [1, k],
k ∈ [1,M ], the above bound simplifies to
kX

m=1

Rm ≤ I(X(G),XM+1;YM+2|X(Gc),V(Gc)) (22)

=
¡
I(Xk, Vk;YM+2|X([k+1,M ]),V([k+1,M ])) + I(X(G1), XM+1;YM+2|X[k,M ],V[k,M ])

¢
(23)



where G1 ∪ {k} = G and G1 = [1, k − 1]. For G = {1}, we obtain the bounds

R1 ≤ I(X1,XM+1;YM+2|X([2,M ]),V([2,M ])) = R1,max (24)

for the chosen input distribution. We now show that the sum-rate bound for any G of the form
[1, k], k ∈ [2,M ], results in a corner point achievable by successive decoding such that source
1 achieves R1,max. We refer to such a corner point as associated with source 1.

From (20), the bound on the kth source rate Rk, k ∈ [2,M ], is

Rk ≤
½ ¡

I(X2;YM+2|X[3,M ],V[1,M ],XM+1) + I(V2;YM+2|X[3,M ],V[3,M ])
¢¡

I(Xk;YM+2|X[k+1,M ],V[k−1,M ]) + I(Vk;YM+2|X[k+1,M ],V[k+1,M ])
¢ k = 2

k ≥ 3
(25)

Comparing (23) with (25) for each k and using the Markov relation Xk → Vk → XM+1, we
have

I(Xk, Vk;YM+2|X[k+1,M ],V[k+1,M ]) =

µ
I(Vk;YM+2|X[k+1,M ],V[k+1,M ])+

H(Xk|Vk)−H(Xk|YM+2,X[k+1,M ],V[k,M ])

¶
(26)

≤ Rk,max(π) (27)

where Rk,max(π) is the maximum single-user rate achieved by the kth source, k > 1, for an
offset order π, in (25). Thus, for each k chosen successively in increasing order from [2,M ], a
sum-rate corner point for the first k sources in π is achieved since the rate requirement on the
kth source at the sum-rate point is smaller than its maximum achievable Rk,max(π). Applying
the same argument for all k from [2,M ], we finally obtain an M-source sum-rate corner point
associated with source 1. Further, at this corner point, the sources are decoded successively in
the reverse offset order starting with the last source in π such that source 1 achieves R1,max.

The remaining corner points associated with source 1 are then obtained by fixing source
1 as the first source in π while choosing all possible offset permutations of the other M − 1
sources. Similarly, all (M − 1)! corner points associated with the mth source, m ∈ [1,M ],
are obtained using those offset permutations π where the mth source is the first transmitting
source. Finally, the non-corner points are achieved by time-sharing resulting in an achievable
rate region at the destination as the set of rate tuples (R1, R2, . . . , RM) such thatX

m∈G
Rm ≤ I(X(G), XM+1;YM+2|X(Gc),V(Gc)) (28)

for all G ⊆ S. Combining the bounds at the relay in (10), we then achieve the same rate region
as in (9). The effective rate achieved by the mth source is Rm · B /(B +M) and approaches
Rm for large values of B. Thus, by offsetting the source transmissions and incurring a small
delay of M blocks, we avoid the excessive delay of B + 1 blocks associated with backward
decoding while achieving the same rate region.

3.2 Compress-and-Forward Strategy
Instead of decoding the source messages, the relay can also aid the destination by forwarding a
compressed version of its received signal [3, theorem 6]. The resulting compress-and-forward
(CF) strategy [8] employs Wyner-Ziv coding [15] to exploit the correlation between YM+1 and
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Figure 2: Two geometries for the two-source Gaussian MARC

YM+2. The strategy can also be extended to the MARC (see [11]). The relay compresses the
signal YM+1 received from all sources as ŶM+1. The resulting rate region is the set of M-tuples
(R1, R2, . . . , RM) that, for all G ⊆ S, satisfyX

m∈G
Rm ≤ I(X(G); ŶM+1, YM+2|X(Gc),XM+1) (29)

subject to the constraint I(XM+1;YM+2) ≥ I(ŶM+1;YM+1|XM+1, YM+2) for the joint distrib-
ution

³QM+1
m=1 p(xm)

´
· p(ŷM+1|yM+1, xM+1) · p(yM+1, yM+2|x, xM+1).

4 Wireless Examples

We consider a two-source additive white Gaussian MARC (G-MARC) with fading such that
the received signals at the relay and destination in the ith interval, i ∈ [1, n], are

Yji =

Ã
j−1X
k=1

hjkiXki

!
+ Zji, j ∈ [3, 4] (30)

where Zji ∼ CN (0, 1) with i.i.d real and imaginary parts for all j and i. The source and relay
transmit signals that are constrained in power as

Pn
i=1E(|Xki|2)

±
n ≤ Pk , k ∈ [1, 3]. The

parameter hjki is the fading experienced by the kth transmit signal at the jth receiver in the ith
symbol and is assumed known only at the jth receiver. In this analysis, analogous to [5], we
consider two kinds of fading channels:

1. constant fading hjki = 1
.q

dγjk ∀i ∈ [1, n] where djk is the distance between the jth

receiver and the kth transmitter and γ is the path-loss exponent.

2. ergodic phase-fading with hjki = ejθjki
.q

dγjk where θjki is uniformly distributed as
U[−π, π].

The analysis for these models generalizes to other types of fading such as Rayleigh fading
[6].

We consider the two geometries shown in Fig. 2. Case 1 has a symmetric positioning of the
sources with respect to the relay and destination while case 2 is a collinear geometry with both



-0.8 -0.4 0 0.4 0.8
0

1

2

3

4

5

5.8

Position of relay along x-axis

R
at

e 
(b

its
/c

h.
 u

se
)

CASE 1

-1 -0.5 0 0.5 1
0

1

2

3

4

5

6

6.8
CASE 2

Position of relay along x-axis

R
at

e 
(b

its
/c

h.
 u

se
)

OB

CF AF

Direct

DF

Direct

AFCF

DF
OB

for DFβ
for DFβ
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sources at the origin and the destination a unit distance away from the origin. In both cases,
the relay moves along the line connecting the destination with the origin. The sum-rates for the
outer bound (OB) and the cooperative strategies are plotted as a function of the relay’s position
relative to the origin. The transmitter signal-to-noise ratio (SNR) is chosen as 6 dB for both
sources and relay while the path-loss exponent γ is chosen as 4.

For the constant fading G-MARC, the rate region for the DF strategy is obtained using the
code construction in [1] as the set of rate-tuples (R1, R2) that, for G ⊆ {1, 2}, satisfy

X
m∈G

Rm ≤ max
{βm}m∈GPM
m=1βrm≤1

min

⎧⎪⎨⎪⎩C

µ P
m∈G

βm
Pm

dM+1,m

¶
, C

⎛⎜⎝
P
m∈G

Pm
dM+2,m

+ PM+1

dM+2,M+1
+

2
P
m∈G

q
β̄βrm

Pm
dM+2,m

· PM+1

dM+2,M+1

⎞⎟⎠
⎫⎪⎬⎪⎭

(31)
where C(x) M= log(1+x), βm = 1− β̄m is the fraction of power the mth source allocates to its
new message, and βrm is the fraction of power the relay allocates to cooperating with the mth

source. The rate region for the CF strategy is obtained from (29) using Gaussian signaling at
the sources and relay. We also consider the amplify-and-forward strategy (AF) where the relay
forwards an amplified version of its received signal to the destination as XM+1,i = cYM+1,i−1,
i ∈ [1, n], where c is chosen so that

Pn
i=1E(|XM+1,i|2)

±
n ≤ PM+1 . This results in a multiple-

access intersymbol-interference (ISI) channel at the destination, the rate region for which is
given by the multi-user water-filling algorithm in [16]. The rates for the three strategies and
the outer bound are plotted in Fig. 3 for both cases. The outer bounds for the G-MARC result
from ignoring the entropy bounds in theorem 1 and using an entropy maximization theorem
in [17] to set the auxiliary r.v.’s as Gaussian. The plots also include the optimal fraction β1 =
β2 = β, with the two fractions taking the same value β for the symmetric geometry considered
in case 1 and 2 at the maximum sum-rate point. Finally, the multiple-access sum rate resulting
from direct communication between the sources and destination is plotted as a straight line
independent of relay position. Observe that for the cases where the relay is physically closer to
the sources or the destination, the DF and CF strategy respectively approach the outer bound.
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In [8], it was shown that the DF strategy achieves capacity for the ergodic phase-fading
MARC when the relay and sources are clustered as in [8, theorem 10]. The resulting rate
region is then the set of rate-pairs (R1, R2) that for all G ⊆ {1, 2} satisfyX

m∈G
Rm ≤ min

½
C

µ P
m∈G

Pm

dM+1,m

¶
, C

µ P
m∈G

Pm

dM+2,m
+

PM+1

dM+2,M+1

¶¾
(32)

Fig. 4 clearly illustrates the capacity-achieving region for both geometries.

5 Conclusions
We obtained new outer bounds for the discrete memoryless MARC and presented a novel
offset encoding technique that enables window decoding at the destination for the decode-and-
forward strategy. Though the capacity of the MARC remains unknown, capacity-achieving
strategies for certain wireless channels and geometries were illustrated. The analysis can be
extended to bound outage capacities, a relevant performance metric for slow-fading channels.
Further, a detailed analysis of the rate region for each of the strategies considered gives in-
sight into good resource allocation and decoding techniques [18]. Finally, we can also develop
capacity theorems for constrained MARCs where the relays do not transmit and receive simul-
taneously [11].
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