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Abstract

An achievable rate region for memoryless relay networks is developed based on an
existing region for additive white Gaussian noise (AWGN) channels. It is shown that
multi–hopping achieves the information–theoretic capacity of wireless relay networks if
the relays are in a region near the source terminal, and if phase information is available at
the receivers only.

1 Introduction

Network information theory gives the ultimate limits on the performance of communication
systems. Although there are still many gaps in our understanding of this theory, the existing
results do offer a rich variety of coding strategies that can in principle give large improvements
over current schemes. The purpose of this paper is to show that the existing information theory
gives the ultimate strategies for certain relay networks that might occur in practice.

An information–theoretic model for relay channels was introduced and studied in [1, 2].
Two fundamental coding strategies for a single relay were developed in [3]. These strategies
achieve capacity for several classes of channels, as discussed in [3]-[5]. However, none of
these classes models a wireless environment, and we are primarily interested in attacking the
wireless problem.

Our starting point will be the strategy of Theorem 1 in [3] that uses block Markov su-
perposition encoding. This approach was recently generalized to multiple relays by using
multi–hopping [6]. A simpler coding scheme than in [3] was introduced in [7] by using regular
block Markov encoding and backwards decoding. The regular encoding concept was recently
applied to multiple relay channels with additive white Gaussian noise (AWGN) in [8]. How-
ever, [8] replaced backwards decoding with a more practical windowed decoding. We apply
the two concepts of regular block Markov encoding and windowed decoding to memoryless
relay networks in order to generalize the approach of [8] to wider classes of relay networks.

This paper is organized as follows. In Section 2 we define the network model and review
a capacity upper bound. In Section 3 we review several multi-hopping strategies for a sin-
gle relay. We further derive an information-theoretic achievable rate region by modifying the



scheme of [8] so as to apply to wider classes of channels. Section 4 gives numerical examples
for Gaussian wireless networks, including capacity results when there is phase uncertainty at
the transmitters. Section 5 concludes the paper. Note that other recent studies on relaying can
be found in [9]–[15].

2 Preliminaries

2.1 Model

The
�

–terminal relay network has four types of random variables (see [1, 16, 17]): the message�
, the channel inputs ����� , �	��

������������� ��� 
 , ����

������������� , the channel outputs ����� , �	�

��������������� � , ����

��� �������!� , and the message estimate
"�

. The source terminal (terminal 1)
transmits �$#%� that are a function of

�
, and the relays use causal coding functions, i.e., relay

� ’s input �&��� is a function of its past outputs � �(')#� � *+�)�,#����)�.-/���������0� �,12�(')#+3+4 . Suppose the
relay network is memoryless and time invariant. This lets one focus attention on the channel
distribution

5 *768-����������06:9<; =�#��������>�?=@9A')# 4 (1)

for further analysis. Finally, the destination terminal (terminal
�

) computes
"�

as a function
of the channel outputs �CB9 �D*7�)9A#������������@9 B 4 .

Suppose that
�

has EGF bits so that the data rate is HI�JEGF&K8� bits per channel use. The
capacity L of the relay network is the supremum of rates at which reliable communication
is possible, i.e., the rates where the destination’s message estimate

"�
can be made to satisfyMON * "� P� � 4RQTS for any positive S . Our goal is to construct coding strategies that communi-

cate reliably at rates close to L .

2.2 Capacity Upper Bound

A capacity upper bound is given by the min–cut bound in [18, p. 445]. Let UD�WV8�����X��������� �Y�

[Z be the set of relay indexes, and let �]\^�_V/�&�a`X�RbdceZ for cWfWU . We have the following
result.

Proposition 1 The
�

–terminal relay network capacity satisfies

Lhg ikjmln 12o�prq ots!qvuvuvuwq o�x8y p 3 i�z({\�| }G~ *%�$#��&\���� \
� �@9Y;�� \�� 4 (2)

where c�� is the complement of c in U .

As done here, we adopt the notation of [19, Ch. 2] for mutual information and entropies.
Note that the above minimization is over � 9A' - bounds. For example, for

� ��� we have

Lhg i]j:ln 1�o�prq ots�3 i]z�{�V ~ *%�$#t���A-0�A�[; ��- 4 � ~ *w�^#r�]-������ 4 Za� (3)

The minimization quickly becomes difficult to evaluate as
�

increases. One therefore usually
considers only a few of the mutual informations.
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Figure 1: Regular block Markov encoding for the single–relay network.

3 Multi–hopping Strategies

3.1 Single Relay

We interpret the strategy of Cover and El Gamal [3, Thm. 1] as a multi–hopping strategy. This
strategy achieves any rate up to

H���� � ikj:ln 12o�prq otsr3 i�z({�V ~ *w�$#t����-:; ��- 4 � ~ *%�$#���-��0��� 4 Za� (4)

The only difference between (3) and (4) is that � � is included in the first information on the
right side of (3).

The rate (4) has in the past been achieved with three different methods. The first is the strat-
egy of [3, Thm. 1] that uses block Markov superposition encoding, random partitioning (bin-
ning) and successive decoding. The encoding is done using codebooks of different sizes, and
we call this irregular block Markov encoding. The second method is a strategy of Willems [7,
Ch. 7] that uses block Markov superposition encoding combined with backwards decoding.
However, the encoding is now done with codebooks of the same size, and we call this regular
block Markov encoding. The technique is illustrated in Fig. 1, and we proceed to describe its
operation.

The message � is divided into E blocks �G#���� -�������������� of � B�� bits each. The transmission
is performed in E�� 
 blocks by using codewords = # *7����� 4 and = - *7� 4 of length � , where � and �
range from 
 to �8B�� . In the first block, terminal 1 transmits = # * 

����# 4 and terminal 2 transmits
= - *!
 4 . Random coding arguments guarantee that terminal 2 can decode reliably as long as � is
large and

 g�H Q ~ *w�^#�����-8; ��- 4 � (5)

So suppose terminal 2 correctly obtains �G# . Then in the second block, terminal 1 transmits
= # *!��#���� - 4 and terminal 2 transmits = - *!��# 4 . Terminal 2 can decode � - reliably as long as � is
large and (5) is true. One continues in this way until block E"� 
 . In this last block, terminal 1
transmits = # *!��� ��
 4 and terminal 2 transmits = - *#��� 4 .

Consider now the destination (terminal 3), and let 6 ��$ be its % th block of channel outputs.
These blocks are collected until the last block of transmission is completed. Terminal 3 then
performs backwards decoding by first decoding �&� from 6 �?1'�)(�#+3 . Note that 6 �?1*�)(�#+3 depends

on = # *!���O��
 4 and = - *!��� 4 , which in turn depend only on �+� . One can show (see [7, Ch. 7])
that terminal 3 can decode reliably as long as � is large and

 g H Q ~ *w�$#���-����A� 4 � (6)

Terminal 3 next decodes �,� ')# from 6 �-� which depends on = # *#��� ')#t����� 4 and = - *#��� ')# 4 . Since
terminal 3 knows �,� , it can again decode reliably as long as (6) is true. One continues in this
fashion until all message blocks have been decoded. The overall rate is H/. ��)(�# bits per use,
and by making E large we can get the rate as close to H as desired.
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Figure 2: A multi–hopping strategy for the two–relay network.

We remark that the backwards decoding strategy has the disadvantage of incurring a large
delay. However, the regular encoding structure is easier to extend to multiple relays than the
Cover/El Gamal strategy.

Finally, the third method to achieve (4) is based on a recent strategy of Xie and Kumar [8]
that uses regular block Markov encoding, but with the novel idea of windowed decoding. Con-
sider again Fig. 1, but suppose terminal 3 decodes � # after block 2 by using a window of the
two past received blocks 6 �?# and 6 ��- . One can again show that terminal 3 can decode reliably
as long as � is large and

 g H Q ~ *w�$#���-����A� 4 � (7)

The mutual information (7) has a contribution of ~ *%� -������ 4 from 6 ��- , and ~ *%�$#����A�[; ��- 4 from
6 �?# . After receiving 6 ��$ , %�� � , Terminal 3 similarly decodes �,$�')# by using 6 �?1*$�')#+3 , 6 ��$ , and its

past message estimate
"� 1�� 3$�' - (which is assumed to be ��$�' - ). The overall rate is again H/. ��)(�#

bits per use, and by making E large we can get the rate as close to H as desired.
Note that the above strategy enjoys the advantages of both the Cover/El Gamal strategy

(two block decoding delay) and the Willems strategy (regular block Markov encoding). Fur-
thermore, it is easy to extend windowed decoding to multiple relays, and even to multiple
sources.

3.2 Multiple Relays

A natural first approach to multi–hop with several relays is to generalize the Cover–El Gamal
strategy. This was done in [6]. However, we here wish to consider the improved strategy
of [8], and we generalize this strategy to apply to wider classes of channels. Our generalization
is easily modified to apply to certain relay networks with multiple sources (see [20]).

Consider two relays. We divide the message � into E blocks of �
B�� bits each. The trans-
mission is performed in E �$� blocks by using = # *7�?� �
�
� 4 , = - *7����� 4 , and = � *7� 4 , where �?� �
�
� range
from 
 to � B�� . For example, the encoding for E ��� is depicted in Fig. 2. Terminal 2 can re-
liably decode ��$ after transmission block % if � is large, its past message estimates

"� 1 - 3$�' - � "� 1�- 3$�')#
were correct, and

 g H Q ~ *w�^#�����-8; ��-?��� 4 � (8)



Terminal 3 decodes ��$�')# by using 6 �?1*$�')#+3 , 6 ��$ , and
"� 1�� 3$�' - , "� 1 � 3$�' � . This can be done reliably

if � is large, if
"� 1 � 3$�' - � � $�' - , "� 1 � 3$�' � � � $�' � , and if

 g H Q ~ *w�^#r�]-������8; ��� 4 � (9)

The mutual information (9) has a contribution of ~ *%� -��0���[; ��� 4 from 6 ��$ and
"� 1�� 3$�' - , and a contri-

bution of ~ *%�$#����A�[; ��-?��� 4 from 6 �?1 $�')#+3 , "� 1�� 3$�' - , and
"� 1�� 3$�' � . Assuming correct decoding, Terminal

3 knows � $�')# after transmission block % , and can encode the messages as shown in Fig. 2.
Finally, terminal 4 decodes �,$�' - by using 6 � 1*$�' - 3 , 6 � 1 $�')#+3 , 6 � $ and

"� 1 � 3$�' � , "� 1 � 3$�' � . This can be
done reliably if � is large, the past message estimates were correct, and

 g H Q ~ *w�$#���-?���/��� � 4 � (10)

This mutual information has a contribution of ~ *w� ���0� � 4 from 6 � $ , ~ *%��-���� � ; ��� 4 from 6 � 1 $�')#+3
and

"� 1 � 3$�' � , and ~ *%�$#���� � ; ��-?��� 4 from 6 � 1*$�' - 3 , "� 1 � 3$�' � and
"� 1 � 3$�' � . The overall rate is H�. ��)(@- , so by

making E large we can get the rate as close to H as desired.
We remark that one could alternatively use backwards decoding, but then one must transmit

using nested blocks to allow the intermediate relays (terminal 3 in Fig. 2) to decode before the
destination. The result is an excessive decoding delay. The Xie/Kumar windowed decoding is
a much more elegant and practical technique.

It is clear that this strategy generalizes to
�

–terminal relay networks, and we prove the
following theorem. Let �a*�. 4 be a permutation on U � V8� ���X��������� ��� 
[Z . We further define�a* 
 4 �J
 , �a* � 4 � �

, and �a*7�<` � 4 � V��a*%� 4 ���a*7� � 
 4 �����������<*�� 4 Z .
Theorem 1 The

�
–terminal relay network capacity is at least

H���� � ikj:l� 1�� 3 i�z({#��
	���9�')# ~ *%� � 1 #�� 	 3 ��� � 1
	 (�#+3 ;�� � 1
	 (�#�� 9A')#+3+4 (11)

where one can choose any distribution on *%� #��?��} 4 .
Theorem 1 is basically due to Xie and Kumar [8]. Although [8] considers only AWGN

channels, and hence expresses the rate region in a different form than (11), it was clear that
windowed decoding applies to wider classes of relay networks. Note that we have expressed
Theorem 1 using only permutations rather than the level sets of [6, 8]. This is because one
need consider only permutations to maximize the rate. However, we remark that to minimize
the delay for a given rate, one will need to consider level sets again. This occurs, e.g., if one
relay is at the same location as another.

As an application of Theorem 1, for
� ��� there are two permutations on UD�JV8������Z , and

the rate (11) is

H���� � ikjml
� i]z�{�V ~ *w�^#�����-8; ��-?��� 4 � ~ *w�$#���-/�����:; ��� 4 � ~ *%�$#���-0������� � 4 Z �

i]z�{�V ~ *w�^#������8; ��-?��� 4 � ~ *w�$#����/����-:; ��- 4 � ~ *%�$#���-0������� � 4 Z�� � (12)

4 Wireless Examples

We illustrate the rates achieved by Theorem 1 with the following wireless channel. Suppose
that at time � terminal � receives the symbol

�A��� ��� ��� ��� ���� ���
� ���� ���� � � � � (13)
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Figure 3: A single relay on a line.

where
� � � is the distance between terminals � and � ,  is an attenuation exponent, �

� ��� is
a complex fading random variable, and �a��� is independent and identically distributed (i.i.d.)
complex Gaussian noise with zero mean, unit variance, and i.i.d. real and imaginary parts. The
� � � are complex random variables satisfying the power constraints

!#" ; � � �?; -�$ g&% � for all � and
� . We will use mainly the free–space attenuation exponent  �_� . We further use logarithms
to the base 2 so that our rate units are bits per use.

We discuss two kinds of fading:' No fading: �
� ��� � 
 for all � , � , and � .' Phase fading: �
� ���<�)(�*�+�,�-/. where 0 � ��� is uniformly distributed over

"  ��� � 4 . The 0 � ��� are
jointly independent of each other and all other random variables. We write 0 ��� for the
vector of phases at terminal � .

For the latter case, we assume that terminal � knows only its own fading coefficients. That is,
terminal � knows �

� ��� for all � and � , but it does not know �
� �21�� for ��3 P� � . Note that we are

here considering the fast (or ergodic) fading capacity. One could also develop similar results
for slow (or quasi–static) fading.

4.1 No Fading and One Relay

Suppose we have a single relay with no fading and  � � . Let 4 be the correlation coefficient
of �^# and �]- , and suppose it is a real number. For Gaussian input distributions, we compute

H���� � i]j:l5 �76 �)# i]z�{
�98�:<;>=


�� %<#� - #7- *!
 � ; 4�; - 4�? �
8�:@;A=


�� %<#� - #7� � % -� --�� � �B4�C %O#�% -� #7� � -�� ? � � (14)

As an example, suppose the source, relay and destination are aligned as in Fig. 3, where� #7-R� �
,
� -��e� 
 � �

, and
� #7�R� 
 . Fig. 4 plots various bounds for %a# �D% -e�_
  . The curve

labeled MH gives the multi–hopping rates. Also shown are the rates when the relay is turned
off, and when the strategy of [3, Theorem 6] is used (labeled DP for destination pooling).
However, only half the power is being consumed when the relay is off as compared to the other
cases. Finally, the figure plots rates for the strategy where the relay transmits �$-r� �FE . �A-?1��(')#+3 ,
where E is a scaling factor chosen so that G " ; �k-r�0; -�$ gH% - . This strategy is called “amplify–
and–forward” in [13, p. 80], and it turns the relay channel into a unit–memory intersymbol
interference (ISI) channel. The curve labeled “amplify–and–forward” shows the capacity of
this channel.

4.2 Phase Fading and One Relay

Consider next the case �
� ���F(�*�+ ,�- where 0 � � is known only to terminal � for all � . The result is

that H���� in (4) becomes

ikj:ln 12o p q o s 3 i�z({JI ~ *%�$#t���A-8; ��-K08#7- 4 � ~ *%�$#���-����A�[;�08#7�K0�-�� 4ML (15)
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Figure 4: Rates for the single–relay network with % #O�F% -��I
  .

where the 0 � � appear in the conditioning. We have

~ *w�^#�����-8; ��- 08#7- 4 � � - �5 ���
� � ~ *w�$#t����-:; ��-���08#7- � � 4 � (16)

One can similarly express ~ *%�^#���-/���A�8; 08#7� 0�-�� 4 . Further, for a fixed covariance matrix of � #
and ��- , a conditional maximum entropy theorem (see [21]) tells us that� *7��- ;���- ��08#7- � � #7- 4� *7��� ;�08#7��� � #7�/��0�-���� � -�� 4
are maximized by making 5 *w= #t�?=A- 4 Gaussian for any choice of the phases. The maximization
(15) is thus

ikjml6 i]z�{
� 8�:<; =


 � %<#� - #7- *!
 � ; 4�; - 4 ? �� - �5 ��� #7� ��� -��
*�� � 4 - 8�:<;A=


�� %O#� - #7� � % -� --�� � ���C* 4 ( * 1	�mp�
!'���s�
 3 4 C %<#�% -� #7� � -�� ? � � (17)

where �C*%= 4 is the real part of = , and where we have used  T� � . The integral in (17) does
not depend on the phase of 4 , so we can replace � * 4 ( * 1	�mp�
?'�� s�
�3 4 with ; 4�;�
 :�� � #7� . The integral
evaluates to (see [22, p. 59]) 8�:<;A=�� � C � - � % -

� ?



where
� � 
,� %<#�K � - #7� � % -�K � --�� and % � ��; 4�; C %<#�% -�K@* � #7� � -�� 4 . The maximizing 4 in (17) is

therefore zero, and we have

H���� � i]z�{
� 8�:@; =


�� %<#� - #7- ? �
8�:<;>=


�� %<#� - #7� � % -� --�� ? � � (18)

The optimality of 4 �  
can alternatively be established as follows. The second mutual

information in (17), denoted ~ * 4 4 , does not depend on the phase of 4 , so we have ~ * 4 4 �"
~ * 4 4 � ~ *

� 4 4 $ K[� . But

8�:<;
*w= 4 is concave in = and � *w= 4 is linear in = , so Jensen’s inequality

gives "
~ * 4 4 � ~ *

� 4 4 $ K
� g ~ *
 4 �

This shows that 4 �  
is best for both informations in (17).

Similar arguments show that 4 �  
is also best for the capacity upper bound (3). This leads

to the following theorem.

Theorem 2 Multi–hopping achieves capacity with phase fading if the relay is in a region near
the source terminal. More precisely, if%<#�� � � #7� � % -�� � �-�� g&%O#�� � � #7- (19)

then the capacity is

L �
8�:@;��


�� %O#�� � � #7� � % -�� � �-���� � (20)

The condition (19) is always satisfied for a range of
� #7- near zero. For example, for the geom-

etry of Fig. 3 with  ��� and %<#<� % - , the bound (19) is
�  ���	�[�&g � g  �
� �	
X�

4.3 Phase Fading and Many Relays

Consider next
�

terminals with phase fading. Evaluating (2) and (11), we find that it is best to
make the �&� , �G� 

�����������t� �T� 
 , Gaussian and independent. We further have the following
generalization of Theorem 2.

Theorem 3 Multi–hopping achieves capacity with phase fading if

9A')#� � � # % �� �� 9 g i]j:l� 1 � 3 i�z({#��
	 ��9A' - ���� � 1�#�� 	 3 % �� �� � 1
	 (�#+3 (21)

and the resulting capacity is

LW�
8�:<;�



��
9A')#� � � # % �� �� 9�� � (22)

Note that the minimization in (21) does not include � � � � 
 .
The condition (21) is satisfied if all the relays are near the source. For example, consider

a two-dimensional geometry and suppose all the relays are in a circle of radius
�

around the



source. Then if the destination is a distance 1 from the source, we have
� � 9 �I
 � �

. Suppose
further that % �>� % for all � . The bound (21) tells us that multi–hopping achieves capacity if� g 


* � � 
 4 #�� � � 
 � (23)

The relays must therefore be in a circle of radius about
� ')#��r- about the source for large

�
and � � .

As another geometric example, consider a linear network as in Fig. 3 but with
� � � relays

placed regularly to the right of the source at
� #%�<� *%� � 
 4 � , � gW� g � � 
 , where

 g � Q

mK@* � � 
 4 (see also [8, Sec. 2]). Suppose again that % � � % for all � . The bound (21) ensures
that multi–hopping achieves capacity if

�
satisfies

9A')#� � � # 
" 
 � *%� � 
 4 � $ � g 
� � � (24)

For  � � and large
�

, one can show that
�

can be made close to 
mK@* � � 
 4 . The result is
L��  8�:<; * � 4 bits per use, i.e., capacity grows logarithmically in the number of terminals (or
relays). Other related logarithmic scaling laws were obtained in [8] and [14].

5 Concluding Remarks

We reviewed and developed several multi–hopping strategies for relay networks. There are
clearly many directions for further work. First and foremost, the fundamental problem of the
capacity of the single–relay channel has been open for decades. It is, however, encouraging
that capacity is known for some practical wireless cases. Second, one can extend the above
capacity results to other kinds of fading such as Rayleigh fading [20]. Third, one can determine
the outage capacity for slow (or quasi–static) fading. Finally, the strategies can be extended
to networks with multiple sources, for example the multi-access relay channels of [11], or the
broadcast relay channels of [20].
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