
Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

1

Development and assessment of a computation engine
module for an LLM-enhanced spacecraft design assistant

Roberto Aldea VelayosB

B roberto.aldea-velayosr@tum.de
September 20, 2024

Abstract — This paper presents a novel computation
engine designed to enhance the capabilities of Large
Language Models (LLMs) to support the initial phases
of spacecraft design. With the integration of a Python-
based computation engine, we address some of the
inherent limitations of LLMs, such as the lack of com-
putational ability and difficulty in tracing decision-
making processes back to specific data inputs. The
computation engine is supported by OpenAI’s API
models and the tool call feature to enable accurate,
and traceable decision-making within spacecraft sys-
tem configurations, focusing on missions involving
Earth observation using CubeSats in Sun-Synchronous
orbits. Through experimental validation across vari-
ous simulated mission scenarios, the engine demon-
strates significant improvements in reducing output
uniformity and enhancing stability in design parame-
ter predictions. The system’s design allows for future
expansions and adaptability to include a broader range
of spacecraft types and mission objectives, marking
a significant step forward in the application of AI in
aerospace engineering.

1 Introduction

In recent years, Artificial Intelligence (AI) has sig-
nificantly expanded its applications, particularly with
Large Language Models (LLMs) that are increasingly
being utilized across various tasks. These models are
not only popular in conversational AI but have also
demonstrated substantial capabilities as engineering
tools capable of addressing complex challenges. Their
potential as AI assistants in the engineering design pro-
cess is undeniable.

Despite their advantages, LLMs inherently possess
limitations that restrain their utility in prolonged engi-
neering projects. One critical issue is the generation of
’hallucinations’ or the production of erroneous or ficti-
tious information. Additionally, these models struggle
with computational or mathematical tasks and lack
transparent reasoning processes, making it difficult to
trace their outputs back to specific training data or in-
ternal reasoning. This lack of traceability is problem-

atic in engineering projects where documentation and
the ability to backtrack through the decision-making
process are crucial.

To address these shortcomings, this paper proposes
the integration of a "computation engine." This tool
handles the necessary computations, thus enhancing
the reliability and traceability of the answers provided
by LLMs. By coupling the LLM with a computa-
tion engine, the model not only gains the ability to
generate reliable numerical data but also enhances
the decision-making process by selecting appropriate
computational functions at each step.

The focus of this paper is on designing the archi-
tecture and an initial implementation of a computation
engine, developed only for the initial phases of space-
craft design. More precisely, the CE focuses on the
spacecraft’s payload, orbit, and ground-segment pa-
rameters, which are critical to the design of the rest of
the spacecraft platform. These key areas have been the
primary focus of the design to ensure that the founda-
tional aspects of the spacecraft are robustly developed.
Even with this reduced design scope, the task remains
as a complex endeavor that requires handling numer-
ous variables and configurations, which, for this paper,
will be simplified under certain assumptions to make
the problem simpler. This work, therefore, serves as a
foundation that could be expanded to include broader
mission types and scenarios.

For this paper, the mission scope is reduced with the
following assumptions:

• The mission type is restricted to Earth observa-
tion.

• The orbit is assumed to be always Sun-
Synchronous and circular.

• The spacecraft is assumed to always be a CubeSat.

1.1 State of the Art

Recent advancements in artificial intelligence have
paved the way for sophisticated applications in space-
craft design, particularly utilizing Large Language

mailto:roberto.aldea-velayosr@tum.de
mailto:roberto.aldea-velayosr@tum.de


Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

2

Models (LLMs). Existing literature demonstrates sig-
nificant interest in improving LLMs with computa-
tional tools to enhance their utility in engineering
tasks. For example, the works described in [10], [7],
and [8] introduce frameworks where LLMs are en-
hanced with capability-augmenting tools, significantly
improving their performance in computational tasks.
This integration facilitates more complex calculations
and aids in mathematical reasoning (as in [1]), essen-
tial for technical domains like aerospace engineering.

In the specific realm of engineering and design, [5],
[2] and [3] have pioneered in the use of LLMs to
assist in early design phases. More precisely, [2] fo-
cuses on domain-specific data-sets to train LLMs for
tailored tasks in spacecraft design, while [3] explores
the broader application of AI, though not specifically
LLMs, in the preliminary stages of spacecraft system
development. These studies illustrate the potential of
LLMs to transform traditional engineering workflows
into more efficient and data-driven processes.

This paper extends this innovation by integrating a
computational engine with an LLM, specifically ad-
dressing the challenges and limitations observed in
previous models. Unlike earlier approaches that pri-
marily utilize LLMs for data retrieval or basic com-
putational tasks, this framework uses a Python-based
computational engine to perform necessary calcula-
tions, thereby enhancing the LLM’s capability to han-
dle the complex requirements of spacecraft design.
This integration not only improves the accuracy and
efficiency of design tasks but also ensures traceabil-
ity and reliability—key factors in engineering applica-
tions where precision is crucial.

1.2 Research gap and questions

Having briefly explored the existing literature on the
subject, this paper aims to answer the following ques-
tions.

• What are the challenges and limitations of in-
tegrating LLMs with computational engines for
spacecraft design, and how can these be ad-
dressed?

• To what extent can a Python-based framework,
utilizing OpenAI’s API for tool (or function)
calls, improve the efficiency and accuracy of
spacecraft design tasks?

• How can the developed computation engine mod-
ule be assessed in terms of performance, usability,
and impact on the design process?

2 Methodology

The Computation Engine (CE) has been developed in
Python following an object-oriented structure in ac-
cordance to the spacecraft model built and described
in [4].

The CE uses a combination of chain-steps, functions
and databases of off-the-shelf spacecraft components
to populate a generic spacecraft model and its param-
eters. The order followed by the CE for the design of
the spacecraft is calculated in [4], which is payload-
orbit-ground segment.

The CE has been developed thanks to OpenAI’s API
[6] and their models, in this case "gpt-4-turbo-2024-
04-09" and "gpt-3.5-turbo-1106" have been used.
More precisely, the CE uses an OpenAI’s API function
called tool-call, where the model can be fed with a list
of tools (or computation functions) which then can be
accessed to and chosen by the model if seen necessary.

2.1 Framework and Structure of the
Computation Engine

The Computation Engine’s basic structure flow can be
seen in Figure 1. The CE takes a prompt in the form of
a Mission Statement, which, along with some internal
instructions, is inputted to the model (in this case gpt-
4) and 6 parameters are produced as a result. The
ground sampling distance (GSD), the maximum revisit
time, the region’s parameters (that include the radius,
the latitude and longitude) and finally the number of
Ground Stations. These parameters will then be used
in posterior design steps.

The GSD is then used as an input to an algorithm
that selects a payload, in this case a camera, from the
database of different cameras. This algorithm com-
pares the GSD given by the LLM and the GSD stated in
the camera’s parameters, and selects the most suitable
camera for the altitude range of 400-900km, setting the
GSD and the maximum altitude required. The param-
eters from the payload are then, along the parameters
from the region of interest and the maximum region
revisit time, which were inferred by the LLM, used in
the next step, to calculate the orbital parameters of the
mission.

Finally, the calculated orbital parameters, along
with the number of ground stations, inferred by the
LLM previously, are used to choose the ground sta-
tions that will be used in the mission.

Algorithm 1 shows part of the CE’s pseudo-code.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

3

Algorithm 1 Process for Extracting Satellite Orbit Param-
eters and Handling Specific Function Calls
0: Input: User provides a mission statement.
0: Prepare the internal prompt using the mission state-

ment.
0: Internal Prompt:
0: "Given the following mission statement for Earth ob-

servation: {mission_statement}\n
0: Infer the following parameters necessary for satellite

orbit calculation.
0: If in the mission statement any of the following param-

eters is stated, then use that value/s:
0: 1. Maximum ground sampling distance (GSD) required

in m. (If the generated value is lower than 4m, just say
4)

0: 2. Region of Interest (Longitude, Latitude in degrees
and Radius in km, the radius must be chosen so that the
area given by the spherical cup of this radius covers the
entire region.)

0: 3. Maximum Revisit Time in days
0: 4. Number of ground stations to be used during the

mission, heavily depends on if the mission requires data
downlink urgency. If not required just say 1

0: Provide estimates or typical values for Earth observa-
tion satellites focusing on this mission.

0: Respond only with the asked values in the following for-
mat without the units: GSD in m, longitude in degrees,
latitude in degrees, radius in km, revisit time in days.

0: Don’t write anything that are not the numbers asked for
in the asked format. Example response: 4, -75.0, 0.0,
500, 5, 3"

0: Process Prompt with GPT-4
0: Store the parameters output in a list.
0: List functions from computation engine relevant for

further modeling.
0: Save these functions in a list of dictionaries to be used

later.
0: Prompt the model to start with the design in the fol-

lowed order.
0: Check if the model’s response involves a function call.
0: if response.choices[0].finish_reason == ’function_call’

then
0: (Example)
0: function_call = re-

sponse.choices[0].message.function_call
0: function_name = function_call.name
0: if function_name == ’orbit_params_revisit_time’

then
0: Call the corresponding function
0: Populate accordingly the space_mission class

based on the function results
0: end if
0: end if
0: Repeat until the model is completely populated. =0

Figure 1 Computation Engine Diagram.

2.2 Analyzed Parameters

To measure the improvement of performance of the
LLM assistant with the computation engine, 8 generic
Earth observation missions will be prompted in 10
different instances. To compare with the parameters
calculated with the CE, the same parameters will be
asked to be inferred by ’gpt-4’ without any external
tool (The prompt used to inferr this parameters can be
found in the Appendix).

The parameters chosen to analyze the performance
of the CE are:

• Average region contact time in a single orbit in
the span of one Week.

• Maximum eclipse duration in a single orbit in the
span of one Week.

• Maximum region revisit time in a single orbit in
the span of one week.

• Average camera data production in a single orbit
in the span of one Week.

• Average ground station contact time in a single
orbit in the span of one Week.

These parameters are crucial in spacecraft design as
they significantly influence the engineering decisions



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

4

regarding key spacecraft components. Each parame-
ter’s accurate computation is essential for designing
efficient and effective spacecraft systems, thereby ex-
plaining their selection for this comparative analysis.

Before detailing how each parameter is calculated,
it is crucial to define the initial conditions and as-
sumptions that govern the satellite’s behavior in our
simulations:

• Altitude: Determined during the payload con-
figuration step and is instrumental in defining the
satellite’s orbital path.

• Right Ascension of the Ascending Node
(RAAN): Calculated to ensure that in the first
orbit, the satellite passes directly above the re-
gion of interest.

• Inclination: Set to synchronize with the Sun
(Sun-Synchronous Orbit) to maintain consistent
lighting conditions over the region of interest.

• Argument of Perigee (AOP) and True
Anomaly (TA): Both parameters are set to zero,
simplifying the calculation by focusing the orbit
at its perigee at the starting position.

• Initial Time for Simulation: Set to January 1,
2025, at 17:15 UTC, marking the start of the
observation period.

• Simulation Period: Extends over one week to
provide a comprehensive view of the satellite’s
operations across multiple orbits.

Now, we proceed to describe the specific calcula-
tions for each operational parameter using the defined
initial conditions.

2.2.1 Average Region Contact Time in a Single
Orbit

The average region contact time per orbit is determined
using the find_events function from the Skyfield
library[9], which calculates visibility events based on
the satellite’s configured orbit and the observer’s lo-
cation. By assuming the region is akin to an observer
with a certain minimum elevation, this function can be
used to calculate this parameter.

2.2.2 Maximum Eclipse Duration in a Single
Orbit

The maximum eclipse duration per orbit is calculated
by assessing the intervals during which the satellite

is in Earth’s shadow, using the is_sunlit function
from Skyfield[9].

2.2.3 Maximum Region Revisit Time in a Single
Orbit

The maximum time between successive visits to a
specific region is computed using the find_events
function from Skyfield[9]. Similarly to subsection 1,
this function can be used to calculate this parameter.

2.2.4 Average Camera Data Production in a
Single Orbit

This calculation is based on the formula that combines
coverage time with the satellite camera’s operational
characteristics:

Avg Data Production =
1
8
× DR × Avg Coverage Time

(1)
where the Data Rate (DR) is determined by the satel-
lite’s velocity and camera specs:

DR =
Pixel Depth × Resolution × Ground Track Velocity

GSD
(2)

2.2.5 Average Ground Station Contact Time in a
Single Orbit

Ground station contact times are calculated using
find_events from Skyfield[9], simulating the satel-
lite’s visibility from a fixed ground location.

2.3 Uniformity and Stability

Two factors will be analyzed in the results. First, the
appearance of uniformity in the parameters inferred
by the LLM. Uniformity in the LLM means that it
answers with the same responses to different inputs,
which means that instead of trying to predict or calcu-
late the parameter for each case, it just responds with
the same value every time, presumably a value cho-
sen from the training data. In this case it could then
be said that if there is too much uniformity in the re-
sponses, the model’s accuracy for this type of tasks is
not adequate.

Second, the stability. In this case, a good stability
would mean that if the assistant would give different
parameters for two instances of the same prompt, that
at least these parameters would be close to each other.
Perfect stability would mean that the assistant always
gives the same parameter responses for the same mis-
sions, no matter how many times instanced.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

5

2.4 Experimentation

Large Language Models (LLMs) can be adjusted to
produce responses with varying degrees of random-
ness, controlled by a parameter known as ’temperature’
(denoted as ’t’). The temperature setting influences the
predictability of the model’s outputs: a lower temper-
ature leads to more deterministic and consistent re-
sponses, while a higher temperature allows for greater
variability and creativity in the generated outputs. To
thoroughly evaluate the influence of this parameter on
model performance, we examine three different tem-
perature settings: t=0, t=0.5, and t=1, in the cases
where only the LLM is used without the computational
engine (CE). These settings represent a spectrum from
no randomness (t=0), moderate randomness (t=0.5),
to high randomness (t=1). When the CE is used, we
consistently use a temperature setting of t=0 to en-
sure maximum reliability and precision in the outputs,
aligning with the strict accurateness requirements of
spacecraft design.

The mission statements used for the performance
benchmark are the following:

• Mission A: Observe and study the deforestation
process in the Amazon forest.

• Mission B: Track and alert of wildfires in North
America.

• Mission C: Track and study the plastic pollution
in the Pacific Ocean.

• Mission D: Observe and study the urbanization
process in Europe.

• Mission E: Provide real-time monitoring of vol-
canic activity in Southeast Asia for early warning
systems.

• Mission F: Survey and study coral reef degra-
dation in the Caribbean to support conservation
efforts.

• Mission G: Measure and map air pollution in
major urban centers around the world to inform
health and environmental policies.

• Mission H: Track seasonal agricultural crop
health across Africa to aid in food security plan-
ning.

Finally, for all the different stated cases, they will
be run again but with the regions size (the radius pa-
rameter) set explicitly in the mission statements. This

has been done because the model varies too much in
the inferred values of the region’s radius, even with the
temperature set to 0, and this parameter affects greatly
the other design parameters, thus making the analysis
of the results very difficult.

3 Results

Figure 2 to Figure 6 illustrate the impact of fixing the
region’s size on the parameters computed by the com-
putational engine (CE). The comparison reveals that
when the region’s size is not predetermined, there is
a significant variation in the calculated values across
different instances for some missions. Conversely, fix-
ing the region’s size leads to noticeably more consis-
tent parameter values across multiple instances, which
can be clearly notices in Figure 4 and Figure 6. This
consistency underscores the sensitivity of the design
process to the size of the region. Therefore, to ensure
reliability and to minimize variations in our analysis,
we will focus exclusively on results where the region
size is pre-fixed.

Figure 2 Comparison of Average Region Con-
tact Times in a Single Orbit for Each Mission
in One Week, with CE, With and Without Fixed
Region Size.

Figure 7 to Figure 11 illustrate the parameters pre-
dicted by GPT-4 without the computational engine
(CE) across various settings of the temperature pa-
rameter (t=0, t=0.5, and t=1). Notably, even under
the condition of highest randomness (t=1), certain pa-
rameters consistently appear identical across different
mission samples. This phenomenon can be clearly



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

6

Figure 3 Maximum Eclipse Durations in a Sin-
gle Orbit for Each Mission in One Week, with
CE, With and Without Fixed Region Size.

Figure 4 Maximum Region Revisit Times in
a Single Orbit for Each Mission in One Week,
with CE, With and Without Fixed Region Size.

Figure 5 Average Camera Data Productions in
a Single Orbit for Each Mission in One Week,
with CE, With and Without Fixed Region Size.

Figure 6 Average Ground Station Contact
Times in a Single Orbit for Each Mission in
One Week, with CE, With and Without Fixed
Region Size.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

7

seen in Figure 7 with the values ca. 600s and 1800s,
in Figure 8 with ca. 2400s and 5400s, in Figure 9 with
ca. 80000s and 180000s, in Figure 10 with ca. 300MB
and 500MB and finally in Figure 11 with ca. 300s and
600s. This uniformity in responses, despite the antic-
ipated variability with higher randomness, suggests a
potential issue akin to overfitting. In such cases, the
model might be relying on repetitive patterns learned
during training rather than adapting to the specifics
of each new mission, which could compromise the
accuracy and reliability needed of the outputs for en-
gineering applications. In contrast, when integrated
with the CE, the outputs vary logically by mission,
indicating that each set of mission parameters is being
uniquely calculated.

Figure 7 Average Region Contact Times in a
Single Orbit for Each Mission in One Week,
Only GPT, Fixed Region Size, for Each Tem-
perature.

Figure 8 Maximum Eclipse Durations in a Sin-
gle Orbit for Each Mission in One Week, only
GPT, Fixed Region Size, for Each Temperature.

Despite the overall stability improvements with the
computational engine (CE), variations in some param-
eters are still observed for the case of pre-fixed region

Figure 9 Maximum Region Revisit Times in
a Single Orbit for Each Mission in One Week,
Only GPT, Fixed Region Size, for Each Temper-
ature.

Figure 10 Average Camera Data Productions in
a Single Orbit for Each Mission in One Week,
Fixed Region Size, Only GPT, for Each Temper-
ature.

Figure 11 Average Ground Station Contact
Times in a Single Orbit for Each Mission in
One Week, Fixed Region Size, Only GPT, for
Each Temperature.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

8

size, notably for mission D and H as shown in Fig-
ure 2 to Figure 6. This variability can be easily traced
to differences in the initial parameters, specifically to
the GSD, which the model predicts differently across
some instances. These differences in GSD are critical
as they influence the subsequent calculation of orbital
parameters, leading to varied outcomes. Unlike the
parameters inferred directly by GPT-4, the variations
with the CE demonstrate enhanced traceability, as the
source of differences in calculated parameters can be
easily identified and linked back to specific input vari-
ations, thereby improving the transparency and relia-
bility of the design process.

Stability in the design process

Figure 12 to Figure 16 present histograms of the coef-
ficient of variation (CV) for all evaluated parameters
with pre-fixed region size. The coefficient of variation
is a statistical measure of the relative dispersion of data
points around the mean, defined as follows:

𝐶𝑉 =
𝜎

𝜇
(3)

where 𝜎 is the standard deviation of 𝑃, calculated as:

𝜎 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑃𝑖 − 𝜇)2 (4)

and 𝜇 is the mean of 𝑃, calculated as:

𝜇 =
1
𝑛

𝑛∑︁
𝑖=1

𝑃𝑖 (5)

The analysis reveals that, with the exception of mis-
sions D and H (as highlighted earlier), the parameters
computed with the computational engine (CE) demon-
strate perfect stability, showcasing no variance in out-
puts across multiple instances. This consistency is
crucial, especially in an iterative design process where
predictability and reliability are key. Consistent out-
puts ensure that any modifications to design inputs or
mission parameters are the sole drivers of changes in
the design, rather than variability in the tool’s compu-
tational process. In contrast, the parameters predicted
by the model alone without the CE exhibit significant
fluctuations, even when the model’s randomness set-
ting (temperature) is at its lowest (t=0). This variability
could lead to uncertainties in decision-making, as de-
signers might not discern whether changes in output
are due to altered inputs or inherent model instability.

Figure 12 Coefficient of Variation of Average
Region Contact Time for Each Mission with
Fixed Region Size.

Figure 13 Coefficient of Variation of Maximum
Eclipse Duration for Each Mission with Fixed
Region Size.

Figure 14 Coefficient of Variation of Maxi-
mum Region Revisit Time for Each Mission
with Fixed Region Size.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

9

Figure 15 Coefficient of Variation of Average
Camera Data Production for Each Mission with
Fixed Region Size.

Figure 16 Coefficient of Variation of Average
Ground Station Contact Time for Each Mission
with Fixed Region Size.

4 Conclusions and Limitations

The development of a computational engine for use
with LLMs represents an important step in the field
of spacecraft design, particularly in the early design
phases. This paper has demonstrated that the proposed
framework not only achieves improved accuracy and
efficiency in design tasks but also enhances the trace-
ability of decision-making processes, which is critical
in engineering.

The integration of the CE reduces the frequency at
which the LLM needs to be invoked. By handling com-
putations internally and only using the LLM when nec-
essary for specific tasks, the CE minimizes the com-
putational load that typically comes with continuously
running large models. This selective use significantly
enhances overall computational efficiency, as operat-
ing an LLM can be resource-intensive and costly, par-
ticularly when dealing with complex calculations and
large data volumes.

The CE significantly reduces the likelihood of the
uniformity phenomenon, ensuring more reliable out-
puts across varied inputs. It maintains high stability
in its calculations, providing consistent results across
numerous run instances.

The modular nature of the CE allows for the in-
corporation of additional spacecraft subsystems and
support for a wider array of mission types. Future it-
erations could perhaps add user interaction, allowing
for more control over each step in the design process.

All the code and documentation can be found in
https://gitlab.lrz.de/sps-public/spacemodelers

Limitations

Having explained the conclusions of this work, it is
important to state and explain the different limitations
that the taken approach to the problem implies:

• The CE’s effectiveness is confined to the specific
types and classes of missions for which it has
been configured—primarily Earth observation
missions using CubeSats in Sun-Synchronous or-
bits. This specialization restricts the adaptability
of the CE to other mission types without signifi-
cant reconfiguration or redevelopment.

• The current framework exhibits limited flexibility
in accommodating specific design requirements
that deviate from its predefined configurations.
For instance, if a designer wishes to specify a
particular type of camera or antenna with unique
characteristics, the framework may not reliably



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

10

enforce these preferences throughout the design
process. Even if these components were manu-
ally added to the database, the CE might overlook
them in favor of other options, potentially leading
to sub-optimal design choices.

• This computation engine relies heavily on the use
of OpenAI’s API and models, which could pose
limitations when trying to use the CE with other
open-source LLMs. This could also pose risks if
the API’s structure were to be heavily altered.

Addressing these limitations could significantly en-
hance the framework’s utility and applicability. For
example, integrating comprehensive modelling func-
tionalities within the model’s architecture could pro-
vide a more robust and versatile tool by making the
model inherently understand an Spacecraft design pro-
cess. This approach, as discussed in [4] involves incor-
porating systems engineering methodologies directly
within LLMs to improve their accuracy and reliability
in technical domains.

Furthermore, these limitations could be potentially
mitigated by deeper integration of computational func-
tions directly within the model’s architecture, as sug-
gested in [8]. The "ToolkenGPT" method, which aug-
ments LLMs with a vast array of computational tools
via embeddings, demonstrates the potential benefits of
such enhancements, suggesting that a similar strategy
could be applied to extend the range of the CE’s ca-
pabilities. This approach would make the model more
flexible, because it would allow it to use any function
at any given point of the design process if seen fit.

Future work for this paper would include:

• The addition of the rest of the spacecraft subsys-
tems in the design process.

• The validation of the developed functions with
unit tests.

• The addition of chain-of-thought methods to im-
prove the performance of the LLM in the case
where no CE is used.

• The addition of a tool to facilitate traceability in
the design process of the CE.

Acknowledgment

Special thanks to Ramón García Alarcia for proposing
the topic and supervising and helping me during the
process. Thanks to the Chair of Spacecraft Systems of

TUM for sponsoring the use of OpenAI’s API models
for the development and testing.

References

[1] D. Andor, L. He, K. Lee, and E. Pitler. Giving
BERT a Calculator: Finding Operations and Ar-
guments with Reading Comprehension. In arXiv
preprint arXiv:1909.00109, 2019.

[2] A. Berquand, P. Darm, and A. Riccardi. Space-
Transformers: Language Modeling for Space
Systems. IEEE Access, 9:133111–133116, 2021.

[3] A. Berquand, F. Murdaca, A. Riccardi, T. Soares,
S. Generé, N. Brauer, and K. Kumar. Artificial
Intelligence for the Early Design Phases of Space
Missions. In IEEE, 2019.

[4] R. García Alarcia, P. Russo, A. Renga, and
A. Golkar. Bringing Systems Engineering Mod-
els to Large Language Models: An Integration of
OPM with an LLM for Design Assistants. In Pro-
ceedings of the 12th International Conference on
Model-Based Software and Systems Engineering
- MBSE-AI Integration, SciTePress, pages 334–
345, 2024.

[5] Z. Ji et al. ChipNeMo: Domain-Adapted LLMs
for Chip Design. ACM Comput. Surv., 55(12):1–
32, 2023.

[6] OpenAI. OpenAI API. OpenAI Doc-
umentation, 2024. [Online]. Available:
https://www.openai.com/api/.

[7] A. Parisi, Y. Zhao, and N. Fiedel. TALM: Tool
Augmented Language Models. In arXiv preprint
arXiv:2205.12255, 2022.

[8] R. Raileanu et al. ToolkenGPT: Augmenting
Frozen Language Models. In Proceedings of
the 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

[9] B. Rhodes. Skyfield: High Precision Research-
Grade Astronomy for Python, 2024. [Online].
Available: https://rhodesmill.org/skyfield/.

[10] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu,
M. Lomeli, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language Models Can
Teach Themselves to Use Tools. In arXiv preprint
arXiv:2302.04761, 2023.



Chair of Spacecraft Systems
TUM School of Engineering and Design
Technical University of Munich

11

5 Appendix

The following is the prompt used to infer the parame-
ters used for the analysis, for the case where the CE is
not used:

Based on the following initial design parameters:
desired_gsd = initial_parameters[’gsd_m’]m
longitude of the area =
initial_parameters[’longitude_deg’]
latitude of the area =
initial_parameters[’latitude_deg’]
radius of the area =
initial_parameters[’radius_km’]km
revisit time = initial_parameters[’revisit_time_days’]
days
Number of ground stations =
initial_parameters[’num_ground_stations’]
That have been inferred from the following mission
statement: mission_statement. Please infer the
following parameters of the mission, knowing that the
time span that you can assume to inferr or calculate
them is one week, starting from the 01/01/2025 at
17:15:
1. Maximum region revisit time during the time span
considered in seconds
2. Maximum eclipse duration within a single orbit
during the time span considered in seconds
3. Mean contact time in one orbit with the region in
seconds
4. Mean camera data production per coverage of the
region in MB
5. Mean contact time with the ground station/s in one
orbit in seconds
Respond only with the asked values separated by
commas without the units. Don’t write anything that
are not the numbers asked for in the asked format.
Format of response example: 10000, 1000, 1000,
1000, 1000


	1 Introduction
	1.1 State of the Art
	1.2 Research gap and questions

	2 Methodology
	2.1 Framework and Structure of the Computation Engine
	2.2 Analyzed Parameters
	2.2.1 Average Region Contact Time in a Single Orbit
	2.2.2 Maximum Eclipse Duration in a Single Orbit
	2.2.3 Maximum Region Revisit Time in a Single Orbit
	2.2.4 Average Camera Data Production in a Single Orbit
	2.2.5 Average Ground Station Contact Time in a Single Orbit

	2.3 Uniformity and Stability
	2.4 Experimentation

	3 Results
	4 Conclusions and Limitations
	References
	5 Appendix

