
Computational Science and Engineering
(Int. Master’s Program)

Technische Universität München

Master’s Thesis

Scalable Kernel Matrix Inversion using
Hierarchical Low-Rank Approximations

Mohamed Aziz Kara borni

Computational Science and Engineering
(Int. Master’s Program)

Technische Universität München

Master’s Thesis

Scalable Kernel Matrix Inversion using Hierarchical
Low-Rank Approximations

Author: Mohamed Aziz Kara borni
Examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz
Assistant advisor: M.Sc. Keerthi Gaddameedi
Submission Date: September 14th, 2024

ii

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

September 14th, 2024 Mohamed Aziz Kara borni

Acknowledgments

I would like to extend my heartfelt gratitude to all those who have supported me
throughout the completion of this thesis. I am profoundly grateful to my advisor, Keerthi

Gaddameedi, whose initial introduction to this topic ignited my interest and whose
steadfast support and readiness to address every question and concern have been

instrumental in bringing this research to fruition. I am also thankful to my supervisor,
Univ.-Prof. Dr. Hans-Joachim Bungartz, for granting me the opportunity to explore the

assigned topic. Additionally, I am deeply appreciative of all those who contributed to the
development of the GOFMM software. Their dedication and innovative efforts provided
the essential tools needed for this thesis, without which this work would not have been

possible. Lastly, my sincere thanks go to my family and friends for their unwavering
encouragement, patience, and understanding throughout this journey. Their constant
support has been a cornerstone of my success and has kept me motivated through the

challenges.

v

Abstract

Kernel methods play a critical role in modern machine learning by enabling non-linear
data transformations.These methods rely heavily on the inversion of large Symmetric Positive-
Definite kernel(SPD) matrices. However, traditional inversion techniques scale with cubic
complexity, making them impractical for large datasets commonly encountered in real-
world applications. This computational bottleneck has spurred interest in developing
more efficient matrix inversion techniques.

In this thesis, we investigate the use of hierarchical low-rank approximations to mitigate
the computational challenges associated with kernel matrix inversion. In particular, we
focus on the Geometry-Oblivious Fast Multipole Method(GOFMM), which decomposes
dense SPD kernel matrices into smaller, manageable low-rank blocks. This decomposi-
tion reduces the overall complexity of the inversion process to approximately O(N logN),
while maintaining a high degree of accuracy. The GOFMM approach allows for scalable
matrix inversion, making it feasible to apply kernel-based to significantly larger datasets.

We develop and implement algorithms based on GOFMM, optimizing them for parallel
execution on multi-core system. Strong and weak scaling experiments are conducted to
evaluate the performance of these algorithms across various setups. We test the methods
on synthetic data and real-world datasets such as MNIST.

The work presented in this document demonstrates that hierarchical low-rank approxi-
mations, specifically GOFMM, offer a scalable and efficient alternative to traditional kernel
matrix inversion techniques. These methods pave the way for applying kernel-based ma-
chine learning models to increasingly larger and more complex datasets, further expand-
ing their practical utility in diverse fields such as regression, classification, and probabilis-
tic modeling.

vii

Contents

 Acknowledgements v

 Abstract vii

 1 Introduction 1

 2 State of the art 3
 2.1 Kernels . 3
 2.2 Symmetric Positive-Definite Matrices . 3
 2.3 Low-rank approximations . 4
 2.4 Hierarchical matrices . 5
 2.5 Geometry-oblivious techniques . 7

 2.5.1 Hierarchical compression of dense SPD 7
 2.5.2 Factorization and hierarchical pseudo-inverse 9

 2.6 Applications . 11
 2.6.1 Kernel ridge regression . 11
 2.6.2 Gaussian processes . 12

 3 Scalable kernel matrix inversion 15
 3.1 Setup . 15
 3.2 Error evaluation . 15
 3.3 Implementation . 17
 3.4 Datasets . 22

 4 Numerical Experiments 27
 4.1 Accuracy analysis . 27
 4.2 Multi-core measurements . 29
 4.3 Performance analysis . 34

 5 Conclusion and Future work 39
 5.1 Conclusion . 39
 5.2 Future work . 40

 Bibliography 43

ix

Contents

 Appendix 49

 Detailed descriptions 49
 1 Installation and compilation . 49
 2 Execution for inverse kernel matrix . 49

x

1 Introduction

In the field of machine learning, kernel methods such as Kernel ridge regression (KRR)
and Gaussian processes (GPs) have become fundamental tools for prediction and infer-
ence. These methods rely heavily on kernel matrices, which encapsulate the relationships
between data points through their similarity measures. These kernel matrices often exhibit
Symmetric Positive-Definite (SPD) properties, which ensures their invertibility—a critical
feature for many kernel-based algorithms such as KRR and GPs when applied to large
datasets [9 , 11]. The ability to invert these matrices is essential for tasks such as optimiza-
tion and model training, which are at the core of machine learning models.

However, as the size of datasets grows, the associated kernel matrices increase in size,
making inversion computationally prohibitive. Traditional methods for inverting SPD ma-
trices, such as Gaussian Elimination and Cholesky Decomposition, exhibit cubic complex-
ity O(N3), where N is the number of data points [9]. This complexity poses significant
computational and memory challenges, particularly in large-scale machine learning appli-
cations [4 , 34]. As machine learning models evolve to process increasingly large datasets,
overcoming this computational bottleneck has become a pressing concern in the field.

To address these challenges, hierarchical low-rank approximations have emerged as
a promising solution to reduce the computational burden associated with matrix inver-
sion. These methods work by approximating the large kernel matrix through a decom-
position into smaller, lower-rank components, which simplifies the inversion process and
significantly reduces computational complexity [3]. Among these methods, the Geometry-
Oblivious Fast Multipole Method (GOFMM) stands out for its ability to handle large datasets
while preserving accuracy [39]. GOFMM efficiently compresses the dense kernel matrix
and performs matrix inversion using these compressed representations, resulting in sub-
stantial computational savings.

This thesis focuses on the scalability of hierarchical low-rank approximations, particu-
larly the GOFMM, in the context of SPD kernel matrix inversion for KRR and GPs. Our
goal is to develop algorithms that reduce the complexity of matrix inversion from O(N3)
to approximately O(N logN), making it feasible to apply these methods to larger datasets
efficiently. Specifically, we aim to approximate the inverse of the kernel matrix K−1, with
the approximation satisfying the following condition:

||K−1 − K̃−1||
||K−1||

≤ ϵ, 0 < ϵ < 1,

where ϵ is a user-defined tolerance. The inverse calculation is performed using hierarchical
methods in GOFMM, where the dense kernel matrix is first compressed and then inverted.

1

1 Introduction

By leveraging these techniques, we aim to achieve efficient kernel matrix inversion that
scales well with increasing dataset sizes.

The key contributions of this research are:

• Algorithm Development: Developing scalable algorithms for kernel matrix inver-
sion using GOFMM and applying them to KRR and GPs.

• Scaling Experiments: Conducting strong and weak scaling experiments using OpenMP
to evaluate the performance of these algorithms.

• Performance Analysis: Comparing the efficiency and accuracy of GOFMM with tra-
ditional inversion methods and analyzing the impact of these methods on the scala-
bility of kernel-based machine learning models.

The ultimate goal of this work is to enhance the efficiency and scalability of kernel ma-
trix inversion techniques, enabling the broader application of KRR and GPs to real-world,
large-scale machine learning problems.

2

2 State of the art

To thoroughly understand the inversion of SPD kernel matrices using the GOFMM, it is
essential to cover several key theoretical aspects. In this chapter we provide a brief review
of literature on the subject. Each of these topics provides a foundation for understanding
how GOFMM can be applied to kernel matrix inversion.

2.1 Kernels

In machine learning, kernel methods are used to map data into higher-dimensional spaces
where linear separation is more feasible. This mapping is accomplished using a kernel
function k(xi, xj), which measures the similarity between data points xi and xj . The kernel
function generates a kernel matrix K as follows:

Kij = k(xi, xj)

Common kernel functions include:

• Linear Kernel: k(xi, xj) = xTi xj

• Polynomial Kernel: k(xi, xj) = (xTi xj + c)d

• Radial Basis Function (RBF) Kernel: k(xi, xj) = exp
(
−∥xi−xj∥2

2σ2

)
The choice of kernel function affects the properties of the resulting kernel matrix and the

performance of machine learning algorithms. For instance, the RBF kernel maps data into
an infinite-dimensional space, which can capture more complex patterns compared to the
linear kernel [34].

2.2 Symmetric Positive-Definite Matrices

For kernel methods to be effective, the kernel matrix K must be SPD. An SPD matrix has
the following properties:

• Symmetry: The matrix K is symmetric, meaning K = KT .

3

2 State of the art

• Positive-Definiteness: The matrix K is positive-definite if for any non-zero vector
x ∈ RN , the quadratic form xTKx is positive:

xTKx > 0 for all x ̸= 0

The positive-definiteness of K ensures that all its eigenvalues are positive, which is cru-
cial for numerical stability and the effectiveness of algorithms that rely on matrix inversion.
This property allows the use of efficient numerical techniques, such as Cholesky Decom-
position, for matrix inversion and other operations [9].

In the context of kernel methods, the SPD property of the kernel matrix is fundamen-
tal for ensuring that algorithms like KRR and GPs are stable and effective. For large-scale
datasets, hierarchical low-rank approximations are used to handle the computational com-
plexity of these matrices, making kernel-based methods practical for large datasets [11 , 39].

2.3 Low-rank approximations

A low-rank approximation of a matrix A ∈ Rm×n seeks to find a matrix Ã that is close to
A but has a significantly lower rank r, where r ≪ min(m,n). The goal is to approximate
A with a matrix of reduced dimensions that captures the most important features of the
original matrix. Mathematically, this can be expressed as:

Ã = UrΣrV
T
r

where Ur ∈ Rm×r, Σr ∈ Rr×r, and Vr ∈ Rn×r are matrices such that Ã approximates A
with minimized reconstruction error.

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a widely used method for low-rank approxima-
tion. Given a matrix A ∈ Rm×n, SVD decomposes A into three matrices:

A = UΣV T

where U ∈ Rm×m is an orthogonal matrix, Σ ∈ Rm×n is a diagonal matrix with singular
values, and V ∈ Rn×n is an orthogonal matrix. The low-rank approximation is obtained
by truncating the smallest singular values and corresponding vectors [9].

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique that uses low-rank approximation to
reduce the dimensionality of data by projecting it onto the principal components. This
method approximates the covariance matrix of the data and is closely related to the SVD
of the data matrix [17].

4

2.4 Hierarchical matrices

Interpolative Decomposition

Interpolative Decomposition (ID) approximates a matrix G by selecting a subset of its
columns to form a basis for the remaining columns. Specifically, for a matrix G ∈ Rm×n

with rank k, the goal is to find k columns that capture the essential structure of G. This re-
sults in a reduced memory footprint and computational efficiency, with complexity O(kmn).

Formally, there exists a matrix Gcol ∈ Rm×k and a projection matrix P ∈ Rk×n such that:

GcolP = G

where Gcol consists of k selected columns from G, and P typically includes an identity
matrix among its columns. If the rank k is greater than s, where k ≪ n, one can find
Gcol ∈ Rm×s and P ∈ Rs×n such that:

GcolP ≈ G

The approximation error is bounded by:

∥GcolP −G∥F ≤ σs+1

σs
∥G∥F

where σs+1 is the (s+ 1)-th singular value of G.
To compute ID, one can use a rank-revealing QR decomposition. Given G = QR, where

Q is orthonormal and R is upper triangular, we decompose G as:

G =
[
Qleft Qright

] [R11 R12

0 R22

]
where Qleft ∈ Rm×s and R11 is s× s. The approximation is obtained by ignoring R22:

G ≈ QleftR11

Here, Gcol = QleftR11 represents a subset of columns of G, and P is computed as:

P = Is −R12R
−1
11

Thus, ID provides a way to approximate a matrix by selecting key columns and using a
reduced representation, with error bounds related to the singular values of G. However,
rank-revealing factorizations like ID are generally less reliable than SVD [20 , 23].

2.4 Hierarchical matrices

Hierarchical matrices, or H-matrices, offer a data-sparse representation of large matrices,
aiming to achieve nearly linear complexity for matrix operations. For a system with N
equations, achieving optimal efficiency typically requires O(N) operations. However, for
non-sparse matrices, this complexity can be prohibitive. H-matrices are designed to reduce

5

2 State of the art

computational costs by representing matrices using fewer data points, allowing operations
such as matrix-vector multiplication and factorization to be performed efficiently.

An H-matrix is structured to support efficient computations by approximating matrix
operations in nearly linear time. This efficiency is achieved through methods such as two-
sided compression, leading to H2 matrices with O(N) complexity for certain operations
[11]. Techniques like the Fast Multipole Method (FMM) use hierarchical decompositions to
approximate interactions in N -Body problems, where kernel-dependent expansions pro-
vide accurate approximations of the far-field [10].

Gramian Representation

Any SPD matrix can be described as a Gramian matrix of a set of vectors. For an SPD
matrix K ∈ RN×N , there exists a set of vectors {vi} such that:

Kij = vTi vj

While Cholesky decomposition provides a way to compute such vectors, the Gramian
set is not unique and can be represented differently in various vector spaces [9].

Distance Metrics The following distances are derived from the Gramian representation:

• Kernel Distance: As discussed in Section 2.3.1, the kernel matrix K is derived from
a set of Gram vectors such that Kij = ⟨pi, pj⟩. The kernel distance between points pi
and pj is computed using:

dij = ∥pi − pj∥22 = Kii +Kjj − 2Kij

• Geometric Distance: The geometric distance between two points xi and xj is defined
as:

dij = ∥xi − xj∥22
In this context, points are partitioned such that the distance dij between points within
the same partition is minimized. The partitioning process continues until the number
of leaf nodes reaches the predetermined maximum m. This distance metric compu-
tation requires O(N logN) work, where N is the number of points.

• Angle Distance: The angle distance, derived from the angle between Gram vectors,
is given by:

dij = sin2
(
∠pipj
2

)
=

1−Kij

2

Calculating both the kernel and angle distances without sampling requires O(N2)
operations.

6

2.5 Geometry-oblivious techniques

Partitioning large matrices into nearly low-rank blocks can be challenging. The goal
is to find an optimal index ordering to minimize the rank of off-diagonal blocks in the
partitioned matrix. This problem involves finding subsets Ia and Ib such that:

minimize rank(A[Ia, Ib]− S)

where S is a sparse matrix, and A[Ia, Ib] is a sub-block of the system matrix A. Tech-
niques for optimal partitioning include space-filling curves, geodesic distances, and high-
dimensional subspace clustering, each providing different advantages based on the appli-
cation [3 , 11 , 1].

Physical space partitioning leverages the assumption that nearby points influence each
other significantly, while distant points can be approximated efficiently. Techniques such
as quad-tree splitting, geodesic distance metrics, and subspace clustering are employed to
achieve effective partitioning [10 , 2].

Hierarchical Decompositions The hierarchically low-rank approximation of the kernel
matrix K is given by [11 , 3]:

K = D + S + UV, (2.1)

where D is a block-diagonal matrix with each block being an H-matrix, S is a sparse
matrix, and U and V are low-rank matrices. The H-matrix K is computed to satisfy:

∥K −K∥ ≤ ϵ∥K∥,

where ϵ is a user-defined tolerance with 0 < ϵ < 1. If S is zero in Equation 2.1 , K is called
a hierarchically off-diagonal low-rank approximation. Additionally, if D is also zero, the
approximation is termed hierarchically semi-separable. Both the construction of K and the
matrix-vector product can be performed with O(N logN) complexity.

2.5 Geometry-oblivious techniques

2.5.1 Hierarchical compression of dense SPD

In this part, we review the algorithmic approaches detailed in [39] for constructing hierar-
chical low-rank approximations of SPD matrices.

The compression strategy employed by the GOFMM framework, which consists of three
key steps:

1. HIERARCHICALPARTITIONING()

2. NEIGHBORHOODPRUNING()

3. SKELETONIZATION()

7

2 State of the art

Hierarchical partitioning The initial phase in building the hierarchical matrix structure
entails dividing the matrix according to near and far field interactions. Leaf nodes with
dimensions exceeding a specific threshold are classified as part of the far field. An ap-
proximate centroid is determined using a small sample of Gram vectors. Subsequently, a
median split is performed on all nodes, beginning from the root node that includes all data
points[39 , 8].

Neighbor-Based Pruning Following the hierarchical partitioning, neighbor-based prun-
ing is performed, as described in the algorithms 1 , 2 and 3 taken from the document
[39]. This involves constructing three lists: the neighbor list N (α), the near interaction
list Near(α), and the far interaction list Far(α). N (α) is formed by iterating over all neigh-
bors j ∈ N for each i ∈ N (α) and including those where dij is small. The pruning process
continues until either 10 iterations are completed or 80% accuracy is achieved.

Algorithm 1 Neighbor-Based Pruning[39]

1: for all i ∈ N (α) do
2: for all j ∈ N (α) do
3: if dij is small then
4: N (α) = N (α) ∪ {j}
5: end if
6: end for
7: end for

Algorithm 2 Near(α) [39]

1: for all i ∈ N (α) do
2: Near(α) = Near(α) ∪MortonId(i)
3: end for

Finally, in the computation of Far(α), each leaf node β is checked to determine if a /∈
Near(β). If true, β is added to Far(a). Otherwise, the algorithm recurses through the left
and right children, merging nodes to extend the off-diagonal blocks that will be approxi-
mated.

Skeletonization

The off-diagonal blocks are approximated using interpolative decomposition. A skeleton
of each off-diagonal block is constructed by selecting a subset of columns from the block.
The decomposition is expressed as:

Kij = KiBP,

8

2.5 Geometry-oblivious techniques

Algorithm 3 Far(a)[39]

1: for all β ∈ leaf nodes do
2: if α /∈ Near(β) then
3: Far(left childα)
4: Far(right childα)
5: else
6: Far(α) = Far(α) ∪ β
7: end if
8: end for
9: Far(α) = Far(left childα) ∪ Far(right childα)

10: Far(left childα) = Far(left childα) \ Far(α)
11: Far(right childα) = Far(right childα) \ Far(α)

where B represents a leaf node and i is the complement of B within the set. The matrix
P contains the interpolation coefficients, and KiB is the skeleton matrix formed from the
subset of columns corresponding to B. For non-leaf nodes, the skeletons of the left and
right children are recursively computed and then combined to obtain the decomposition
for the parent block.

2.5.2 Factorization and hierarchical pseudo-inverse

A hierarchical approach is crucial for efficiently solving systems of linear equations. In this
work, we utilize matrix factorizations and hierarchical low-rank approximations to com-
pute approximate inversions of dense, nonsingular matrices. Consider the linear system:

Kx = b, (2.2)

where K is a dense matrix, b ∈ RN is a given vector, and x is the unknown solution
vector. To facilitate computation, we partition K into block matrices:

K =

[
K11 K12

K21 K22

]
.

The inverse of K can be efficiently computed using the Sherman-Morrison-Woodbury
(SMW) formula [11 , 32]:

K−1 =

[
K−1

11 +K−1
11 K12S

−1K21K
−1
11 −K−1

11 K12S
−1

−S−1K21K
−1
11 S−1

]
,

where S = K22 − K21K
−1
11 K12 is the Schur complement. In the context of hierarchi-

cal matrices (H-matrices), this decomposition is referred to as the hierarchical inverse or
H-inverse. The SMW formula provides an exact inversion but can lead to numerical insta-
bility [15].

9

2 State of the art

To mitigate instability, we use low-rank approximations, particularly for off-diagonal
blocks like K12, which avoids the direct inversion of these blocks. Hierarchical pseudo-
inverses are employed to enable preconditioning in iterative solvers, such as precondi-
tioned conjugate gradient methods [40 , 30].

We apply this hierarchical structure in GOFMM by decomposing the matrix H into the
form:

H = D + UV + S,

where D is block-diagonal, UV represents low-rank terms, and S is a sparse correction
matrix. While hierarchical semi-separable (HSS) matrices do not involve sparse correc-
tions, FMM requires corrections based on distances between particles in neighboring re-
gions. For computational efficiency, we restrict sparse corrections to HSS without using
the Schur complement.

To approximate the inverse of H = D + UV , we utilize the SMW formula:

H−1 = D−1 −D−1U(I + V D−1U)V D−1,

where D is a block-diagonal matrix that is easy to invert. This hierarchical framework
simplifies inversion to smaller submatrices and reduces the computational complexity.

To further enhance efficiency, we follow the ULV factorization approach for hierarchi-
cal matrices [40], which allows partial pivoted LU factorizations on matrix blocks. This
method ensures that we only need to compute low-rank approximations for certain blocks,
minimizing computational overhead[30].

10

2.6 Applications

2.6 Applications

2.6.1 Kernel ridge regression

Kernel ridge regression is a regularized version of Ridge Regression that utilizes kernel
methods to handle non-linear relationships between features. The objective function in
KRR combines the least squares loss with an L2 regularization term. The regularized ob-
jective function is given by:

J(w) = ∥Xw − t∥22 + λ∥w∥22
where:

• X is the design matrix of size N ×D (with N samples and D features),

• w is the weight vector of size D × 1, which is obtained by minimizing the objective
function:

w = (XTX+ λI)−1XT t,

• t is the target vector of size N × 1,

• λ is the regularization parameter.

The formulation and solution for Ridge Regression, including the regularized objective
function and the weight vector solution, are discussed in detail by Murphy [22].

Kernel trick

The kernel trick is a technique used to extend the power of linear models to non-linear
problems by implicitly mapping the input data into a higher-dimensional feature space.
This is achieved using a kernel function K(xi,xj), which computes the inner product in
the feature space without explicitly performing the transformation. The kernel matrix K
is defined as:

Kij = K(xi,xj).

This allows for the computation of dot products in the higher-dimensional space effi-
ciently [4].

In the kernel space, the objective function for ridge regression becomes:

J(α) = ∥Kα− t∥22 + λαTKα,

where α is the weight vector in the kernel space.
To find the optimal α, we take the derivative of J(α) with respect to α and set it to zero:

∂J

∂α
= 2KT (Kα− t) + 2λKα = 0.

11

2 State of the art

Solving this equation for α gives:

(K+ λIN)α = t.

The solution for α is:

α = (K+ λIN)−1t. (2.3)

This formula [38 , 33] provides the weights in the kernel space. To make predictions for
new data points, compute the kernel vector k∗ between the new point and all training
points, and use:

y∗ = kT
∗ α.

The ridge regression algorithm is implemented as follows :

Algorithm 4 Kernel ridge regression[33]
Input: Training set S = {(x1, y1), . . . , (xN , yN)}, regularization parameter λ > 0
Output: Weight vector w, dual coefficients α∗, and/or function f

1: Compute dual coefficients: α∗ = (K + λI)−1y

2: Compute function f(x) =
∑N

j=1 α
∗
jκ(xj , x)

3: Compute weight vector w =
∑N

j=1 α
∗
jϕ(xj)

2.6.2 Gaussian processes

A Gaussian process is a stochastic process that defines a distribution over functions. It is
defined by a mean function m(x) and a covariance function k(x,x′). We denote a GP as
[4 , 28]:

f(x) ∼ GP(m(x), k(x,x′))

Here, x represents the input variable (often a vector in a multidimensional space), and
f(x) represents the corresponding output variable.

Before observing any data, we assume a prior distribution over functions. Typically, we
assume a zero-mean prior, i.e., m(x) = 0. The covariance function k(x,x′) captures the
relationships between different input points [28].

A commonly used covariance function is the Radial Basis Function (RBF) or Gaussian
kernel:

k(x,x′) = exp

(
−∥x− x′∥2

2ℓ2

)
Here, ℓ is a hyperparameter that controls the smoothness of the function.

12

2.6 Applications

After observing data, we update our prior beliefs to obtain a posterior distribution over
functions. Given n observed data points {X,y}, where X = [x1,x2, . . . ,xn]

⊤ and y =
[y1, y2, . . . , yn]

⊤, the joint distribution of the observed outputs and the function values at
the test points X∗ is Gaussian:(

y
f(X∗)

)
∼ N

(
0,

(
K(X,X) + σ2I K(X,X∗)

K(X∗,X) K(X∗,X∗)

))
Here, K(X,X) is the covariance matrix of the training points, K(X∗,X) is the covariance

matrix between test and training points, K(X∗,X∗) is the covariance matrix of the test
points, and σ2I accounts for noise in the observations [28].

Predictive mean and variance

From the joint distribution, we can derive the posterior mean and covariance for the test
points X∗[34] :

1. Predictive mean:

µ∗ = K(X∗,X)
[
K(X,X) + σ2I

]−1
y (2.4)

This gives the expected values (mean predictions) of the function at the test points.
2. Predictive variance:

Σ∗ = K(X∗,X∗)−K(X∗,X)
[
K(X,X) + σ2I

]−1
K(X,X∗) (2.5)

This gives the uncertainties (variances) of the predictions.

Use of kernel inverse for mean and covariance calculation

To compute the predictive mean and covariance, we use 2.4 and 2.5 so we need to invert
the kernel matrix K(X,X) + σ2I. One efficient way to do this is by using the GOFMM
inverse of the kernel matrix.

Next, we will delve into how to compute the inverse of the kernel matrix and its role in
calculating the predictive mean and covariance.

13

3 Scalable kernel matrix inversion

3.1 Setup

In this section, we investigate the application of the GOFMM for the inversion of kernel
matrices. Specifically, we apply GOFMM techniques, as detailed in [39], to Python data
structures using the Simplified Wrapper Interface Generator (SWIG). SWIG seamlessly in-
tegrates the GOFMM C++ methods into Python by generating the necessary interface and
code, thereby enabling the use of the C++ implementation within Python scripts without
requiring additional compilation.

The entire integrated environment is packaged within a Docker container. Due to the
absence of Docker support on the Linux cluster at LRZ, the Docker image is converted to
a Charliecloud image [27]. This Charliecloud image is then transferred to the Linux cluster,
where accuracy evaluations are conducted on datasets including synthetic data [35] and
the MNIST dataset [19]. For single-node tests, we compare the computed kernel inversions
with those obtained using the SciPy library. While multi-node setups were considered,
they were not tested within the scope of this thesis. Instead, For future work, multi-node
configurations can be explored using C++ and compared with inversion techniques sup-
ported by C++ libraries.

To evaluate the performance of the integrated environment, we conduct both strong
and weak scaling experiments using multiple cores. Runtime data is collected to assess
the scalability and efficiency of the GOFMM-based inversion on the Linux cluster.

3.2 Error evaluation

Frobenius Norm

The Frobenius norm [13] is a matrix norm that measures the magnitude of a matrix’s en-
tries. It is defined as the square root of the sum of the absolute squares of its elements.
Formally, for a matrix A ∈ Rm×n, the Frobenius norm ∥A∥F is given by:

∥A∥F =

√√√√ m∑
i=1

n∑
j=1

|aij |2, (3.1)

where aij denotes the entry in the i-th row and j-th column of the matrix A.

15

3 Scalable kernel matrix inversion

This norm is particularly useful for comparing the accuracy of various methods for com-
puting the inverse of kernel matrices. In the context of kernel matrix inversion, the Frobe-
nius norm can be used to evaluate the difference between the computed inverse and the
inverse obtained from other methods, such as SciPy’s dense matrix inversion. It provides
a measure of the overall error magnitude, which helps in assessing the performance of
different computational approaches [14].

Relative Squared Error (RSE)

To provide a more nuanced evaluation of the inversion accuracy, we use the Relative
Squared Error (RSE)[36 , 13], which normalizes the Frobenius norm of the difference be-
tween the expected and computed matrices. The RSE is defined as:

RSE =
∥Mexp −Mthe∥F√∑

i,j(Mthe)
2
ij

× 100, (3.2)

where Mexp represents the reference matrix (i.e., the inverse computed by SciPy), and
Mthe is the matrix computed using GOFMM. The numerator, ∥Mexp −Mthe∥F , measures

the Frobenius norm of the error between the two matrices. The denominator,
√∑

i,j(Mthe)
2
ij ,

normalizes this error relative to the magnitude of the computed matrix.
The RSE provides a percentage-based measure of the error relative to the magnitude

of the computed matrix. This metric is particularly useful for evaluating and comparing
the accuracy of different matrix inversion methods, as it allows for an assessment of how
significant the error is relative to the size of the matrix being computed. In the context of
this thesis, the RSE is used to evaluate the performance of the GOFMM inversion method
in comparison to the other standard matrix inversion approaches.

Comparison with SciPy Inverse Computation

In evaluating the performance of the GOFMM for computing the inverse of dense kernel
matrices, we use the SciPy library’s linalg.inv function as a reference [18]. This approach
allows us to benchmark the accuracy and efficiency of our GOFMM method against a well-
established and widely used dense matrix inversion technique.

The SciPy function provides a direct and precise computation of the matrix inverse,
which serves as our baseline for comparison. By contrasting the results from GOFMM
with those obtained using SciPy, we aim to assess the effectiveness of GOFMM in approxi-
mating the inverse of kernel matrices, particularly in terms of accuracy and computational
performance.

The inverse of the kernel matrix is computed using SciPy as follows:

16

3.3 Implementation

1 from scipy.linalg import inv
2 K_scipy_inv = inv(K)

Listing 3.1: Scipy inversion

where Kreg represents the kernel matrix used in KRR or Gaussian GP. The result Kscipy inv
is used as a reference for evaluating the accuracy of the inverses computed by GOFMM.

• Accuracy: We compare the inverses produced by GOFMM with Kscipy inv to evaluate
the relative error. This comparison ensures that the approximations provided by
GOFMM are sufficiently close to the exact results from SciPy.

• Efficiency: The computational time and resource usage for GOFMM are compared
against those required by SciPy for matrix inversion. This evaluation highlights the
potential scalability benefits of GOFMM for large-scale problems.

The comparison underscores the trade-offs between approximation accuracy and com-
putational efficiency. By benchmarking against SciPy, which is known for its reliable and
accurate inversion methods [37], we validate the performance of GOFMM in handling
large and complex kernel matrices.

3.3 Implementation

We integrate all components for the implementation in a sequential workflow. First, we
retrieve or generate the required data. Next, we construct the SPD kernel using either
the Kernel ridge regression or Gaussian processes packages in Python. Following this,
we compute the inverse of the kernel matrix utilizing the integrated GOFMM methods,
accessed within Python via SWIG. Finally, we evaluate the accuracy of the inversion by
comparing it against the SciPy inversion results, and we measure the computational time
for the entire process.

Python Interface Setup

Inversion process We begin by defining a class, Inverse calculator, which encapsu-
lates the inversion process using the GOFMM functions already implemented in C++ and
integrated into Python via SWIG. The class takes as input the kernel matrix, created from
the data, and computes its inverse using the GOFMM algorithms. The implementation of
this class is provided in Listing 3.2 .

The class parameters, such as problem size and matrix type, are essential for con-
structing a GOFMM tree, which is instrumental in compressing and processing the kernel
matrix. The constructor initializes all member variables and loads the NumPy matrix into
the SWIG interface methods. Specifically, the method LoadDenseSpdMatrixFromConsole

17

3 Scalable kernel matrix inversion

converts the NumPy matrix into an object of type SPDMATRIX DENSE, which is compatible
with the C++ GOFMM implementation.

For computing the inverse, we utilize the method matinv, as shown in Listing 3.2 ,
which internally calls the InverseOfDenseSpdMatrix function integrated from the GOFMM
method in C++.

1 class Inverse_calculator:
2 def __init__(self, executable, problem_size, max_leaf_node_size,

num_of_neighbors,
3 max_off_diagonal_ranks, num_rhs, user_tolerance,

computation_budget,
4 distance_type, matrix_type, kernel_type, spd_matrix):
5 self.executable = executable
6 self.problem_size = problem_size
7 self.max_leaf_node_size = max_leaf_node_size
8 self.num_of_neighbors = num_of_neighbors
9 self.max_off_diagonal_ranks = max_off_diagonal_ranks

10 self.num_rhs = num_rhs
11 self.user_tolerance = user_tolerance
12 self.computation_budget = computation_budget
13 self.distance_type = distance_type
14 self.matrix_type = matrix_type
15 self.kernel_type = kernel_type
16 self.spd_matrix = np.float32(spd_matrix) # from input
17 # Convert the SPD matrix to a SPDMATRIX_DENSE structure for GOFMM
18 self.denseSpd = tools.LoadDenseSpdMatrixFromConsole(self.spd_matrix)
19 self.matrix_length = self.problem_size * self.problem_size
20

21 def matinv(self, lambda_inv):
22 # Create GOFMM tree from the SPD matrix
23 gofmmCalculator = tools.GofmmTree(self.executable, self.problem_size,
24 self.max_leaf_node_size, self.

num_of_neighbors,
25 self.max_off_diagonal_ranks, self.

num_rhs,
26 self.user_tolerance, self.

computation_budget,
27 self.distance_type, self.matrix_type,
28 self.kernel_type, self.denseSpd)
29 # Compute the inverse using the GOFMM method
30 c = gofmmCalculator.InverseOfDenseSpdMatrix(lambda_inv, self.

matrix_length)
31 print("GOFMM Inverse computation completed")
32

33 # Reshape the result to an n x n matrix
34 inv_matrix = np.resize(c, (self.problem_size, self.problem_size))
35 return inv_matrix
36

37 def compute_rse(self, matExp, matThe):
38 return np.linalg.norm(matExp - matThe) / np.sqrt(np.sum(matThe ** 2)) *

100

18

3.3 Implementation

Listing 3.2: Class Inverse calculator

In the final step of the inversion process, we begin by setting up the necessary param-
eters for the implementation. The parameters include the problem size, maximum leaf
node size, number of neighbors, and various tolerances and settings required for the
GOFMM algorithm. With the kernel matrix prepared, we initialize an instance of the
Inverse calculator class, which is designed for the SPD kernel inversion. The ma-
trix inversion is then executed through the matinv method, which applies the GOFMM
algorithms to obtain the inverse of the regularized kernel matrix. For comparison, the in-
verse is also computed using the standard SciPy inv function. The RSE is then calculated
to assess the accuracy of the GOFMM-based inversion like shown in 3.3 .

1

2 # Parameters for GOFMM
3 executable = "./test_gofmm"
4 max_leaf_node_size = int(problem_size / 2)
5 num_of_neighbors = 128
6 max_off_diagonal_ranks = int(problem_size / 2)
7 num_rhs = 1
8 user_tolerance = 1E-5
9 computation_budget = 0.00

10 distance_type = "kernel"
11 matrix_type = "dense"
12 kernel_type = "gaussian"
13 lambda_inv = 1.0 # regularization parameter
14

15 # Prepare inverse GOFMM calculator
16 kernel_matrix = K.astype("float32")
17 inverse_GOFMM_obj = Inverse_calculator(executable, problem_size,

max_leaf_node_size,
18 num_of_neighbors, max_off_diagonal_ranks, num_rhs, user_tolerance,

computation_budget, distance_type, matrix_type, kernel_type, K)
19

20 # INVERSE KERNEL using GOFMM
21 inv_gofmm = inverse_GOFMM_obj.matinv(lambda_inv)
22

23 # Compute the inverse of the regularized kernel matrix using numpy
24 K_reg = K + lambda_inv * np.eye(len(X_train))
25 K_reg_inv = inv(K_reg)
26

27 # Compute RSE of inverse
28 rse = inverse_GOFMM_obj.compute_rse(inv_gofmm, K_reg_inv)

Listing 3.3: Parameters and code to compute the inverse of the SPD Kernel

SPD Kernel Creation Using KRR and GP In this part, we outline the process of cre-
ating SPD kernels using both KRR and GP within Python. The methodologies for both

19

3 Scalable kernel matrix inversion

techniques share several common steps, which we summarize here.
For the KRR-based approach in the listing 3.4 , we utilize the Gaussian Radial Basis Func-

tion (RBF) kernel. The KernelRidge class from the sklearn.kernel ridge module is
employed to fit the model on the training data. The kernel matrix, K, is computed us-
ing pairwise kernels from sklearn.metrics.pairwise, allowing us to generate
the SPD kernel required for subsequent inversion operations. The inverse of this kernel
is then computed using both the GOFMM method and a direct SciPy-based approach for
comparison. Finally, the learned weights are calculated using the inverted kernel matrices
like discussed before in in 2.6.1 .

Similarly, for the GP-based approach 3.5 , we leverage the RBF kernel through the
GaussianProcessRegressor class in sklearn.gaussian process. The GP model
is fitted to the training data, and kernel evaluations are computed between the test and
training points. The SPD kernel matrix is then inverted, again using GOFMM and SciPy-
based methods, to compute the predictive mean and covariance for the GP which is dis-
cussed in 2.6.2 . These inversions are crucial for deriving the predictive distribution and
assessing the accuracy of the GP model.

Both approaches demonstrate the versatility of SPD kernels in machine learning tasks,
whether for regression via KRR or probabilistic modeling with GP. The integration of
GOFMM for kernel inversion enhances computational efficiency, particularly for large-
scale problems, as discussed in subsequent sections.

1 # package for KRR Kernel creation
2 from sklearn.kernel_ridge import KernelRidge
3 from sklearn.metrics.pairwise import pairwise_kernels
4 # Some code here...
5

6 # ...
7 # Inverse Class creation and data retrieve
8 # ...
9 # Preprocessing the data

10 x_train = x_train.astype("float32") / 255
11 x_test = x_test.astype("float32") / 255
12

13 # Flattening the images
14 X_train = x_train.reshape((x_train.shape[0], -1))
15 X_test = x_test.reshape((x_test.shape[0], -1))
16

17 # Reducing dataset size for testing purposes
18 # Set problem size
19 problem_size = int(os.getenv('PROBLEM_SIZE', 2048)) # default if not set
20 X_train = X_train[:problem_size]
21 y_train = y_train[:problem_size]
22

23 # Initialize KernelRidge with Gaussian (RBF) kernel
24 krr = KernelRidge(kernel='rbf', gamma=0.1)
25

26 # Fit the model

20

3.3 Implementation

27 krr.fit(X_train, y_train)
28

29 # Calculate the Gaussian kernel matrix using pairwise_kernels
30 K = pairwise_kernels(X_train, metric='rbf', gamma=0.1)
31 # Some code here...
32

33 # ...
34 # Inverse computation
35 # ...
36

37 # Calculate the weights for KRR
38 weights_np = np.dot(K_reg_inv, y_train)
39 weights_gofmm = np.dot(inv_gofmm, y_train)
40

41 # Get the learned weights of the SKLEARN
42 weights = krr.dual_coef_

Listing 3.4: SPD Kernel creation using Kernel ridge regression

1 # package for Gaussian processes Kernel creation
2 from sklearn.gaussian_process import GaussianProcessRegressor
3 from sklearn.gaussian_process.kernels import RBF
4 # Some code here...
5

6 # ...
7 # Inverse Class creation and Data retrieve
8 # ...
9 # Use a subset of the data for quicker computation

10 x_train, _, y_train, _ = train_test_split(x_train, y_train, train_size=
problem_size, stratify=y_train, random_state=random_state)

11 x_test, _, y_test, _ = train_test_split(x_test, y_test, test_size=1024, stratify
=y_test, random_state=random_state)

12

13 # Define kernel
14 kernel_standard = 1.0 * RBF(length_scale=1.0)
15

16 # Standard GP with scikit-learn
17 gp_standard = GaussianProcessRegressor(kernel=kernel_standard, alpha=0.1)
18 gp_standard.fit(x_train, y_train)
19 mu_star_sklearn, std_star_sklearn = gp_standard.predict(x_test, return_std=True)
20 # Some code here...
21

22 # ...
23 # Inverse computation
24 # ...
25

26 # Compute kernel evaluations between test and training points
27 k_star = kernel_standard(x_train, x_test)
28 k_star_star = kernel_standard(x_test, x_test)
29

30 # Compute predictive mean for GP

21

3 Scalable kernel matrix inversion

31 mu_star = k_star.T @ inv_gofmm @ y_train
32 mu_star_np = k_star.T @ inv_spd @ y_train
33 sigma_star = k_star_star - (k_star.T @ inv_gofmm @ k_star)

Listing 3.5: SPD Kernel creation using Gaussian processes

3.4 Datasets

Synthetic Data

In evaluating scalable algorithms, especially for strong and weak scaling tasks, synthetic
data offers a valuable advantage. It allows for controlled testing by isolating performance
characteristics from the variability and noise inherent in real-world datasets [4]. Synthetic
data is generated through algorithms or simulations to replicate the statistical properties
and patterns of real-world data and is widely used in machine learning, statistical model-
ing, and software testing [35].

For testing and validating the scalability of the Kernel inversion algorithm, various syn-
thetic data types were considered, including uniform distributions, circular distributions,
Gaussian Mixture Models (GMMs), and other common techniques. Each data type pro-
vides unique benefits depending on the nature of the algorithm under test. After thorough
evaluation, the Gaussian distribution was selected as the primary synthetic data model
due to its broad applicability and relevance.

The Gaussian distribution, or normal distribution, is characterized by its bell-shaped
curve with data points concentrated around the mean. It is defined mathematically by the
probability density function:

f(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, (3.3)

where µ is the mean and σ2 is the variance [26]. This distribution is chosen for its align-
ment with the statistical properties encountered in real-world scenarios which is shown in
the figures [3.1 , 3.2], ensuring that generated data reflects natural phenomena [31]. Its sym-
metry and adjustable variance make it ideal for testing the robustness and performance of
scalable algorithms under varying conditions [26].

The Gaussian distribution’s suitability extends to both strong and weak scaling tests
[24]. The following Python code snippet demonstrates the generation of Gaussian-distributed
data:

1 def generate_gaussian_data(size, mean=[0, 0], cov=[[1, 0.5], [0.5, 1]]):
2 rng = np.random.default_rng(random_state)
3 return rng.multivariate_normal(mean, cov, size)

Listing 3.6: Generating Gaussian Distributed Data

22

3.4 Datasets

In addition to selecting an appropriate data distribution, the application of non-linear
functions is crucial for testing the kernel inversion algorithm. Non-linear transformations,
applied to synthetic data, simulate more complex relationships commonly encountered in
real-world scenarios [4 , 22]. These transformations increase the data’s dimensionality and
complexity, providing a rigorous test for the inversion process of the GOFMM (Geometric
Multi-Front Matrix Multiplication) method [21].

For example, applying non-linear functions such as polynomial or sigmoid transforma-
tions to Gaussian-distributed data mimics the non-linear relationships found in practical
machine learning tasks [28]. This makes the synthetic data more challenging and reflec-
tive of real-world conditions. The application of these transformations ensures that the
GOFMM algorithm is robust and scalable, even with non-linearly separable data, thor-
oughly validating its applicability in complex scenarios [7].

1 X_train = generate_gaussian_data(data_count)
2 y_train = nonlinear_function(X_train[:, 0]) # Using only the first feature for

the nonlinear function

Listing 3.7: Non-linear Function for Predictions Using Synthetic Data

Figure 3.1: Gaussian distribution sam-
pling of size 4096 with mean
0

Figure 3.2: Histogram of the Gaussian
distribution sampling

MNIST Dataset

The MNIST (Modified National Institute of Standards and Technology) dataset is a widely
used benchmark in the field of machine learning and image recognition. It consists of

23

3 Scalable kernel matrix inversion

60,000 training images and 10,000 test images of handwritten digits, each 28x28 pixels in
size [19]. The dataset provides a standardized, publicly available set of images that facili-
tate the development and evaluation of image classification algorithms. For the purposes
of this thesis on scalable kernel matrix inversion using hierarchical low-rank approxima-
tions, the MNIST dataset serves as an ideal choice due to its well-defined structure and
moderate size. Its simplicity allows for clear insights into the performance of kernel ma-
trix inversion techniques under different scaling conditions. Additionally, the high dimen-
sionality of the image data poses a meaningful challenge for testing the scalability and
efficiency of the proposed methods, making it a valuable dataset for evaluating the practi-
cal aspects of the algorithm [5].

1 from tensorflow import keras
2 import os
3

4 # Loading the MNIST dataset
5 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
6

7 # Preprocessing the data
8 x_train = x_train.astype("float32") / 255
9 x_test = x_test.astype("float32") / 255

10

11 # Flattening the images
12 X_train = x_train.reshape((x_train.shape[0], -1))
13 X_test = x_test.reshape((x_test.shape[0], -1))
14

15 # Reducing dataset size for testing purposes
16 # Set problem size
17 problem_size = int(os.getenv('PROBLEM_SIZE', 2048)) # default size if not set
18 X_train = X_train[:problem_size]
19 y_train = y_train[:problem_size]

Listing 3.8: Loading and Preprocessing the MNIST Dataset

Using both Gaussian distribution samples and the MNIST dataset in our experiments
provides a robust evaluation of our algorithms. Gaussian samples offer a controlled envi-
ronment with known statistical properties, allowing us to benchmark the performance un-
der ideal conditions and test theoretical assumptions. In contrast, the MNIST dataset, rep-
resenting real-world handwritten digits, introduces complexities such as noise and vari-
ability, enabling us to assess the algorithms’ generalizability and practical effectiveness.
This dual approach ensures that our methods are not only theoretically sound but also
applicable to real-world scenarios.

24

3.4 Datasets

Figure 3.3: MNIST dataset with 16K samples, after reduction using PCA

25

4 Numerical Experiments

4.1 Accuracy analysis

The integration of operations from GOFMM is run on the CoolMUC-2 cluster with 28-
way Intel Xeon E5-2690 v3 (”Haswell”) based nodes and FDR14 Infiniband interconnect.
CoolMUC-2 has 812 nodes with 64GB memory per node. Therefore, the accuracy mea-
surements and multi-core scaling experiments with OMP number of threads less than 28
are conducted on the compute node lxlogin1 of CoolMUC-2

1
 . The work using OMP was

done using 28 threads with same node for tolerance and accuracy measurements.

Tolerance measurements

We analyze the performance of KRR and GP Kernels inversion using GOFMM across
varying tolerance levels with the goal of determining an optimal balance between com-
putational efficiency and accuracy. We used the SciPy inversion as a reference. Table 4.1

presents the computation times and associated errors for different tolerance levels (E − 3,
E − 5, and E − 7) for matrix sizes 8192 and 4096, using 28 threads.

Kernel ridge regression Gaussian processes
Size Tolerances Time(s) Errors Size Tolerances Time(s) Errors

8192
E-3 32 4,15 E-2

8192
E-3 32.3 2,34

E-5 34,3 5,14 E-03 E-5 35,24 2,15E-01
E-7 55,5 2,76 E-03 E-7 52,96 1,81E-01

Table 4.1: Varying Tolerances for the same number of threads (28 Threads)

For Optimal Tolerance Selection, Table 4.1 demonstrates that adopting a tolerance level
of E− 5 yields a significant enhancement in accuracy relative to E− 3, with only a modest
increase in computational time:

• In the case of KRR, the error is reduced by nearly an order of magnitude when tran-
sitioning from E − 3 to E − 5, with a negligible impact on execution time.

• For GP, the error diminishes dramatically, also by several orders of magnitude, as
the tolerance is tightened from E − 3 to E − 5, while the computation time remains
virtually constant.

1
 LRZ, Overview of HPC Systems

27

https://doku.lrz.de/access-and-overview-of-hpc-systems-10333229.html

4 Numerical Experiments

While the use of E − 7 achieves marginally greater accuracy, it does so at the expense
of a considerable increase in computation time, making E − 5 a more judicious choice for
balancing precision and computational efficiency.

Problem Size/ Threads 8192 16384
1 7.38E-05 8.87E-05
2 9.48E-05 8.86E-05
4 7.28E-05 9.22E-05
6 7.27E-05 9.26E-05
8 7.27E-05 9,25E-05
16 7.39E-05 8.88E-05
28 1.68E-04 8.88E-05

Table 4.2: Errors for Gaussian processes for problem sizes: 8192, 16382

Problem Size/ Threads 8192 16384
1 9.84E-05 1.33E-04
2 9.88E-05 1.28E-04
4 9.77E-05 1.32E-04
6 7.27E-05 9.26E-05
8 9.80E-05 1.26E-04
16 9.80E-05 1.32E-04
28 9.93E-05 1.34E-04

Table 4.3: Errors for KRR for problem sizes: 8192, 16382

Error measurements

The data presented in the tables [4.2 , 4.3] for GP and KRR provide insights into the er-
ror rates associated with different problem sizes and thread counts when computing the
kernel inverse using the GOFMM.

For Gaussian processes in table 4.2 , the error rates for problem sizes 8192 and 16384
remain relatively stable across different thread counts, with slight variations. Notably,
the error rate for 8192 threads shows a minor increase from 7.38 × 10−5 to 1.68 × 10−4 as
the number of threads increases from 1 to 28. Similarly, for 16384 threads, the error rate
fluctuates slightly, indicating that the inversion maintains a consistent level of accuracy
across varying computational loads.

In the case of KRR in table 4.3 , the error rates exhibit a similar trend. For 8192 threads,
the error rate starts at 9.84×10−5 and increases marginally to 9.93×10−5 as the number of

28

4.2 Multi-core measurements

threads increases. For 16384 threads, the error rate shows a slight increase from 1.33×10−4

to 1.34× 10−4.
Overall, the analysis indicates that the GOFMM is a robust method for computing the

Kernel inverse, providing consistent and low error rates across different problem sizes and
thread counts. This stability is crucial for applications requiring high precision and effi-
ciency, such as those involving large-scale machine learning tasks with the MNIST dataset.

4.2 Multi-core measurements

Weak scaling, or strong scaling with respect to problem size, measures how the computa-
tional performance of a parallel system changes as the problem size grows proportionally
with the number of processors

Weak scaling

Weak scaling is a critical metric for assessing the performance of parallel systems, particu-
larly as the computational demands increase. Weak scaling focuses on how well a system
handles larger workloads as the problem size grows proportionally with the number of
processors. In this context, the workload per processor remains constant, ensuring that
the computational burden does not change as more processors are added. Mathematically,
if N represents the problem size and P denotes the number of processors (or threads), the
problem size per processor can be expressed as:

N

P
= constant (4.1)

For a parallel system to exhibit effective weak scaling, this ratio should remain constant
as P increases. This efficiency is crucial for applications that require the processing of
increasingly large datasets or more complex models, as it indicates that the system can
scale effectively without introducing significant overheads or bottlenecks [29 , 6]. Evaluat-
ing weak scaling is essential for pinpointing inefficiencies in both parallel algorithms and
hardware configurations, helping to optimize performance [25].

In our specific experiments, we assessed weak scaling using the MNIST dataset, on a
single node, employing multi-core processing, where the number of threads ranged from
1 to 16, and the problem size was scaled from 1024 to 16384 . The tables 4.4 and 4.5 show
the weak scaling results for the inverse computation using the GOFMM for kernels gen-
erated from GP and KRR, respectively. The problem size is increased proportionally with
the number of threads, while the efficiency and time duration for each configuration are
recorded.

The decrease in efficiency observed for both GP and KRR with increasing thread counts
could be due to several factors. As the number of threads grows, communication over-
head often increases, leading to delays. Additionally, synchronization costs rise, which

29

4 Numerical Experiments

Number Threads 1 2 4 8 16
Problem size 1024 2048 4096 8192 16384

Time duration (in secs) 2.52 4.91 12.62 45.42 209.28
Efficiency 1 0.513 0.2 0.055 0.00378

Table 4.4: Weak Scaling of GPs kernel for MNIST Dataset

Number Threads 1 2 4 8 16
Problem size 1024 2048 4096 8192 16382

Time duration (in secs) 0.79 2.56 11.81 45.7 239.16
Efficiency 1 0.31 0.067 0.0173 0.0033

Table 4.5: Weak Scaling of KRR kernel for MNIST Dataset

can result in idle times as threads wait for each other. Load imbalance may also become
an issue, with some threads finishing their tasks sooner than others, thus reducing overall
efficiency. Contention for shared memory resources might further impact performance as
the number of threads increases.

These potential causes are speculative and will be explored in more detail in the upcom-
ing performance analysis section, where we will examine these issues closely and consider
possible optimization strategies.

Strong scaling

Strong scaling is an essential measure for evaluating the efficiency of parallel systems as
the number of processors increases while the problem size remains fixed. Unlike weak
scaling, which assesses performance with a proportional increase in both problem size
and processors, strong scaling focuses on how well a system accelerates computation when
more processors are applied to the same problem size. Mathematically, if N is the problem
size and P is the number of processors (or threads), the ideal scenario is that the execution
time T (P) reduces by a factor proportional to 1

P as P increases:

T (P) =
T (1)

P
(4.2)

For strong scaling to be effective, the system should approach this ideal linear speedup.
This is critical for scenarios where reducing time to solution is paramount, such as in real-
time applications or high-performance simulations [12]. Evaluating strong scaling pro-
vides insights into the parallel efficiency of algorithms and can highlight diminishing re-
turns as more processors are added, often due to factors such as communication overhead
or resource contention [6].

The results shown in Tables 4.6 , 4.7 , 4.8 , and 4.9 illustrate the strong scaling performance
of kernel inversion using the GOFMM. These experiments were conducted on kernels gen-

30

4.2 Multi-core measurements

Figure 4.1: Weak scaling histogram for KRR using Gaussian distributions samples for the
kernel inversion

erated from GP and KRR with varying problem sizes (8192 and 16384) and thread counts
ranging from 1 to 28. As the number of threads increases, the computation time decreases,
which is indicative of effective parallelization. However, the rate of speedup diminishes
notably beyond 16 threads. The speedup achieved is generally higher for larger problem
sizes (16384) compared to smaller ones (8192), which is expected in strong scaling scenar-
ios.

Problem Size/Threads 1 2 4 6 8 16 28
8192 165.84 99.37 64.79 51.43 45.42 41.53 44.34
16384 1033.12 570.38 355.44 275.27 242.86 209.28 200.08

Table 4.6: Durations of GP kernels inversion using MNIST dataset

Problem Size/Threads 1 2 4 6 8 16 28
8192(in secs) 81.65 50.39 37.70 36.42 35.10 34.70 37.48
16384(in secs) 549.50 363.89 211.80 181.93 157.57 152.52 156.72

Table 4.7: Durations of GP kernels inversion using a synthetic dataset

The observed diminishing returns on speedup as the number of threads increases can
be attributed to a few key factors. As more threads are added, the benefits of additional
threads tend to plateau beyond a certain point, such as 16 threads, reflecting a decrease
in parallel efficiency. Communication overhead also becomes more significant, which can

31

4 Numerical Experiments

Figure 4.2: Strong scaling for GPs

Figure 4.3: Strong scaling for KRR

Problem Size/Threads 1 2 4 6 8 16 28
8192(in secs) 122.38 76.74 55.04 53.35 45.70 49.62 48.71
16384(in secs) 792.15 476.84 301.72 260.21 243.71 239.16 221.17

Table 4.8: Durations of KRR kernels inversion using a MNIST dataset

Problem Size/Threads 1 2 4 6 8 16 28
8192(in secs) 80.58 52.34 37.20 33.98 30.50 33.20 34.89
16384(in secs) 519.32 273.87 169.83 136.85 122.72 115.60 113.74

Table 4.9: Durations of KRR kernels inversion using synthetic Data

reduce the gains from adding more threads. Additionally, competition for memory band-
width can lead to saturation, where further increases in thread count do not yield pro-
portional speedup. Load balancing becomes increasingly difficult, with slight imbalances
causing some threads to be idle while others complete their tasks. Furthermore, while
the GOFMM method effectively reduces computational complexity, it may face scalability

32

4.2 Multi-core measurements

challenges, and the complexity of the algorithm combined with frequent thread synchro-
nization can further impede performance.

33

4 Numerical Experiments

4.3 Performance analysis

To understand the performance delays and inefficiencies observed , we perform a detailed
profiling analysis. Additionally, we examine the runtime overhead introduced by the
Python-SWIG interface compared to the native C++ implementation. This comprehensive
analysis helps to pinpoint critical areas for optimization and understand the underlying
causes of observed performance issues.

Profiling

In this section, we analyze the performance scaling of KRR and GP using profiling data
obtained from the VTune Profiler [16]. This analysis reveals significant performance bot-
tlenecks and inefficiencies that affect the scalability and runtime of these algorithms. In
profiling tools like VTune Profiler, the metrics such as effective CPU time or overhead time
appear larger than the elapsed wall clock time due to their nature of aggregation of the
threads used and calculation.

The weak scaling results, detailed in Tables 4.4 and 4.5 , show that as the problem size
increases, the execution time grows substantially. For instance, the KRR kernel requires
0.79 seconds for a problem size of 1024 with one thread, but this time increases dramati-
cally to 239.16 seconds for a problem size of 16384 with 16 threads. This corresponds to a
severe drop in efficiency from 1 to 0.0033. A similar pattern is observed for the GP kernel.
Such inefficiencies are consistent with the challenges described in the VTune Profiler User
Guide, which highlights how increased problem sizes can exacerbate parallel processing
issues [16].

Metric/Threads 2 4 8 16
Effective CPU utilization (%) 3.5 7 13.8 19.8

Effective CPU time (sec) 3.4 30.4 88.7 637
Lock contention (sec) 0.2 10.53 73.5 630
Overhead time (sec) 0.2 4.5 209 3707

Imbalance or serial spinning (sec) 0.21 0.7 8.4 137
Microarchitecture usage (%) 41.6 13.2 38 34

Table 4.10: CPU Utilization and metrics for KRR/MNIST.

The profiling data, as shown in Table 4.10 , further elucidates these inefficiencies. Ef-
fective CPU utilization does increase with the number of threads, reaching 19.8% with
16 threads, yet this improvement is overshadowed by a disproportionate rise in effective
CPU time and lock contention. Specifically, lock contention escalates from 0.2 seconds with
2 threads to 630 seconds with 16 threads, while overhead time surges from 0.2 seconds to
3707 seconds. These findings underscore significant inefficiencies in parallel resource man-
agement.

34

4.3 Performance analysis

Figure 4.4 illustrates that certain functions, such as gofmm::Compress,
gofmm::Factorize, and gofmm::Solve, are major contributors to performance degra-
dation. gofmm::Compress accounts for 54.8% of the total overhead, with a lock con-
tention of 19.5%. Similarly, gofmm::Factorize exhibits the same overhead and lock con-
tention characteristics. Other functions, such as gofmm::FindNeighbors and gofmm::Solve,
also contribute to overhead, albeit to a lesser degree. These functions collectively highlight
critical performance bottlenecks, particularly related to kernel inversion operations.

Figure 4.4: Top hotspots functions during runtime KRR/MNIST 8192.

Using the same reasoning for strong scaling, the table 4.8 presents the execution times
for the inversion of KRR kernels using the MNIST dataset across different thread counts (1
to 28) and for two problem sizes (8192 and 16384). Upon analysis, a general reduction in
execution time can be observed as the number of threads increases, but with diminishing
returns beyond 8 threads.

For the problem size of 8192, the time decreases from 122.38 seconds with a single thread
to 45.70 seconds with 8 threads, demonstrating reasonable scalability. However, as thread
counts rise further, performance gains diminish, with execution time increasing slightly
to 49.62 seconds at 16 threads, and 48.71 seconds at 28 threads. This behavior can be at-
tributed to overhead and lock contention, as shown in the profiling results. Specifically,
as thread count grows, the program suffers from increased lock contention and overhead
time, which severely limits scalability. The effective CPU utilization, reported in the profil-
ing table, indicates a rise in inefficiencies at higher thread counts, as synchronization and
thread communication become significant bottlenecks.

For the larger problem size of 16384, the execution times follow a similar trend. Starting
at 792.15 seconds for a single thread, the time reduces significantly to 243.71 seconds at 8
threads. However, beyond this point, the performance gain flattens. The time at 16 threads
is 239.16 seconds, only marginally better than at 8 threads, and reaches 221.17 seconds with
28 threads. The profiling data suggests that this saturation in performance is likely due to
a combination of increased lock contention, growing overhead, and imbalanced thread

35

4 Numerical Experiments

execution. The lock contention time in the profiling table rises dramatically with more
threads, leading to suboptimal performance scaling for both problem sizes.

Thus, the analysis reveals that while parallelization improves performance up to a cer-
tain threshold, scaling beyond 8 threads results in overhead and contention dominating
the gains, leading to stagnation or even slight performance degradation at higher thread
counts.

Figure 4.5 demonstrates the performance metrics, highlighting that despite improve-
ments with additional threads, significant overhead and inefficiencies continue to con-
strain scalability. The combined insights from weak and strong scaling analyses under-
score the need for optimizing parallel resource management and reducing locking over-
head to enhance overall performance.

Figure 4.5: Performance metrics for 16384 datasize and 16 threads.

Python with SWIG Runtime Overhead

Table 4.5 presents runtime data for the Python implementation using SWIG to interface
with C++ executables. The runtime for the Python interface is consistently higher com-
pared to the C++ implementation shown in Table 4.11 . The overhead increases with prob-
lem size, though it becomes relatively less significant at larger problem sizes, with only a
2.4% overhead at the largest problem size compared to the C++ implementation. This sug-
gests that while the Python-SWIG interface introduces notable overhead for smaller prob-
lem sizes, the efficiency of both implementations declines as the problem size increases,
reflecting inherent challenges in scaling with larger datasets.

36

4.3 Performance analysis

Problem Size 2048 4096 8192 16384
Runtime (s) 1.8 7.4 48 233.4

Table 4.11: Runtime of C++ executables for different problem sizes (without Python inter-
face).

37

5 Conclusion and Future work

5.1 Conclusion

This thesis offers an in-depth investigation into the development and evaluation of a scal-
able method for kernel matrix inversion, emphasizing hierarchical low-rank approxima-
tions with a focus on the Geometry Oblivious Fast Multipole Method. The importance
for this research comes from the increasing demand for efficient and scalable solutions in
machine learning and scientific computing, where managing large-scale matrix operations
poses significant challenges.

We established at first glance a thorough examination of the theoretical principles under-
lying GOFMM, followed by its practical implementation and extensive testing. This study
explores critical aspects such as the method’s accuracy, performance under various scaling
conditions, and its comparative efficiency relative to traditional approaches. Experimental
evaluations were conducted on the CoolMUC-2 cluster, providing a robust and reliable
environment for rigorous testing and validation.

By addressing key metrics—accuracy, tolerance, error measurement, and scaling behav-
ior—this work aims to help with the field of scalable computational methods. The insights
gained from this study on scalable kernel matrix inversion using hierarchical low-rank
approximations include:

• The application of GOFMM for computing the inverse of SPD kernels demonstrates
marked performance improvements over conventional matrix inversion techniques,
particularly for large-scale problems where computational efficiency and scalability
are crucial.

• Accuracy, tolerance, and error assessments reveal that the GOFMM approach consis-
tently maintains high precision across a range of tolerance levels, ensuring reliable
results in practical applications.

• Performance evaluations through both weak and strong scaling experiments show
that GOFMM scales effectively with increasing problem sizes and computational re-
sources, though with some nuances in performance.

• Strong scaling tests indicate that while GOFMM exhibits substantial performance
gains, it does not achieve optimal performance due to overhead bottlenecks that af-
fect scaling efficiency.

39

5 Conclusion and Future work

• Weak scaling experiments highlight that the method’s efficiency decreases as prob-
lem size grows, primarily due to overhead and load imbalances that arise with in-
creasing numbers of threads.

In summary, this thesis has thoroughly examined the GOFMM approach for scalable
kernel matrix inversion, offering significant insights into its efficacy and robustness. The
findings underscore GOFMM’s potential to address the complexities of large-scale matrix
operations in machine learning and scientific computing, setting the stage for future ad-
vancements and research in this vital area.

5.2 Future work

There are several promising directions for future research that could further enhance the
impact and applicability of the proposed method.

One key area for future exploration is the extension of the method to multinode envi-
ronments. The current research has primarily focused on single-node implementations,
demonstrating the method’s effectiveness within this constrained setting. To fully exploit
the potential of high-performance computing resources, it is imperative to adapt and opti-
mize the method for distributed computing frameworks. Incorporating Message Passing
Interface (MPI) will facilitate the execution of the method across multiple nodes, allowing
for the handling of larger-scale problems and enhancing computational efficiency. This
transition to a multinode architecture introduces challenges such as inter-node communi-
cation, data distribution, and load balancing, which will require careful consideration and
optimization to maintain the method’s performance and accuracy.

Additionally, future work should focus on optimizing the parallelization strategy for
multinode environments. This includes addressing communication overhead, synchro-
nization issues, and ensuring that the scalability observed in single-node tests translates
effectively to a distributed setting. By refining these aspects, the method can achieve im-
proved performance and scalability, making it more suitable for large-scale applications.

Another avenue for future research is the application of the GOFMM-based method to a
wider range of kernel types and real-world datasets. While this thesis has concentrated on
Gaussian processes and kernel ridge regression with synthetic data, real-world scenarios
often involve more complex and varied kernels. Testing the method with different kernel
functions and diverse datasets could uncover additional insights and potential benefits,
enhancing the method’s robustness and applicability across different domains. Further-
more, integrating advanced techniques for managing large-scale kernel matrices, such as
distributed matrix operations and enhanced approximation methods, could provide addi-
tional performance improvements and extend the method’s utility.

Overall, the future work will build on the foundation established in this thesis, with a
focus on advancing the scalability, applicability, and efficiency of the kernel matrix inver-
sion method in both multinode environments and practical applications. By addressing

40

5.2 Future work

these areas, the research can contribute to the continued development and optimization of
high-performance computing techniques for complex data analysis tasks.

41

Bibliography

[1] Thomas W. Wright Antonio J. González. Efficient partitioning for hierarchical matrix
computations. SIAM Journal on Scientific Computing, 2018.

[2] Joshua Barnes and Piet Hut. A hierarchical O(N logN) force-calculation algorithm.
Nature, 1986.

[3] M. Bebendorf. Hierarchical Matrices. Springer Publishing Company, Incorporated, 1st
edition, 2008.

[4] Christopher M. Bishop. Pattern recognition and machine learning. Springer, pages
295–303, 2006.

[5] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural net-
works for image classification. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3642–3649, 2012.

[6] Jack Dongarra and Dennis Sullivan. Parallel Computing for Data Science: A Practitioner’s
Guide. CRC Press, 2014.

[7] Felix N Fritsch and R E Carlson. Nonlinear regression. Encyclopedia of Environmetrics,
pages 1455–1460, 2012.

[8] Keerthi Gaddameedi, Severin Reiz, Tobias Neckel, and Hans-Joachim Bungartz. Ef-
ficient and scalable kernel matrix approximations using hierarchical decomposition.
pages 3–16, 2024.

[9] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, 4th edition, 2013.

[10] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations.
Journal of Computational Physics, 1987.

[11] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer-Verlag Berlin
Heidelberg, 2015.

[12] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, 5th edition, 2011.

[13] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, 2002.

43

Bibliography

[14] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.

[15] Thomas Huckle. Sparse approximate inverses for preconditioning of linear equations.
In Conferentie van Numeriek Wiskundigen, Woudschoten, page 2, Zeist, The Netherlands,
1996. Citeseer.

[16] Intel Corporation. Intel® VTune™ Profiler User Guide, 2023.

[17] Ian T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2011.

[18] Eric Jones, Travis Oliphant, Pearu Peterson, et al. Scipy: Open source scientific tools
for python. http://www. scipy. org, 73, 2001.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. In Proceedings of the IEEE, volume 86, pages
2278–2324. IEEE, 1998.

[20] Luca Bortolussi Michele Gorini and Daniele Montagnini. Interpolative decomposi-
tion for large-scale matrix approximation. SIAM Journal on Matrix Analysis and Appli-
cations, 2012.

[21] Vanessa Minden, Anil Damle, and Lexing Ying. A fast and scalable matrix inverse
using hierarchical low-rank approximations. SIAM Journal on Scientific Computing,
39(5):S212–S234, 2017.

[22] Kevin P Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge,
MA, 2012.

[23] M. Benzi P. Martineau. Rank-revealing qr factorization: A new approach to interpola-
tive decomposition. Numerical Linear Algebra with Applications, 2016.

[24] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2016.

[25] David Pizlo and Steve Garfinkel. Evaluating weak scaling performance on modern
multi-core processors. In Proceedings of the International Conference on High Performance
Computing, pages 112–121, 2019.

[26] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007.

[27] R. Priedhorsky and T. Randles. Charliecloud: Unprivileged containers for user-
defined software stacks in hpc. In Proceedings of the 2017 ACM International Conference
on Supercomputing. Association for Computing Machinery, 2017.

[28] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006.

44

Bibliography

[29] James Reinders and Michael O’Boyle. Understanding weak scaling and its implica-
tions. Parallel Computing, 40(1):14–26, 2014.

[30] Severin Maximilian Reiz. On the Algorithmic Impact of Scientific Computing. PhD thesis,
Technische Universität München, 2024.

[31] John A. Rice. Mathematical Statistics and Data Analysis. Cengage Learning, 2006.

[32] Kurt S. Riedel. A sherman-morrison-woodbury identity for rank augmenting matri-
ces with application to centering. SIAM Journal on Matrix Analysis and Applications,
13(2):659–662, 1992.

[33] John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

[34] Leslie Greengard Sivaram Ambikasaran, Daniel Foreman-Mackey. Fast direct meth-
ods for gaussian processes. arXiv, 2015.

[35] J. M. Smith and S. T. Smith. Data Generation and Simulation Techniques. Wiley, 2011.

[36] James Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer, Berlin,
2013.

[37] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, et al. Scipy 1.0: fundamental algo-
rithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

[38] Max Welling. Notes on kernel ridge regression, 2019.

[39] Chenhan D. Yu, James Levitt, Severin Reiz, and George Biros. Geometry-oblivious
fmm for compressing dense spd matrices. Institute for Computational Engineering and
Sciences, 2017.

[40] Chenhan D. Yu, Severin Reiz, and George Biros. Distributed o(n) linear solver for
dense symmetric hierarchical semi-separable matrices. In 2019 IEEE 13th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), pages
1–8. IEEE, 2019.

45

Appendix

47

Detailed descriptions

This section includes guidelines for installing the integrated software on either a local ma-
chine or the Linux cluster at LRZ. Additionally, it offers a Python script that demonstrates
how to compute the inversion of kernel matrices. The main instructions for the installation
of GOFMM have been taken from this document [8].

1 Installation and compilation

You can follow the steps of installation and compilation exactly as described in the refer-
ence [8] using the GitLab repository

1
 where the README explains all the steps to set up

the GOFMM for both local machines or the cluster.

2 Execution for inverse kernel matrix

For execution, you can add the folder use cases from the repository

2
 to your local ma-

chine’s docker container or cluster’s container. The use cases folder contains all the
Python files for multiple cases: MNIST, Synthetic datasets, KRR, and GP.

For the cluster, you can run the file run tests.sh after salloc:

1 module load charliecloud/0.25
2 # Define problem sizes to test
3 problem_sizes=(512 1024 2048 4096 8192 16384)
4 # Set OpenMP environment variables
5 export OMP_NUM_THREADS=28 # Set the number of OpenMP threads
6 export OMP_STACKSIZE=512M # Set the stack size per thread
7 # Loop over each problem size
8 for size in "${problem_sizes[@]}"; do
9 export PROBLEM_SIZE=$size

10 echo "Testing problem size: $PROBLEM_SIZE"
11 # Run the Python script with the current problem size
12 ch-run --set-env=./gofmm/ch/environment -w ./gofmm -- python3

workspace/gofmm/use_cases/mnist_inv_gauss.py
13 echo "Finished testing problem size: $PROBLEM_SIZE"
14 done

1
 GOFMM Datafold

2
 GOFMM Inverse

49

https://gitlab.lrz.de/ge25duq/gofmm_datafold
https://github.com/Azizos126926/gofmm_swig_python/tree/dev/use_cases

Detailed descriptions

Listing 1: run tests.sh

For profiling, you can add:

1 # Start the Python script inside Charliecloud
2 ch-run --set-env=./gofmm/ch/environment -w ./gofmm -- python3 /workspace

/gofmm/use_cases/mnist_inv_gauss.py &
3

4 # Get the PID of the running process
5 PID=$!
6

7 # Run VTune outside the container and attach to the Python process
8 vtune -collect hotspots --result-dir=./hotspots_results -target-pid $PID

Listing 2: Profiling with VTune

Locally in Jupyter Lab, for example:

1 ./compile_swig_mpigofmm.sh
2 python3 mnist_inv_gauss

Listing 3: Local Execution

50

	Acknowledgements
	Abstract
	Introduction
	State of the art
	Kernels
	Symmetric Positive-Definite Matrices
	Low-rank approximations
	Hierarchical matrices
	Geometry-oblivious techniques
	Hierarchical compression of dense SPD
	Factorization and hierarchical pseudo-inverse

	Applications
	Kernel ridge regression
	Gaussian processes

	Scalable kernel matrix inversion
	Setup
	Error evaluation
	Implementation
	Datasets

	Numerical Experiments
	Accuracy analysis
	Multi-core measurements
	Performance analysis

	Conclusion and Future work
	Conclusion
	Future work

	Bibliography
	Appendix
	Detailed descriptions
	Installation and compilation
	Execution for inverse kernel matrix

