26" INTERNATIONAL DEPENDENCY AND STRUCTURE MODELING CONFERENCE, DSM 2024
STUTTGART, GERMANY, 24 — 26 September, 2024

Optimizing Token Usage on Large Language Model
Conversations Using the Design Structure Matrix

Ramén Maria Garcia Alarcia', Alessandro Golkar!

!Technical University of Munich

Abstract: As Large Language Models become ubiquitous in many sectors and tasks, there is a need to reduce token
usage, overcoming challenges such as short context windows, limited output sizes, and costs associated with token
intake and generation, especially in API-served LLMs. This work brings the Design Structure Matrix from the
engineering design discipline into LLM conversation optimization. Applied to a use case in which the LLM conversation
is about the design of a spacecraft and its subsystems, the DSM, with its analysis tools such as clustering and sequencing,
demonstrates being an effective tool to organize the conversation, minimizing the number of tokens sent to or retrieved
from the LLM at once, as well as grouping chunks that can be allocated to different context windows. Hence, this work
broadens the current set of methodologies for token usage optimization and opens new avenues for the integration of
engineering design practices into LLMs.

Keywords: Large Language Models, token usage optimization, context window, output tokens, Design Structure Matrix

1 Introduction

The recent, rapid development and popularization of Large Language Models (LLM) have transformed the panorama of
Natural Language Processing (NLP) and, more generally, of Artificial Intelligence (AI), permeating into society and
transforming the way many tasks are performed, being now either supported or automated with the help of LLM-based
tools.

Along with the challenges of hallucinations, lack of reasoning capabilities, inability to perform numerical calculations,
natural aging of the training data, and improper traceability and citation of information sources, another intrinsic challenge
of LLMs, tightly related to their architecture and training, concerns their limited context window and maximum token
output (Kaddour et al., 2023).

Indeed, the context window is the cornerstone for LLM-based applications which require the previous interactions in the
conversation to be preserved and considered by the LLM. This, being true for long conversations, is of particular
importance in the engineering design field when an LLM is used to support engineers in the design of a system, going
from high-level concept generation to lower-level system requirements or technical specifications generation. This
application requires previous decisions as well as the decision-making process to be considered in later stages.
Additionally, many applications require that large chunks of text be entered by the users or returned to them in single
steps. In these cases, the token output limit can harm the performance of the system.

Although new LLMs with longer context windows and larger token output limits are slowly being released, they are still
not a feasible solution for many individuals and organizations that need to adapt the LLMs to increase the performance in
their target applications by means of additional training. The training and fine-tuning of long-context-window LLMs is
significantly more computationally expensive.

And most importantly, many of the LLM-based applications rely on API calls to providers of LLMs, being billed not only
taking into account the number of API calls, but also the number of tokens that are sent into the model and the number of
tokens that are generated (and served to the user) by the model. Even in cases in which the LLM is run locally by the user,
every token counts when considering power consumption and application speed. Thus, optimizing token usage remains a
relevant point to be taken care of.

In this sense, the Design Structure Matrix (DSM) (Eppinger and Browning, 2012) is a promising tool for such cases of
restricted token availability or required token usage optimization. Considering that many conversations can be understood
as a process with a series of activities building one after the other, the DSM helps analyze the dependencies between the
elements of the conversation and optimize it.

In this paper, we study the application of the DSM for the optimization of token usage in a case in which an LLM is used
to support the design of a spacecraft, going from a high-level mission statement formulated in text by a customer to the
generation of system requirements for the different spacecraft systems. We formulate a generic framework on how to
apply the DSM, we apply it for our use case, and discuss the results. Results show a promising opportunity and a way
forward for using the DSM as an additional tool for LLM token usage optimization.

DSM 2024 69

Optimizing token usage on Large Language Model conversations using the Design Structure Matrix

2 State of the art

2.1 Large Language Models

Large Language Models (LLMs) have been around half a decade already, but it was not until the end of 2022 that gained
widespread public interest when OpenAl released the ChatGPT interface, making their GPT-3 LLM (Brown et al., 2020)
easily accessible to the masses. The technology behind LLMs, the transformer architecture, was introduced by Google in
2017, bringing together tokenization, word embeddings, and the novel attention mechanism (Vaswani et al., 2017)
assigning different importance to different chunks of the processed text.

The results of the novel transformer architecture, with initial models based on it such as BERT (Devlin et al., 2019),
quickly showed a significant performance increase with regards to the previous models used in Natural Language
Processing (NLP) tasks and started a race to train ever-bigger models of billions of parameters, taking huge general corpora
of data. GPT-4 from OpenAl (OpenAl et al., 2024), Gemini 1.5 Pro from Alphabet (Gemini Team et al., 2024), Llama 3
from Meta, Claude 3 Opus from Anthropic, or Mistral 8x7B by Mistral Al (Jiang et al., 2024), are some of the most
prominent and advanced LLMs for the time being. As models become better at a variety of benchmarks, the focus is
turning to developing their applications across industries, with fine-tuning, Retrieval Augmented Generation (RAG)
(Lewis et al., 2021), and integration into broader tools being explored.

2.2 LLM conversations, tokens, context, and limitations

In essence, an LLM is a generative Al model that excels in text generation tasks by processing natural language and
predicting the next word in a sequence with the highest probability. Thus, the natural way LLMs can be used is in
conversations with a human user. LLMs work with tokens. Tokens are chunks of text that the model can process or
generate. In the process of tokenization, natural language words are reduced to their constituent parts, which bring
meaning, and these are transformed into a number or ID (i.e., “the token”). It is relevant to mention that there are many
different tokenizers and related techniques. We use the state-of-the-art GPT 3.5/GPT 4 tokenizer from OpenAl in this
work. As an approximation, one token roughly corresponds to one natural language word, but this is not an exact
correspondence.

In the frame of a conversation, it is necessary that previous interactions between the language model and the user are
remembered and then processed each time new responses are generated by the model. These previous interactions are
stored and become a part of what is called the context window. However, the context window of an LLM and also its
responses are limited by a maximum number of tokens, with context windows normally having a bigger token limit than
LLM outputs. These token limits come from the architecture of the LLM themselves (i.e., the size and number of the
model layers) and are hard to overcome as LLMs with large context windows are also computationally more expensive to
train and require corpora of data with longer text sequences, which are harder to find.

Limitations in number of tokens have fueled research on context window extension methods (Peng et al., 2023) (Zhu et
al., 2024), as well as methods that are rather directed toward the minimization of token usage (Li et al., 2023). To the best
of our knowledge, this is the first academic work that proposes the usage of the Design Structure Matrix as a tool to
optimize conversations and reduce the number of tokens that are used.

Table 1: Most prominent LLM models, accessibility, and context window and output sizes in tokens

Model Provider Accessibility Context Max. output
window tokens
gpt-4-turbo OpenAl Proprietary 128 000 4 096
gpt-4-32k OpenAl Proprietary 32768 4 096
gpt-4 OpenAl Proprietary 8192 4 096
gpt-3.5-turbo OpenAl Proprietary 16 385 4 096
Gemini 1.5 Google Proprietary 128 000 8192

Pro
Gemini 1.0 Google Proprietary 32 000 2 048
Claude 3 Anthropic Proprietary 200 000 4 096
family

Claude 2 Anthropic Proprietary 100 000 4 096

DSM 2024 70

Ramoén Maria Garcia Alarcia, Alessandro Golkar

Llama 3 Meta Open source 8192 N/A
family

Llama 2 Meta Open source 4096 4096
family

Mistral 8x22B Mistral Al Open source 64 000 N/A

Mistral 8x7B Mistral Al Open source 32 000 N/A

Mistral 7B Mistral Al Open source 32 000 8192

Falcon family Technology Innovation Open source 2048 2048

Institute

2.3 The Design Structure Matrix

The Design Structure Matrix (DSM) is a tool coming from the engineering design discipline that allows one to visualize
the elements that make up a system or a process, their interrelations or interactions, and, more generally, the global
architecture of the system or process. A DSM takes the form of an N x N matrix where the N elements of the system or
process are represented together with the connections between them. The matrix can be binary, if only the existence or
absence of connection is represented, or numerical, whenever the strength of such connection is numerically depicted.
(Eppinger and Browning, 2012)

A DSM can be built after analyzing and decomposing a system or a process into its fundamental components and then
documenting (and maybe quantifying the intensity of) the connections between them, to afterward apply algorithms
allowing the detection of patterns and rearranging components for a system or process optimization. DSMs can be used to
model both static architectures (e.g., a product or an organization) and temporal flows (e.g., a process). In a process
architecture DSM, elements are activities that have interfaces between them. Design can be thought as an iterative process
(Kline, 1985), in which iterations are an important part of it. Iterations can be depicted as bidirectional connections between
activities of the design process.

In this sense, clustering and sequencing algorithms applied to a design process DSM can help optimize the design process,
and in the case in which this design process is happening in the frame of a conversation with an LLM, it can help optimize
the conversation itself, and reduce the usage of tokens. Clustering allows us to find groups of activities that are particularly
intertwined and group them together so that they can be sent to an LLM (or received back from the LLM) in a single chunk
of input/output or even in a single conversation. Sequencing is a simple reordering technique of the DSM that aims to
minimize interactions by moving the interaction marks closer to the diagonal of the matrix. By rearranging a conversation
in such a way, the chances that an overflow of a context window eliminates information that is needed in the current step
are reduced, since that information will be closer to the current point of the conversation.

3 Methodology

3.1 Use case and utilization flow

The use case for this paper is the design of spacecraft. A design assistant is built, which, based on an LLM and with the
support of an Object-Process Methodology (OPM) (Dori, 2002) model of a generic spacecraft, iteratively selects
parameters for different parameters of the subsystems, starting from a high-level mission statement written by the user in
natural language.

In this use case, the design of a spacecraft is taken as an iterative process that can be modeled by a DSM, where the design
activities correspond to the design of the different subsystems that a spacecraft can contain. The design process is realized
in the frame of a conversation with an LLM. The conversation starts with the user specifying the mission statement for the
spacecraft to be designed. Then, in this conversation, pieces of the OPM model of the spacecraft are exchanged between
the user and the LLM in both their generic version (provided by the user) and the specific version containing a detailed
design (returned by the LLM).

Without a DSM and its analysis methods of clustering and sequencing, the flow of the spacecraft design is as follows:

1. The OPM model is translated into text
2. A certain mission statement is entered by the user into the LLM
3. The full generic OPM model of a spacecraft is sent to the LLM

DSM 2024 71

Optimizing token usage on Large Language Model conversations using the Design Structure Matrix

4. The LLM is asked to perform the appropriate design decisions and return an information-filled OPM
5. The LLM retrieves a full information-filled OPM model of the spacecraft, specifying a particular design

In this case, however, the following drawbacks might occur:

e The combination of the initially given mission statement and the full OPM model in its text version (including
the generic version sent to the LLM and the information-filled version generated by it) might not fit into the
context window size. As a result, the initial portions of the conversation will be progressively lost, and that
information will not be considered when making new design choices.

e The information-filled OPM model might not completely fit inside the output size of the LLM, and as a result,
the retrieved design will be incomplete and will not cover all the requested spacecraft subsystems or aspects. This
is also a case in which tokens are lost, since they were provided by the user to the LLM, but the corresponding
counterpart was not returned by the LLM.

The flow, when incorporating the DSM, can be depicted in the following manner:

The OPM model is translated into text

A DSM is created from the OPM model

Clustering is performed on the DSM

Sequencing is performed on the clustered DSM

The clusters are identified, and the corresponding chunks of text are isolated

Each chunk of text resulting from the clustering is sent to the LLM

The LLM returns the same chunk of text but filled with information coming from its design choices

Nk v —

In this way, thanks to the clustering, smaller pieces of conversation are sent and retrieved from the LLM at each step,
making it easier for the output to be complete and cover the requested information. A token budget can be used to quantify
the improvement of using the DSM to optimize the conversation flow. It is a simple but powerful tool that gives a clear
insight before even deploying the conversation into an LLM and measuring the results and costs.

3.2 From an OPM space mission model to LLM tokens and to a DSM representation

An Object-Process Methodology model can be easily expressed in natural language thanks to the native bimodal
representation of a visual Object-Process Diagram (OPD) with its text equivalent in Object-Process Language (OPL).
Figure 5 depicts the OPD visualization of the highest level of the space mission OPM model as well as a lower-level
subsystem of the space mission’s spacecraft. Figure 6 depicts a portion of the OPL representation of the OPM model.

Additionally, an Object-Process Methodology model can also be expressed in the form of a Design Structure Matrix.
Existent algorithms already perform this operation and are embodied in OPM drafting tools such as OPcloud and OPCAT
(Dori et al., 2010). Despite this, for this work, a manual version of the DSM at a higher level is created, containing only
the following general parameters and subsystems that are available in the OPM model and that, in the frame of the
conversation, are considered activities of the design process:

Mission Statement

Payload

Orbit

Telemetry and Telecommand
Ground Station

Attitude and Orbit Control System
Propulsion

Electrical and Power System
Thermal Control System
Spacecraft’s general parameters
Structure

Launcher

The interactions between systems are derived from the experience and references in spacecraft design, such as (Larson
and Wertz, 1992). The strength of the interactions corresponds to the number of tokens that are generated when tokenizing
the OPL text corresponding to each of the OPM model portions.

DSM 2024 72

Ramoén Maria Garcia Alarcia, Alessandro Golkar

Space Mission

34 asa (ha]
[=e]

J I

[Space Segment I [Ground Ssgmem I ’ Ussr Sagmant I

Figure 5: OPD visualization of the highest level of the space mission’s OPM model (left). OPD visualization of the Solar Array
subsystem present in a spacecraft. 7bd’s mark pieces of information to be completed by the LLM taking design choices (right).

Space Mission consists of Ground Segment, Space Segment and User Segment.
Space Segment consists of Launcher and Spacecraft.
Spacecraft consists of Attitude Orbit Determination & Control Subsystem,

Command & Data Handling Subsystem, Electrical Power Subsystem, Payload,
Propulsion Subsystem, Structure, Telemetry Telecommunication & Command
Subsystem and Thermal Control Subsystem.

Pld Location_z of Pld Location is [0.5, 0.3, 0.2] m.

Pld Location_y of P1d Location is [0.0,-0.2, 0.2] m.

Pld Location_x of Pld Location is [0.0, 0.0, 0.0] m.

Pld Average Power Consumption of Pld Power Consumption is [90, 50, 70] w.
Pld Peak Power Consumption of Pld Power Consumption is [120, 80, 100] w.
Pld Size_z of Pld Size is [0.4, 0.3, 0.25] m.

PId Size y of Pld Size is [0.6, 0.45, 0.4] m.

Pld Size_x of Pld Size is [0.8, 0.6, 0.5] m.

Pid Interface of Paylead is [LVDS, SpaceWire, Ethernet].

Pld Voltage of Payload is [28, 28, 28] v.

Pld Mass of Payload is [50, 35, 40] kg.

Name of Payload is ["Hyperspectral Imager", "Microwave Radiometer",
"Infrared Spectrometer"].

Payload Operating Temperature of Payload is [-20, -10, -15] %.

Payload Data Production Per Orbit of Payload is [1.5¢9, 1.0¢9, 1.2¢9] bit.

Pld Number is 3.

Pld Location exhibits Pld Location_x, Pld Location_y and Pld Location_z.
Payload exhibits Name, Payload Data Production Per Orbit, Payload Operating
Temperature, Pld Interface, Pld Location, Pld Mass, Pld Number, Pld Power
Consumption, Pld Size and Pld Voltage.

Pld Power Consumption exhibits Pld Average Power Consumption and Pld Peal
Power Consumption.

Pld Size exhibits Pld Size x, Pld Size y and Pld Size z.

Figure 6: Portion of the OPL text representation of the OPM space mission model.

3.3 Clustering and sequencing algorithms with the DSM

Clustering can be described mathematically as an optimization problem. In it, activities are grouped together into clusters.
The goal is to find the grouping that minimizes a cost function J. The cost function considers both the summation of the
sizes of clusters € and the number of interactions between clusters / 0, as defined per Equation 1 below (Eppinger and
Browning, 2012).

Equation 1: Clustering minimization objective function (Eppinger and Browning, 2012).

M
min/ = min az Ci2 + Bl
i=1

a and [are the weighting parameters for the summation of the size of the clusters and the number of interactions between
clusters, respectively. For our application, we desire @ > f§ as the main purpose is to reduce the size of the chunks that are
sent to or retrieved from the LLM. Clustering is implemented on Julia using the DesignStructureMatrix.jl package
implementing the algorithm referenced in (Damasio et al., 2017). Sequencing is a reordering operation performed on a
DSM to avoid feedback marks. There are different methods to do so, and in this work, a method based on a reachability
matrix is used. The algorithm first computes the so-called reachability matrix, which represents the intersection between
a matrix with the input sets and the output sets for the elements of the matrix. Sequencing is implemented on Julia using
the DesignStructureMatrix.jl package implementing the algorithm referenced in (Warfield, 1973).

3.4 Token budget

The token budget is a tool that allows us to assess whether a conversation is feasible, taking into account the size of the
context window and the maximum output from an LLM. When the budget is negative, it is either because more tokens are
required for the full conversation than the length of the LLM context window, or because at a given step, the requested
output tokens exceed the output capability of the LLM. Additionally, the token budget can help calculate the costs of the
conversation, especially when interfacing with external, API-based LLM services.

DSM 2024 73

Optimizing token usage on Large Language Model conversations using the Design Structure Matrix

Table 2 shows the elements that need to be considered and tokenized to compute the Window Budget WB, and if they are
an input to the LLM or an output from it. In order to compute the Window Budget, both input and outputs are considered,
while to compute the Output Budget, only conversation outputs are considered:

Table 2: Elements of the conversation, codification, and input/output.

Element Code | Input | Output
User statement USt X
Instructions to the LLM IntLLM X
Generic space mission model GM X
Information-filled space mission model FM X

Additionally, a margin MG is considered in the computation of the budgets to account for the uncertainty of both the user
input and the results of the LLM inference. The Window Budget, for our conversation, is then computed as: WB =
(USt + IntLLM + GM + FM) - MG

The WB is considered positive whenever it is bigger than the LLM’s context window CW size (WB < CW). The Output
Budget is as follows for the conversation we set up: OB = FM - MG

The OB is positive whenever it is below the maximum number of output tokens OL of the model (OB < OL).

4 Results

In order to understand the benefits of the methodology, we apply it following the sequential steps outlined. To begin with,
we calculate an initial token budget. For this particular case, we use the Mistral 7B LLM from Mistral Al, being publicly
available for download and running locally. The initial token budget is available in Table 3. As seen, in this case, the
results are mixed: while the design conversation fits into the generous context window, the conversation needs to be
optimized and split so that around 1400 tokens are not lost in outputs.

Table 3: Initial token budget before the DSM-driven conversation optimization.

Item Number of tokens
SINGLE CONVERSATION PIECE
User statement - USt 200
Instructions to the LLM - IntLLM 200
Generic model - GM 9619
Information-filled model - FM 9619
Variability margin — MG 5%
Window budget - WB 21601
Context window Mistral 7B - CW 32000
CW-WwWB +10399
Output budget - OB 9619
Max. output Mistral 7B - OL 8192
OL - OB -1427

DSM 2024 74

Ramoén Maria Garcia Alarcia, Alessandro Golkar

In order to remediate this, we will use the DSM as explained in the methodology. First, as depicted in Table 4, a binary
DSM is created from the space mission model in OPM, which depicts the interactions between the different systems and
subsystems of the spacecraft, which are considered as activities of the design process, which happens in the design
conversation. The DSM is read row-to-column. The design elements on the rows are influenced by the X-marked columns.

Table 4: Binary DSM corresponding to the OPM space mission model, created manually.

A B C D E F G H 1 J K L M

Mission S.

Payload

Orbit

AOCS

Propulsion
TT&C
GS

CDH
EPS
TCS

Structure

I LR L P

I T Ll P

o

S O N O T o S [ST (Y SV P
e

X< [<
I LR P P
T E P P P
XX <[

Spacecraft

T BT Pl Pl il

<

Launcher X

To perform proper clustering and sequencing operations, the DSM needs to be transformed from the binary form into a
numerical one. Thus, each of the design elements, expressed in text in an OPL form, is tokenized, and the number of
tokens is counted. As a first approximation, we assume the worst-case scenario in which all the tokens of a design
element are influenced by the dependencies.

Table 5: Numerical DSM created when considering the tokens of the OPL portions.

A B C D E F G H 1 J K L M
Mission S. | A4
Payload B 190
Orbit C | 190
AOCS D | 190 | 272 | 3082 564 1416
Propulsion | £ 190 3082 | 1082
TT&C F 272 | 3082 497 | 1510
GS G 3082 564
CDH H 272 564 | 497
EPS / 272 | 3082 | 1082 | 769 | 564 1510 60
TCS J 272 | 3082 | 1082 | 769 | 564 1510 | 1416
Structure | K 272 1082 | 769 | 564 1510 | 1416 | 60 16
Spacecraft | L 190 | 272 1082 | 769 | 564 1510 | 1416 | 60
Launcher | M 272 239

The previous table is encoded into a matrix in Julia. The DesignStructureMatrix.jl package allows for clustering and
sequencing of the matrix and then for simple visualization without the numerical weights. The results are depicted in
Figure 7.

DSM 2024 75

Optimizing token usage on Large Language Model conversations using the Design Structure Matrix

ABCFGHDEI JLKM

AA

B |@|:

c|@®

F (1) o

G oo

H ((]

D 900ee D)
E® |® ()

I 00|00 000 |0
J 000 000

L 00 |0 0eeee
k|l @ |0 ©0eeee®
Ml @ ®

Figure 7: Results of the clustering and sequencing applied to the manually created DSM.
As depicted in Figure 7, the following sequence is obtained after applying sequencing;:

Mission Statement (A)
Payload (B)
Orbit (C)
TT&C (F)
GS (G)
CDH (H)
AOCS (D)
PROP (E)
EPS (1)
. TCS(J)
. Spacecraft (L)
. Structure (K)
. Launcher (M)

LN RWNRE

I
w N R O

Next, clusters are visually identified, as depicted in Figure 8, with red and blue squares.

ABCFGHDEI JLKM

A.

B |@]:

c|@®

F (1) o

G (1)

H (J0I0)

D 00 ee® D o
E@® |® ®

I ole/le |ele®

J oeo/e| olo/0®

L (@ole] o eoleoeele®
k| @ |lo| olo/oeee
vl (@ | ®

Figure 8: Visual identification of clusters in the DSM matrix.
From Figure 8, the following clusters are visually determined:

e Cluster 1: C, F, G, H - Orbit, TT&C, GS, CDH
e Cluster 2: D,E, 1,], L, K- AOCS, Propulsion, EPS, TCS, Structure

Taking into account the results of the sequencing and the identified clusters from the DSM analysis techniques, the
proposed conversation when taking into account clustering and sequencing is the following:

DSM 2024

Ramoén Maria Garcia Alarcia, Alessandro Golkar

1st conversation piece: Mission Statement (A)+Payload (B) - 462 tokens

2nd conversation piece: Orbit (C)+TT&C (F)+GS (G)+CDH (H) - 1438 tokens
3rd conversation piece: AOCS (D)+PROP (E)+EPS (I)+TCS (J)+Spacecraft (L)+Structure (K) - 7703 tokens
4th (and last) conversation piece: Launcher (M) - 16 tokens

When analyzing this new DSM-derived conversation sequence with a token budget, the following results are obtained:

Table 6: Final token budget after the usage of the DSM for conversation optimization.

Item Number of tokens
COMMON CONVERSATION PARAMETERS
Maximum output tokens - OL 8192
Context window - CW 32 000
Instructions to the LLM - IntLLM 50
Variability margin — MG 5%
CONVERSATION PIECE 1
Mission statement - USt 190
Generic model - GM 272
Information-filled model - FM 272
OL - 0B +7906
CONVERSATION PIECE 2
Generic model - GM 1438
Information-filled model - FM 1438
OL - 0B +6682
CONVERSATION PIECE 3
Generic model - GM 7703
Information-filled model - FM 7703
OL - 0B +103
CONVERSATION PIECE 4
Generic model - GM 16
Information-filled model - FM 16
OL - 0B +8175
COMPLETE CONVERSATION (single context)
CW—-WB +11 989

When compared to Table 5, an improvement in the budget is observed, directly speaking of the benefits of applying the
DSM tool to analyze the conversation and optimize it by clustering it, sequencing it, and organizing it appropriately into
different pieces. In cases of LLMs with less generous context windows, the conversation pieces can also be sent to separate

DSM 2024 77

Optimizing token usage on Large Language Model conversations using the Design Structure Matrix

conversation sessions with a lower loss of information -repeating, for instance, the indispensable information. In the cases
in which only the output tokens are limiting, such as the one analyzed here, the methodology is still useful to avoid losses
of tokens in the expected returns.

5 Conclusions

In this work, we presented a methodology for optimizing token usage in LLM conversations, using the Design Structure
Matrix and its related sequencing and clustering techniques. This initial work, which, to the best of our knowledge, brings
the DSM tool of the engineering design discipline to LLMs for the first time, shows preliminary results on a conversation
session based on the design of a system (in this case, a spacecraft). The results show a promising path forward in
incorporating DSM for LLM conversation analysis and optimization, albeit for now, use-case limited. Future work will
center on the generalization of the methodology to a broader range of LLM conversations and improving certain aspects,
such as removing the assumption of all tokens needing to be shared between the connected conversation elements,
implementing clustering not requiring visual determination, or comparing different sequencing and clustering algorithms.

References

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., 2020. Language models are few-shot learners. Advances in neural information processing systems 33, 1877—
1901.

Damasio, J.F., Bittencourt, R.A., Guerrero, D.D.S., 2017. Recovery of Architecture Module Views using an Optimized
Algorithm Based on Design Structure Matrices. https://doi.org/10.48550/arXiv.1709.07538

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, in: Burstein, J., Doran, C., Solorio, T. (Eds.), Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171—
4186. https://doi.org/10.18653/v1/N19-1423

Dori, D., 2002. Object-Process Methodology: A Holistic Systems Paradigm; with CD-ROM. Springer Science & Business
Media.

Dori, D., Linchevski, C., Manor, R., 2010. Chapter 1 OPCAT — An Object-Process CASE Tool for OPM-Based
Conceptual Modelling.

Eppinger, S., Browning, T., 2012. Design Structure = Matrix = Methods and Applications.
https://doi.org/10.7551/mitpress/8896.001.0001

Gemini Team, et al., 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
https://doi.org/10.48550/arXiv.2403.05530

Jiang, A.Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., Chaplot, D.S., Casas, D. de las, Hanna,
E.B., Bressand, F., Lengyel, G., Bour, G., Lample, G., Lavaud, L.R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T.L., Gervet, T., Lavril, T., Wang, T., Lacroix, T., Sayed, W.E.,
2024. Mixtral of Experts. https://doi.org/10.48550/arXiv.2401.04088

Kaddour, J., Harris, J., Mozes, M., Bradley, H., Raileanu, R., McHardy, R., 2023. Challenges and Applications of Large
Language Models. https://doi.org/10.48550/arXiv.2307.10169

Kline, S.J., 1985. Innovation Is Not a Linear Process. Research Management 28, 36—45.

Larson, W.J., Wertz, J.R., 1992. Space Mission Analysis and Design. Torrance, CA (United States); Microcosm, Inc.,
United States.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Kiittler, H., Lewis, M., Yih, W., Rocktéschel, T.,
Riedel, S., Kiela, D., 2021. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks.
https://doi.org/10.48550/arXiv.2005.11401

Li, Y., Dong, B., Lin, C., Guerin, F., 2023. Compressing Context to Enhance Inference Efficiency of Large Language
Models. https://doi.org/10.48550/arXiv.2310.06201

OpenAl, et al., 2024. GPT-4 Technical Report. https://doi.org/10.48550/arXiv.2303.08774

Peng, B., Quesnelle, J., Fan, H., Shippole, E., 2023. YaRN: Efficient Context Window Extension of Large Language
Models. https://doi.org/10.48550/arXiv.2309.00071

Vaswani, A., Shazeer, N., Parmar, N., UszKoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is
all you need. Advances in neural information processing systems 30.

Warfield, J.N., 1973. Binary Matrices in System Modeling. IEEE Transactions on Systems, Man, and Cybernetics SMC-
3, 441-449. https://doi.org/10.1109/TSMC.1973.4309270

Zhu, D., Yang, N., Wang, L., Song, Y., Wu, W., Wei, F., Li, S., 2024. PoSE: Efficient Context Window Extension of
LLMs via Positional Skip-wise Training. https://doi.org/10.48550/arXiv.2309.10400

Contact: Ramén Maria Garcia Alarcia, Technical University of Munich, Department of Aerospace and Geodesy, Lise-Meitner-
Strasse 9, 85521, Ottobrunn, Germany, +49 89 289 55752, ramon.garcia-alarcia@tum.de, https://www.asg.ed.tum.de/en/sps/home/

DSM 2024 78

