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A B S T R A C T   

Many engineering disciplines require problem-solving skills, which cannot be learned by memorization alone. 
Open-ended textual exercises allow students to acquire these skills. Students can learn from their mistakes when 
instructors provide individual feedback. However, grading these exercises is often a manual, repetitive, and time- 
consuming activity. The number of computer science students graduating per year has steadily increased over the 
last decade. This rise has led to large courses that cause a heavy workload for instructors, especially if they 
provide individual feedback to students. This article presents CoFee, a framework to generate and suggest 
computer-aided feedback for textual exercises based on machine learning. CoFee utilizes a segment-based 
grading concept, which links feedback to text segments. CoFee automates grading based on topic modeling 
and an assessment knowledge repository acquired during previous assessments. A language model builds an 
intermediate representation of the text segments. Hierarchical clustering identifies groups of similar text seg-
ments to reduce the grading overhead. We first demonstrated the CoFee framework in a small laboratory 
experiment in 2019, which showed that the grading overhead could be reduced by 85%. This experiment 
confirmed the feasibility of automating the grading process for problem-solving exercises. We then evaluated 
CoFee in a large course at the Technical University of Munich from 2019 to 2021, with up to 2, 200 enrolled 
students per course. We collected data from 34 exercises offered in each of these courses. On average, CoFee 
suggested feedback for 45% of the submissions. 92% (Positive Predictive Value) of these suggestions were precise 
and, therefore, accepted by the instructors.   

1. Introduction 

Student numbers in computer science schools and departments are 
rising. Analyzing statistics and reports released by popular computer 
science departments reveals how the number of conferred degrees has 
steadily increased since 2010. Fig. 1 depicts the development of degrees 
conferred by eight renowned universities1 in the area of computer sci-
ence. As a result, introductory courses need to handle more and more 
students every year. This rise in student numbers has increased course 
management efforts and made it challenging to provide high-quality 
individual feedback to students (Krusche et al., 2020). A single 

instructor cannot handle feedback and grading for large classes alone. In 
particular, large university courses with hundreds of students rely on 
teaching assistants to provide feedback on exercises. Online platforms, 
live streaming, and chat systems allow instructors to interact with a 
large number of students on an individual level, regardless of the 
respective course size. 

Exercises allow students in lecture-based courses to apply and 
practice relevant skills. Exercises stimulate learning in six different 
cognitive processes, e.g., as classified in Bloom’s revised taxonomy 
(Anderson et al., 2001). Software engineering is a problem-solving 
discipline that cannot be learned by memorization alone. 
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Multiple-choice quizzes are easy to assess, and automated tools are 
broadly available in learning management systems and paper-based 
assessments. However, mastery of these quizzes does not require 
problem-solving skills because they typically target only lower cognitive 
skills, particularly knowledge recall and comprehension. It is difficult to 
create quizzes that stimulate higher cognitive skills, such as 
problem-solving, essential in computer science (Alario-Hoyos et al., 
2016; Williams & Haladyna, 1982). 

Open-ended textual exercises enable instructors to teach problem- 
solving skills and allow students to improve their knowledge. These 
exercises do not have a single correct solution but rather allow answers 
within a particular solution space that words and phrases can charac-
terize. Students profit from individual feedback relationships with their 
instructors (Feynman, 1994). Individual feedback and formative as-
sessments are essential elements in learning (Higgins et al., 2002; Irons, 
2007). Feedback on open-ended exercises allows students to try out 
problem-solving and experience failure. Students need guidance in the 
form of feedback in their learning activities to prevent misconceptions 
(Kirschner et al., 2006). 

However, textual exercises lead to a wide answer spectrum because 
students need to formulate individual answers to problems, which re-
sults in an increased manual effort when reviewing students’ answers. In 
addition, assuring consistent feedback is difficult with a large number of 
teaching assistants. This article describes a machine learning-based 
system as the solution to this problem. 

This article is organized following the design and engineering cycle 
(Wieringa, 2014). Section 2 formulates the design science research goals, 
the artifact design goal, and knowledge goals, which we use to derive 
knowledge questions throughout the article. Section 3 describes grading 
efforts in large courses and the role of feedback in the learning process. 
Section 4 introduces the computer-aided feedback for textual exercises 
(CoFee) framework with its problem domain and dynamic behavior. 
Section 5 describes background literature and compares related work to 
CoFee. Section 6 validates the concepts of CoFee in a laboratory 
experiment. Section 7 describes the reference implementation Athena in 
the context of Artemis. Section 8 describes the course “Introduction to 
Software Engineering” in which the approach was used, shows the 
quasi-experimental study design of the empirical evaluation, presents 
results and limitations, and discusses the findings. Section 9 concludes 
the article with its main contributions, and Section 10 outlines future 

work. 

2. Methodology 

This research focuses on two main stakeholders: instructors, espe-
cially those responsible for large lecture courses, and students. For this 
paper, we define instructors as both lecturers and teaching assistants. 
Lecturers are university employees such as professors, researchers, and 
doctoral candidates. Teaching assistants are experienced students who 
have previously passed the same course with a good grade and are 
motivated to help in the teaching process. Some universities also use the 
term “tutor” to refer to a teaching assistant. 

Lecturers have an interest in delivering high-quality teaching sup-
ported by many exercises. Through individual feedback, lecturers want 
to support students in their learning activities as much as possible. 
However, lecturers want to minimize their workload on assessments to 
have time to create and improve exercises and course materials. 
Teaching assistants need to balance their limited working hours between 
assessments, face-to-face teaching sessions, and answering questions. 
Students want to understand the course content, solve the exercises, and 
receive timely feedback. They want to re-iterate their solution based on 
feedback to fail early and learn from the mistakes on the way (Popper, 
1934, 1959). 

We focus on automating the assessment of textual exercises to meet 
the conflicting goals of producing high-quality feedback and saving 
time. 

Research Goal: Reduce assessment efforts on textual exercises for 
instructors while scaling feedback for large courses. 

Following Wieringa’s design science methodology (Johanβen, 2019; 
Wieringa, 2014), we break down this research goal into a goal hierarchy 
shown in Fig. 2. The design science research goals support the social context 
goals, which in turn are defined by the external stakeholder goals and the 
problem context. To achieve the research goal, we explore ways of 
automating and supporting the assessment process for textual exercises. 
Therefore, we conclude this with the following Artifact design goal: 

Artifact Design Goal: Design a system that automatically assesses 
textual exercises. 

Section 4 describes the CoFee framework to generate computer- 
aided feedback for textual exercises. Section 7 describes a reference 
implementation for CoFee, the Athena software system. Athena collects 
assessment knowledge in the form of exercise and feedback pools. We 
summarize this effort to understand the stakeholders and the problem 
context with the following knowledge goal: 

Knowledge Goal 1 (Investigation): Understand grading efforts 
and the role of feedback in large courses. 

Next, we want to validate if the proposed treatment, CoFee, is suited 
to solve the assessment problem for textual exercises. We address this 
with the second knowledge goal: 

Knowledge Goal 2 (Validation): Understand the performance of 
CoFee and its individual components during the assessment of textual 
exercises. 

Last, we want to evaluate the implemented artifact, the Athena 
system, and analyze its performance in large courses. Therefore, we 
conclude with the third knowledge goal: 

Knowledge Goal 3 (Evaluation): Understand the influence of 
Athena on the grading process. 

3. Problem investigation 

3.1. Feedback in the learning process 

There is clear evidence that guidance is essential to facilitate learning 
and prevent misconceptions (Kirschner et al., 2006). Therefore, it is 
important to involve students in learning activities, even in large cour-
ses. Examples and exercises play a central role in the early phases of 
cognitive skill acquisition (VanLehn, 1996). Carefully developed 

Fig. 1. The number of computer science degrees (bachelor’s and master’s) 
conferred per year by renowned universities in the area has steadily increased 
over the last decade. Data was collected from statistics published by the uni-
versities. The left y-axis represents the number of degrees per university. The 
right y-axis represents the Total number of degrees across all universities. 
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examples increase the learning outcome (Sweller & Cooper, 1985; 
Trafton & Reiser, 1993). Providing individual feedback is essential in 
learning to improve students’ skills (Higgins et al., 2002). Feedback 
helps students to understand their learning progress and helps in the 
learning process through reflection. In the current teaching paradigm, 
students take “the active role of … seeking, interpreting and using 
feedback as part of their learning process” (Jensen et al., 2021). Good 
feedback incentivizes students to invest time in an exercise and rethink 
their solution. Participation in exercises with feedback has a positive 
effect on academic performance (Förster et al., 2018). 

3.2. Interactive learning 

Interactive learning is a scalable and adaptive teaching philosophy 
based on “constructive alignment” that puts the interaction with a stu-
dent into the core of the educational activities (Krusche, Seitz, et al., 
2017). It integrates aspects of team-based learning and creativity to 
stimulate problem-solving skills and soft skills. 

Interactive learning decreases the cycle time between teaching a 
concept and practicing it during the lecture in multiple short iterations: 
Instructors teach and exercise small chunks of content in short cycles 
and provide immediate feedback so that students can reflect on the 
content and increase their knowledge incrementally. Interactive 
learning expects active participation of students and use of computers 
(laptops, tablets, or smartphones) in classrooms. Fig. 3 shows the iter-
ative process of interactive learning, where each iteration consists of five 
phases that are performed several times during each lecture:  

1. Theory: The instructor introduces a new concept and describes the 
theory behind it. Students listen and try to understand it.  

2. Example: The instructor provides an example so that students can 
refer the theory to a concrete situation.  

3. Practice: The instructor asks the students to apply the concept in a 
short exercise adapted to the individual student’s existing knowledge 
and skills. The students submit their solutions to the exercise. 

4. Feedback: The instructor provides immediate feedback to the stu-
dent submissions using an automatic assessment system. 

Alternatively, the instructor can show multiple exemplary solutions 
and discuss their strengths and weaknesses.  

5. Reflection: The instructor facilitates a discussion about the theory 
and the exercise to reflect on the first experience with the new 
concept. 

3.3. Artemis 

Artemis (Krusche & Seitz, 2018) is a teaching platform that supports 
interactive learning and is scalable to large courses with immediate and 
individual feedback. It is open-source2 and used by multiple universities 
and courses. 

Artemis includes several functionalities to implement interactive 
learning. In the following section, we present and discuss the essential 
features. Instructors can create different exercises: programming, 
modeling, quiz, text, and file upload. Artemis offers different assessment 
modes: automatic, semi-automatic, and manual. It automatically as-
sesses programming and quiz exercises and provides a semi-automatic 
assessment approach based on machine learning for modeling and text 
exercises. 

Artemis allows students to work collaboratively on the solution to 
the given tasks in team exercises. Instructors can incorporate live 
streams, recordings, and slides of lectures and embed exercises directly 
into them using lecture units. Students can ask questions and receive 
answers in a chat-based communication with emojis and references next 
to exercises and lectures. In addition, Artemis offers an exam mode for 
online exams. The exam mode includes additional functionalities, such 
as exercise variants, plagiarism checks, and offline support. 

3.4. Assessment 

Assessment is a time-intensive (Chen et al., 2018; Cheng, 2017), 
manual, and repetitive job. Efforts vary based on the size of the accepted 
answer space: Lower cognitive processes are easier to assess (e.g., 

Fig. 2. Hierarchical goal taxonomy following the template from Wieringa (2014). An arrow indicates that a goal supports the other.  

2 Artemis: https://github.com/ls1intum/Artemis. 
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remember) compared to higher processes (e.g., evaluate). That means if 
an answer asks to state a term, the assessment is simple as the answer 
either matches the solution or not. For complex exercises, students are 
free in their answers and, e.g., explain a concept based on an example. In 
this instance, assessment is difficult and time-consuming as graders need 
to analyze the example and solve the exercise in the students’ context 
themselves. In software engineering, many solutions can be acceptable 
for a problem. Acceptable answers might change as paradigms shift, and 
new engineering principles become the norm. 

To address Knowledge Goal 1 (Investigation), we extrapolate the 
assessment efforts required for large courses following the interactive 
learning model to answer two knowledge questions (KQs): 

Knowledge Question 1: How many assessments do large courses 
need? 

In the following, we calculate the required assessments for a course 
featuring three lecture exercises and four homework exercises every 
week. The course format is based our course “Introduction to Software 
Engineering” (ISE) (cf. Subsection 8.1). We assume 2000 participating 
students for one semester of 13 weeks: 

#exercises = (3+ 4)⋅13 = 91 (1)  

#assessments = #exercises⋅#students = 91⋅2, 000 = 182, 000 (2) 

We conclude that an interactive course sets 91 exercises over the 
course of the semester. Therefore, instructors need to complete 182,000 
assessments in a large course with 2,000 students (KQ 1). 

Knowledge Question 2: How much time do instructors spend on 
manual assessments of exercises? 

Given an average assessment time of 5 min per student solution, we 
extrapolate the assessment total assessment time: 

Σ Assessment Time = #assessments⋅5 min (4)  

= 15, 166.6h = 1, 166.6h/Week (5) 

We conclude that the large course requires 15,167 h of assessment 
work which translates to 1,167 h every week (KQ 2). Data from ISE in 
2021 shows that out of a total of 89 exercises, 24 were textual exercises 
(27%). We, therefore, estimate that instructors need to spend 315 h on 
assessments every week for textual exercises alone. 

4. Treatment design – CoFee 

To address the artifact design goal stated in Section 2, we derive an 
artifact design problem, which we define by following the template 
proposed by Wieringa (2014): We highlight artifacts, requirements, and 
stakeholder goals. 

We investigate how to provide students with feedback on their ex-
ercise solutions automatically. We present the CoFee approach, which 
captures knowledge during the assessment process and provides in-
structors with feedback suggestions. CoFee allows instructors to assess 
exercises faster and offer consistent feedback to students in large cour-
ses. We summarize this as follows: 

Artifact Design Problem: How to implement a system (artifact) 
that generates feedback on textual exercise solutions (requirement) so 
that instructors can give better feedback in shorter cycles (stakeholder 
goal)? 

This section introduces the proposed treatment computer-aided 
feedback for textual exercises. We describe the architecture and dy-
namic behavior of the treatment CoFee. 

4.1. Architecture 

Fig. 4 depicts the analysis object model (Bruegge & Dutoit, 2009) of 
the problem domain: A Course consists of many Exercises. Students can 
participate in an exercise by submitting their solutions. A Submission 

can be decomposed into many Segments. Each of them encapsulates one 
core idea of the answer. Segments can receive Feedback via a comment 
and a score. We model the automatic generation of feedback and 
instructor grading as a metaphorical factory, following the factory 
method pattern (Gamma et al., 1994). Following the metaphorical 
application of design patterns, the instructor is an expensive feedback 
source. To cautiously and efficiently use this expensive subject, we 
introduce the Automatic feedback engine as a proxy object to filter 
which feedback requests it needs to forward to the real subject, the 
Instructor. 

4.2. Dynamic behavior 

Fig. 5 presents an overview of the workflow. CoFee first segments a 
submitted answer by splitting the answer into topically-coherent seg-
ments. These segments are annotated with one or more feedbacks as 
they cover a single core idea. Next, CoFee groups the segments into 
clusters by the similarity of their ideas. Based on the cluster classifica-
tion, CoFee suggests gradings based on the assessment knowledge from 
the feedback pool. If enough assessment knowledge has been collected 
for a specific segment, then automatic feedback can be suggested. 
Otherwise, an instructor is required to complete the grading. Finally, 
CoFee presents a partial grading to allow the instructors to benefit from 
the knowledge generated. Instructors accept, change, or discard existing 
feedback suggestions and provide new feedback. All feedback is sub-
mitted to the feedback pool for reuse in future grading sessions. 

CoFee learns which answers to an exercise are considered correct in 
the learning context. For further submissions, the learning platform 
automatically generates suggestions for similar answers or even auto-
matically evaluates the answers. In doing so, the learning platform uses 
the knowledge of previous assessments from lecturers. The more stu-
dents participate in an exercise, the more knowledge is generated and 
the better feedback the learning platform can suggest. 

This addresses the external stakeholder goals stated in Section 2. The 
instructor’s goal is to provide high-quality feedback to all students while 
decreasing the overall assessment time. The student’s goal is to receive 
timely feedback. CoFee integrates into existing learning platforms that 
need to provide an interface for students to submit their textual answers. 
We utilize a segment-based feedback concept (Bernius & Bruegge, 
2019), requiring assessors to provide feedback and score about a 
segment of a student’s answer, resulting in relatable and reusable 
feedback elements. 

CoFee trains its assessment model with every feedback element and 
becomes more accurate with every new feedback element. After the 
assessment process, the system can detect conflicting assessments in 
both comments and scores. Therefore, CoFee computes the similarity 
among feedback comments. We claim that the similarity between two 
segments should be proportional to the similarity between the feedback 
comments. If this relation is violated, CoFee prompts the instructor to 

Fig. 3. Interactive learning puts the individual student into the core of the 
learning activity and follows an iterative process that is conducted multiple 
times in lectures. 
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review the pair of submissions and allows them to update the assessment 
as needed. The learning platform may only release the feedback to 
students after the instructors have resolved inconsistencies. 

5. Related work 

This section compares CoFee to alternative treatments from related 
work in the literature. Compared to existing work, CoFee segments and 
clusters student solutions automatically. By training the system during 

the assessment process, we do away with a reference dataset before the 
assessment. Furthermore, by training with correct and incorrect solu-
tions, we maintain a dataset to provide helpful feedback comments to 
support the learning process. Finally, dynamically collecting the dataset 
during assessment keeps the system independent of any domain and 
allows for using the system with new exercises to incorporate the latest 
knowledge into teaching. 

Fig. 4. Analysis Object Model of the CoFee framework. The model describes the system from the stakeholder’s point of view and illustrates the concepts visible to the 
stakeholder (Bruegge & Dutoit, 2009) (UML Class Diagram). 

Fig. 5. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of instructors. CoFee analyzes manual assessments and 
generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram). 
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5.1. Assessment systems 

Automated essay scoring computes scores on written solutions based 
on previous submissions. Automated essay scoring systems require a 
perfect solution to be available upfront (Mitchell et al., 2002; Pulman & 
Sukkarieh, 2005; Sukkarieh et al., 2003). They primarily consider the 
similarity to a perfect solution to determine the grade. Giving feedback 
is not the focus of automated essay scoring systems. Manual clustering 
and shared grading are concepts used in research (Pérez et al., 2005) and 
commercial tools (i.e., Gradescope). Managing clusters is hard at scale, 
especially communicating the exact differences between clusters among 
many graders. 

5.1.1. Atenea 
Atenea is a computer-assisted assessment system for scoring short 

answers in computer science (Pérez et al., 2005). Atenea maintains a 
database of short-answer-questions with corresponding sample solu-
tions. Sample solutions are either written by an instructor or reused from 
a highly graded student answer. Atenea combines latent semantic 
analysis (LSA) and a modified bilingual evaluation understudy algo-
rithm hypothesizing that syntax and semantics complement each other 
naturally. Combining these two natural language processing (NLP) tools 
always performs better (with a higher hit rate). Furthermore, Pérez et al. 
(2005) argue that syntactical and semantical analysis combinations lead 
to greater automatic text assessment results. 

Atenea compares student answers to a set of predefined answers. It 
determines a grade based on the similarity to these predefined answers. 
This approach is limited to exercises with a narrow answer space where 
possible answers are known beforehand. High variability in answers 
limits Ateneas applicability and requires a large set of sample solutions. 
The focus of the Atenea system is grading, whereas Athena primarily 
focuses on individual feedback. Athena does not require a sample so-
lution but collects knowledge on correct and incorrect solutions during 
the manual assessment. The evaluation of Atenea focuses on comparing 
NLP techniques in the context of grading using a dataset. We evaluate 
Athena by using it in multiple courses and measuring its performance. 

Atenea compares student answers to a set of predefined answers. Its 
similarity to these predefined answers determines the grade. This 
approach is limited to exercises with a narrow answer space where 
possible answers are known beforehand. High variability in answers 
requires a large set of predefined answers, limiting the system’s appli-
cability. The focus of the Atenea system is grading, whereas Athena is 
primarily focused on individual feedback. Athena does not require a 
predefined solution but collects knowledge on correct and incorrect 
solutions during the manual assessment. The evaluation of the Atenea 
authors focuses on a comparison of NLP techniques in the grading 
context and is based on a dataset. We evaluate Athena by using it in 
multiple courses and measuring its performance. 

5.1.2. Powergrading 
Powergrading is an automatic assessment approach for textual ex-

ercises (Basu et al., 2013) that provides feedback in the form of a nu-
merical score and a comment explaining why an answer is correct or 
incorrect, similar to the comment of a human. In addition, Basu et al. 
(2013) propose a system that clusters similar answers to a question so 
that instructors can “divide and conquer” the correction process by 
assessing a whole cluster with the same score and comment, therefore 
reducing the correction time significantly. Clustering answers to a 
question should happen based on a distance function composed of 
different features and automatically tries to learn a similarity metric 
between two students’ answers. Some of the implemented and used 
features that are weighted in developing this distance function used for 

clustering are, e.g., the difference in length between two answers, the 
term frequency-inverse document frequency (TF-IDF)3 similarity of 
words, or the LSA vectorial score based on the entirety of Wikipedia as a 
training text corpus. The authors have tested their implementation with 
test data from the United States Citizenship Exam in 2012 with 697 
examinees. They concluded that around 97% of all submissions can be 
grouped into similar clusters so that instructors would only have to 
provide feedback for a single cluster and would still be able to reach and 
correct multiple submissions at once, therefore reducing assessment 
time significantly (Basu et al., 2013). 

Powergrading is focused on short-answer grading, where a typical 
answer does not exceed two sentences. Athena is not limited to a certain 
answer length and uses segmentation to work with multiple sentences or 
paragraphs. Similar to Powergrading, Athena groups segments into 
clusters. Both systems assume hierarchical cluster structures. Power-
grading allows instructors to grade clusters rather than submissions, 
whereas Athena will use the cluster structure to suggest feedback for the 
following assessments. 

5.1.3. Gradescope 
Gradescope4 is a system geared toward assessing handwritten 

homework and exam exercises (Singh et al., 2017) by scanning 
paper-based work. Instructors grade the submissions online. Gradescope 
allows the instructor to create grading rubrics at the assessment time 
dynamically. Instructors can group similar submissions manually for 
shared grading or rely on suggested groups for the assessment. 

Athena also provides sharing feedback with groups of answers; 
however, Athena groups individual segments, whereas Gradescope 
groups entire submissions. Gradescope allows the grader to grade mul-
tiple submissions as one, similar to Powergrading, whereas Athena 
shares individual feedback elements across multiple submissions. 
Athena requires instructors to inspect every submission and supports 
instructors by suggesting feedback items. Neither system requires a 
training dataset of previously assessed answers. For exercises with a 
limited answer spectrum, Gradescope does allow the grader to assess 
several submissions efficiently as it reduces the number of solutions to 
grade. However, this approach is more limited for exercises with high 
variability in answers (e.g., when asking for examples) as more groups 
with fewer elements need to be graded. 

5.2. Language models 

Automatically assessing text submissions requires comparing seg-
ments of those submissions and identifying similar pieces of text. 
Therefore, we need a measurable abstraction of a text’s meaning as an 
intermediate representation. This paper relies on existing approaches 
and techniques from the domain of NLP, most notably language models 
and word embeddings, to convert a piece of text into a comparable 
format. Student answers can contain unknown words, incorrect 
grammar and punctuation, and false statements. 

Word embedding is a feature learning technique in NLP, where 
words or phrases from the vocabulary are mapped to vectors of real 
numbers (each word is associated with a point in a vector space) (Li & 
Yang, 2018). The feature vector represents different aspects of the word, 
and consequently, words with the same meaning are assigned similar 
vector representations. Additionally, word embeddings can capture 
word analogies by examining various dimensions of the differences 
between word vectors (Pennington et al., 2014). For example, the 
analogy “king is to queen as man is to woman” should be encoded in the 
vector space by the vector equation king − queen = man − woman. 

The distributed representation is learned based on the usage of the 

3 TF-IDF: An information extraction statistic that indicates how significant a 
word is to a document (Ramos, 2003).  

4 Gradescope: https://gradescope.com. 
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words. This allows words used in similar contexts to have similar rep-
resentations, naturally capturing their meaning. Embeddings from 
Language Models (ELMo) (Peters et al., 2018) is a word embedding 
constructed as a task-specific combination of the intermediate layer 
representations in a bidirectional language model. It models complex 
characteristics of words-use in the language dictated by the syntax and 
semantics. It also captures how these uses vary across linguistic contexts, 
which is important for addressing polysemy in natural languages. 

In a deep language model, the higher-level long short term memory 
states are shown to capture context-dependent aspects of word meaning 
while lower-level states model aspects of the syntax. By constructing a 
representation out of all the layers of the language model, ELMo can 
capture both language characteristics. ELMo representations have three 
main characteristics to achieve state-of-the-art results in most common 
NLP downstream tasks. First, ELMo representations are contextual: the 
representation for each word depends on the entire context in which it is 
used. They are also deep: the word representations combine all layers of 
a deep, pre-trained language model neural network. Finally, ELMo 
representations are purely character-based, allowing the network to use 
morphological clues to form robust representations for out-of- 
vocabulary tokens, unseen in training. 

6. Treatment validation 

We validate the treatment using a laboratory experiment to study the 
feasibility of CoFee. The treatment validation answers two knowledge 
questions that address the effects of the treatment artifacts: 

Knowledge Question 3: Do groups of similar segments occur which 
can receive the same feedback? 

Knowledge Question 4: What portion of solutions can CoFee 
assess? 

Answering Knowledge Questions 3 and 4 addresses Knowledge Goal 2. 

6.1. Exercise 

We collected a dataset by running a textual exercise in the “Project 
Organization and Management” (POM) course at Technical University 
of Munich (TUM) using the Artemis platform. In the exercise “iterative 
vs. incremental vs. adaptive,” students were asked to differentiate the 
terms iterative development, incremental development, and adaptive devel-
opment using examples. 130 students participated in the exercise. 

6.2. Study design 

We manually evaluated all submissions by segmenting the answers 
and separating all segments by their core idea. The 130 student sub-
missions resulted in 762 text blocks. We printed all segments on paper 
cards and manually clustered them into groups by similarity in several 
iterations. Fig. 6 shows the paper cards with classifications marked using 
sticky notes. In the first iteration, we roughly sorted them into three 
clusters. We then continued to subdivide each cluster in the following 
iterations. The similarity refinement increased with every iteration over 
the whole data set. We repeated the process until we reached a satis-
factory assignment into 75 clusters. 

6.3. Results and findings 

We identified that 95% of all segments could be assigned to clusters. 
We found a total of 66 clusters in the dataset. The average cluster has 11 
elements with a minimum of two and a maximum of 49; the median 
cluster size was four. 717 out of the 762 segments can be assigned to a 
cluster (94%). 

Finding 1 (Clusters): Clustering of segments for shared grading is 
possible. The majority of segments (94%) can be clustered. 

The experiment results show that student solutions can be split into 

Fig. 6. 760 text segments clustered by hand into 75 clusters.  
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segments and grouped by similarity. Furthermore, the data suggests that 
94% of segments can be part of a grading cluster. 

Finding 2 (Grading Potential): Grading efforts can be reduced by 
85% through automatic grading of clusters. 

The overlap between student answers can reduce grading to one 
segment per cluster and unclustered segments. In this instance, the 
grading can be reduced to 85%: 

(717 − 66)/762 = 85.4% (7) 

The unclustered portion of 6% is not suitable for the concept of 
shared grading. Therefore, the overall grading effort is reduced from 762 
segments to 111 segments, which is 15% of the original grading effort: 

(66+ 45)/762 = 14.5% (8) 

With these findings, we conclude that CoFee is a suitable treatment 
for the artifact design goal, and we proceed with the treatment 
implementation. 

7. Treatment implementation – Athena 

We implemented CoFee in a reference implementation called 
Athena5 (Bernius et al., 2021) integrated into the learning platform 
Artemis (Krusche & Seitz, 2018). After the exercise deadline, Artemis 
sends the students’ answers to Athena for processing. Athena will pre-
process the answers before the assessment begins and identify segments 
suitable for the same feedback. Fig. 7 depicts the preprocessing activ-
ities: The system analyzes incoming student answers using NLP, divides 
them into text segments, and uses them to create text clusters with 
similar text segments from different answers. This is done using a 
combination of segmentation and linguistic embeddings, particularly 
deeply contextualized word representations (i.e., ELMo). This allows for 
an understanding of students’ responses and the generation of individ-
ualized feedback. In this way, a learning platform can automatically 
reuse manual feedback for contributions from different students. Auto-
matic individualized feedback suggestions can reduce the workload for 
instructors and increase the consistency and quality of feedback to 
improve students’ understanding. Fig. 8 depicts the top-level design of 
the system, which consists of three steps: segmentation, language 
embedding, and clustering. 

First, Athena analyzes the answers (incoming text) to identify seg-
ments (Bernius et al., 2020). Therefore, Athena identifies common topics 
described in the answers from all students. A keyword represents a topic. 
To identify the important topics for an exercise, Athena counts the oc-
currences of lemmatized words across all students and selects the ten 
most common words (Bernius et al., 2020). Next, Athena will break 
down every student’s answer into clauses. Adjacent clauses that share 
the same topic, represented by a keyword and the absence of a new 
keyword, are merged to form a segment. If a new keyword appears in the 
following clause, we identify a topic shift and start a new segment. The 
result is a set of topically coherent segments. 

Second, Athena uses an ELMo model to convert each segment to 
vector form. ELMo vectors have 1,024 dimensions representing the in-
formation extracted from the segment. The vector representation allows 
for a comparison of segments and identifying similarities. Athena uses a 
pre-trained ELMo model (Peters et al., 2018) based on a dataset con-
sisting of 5.5B tokens from Wikipedia and news articles.6 

Third, Athena employs the Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise (HDBSCAN) clustering algorithm 
(McInnes & Healy, 2017) to identify classes of similar text segments. 
Within a cluster, Athena shares manually created feedback as sugges-
tions. The hierarchical clustering algorithm allows to determine the 
number of clusters dynamically. Further, the hierarchical structure can 

dynamically narrow or widen the search radius depending on the 
availability of feedback. Narrow clusters provide more accurate feed-
back on the one side; but also limit the possible coverage. Larger clusters 
increase the possibility of finding existing feedback to compose a sug-
gestion; however, they also increase the risk of false feedback. 

During the manual assessment, Athena uses a prioritized assessment 
order. Submissions with several segments in clusters without feedback 
are prioritized, maximizing the possible coverage for automatic feed-
back suggestions. Athena searches their respective clusters for each 
segment for existing feedback and suggests the closest feedback. 
Furthermore, credit points associated with feedback are prioritized 
based on the clusters’ credit average. Athena’s automatic feedback 
suggestions are displayed to instructors within Artemis as part of the 
assessment interface (Bernius & Bruegge, 2019), as depicted in Fig. 9. 
Instructors can add additional feedback to unassessed parts of the stu-
dent solution. They can either approve the feedback suggestions or up-
date them as they see fit. 

8. Implementation evaluation 

This evaluation compares the quantity and quality of feedback in the 
course ISE with and without the Athena system. We analyze feedback in 
three instances of ISE: In 2019, text exercises on Artemis were intro-
duced during the course. The Artemis platform served as the submission 
and feedback platform for students. All feedback was composed manu-
ally and published through Artemis. In 2020, the course introduced the 
Athena system as part of Artemis. Students continued to use Artemis to 
submit their feedback. Instructors receive feedback suggestions from 
Athena when reviewing student answers. Instructors need to check the 
feedback suggestions, add additional feedback where needed, and can 
also update feedback suggestions as needed. In 2021, the course 
continued its use of the Athena system. As part of this experiment, tutors 
needed to manually review exercises during the first half of the course. 
The Athena system was enabled for the second half, and tutors had to 
work with the suggested feedback. 

We compare the feedback for exercises using the Athena system 
(treatment) with feedback composed manually (control group). We 
compare the quantity of feedback, the quality of feedback comments, the 
student satisfaction, and the assessment efforts before and after intro-
ducing the Athena system, the introduced intervention. 

In this section, we describe the course ISE and the study design of the 
evaluation. The evaluation consists of two parts. The first part analyzes 
the feedback generated by the system Athena. We analyze how many 
assessments receive feedback from Athena by inspecting exercises from 
2020 to 2021 where the system was used. This can be summarized in the 
following knowledge question: 

Knowledge Question 5: What portion of grading can be supported 
by Athena? 

Further, we study the quality of the feedback suggestions. Therefore, 
we study how instructors interact with the suggested feedback. Finally, 
as instructors can overwrite the feedback suggestions, we analyze how 
much feedback is published to the students. We summarize this as 
follows: 

Knowledge Question 6: How accurate is Athena feedback? 
The second part of the evaluation compares Athena feedback to 

instructor feedback. Therefore, we first ask students to rate their feed-
back and compare how Athena feedback performs compared to 
instructor feedback. 

Knowledge Question 7: How do students perceive Athena 
feedback? 

Second, we analyze student complaints on their feedback to study if 
Athena feedback has a higher quality and attracts fewer complaints than 
instructor feedback. 

Knowledge Question 8: Does Athena feedback reduce the number 
of student complaints on their feedback? 5 Athena: https://github.com/ls1intum/Athena.  

6 AllenNLP - ELMo: https://allennlp.org/elmo. 
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Fig. 7. Overview of the machine learning activities making up the “Segment Submissions”, “Compute Language Embeddings”, and “Cluster Segments” activities in 
Fig. 5. These are used to extract text segments and build text clusters for scoring and similarity analysis (UML activity diagram). 

Fig. 8. Top-level design of the Athena system. Athena is composed of four components: Segmentation, Language Embedding, and Clustering implement the machine 
learning activities depicted in Fig. 7. The Feedback Engine acts as the facade to Artemis and offers an API that the Assessment component uses to receive feedback 
suggestions. 

Fig. 9. Example of the instructor interface: Athena presents a feedback suggestion for the first text segment with a feedback comment and a score.  
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Third, we inspect if the semi-automatic assessment concept in-
fluences the quantity of feedback provided to students. 

Knowledge Question 9: Does Athena generate more feedback than 
instructors? 

8.1. Course 

The course ISE is an introductory software engineering course, with 
around 2,000 registered students who are mainly computer science 
bachelor’s students in their second semester. Students with computer 
science as a minor can also enroll in the course. The course covers 
software engineering concepts, such as requirements analysis, system 
and object design, testing, lifecycles, configuration management, project 
management, and UML modeling (Krusche et al., 2020). Before starting 
the course, students need fundamental programming experience (e.g., 
Introduction to Computer Science or Fundamentals of Programming). 

The instructors use constructive alignment (Biggs, 2003) to align the 
teaching concepts and exercises with the course objectives. For each 
lecture, they define learning goals based on six cognitive processes in 
Bloom’s revised taxonomy (Anderson et al., 2001). The course focuses 
on higher cognitive processes: Students apply the concepts in concrete 
exercises. 

Following an interactive learning approach, ISE teaches software 
engineering concepts with multiple small iterations of theory, example, 
exercise, solution, and reflection (Krusche & Seitz, 2019). Therefore, it 
utilizes exercises to foster student participation (Krusche, Seitz, et al., 
2017) and motivate the students to attend the lectures (Krusche, von 
Frankenberg, & Afifi, 2017). The course involves different kinds of 
exercises:  

1. Lecture exercises as part of the lectures  
2. Group exercises solved in small ad hoc groups 

Table 1 
ISE exercises over the years with their Feed back Factory (cf. Fig. 4) used each year: Instructor Feedback 
(I), Athena Feedback (A), or Exercise not used (− ). 
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3. Homework exercises to be solved throughout the week individually  
4. Team exercises to be solved in a team in five 2-week periods  
5. Exam exercises to assess the students’ knowledge after the course 

has finished in multiple variants 

Students were asked to submit their solutions to all but group exer-
cises to Artemis to receive an assessment with feedback and points. The 
students could gain bonus points for the final exam when participating 
in the exercises. The instructors utilize programming, modeling, tex-
tual, and quiz exercises in the course to train software engineering and 
problem-solving skills. Table 1 lists all homework exercises conducted in 
the course and marks whether Athena Feedback was employed in 
2019–2021. 

8.2. Study design 

Fig. 10 shows the study design of the evaluation that was instantiated 
for each exercise in which Athena was used for grading. The instructor 
defines the exercise in Artemis with a problem statement, grading 
criteria, example solutions, and a due date. The students can insert their 
solutions in plain text on Artemis. After the due date, Artemis sends all 
student answers to Athena to preprocess the answers as described in 
Section 7. The instructors can review the student answers as soon as 
Athena completes the preparation and stores the text clusters. The in-
structors create a review for every student’s answer consisting of mul-
tiple feedback items. The instructors used a chat room during the review 
phase to discuss the grading criteria as needed. 

Every review can either be classified into one of two categories: 

Instructor and Athena feedback. A review is considered to receive 
Athena feedback if at least one feedback item was suggested by Athena. 
Reviews without feedback suggestions receive Instructor feedback. 
Furthermore, Athena stores intermediate versions of all feedback items 
to evaluate how instructors work with feedback suggestions. 

After the instructors completed the review, we retrieved the classi-
fication of the reviews from the Artemis database using SQL queries. 
Two researchers verified the correctness of the queries. We collected the 
statistics on the feedback items from Athena. We inserted the mea-
surements in a spreadsheet for further analysis and graphing. Two re-
searchers reviewed the results for consistency and plausibility and took 
several samples to check individual feedback entries. 

8.3. Results: Athena Feedback 

In the implementation evaluation, we answer five knowledge ques-
tions that address the influence of Athena on the grading process. These 
knowledge questions address knowledge goal 3 stated in Section 2. 

First, we classify the reviews into two two categories. Fig. 11 and 
Fig. 12 depict the classification of the reviews. On average, 45% 
(Homework 25.2%, Exams 53.9%) of all reviews received Athena 
Feedback. In exercise E.19, the system performed best with 75% Athena 
feedback. Exercises E.04 and E.14 have the least coverage, with 6% 
Athena feedback. 

Finding 3 (Coverage): Coverage Athena can cover up to 75% of 
reviews with feedback suggestions without previous training data or a 
predefined solution. 

Second, we further analyze the reviews classified to receive Athena 

Fig. 10. Research approach depicted with the involved actors and flow of events (UML activity diagram).  
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feedback above. Therefore, we inspect all feedback that is part of these 
reviews. 

We formulate this data as a binary classification to evaluate Athena’s 
performance. Feedback suggestions generated by Athena are Positive, 
and the absence of feedback for a given segment is Negative. We compare 
initial suggested feedback with the final feedback from the instructor (cf. 
Subsection 4.2) to classify both positive and negative suggestions as 
either correct (True) or incorrect (False). This leads to the following four 
classifications: 

TP is a True Positive classification, in which Athena generated feed-
back on a segment that instructors published to students unmodified 
or slightly modified, e.g., with an extension. 
TN is a True Negative classification, in which Athena did not provide 
feedback to a segment. The instructor did not see any need to 
providing feedback, either. 
FP is a False Positive classification, in which Athena generated false 
feedback, and because of that, the instructor had to change the 
feedback. 
FN is a False Negative classification, in which Athena did not suggest 
any feedback; however, feedback was needed for this segment. 
Therefore, the instructors had to intervene and compose their own 
feedback manually. 

Following this classification, we can describe the performance of 
Athena following both the sensitivity and specificity values, as well as 
the accuracy (Witten et al., 2011): 

The recall describes how much feedback has been correctly generated 
by the Athena system; this metric is also known as the sensitivity or the 
true positive rate (TPR). 

TPR =
TP

TP + TN
(9) 

The specificity describes the number of segments for which in-
structors did not provide feedback and were left without feedback by 
Athena; this metric is also known as the true negative rate (TNR). 

TNR =
TN

TN + FP
(10) 

The precision describes the proportion of suggested feedback by 
Athena published to students by instructors; this metric is also known as 
the positive predictive value (PPV). 

PPV =
TP

TP + FP
(11) 

The accuracy summarizes how much feedback was suggested and 
how many segments stayed without feedback correctly. 

Accuracy =
TP + TN

TP + TN + FP + TF
(12) 

Table 2 summarizes the binary classification results, which are 
visualized in Fig. 13. 

Finding 4 (Precision): Athena augments instructor feedback pre-
cisely in most cases (PPV = 92%). 

The precision of 92% confirms our previous findings (Bernius et al., 
2021). This means that Athena Feedback successfully augments 
instructor feedback, rarely suggests incorrect feedback, and is appro-
priate and respects the context within the solutions. In addition, we 

Fig. 11. Homework exercises with their assessment ratios. Athena feedback 
reviews received automated suggestions which were reviewed by instructors. 
On average, 25% of all homework assessments were computer-aided. 

Fig. 12. Exam exercises with their assessment ratios. Athena feedback reviews 
received automated suggestions which were reviewed by instructors. On 
average, 54% of all exam assessments were computer-aided. 
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conclude that Athena does not generate extra efforts through manual 
interventions required from instructors. 

Finding 5 (Specificity): Athena does not generate unneeded feed-
back (TNR = 97%). 

The specificity of 97% further confirms this, as Athena is good at 
identifying segments that do not need feedback. Therefore, there is no 
extra work in removing unnecessary or incorrect feedback. 

Finding 6 (Accuracy): Up to 78% of the segments were correctly 
graded by Athena (Accuracy = 60%). 

The accuracy of 60% also supports Finding 3. Future work is needed 
to improve Athena’s coverage, both for the portion of submissions and 
segments covered in each solution. At the current stage, Athena can help 
support instructors by contributing partial assessments. However, more 
work is needed to fulfill the vision of autonomous grading and reach 
feasible efforts when offering continuous feedback. 

8.4. Results: Quality of Athena Feedback compared to instructor feedback 

We measured the feedback quality in two ways. First, we asked 
students to rate their feedback on a 5-star scale. Out of 15,868 total 
reviews done by the instructors, the students rated 530 reviews. Artemis 
asks students, “How useful is the feedback for you?” displayed underneath 
their feedback and presents the 5-star scale input. Fig. 14 depicts the 
distribution by star rating. In the study, 82% of the ratings were either 1- 
star or 5-star. Students with computer-aided feedback were more likely 
to give a 5-star rating (72%) when compared to students who received 
manual feedback (57%). On the same page, computer-aided feedback 
received 1-star ratings less often (15%) than manual feedback (25%). On 
average, students giving a 5-star rating (94% and 91%, respectively) had 

better scores than students giving 1-star ratings (70% and 62%, 
respectively). 

Finding 7 (Perceived Quality): The computer-aided feedback in 
Athena has at least the same quality as manual feedback. 

The second measure of feedback quality is students’ complaints – or 
the absence or complaints. Students can complain about their feedback, 
either requesting a re-evaluation of their solution from a second 
instructor or requesting more detailed feedback from the same 
instructor. As re-evaluations are time-intense, students are limited to 
three complaints in the course; however, legitimate complaints are not 
counted against this limit. This policy reduces minor or unjustified 
complaints as submitting a complaint is deemed expensive. 

Table 3 outlines the number of submissions for all exercises with 
Athena feedback and the percentage of complaints. We tested the hy-
pothesis that gradings created using feedback suggestions from Athena 
lead to fewer complaints than instructor feedback. A Welch Two Sample 
t-test is not suited because the measurements are not normally distrib-
uted. Therefore, we employ the Brunner-Munzel Test (Brunner & 
Munzel, 2000; Neubert & Brunner, 2007), a non parametric statistical 
test for stochastic equality of two samples. The Brunner-Munzel Test is a 
generalization of the Mann–Whitney U test (Mann & Whitney, 1947; 
Wilcoxon, 1945) and is suggested as a modern replacement for 

Table 2 
Results of the binary classification (lest) and analysis (right). 

Fig. 13. Visualization of Binary Classification (Table 2) in percent.  
Fig. 14. All ratings for ISE homework exercises by star rating. In this figure, 
ratings are grouped by Instructor Feedback (n = 428) or Athena Feedback (n =
102). The average score in percent is depicted per rating and assessment type. 
In the study, 530 out of 15, 868 reviews were rated by students. 
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nonparametric tests (Karch, 2021). We use the brunnermunzel R pack-
age7 to compute the test. The Brunner-Munzel Test, based on the 
complaint rates, results in a test statistic value of t = 3.8146. The p −
value of the test is 0.000466, which is less than the significance level α =
0.01. We can conclude that the Athena-feedback’s complaint rate is 
significantly lower than the Instructor-feedback’s complaint rate. 

Finding 8 (Quality): Feedback generated from Athena leads to 
fewer student complaints. 

Third, we compare the ratio between segments with and without 
feedback. We inspect all exercises from 2019 to 2021 and separate the 
measurements between Athena feedback and instructor feedback. 

Finding 9 (Feedback Quantity): No evidence suggests that Athena 
leads to more feedback. 

8.5. Limitations 

This section discusses threats to the results’ trustworthiness and 
whether the results are biased based on the researchers’ subjective point 
of view. We distinguish between three aspects of validity: internal val-
idity, external validity, and construct validity (Runeson et al., 2012). 

8.5.1. Internal validity 
The accuracy of the feedback suggestions is measured by the 

acceptance of the instructor. A second review from a control instructor 
would allow for a more accurate measurement of accuracy. The 
instructor might be biased toward confirming a feedback suggestion, 
requiring less effort than providing a new comment. We noticed that 
most instructors took the review of the automatic feedback suggestions 
seriously, but we cannot guarantee that some of the 68 involved 
teaching assistants failed to review the automatic feedback suggestions 
thoroughly. 

Two authors of this article have been involved in teaching the course 
ISE and might have influenced the empirical evaluation. However, we 
tried to separate the research and instructor perspectives. Further, two 
additional instructors have been involved in the course ISE who are not 
authors of this paper, and the third author reviewed the results carefully 
without being involved in the course. In addition, we observed similar 
results in a second course, which was taught by an independent 
instructor who was not involved in the research (Bernius et al., 2021). 

8.5.2. External validity 
Most analyzed exercises have been in the domain of software engi-

neering and computer science in the same university. While we believe 
that the approach is generalizable for other domains, we have not shown 
this in this study. 

8.5.3. Construct validity 
The validity of the ratings might be affected by the question’s 

wording and the score that the students received. Students with a higher 
score are typically more satisfied and less likely to complain about the 
quality of the feedback. Therefore, a good rating does not necessarily 
mean that the feedback was of good quality. Another limitation could be 
that students like the approach of getting feedback. The ratings measure 
the perceived quality, which is subjective. We can only infer the quality 
based on the ratings. Therefore, we consider Finding 7 on the quality of 
the ratings as anecdotal evidence. 

8.6. Discussion 

The suggestion coverage of Athena is higher for exercises that do not 
ask students to come up with their own examples but rather require 
students to work based on a given problem context. In the exam exer-
cises E.01, E.03, E.09, E.15 - E.22, students were asked to extract re-
quirements or use cases from a problem statement. In those exercises, 
the coverage was mostly above the average, ranging from 48% to 75%. 
These questions still require students to apply problem-solving skills but 
limit the variability of the answers. This leads to more similar answers 
and more reusable feedback. 

Exercises asking for examples, such as the ISE homework exercises, 
have lower Athena suggestion coverage between 13% and 38%. This 
may be due to the increased variability of answers where students 
develop their own examples. As Athena tries to find similar text seg-
ments, it is more difficult to find a group with shared segments as stu-
dents choose examples from different problem contexts. Therefore, 
students are less likely to produce similar answers, and Athena cannot 
learn to reuse feedback among students. 

Athena reuses reviews from instructors. Therefore, the quality of the 
feedback suggestions depends on the manual feedback provided during 
the instructor reviews. If instructors provide incorrect manual feedback, 
Athena will not be able to provide correct feedback suggestions. In the 
example of ISE, the instructors who review the submission consist pri-
marily of teaching assistants who have limited experience in grading or 
providing feedback. 

Nevertheless, the approach can improve the review process as it al-
lows instructors to handle larger amounts of reviews or to inspect ex-
amples. Other systems presented in Section 5 suggest comparing 
answers only with a sample solution provided by an instructor (Pérez 

Table 3 
Student complaints on ISE 2019–2021 distinguishing Athena feedback and 
instructor feedback. Athena feedback produces significantly fewer complaints 
than instructor feedback.  

Exercise 2019 2020 2021 

# 
Sub. 

% 
Compl. 

# 
Sub. 

% 
Compl. 

# 
Sub. 

% 
Compl. 

H.11  1036  1125  1277  
Instructor 1036 0.00% 930 0.86% 1277 1.17% 

Athena / / 195 0.00% / / 

H.12  943  1032  1122  
Instructor 943 0.42% 744 1.88% 1122 2.76% 

Athena / / 288 1.74% / / 

H.14  998  1103  1228  
Instructor 998 1.40% 877 2.96% 1228 2.36% 

Athena / / 226 2.21% / / 

H.17  890  1013  1112  
Instructor 890 1.01% 881 1.70% 1112 2.79% 

Athena / / 132 0.76% / / 

H.18  943  1027  1165  
Instructor 943 0.32% 662 1.06% 927 3.13% 

Athena / / 365 0.55% 238 0.00% 

H.19  950  1060  1164  
Instructor 950 0.53% 1060 5.85% 1164 1.63% 

H.20  832  933  1068  
Instructor 832 1.68% 753 2.39% 881 2.95% 

Athena / / 180 1.11% 187 0.00% 

H.21  910  1006  1176  
Instructor 910 3.63% 677 7.68% 1176 8.08% 

Athena / / 329 3.65% / / 

H.22  877  959  /  
Instructor 877 1.94% 624 2.72% / / 

Athena / / 335 3.58% / / 

H.23  /  /  1126  
Instructor / / / / 945 3.17% 

Athena / / / / 181 0.00% 

H.24  898  1029  1151  
Instructor 898 2.23% 700 1.57% 823 4.01% 

Athena / / 329 1.82% 328 0.00% 

H.25  882  1013  1118  
Instructor 882 3.74% 767 2.22% 872 4.47% 

Athena / / 246 1.63% 246 0.00%  

7 brunnermunzel R package: https://github.com/toshi-ara/brunnermunzel. 
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et al., 2005), thus reducing the variability in the solution space, which 
might limit the students’ creativity. However, creativity is an important 
aspect of software engineering education (Krusche, Bruegge, et al., 
2017). 

The use of Athena reduces the workload for instructors and, thereby, 
enables instructors to better support students individually. All students 
receive personal attention in the form of Virtual One-To-One (Bernius & 
Bruegge, 2019) feedback. The efficiency gain in the frequent solution 
cases results in more time to address specific solutions and take care of 
problems. Individual feedback is better than presenting a sample solu-
tion in a lecture format (Higgins et al., 2002), especially in software 
engineering, where many creative solutions can co-exist. Individual 
discussions for different solutions are needed so students and instructors 
can learn about the benefits, consequences, and trade-offs of new 
solutions. 

9. Conclusion 

We have presented an approach that reduces assessment efforts of 
textual exercises for instructors while scaling feedback for large courses. 

The main contributions are: First, a formalization of the assessment 
effort for a large-scale course using the interactive learning teaching 
method. 

Second, the machine learning-based framework “CoFee” outlines 
how to capture assessment knowledge and automatically suggest feed-
back. The framework employs segment-based grading and reuses feed-
back based on segment similarity. We confirmed the frameworks’ 
validity in a laboratory experiment and found that CoFee can reduce the 
instructors grading effort by 85%. 

Third, the reference implementation “Athena” demonstrates how 
to design and build a system that automatically assesses textual exercises 
(Artifact Design Goal). Athena uses the ELMo language model to capture 
core ideas of segments and HDBSCAN clustering to identify groups of 
similar segments. Athena is open-source software published under the 
MIT license and integrated into the Artemis system. 

Fourth, the implementation evaluation describes the usage of 
Athena in a large-scale software engineering course with up to 2,200 
students and up to 68 instructors. The evaluation analyzed the generated 
feedback and compared feedback given to the students with and without 
Athena. The findings suggest that Athena can provide feedback for up to 
75% of student answers. The feedback suggested is 92% precise and 60% 
accurate. Athena does not lead to more feedback; however, students 
perceive the feedback quality as identical, and fewer students complain 
about Athena grading than manual grading. The evaluation further 
shows that the accuracy of Athena feedback depends on the type of 
textual exercise and the variability of possible answers. A higher vari-
ance within correct solutions leads to less coverage because of fewer 
similarities in the student answers. 

The article outlines how segment-based structured grading in CoFee 
allows for collecting and reusing knowledge generated during the 
manual assessment. Machine learning can support instructors with their 
assessment work. Working with automated feedback suggestions re-
duces the assessment efforts and helps instructors deliver consistent 
feedback and reduce student complaints. Athena does not require 
training data before grading to learn correct answers and feedback 
suggestions. Instead, it collects knowledge during the assessment. This 
incremental process allows instructors to change or introduce new ex-
ercises as needed, preventing students from submitting solutions from 
previous years. 

10. Future work 

Training based on assessments of past exercises allows Athena to 
profit from additional knowledge captured in these reviews. However, 
future work needs to evaluate whether training data from the same 
exercise in previous years can improve the coverage or accuracy of 

feedback suggestions. 
In addition, the presented research can be extended in four ways: 

First, additional intermediate representations of text segments can be 
explored. Athena uses ELMo to capture core ideas within text segments. 
Further research is needed to explore the accuracy of other types of 
models, e.g., transformers such as the Bidirectional Encoder Represen-
tations from Transformers (BERT) model (Devlin et al., 2019) or the 
Sparsely Gated Mixture-of-Expert (Jacobs et al., 1991; Lepikhin et al., 
2021) based Facebook WMT model (Tran et al., 2021). 

Second, by migrating away from a language-dependent language 
model, CoFee can improve on the current limitation to English answers. 
Transformer-based models could enable language-independent grading 
by converting a segment to a language-independent intermediate rep-
resentation, employing techniques currently used for machine trans-
lations. Following this approach would allow CoFee to create a 
language-independent assessment knowledge and associate feedback 
to answers independent of the used language. Language-independent 
grading can allow international students to answer in their preferred 
language. Instructors can thereby assess work in a foreign language they 
do not speak themselves. 

Third, language models can be fine-tuned by incorporating domain- 
specific contexts from course materials, such as textbooks, slides, or 
lecture notes. Customized language models allow CoFee to improve the 
assessment of exercises requiring a special problem domain knowledge. 
Transfer Learning could be applied to fine-tune a general-purpose neural 
network for this specific task (Dai & Le, 2015; Howard & Ruder, 2018). 
Mayfield and Black (2020) suggest that the relevant world knowledge is 
already present in pre-trained BERT models. 

Forth, another possibility is to combine CoFee’s content-based 
grading with language grading as available in essay scoring systems 
(cf. Subsection 5.1). The resulting system considers other aspects of the 
work (e.g., grammar, writing style, and language use) and could extend 
CoFee’s applicability beyond short-answer exercises. 
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