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Abstract — Modulated estimate correction strate-
gies for the K-user white Gaussian broadcast chan-
nel with feedback are presented. The strategies are
based on the discrete Fourier transform of length K.
A recursion for finding good rates is derived and cal-
culations show that the achievable sum rate increases
with K. An outer bound shows that not much further

improvement in sum rate is possible for small K.

I. INTRODUCTION

The capacity region of the K-user white Gaussian broad-
cast channel with feedback (BC-FB) is unknown. A good
strategy for two users was presented in [1] based on earlier
results of [2]. However, it seemed that this strategy does not
generalize to more than two users [3]. We show that there is
a natural generalization by using an approach recently found
to work well for the K-user white Gaussian multiple-access
channel [4].

II. MoODULATED ESTIMATE CORRECTION

The best method for coding for single-user Gaussian chan-
nels with full feedback seems to involve estimate correction,
i.e., one maps the message onto a point on the real line and
transmits by correcting the receiver’s linear minimum-mean-
squared-error (LMMSE) estimate of this point at each chan-
nel use [5]. Similar techniques had been suggested for dis-
crete memoryless channels (DMCs) as early as [6] and for
the white Gaussian channel in [7]. In [5], where Gaussian
channels with colored noise are considered, we first find the
idea of modulating the estimate correction. This is done to
“align” the transmitted symbols with the corresponding noise
symbols, thereby increasing the mutual information between
the transmitter and receiver symbol sequences. We will call
this transmitting technique modulated estimate correction or
simply MEC. One advantage of adopting MEC, apart from
its excellent performance, is that the only design issue is the
choice of the modulating sequence.

The MEC approach was adapted to the 2-user multiple-
access channel with feedback (MAC-FB) in [2]. The idea is
to let the first user correct the receiver’s estimate of her mes-
sage point without modulation, while the second user corrects
the receiver’s estimate of his message point with modulation
by £1. The purpose of the modulation is, as for the single-
user case, to align the two transmitted symbols to increase
the mutual information between the input and output sym-
bol sequences. It was found that, in the capacity achiev-
ing steady-state, the second user’s modulating sequence is
+1,—1,41,-1,... [2]. In fact, this turns out to be the modu-
lating sequence right from the very first transmission and not
just in steady-state.

The above technique was generalized to the K-user MAC-
FB by considering complex noise rather than real noise and
by using complex modulating sequences [4]. We here describe
a similar generalization for the K-user broadcast channel with
feedback.

III. CHANNEL MODEL

The K-user white Gaussian broadcast channel is a K + 1
terminal channel with one input X and K outputs Yi, Ys,
..., Yk such that

Y =X+ Z, (1)

k=1,2,...,K, where the Z; are independent Gaussian noise
random variables with zero mean (note that [1] considers a
slightly more general model with an additional common noise
random variable). We will consider both real noise with vari-
ance o2 and complex noise whose real and imaginary parts are
independent and have variance o7. For the real case we will
use the channel in blocks of length two to simulate a complex
channel, and for the complex case we will allow X to be a
complex random variable.

The broadcast channel is used N times and we denote the
nth input and outputs by X,, and Yj,. There is a block energy
constraint on the inputs:

N

> E[X.]']/N<P. (2)

n=1

We assume full feedback is available from all K receivers so
that X, is a function of the messages at the input terminal
and the K output sequences
Ve =Y, Y Yoy,  k=1,2,..., K. (3)
We here consider only the scenario where one independent
message is sent to each user, i.e., the transmitting termi-
nal sends one Bj-bit message to receiving terminal k. The
rate of the kth message is thus R, = Bj/N bits per use or
(Br/N)In(2) nats per use. The capacity region R of the BC-
FB is the closure of the set of rate-tuples (Ri, R2,...,Rx) at
which the receiving terminals can decode their messages with
arbitrarily small positive error probability.

IV. TRANSMISSION AND LMMSE ESTIMATION

The transmitting terminal maps the K messages onto the
complex plane as points 6, k = 1,..., K. Without loss of
essential generality, we assume that the 6, are Gaussian dis-
tributed with zero mean and variance 1 for the real and imag-
inary parts. After the nth channel use, receiver k estimates
0 by using the LMMSE estimate O given Y. We write the
estimation error as €g, = ékn — 0, where éko =0.



At time n the transmitting terminal sends

K
k=1

Xin = \/Plc/a'i(n,]_) *€k(n-1) " mZny (5)

0rn = E[lexn|?] is the variance of receiver k’s estimation er-
ror, P is a real number, and my, is a complex modulation
coefficient. Both the Py and the my, are chosen before trans-
mission and are known to all receivers. Of course, the choice
of the P, and mg, must take into account the block energy
constraint. The my, are complex conjugated to simplify the
ensuing expressions somewhat.

The performance analysis of the “full” LMMSE strategies
proves difficult because successive channel outputs are not in-
dependent. This is different than for the MAC-FB [4]. We
thus introduce a class of simpler, but suboptimal, strategies.
At time n, let receiver k estimate € (,_1) by using the LMMSE
estimate €x(,—1) given Yk"’M“" = Yr(m-m), -+ Yin. The es-
timate of 6y, is then the recursive G, = ék(n_l) —é€k(n—1)- The
transmitter will continue to use MEC and sends the sum of
modulated versions of the e, .

The receiver thus uses an error-estimate of memory-M and
we call it an “E(M) estimate”. Note that an E(IV) estimate
(or E(oc0) estimate) is equivalent to a “full” LMMSE estimate.
We will here consider only E(0) estimation, as was done in [1].

where

V. PERFORMANCE ANALYSIS FOR E(0) ESTIMATES

Our analysis follows along the lines of [1]. User k’s E(0)
estimates are simply

€k(n—1) =

where Vy,, = E[|Y}2,]] is the variance of Yk,. In the appendix
we show that

VYkn [ Xken

, 7
o (7)

2 2
Okn = Ok(n—1) °

where Vy, |x,, is the variance of Yy, given Xg,. The “in-
stantaneous rate” is thus

Ry = lOg (Uz(nfl)/o-lin)
= log (VYkn /VYkn \an)
= I(Xgn; Yien)- (8)

One can derive similar results for E(M) estimates, but there
are additional conditioning random variables Y;*~"-"~!,

As in [1], we are especially interested in the correlation

coefficient B 1
€kn€on
— )

Oin%en

Pkin —

The recursion for pys, is (see the appendix)

1
[Pu(nq) v Vi Ve,
V VYknlxkn VYZn\Xen

% [ Vy,, [ Vy,
nCin * = = dren ’ 10
CknCy < VA - V5 - kl ( )

Plkin

where
Ckn = E[ek(n—l)X:L]/\/Ui(n_l) (11)
dien = EYeYinl/ /Wi Vren, - (12)
VI. EQuAL NoOISE POWERS

From here on we consider only the symmetric case with
equal noise powers, i.e., of = o2 for all k. Assuming that
E[|X.|’] = P, we have

E[YinYiy] = P +0” - 6[k — 4], (13)

where 0[k] is the Kronecker-delta function taking on the value
1if k =0 and 0 otherwise. The recursion (10) simplifies to

1

V VYkn [ Xkn Van [ Xen

— ChknCin - <P i 02}(32+—U<52[k — ZD)] - (14)

Phin [Pren-1) (P +0?)

We collect the pier, to make a matrix recursion

. Qe,_(P+0%) —c,cf ©A
Q., =02t T S W)
Ve xie Ve e
where
1 Pi2n  Pl3n PlKn
Plan 1 P23n P2Kn
Qe = p;3n p§3n 1 P3Kn (16)
L pIKn pEKn p;Kn 1
1 a ... a
a 1 ... a P 49252
A = L a=Tt2C a1
P +o0?
La a ... 1

¢, and Vy i yx are the length K column vectors of the re-
spective cg, and Vy, |x,., the “©” in front of the fraction
denotes term-by-term division (a “Hadamard quotient” or a
“Schur quotient” [8, Chapter 5]), the “©®@” in front of the A
denotes term-by-term multiplication (a Hadamard product or
a Schur product), and the square-root in the denominator de-
notes taking term-by-term square roots. The bar on top of
the an emphasizes that this is a correlation coefficient ma-
trix, i.e., that the absolute values of its entries are between
—1 and +1.

We derive two more identities that will prove useful. First,
by inserting (1), (4) and (5) into (11), we have

¢ =Qc, - (\/E®mn) ,

where \/E and m, are the length K column vectors of

the /P, and my,, respectively, and “©” again denotes a
Hadamard product. Next, we have

(18)

VYknlxkn Wi — |E[anyk*n]|2 /(Pk : |mkn|2)
= (P+0%) — ekl (19)
so that
KYT{ﬂxff =(P +UZ) -1 |§n|2’ (20)

where 1 is the length K all-ones column vector and |c,|* is
the length K column vector with entries |ckn|>.



VII. FOURIER MODULATION

We now distribute the transmit power equally amongst the K
messages, i.e., P, = P1 and |mg,| = 1 for all kK and n. We
proceed by induction. Consider the recursion (15) and n = 1.
The matrix Qso is simply the K x K identity matrix, which
is of course a circulant matrix. But circulant matrices have
as one possible set of eigenvectors the columns of the Fourier
transform matrix F' whose entry at row k and column £ is
e 27 k=D=D/K e denote the kth column of F' by ik
Suppose that at time n the matrix anﬂ has the eigenvec-
tors Lc and the corresponding eigenvalues Aipn, K =1,..., K.

We choose some eigenvalue A» and make m,, the correspond-
ing eigenvector in We then have

c, = an_1 vVPim, = \/Flj\nfn; (21)
VY | Xk Vv, — le1n]?
= (P+0%) - P\, (22)
B|X.] = P-m Q. ,m,
= P -K\,. (23)

With these identities, and setting E[|X,|*] = P, we can sim-
plify (15) to

o - Qe,_,(P+0%) — (P/E)A] [ oA
- (P +02) — (P/K)A,

(24)

Note that the Hadamard quotient has become a scalar divi-
sion. Multiplying by F~' = F¥ /K on the left and by F on
the right, we find that FﬁlenF is a diagonal matrix with
entries

A (P0)— (14 (K~ Da)(P/K)Sn _
(Po2)—(P/K)An it f, =75

Ak(nt1) =
' A (Po®)=(1—a)(P/K)An

(P+o2)—(P/K)An else.

(25)
This implies that an also has the columns of F' as eigenvec-
tors and that its eigenvalues are given by (25). Equation (25)
is thus the recursion for the eigenvalues of an.

Experiments show that (25) converges to a “periodic
steady-state” by choosing the modulation coefficient vectors
cyclically from the columns of the Fourier transform matrix
F,ie., m, is column [(n — 1) mod K] + 1 of F. However, it
seems difficult to prove that convergence actually occurs. To
bypass this problem, any “fixed point” of the recursion can
be reached by appropriately initializing the transmission by
prior agreement between the users. Alternatively, it should
be possible to modify the transmit powers for the first K — 1
channel uses to set the K eigenvalues before the Kth channel
use. This would be a generalization of the approach described
in [1].

VIII. AN OUTER BOUND

An outer bound to the K = 2 capacity region was given
in [1], where the channel was made physically degraded by
giving user 1 both Y7 and Y>. This enlarges the capacity re-
gion because user 1 could simply ignore Y>. Furthermore, the
capacity region of this physically degraded broadcast channel
is not increased by feedback (the proofs of [9, 10] can be ex-
tended to vector reception) and is the set of rate pairs (R1, R2)

satisfying
0 < R < lLlog(1+ 22
S s g (26)
0 S R S 2 lOg (1 + 0'2+Pa) ’
where o takes on any value between 0 and 1. The 1/2 in

front of the log is needed for the real and complex cases if we
normalize the rates by the number of real dimensions.

One can generalize this outer bound for K > 2. The idea
is to give user k the outputs Yy, Yiy1,..., Yk to get a K user
physically degraded broadcast channel. The capacity region
of this channel with and without feedback is the set of rate-
tuples (Ri,..., Rk) satisfying

(K —k+1)Poy
- — | @
o2+ (K—-k+1)P) ,_ ar

1
OSRksilog <1+

fork=1,...,K, ar >0 and Zle ar = 1. The proof of this
result follows from generalizations of the results of [10, 11, 12].

We would like to find the best equal-rate point R = Ry =
...= Rk in (27). We do this by setting

KPai (K — k +1)Pay 28)
o? o2+ (K—k+1) f:_llaz
for 2 < k < K. From this one can derive the recursion
PKOQ] Koy
=ap—1 |1 29
= o 1[ A I oy gy M G

for 2 < k < K. Note that the ay increase with k, and that
they are all zero if @y = 0. Thus, there is a unique a;, 0 <
a1 < 1/K, so that Zi;lak = 1. This value can easily be
found by binary search and gives an outer bound on the equal-
rates.

IX. AN EXAMPLE

We extend the example of [1] to K users. Let P =10 and
o? = 1. The results of applying the eigenvalue recursion (25)
are shown in Fig. 1, where the sum-of-equal-rates KR is plot-
ted as a function of K. The recursion converges quite rapidly
for small K but requires, e.g., about 800 channel uses to con-
verge to within the 2nd decimal place of KR = 1.7228 for
K =100.

The outer bound was calculated with the method described
in section VIII, and does not seem tight for large K. However,
the bound does show that one cannot improve much over E(0)
estimation for, say, K < 4.

X. CONCLUDING REMARKS

We have not discussed many important issues. First, one
will get a double exponential decrease in error probability with
the number of channel uses N (see [1]). Next, non-equal rate
points and non-equal noise powers deserve to be considered
in more detail. Third, in section VII one could have used
any K x K orthogonal matrix whose entries have absolute
value one, e.g., a Walsh-Hadamard transform matrix. This
will give somewhat more efficient strategies for the real noise
case. Fourth, we expect that the E(M) estimates with M > 0
will improve the rates found here, and we guess that the full
LMMSE estimates will achieve capacity in the steady state.
It is also interesting to consider what rates are achievable as
K — oo. Finally, we note that the coding techniques pre-
sented here will also work for the white Gaussian interference
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Fig. 1: Sum-of-equal-rates achievable with P = 10, 02 = 1 and
E(0) estimation. The rate units are nats/use/dimension.

channel with full feedback from the receiving terminals to their
transmitting terminals.

We end the paper with a remark that it is likely no accident
that Fourier modulating coefficients work well. After all, if
one uses MEC transmission and LMMSE reception the entire
system is linear.

ApPENDIX: E(0) ESTIMATION

The variances of the errors are

2

E[Ek(nf I)Yk*n]

Ulzn = E €k(n—1) — Vv, “Yin
kn
|Efek(n—1) Yiull*
= Uz(nfl) - T (30)
But from (5) we have
1 ”z( -1)
Eleb(n-1)Yin] = E[XgnYin] - e\~ (31)

kn
Using Vx,, = Px|m3,| and inserting (31) into (30), we have

Vi, — B[Xn Vi Vi, E[Xkn Y5,
VYkn

2
Ok(n—1) "

2 —
Okn =

VYknlxkn

32
Voo (32)

2
= Og(n-1)"

which proves (7).

The cross-correlations can be expanded as
E[Eknfzn]

Tinin

Ellextn-1) = éxn-n)ll€ttn—1) — €c(n—1)]"]

\/ Uz(nq)"?(nq) \/Vykn 1Xtn V¥0n | Xen [V¥ien Ven

— \/ VYkn Van
VYknlxkn VYZn\Xen
~% o~ ~ ~% ~ ~% d
— CrenChin — CkknCihn + ChknCren dren]

Plkin =

: [Pu(nq)
(33)

where
Cktn = E[Ek(nfl)yvltz]/ A/ U]%(n_l)vyen (34)
dien = EYinYnl/ v/ Vi, Vi, (35)

are the correlation coefficients of €k(n—1) and Yy, and Yy, and
Yin, respectively. To simplify (33) somewhat, let

Ckn = Ckin - m
= Elegn-1(Xn + an)*]/ m
= Eler-nXal/ M'

Note that ¢k, does not depend on £. We now have

1
[Pu(n—l) V Wi Vi
V VYknlxkn Vanlxzn

« [ Vv, [V,
— nCen * _—kn —_—tn d n R 37
CknCy ( Vs, + Vo, ke >] (37)
)

which is the same as (10).

(36)

Pkin
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