Chair of Spacecraft Systems
Department of Aerospace and Geodesy
Technical University of Munich

TUTI

Spacecraft Relative Attitude Determination with Event Camera
Utilizing Event Cameras for Spacecraft Rotational Velocity Estimation

Kian Bostani Nezhad®, Ramoén Maria Garcia Alarcia™, and Alessandro Golkar™

Department of Aerospace and Geodesy, Technical University of Munich

= kian.bostani-nezhad@tum.de
51 ramon.garcia-alarcia@tum.de
=1 golkar@tum.de

August 14, 2024

Abstract — This work proposes a new method for
determining spacecraft relative attitude using event
cameras. Event cameras are, due to their high tem-
poral resolution and spatially sparse nature, especially
suited for the task of tracking movements. This prop-
erty can be used to track stars as a spacecraft rotates.
The star motion can thereafter be used to derive the
angular velocity of the spacecraft. The motivation for
using event cameras for relative attitude determination
lies partially in their mechanical simplicity compared
to existing methods such as flywheel gyroscopes. Fur-
thermore, their potential for accuracy when used in
combination with the right optics could make them
viable alternatives to existing gyroscope technologies.

Four algorithms make up the core of the developed
method. The first algorithm is used for initializa-
tion. The three others run in parallel and perform
star tracking, recurrent star identification and derive
translational and rotational velocity. These algorithms
were developed and tested on artificial star data. The
method shows promise, especially angular velocity es-
timates are found to concur with ground truth data.
However, further work needs to be completed to en-
sure better robustness to noise and better estimation of
translational movements.

1 Introduction

Attitude determination is a topic central to the oper-
ations of any spacecraft. Especially relative attitude
can be an issue for applications where knowing the pre-
cise motions of a spacecraft is essential for operating
its payload. An example is the Hubble Space Tele-
scope, which relies heavily on its flywheel gyroscopes
to measure and compensate for angular velocity. Hub-
ble has an imaging payload that needs to be pointed
precisely at a target location, but is currently facing
a well known issue with flywheel gyroscopes. These
mechanical sensors rely on a constantly rotating fly-

wheel, which has a tendency to break. Hubble has
already lost multiple failed gyroscopes'.

This work proposes a novel method for measuring
angular velocity using event cameras. The core idea
is that a rotating spacecraft will see the stars around
it move. The spacecraft angular velocity can thus be
found by tracking the movement of the stars in rela-
tion to the spacecraft. This is where the advantages of
event cameras can be exploited. Event cameras present
anew paradigm in computer vision [1]. Their spatially
sparse and asynchronous nature makes them especially
suitable for recording quick movements without mo-
tion blur and with high refresh rates. The sensor being
spatially sparse means, that only activated pixels gen-
erate data. Unlike normal cameras which are dense,
with outputs from all pixels regardless of how the pix-
els are activated. The listed properties of event cam-
eras makes them useful for tracking moving objects in
ways frame based cameras cannot.

Events are only generated when a contrast change
is detected. One can thus assume that events in space
are only generated when a star or another sufficiently
bright object is present in view and moving (with
an exception being sensor noise, which needs to be
managed). Thus processing only needs to be per-
formed on relevant events related to stars. A single
second of event data recorded on simulated stars for
this work contains approximately approximately 1 mil-
lion events. A conventional camera with the same
1280 x 720 pixel sensor would have approximately 1
million pixels in a single frame that would need pro-
cessing. The event camera records continuously with
microsecond resolution. A conventional commercial
frame camera records around 24 frames per second.
Using events cameras thus allows for high-speed near-
real-time processing with simple hardware. The high
temporal resolution of event cameras also results in
almost no blurring due to movement, the way they

! https://science.nasa.gov/mission/hubble/observatory/design/hubble-

one-gyro-mode/


mailto:kian.bostani-nezhad@tum.de
mailto:ramon.garcia-alarcia@tum.de
mailto:golkar@tum.de
mailto:kian.bostani-nezhad@tum.de
mailto:ramon.garcia-alarcia@tum.de
mailto:golkar@tum.de

might be with frame images, allowing processing to
be performed even at high speeds.

The method developed through the course of this
work leverages the mentioned advantages of event
cameras and has the core idea of maintaining sim-
plicity. The method compromises one initialization
step and three algorithms, each with novel approaches
to this problem. The initialization is based on the
tried and tested Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) [2] algorithm to
identify stars for tracking. The first algorithm which
draws inspiration from previous work with Kalman fil-
ters, achieves high speed star tracking with minimum
computational demands. The second algorithm is a
recurrent star identification algorithm, also based on
DBSCAN, which allows for continuous tracking when
stars enter and exit the field of view. The last algorithm
is a novel method for finding rotations and translations
based on the tracked stars. The novelty lies in how it
leverages the rigid nature of stars and the constellations
they form.

2 Existing Work

Current work pertaining to event cameras for space-
craft movement tracking relates to using event cameras
as star trackers. The previous work can be subdi-
vided into three main categories. The general trend in
the topic of event cameras is realizing their potential
through asynchronous use.

The first attempts at measuring angular velocity with
an event camera were proposed by G. Gallego and D.
Scaramuzza [3]. This first attempt worked through
contrast maximization, i.e. finding the movement be-
tween to images by identifying the rotation and trans-
lation that maximizes the contrast of the two overlaid
images through an optimization process. This method
requires one to generate frames from events, and to
run a computationally expensive optimization to find
the rotation and translation. It also defeats the main
advantages of the event camera, which is its asyn-
chronous nature. Event frames were also used by T.
Chin et. al. for their first star tracking algorithm [4].
The complexity of this approach is proportional to the
number of events in two event frames.

For their second star tracking algorithm, S. Baghi
& T. Chin departed from the use of event frames and
instead identified the movement of stars using Hough
Transforms on 3D lines [5]. Events have two coordi-
nates in the sensor frame, and for the third dimension
they used the temporal dimension. This removes the

need to generate frames from events, however it is still
not asynchronous as it requires packets of events to
be accumulated before they can calculate the relative
rotations.

More recently, Y. Ng et. al. presented a method for
event-based star tracking that works asynchronously
using a Kalman Filter [6]. This algorithm successfully
tracks stars and is the main inspiration for the algorithm
presented in this work. However there is some room
for improvement, which this work will expand upon.
The tracker requires advance knowledge of star map
parameters in order to map events to stars. It also does
not take the rotation of the camera into consideration.
It only considers translational motion. This work thus
expands the work of Y. Ng et. al. by creating an
algorithm that works without a star map and which
can track rotation as well.

3 Method and Algorithms

The method of this work is asynchronous in nature
and is based on four algorithms. The first algorithm
is the initialization which uses a buffer of accumu-
lated events to identify stars using DBSCAN. The next
three algorithms are thus the main body of the method
and they are intended to run in parallel threads or
processes. Firstly, there is an asynchronous tracking
algorithm that iteratively tracks and follows the move-
ment of stars in view. Each iteration of this algorithm
is performed with the detection of a new event. The
second algorithm ensures new stars are identified when
the view of the camera shifts and new stars come into
view. This also happens after a certain amount of it-
erations and when a large enough buffer of events has
been accumulated, to perform the clustering and de-
tection. The last algorithm calculates the rotation and
translation of the tracked stars across epochs consisting
of a certain number of iterations.

The method has been divided into three parallel
parts due to the different computational demands of
the respective algorithms. The least expensive algo-
rithm is the tracking algorithm. It has been designed
to be as computationally efficient as possible, such that
events and stars can be tracked in real time. The second
most expensive algorithm is the star rotation and trans-
lation algorithm, that identifies the same stars across
epochs and calculates their rotation and translation.
This algorithm has to be executed between epochs of
iterations, since it cannot run in real time. The most
expensive algorithm is the clustering algorithm, which



Initialization from buffer

1. Run DBSCAN to identify stars as clusters of events.
2. Calculate initial positions and distributions of clusters.

Algorithm 1:
Star Position Tracking

Algorithm 2:

Recurrent Star Identification

Algorithm 3:
Rotation and Translation

Performed with each new event.

Performed on buffers of events.

Performed between epochs.

Parts: Parts:

1. Run Asynchronous Kalman Filter
to update update cluster positions
and distributions (Section 3.2).

1. Run DBSCAN to identify new stars
as clusters (Section 3.1).

2. Calculate cluster positions

and distributions (Section 3.1).

Parts:

1. Perform star matching to identify recurring
stars across epochs (Section 3.3).

2. Perform Rigid Body Transform

to find movement between epochs

(Section 3.4).

.. . tput:
OQutput: Star positions fed to algorithm 3. Outpu

New stars to be tracked by algorithm 1.

Output:
Translational and rotational velocities.

Table 1 Overview of algorithms and methods used for Spacecraft Angular Velocity Estimation. An initialization is

performed and algorithm 1, 2 and 3 are performed in parallel.

only happens sparsely and on selected areas of the data,
to minimize calculations.

The presented method works in two dimensions, one
horizontal and one vertical dimension, since these are
the dimensions of the event sensor frame. This would
not work for a real-life application since a spacecraft
has three rotational degrees of freedom. A transfor-
mation would therefore be needed from the sensor ref-
erence frame to the spacecraft reference frame-based
on knowledge on the relative position of the camera to
the spacecraft center of mass. This transformation is
left out of this work for the sake of simplicity.

3.1 Clustering

Clustering is performed at two stages in the method.
The first stage is the initialization where clusters are
identified for the first time, which forms a basis for
the rest of the method. The second stage is during the
main loop of the method where the star movements
are tracked. Here, clustering performed on the sensor
edges to identify new stars when they enter the image.

For the first identification of stars, the simple and
widely used DBSCAN algorithm is used [2]. This al-
gorithm is well suited for two main reasons. Firstly,
it can work with an unknown number of clusters.
Secondly, it has a notion of noise, which has a con-
stant presence in event camera data. DBSCAN needs
two hyperparameters to work. The first one is e,
which is the maximum distance events can have to
be in the same cluster. The second hyperparameter is
min_points, which is the minimum number of events
needed to make up a cluster.

We want to use a simplified representation of each
star to reduce the number of calculations that need to be
performed to track them. We will therefore see stars as

distributions of a certain number of events with a mean
position and standard deviation. The mean position,
also known as the centroid, is calculated simply as the
mean coordinates of all the events that make up the
star. The standard deviation is the mean deviation of
events from the center position.

;///////////////////////////////{/////;/

w
w

/
. ///////////////////////////////?7

Figure 1 The shaded areas represent an area near the edge
of the sensor where new stars are detected. There are four
areas with overlap in the corners.

Recurrent star identification takes place near the
edge of the camera’s view to detect new stars which
come into view as the camera moves. The imple-
mentation of this recurrent identification is also based
on the DBSCAN algorithm with a distinct difference.
The clustering algorithm is applied in a limited fashion
only near the edges of view. And it is performed in four
separate areas near each edge (see figure 1). DBSCAN
has a worst-case complexity of O(n?), so limiting the
amount of events considered decreases computational
complexity significantly. The overlap is to ensure no
stars are overlooked between edges of two regions.
The recurrent identification algorithm is performed on
a buffer of events at a scheduled interval. The inter-
val is determined by the user on an application basis,
based on the available computational resources.



3.2 Tracking

Tracking how stars move with every single event is a
difficult task. It requires a robust but simple algorithm.
Robust enough to avoid false measurements and sim-
ple enough to allow real-time processing. The core
concept to achieve the needed robustness and simplic-
ity is straightforward. It starts with the realization that
recalculating the absolute position of the stars with
each new event requires way too many computational
resources. Instead, the core idea is to calculate how the
star positions vary with each new event. This variation
is then applied to an estimated state method of the star
positions. The true absolute position of the stars can be
found with the expensive clustering method and keep-
ing track of all the events requires a large amount of
memory. Modelling the stars as distributions of events
with a center position and variance is much simpler.
The calculations are now reduced to finding out how a
distribution varies with each new measurement.

A buffer is still needed, however. Events not only
change the perceived positions of stars when they ap-
pear, but also when they disappear (see figure 2). This
leads to a First In First Out system where the contribu-
tions of each event are found when it enters the buffer
and when it leaves the buffer.

X %

2 %% 3
® b
%

®x X

Figure 2 Stars are located in the center of clusters of events.
The events are visualized by the crosses. Events are gener-
ated in the direction of movement and events disappear in
the direction opposite to the movement. The center of the
cluster is thus shifted in the direction of the red and green
arrows according to the magnitude of the vectors scaled by
the size of the cluster.

A maximum threshold distance is needed to ensure
that only events related to a star contribute to changing
its position. The event is processed if it arrives within
the threshold of a star, otherwise it is discarded as
noise. Events are randomly assigned to a cluster if
they happen to be inside the threshold of more than
one star. The threshold is a dynamic variable which

depends on the standard deviation of a cluster. This
ensures that larger stars have a larger reach to gather
events from.

The robustness of the estimation of the position
changes is ensured using a Kalman filter as we will
see in the next section.

3.2.1 Kalman Filter

Kalman filters are widely used filters which allow one
to find updates to a state using measurements across
iterations [7]. The Kalman filter performs updates
with a consideration for the previous update history
and noise, which leads to improved state estimations
and robustness. A Kalman filter starts with a state
transition model. The state transition model is quite
simple in this case, as a constant state is assumed. This
can be seen in equation 1.

_ 1 0
X, =AYy, A:[O 1} (D

Where x,_, is the previous state, A is the state transi-
tion matrix and y,_; is the previous measurement of
state. A constant state is assumed since there wouldn’t
be any disturbances in an ideal situation. There are
in reality unavoidable disturbance which can be ac-
counted for with the Kalman filter. This starts by
making a prediction based on the previous state and
the state transition matrix in the following equation:

X =A-x_, 2)

The error is accounted for using the error covariance
matrix as seen in this equation:

P,=A-P_;-AT 3)
From which the Kalman gain is found on the next line:
K=P,/(P, +R) “)
Where R is the expected noise level for the measure-
ment update of the Kalman filter. Lastly the update

can be performed and the new error covariance can be
found in the next two equations:

x=x"+K- (y, —x") )

Pii=(1-K)-P (6)



3.3 Star matching

The purpose of star matching is to identify the same
stars across epochs. This is necessary to compute the
observed translational and rotational movement. Stars
form unique patterns between themselves which can
be taken advantage of. Each star is assumed to be the
origin of vectors pointing from it to other stars in view.
Only vectors pointing to a certain n closest neighbours
of each star are considered in order to manage the com-
putational complexity of the algorithm. The vectors
from the origin star to other n close stars are assumed
to be unique to that origin star and serve as that star’s
“fingerprint’. The vectors formed between each star
and its closest neighbour maintain their magnitude de-
spite incurred rotations and translation, so long as the
same stars are in view. Rotations, however, will change
the orientation of the vectors. See figure 3.

A B

Figure 3 The distance and relative angle between stars is
permanent and serves as the fingerprint of each star. Ro-
tations and changes in the visibility of stars change this
fingerprint.

The simplest way to identify a star would be to take
the magnitude of all the vectors pointing from this star
to its n closest neighbours and use a similarity measure
on the distances measured between stars across epochs.
The disadvantage of this approach is that the distances
are scalar values. Stars are more or less uniformly
distributed across the sky, thus the distances will be
somewhat similar, and it will be hard to make robust
identifications. The angles between the vectors, are
therefore considered to ensure robust identification.

Identifying a star across epochs thus follows the
following procedure:

1. Find vectors pointing to the n closest neighbour-
ing stars.

2. Calculate the angle between the smallest magni-
tude vector and some predefined direction.

3. Use this angle to rotate all n closest vectors.

4. Next, perform the same rotation on vectors of a
candidate star in the previous epoch.

Each of the vectors of the origin star should now all
point in the same directions as their equivalents across
epochs, if it is the same star that being tested. A cosine
similarity measure can now be performed for each
pair of vectors across epochs. The star with a cosine
similarity sum close to n is with high propability the
same star across the epochs.

3.4 Rotation and Translation

Finding stars across epochs was investigated in the pre-
vious section. As outlined in that section, the position
of stars does not change in relation to each other. This
allows the use of Rigid Body Transform for finding the
rotation and translation of the stars. The translation is
simply the difference of the position of the same star
across epochs. For the rotation Singular Value Decom-
position (SVD) can be used to perform the Rigid-Body
Transformation [8]. A minimum of two stars present
across two epochs are needed to perform the SVD. We
perform the Rigid Body Transformation of stars by
centering coordinates using the centroids of both sets
of points which are to be compared. This can be seen
in the equations below:

A=A-E{A}
B=B-E{B} @)

The centroids are multiplied to form a new matrix H =
ATB. Singular Value Decompostion is thus performed
on H to find the U, S and V matrices. The rotation
matrix is found as:

R=VTUT (8)

4 Implementation and Testing

This section will give an overview of how the proposed
method and algorithms were implemented for testing.

The algorithm has been implemented using Python
3.9 running on a single Intel(R) Core(TM) i5-8350U
at 1.90 GHz. The implementation uses the Numba
compiler library for Python that translates Python code
to efficient machine code. The most relevant library
dependencies for this method are: Metavision SDK?,
Numba?, Numpy* and Matplotlib’.

2https ://docs.prophesee.ai/stable/index.html

3 https://numba.readthedocs.io/en/stable/
“4https://numpy.org/doc/stable/reference/index.html
Shttps:/matplotlib.org/stable/users/index



The use of the Numba Python compiler necessitates
writing the code using only functions supported by
the Numba compiler. These are mostly functions built
into Python and most Numpy functions. Matplotlib is
not supported, visualization therefore needs to happen
outside the Numba compiled code. The code is based
on object oriented programming with classes and in-
stances to improve repeatability and maintainability.

The implementation starts with a data loader which
removes so called "hot pixels" which are faulty and
overactive pixels, which can throw off the tracking
algorithm. After dataloading, the main class named
SpacecraftAngularVelocity is called, which uses the
method on the event data. The details of the imple-
mentation can be found in the GitLab repository®. A
DBSCAN function and a Rigid Body Transform func-
tion where copied from their respective developers and
implemented. See footnotes’S.

4.1 Test setup

Tests were recorded using a Prophesee EVK3 evalua-
tion kit with the Sony IMX 636 sensor equipped with a
Smm lens. The tests were performed using an optical
test bench with a paper sheet simulating randomly dis-
tributed stars. The paper sheet was moved in relation
to the recording event camera in both translational
and rotational motions. Test were performed with a
purely translational motion, purely rotational move-
ment and lastly combined rotational and translational
movement.

The setup for the translation only test can be seen
in figure 4b. The stepper motor of the optical bench
slowly and carefully moves the camera across the paper
sheet with stars. The stepper motor moves the camera
at approximately 50 pixels per second in the camera
reference frame. 2.0 seconds of recording are selected
for testing. The correct result from the method would
be to record 100 pixels of movement.

For the rotation only test, the camera is placed in
front of the paper sheet with stars which is attached to
a servo motor which is commanded to turn at 20 deg/s.
Furthermore, an IMU has been attached to the paper at
7cm from the rotational axis, such that the rotational
velocity can be independently verified.

For the translation and rotation combined test, the
servo motor with the paper is placed on the optical

Shttps://gitlab.lrz.de/00000000014BA A 1 1/spacecraft-angular-
velocity-with-event-camera

Thttps://github.com/scrunts23/CS-Data-Science-Build-Week-
1/blob/master/model/dbscan.py

8https://github.com/ClayFlannigan/icp/blob/master/icp.py

bench and the camera is moved using the stepper mo-
tors. The velocities are the same as previously. 50
px per second of translational motion and 20 deg/s of
angular velocity.

(b) Image of test setup on optical bench. Camera points at paper
with random stars.

Figure 4 Images of test setup.

5 Results

The results are shown using both tables and figures to
highlight the most significant discoveries on the per-
formance of the proposed method for relative attitude
determination with event cameras.

The first test was the translational movement only
test. The results of the test can be seen in figure 5.
Starting from top figure and going down, some obser-
vations about the method’s performance can be made.
Figure 5a shows a snapshot of the tracking algorithm
working. It can be seen that each star, which are the
yellow blobs, has a accompanying red line, which is
the tracking algorithm working. The second figure,
figure 5b, shows the angular velocity as measured by
the event-based method. It can be seen that a slight ro-
tation is being registered by the method. This could be
explained by the slight fisheye effect of the lens used
for recording. The fisheye will turn distort straight
lines into slight curves which might be recorded as
rotations by the method. This fisheye distortion can



also be seen in figure 5a. The parameters being tested
for are shown in 5c. Here, we have the horizontal and
vertical movements displayed together as a function of
time. The result of the test should have been the blue
line telling us, that the camera has moved 100 pixels
in the horizontal direction and O pixels in the vertical
direction. However, it has only recorded around 40
pixels of movement in the horizontal axis and some
movement in the vertical axis.

The results of the purely rotational test can be seen
in figure 6. Figure 6b has the rotational measurements.
It can be seen that the event camera measurements start
later than the IMU measurements. This is due to the
fact, that a certain amount of movement is needed,
to generate enough events for the clustering algorithm.
Angular velocity can be found once enough movement
is generated and the method is able to function. It can
be seen, that the noise of the event camera method far
surpasses the noise of the IMU, even when a running
averaging is applied to the event camera measurement.
Both methods do seem to agree, that the angular veloc-
ity is close the 20 degrees per seconds, as commanded
to the servo motor moving the paper sheet with stars.
Notably, the method also records translational motion,
when only rotation is being performed. This suggests
a failure to distinguish between movements generated
as a result of rotations and translations.

The last test combines tranlational and rotational
movements. The test results in figure 7 shows that the
method is able to collect both rotational and transla-
tional data at the same time. In figure 7b we see that
the angular velocity measurement is close to the com-
manded 20 deg/s. However, in figure 7c we again see
that the method does not differentiate between rotation
and translation. The commanded translational speed is
the same as in the translation only test, however we are
recording larger movements than in that test. This in-
ability to separate translational motion with rotational
motion is even more evident in figure 7d where the
position changes are recorded in horizontal and ver-
tical positions. Here, a circular motion seems to be
recorded.

__Translation Only: Tracking

600 800 1000 1200

(a) Tracking of stars.

Translation Only: Rotational Motion

Event Camera
EVK running mean

w
L

~
f

Angular Velocity [deg/s]
N w

[
L

000 025 050 075 1.00 125 150 175
Time [s]

(b) Recorded angular velocity.
Translation Only: Translational Motion

50 1

Rl - Horizontal

- Vertical
30

204

10

Distance [px]

A MMt

—101

0.00 025 050 075 1.00 125 150 1.75
Time [s]

(¢) Recorded translational movement.

Figure S Results from test with translational motion only.



Rotation Only: Tracking

600 800 1000 1200

(a) Tracking of stars.

20 deg/s Commanded IMU and Event Camera Comparision

331 Event Camera
= EVK running mean
w30 MU |
~
=)
g a5 2 & M
z
G 20 p |
o
a
> 15 e ¥
—
5
=] 4
o 10
<
5 p
0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
Time [s]
(b) Recorded angular velocity.
Rotation Only: Translational Motion
300 =
= Horizontal
250 1 Vertical
200
%
2 1504
]
& 100
(1]
@ 50
=
0 <
_50 4

T T T T

00 02 04 06 08 10 12 14
Time [s]

(¢) Recorded translational movement.

Figure 6 Results from test with rotational motion only.

Distance [px]

Vertical Postion [px]

Angular Velocity [deg/s]

Rotation and Translation: Tracking

St ‘\\\

'—? / /]

1000 1200

(a) Tracking of stars.

Rotation and Translation: Rotational Motion

w
(=]
L

N
wu
L

N
o
L

-
w
L

[
(=]
L

w
L

Event Camera
= EVK running mean

0.0

02 0.4 0.6 0.8
Time [s]

(b) Recorded angular velocity.

Rotation and Translation: Translational Motion

500 1

400

300 1

200

—— Horizontal
= \ertical

0.0

02 0.4 0.6 0.8
Time [s]

(¢) Recorded translational movement.

Rotation and Translation: Position

175

150 4

125 1

100 +

754

50+

254

—254

100 200 300 400 500
Horizontal Position [px]

(d) Horizontal and vertical motion.

Figure 7 Results from test with combined translational and
rotational movement.

8



6 Discussion

The test results show that he proposed method and al-
gorithms are able to work together to find the rotational
and translational motion as observed by the event cam-
era. However some challenges remain which need to
be addressed.

The method does not perform well when it comes
to translational motions as discussed in the results.
This problem may lie somewhere in the implementa-
tion and needs to be corrected, such that rotations and
translations are recorded separately, especially when
the motions happen separately. This could otherwise
affect later reference-frame transformations.

One such problem which needs to be addressed, is
the one presented in figure 6b. Here the event-based
relative attitude determination method fails in the first
second or so, due to the fact, that the tracked stars are
moving too slowly. Not enough events are generated
if the movement is too slow, resulting in the method
breaking down. An event-based method for relative
attitude determination needs to find a way to address
this issue, if it wants to compete with traditional meth-
ods such as IMU’s on accuracy. A solution could be,
to make the method more automated, such that it can
dynamically adapt its hyperparamters, such as mini-
mum cluster sizes, based on the activity on the sensor.
When activity is low, it reduces the numbers of events
needed to form a cluster and vice-versa.

The issue with hyperparameters and velocity is a
general one, not only related to the sizes of clus-
ters. For example, the needed buffer size for clustering
needs to increase when the amount of events generated
by stars is low. This is due to the signal to noise ratio in
the image being smaller, making it hard to distinguish
clusters from noise.

One issue observed when performing the testing,
relates to the test medium, which is the paper on which
stars were printed. Light gets reflected by the paper,
which is recorded by the event camera and results in
amplified noise levels. The reflection appears due
to the movement of the paper which is not perfectly
diffuse and thus will generate reflection at the right
angles. The effect can be seen as light areas on figure
5a and 7a. Future testing would have to be performed
using a more neutral medium to avoid these bright
areas which lead to false star identifications and noise.
The test would probably also have to be redone using
more ground truth data in all aspects of testing. Right
now the ground truth IMU data is limited to the rotation
only test. It would have to be expanded to include the
translational tests as well.

Noise as a whole is a big issue which persists despite
attempts to limits its influence, by means of for exam-
ple Kalman filters. The noise needs to be mitigated
further somehow, if the method is to become a viable
alternative to traditional angular velocity estimators,
such as IMU’s. Certain known avenues exits to reduce
noise in event data, such as frequency based filtering,
which limit random noise, but with the risk of losing
information and adding computations. Other avenues
could be to cool the sensor. The method as a whole
needs improvement to better handle noise, otherwise it
would not become a viable solution to find spacecraft
angular velocity.

Finally, a discussion of how can this event-based
method be used for spacecraft attitude determination
and how would it would compare to existing solutions.
So to start, ideally you would have multiple event cam-
eras fitted to a spacecraft to ensure one always sees the
stars. Then you would have to consider which optics
to give your event camera. The larger the focal length,
the smaller the field of view. A small field of view
would make the event camera more sensitive to the
motion of the stars it seems. The field of view already
reduces to arc-minutes with a focal length of for ex-
ample 1000mm. The per pixel focal length, using the
previously mentioned IMX636 sensor, is just 1.13”
per pixel. For example, the Airbus ASTRIX NS 3-
axis fiber optic gyroscope® has a Angle Random Walk
(ARW), which is a the drift over time due to noise,
of 18” /v/h. The division with the root-hours signifies
that the error increases with the hours squared. The
event camera solution could therefore be better than the
Airbus gyroscope, especially over longer duration’s, if
tracking could be performed down to a single pixel
since it does not drift. The lack of moving parts also
makes it a more robust and reliable option to gyro-
scopes.

7 Conclusion

In conclusion, the presented method works, and it can
detect stars, track them and generate measurements of
rotational velocity and translational movements based
on their movements. The rotational estimates work and
produce similar results to the ground truth. However,
the method’s ability to measure the correct transla-
tional motion needs to be improved. The method’s
ability to handle noise also needs to be improved, to-
gether with its invariance to selected hyperparameters.

9https ://satsearch.co/products/airbus-defence-and-space-astrix-
ns



8 Further Work

The proposed further work can be summarized in the
following list:

1.

2.

Improve estimation of translational movement.

Improve testing by implementing more ground
truth estimations and by not using paper or avoid-
ing reflections if paper is used again.

. Include benchmarks for computation times of the

proposed algorithms.

Implement method and algorithms in a natively
compiled language such as C++.

. Improve robustness to noise, possibly through the

use of filters.

. Find ways to handle slow movement scenarios.

References

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

G. Gallago et. al. Event based vision, a survey.
IEEE, 2022.

Jiirg Sander Xiaowei Xu Martin Ester, Hans-
Peter Kriegel. A density-based algorithm for dis-
covering clusters in large spatial databases with
noise. AAAI, 1996.

Guillermo Gallego; Davide Scaramuzza. Accurate
angular velocity estimation with an event cam-
era. IEEE Robotics and Automation Letters, April
2017.

Tat-Jun Chin et. al. Star tracking using an event
camera. IEEE, 2018.

Tat-Jun Chin S. Bagchi. Event-based star tracking
via multiresolution progressive hough transforms.
IEEE, 2020.

Yonhon Ng et. al. Asynchronous kalman filter for
event-based star tracking. Springer, 2022.

Gary Bishop Greg Welch. An introduction to the
kalman filter. Department of Computer Science,
University of North Carolina at Chapel Hill, 1995.

John H. Challis. A procedure for determining rigid
body transformation parameters. Elsevier, 1995.

10



	1 Introduction
	2 Existing Work
	3 Method and Algorithms
	3.1 Clustering
	3.2 Tracking
	3.2.1 Kalman Filter

	3.3 Star matching
	3.4 Rotation and Translation

	4 Implementation and Testing
	4.1 Test setup

	5 Results
	6 Discussion
	7 Conclusion
	8 Further Work
	References

