Extrinsic Information Transfer Functions,
Information Functions, Support Weights, and Duality

A. Ashikhmin, G. Kramer, and S. ten Brink

Bell Laboratories, 600 Mountain Ave, Murray Hill, NJ 07974, USA
E-mail: aea@bell-labs.com, gkr@bell-labs.com, tenbrink@ieee.org

Abstract: Extrinsic information transfer (EXIT)
charts are a tool for predicting the convergence be-
havior of iterative decoding of concatenated codes.
FErasure channel properties are proved that relate o
code’s EXIT function to its information functions,
and thereby to the support weights of its subcodes.
The relation is via a refinement of information func-
tions called split information functions, and via a re-

finement of support weights called split support weights.

Split information functions are used to prove another
property that relates the EXIT function of a linear
code to the EXIT function of its dual.
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1. Introduction

Density evolution was suggested in [1, p. 48] as a
tool for predicting the convergence behavior of low—
density parity—check (LDPC) codes. The analysis
is particularly simple for the binary erasure chan-
nel (BEC) because one must compute only the frac-
tion of erasures being passed from one component
decoder to another. For example, this is done in [2],
[3] for irregular LDPC codes, and in [4] for repeat—
accumulate (RA) codes.

We will also restrict attention to erasure chan-
nels but consider general encoding schemes. Our
analysis tool will be extrinsic information transfer
(EXIT) charts [5], and we prove several properties
of EXIT functions for the decoding model described
in [6]. One property is that EXIT functions can be
expressed in terms of what we call split information
functions and split weight enumerators. The former
are refinements of the information functions of a code
introduced in [7], while the latter are refinements of
the weight enumerators of a code [8]-[9]. Split infor-
mation functions are used to relate the EXIT func-
tion of a linear code to the EXIT function of its dual.

This paper is organized as follows. In Section 2.
we describe the decoding model and EXIT functions.
In Section 3. we derive several properties of EXIT
functions when the a priori information is modeled
as coming from a BEC. Section 4. summarizes our
results.
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Figure 1: A decoding model.
2. Decoding Model and EXIT

We use the decoding model shown in Fig. 1 (see
[6]). A source produces a vector u of k independent
information bits each taking on the values 0 and 1
with probability 1/2. Encoder 1 maps u to a binary
length n code word z, and Encoder 2 maps u to a bi-
nary length m code word v. The decoder receives two
vectors: a noisy version y of z and a noisy version w
of v. We call the z to y_channel the communication
channel, and the v to w channel the eztrinsic chan-
nel. We will assume that both channels are BECs,
and that the communication and extrinsic channel
erasure probabilities are ¢ and p, respectively.

The decoder uses y and w to compute two esti-
mates of v: the a posteriori values d and the extrinsic
values e. The symbol w; gives a priori information
about the V; with L-values
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Similarly, the symbol y; gives a priori information
about X; with L-value

a; =log

P(y; | X; =0)

P(y;| X; =1) ®

c; = log

The a posteriori probability (APP) bit decoder com-
putes the L-values

Pr(Vi = 0|y, w)

d; = og 4131_(% 271 |g7 w) .
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For further analysis, we write vy; for the vector vy; =
[V1,.+. ,Vim1,Vit1,- .. ,Um]. We have (see [6])

d; =a; +e; (4)

where




The number e; is called the extrinsic value about
v;, and we will consider e; to be a realization of the
random variable F;.

We define two quantities, namely

1 m

Iy=—3 1(Vii A) (6)
Io= LS I(ViBy). (7)

The value I4 is called the average a priori informa-
tion going into the encoder, and Ig is called the aver-
age extrinsic information coming out of the decoder.
An EXIT chart plots Ig as a function of I4.
Consider first 14 for which we usually have

Iy=1(Vi;41) =1-p. (8)

The first equality holds if all V; have the same distri-
bution, while the second holds if this distribution is
the uniform one. We will consider only such codes.
Consider next Ig for which we have (see [6])

I(Vi; Ey) ZI(VHXA[,-]) 9)

Using this proposition, we have
1 m
= Ezll(vi;zém)- (10)
=

3. Properties

3.1. Information Functions of a Code

The information function in h positions of a code
C was defined in [7] as the average amount of in-
formation in h positions of C. More precisely, let
n be the code length and S; be the set of all sub-
sets of {1,2,...,n} of size h. Let S € S with
S = {il,iz, . ,ih}. We write

Ls = [$i1,$i2,--- 7$ih]
Cs={zg:z€C}.

Let C be a linear code and kg the dimension of Cg.
The information function in A positions of C is

Z ks. (11)
h SESH
We write the unnormalized version of e, as
én=Y_ks. (12)
SES),

We remark that these definitions and the following
theory can be extended to nonlinear codes (cf. [7]).

Consider the following simple generalization of
en. Let C be the code formed by all pairs (v,z) in

Fig. 1. Suppose Encoders 1 and 2 are linear, and
that C is a linear [m + n, k| code. Let S, be the
set of all subsets of {1,2,...,m + n} of the form
{7:1,7:2,... ,ig,jl,jz,... 7jh} where 1 S 2.1 < 7/.2 <
cdg<mandm4+1< i <j2<...jph <m+mn.
In other words, S, is the set of subsets of g posi-
tions from the first m positions of C, and h positions
from the last n positions of C. We define the split
information function in (g, h) positions of C as

€gh (g) ) > ks (13)

SES,.n

We write the unnormalized version of e, 5 as

égn= > ks. (14)

SeSg,h

Note that €y, = €), where €} is the information func-
tion computed for Encoder 1. Similarly, we have
€g,0 = €, where €, is the information function com-
puted for Encoder 2.

The following theorem shows that EXIT func-
tions on a BEC can be computed from the split in-
formation functions.

Theorem 1 If the extrinsic and communication chan-
nels are BECs with respective erasure probabilities p
and q, and if Encoders 1 and 2 are linear with no
idle components, then we have

In(p, )_1_l2 1—q)q"" "Z
h=0

[9-€gn —(m—g+ )'eg—l,h]- (15)
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3.2. Support Weights

The information functions of a code are known to
be related to the support weights of its subcodes [7].
The support weight w(C) of a code C is the number of
positions where not all codewords of C are zero. The
rth support weight A7 of C is the number of unique
subspaces of C of dimension r and support weight 4.
Note that A9, A}, A}, AL ..., AL is the usual weight
distribution of a code. Note also that A} = 0 for
i <r. We write A7 =0 for r < 0.

It is known that & can be written in terms of the
A7 as follows (see [7, Thm. 5]):

TZ:I ; [ _:+s]§(n;i),4f_r+s
(16)

where for all i we define ({) =1 and [{] =1, and for
7 > 0 we write

j—1
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Figure 2: EXIT functions for the [7, 3] simplex code
and its dual.

The A7 have been determined for some codes. For
instance, the [2¥ — 1, k] simplex code has (see [7, Sec.
Iv])

(17)

AT = [F] ifi=2F—2F"for0<r<k
©tT 1 0 else.

Inserting (17) into (16), and performing manipula-
tions, we have (see [7, Sec. IV])

én = irr_i(_l)sz(é) m m (ZT;_ 1)_ (18)
Example 1 (Simplex Code with k = 3) The[7, 3]

simplex code has

[€1,8,... &7 = [7,42,98,105,63, 21, 3]
[61,62,.. . ,67] = [1,2,2.8,3,3,3,3].

(19)

Suppose that n =0, so inserting (19) into (15) gives

1
In(p) =1- [7p% +42pp° + 84p°p" + 287°p’]
(20)
where p =1 — p. This curve is plotted in Fig. 2.
Example 2 (Uncoded Transmission) Consider the

uncoded transmission of k bits. We use [9, eq. (7)]
to compute

(21)

3.3. Split Support Weights

The fact that &, can be expressed in terms of
the A7 motivates the question whether &, can be
written in terms of appropriate generalizations of the
A?. This is indeed possible, as we proceed to show.

Consider again the linear code C formed by all
pairs (v,z) in Fig. 1. We define the split support
weights A7 ; of C as the number of unique subspaces
of C that have dimension r, support weight ¢ in the
first m positions of C, and support weight j in the
last n positions of C. We prove the following gener-
alization of (16).

Theorem 2
g+h 7
- sa(s)|[kF—7+s
o= 3r 31 2@ [T

r=1 s=0
m n

Z Z (mg— z) (n ; j) Af,;r+s (22)

i=0 5=0

Example 3 (Identity and Simplex Code) Suppose
Encoder 1 transmits the k information bits without
coding, and Encoder 2 generates the [2F — 1, k] sim-

plex code. We have m = 2F — 1 and n = k, and
compute
. AT of (21) ifi=2k -2k
Aiy = { 0] else. (23)

For example, for k = 3 we use (23) in (22) to obtain
the split information functions. We then use the split
information functions in (15) to compute the EXIT
curve to be

Ie(p,q) =1— %{

¢l TP+ 42ppi+  s4ptpt+ 2870 |+
¢*| 18pS+ 90pp°+ 108p°p'+ 367°p® |+
*q[ 12p5+ 36pp°+ 36p°p'+ 127°p° |}

(24)

q
q

wherep=1—p and ¢ = 1—q. This curve is plotted
for various q in Fig. 3 as the solid lines. We recover
(20) by using q = 1.

3.4. Duality Property

Consider the linear code C formed by all pairs
(v,z) in Fig. 1. Let Ix(-) be the EXIT function of
the dual code C* of C, i.e., Ct isa [m+n,m+n—k]
code. We have the following result.

Theorem 3 If the extrinsic and communication chan-
nels are BECs with respective erasure probabilities p
and q, then

It (pyq) =1—Ip(l—p,1—g). (25)
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Figure 3: EXIT functions for Example 3 (solid lines)
and Example 5 (dashed lines).

Observe that if there is no communication chan-
nel (n = 0), then we have

If(p) =1-Ip(1-p). (26)

Example 4 (Hamming Codes) The dual of a sim-
plex code is o Hamming code. Consider the [7,4]
Hamming code for which (20) and (25) give

1
Ig(p) = - [77° +42pp° + 84p7p" + 28p°F°] .
(27)

The curve (27) is depicted in Fig. 2. The area under
this curve is 1 — R = 3/7, as follows from [6].

Example 5 Consider Example 3 and the code C formed

by all pairs (v,z). A generator matriz for C is
G=[1Ix|P| I ] (28)

where Iy is the k X k identity matriz, and P is the
k x (28 — k — 1) parity check matriz of the simplex
code. A generator matriz for C* is

PT | L O¢gn
H = 2k —k—1 H (2 —k—l)Xk :| 29
[ I ‘ Okxc(ar k1) || Lk (29)

where P is the transpose of P, and Oy, is the k x
£ all-zeros matriz. Thus, the situation for the dual
code C* is that Encoder 1 transmits k out of the n =
2k —1 information bits, while the generator matriz of
Encoder 2 is the first of 28 — 1 columns of (29). The
corresponding EXIT function can be computed using
Ezxample 3 and (25). For instance, for k =3 we use
(24) and (25) to plot the EXIT functions shown in
Fig. 3 as dashed lines.

4. Summary

Various properties of EXIT functions were de-
rived when transmitting information over a BEC.
One property expresses EXIT functions in terms of
split information functions, which in turn can be
computed from split weight enumerators. A dual-
ity property was derived and used to compute the
EXIT function of a linear code from the EXIT func-
tion of its dual. It seems natural to suspect that
other interesting EXIT properties can yet be found.
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