
2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000Modulated Estimate Correction for the WhiteGaussian Broadcast Channel with FeedbackG. KramerEndora Tech AG, Hirschg�asslein 404051 Basel, Switzerlande-mail: gkramer@endora.chAbstract | Modulated estimate correction strate-gies for the K-user white Gaussian broadcast chan-nel with feedback are presented. The strategies arebased on the discrete Fourier transform of length K.A recursion for �nding good rates is derived and cal-culations show that the achievable sum rate increaseswith K. An outer bound shows that not much furtherimprovement in sum rate is possible for small K.I. IntroductionThe capacity region of the K-user white Gaussian broad-cast channel with feedback (BC-FB) is unknown. A goodstrategy for two users was presented in [1] based on earlierresults of [2]. However, it seemed that this strategy does notgeneralize to more than two users [3]. We show that there isa natural generalization by using an approach recently foundto work well for the K-user white Gaussian multiple-accesschannel [4].II. Modulated Estimate CorrectionThe best method for coding for single-user Gaussian chan-nels with full feedback seems to involve estimate correction,i.e., one maps the message onto a point on the real line andtransmits by correcting the receiver's linear minimum-mean-squared-error (LMMSE) estimate of this point at each chan-nel use [5]. Similar techniques had been suggested for dis-crete memoryless channels (DMCs) as early as [6] and forthe white Gaussian channel in [7]. In [5], where Gaussianchannels with colored noise are considered, we �rst �nd theidea of modulating the estimate correction. This is done to\align" the transmitted symbols with the corresponding noisesymbols, thereby increasing the mutual information betweenthe transmitter and receiver symbol sequences. We will callthis transmitting technique modulated estimate correction orsimply MEC. One advantage of adopting MEC, apart fromits excellent performance, is that the only design issue is thechoice of the modulating sequence.The MEC approach was adapted to the 2-user multiple-access channel with feedback (MAC-FB) in [2]. The idea isto let the �rst user correct the receiver's estimate of her mes-sage point without modulation, while the second user correctsthe receiver's estimate of his message point with modulationby �1. The purpose of the modulation is, as for the single-user case, to align the two transmitted symbols to increasethe mutual information between the input and output sym-bol sequences. It was found that, in the capacity achiev-ing steady-state, the second user's modulating sequence is+1;�1;+1;�1; : : : [2]. In fact, this turns out to be the modu-lating sequence right from the very �rst transmission and notjust in steady-state.

The above technique was generalized to the K-user MAC-FB by considering complex noise rather than real noise andby using complex modulating sequences [4]. We here describea similar generalization for the K-user broadcast channel withfeedback. III. Channel ModelThe K-user white Gaussian broadcast channel is a K + 1terminal channel with one input X and K outputs Y1, Y2,: : : ; YK such that Yk = X + Zk; (1)k = 1; 2; : : : ; K, where the Zk are independent Gaussian noiserandom variables with zero mean (note that [1] considers aslightly more general model with an additional common noiserandom variable). We will consider both real noise with vari-ance �2k and complex noise whose real and imaginary parts areindependent and have variance �2k. For the real case we willuse the channel in blocks of length two to simulate a complexchannel, and for the complex case we will allow X to be acomplex random variable.The broadcast channel is used N times and we denote thenth input and outputs byXn and Ykn. There is a block energyconstraint on the inputs:NXn=1E[jXnj2]=N � P : (2)We assume full feedback is available from all K receivers sothat Xn is a function of the messages at the input terminaland the K output sequencesY n�1k := Yk1; Yk2; : : : ; Yk(n�1); k = 1; 2; : : : ; K: (3)We here consider only the scenario where one independentmessage is sent to each user, i.e., the transmitting termi-nal sends one Bk-bit message to receiving terminal k. Therate of the kth message is thus Rk = Bk=N bits per use or(Bk=N) ln(2) nats per use. The capacity region R of the BC-FB is the closure of the set of rate-tuples (R1; R2; : : : ; RK) atwhich the receiving terminals can decode their messages witharbitrarily small positive error probability.IV. Transmission and LMMSE EstimationThe transmitting terminal maps the K messages onto thecomplex plane as points �k, k = 1; : : : ; K. Without loss ofessential generality, we assume that the �k are Gaussian dis-tributed with zero mean and variance 1 for the real and imag-inary parts. After the nth channel use, receiver k estimates�k by using the LMMSE estimate �̂kn given Y nk . We write theestimation error as �kn = �̂kn � �k, where �̂k0 = 0.



At time n the transmitting terminal sendsXn = KXk=1Xkn; (4)where Xkn =qPk=�2k(n�1) � �k(n�1) �m�kn; (5)�2kn = E[j�knj2] is the variance of receiver k's estimation er-ror, Pk is a real number, and mkn is a complex modulationcoe�cient. Both the Pk and the mkn are chosen before trans-mission and are known to all receivers. Of course, the choiceof the Pk and mkn must take into account the block energyconstraint. The mkn are complex conjugated to simplify theensuing expressions somewhat.The performance analysis of the \full" LMMSE strategiesproves di�cult because successive channel outputs are not in-dependent. This is di�erent than for the MAC-FB [4]. Wethus introduce a class of simpler, but suboptimal, strategies.At time n, let receiver k estimate �k(n�1) by using the LMMSEestimate �̂k(n�1) given Y n�M::nk := Yk(n�M); : : : ; Ykn. The es-timate of �k is then the recursive �̂kn = �̂k(n�1)� �̂k(n�1). Thetransmitter will continue to use MEC and sends the sum ofmodulated versions of the �kn.The receiver thus uses an error-estimate of memory-M andwe call it an \E(M) estimate". Note that an E(N) estimate(or E(1) estimate) is equivalent to a \full" LMMSE estimate.We will here consider only E(0) estimation, as was done in [1].V. Performance Analysis for E(0) EstimatesOur analysis follows along the lines of [1]. User k's E(0)estimates are simply�̂k(n�1) = E[�k(n�1)Y �kn]VYkn � Ykn; (6)where VYkn = E[jY 2knj] is the variance of Ykn. In the appendixwe show that �2kn = �2k(n�1) � VYknjXknVYkn ; (7)where VYknjXkn is the variance of Ykn given Xkn. The \in-stantaneous rate" is thusRkn = log ��2k(n�1)=�2kn�= log �VYkn=VYknjXkn�= I(Xkn;Ykn): (8)One can derive similar results for E(M) estimates, but thereare additional conditioning random variables Y n�M::n�1k .As in [1], we are especially interested in the correlationcoe�cient �k`n = E[�kn��̀n]p�2kn�2̀n : (9)The recursion for �k`n is (see the appendix)�k`n = 1pVYknjXknVY`njX`n h�k`(n�1)pVYknVY`n� cknc�̀n ��rVYknVY`n +r VY`nVYkn � dk`n�� ; (10)

where ckn = E[�k(n�1)X�n]�q�2k(n�1) (11)dk`n = E[YknY �̀n]/pVYknVY`n : (12)VI. Equal Noise PowersFrom here on we consider only the symmetric case withequal noise powers, i.e., �2k = �2 for all k. Assuming thatE[jXnj2] = P , we haveE[YknY �̀n] = P + �2 � �[k � `]; (13)where �[k] is the Kronecker-delta function taking on the value1 if k = 0 and 0 otherwise. The recursion (10) simpli�es to�k`n = 1pVYknjXknVY`njX`n ��k`(n�1) (P + �2)� cknc�̀n ��P + �2(2� �[k � `])P + �2 �� : (14)We collect the �k`n to make a matrix recursion�Q�n = � �Q�n�1(P + �2)� cncHn �AqV YKn jXKn V TYKn jXKn ; (15)where�Q�n = 266664 1 �12n �13n � � � �1Kn��12n 1 �23n � � � �2Kn��13n ��23n 1 � � � �3Kn... ... ... . . . ...��1Kn ��2Kn ��3Kn � � � 1 377775 ; (16)
A = 2664 1 a : : : aa 1 : : : a... . . . ...a a : : : 1 3775 ; a = P + 2�2P + �2 ; (17)cn and V YKn jXKn are the length K column vectors of the re-spective ckn and VYknjXkn , the \�" in front of the fractiondenotes term-by-term division (a \Hadamard quotient" or a\Schur quotient" [8, Chapter 5]), the \�" in front of the Adenotes term-by-term multiplication (a Hadamard product ora Schur product), and the square-root in the denominator de-notes taking term-by-term square roots. The bar on top ofthe �Q�n emphasizes that this is a correlation coe�cient ma-trix, i.e., that the absolute values of its entries are between�1 and +1.We derive two more identities that will prove useful. First,by inserting (1), (4) and (5) into (11), we havecn = �Q�n�1 � �pP �mn� ; (18)where pP and mn are the length K column vectors ofthe pPk and mkn, respectively, and \�" again denotes aHadamard product. Next, we haveVYknjXkn = VYkn � jE[XknY �kn]j2 =(Pk � jmknj2)= (P + �2)� jcknj2; (19)so that V YKn jXKn = (P + �2) � 1� jcnj2; (20)where 1 is the length K all-ones column vector and jcnj2 isthe length K column vector with entries jcknj2.



VII. Fourier ModulationWe now distribute the transmit power equally amongst the Kmessages, i.e., Pk = P1 and jmknj = 1 for all k and n. Weproceed by induction. Consider the recursion (15) and n = 1.The matrix �Q�0 is simply the K �K identity matrix, whichis of course a circulant matrix. But circulant matrices haveas one possible set of eigenvectors the columns of the Fouriertransform matrix F whose entry at row k and column ` isej2�(k�1)(`�1)=K . We denote the kth column of F by fk.Suppose that at time n the matrix �Q�n�1 has the eigenvec-tors fk and the corresponding eigenvalues �kn, k = 1; : : : ; K.We choose some eigenvalue �̂n and make mn the correspond-ing eigenvector f̂n. We then havecn = �Q�n�1 � pP1mn = pP1�̂nf̂n; (21)VYknjXkn = VY1n � jc1nj2= (P + �2)� P1�̂2n; (22)E[jXnj2] = P1 �mHn �Q�n�1mn= P1 �K�̂n: (23)With these identities, and setting E[jXnj2] = P , we can sim-plify (15) to�Q�n = �Q�n�1(P + �2)� (P=K)�̂nf̂nf̂Hn �A(P + �2)� (P=K)�̂n : (24)Note that the Hadamard quotient has become a scalar divi-sion. Multiplying by F�1 = FH=K on the left and by F onthe right, we �nd that F�1 �Q�nF is a diagonal matrix withentries�k(n+1) =8><>: �kn(P+�2)�(1+(K�1)a)(P=K)�̂n(P+�2)�(P=K)�̂n if f̂n = fk,�kn(P+�2)�(1�a)(P=K)�̂n(P+�2)�(P=K)�̂n else. (25)This implies that �Q�n also has the columns of F as eigenvec-tors and that its eigenvalues are given by (25). Equation (25)is thus the recursion for the eigenvalues of �Q�n .Experiments show that (25) converges to a \periodicsteady-state" by choosing the modulation coe�cient vectorscyclically from the columns of the Fourier transform matrixF , i.e., mn is column [(n� 1) mod K] + 1 of F . However, itseems di�cult to prove that convergence actually occurs. Tobypass this problem, any \�xed point" of the recursion canbe reached by appropriately initializing the transmission byprior agreement between the users. Alternatively, it shouldbe possible to modify the transmit powers for the �rst K � 1channel uses to set the K eigenvalues before the Kth channeluse. This would be a generalization of the approach describedin [1]. VIII. An Outer BoundAn outer bound to the K = 2 capacity region was givenin [1], where the channel was made physically degraded bygiving user 1 both Y1 and Y2. This enlarges the capacity re-gion because user 1 could simply ignore Y2. Furthermore, thecapacity region of this physically degraded broadcast channelis not increased by feedback (the proofs of [9, 10] can be ex-tended to vector reception) and is the set of rate pairs (R1; R2)

satisfying 0 � R1 � 12 log �1 + 2P��2 �0 � R2 � 12 log �1 + P (1��)�2+P� � ; (26)where � takes on any value between 0 and 1. The 1=2 infront of the log is needed for the real and complex cases if wenormalize the rates by the number of real dimensions.One can generalize this outer bound for K > 2. The ideais to give user k the outputs Yk; Yk+1; : : : ; YK to get a K userphysically degraded broadcast channel. The capacity regionof this channel with and without feedback is the set of rate-tuples (R1; : : : ; RK) satisfying0 � Rk � 12 log 1 + (K � k + 1)P �k�2 + (K � k + 1)PPk�1`=1 �`! ; (27)for k = 1; : : : ; K, �k � 0 andPKk=1 �k = 1. The proof of thisresult follows from generalizations of the results of [10, 11, 12].We would like to �nd the best equal-rate point R = R1 =: : : = RK in (27). We do this by settingKP�1�2 = (K � k + 1)P�k�2 + (K � k + 1)Pk�1`=1 �` (28)for 2 � k � K. From this one can derive the recursion�k = �k�1 h1 + PK�1�2 i+ K�1(K � k + 1)(K � k + 2) (29)for 2 � k � K. Note that the �k increase with k, and thatthey are all zero if �1 = 0. Thus, there is a unique �1, 0 <�1 � 1=K, so that PKk=1 �k = 1. This value can easily befound by binary search and gives an outer bound on the equal-rates. IX. An ExampleWe extend the example of [1] to K users. Let P = 10 and�2 = 1. The results of applying the eigenvalue recursion (25)are shown in Fig. 1, where the sum-of-equal-rates KR is plot-ted as a function of K. The recursion converges quite rapidlyfor small K but requires, e.g., about 800 channel uses to con-verge to within the 2nd decimal place of KR = 1:7228 forK = 100.The outer bound was calculated with the method describedin section VIII, and does not seem tight for large K. However,the bound does show that one cannot improve much over E(0)estimation for, say, K � 4.X. Concluding RemarksWe have not discussed many important issues. First, onewill get a double exponential decrease in error probability withthe number of channel uses N (see [1]). Next, non-equal ratepoints and non-equal noise powers deserve to be consideredin more detail. Third, in section VII one could have usedany K � K orthogonal matrix whose entries have absolutevalue one, e.g., a Walsh-Hadamard transform matrix. Thiswill give somewhat more e�cient strategies for the real noisecase. Fourth, we expect that the E(M) estimates withM > 0will improve the rates found here, and we guess that the fullLMMSE estimates will achieve capacity in the steady state.It is also interesting to consider what rates are achievable asK ! 1. Finally, we note that the coding techniques pre-sented here will also work for the white Gaussian interference



10
0

10
1

10
2

0

0.5

1

1.5

2

2.5

Number of Users = K

KR

capacity without feedback

achievable with feedback

outer bound

Fig. 1: Sum-of-equal-rates achievable with P = 10, �2 = 1 andE(0) estimation. The rate units are nats/use/dimension.channel with full feedback from the receiving terminals to theirtransmitting terminals.We end the paper with a remark that it is likely no accidentthat Fourier modulating coe�cients work well. After all, ifone uses MEC transmission and LMMSE reception the entiresystem is linear.Appendix: E(0) EstimationThe variances of the errors are�2kn = E"�����k(n�1) � E[�k(n�1)Y �kn]VYkn � Ykn����2#= �2k(n�1) � jE[�k(n�1)Y �kn]j2VYkn : (30)But from (5) we haveE[�k(n�1)Y �kn] = E[XknY �kn] � 1m�kns�2k(n�1)Pk : (31)Using VXkn = Pkjm2knj and inserting (31) into (30), we have�2kn = �2k(n�1) � VYkn � E[XknY �kn]�V �1XknE[XknY �kn]VYkn= �2k(n�1) � VYknjXknVYkn ; (32)which proves (7).The cross-correlations can be expanded as�k`n = E[�kn��̀n]p�2kn�2̀n= E[[�k(n�1) � �̂k(n�1)][�`(n�1) � �̂`(n�1)]�]q�2k(n�1)�2̀(n�1)pVYknjXknVY`njX`n=VYknVY`n= r VYknVY`nVYknjXknVY`njX`n � ��k`(n�1)� ~c�̀̀ n~ck`n � ~ckkn~c�̀kn + ~ckkn~c�̀̀ n dk`n] ; (33)
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