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Abstract

Recent developments in numerical simulations in the aerodynamics field are focused on reducing the computational cost
f the solvers, targeting their use at the initial design steps. Under the right assumptions, potential solvers can be exploited to
ccomplish a valid solution of the flow field for streamlined bodies in subsonic and close to transonic flows. A fully embedded
pproach to solve the full-potential equation is presented, where both the geometry and the wake are defined implicitly with a
evel set function. Embedded methods allow simplifying the mesh generation process, as only a background mesh is required
o perform the analysis. The presented method gives an automatic and fast option to solve subsonic flows, which is especially
esirable in optimization workflows.
c 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Finite elements; Embedded; Aerodynamics; Level set; Potential flow; Adaptive refinement

1. Introduction

Flow simulation is a powerful tool used in the early development of aerodynamic designs, especially if compared
o expensive wind tunnel experiments, where the size of the object of study and the input conditions variability are
imited. Nonetheless, Navier–Stokes solvers, while being highly accurate, require a great amount of computational
ower. Moreover, in order to yield meaningful results these methods require input parameters that are generally
ot available at early stages [1]. In the initial design phase of any engineering project, several design options
re considered, and the project requirements may vary. For this reason, there is an interest from the industry in
aving a fast, yet sufficiently accurate aerodynamic solver. In this regard, full-potential formulations stand often
s the best option in terms of accuracy-to-cost ratio [2], as only one single scalar partial–differential equation is
equired. This poses an advantage of more than one order of magnitude in computation time if compared to Euler
olvers, where the momentum and energy equations are also considered. Full-potential formulations are irrotational
nd isentropic, and are suitable for subsonic and transonic flows, assuming that no strong shock waves exist in the
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flow [3]. High mach number flows where strong shock waves are present invalidate the isentropic flow hypothesis. If
compared to classic panel-methods, panel-methods are not able to deal with non-linear flows, so full-potential flows
are expected to give better solutions in subsonic cases, since no linearization of the mass equation is performed [4].
As a disadvantage, the non-vorticity of the flow requires the addition of a discontinuity in the domain, which makes
difficult other aspects such as mesh generation. This discontinuity represents an enforced vorticity that allows the
potential flow to generate lift [5,6]. In order to deal with this discontinuity (also known as potential jump or wake),
a physical separation of the domain is performed. Considering high Reynolds numbers, the wake can be assumed
to be straight and to have the same direction as the free-stream velocity. A first approach to model the wake is by
duplicating the surfaces of the wake [4,7]. This approach allows for a fast solution of subsonic flows, but the wake
mesh generation still poses an important challenge, especially if several analyses are to be considered, or when
dealing with moving geometries. A first step to deal with this issue is presented in [8], where the wake is defined
implicitly in a classical body-fitted mesh using a level set function. Thus, no explicit mesh representation is needed
for the wake. The potential jump required to model lift is accomplished by enforcing embedded discontinuities in the
elements that are cut by the wake, by using new local degrees of freedom. In this case, changing the wake direction
does not require to completely remesh the whole domain, allowing for fast analyses on different angle of attack
configurations. Nonetheless, the use of classical body-fitted meshes to represent the geometry can be a limiting factor
when considering the analysis of complex geometries or moving bodies, as it is the case in shape optimization. For
this reason a full embedded approach is desired, where both the geometry of study and the wake are implicitly
defined in a background mesh by signed-functions [9]. This approach would allow solving fast the subsonic and
transonic flow around a complex structure, while also permitting changes or movements of the geometry without
mesh deformation. Proper representation of the embedded geometry by the background mesh can be accomplished
by means of adaptive remeshing [10,11]. Recent work on the usage of the full-potential equation can be highlighted
for multidisciplinary [12] and aeroelastic [13] analyses, where the reduced computational cost of the potential flow
equation is exploited. Regarding embedded formulations, there are already developments in the solution of the
full-potential flow for finite-volume methods using Cartesian meshes [14]. Also, there are immersed methods to
solve Navier–Stokes flows mixing finite-elements and finite-volumes [15]. In this document, a complete embedded
finite-element method for the full-potential flow is presented, where the embedded-wake approach introduced in [8]
is extended to model the aerodynamic shapes using embedded methods. Numerical terms are defined to robustly
model the potential flow around the level set while also respecting the Kutta condition. The presented method has
been implemented in the open source framework KratosMultiphysics [16,17], available under the BSD licence.

2. Embedded potential flow solver

Most aerodynamic applications involve streamlined bodies flying at very large Reynolds numbers, especially on
lassical commercial aircraft configurations at cruise speed. Under these conditions, the potential flow hypotheses
an be assumed, where the outer flow is considered isentropic and irrotational. The potential flow assumptions
re however not valid within the boundary layer and the wake, where viscous effects are not negligible. As the
eynolds number grows, the area enclosed by the boundary layer and the wake is reduced, as the inertial forces
re considerably greater than the viscous forces. This allows performing accurate estimations of the flow over a
treamlined body using potential flow assumptions over the whole domain. Starting from Navier–Stokes equations,
ssuming that the flow is irrotational and inviscid, and assuming that the velocity can be written as the gradient of
potential such that v = ∇Φ, the mass conservation equation reduces to:

∂ρ

∂t
+ ∇ · (ρ∇Φ) = 0 (1)

here the density, ρ, can be written in terms of far-field quantities:

ρ(Φ) = ρ∞

[
1 +

γ − 1
2

v2
∞

a2
∞

(
1 −

∇Φ · ∇Φ

v2
∞

)] 1
γ−1

(2)

here ρ∞, v∞ and a∞ denote the magnitude of the freestream density, velocity and speed of sound respectively.
is the adiabatic index. This relation comes after applying the potential flow assumption in Euler’s momentum

quation. Pressure can be computed using the isentropic relation:

p
=

(
ρ

)γ
(3)
p∞ ρ∞

2
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Fig. 1. Simplified representation of the domain Ω and its boundary ∂Ω . The wake ∂ΩW is modelled as a straight line.

here p∞ is the freestream pressure. The assumption of inviscid and irrotational flow precludes the generation of
ift, as no pressure difference can be created between the upper and lower surfaces of the aerodynamic body. The
ack of viscosity prevents the flow from slowing down in contact with the solid surfaces [18]. It is therefore not
ossible to compute the lift force that the air generates on a solid body under potential flow assumptions. In order to
o so, the addition of a discontinuity in the domain is needed, which will produce the vorticity required to generate
ift [6]. This discontinuity models the so-called wake. The lift force per unit span for an airfoil with chord c, can
e expressed in terms of the flow circulation Γ by the Kutta–Joukowski theorem L = ρv∞Γ , which yields the
ollowing expression for the lift coefficient:

Cl =
L

1
2ρv

2
∞

c
=
ρv∞Γ
1
2ρv

2
∞

c
=

2
v∞c

Γ (4)

t can be shown that the circulation created by the wake is equivalent to the potential jump across the wake
= Φ+

− Φ− [5] . The + sign refers to the potential values above the wake, and the − sign to the potential
alues below the wake.

.1. Boundary conditions

The boundary conditions defined in the problem are equivalent as those introduced in [8]. A scheme is shown in
ig. 1, where the far-field boundary is represented by the outer circle. A line denoted by ∂ΩW represents the wake
odelled in the problem. Depending on the flux passing through the domain, the imposed conditions are defined

s ∂ΩD or ∂ΩN , which will be considered the inlet and the outlet of the domain, respectively. If n is defined as the
uter normal on the boundary, then ∂ΩN and ∂ΩD are defined as follows:

∂Ω∞ =

{
∂ΩD if v∞ · n < 0
∂ΩN if v∞ · n ≥ 0 (5)

t the inlet, a Dirichlet condition is imposed by fixing the potential values. For a given point x in the inlet, its
otential is computed using the free stream velocity v∞ and a given constant value, as shown in Eq. (6). A Neumann
ondition is imposed in Eq. (7) at the outlet by setting a mass flux g. At the walls, a no-penetration condition is
et with g = 0. Also, the wake requires the imposition of two specific boundary conditions. Eq. (8) imposes mass
onservation across the wake. Eq. (9) imposes pressure equality between the upper and lower parts of the wake.

Φ(x) = v∞ · x + Φ∞ on ∂ΩD (6)

n · (ρ∇Φ) = g on ∂ΩN (7)

n · (ρ+
∇Φ+

− ρ−
∇Φ−) = 0 on ∂ΩW (8)⏐⏐∇Φ+

⏐⏐2
−

⏐⏐∇Φ−
⏐⏐2

= 0 on ∂ΩW (9)
3
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Fig. 2. Embedded approach. The geometry is represented by the level set function’s zero-level and its intersections with the elemental edges
are used to split the domain.

2.2. Embedded problem formulation and discretization

In order to solve the full-potential equation introduced in the previous sections, a complete embedded approach
ith a background mesh with finite elements is presented. The geometry of study is represented by a continuous

evel set function, denoted by φ, which is defined as a signed scalar field [19]. This is illustrated in Fig. 2., where the
level set function’s zero-level value is indicated as an orange line, and its intersections with the elements’ edges are
marked with black crosses. The dashed lines denote that the background mesh does not capture the geometry exactly,
but the intersection points are used to perform a linear split of the elements. This zero-level intersection subdivides
the computational domain into two partitions Ω = Ωin ∪Ωout , depending on its sign. The positive part is considered
s the region laying inside the fluid domain, and it is marked in white in Fig. 2. The negative part is considered as
he region laying outside the fluid domain. Note that this convention is arbitrary. The elements intersected with φ
re denoted with Ωφ = Ωφ,out ∪Ωφ,in for which splitting is performed, and only the part Ωφ,in ∈ Ωin is considered.
he part Ωφ,out ∈ Ωout does not contribute to the system and it is marked in light grey in Fig. 2. The elements
utside the fluid domain and not intersected by the level set function are deactivated. These elements are depicted
n dark grey in Fig. 2. The function φ is defined as:

φ(x) =

{
φ(x) < 0 if x ∈ Ωout

φ(x) ≥ 0 if x ∈ Ωin
(10)

Similarly, a distance function φwake(x) is used to model the wake region ∂ΩW . This implies that both the airfoil
nd the wake cut the mesh elements in an arbitrary manner. The topological discontinuity of the domain at ∂ΩW
mplies that the elements of the background mesh cut by ∂ΩW (and their degrees of freedom) are duplicated and
ssigned to the discretization of the regions above and below ∂ΩW respectively. The wake line will cut the elements
n Ω in a region which is denoted as ΩW = ΩW+ ⊕ ΩW− , where the “+” and “−” sign refers to the upper and
ower elements with respect to the wake. This is illustrated in Fig. 3, where a variable to account for the duplicated
egrees of freedom on the wake is introduced, Φext, which is represented by blue squares. The original degrees of
reedom Φ are marked with red dots. This extra variable enables the definition of a discontinuity in the potential
nd the imposition of the boundary conditions of the wake, which are defined on the external side of the wake.
hus, the degrees of freedom above and below the wake are given by:

Φ+
=

{
Φ if φwake > 0
Φext if φwake < 0 ∀Ω e

∈ ΩW+ (11)

Φ−
=

{
Φext if φwake > 0
Φ if φwake < 0 ∀Ω e

∈ ΩW− (12)

The elements in Ωin and their degrees of freedom define the finite element space for the problem, Vh , which also

ncludes the cut volume integration and the duplicated degrees of freedom of the wake. The rest of elements outside

4
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Fig. 3. Embedded wake visualization, where the wake is represented by a blue line. The elements intersected by the wake have duplicated
egrees of freedom, which creates a discontinuity in the domain, as if the mesh was split in two parts. Note that the separation shown in
he figure is simply a representation, as the mesh is not physically split in this approach. (For interpretation of the references to colour in
his figure legend, the reader is referred to the web version of this article.)

he fluid (and inside the volume) are discarded. The finite element space Vh is decomposed into V main
h ⊕ V ext

h . In
this decomposition, V ext

h is the finite element space spanned by the functions associated to the nodes of Vh which
belong to the external part of the domain in the wake cut elements, while V main

h is the finite element space spanned
by the functions associated to the nodes of Vh which are part of the rest of the fluid domain (see Fig. 3).

Moreover, two auxiliary terms are added to ensure a robust handling of the cut element integration. On one
hand, a stabilization term is added in the elements Ωφ ⊂ Ω , which corresponds to the set of elements intersected
by the geometry. This term is used to improve the instabilities produced by the level set interpolation performed
at the elements. This effect is visible in the pressure distribution plots, which is improved with the addition of
the stabilization term, especially on coarser meshes. On the other hand, the region Ωkutta ⊂ Ω is defined, which
corresponds to the set of elements that are intersected by both the geometry and the wake, and its neighbours. In
these elements, a penalty term is added to enforce the Kutta condition for any arbitrary combination of the distance
functions defining the wake and the geometry. Thus, the weak form of the problem can be introduced as:

B(ωh,Φh)Ωin + Bstab(ωh,Φh)Ωφ + Bkutta(ωh,Φh)Ωkutta = F(ωh)∂Ω ∀ωh ∈ V main
h (13)

B∂ΩW+
(ωh,Φ

+

h ,Φ
−

h )∂ΩW+
= 0 ∀ωh ∈ V ext

h (14)

B∂ΩW−
(ωh,Φ

−

h ,Φ
+

h )∂ΩW−
= 0 ∀ωh ∈ V ext

h (15)

where the terms involved are defined next. The derivation of these terms is described in the following sections.

B(ωh,Φh)Ωin =

∫
Ωin

ρ∇ωh · ∇ΦhdΩ (16)

F(ωh)∂ΩN =

∫
∂ΩN

ωhn · (ρ∇Φh)d∂Ω (17)

B∂ΩW+
(ωh,Φ

+

h ,Φ
−

h )∂ΩW+
=

∫
∂ΩW+

∇ωh[∇Φ+

h − ∇Φ−

h ]d∂Ω (18)

B∂ΩW−
(ωh,Φ

−

h ,Φ
+

h )∂ΩW−
= −

∫
∂ΩW−

∇ωh[∇Φ+

h − ∇Φ−

h ]d∂Ω (19)

Bkutta(ωh,Φh)Ωkutta = kkutta

∫
Ωkutta

∇ωhnT
kuttankutta∇ΦhdΩ (20)

Bstab(ωh,Φh)Ωφ = kstab

∫
Ωφ

∇ωh(∇Φh − ξ (∇Φh))dΩ (21)

The terms in Eqs. (16) and (17) correspond to the terms from the Laplacian problem with the far-field acting as a
forcing term, and they are presented in Section 2.3. The terms in Eqs. (18) and (19) correspond to the imposition
of the boundary conditions on the wake, and they are introduced in Section 2.4. Eq. (20) is an auxiliary term used
5
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to enforce the Kutta condition with the penalty coefficient kkutta. This term forces the velocity direction to locally
atch the trailing edge bisector line direction, whose normal is defined as nkutta, which is explained in detail in

Section 2.6. Finally, Eq. (21) is a stabilization term used to smooth the gradient of the potential. To accomplish this,
the gradient of the potential differing from the average of the gradients of the potential of the neighbouring elements
is penalized with the factor kstab. Here, the term ξ (∇Φh) refers to the volume-based average of the gradient of the

otential, which is described in depth in Section 2.7. From now on and for the sake of simplicity, the subscript ()h

ill be omitted to refer to the discretized potential values Φ = Φh and the test functions ω = ωh .

.3. Full-potential equation

The derivation of the terms introduced in Eq. (13) starts with the general expression of the potential formulation,
s introduced in [4] and [8], extending it for embedded geometries. While a level set function is used in [8] to
efine the wake, the airfoil shapes considered are still body-fitted. In this paper, both the geometry of study and the
ake are modelled using embedded methods.
From Eq. (1), the weak form of the system can be derived by applying the Galerkin method and the divergence

heorem, for the test functions ω:∫
Ω

ρ∇ω · ∇ΦdΩ =

∫
∂ΩN

ωn · (ρ∇Φ)d∂Ω (22)

The left-hand side of the equation corresponds to Eq. (16), and the right-hand side of the equation to Eq. (17). The
dependence of ρ on the potential makes the problem non-linear, so the system is written in residual form R(Φ) = 0.

he residual is written in terms of the M nodal shape functions N j and the M corresponding nodal values Φ j . Also,
he new domains defined, Ωin and Ωout are considered. Naturally, only the fluid domain is modelled, so only the
lements that belong to Ωin are integrated. The elemental contribution to the residual for the elements in Ωin is
iven by:

Re
i (Φ) =

M∑
j=1

∫
Ωe

in

ρ∇Ni · ∇N j dΩΦ j −

∫
∂Ωe

N

Ni gd∂Ω (23)

or the elements intersected by φ, only the region inside the fluid Ωφ,in is integrated after splitting. This operation
s performed element-wise, when computing the local contribution of each subdivision of the domain. Also, a
o-penetration condition (v · n = 0) is imposed on the geometry by setting to zero the elemental contribution to the
oundary term. The residual for the intersected elements by φ is therefore given by:∫

∂Ωφ

Ni gd∂Ω = 0 in Ωφ (24)

Re
i,φ(Φ) =

M∑
j=1

∫
Ωe
φ,in

ρ∇Ni · ∇N j dΩΦ j in Ωφ (25)

he elemental contributions to the Jacobian are denoted with J e
i, j (Φ) which are computed as:

J e
i, j (Φ) =

∂Re
i (Φ)
∂Φ j

=

∫
Ωe

in

ρ∇Ni · ∇N j + 2
∂ρ

∂|v|2

(
∇N j · ∇Φ

)
(∇Ni · ∇Φ) (26)

where the derivative of the density with respect to the local velocity is obtained from (2):

∂ρ

∂|v|2
= −

ρ∞

2a2
∞

(
1 +

γ − 1
2

v2
∞

a2
∞

(
1 −

|v|
2

v2
∞

)) 2−γ
γ−1

(27)

.4. Wake boundary conditions

As it is well-known, the definition of a wake is required in potential flow methods in order to model lift.
herefore, a method to account for the discontinuity of the wake and its boundary conditions is required. This

iscontinuity is imposed explicitly on a finite-element mesh in [4] by effectively duplicating the nodes on the wake.

6
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Fig. 4. Representation of an embedded wake in a body fitted mesh introduced in [8]. The wake is defined implicitly through a distance
function, and its intersection subdivides the mesh into two, shown in Fig. 4a and 4b. In this case, the trailing edge is clearly defined and
it is used as the wake origin. Note that the duplication is only performed for visualization purposes, as only one mesh is utilized.

This wake would act as a standard solid wall if no additional conditions were imposed. Then, mass conservation and
pressure equality across the wake is enforced with the boundary conditions presented in Eqs. (8) and (9) respectively.
It must be noted that this approach requires the a priori definition of the wake in the meshing process. This is not
a major drawback for stand-alone analyses with modern preprocessors, but it can pose a clear disadvantage if the
same mesh is meant to be kept for different geometry configurations.

A viable alternative to model the wake is to implicitly define it with a level set function, as described in [8]. In
rder to create a domain discontinuity in this scenario, the elements intersected by the level set function φwake have
uplicated degrees of freedom. This is illustrated in Fig. 3, where the discontinuity is accomplished by disconnecting
he degrees of freedom from the upper and lower parts of the wake. The auxiliary degrees of freedom are also
mployed to enforce the wake boundary conditions. The wake is shed from the body-fitted airfoil as a straight line
s shown in Fig. 4. In this paper, this approach is adapted to embedded geometries, where also the airfoil is defined
sing a level set function. The imposition of the boundary conditions on the wake elements on the auxiliary degrees
f freedom is equivalent to [8], which is described next. Then, the specific required modifications for the current
pproach will be presented in Section 2.5, which will focus on the intersection of the geometry and the wake and
he proper definition of the Kutta condition.

The main potential flow terms are evaluated in the wake elements on both the upper and lower side of the domain,
hich are included in the evaluation of Eqs. (16) and (17) with its corresponding degrees of freedom as depicted in
ig. 3. The residuals and Jacobians derived from these equations are rewritten for the elements that are intersected
y the wake using its corresponding values of potential according to Eqs. (11) and (12). These elemental residuals
nd Jacobians are denoted with Re

i,W+ , Re
i,W− and J e

i, j,W+ , J e
i, j,W− respectively. When evaluating the upper terms of

he wake in ΩW+ , Eq. (11) is used, assigning Φi and Φext
i accordingly. If the lower terms are evaluated in ΩW− ,

q. (12) is used instead:

Re
i,W+ (Φ+) = Re

i (Φ+) =

M∑
j=1

∫
Ωe

W

ρ+
∇Ni · ∇N j dΩΦ+

j −

∫
∂Ωe

W

Ni gd∂Ω (28)

Re
i,W− (Φ−) = Re

i (Φ−) =

M∑
j=1

∫
Ωe

W

ρ−
∇Ni · ∇N j dΩΦ−

j −

∫
∂Ωe

W

Ni gd∂Ω (29)

From these residuals, Jacobians for the wake elements are derived in the same manner as in (26), by computing
J e

i, j,W+ =
∂Re

i (Φ+)

∂Φ+

j
= J e

i, j (Φ
+) and J e

i, j,W− =
∂Re

i (Φ−)

∂Φ−

j
= J e

i, j (Φ
−).

Boundary conditions for both sides of the wake are imposed by a least-square finite-element approach, combining
qs. (8) and (9) in a single two-dimensional vector equation, where the velocity on both sides of the wake is enforced

o be equal:

ρ+v+
= ρ−v− in ∂ΩW (30)

ere, ρ+
= ρ(Φ+) and ρ−

= ρ(Φ−) are defined using Eq. (2) with the degrees of freedom of the wake. This
quation is added to the system by minimizing the functional Π , where the velocity vectors have been replaced by
he gradients of the potential on each side of the wake, and it is given by:

Π (Φ+,Φ−) =
1

∫
∥ρ+

∇Φ+
− ρ−

∇Φ−
∥

2d∂Ω (31)

2 ∂ΩW

7
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This expression will act as a constraint in the element formulation. The residual terms and its Jacobians are found
by deriving the functional in Eq. (31), where derivatives on the density are neglected due to the assumption of small
velocity perturbations u = v−v∞ ≪ v∞, as only streamlined bodies are considered. Here, u represents the velocity
difference between the free-stream unperturbed flow v∞, and the actual velocity around the airfoil v. Deriving with
espect to the degrees of freedom Φ+, Φ− leads to Eqs. (18) and (19):

∂Π (Φ+,Φ−)
∂Φ+

= B∂ΩW+
(w,Φ+,Φ−)∂ΩW+

(32)

∂Π (Φ+,Φ−)
∂Φ−

= B∂ΩW−
(w,Φ−,Φ+)∂ΩW−

(33)

Since the wake is embedded in the elements, the above expression that is evaluated on the wake line is replaced
by a volume integral. This assumes that the gradient of the potential is constant across the elements, which holds
true for linear elements. The elemental contributions of the residual for the constraint are written with the subscript
Re

i,B , to refer to the terms enforcing the boundary conditions of the wake:

Re,+
i,B (Φ+,Φ−) =

∂Π (Φ+,Φ−)
∂Φ+

i
=

∫
Ωe

W

∇Ni
(
ρ+

∇Φ+
− ρ−

∇Φ−
)

d∂Ω (34)

Re,−
i,B (Φ+,Φ−) =

∂Π (Φ+,Φ−)
∂Φ−

i
= −

∫
Ωe

W

∇Ni
(
ρ+

∇Φ+
− ρ−

∇Φ−
)

d∂Ω (35)

hich can be rewritten in terms of the original problem residual:

Re,+
i,B (Φ+,Φ−) = Re

i,W+ (Φ+) − Re
i,W− (Φ−) (36)

Re,−
i,B (Φ+,Φ−) = Re

i,W− (Φ−) − Re
i,W+ (Φ+) (37)

here Jacobians can also be written in terms of the original problem Jacobians:

J e,+
B,i, j =

∂Re,+
i,B

∂Φ+

j
(Φ+,Φ−) = J e

i, j,W+ (Φ+) − J e
i, j,W− (Φ−) (38)

J e,−
B,i, j =

∂Re,−
i,B

∂Φ−

j
(Φ+,Φ−) = J e

i, j,W− (Φ−) − J e
i, j,W+ (Φ+) (39)

The terms in the system of equations obtained in Eqs. (34) to (39) are equivalent to those defined by the full-potential
equation in Eq. (26), only adapting the degrees of freedom according to Eqs. (11) and (12). If this is expressed
in matrix form for a triangular element with the same cutting as the element shown in Fig. 3, the residuals and
Jacobians on the auxiliary degrees of freedom are written as:

J e
B,i, j =

[
J e,+

B,i, j J e,−
B,i, j

]
=

⎡⎣J+

B,11 J+

B,12 J+

B,13 J−

B,11 J−

B,12 J−

B,13
J+

B,21 J+

B,22 J+

B,23 J−

B,21 J−

B,22 J−

B,23
J+

B,31 J+

B,32 J+

B,33 J−

B,31 J−

B,32 J−

B,33

⎤⎦ (40)

Re
i,B =

[
Re,+

i,B
Re,−

i,B

]
=

⎡⎣R+

2,B
R+

3,B
R−

1,B

⎤⎦ (41)

hese terms replace the terms in the auxiliary degrees of freedom of Eqs. (28) and (29) and its Jacobians, acting
s a constraint:

J e
i, j,W =

[
J e

i, j,W+ J e
i, j,W−

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

J+

11 J+

12 J+

13 0 0 0
J+

B,11 J+

B,12 J+

B,13 J−

B,11 J−

B,12 J−

B,13
J+

B,21 J+

B,22 J+

B,23 J−

B,21 J−

B,22 J−

B,23
J+

B,31 J+

B,32 J+

B,33 J−

B,31 J−

B,32 J−

B,33
0 0 0 J−

21 J−

22 J−

23
0 0 0 J−

31 J−

32 J−

33

⎤⎥⎥⎥⎥⎥⎥⎦ (42)
8
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Re
i,W =

[
Re,+

i,W
Re,−

i,W

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

R+

1
R+

2,B
R+

3,B
R−

1,B
R−

2
R−

3

⎤⎥⎥⎥⎥⎥⎥⎦
[
Φ+

i
Φ−

i

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
Φ1
Φext

2
Φext

3
Φext

1
Φ2
Φ3

⎤⎥⎥⎥⎥⎥⎥⎦ (43)

These elemental contributions are used on the elements intersected by the wake, now with the constraint of the
boundary conditions of the wake applied in the auxiliary degrees of freedom. In summary, the above approach
allows to model a discontinuity on the potential field, while respecting the wake boundary conditions, without the
need to explicitly model the wake in the mesh.

2.5. Wake in the embedded approach

Defining the wake and the airfoil as embedded geometries requires dealing with its intersection, as both are
modelled implicitly with a level-set function. On one hand, the geometry is represented as a closed volume for
some scalar field, φ. On the other hand, the wake is represented as a volume-less geometry expressed as well with
some scalar field, φwake. In the body-fitted case, the trailing edge node can be safely used as origin to start the
definition of the wake, as shown in Fig. 4, where the degrees of freedom are duplicated and illustrated with red
dots for the main potential values and with blue squares for the external potential values. In the embedded case,
the origin of the wake is not clearly defined, and a consistent method to model the wake is needed, which works
for any possible combination of elements near the trailing edge. This issue is solved in [14] in a finite-volume
approach by generating first the wake on top of the trailing edge of the initial STL geometry. Then, the volume
cells are generated from this configuration, cutting (physically splitting) the cells that are intersected by the wake
during mesh generation. In this paper, the aim will be to start from an arbitrary finite-element mesh, and do this
operation without explicitly cutting the elements.

As introduced in Eq. (13), the solver equations require to determine which elements belong to the fluid, to
the intersected geometry or to the wake. The geometry elements are found using the level set function φ. The
wake elements can be equivalently identified with the wake level set function φwake. Fluid elements are regular
Laplacian elements for which the distance to the skin is positive on all their nodes. There are some set of elements,
Ωkutta = Ωin ∩ΩW , that represent the intersection of geometry and the wake in the trailing edge, and for which the
Kutta condition has to be enforced. These elements and their neighbours are illustrated in green in Fig. 5, where
the wake is represented by a blue dotted line. The wake origin is set at the same location as the trailing edge from
the original geometry and prolonged into the airfoil, following the chord. This allows identifying the intersected
elements inside the geometry.

The algorithm to determine the elements in Ωkutta is shown in Algorithm 1. An elemental loop is performed
looking for a sign swap occurring at the nodes of the elements for both φ and φwake. If the swap is found, elements
are listed and identified, which will belong to the geometry or the wake. Elements intersected by both distance
functions and its nodes are identified. In these elements, the description of the geometry is likely inaccurate, as the
trailing edge is a sharp edge. This is illustrated in Fig. 5, where the actual representation of the continuous level set
function used is shown with a black dotted line. Due to this, the splitting coming from the function φ is ignored for
these elements, as the no-penetration condition in Eq. (24) would implicitly enforce an incorrect direction of the
local velocity. Since these elements are intersected by the wake, its degrees of freedom are duplicated, as shown in
Fig. 6. As done previously, the main and external degrees of freedom are represented by red dots and blue squares
respectively. However, as these elements are also part of the geometry, the terms imposing the wake boundary
conditions in Eqs. (18) and (19) are omitted and only the main Laplacian terms are integrated, together with the
penalty term used to enforce the Kutta condition introduced in Eq. (20).
9
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Fig. 5. Elements identified as Ωkutta are illustrated in green, which are defined as the elements intersected by both the geometry and the
ake, and its neighbours. The wake is represented by a dotted blue line and it is prolonged inside the airfoil, following the chord. Note

hat the shape of the airfoil, ideally represented by the orange line, is not correctly described in the mesh due to the sharp edge present in
he trailing edge. This is exemplified with a dotted black line which shows the actual representation of the trailing edge performed by the

esh. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Representation of an embedded wake with an embedded geometry. The wake is defined implicitly through a distance function, and its
intersection subdivides the mesh into two, shown in Fig. 6a and 6b. Note that the duplication is only performed for visualization purposes,
as only one mesh is utilized.

Algorithm 1: Algorithm to identify the Kutta elements Ωkutta

for Ω e
∈ Ω do

for Ω e
i ∈ Ω e do

nW+ += 1 if Ω e
i ∈ ΩW+

nW− += 1 if Ω e
i ∈ ΩW−

nφ+ += 1 if Ω e
i ∈ Ωin

nφ− += 1 if Ω e
i ∈ Ωout

end
if nW+ · nW− · nφ+ · nφ− > 0 then

Set Ω e
∈ Ωkutta = Ωφ ∩ ΩW

end
end

2.6. Penalty term to enforce Kutta condition

The so-called Kutta condition is defined in [6] as the fact that the velocity leaves smoothly the trailing edge.
his condition is needed to find a unique solution in the potential flow equation, which gives the right amount of
irculation in the solution. An infinite number of different values of circulation satisfy the potential flow equations,
ut the Kutta condition establishes the value that matches the behaviour that the flow physically follows. In a
odelling sense, this can be defined as the velocity following the bisector line on the trailing edge, defined as ()T E .

In order to do this, the following restriction is enforced in the flow:
nkutta · vT E = nkutta · (∇Φ)T E = 0 (44)

10
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where nkutta is the normal to the bisector line of the trailing edge. In body-fitted meshes, the solid walls and the
ake line near the trailing edge help to enforce this condition. In an embedded setting, one cannot rely on the
o-penetration condition coming from the adjacent elements, as the shape of the trailing edge will not be properly
efined in general. This is due to the fact that the trailing edge forms a sharp edge, which is a geometrical feature
ifficult to capture implicitly using a distance function. as illustrated in Fig. 5. For this reason, the equations above
re used in conjunction with a penalty term, which ensures that the Kutta condition is satisfied even if the trailing
dge is not perfectly described by φ. While local refinement and other techniques could be used to improve the

description of sharp edges as presented in [19], a method that also yields a good enough solution for coarser meshes
is desired.

Let ψ(Φ) = nkutta · (∇Φ)TE = 0 be a functional which represents the constraint in the trailing edge. The penalty
ethod is written by building the functional Λ(Φ, kkutta) for some penalty kkutta:

Λ(Φ, kkutta) :=
1
2
ρ ∥∇Φ∥

2
−

kkutta

2
∥ψ(Φ)∥2 (45)

where Λ is minimized to find the update on Φ that complies with the constraint ψ(Φ) and the solution of the
Laplacian problem. Deriving with respect to the potential and testing with the function ω, the original problem in
Eq. (22) is recovered, as well as the term introduced in Eq. (20):

∂Λ(Φ, k)
∂Φ

=

∫
Ωkutta

ρ∇ω · ∇ΦdΩ − kkutta

∫
Ωkutta

∇ωnT
kuttankutta∇ΦdΩ (46)

After discretizing, the following terms represent the elemental contributions to the residual and Jacobians that are
added to the elements on Ωkutta:

Re
i,K (Φ, kkutta) = −kkutta

M∑
j=1

∫
Ωkutta

∇Ni nT
kuttankutta∇N j dΩΦ j (47)

J e
i, j,K (Φ, kkutta) = −

∂Re
i,K

∂Φ
= kkutta

∫
Ωkutta

∇Ni nT
kuttankutta∇N j dΩ (48)

Substituting with these terms the elemental contributions in Eqs. (47) and (48) on the elements Ωkutta marked by
Algorithm 1, ensures that the Kutta condition is satisfied and the correct pressure distribution is obtained in the
trailing edge, as shown in Fig. 7. In general terms, the solution pressure distribution is correct without the penalty
terms, but if the trailing edge is closely analysed, it can be seen that without penalty the pressure distribution on the
embedded geometry does not match the body-fitted solution. Applying the penalty on the embedded solver, gives
an improved solution that is clearly visible on the trailing edge, but also on the final value of the lift coefficient,
that is closely dependent on the proper definition of the trailing edge flow.

2.7. Stabilization term for the embedded formulation

For linear elements, the gradient of the potential field shows some instabilities that can be attributed to the
element splitting with the distance function. This is specially important in coarser meshes where the geometry
representation is worse. The effect is appreciable in the pressure distribution plots, as the pressure depends directly
on the potential gradient. In order to improve these instabilities, a stabilization term is added to the formulation to
smooth the gradient of the potential. This term is added on the split elements, using the average of the gradients
of the surrounding elements. This results in a smoothing of the pressure distribution curve. The added term was
presented in Eq. (21) with some factor kstab. This term corresponds to the difference of the gradient of the potential
and the average of the nodal gradient on the surrounding elements. Thus, local jumps in the gradient of the potential
are penalized. The average of the nodal gradient is expressed as:

ξ (∇Φ) =
1

nφ+

∑
φi>0

ξ (∇Φ)i (49)

where nφ+ is the number of nodes in the elements for which the distance function is positive φ > 0. The term
n

∇Φi represents the projected elemental gradient of the potential in the nodes. This projection can be estimated

11



M. Núñez, I. López, J. Baiges et al. Computer Methods in Applied Mechanics and Engineering 388 (2022) 114244

A

D
c
t
a

3

o
m
i
H
φ

t
d

Fig. 7. Pressure distribution of the incompressible potential flow around a NACA0012 profile at 5◦ for different values of the penalty
coefficient used to enforce the Kutta condition. Fig. 7a and 7b show a close up to the leading and trailing edge, respectively. Note that for
the pressure distribution for no penalty, kkutta = 0, the trailing edge is badly represented.

numerically as follows, where nelem is the number of neighbouring elements for an element Ω e:

ξ (∇Φ)i =

∑nelem
1

∫
Ωe Ni∇N j dΩΦ j∑nelem

1

∫
Ωe Ni dΩ

(50)

fter discretization, the elemental contributions to the residual on the potential for the intersected terms Rφ is
rewritten with the stabilization term:

Re
i,φ(Φ) =

M∑
j=1

∫
Ωe

in

ρ∇Ni · ∇N j dΩΦ j + kstab

[∫
Ωe

∇Ni · ∇N j dΩΦ j − ξ (∇Φ)

]
(51)

Thus, the new term penalizes big differences of the potential gradient of a given element with its neighbours, if
its value is different than the neighbour average. The added term is non-linear on the potential, but this is not a
major drawback since the formulation is already non-linear due to the compressibility hypothesis. The effect of this
term is shown in Fig. 8, for the incompressible flow around a NACA0012 profile at an angle of attack of α = 5◦.

ifferent pressure distributions are plotted for different values of the stabilization factor. For these plots, a penalty
oefficient of kkutta = 1000 was used. It can be seen that some pressure values are out of the reference outline for
he embedded formulation with no stabilization term. Adding the stabilization term smooths these pressure jumps,
ccomplishing a better distribution in the embedded formulation that matches the body-fitted solution.

. Adaptive refinement

Metric-based refinement has been employed to automatically adapt the meshes using the Mmg software [20], in
rder to solve the embedded potential flow equations. Among other advantages such as mesh quality or speed, a
etric-based approach allows to freely adapt the remeshing operation depending on the user needs. The approach

s based on the workflow presented by [21], which combines the metric definition from a level set function and
essian based refinement [10]. This is exploited to use the information of the level set field describing the geometry
and previous potential field solutions, as shown in Fig. 9 .
On one hand, an a priori (before solution) strategy is defined, which depends on the level set field defined by

he geometry of study. For this purpose, the gradient of the level set function is computed, whose components are
enoted by ∇φi . Then, the metric tensor computed at every node is defined as:

M(x) =

⎛⎝c0
(
1 − ∇φ2

x

)
+ c1∇φ

2
x (c1 − c0)∇φx∇φy (c1 − c0)∇φx∇φz

(c1 − c0)∇φx∇φy c0
(
1 − ∇φ2

y

)
+ c1∇φ

2
y (c1 − c0)∇φy∇φz(

2
)

2

⎞⎠ (52)

(c1 − c0)∇φx∇φz (c1 − c0)∇φy∇φz c0 1 − ∇φz + c1∇φz

12
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Fig. 8. Pressure distribution of the incompressible potential flow around a NACA0012 profile at 5◦ for different values of the stabilization
factor used to smooth the gradient of the potential. A penalty coefficient of kkutta = 1000 was used in these figures for all curves. Fig. 8a
shows the pressure distribution in the upper side of the trailing edge, while Fig. 8b shows a close up at the trailing edge.

where the coefficients c0 and c1 are defined for a user defined element size h and an anisotropic ratio r :

c0 =
1
h2 (53)

c1 =
c0

r2 (54)

ith this metric definition, the newly generated mesh can be controlled by choosing the size h as a function of φ.
he size is controlled with:

h(φ(x)) = hmin +
φ(x)
Lb
(hmax − hmin) if φ(x) < Lb (55)

where a minimal size hmin is set for nodes at the zero-isosurface of the level set φ(x) = 0, and a maximal size
hmax is set for nodes at some user-defined isosurface at φ = Lb. Values larger than this boundary isosurface take
the element size of the initial mesh. On the other hand, a metric is defined using the solution of a previous mesh,
which is written as:

M = RΛ̂tR where Λ̂ = diag(λ̂i ) (56)

λ̂i = min
(

max
(

cd |λi |

ε
, h−2

max

)
, h−2

min

)
(57)

here λi are the eigenvalues and R the matrix of eigenvectors of the Hessian Hu of a given variable u. The
igenvalues are truncated for some user-defined minimal and maximal sizes, hmin and hmax . The metric depends on
constant cd and the interpolation error ε. This error is defined as the error that is committed by discretizing the

omain and representing the variable u as uh :

ε = ∥u − uh
∥ (58)

he Hessian is estimated numerically by using the shape function gradients of the elements and by performing a
olume-based nodal projection twice, on a similar manner as in Eq. (50). For a given scalar quantity, the gradient
f the shape functions can be used to compute the gradient on the Gauss points of the scalar quantity. This gradient
an be computed at the nodes by performing an area-based average using the gradient of the Gauss points from the
eighbouring elements. Performing the same operation again using each component of the computed nodal gradient
ill yield the final estimated Hessian matrix. This can be expressed for some scalar quantity u as:

∇un
i =

∑nelem
1

∫
Ωe Ni∇N j dΩu j∑nelem

∫ (59)

1 Ωe Ni dΩ

13
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Table 1
Parameters used and lift coefficient obtained after solving the compressible potential flow around a NACA0012 airfoil at an angle of attack
of 2◦. The lift coefficient obtained lies within a 1% error if compared to the reference value from [22].

Mesh Refinement type hmin hmax Lb ε nnodes

Initial mesh None 5 × 10−2 1.0 – − 14 042
Intermediate mesh Level set 1 × 10−3 5 × 10−2 0.1 – 23 005
Final mesh Hessian 1 × 10−9 1 × 103 – 5 × 10−3 81 668

Hu,i, j =

∑nelem
1

∫
Ωe Ni∇NkdΩ∇un

k,i∑nelem
1

∫
Ωe Ni dΩ

(60)

The scalar variable u can be assigned as any quantity coming from the solver. For instance, the values of the
potential Φ, or each component of the velocity vk = ∇Φk . For the wake elements Ω e

∈ ΩW , the values of the
potential used to estimate the nodal gradient in Eq. (59) are replaced by Φ+. Either side of the wake can be used
to compute the gradient on the wake elements. Here, the upper side, denoted with the + sign, is arbitrarily chosen:

∇Φn
i =

∑nelem
1

∫
Ωe Ni ∇N j dΩΦ+

j∑nelem
1

∫
Ωe Ni dΩ

if Ω e
∈ ΩW+ (61)

sing this metric allows refining adaptively the mesh while prescribing the interpolation error on the potential field
o a fixed value. In practice, this generates more nodal presence on the leading and trailing edge. If this metric is
ombined with the level set metric, it allows to generate a highly accurate mesh with a reduced number of nodes.

. Results

In order to validate the method proposed, a test case from [22] is selected for a NACA0012 airfoil with chord
= 1 m at an angle of attack α = 2◦ and free stream Mach M∞ = 0.63. The far-field has been modelled with a

0×50 m squared mesh. The compressible potential flow for this case is solved starting from a generic unstructured
esh which is adaptively refined in two steps. Detailed information of the three meshes used is presented in Table 1.
The initial mesh is shown in Fig. 9a which is uniformly meshed with a classical pre-processor, using a bounding

ox at the airfoil location with an element size of hmin = 5 × 10−2. The outer domain is meshed with an element
size hmax = 1.0. Note that this initial mesh could be reused for any geometry configuration.

Next, the metric in Eq. (52) is used to adaptively refine the mesh using the level set field, and the case is solved.
The settings involved in this refinement are also reported in Table 1, where the refinement is performed prescribing
the element sizes to hmin = 1 × 10−3 and hmax = 5 × 10−2. These sizes are imposed at the level set zero-isosurface
nd at the isosurface φ = Lb, respectively. The sizes at the points lying in-between these isosurfaces are linearly
nterpolated according to Eq. (55). The mesh obtained in this refinement step is shown in Fig. 9b.

Each component of the velocity field obtained after solving the intermediate mesh is then used with the metric in
q. (56) to adapt the mesh according to the solution, while keeping the geometrical information from the previous
tep by performing the metric intersection [11]. The metric intersection allows keeping the optimal sizes from both
pproaches. The settings used in this step are also reported in Table 1, which take part in Eq. (57) for this approach.
he interpolation error is set to ε = 5 × 10−3, and the element size truncating values are deactivated so that the

efinement is driven purely by the interpolation error. For that reason, the minimal and maximal sizes are prescribed
o small and large values respectively in Table 1. This results in the computational mesh shown in Fig. 9c, which
as been adaptively refined using both the geometrical information and the flow characteristics. A summary of the
ettings and computational information used in the case is presented in Table 1.

Although the final solution for this test case is subcritical, the case is close to transonic in some points of the
omain which makes the Jacobian in Eq. (26) ill-defined. This is pointed out by [4], where a limit in the local
ach number and the isentropic ratio for the density is proposed to overcome this issue. For local Mach numbers

xceeding Mlocal = 0.99, the Mach number is fixed to 0.99 and the density isentropic ratio is set to ρ/ρ∞ = 10−5.
ome of the parameters and computational details used to solve this case are reported in Table 2. The problem is
olved first on the intermediate mesh, whose solution is used to generate the final mesh. A penalty coefficient of
kutta = 10.0 is selected to enforce the Kutta condition. For these meshes, a stabilization factor kstab = 1.0 is used,

or which the instabilities in the pressure distribution are unnoticeable. The number of degrees of freedom ndof is
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Fig. 9. Snapshot of the adaptively refined mesh in two steps. First, the level set function is used to adaptively refine the mesh in Fig. 9a
ccording to the distance function defining the geometry of study, resulting in the mesh shown in Fig. 9b. After solving the problem in this
esh, another iteration is performed by adaptively refining the mesh according to the potential solution, obtaining the mesh in Fig. 9c.
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Table 2
Computational details and results for the intermediate and final meshes used in the analysis to solve the compressible potential flow around
a NACA0012 airfoil at an angle of attack of 2◦. The same settings for the far-field are applied on both meshes. The final mesh is generated
from the solution of the intermediate mesh by using a Hessian adaptive refinement. The lift coefficient obtained on the final mesh matches
the reference value from [22].

Mesh M∞ α kkutta kstab ndof Cl C ref
l [22] ni ter TM TS

Intermediate mesh 0.63 2◦ 10.0 1.0 18 957 0.293 0.335 17 3 s 5 s
Final mesh 0.63 2◦ 10.0 1.0 71 741 0.335 0.335 13 7 s 13 s

Fig. 10. Pressure distribution of a NACA0012 airfoil at an angle of attack α = 2◦ at M∞ = 0.63, solved in an unfitted mesh. The result is
compared to the values reported in [22].

lower than the number of nodes reported in Table 1 for two reasons. First, the elements intersected by the wake
have duplicated degrees of freedom. Second, the elements completely immersed by the level set are deactivated, and
the degrees of freedom of their nodes do not contribute to the system. For this reason, the total number of degrees
of freedom is lower than the number of nodes. The number of non-linear iterations niter of the Newton–Raphson
strategy and the time TS spent solving the system is also reported in Table 2. Both cases are solved on the four cores
of a 3.6 GHz Intel Core i7-4790 CPU with OpenMP parallelization with an algebraic multigrid linear solver [23].
The modelling time TM is reported separately from the linear solver time, as it is the time that includes both the
remeshing and the level set calculation operations, which are not performed in classical body-fitted analyses. This
can be compared to the time that the user spends creating and generating the body-fitted mesh, which is done
automatically in this approach. Most of the modelling time is spent remeshing, which is a serial operation that does
not benefit from OpenMP parallelization. The final pressure distribution obtained on this mesh is shown in Fig. 10,
matching the reference solution in [22].

5. Conclusions

A method to solve the full potential equation on a fully embedded approach has been presented. The method
allows defining both the geometry and the wake implicitly, reducing considerably the preprocessing effort from
the user. Adaptive mesh refinement can be employed to improve a generic background mesh to the specific case,
allowing for an accurate description of the geometry and the flow. The formulation depends on two hyper-parameters,
but the solver performs well for a wide range of values. The accuracy accomplished depends on the adaptive
refinement settings selected by the user, which allows trading off accuracy for speed. Although simpler methods
exist to compute the potential flow for streamlined bodies, the automatic nature of the immersed approach makes
it a perfect choice for optimization analyses. In this scenario, the number of solver evaluations is generally high,
and the geometry is likely changing at every step. The embedded approach ensures that the solver evaluations
16
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can be performed on the same mesh without mesh deformation, which can be adapted for every new geometry
configuration.

The method and results presented in this document have been verified for the two-dimensional analysis of airfoil
hapes. The extension of the embedded solver to three-dimensional problems is currently under development. The
ethodology described here to embed bodies can be directly extended to three dimensions, but certain care needs

o be taken into account regarding the imposition of the wake boundary conditions. In the two-dimensional case,
q. (30) simplifies both Eq. (8) and (9) into a single equation as this is equivalent for vectors in two dimensions.

nstead, in three dimensions Eqs. (8) and (9) need to be imposed separately. Here, Eq. (9) can be linearized using
he freestream velocity as presented by [4]. Also, the wake is modelled as a plane instead of a line, which intersects
he trailing edge line of the wing.
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