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Gene regulation in eukaryotes is profoundly shaped by the 3D organization of chromatin within the cell
nucleus. Distal regulatory interactions between enhancers and their target genes are widespread and
many causal loci underlying heritable agricultural or clinical traits have been mapped to distal cis-
regulatory elements. Dissecting the sequence features that mediate such distal interactions is key to
understanding their underlying biology. Deep Learning (DL) models coupled with genome-wide 3C-
based sequencing data have emerged as powerful tools to infer the DNA sequence grammar underlying
such distal interactions. In this review we show that most DL models have remarkably high prediction
accuracy, which indicates that DNA sequence features are important determinants of chromatin looping.
However, DL model training has so far been limited to a small set of human cell lines, raising questions
about the generalization of these predictions to other tissue-types and species. Furthermore, we find that
the model architecture seems less relevant for model performance than the training strategy and the data
preparation step. Transfer learning, coupled with functionally curated interactions, appear to be the most
promising approach to learn cell-type specific and possibly species- specific sequence features in future
applications.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The spatial organization of chromatin in the nucleus of animal
and plant cells plays important roles in genome regulation. It has
central functions in processes such as DNA replication and repair,
the spatial- and temporal patterning of gene expression, and in
the silencing of transposable element (TE). In the past two decades,
chromosome conformation capture (3C) coupled with next-
generation sequencing has emerged as a powerful method to inter-
rogate 3D chromatin interactions in a high-throughput fashion [1].
Among these, Hi-C was the first developed method [2]. It is
designed to capture all chromatin interactions at the genome-
wide scale, albeit at low resolution (see Fig. 1,2, [2]). By contrast,
more recent methods, such as chromatin interaction analysis by
paired-end tag sequencing (ChIA- PET) (see Fig. 2, [3]) or Hi-C cou-
pled to ChIP-seq (HiChIP or PLAC-Seq) [4,5], generate high-
resolution interaction maps, but are restricted to specific loci occu-
pied by proteins that can be pulled down by ChIP (e.g. modified
histones, transcription factors, and RNA polymerase II). Together,
these techniques have generated unprecedented insights into the
function of 3D chromatin organization of mammalian and more
recently also in plant genomes. They have led to the systematic
identification of Enhancer-Promoter Interactions (EPIs), Insulator
Loops (e.g. CTCF-cohesin loop in human cells) and interactions
mediated by specific transcription factors [6].

Numerous machine learning (ML) approaches have emerged in
parallel to these technological developments [7]. Their general aim
is to use 3C data as input to train sequence-based predictors of
chromatin looping and to identify specific sequence features that
may facilitate physical contacts between distal genomic regions.
The most promising of such ML approaches are supervised Deep
Learning (DL) methods. As in other areas of genome biology, DL
methods provide the most accurate predictions, can handle large
and complex amount of genomic data and automatically detect
ig. 1. (A), (B1) – (B5) Hi-C sequencing. A restriction enzyme buffer in combination with
y other substances. Next, a type II restriction endonuclease digests the accessible chrom
hich are filled with biotin-14-dCTP. Special dilute conditions favor proximity ligation a
roducts are degraded by Proteinase K followed by several DNA purification steps [44]. (B
enome including many quality steps. (A), (C1) - (C5) ChIA-PET sequencing. Formalde
igestion. ChIP is applied, while using the corresponding antibody for the protein of int
ivided into two separate locations with two different half-linker oligonucleotides. Bo
striction enzyme Mmel is added for digestion and DNA fragments from paired-end ta
gation type. Self-ligated sequences are considered as chromatin looping with small dista
romosomes [49].
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patterns or unanticipated genomic relationships [8]. DL methods
thus provide a powerful framework for dissecting the causal deter-
minants underlying 3D chromatin interactions and for providing
testable hypotheses for experimental follow up.

Here we review the state-of-the-art in the use of DL methods to
predict 3D chromatin interactions from DNA sequence (Table 1).
We evaluate these models in terms of their objective, data prepro-
cessing, architecture, training procedure and finally by their pre-
diction performance. We find that data selection and
preprocessing in combination with transfer learning appear to be
more important for model performance than the choice of model
architecture. Moreover, even though all these models perform very
well on their test data, they have so far been mainly restricted to
the analysis of specific human cell lines. Similar model-based
approaches are thus urgently needed for a wider range of cell lines,
tissues or species. This information could facilitate deeper insights
into the evolutionary and developmental factors that impact chro-
matin looping biology. Moreover, experimental validation of
model-based predictions is needed to assess the biological value
of these approaches and for fine-tuning model architecture.

1.1. Sequencing methods

Chromosome conformation capture (3C) followed by high-
throughput sequencing has emerged as a powerful experimental
approach to probe chromatin interactions at the genome-wide
scale. Hi-C and ChIA-PET are two variants of these measurement
approaches, which have served as the main data input for most
of the DL methods reviewed in Table 1. The general experimental
workflows for Hi-C and ChIA-PET involve cross-linking and frag-
mentation of chromatin, the addition of biomarkers, ligation,
purification and finally sequencing [44]. We detail these experi-
mental steps in Fig. 2. Despite the popularity of Hi-C, there are a
number of well-known limitations with this method. First, its
SDS solubilization enables the access to open cross-linked chromatin and removes
atin. HindIII enzyme detects and cleaves � 80� 90% of all 5’-AAGCTT-3’sequences,
nd can be identified by its unique 5’-GCTAGC-3’ Nhel site. These chromatin ligation
6), (C6) DNA samples are mapped to a given DNA library with the correct reference
hyde stabilizes cross-linked DNA–protein complexes before sonication is used for
erest. The precipitate, which is enriched with the digested chromatin complexes, is
th samples are mixed, which activates proximal half-linker and self-ligation. The
gs (PETs) are isolated. The final DNA sequences can be assigned uniquely by their
nce, while mixed linkers referring to long distance base pairs, eventually on different



Table 1
Deep Learning algorithms for 3D chromatin interactions, sorted by architecture. All models are based on Convolution Neural Networks or Recurrent Neural Networks.
[18,41,43,9,19,27,28,13,22,29,33,38,40,42,31,30] [11,12,14–17,20,21,23,25,26,32,34–37].
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resolution is limited by the choice of the digestion enzyme [45], so
that spatially close chromatin interactions may be missed in geno-
mic regions where the distribution of enzymatic cut sites is sparse.
Second, Hi-C often does not capture long range interactions and
omits many simultaneous promoter-enhancer interactions [46].
Third, false positive interactions are often detected because of spu-
rious cross-linking and ligation. The first two limitations could be
viewed as potential opportunities for DL methods, because compu-
tationally predicted loops could, in principle, be generated in geno-
mic regions where the measurement technology has failed.
However, the third limitation is disadvantageous for model train-
ing, where clean true positive (and true negative) loop sets are nec-
essary. Newer experimental approaches, including ChIA-PET,
Micro-C or Promoter Capture Hi-C (PCHi-C), try bypass many of
these limitations. Micro-C uses micrococcal nuclease (MNase) as
replacement for restriction enzymes to archive a higher resolution
for short-distance interactions [47]. PCHi-C introduces an addi-
tional individual biotinylated RNA purification step for promoter
rich fragments, to reduce the amount of ligation products before
PCR sequencing is applied [48]. Unlike Hi-C, ChIA-PET combines
3C with chromatin immunoprecipitation (ChIP) followed by
sequencing [3]. It performs chromatin fragmentation by sonication
and uses a smarter biolinker concept [49]. Additionally, the use of
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ChIP enriches for chromatin contacts that harbor specific transcrip-
tion factors, or other binding proteins, such as CTCF, and thus
ensures a higher rate of true functional chromatin interactions
[49]. However, as a trade-off ChIA-PET has relatively low sensitiv-
ity and requires a large amount of material [5], which could
increase measurement variation due to cellular heterogeneity. Still,
ChIA-PET is frequently applied and has thus been employed in the
training of several DL algorithms (see Table 1).

2. Computational methods

2.1. Preprocessing

2.1.1. Preparation of training data
Measured (i.e. observed) chromatin interactions from Hi-C or

ChIP-PET are the starting point for all DL methods reviewed here.
However, DL methods differ in the way they use this information
at the input stage. We can broadly distinguish between
classification- and regression-based methods.

Classification-based methods (EPIANN, TransEPI, EPIsCNN,
Rambutan, EPIsHilbert, EPIHC, ChINN, DeepTact, DeepMILO, SEPT,
SPEID, EPIVAN, EPI-DLMH) typically take a list of discrete, interact-
ing regions, called ‘‘anchors”, as input, which are treated as true
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positives. The goal is to learn specific sequencing features within
the anchors that may facilitate looping. The sizes of the input
anchors can range from 2 kb to 3 kb, depending on the anchor type
(see Table 1). In addition to these true positives, it is also necessary
to supply true negative anchor pairs.

Most methods do this by ‘‘rewiring” the positive set of anchors
in new ways; that is, they form in silicoloops between anchors that
have not been observed to interact in the original Hi-C or ChIP-PET
data. These generated negatives are often matched for distances
similar to those in the positive set, in order to avoid biases in model
training (DeepMILO, DeepTACT, SEPT, SPEID). Alternatively, any
distance information can be added as the auxiliary input in the
training procedure itself (ChINN, Rambutan, TransEPI). Because of
the substantial imbalance between positive and negative interac-
tions, a data augmentation procedure is sometimes employed that
adds arbitrary sub-sequences flanking the original anchors from
the positive set (EPIANN, EPIsCNN, EPIsHilbert, SEPT, SPEID, EPI-
VAN, EPI-DLMH, EPIHC).

In contrast to classification-based approaches, regression-based
methods (Akita, DeepC, Orca) take contact frequency maps as
input, which are constructed at megabase (Mb) resolution. To this
end, the genome is partitioned into non-overlapping virtual con-
tigs, and interaction counts within� 1Mb sub-sequences are taken
to generate a two-dimensional frequency matrix. DNA sequences
and corresponding frequency matrix are fed into the DL algorithm
to predict factors affecting local interaction typologies (Akita,
DeepC). Orca introduces, in addition to the sequence encoder, a
multilevel cascading decoder to provide genome wide interaction
on window sizes from 1 Mb to 265 Mb with resolution between
4 kb and 1024 kb.
2.1.2. Auxiliary data
Many classification-based methods further employ auxiliary

data to filter anchor pairs prior to training. For example, methods
such as EPIANN, TransEPI or SPEID (see Table 1), select anchors that
map to annotated enhancers and promoters. Such filtering strate-
gies reduce the genome-wide interaction landscape to a subset of
functional regions, and (probably) reduce biases or measurement
errors arising from the 3C assay itself. Clearly, such a priori filtering
strategies are only sensible in applications involving high-quality
genomes where sufficient epigenomic information is available
and all regulatory elements are well annotated. This is certainly
true for all DL methods to date, as they have been developed
specifically for human genomic applications, and therefore benefit
from the extensive ENCODE data resources [24].

Common auxiliary data modalities include RNA-seq (gene
expression), DNase-seq (accessible regions), as well as ChIP-seq
for various histone modifications, RNA polymerase, transcription
factors or CTCF binding proteins. Using such functional data,
anchors overlapping low-expressed transcripts from RNA-seq can
be removed from the enhancer-promoter data, since they are less
likely to be actively regulated by enhancers [13,40,50]. Similarly,
anchors can be screened for chromatin accessible regions related
to CTCF or RNA Pol II binding sites [31] to be enriched for active
loops. Furthermore, the incorporation of functional data makes it
possible to identify cell-type-specific chromatin interactions. This
creates avenues for predicting and understanding looping biology
underlying cell lineage determination.

As an alternative to a priori filtering, some methods integrate
such auxiliary data directly into the model training, either in a
pre-training step (DeepC, Orca, ChiNN) or in the full training proce-
dure (TransEPI, EPIHC). Either way, it has been shown that the
inclusion of auxiliary data into DL methods can improve algorithm
performance (TransEPI, DeepC, Orca, ChiNN, EPIHC), and thus
appears to be an important aspect of data preparation.
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2.1.3. Sequence embedding
The nucleotide sequences used in DL model training need to

first be converted into a machine readable format. One-hot encod-
ing is a commonly used approach to represent sequences as binary
vectors. The four nucleotides A, T, C and G are saved in four sepa-
rate channels. A is represented as ½1;0;0;0�T , T as ½0;1;0;0�T , C as

½0;0;1;0�T and G as ½0;0;0;1�T . The unknown nucleotide category
N can be either removed (SPEID, EPIANN, SIMCNN), represented
as ½0:25;0:25;0:25;0:25�T (ChINN), or saved as the fifth dimension
in matrix representation (DeepMILO). Moreover, one-hot encoding
can be easily extended to capture the spatial relationship between
anchors by converting a two-dimensional one-hot matrix into a
three-dimensional matrix–vector representation by applying a
space-filling Hilbert curve [51,52] (see EPIsHilbert).

Another group ofmethods uses instead a distributed representa-
tion of small DNA sequences, called k-mers. Dna2vec embedding
[53] is based on a popular word2vec [54] natural language process-
ing model. The algorithm takes distributed samples of variable-
length k-mers to train a shallow two-layer neural network model.
This aggregatedmodel enables the user to perform a decomposition
by k-mer length, followed by the selection of the best low-
dimensional and high-quality vector representation used for
sequence embedding. This increases computational efficiency as
well as specificity inDL approaches (EPIVAN), and preserves the hid-
den information from the correlation between single small DNA
sequences. It can be either trained on the whole genome or on a set
of anchors.
2.2. Deep Learning approaches

We examined the model architectures of the DL methods in
Table 1 in detail. The most frequent architecture uses a Convolu-
tional neural network (CNN) in combination with a long short-
term memory (LSTM) (see Fig. 2). CNNs, or simply convolutional
networks (CNs), are a specific type of DL, which are based on arti-
ficial neural networks (ANNs) [55]. Models with a long short-term
memory (LSTM) unit belong to the family of recurrent neural net-
works (RNNs) and are also a class of ANNs [56]. The family of LSTM
units also comprises Gated Recurrent Units (GRU). It is a slightly
simpler version with less parameters [57]. Both models often occur
with additional connections in opposite directions within one layer
[58]. In that case, they are called Bidirectional LSTM (Bi-LSTM) and
Bidirectional-Gru (Bi-Gru). Due to the continuous refinement of
3C-based methods, especially Hi-C, ChIA-PET or other throughput
techniques, large amounts of high-quality chromatin data is avail-
able. This data motivates the use of supervised versions of the
introduced ANN models. If we consider Table 1, we notice that
all models are using CNNs as core models and six of 16 additionally
add an extra (Bi)-LSTM or Bi-Gru unit (DeepTact, DeepMilo, SEPT,
SPEID, EPIVAN and EPI-DLMH). This observation could be
explained by the historical applications of CNNs and LSTMs. As
its name indicates, CNNs use a convolution operator, also called
kernel function, to search for specific patterns in discrete grid-
based topologies or sequential data [59]. The concept was origi-
nally developed for image or sound classification and is related
to the neuronal connections of the human brain [60]. Section 2.1
explained the conversion of genomic sequences into a matrix or
vector-based representation. This indicates the connection
between image recognition and the computation of chromatin
interaction since the input data of both problems can be repre-
sented by a matrix or linear vector combination that contain
unknown patterns and possibly long-term dependencies. LSTM
units are designed to capture long-term dependencies, due to
shared parameters that function as a memory unit. One could
say, if CNNs catch mostly local patterns, LSTMs act as a global



Fig. 2. Training procedure of a typical CNN + LSTM model. (A) During input data preprocessing, chromatin sequences are translated using a one-hot encoding technique. (B)
Schematic representation of a commonly used architecture in chromatin interaction detection. Two input anchors are managed separately by CNN blocks, which are defined
by the number of convolutional and pooling layers and several hyperparameters. Once the architecture, the arrangement of the layers and hyperparameters are selected, we
start with an initial unbiased parameter distribution k. The concept of ’training’ refers to minimizing a certain loss function Lwith respect to lambda, which contains the input
values x, the parameter set k and all non-linear functions f ðxÞ. This representation is drastically reduced and on a highly abstract level. Many additional decisions are
necessary to define a full CNNmodel with LSTM units. (C) After training, we end up with a set of optimal parameters ~k. This set of trained parameters in combination with the
model architecture must be applied to a final test data for validation, before applying to completely new data.
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observer. Therefore, LSTMs have been used mainly in time depen-
dent problems, as they store crucial information over a long period
of time. A typical application is speech recognition, where it can
take a long time until a specific word or phrase is repeated [56].
A similar event occurs in promoter-enhancer interactions, which
often span distances of up to several Mbs [61]. A common DL con-
figuration as well as typical training data is illustrated in Fig. 2.
Even though the layer-based representation shown in that figure
is helpful for visualizing the overall model structure, it is important
to keep the actual neural-based architecture in mind. All layers
contain nodes that are connected through edges. On edges, linear
transformations are applied, which provide all the weights or
parameters. On nodes, preselected non-linear transformations
f ¼ f ðxÞ are necessary. The process of training is equivalent to min-
imizing a loss function L with respect to the corresponding param-
eters k, which connect the layers. The output of the training
process is this specific set of parameters ~k in combination with
the layer structure and arrangement. During the training process,
the model is validated with a subset of the training set (usually
around 10%). Another 10% of the training data, the testing set, is
saved and used for the final test run on unknown data. In the
supervised setup, this test run provides all statistical measure-
ments and quality values like accuracy, sensitivity, specificity and
other conditions on the sample set.

2.3. Performance and training strategies

We sought to rank the prediction performance of the models
reviewed in Table 1. The majority of the original studies provide
values for the area under precision recall curve (AUPR) as statistical
measurement of prediction accuracy. A higher AUPR value is
indicative of better model performance. Since Akita, Orca and
DeepC are regression based models, they did not published those
values and are not included in the performance analysis. Neverthe-
less, since Akita and Orca are trained on the same Micro-C data set,
it is possible to compare their Pearson correlation coefficient. On
average, in Orca this correlation coefficient is � 7:4% higher for
the H1 embryonic stem cells (H1-ESC) and � 6:4% higher for the
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human foreskin fibroblasts (HFF). Beside these, we exclude all algo-
rithms that are not trained and tested on Hi-C [10] data, because
mixed data modalities would render comparisons difficult.

The remaining models (EPIsHilbert, EPIVAN, EPIsCNN, EPI-
DLMH, EPIsCNN, EPIVAN, EPIHC and EPIANN), which provide AUPR
values, have been trained on a combination of six cell lines: K562
(mesoderm lineage cells from a leukemia patient), GM12878 (lym-
phoblastoid cells), HeLa-S3 (ectoderm lineage cells from a cervical
cancer patient), HUVEC (umbilical vein endothelial cells), IMR90
(fetal lung fibroblasts) and NHEK (epidermal keratinocytes) [10],
and employ a rich set of auxiliary functional data [62].

We observe four essential training strategies:

� Training on a specific cell line
� Training on a combination of all cell lines
� Model-based learning
� Cellular transfer learning (data based)

Model-based training often introduces an attention layer, to
merge the acquired feature knowledge of cell-line specific sub-
models. Cellular transfer learning suggests two or more stages.
First, all cell line data is used for training, and second, a specific
cell-line is selected for another training procedure. The second
cell-line specific training consumes little computational effort
[28], since the model architecture remains the same and the pri-
mary trained parameters are used as initial weights. If cellular
transfer learning has been applied, the process is repeated for all
six cell lines separately to obtain a total of six AUPR values. Train-
ing and test-sets originate from the same cell line. The mean value
of these six AUPR values is plotted in Fig. 3 with the range of all
values indicated by the yellow interval. We observe that models
using transfer learning tend to perform comparatively well. This
could be an indicator that cell-specific features are important pre-
dictors [63]. Interestingly, we also see that the more sophisticated
CNN + LSTM architectures are not among the top performers.

There are a number of caveats with this simple side-by-side
performance evaluation. First, AUPR values are just one of several
statistical measurement tools. The imbalanced training data set



Fig. 3. Performance bar plot for models, which provided AUPR value for cell type
specific training and testing. Light blue bars indicate a pure CNN model, dark blue
refers to a CNN + RNN model. Transfer learning is represented by dotted bars. The
yellow interval is defined by the minimum and maximum AUPR value.
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contains approximate 20 times more true interactions. Since the
AUPR value mainly composes true interactions [64], it is the most
frequently used performance tool. Second, we also do not consider
the computational effort and costs of the models, which is an
essential factor for the efficiency.
2.4. Biological insights and applications

2.4.1. Genomic determinants of looping
DL models are undoubtedly powerful tools for predicting 3D

chromatin looping based on DNA sequence. However, they also pro-
vide an intriguing framework for dissecting the underlying looping
biology. A common approach in classification-based algorithms is
to use in silicomutagenesis,wherebymutations are artificially intro-
duced into specific anchor pairs, and then re-supplied to the trained
DL model. The concept of this approach is presented in the Fig. 4.
Mutations that lead to significant drops in the predicted interaction
probability would suggest an important role in facilitating chro-
matin contacts, perhaps because they are located in crucial protein
binding motifs. Algorithms such as DeepC, Akita, Orca and Deep-
MILO have extensively used this approach to assess the effect of
specific deletions, single nucleotide polymorphisms (SNP) or struc-
tural variants. Akita, for instance, mutagenized a set of random
regions within and near CTCF motifs. The results of this study
showed the significant impact of SNPs on CTCF binding, either
directly or by flanking cofactors. Additionally, a mouse-trained
model fromAkitawas used to predict the effect of a 622 kb inversion
at the enhancer locusEph4Aon3D folding. The experimental studies
observed that the inversioneffectedCTCFbinding [65]. Using its pre-
dicted contactmaps, Akita confirmed that an in silico inversion of the
Eph4A locus lead to a loss of CTCFmediated insulator looping. How-
ever, in silicomutagenesis is a brute force approach. It is not optimal
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for probing the complete combinatorial mutation space within a
given anchor sequence. This limitation may be crucial in situations
where looping is facilitated by combinations of specific (and possi-
ble complex) motif sequences. As an alternative, DeepC employs a
metric called saliency score [66], which quantifies the importance
of every base pair andmotif to the predicted interaction. Thismetric
can be calculated as the scalar product of themodel output gradient,
with respect to the one-hot-encoded input sequence. Akita used this
metric as well. They found saliency peaks at the CTCF motifs and
active promoters, and hypothesized that mutations of these regions
would affect chromatin architecture, and thus, gene expression,
which can be investigated by expression quantitative trait locus
(eQTL) studies. To test this, they used the set of cell-type specific
eQTLs located in open chromatin or CTCF sites. They compared the
saliency scores of these eQTLs and mutagenized random regions.
The significantly higher saliency score for eQTLs revealed that this
metric can be used for eQTL mapping when the expression changes
are caused by chromatin architecture perturbation. Orca success-
fully predicted the influence of several structural variants in six
studies while comparing themodel output with experimental chro-
matin capture data.

Class Activation Maps (CAM) [67] is another approach to quan-
tify the influence of sequence features on enhancer-promoter
interaction. It visualizes three-dimensional vectors with a heatmap
matrix, which represents the interaction occurrence and their spa-
tial relationship. These association maps may be used to highlight
sequence patterns leading to the chromatin interaction (EPIsHil-
bert). Another proposed method to detect motifs responsible for
chromatin looping is based on the output of the first convolutional
layer. This procedure can extract the best matching subsequences
for each kernel, with respect to the model architecture. SEPT used
this strategy to compute a position frequency matrix (PFM) and
then, compare the PFM-related features with known TF motifs
from HOCOMOCO database [68]. They found a set of potentially
important regulatory elements, which are involved in transcription
and cell-cycle regulation that may determine their role in chro-
matin looping. These results revealed that SEPT has the ability to
learn cell-type specific patterns crucial in genome folding, which
explains its relevance in transfer learning approaches.

Attention layers [69] can be used not only to merge cell-line
specific submodels in transfer learning, but also to evaluate the
impact of those features on prediction. EPIANN labeled each base
in observed enhancer and promoter sequences with the corre-
sponding marginal attention to highlight regulatory elements
overlapping patterns crucial in predicting EPIs. It showed that
the attention regions are usually highly correlated with other
genomic annotations. This information can be further investigated
to interpret the key patterns in chromatin interactions.

2.4.2. Screening of disrupting variants
Building on the above-describe approach, several studies have

tried to test or identify specific loop-disrupting genetic variants
and their impact on cancerogenesis [39]. Such genetic variants
could result in the suppression, or in some cases even the activa-
tion, of chromatin loops. In the latter case, enhancer elements
could be erroneously brought in physical contacts with proto-
oncogenes and thus promote cancer progression [70,71]. The DL
prediction framework provides a means to systematically screen
through available GWAS or re-sequencing databases to identify
putative causal variants underlying differential looping.

Using such an approach, DeepMILO was tested on two known
deletions in T-Cell Acute Lymphoblastic Leukemia (T-ALL) patients
at anchors containing oncogenes TAL1 and LMO2. The algorithm
correctly predicted that these mutations should lead to insulator
loop disruption. In addition, DeepMILO employed in silico
mutagenesis and further predicted that a number of smaller



Fig. 4. Biological insights by Deep Learning. Deep Learning models can be used to predict chromatin interaction in combination with several nucleotide variants through in
silico mutagenesis. A change in the loop probabilities p1 and p2 between sequence variants indicates the importance of the specific single nucleotide polymorphisms in
chromatin looping. Transfer learning can be used to extend previously trained knowledge to different species or cell lines.
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mutations, just outside the CTCF bindingmotif,may also affect chro-
matin interactions. These latter predictions provide concrete
hypotheses for experimental follow-up. Conceptually similar
approaches were taken by TransEPI and ChINN to identify putative
loop-disrupting mutations in the context of neuronal disorder and
chronic lymphocytic leukemia (CLL), respectively. Using chronic
lymphocytic leukemia (CLL) patient data, ChINN was able to con-
struct a patient-specific chromatin interaction profile, suggesting
that such predictions could serve as a per-clinical tool to predict
CLL disease risk. Orca predicted high structural impact regions
(10 bp) consistentlywith Chip-seq data and confirmed reduced gen-
ome interactions through disrupting motifs like POU5F1::SOX2 or
AP-1. Overall, these results suggest local and global effects of dis-
rupting variants.

Many eQTLs identified in human population data have been
shown to act in trans, that is, the QTL affects the expression state
at distal genes, rather than locally. One possible mechanism for
these distal interactions is chromatin looping [72]. Indeed, applica-
tion of Akita on a set of eQTLs from GTEx (Genotype-Tissue Expres-
sion, [73]) whole blood samples revealed significantly higher
disruption for SNP with greater causal probability, within and out-
side of CTCF motifs. This indicates the impact of CTCF and non-
CTCF variants on genome folding. Hence, eQTL data sets can be
used in biological validation of predicted interactions to reduce
false positives from 3C-based data.
2.4.3. Cell-type and species specific chromatin interactions
Cross-cell line prediction poses a big challenge due to the pres-

ence of cell-type specificity [63,10]. Our review revealed that gen-
eral DL models trained on all cell lines together, tend to perform
poorly in capturing cell-specific events due to the relative dispro-
portion between shared and private chromatin interactions. Con-
versely, most DL methods that are trained on each cell line
separately, failed to identify general and cell-line specific interac-
tions simultaneously. Approaches based on transfer learning per-
form much better in this setting. EPIsHilbert hypothesized that
the effectiveness of these approaches is determined by the numer-
ous common sequence patterns among all cell lines. To evidence
this, they calculated the overlapping ratio of chromatin interac-
tions between different tissues. It indicated that there are more
common than private interactions. This knowledge can be used
to create a model that has the ability to predict chromatin interac-
tions on novel cell lines. SEPT used a feature extractor and domain
discriminator to learn EPIs-related features and recognize cell-line
3445
specific patterns at the same time. This provides an opportunity to
create an universal model, which is able to predict chromatin inter-
actions not only on previously trained cell lines, but also on novel
cell lines using general EPI features. Similarities between mam-
malian genome folding may allow us to predict species-specific
differences in genome folding. Recent studies showed that ChAHP
complexes lead to the disruption of insulator loops within mouse-
specific B2 SINE elements [74,75]. To test this, Akita trained models
on human and murine embryonic stem cell (ESC) Hi-C to show the
impact of in silico mutation in these elements on CTCF binding.
Comparison of these results confirmed that both models correctly
predicted the disturbance of genome folding before and after
mutagenesis of B2 SINE elements. This highlights the opportunity
to use DL and transfer learning approaches in studies investigating
species-specific regulatory strategies (see Fig. 4).
3. Discussion

Here, we have reviewed current supervised DL models for pre-
dicting 3D chromatin interactions from DNA sequence. We find
that these methods have remarkably high prediction accuracy,
which indicates that DNA sequence features are important deter-
minants of chromatin looping. By examining the learned sequence
features it is possible to uncover complex, combinatorial, sequence
motifs that would otherwise be difficult to discover, even with
elaborate experimental assays. Thus, DL models have the potential
to provide novel insights into chromatin biology. Similarly, trained
DL models can be used as a tool to identify loop disrupting genetic
variants from population-level sequencing data. This type of infor-
mation is highly relevant for understanding the genetic basis of
regulatory variation underlying complex traits, both in a clinical
as well as in an agricultural setting. Indeed, numerous genome-
wide association studies have identified causal loci in non-coding
regions of genomes, many of which appear to act as eQTL for distal
target genes [76,77]. DL models could be used to assess if these
non-coding loci and their targets are likely to interact physically,
and whether the type of genetic variants seen at the eQTL locus
is expected to cause differential looping. Understanding the mode
of action of disease-associated non-coding variants can facilitate
insights into disease etiology and potentially lead to novel treat-
ment targets in biomedical applications.

Despite such exciting prospects, our review also revealed a
number of key limitations with current DL methods. All models
to date have been trained and tested on human data of six cell
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lines from the ENCODE project [24], or a subset of those cell lines.
While the use of a single, or a few, reference data set(s) enables
comparisons of the algorithms among themselves, it reduces the
generalizability of the trained models. This potential limitation
is already apparent in DL models that trained on multiple cell
lines and showed how sensitive the trained model can be to
cell-type specific features (EPIsCNN, EPIsHilbert, EPIVAN, SEPT,
TransEPI). It is therefore highly unlikely that current models read-
ily extent to other in vivo tissues in humans, and much less across
different species. Hence, a much broader range of training data
sets is urgently needed.

From our perspective, a cross-species DL model would be
highly interesting. For instance, it is well known that the biology
underlying chromatin looping in mammals and plants differs fun-
damentally. Plants lack CTCF proteins and display several other
key topological differences in the 3D organization of their gen-
omes. In contrast to mammalian TADs structure, plant compart-
ment domains tend to interact with each other at intra and
inter-chromosome level [78,79]. Moreover, although mammalian
loop domains are conserved through different species due to con-
servation of CTCF binding sites, plant compartments might differ
for several plant species [80]. The molecular components underly-
ing chromatin looping in plants is not fully resolved. Cross-
species DL models would not only be able to identify conserved
and divergence sequence determinants, but also reveal how the
molecular mechanisms underlying chromatin looping have
evolved. However, training the DL models reviewed here on other
species may not be trivial. Many of the models rely heavily on
auxiliary functional data (DNase-seq, RNA-seq, ChIP-seq, CTCF
binding proteins, transcription factors, RNA polymerase) and
high-quality genome annotations in the training procedure itself
(see Table 1). While this type of data is useful for boosting model
performance, it is not readily available in most non–human spe-
cies. Thus, such auxiliary data would have to be generated first,
or alternative training strategy would have been employed that
rely less on such data sources. From a bioinformatics point of
view, it may be tempting to focus on the development of the
ANN structure. However, if we consider the performance metrics
in Fig. 3, there is no clear indication that ANN structure has a sig-
nificant impact, if it consists of some minimal criteria like two
well performing CNN blocks. Zhuang et al. [28], for instance,
shows that a simple CNN model has similar performance on the
same training data as a CNN models coupled with a RNN. This
even raises questions about the implementation of an LSTM unit
altogether, even though there are decent biological interpreta-
tions of their function. Since the computational effort of LSTM
or related units is very expensive compared to CNN blocks, they
might fail in the long run due to lack of efficiency. On the other
hand, the training process itself seems to have a very deep impact
on prediction results. If we consider the AUPR values in Fig. 3, we
observe that the most promising results are derived by training
processes that use transfer learning strategies. This improvement
in statistical measurements, can be explained biologically by cell
line specific and general features along the chromatin. In mam-
malian cells, for example, it is known that CTCF bindings are con-
served through all cell lines, but other interactions are cell line
specific [81]. It should also be clear that the use of DL models
cannot fully replace experimental data in revealing chromatin
interactions. Experimental validation of predicted interactions
should go hand-in–hand with model building. To date, there
has been relatively little effort to perform such validations.
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