
Computers and Education: Artificial Intelligence 3 (2022) 100081

Available online 3 June 2022
2666-920X/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Machine learning based feedback on textual student answers in
large courses

Jan Philip Bernius *, Stephan Krusche, Bernd Bruegge
Department of Informatics, Technical University of Munich, Boltzmannstraße 3, 85748, Garching Near Munich, Germany

A R T I C L E I N F O

Keywords:
Software engineering
Education
Interactive learning
Automatic assessment
Grading
Assessment support system
Learning
Feedback

A B S T R A C T

Many engineering disciplines require problem-solving skills, which cannot be learned by memorization alone.
Open-ended textual exercises allow students to acquire these skills. Students can learn from their mistakes when
instructors provide individual feedback. However, grading these exercises is often a manual, repetitive, and time-
consuming activity. The number of computer science students graduating per year has steadily increased over the
last decade. This rise has led to large courses that cause a heavy workload for instructors, especially if they
provide individual feedback to students. This article presents CoFee, a framework to generate and suggest
computer-aided feedback for textual exercises based on machine learning. CoFee utilizes a segment-based
grading concept, which links feedback to text segments. CoFee automates grading based on topic modeling
and an assessment knowledge repository acquired during previous assessments. A language model builds an
intermediate representation of the text segments. Hierarchical clustering identifies groups of similar text seg-
ments to reduce the grading overhead. We first demonstrated the CoFee framework in a small laboratory
experiment in 2019, which showed that the grading overhead could be reduced by 85%. This experiment
confirmed the feasibility of automating the grading process for problem-solving exercises. We then evaluated
CoFee in a large course at the Technical University of Munich from 2019 to 2021, with up to 2, 200 enrolled
students per course. We collected data from 34 exercises offered in each of these courses. On average, CoFee
suggested feedback for 45% of the submissions. 92% (Positive Predictive Value) of these suggestions were precise
and, therefore, accepted by the instructors.

1. Introduction

Student numbers in computer science schools and departments are
rising. Analyzing statistics and reports released by popular computer
science departments reveals how the number of conferred degrees has
steadily increased since 2010. Fig. 1 depicts the development of degrees
conferred by eight renowned universities1 in the area of computer sci-
ence. As a result, introductory courses need to handle more and more
students every year. This rise in student numbers has increased course
management efforts and made it challenging to provide high-quality
individual feedback to students (Krusche et al., 2020). A single

instructor cannot handle feedback and grading for large classes alone. In
particular, large university courses with hundreds of students rely on
teaching assistants to provide feedback on exercises. Online platforms,
live streaming, and chat systems allow instructors to interact with a
large number of students on an individual level, regardless of the
respective course size.

Exercises allow students in lecture-based courses to apply and
practice relevant skills. Exercises stimulate learning in six different
cognitive processes, e.g., as classified in Bloom’s revised taxonomy
(Anderson et al., 2001). Software engineering is a problem-solving
discipline that cannot be learned by memorization alone.

Abbreviations: CoFee, Computer-aided Feedback for textual exercises; ELMo, Embeddings from Language Models; HDBSCAN, Hierarchical Density-Based Spatial
Clustering of Applications with Noise; ISE, Introduction to Software Engineering; LSA, Latent Semantic Analysis; NLP, Natural Language Processing; POM, Project
Organization and Management; PPV, Positive Predictive Value; TF-IDF, Term Frequency-Inverse Document Frequency; TNR, True Negative Rate; TPR, True Positive
Rate; TUM, Technical University of Munich.

* Corresponding author.
E-mail addresses: janphilip.bernius@tum.de (J.P. Bernius), krusche@in.tum.de (S. Krusche), bernd.bruegge@tum.de (B. Bruegge).

1 The universities were selected based on the Times Higher Education Ranking by Subject in 2022 and the availability of data. https://timeshighereducation.com/wo
rld-university-rankings/2022/subject-ranking/computer-science.

Contents lists available at ScienceDirect

Computers and Education: Artificial Intelligence

journal homepage: www.sciencedirect.com/journal/computers-and-education-artificial-intelligence

https://doi.org/10.1016/j.caeai.2022.100081
Received 6 March 2022; Received in revised form 24 May 2022; Accepted 24 May 2022

mailto:janphilip.bernius@tum.de
mailto:krusche@in.tum.de
mailto:bernd.bruegge@tum.de
https://timeshighereducation.com/world-university-rankings/2022/subject-ranking/computer-science
https://timeshighereducation.com/world-university-rankings/2022/subject-ranking/computer-science
www.sciencedirect.com/science/journal/2666920X
https://www.sciencedirect.com/journal/computers-and-education-artificial-intelligence
https://doi.org/10.1016/j.caeai.2022.100081
https://doi.org/10.1016/j.caeai.2022.100081
https://doi.org/10.1016/j.caeai.2022.100081
http://crossmark.crossref.org/dialog/?doi=10.1016/j.caeai.2022.100081&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Education: Artificial Intelligence 3 (2022) 100081

2

Multiple-choice quizzes are easy to assess, and automated tools are
broadly available in learning management systems and paper-based
assessments. However, mastery of these quizzes does not require
problem-solving skills because they typically target only lower cognitive
skills, particularly knowledge recall and comprehension. It is difficult to
create quizzes that stimulate higher cognitive skills, such as
problem-solving, essential in computer science (Alario-Hoyos et al.,
2016; Williams & Haladyna, 1982).

Open-ended textual exercises enable instructors to teach problem-
solving skills and allow students to improve their knowledge. These
exercises do not have a single correct solution but rather allow answers
within a particular solution space that words and phrases can charac-
terize. Students profit from individual feedback relationships with their
instructors (Feynman, 1994). Individual feedback and formative as-
sessments are essential elements in learning (Higgins et al., 2002; Irons,
2007). Feedback on open-ended exercises allows students to try out
problem-solving and experience failure. Students need guidance in the
form of feedback in their learning activities to prevent misconceptions
(Kirschner et al., 2006).

However, textual exercises lead to a wide answer spectrum because
students need to formulate individual answers to problems, which re-
sults in an increased manual effort when reviewing students’ answers. In
addition, assuring consistent feedback is difficult with a large number of
teaching assistants. This article describes a machine learning-based
system as the solution to this problem.

This article is organized following the design and engineering cycle
(Wieringa, 2014). Section 2 formulates the design science research goals,
the artifact design goal, and knowledge goals, which we use to derive
knowledge questions throughout the article. Section 3 describes grading
efforts in large courses and the role of feedback in the learning process.
Section 4 introduces the computer-aided feedback for textual exercises
(CoFee) framework with its problem domain and dynamic behavior.
Section 5 describes background literature and compares related work to
CoFee. Section 6 validates the concepts of CoFee in a laboratory
experiment. Section 7 describes the reference implementation Athena in
the context of Artemis. Section 8 describes the course “Introduction to
Software Engineering” in which the approach was used, shows the
quasi-experimental study design of the empirical evaluation, presents
results and limitations, and discusses the findings. Section 9 concludes
the article with its main contributions, and Section 10 outlines future

work.

2. Methodology

This research focuses on two main stakeholders: instructors, espe-
cially those responsible for large lecture courses, and students. For this
paper, we define instructors as both lecturers and teaching assistants.
Lecturers are university employees such as professors, researchers, and
doctoral candidates. Teaching assistants are experienced students who
have previously passed the same course with a good grade and are
motivated to help in the teaching process. Some universities also use the
term “tutor” to refer to a teaching assistant.

Lecturers have an interest in delivering high-quality teaching sup-
ported by many exercises. Through individual feedback, lecturers want
to support students in their learning activities as much as possible.
However, lecturers want to minimize their workload on assessments to
have time to create and improve exercises and course materials.
Teaching assistants need to balance their limited working hours between
assessments, face-to-face teaching sessions, and answering questions.
Students want to understand the course content, solve the exercises, and
receive timely feedback. They want to re-iterate their solution based on
feedback to fail early and learn from the mistakes on the way (Popper,
1934, 1959).

We focus on automating the assessment of textual exercises to meet
the conflicting goals of producing high-quality feedback and saving
time.

Research Goal: Reduce assessment efforts on textual exercises for
instructors while scaling feedback for large courses.

Following Wieringa’s design science methodology (Johanβen, 2019;
Wieringa, 2014), we break down this research goal into a goal hierarchy
shown in Fig. 2. The design science research goals support the social context
goals, which in turn are defined by the external stakeholder goals and the
problem context. To achieve the research goal, we explore ways of
automating and supporting the assessment process for textual exercises.
Therefore, we conclude this with the following Artifact design goal:

Artifact Design Goal: Design a system that automatically assesses
textual exercises.

Section 4 describes the CoFee framework to generate computer-
aided feedback for textual exercises. Section 7 describes a reference
implementation for CoFee, the Athena software system. Athena collects
assessment knowledge in the form of exercise and feedback pools. We
summarize this effort to understand the stakeholders and the problem
context with the following knowledge goal:

Knowledge Goal 1 (Investigation): Understand grading efforts
and the role of feedback in large courses.

Next, we want to validate if the proposed treatment, CoFee, is suited
to solve the assessment problem for textual exercises. We address this
with the second knowledge goal:

Knowledge Goal 2 (Validation): Understand the performance of
CoFee and its individual components during the assessment of textual
exercises.

Last, we want to evaluate the implemented artifact, the Athena
system, and analyze its performance in large courses. Therefore, we
conclude with the third knowledge goal:

Knowledge Goal 3 (Evaluation): Understand the influence of
Athena on the grading process.

3. Problem investigation

3.1. Feedback in the learning process

There is clear evidence that guidance is essential to facilitate learning
and prevent misconceptions (Kirschner et al., 2006). Therefore, it is
important to involve students in learning activities, even in large cour-
ses. Examples and exercises play a central role in the early phases of
cognitive skill acquisition (VanLehn, 1996). Carefully developed

Fig. 1. The number of computer science degrees (bachelor’s and master’s)
conferred per year by renowned universities in the area has steadily increased
over the last decade. Data was collected from statistics published by the uni-
versities. The left y-axis represents the number of degrees per university. The
right y-axis represents the Total number of degrees across all universities.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

3

examples increase the learning outcome (Sweller & Cooper, 1985;
Trafton & Reiser, 1993). Providing individual feedback is essential in
learning to improve students’ skills (Higgins et al., 2002). Feedback
helps students to understand their learning progress and helps in the
learning process through reflection. In the current teaching paradigm,
students take “the active role of … seeking, interpreting and using
feedback as part of their learning process” (Jensen et al., 2021). Good
feedback incentivizes students to invest time in an exercise and rethink
their solution. Participation in exercises with feedback has a positive
effect on academic performance (Förster et al., 2018).

3.2. Interactive learning

Interactive learning is a scalable and adaptive teaching philosophy
based on “constructive alignment” that puts the interaction with a stu-
dent into the core of the educational activities (Krusche, Seitz, et al.,
2017). It integrates aspects of team-based learning and creativity to
stimulate problem-solving skills and soft skills.

Interactive learning decreases the cycle time between teaching a
concept and practicing it during the lecture in multiple short iterations:
Instructors teach and exercise small chunks of content in short cycles
and provide immediate feedback so that students can reflect on the
content and increase their knowledge incrementally. Interactive
learning expects active participation of students and use of computers
(laptops, tablets, or smartphones) in classrooms. Fig. 3 shows the iter-
ative process of interactive learning, where each iteration consists of five
phases that are performed several times during each lecture:

1. Theory: The instructor introduces a new concept and describes the
theory behind it. Students listen and try to understand it.

2. Example: The instructor provides an example so that students can
refer the theory to a concrete situation.

3. Practice: The instructor asks the students to apply the concept in a
short exercise adapted to the individual student’s existing knowledge
and skills. The students submit their solutions to the exercise.

4. Feedback: The instructor provides immediate feedback to the stu-
dent submissions using an automatic assessment system.

Alternatively, the instructor can show multiple exemplary solutions
and discuss their strengths and weaknesses.

5. Reflection: The instructor facilitates a discussion about the theory
and the exercise to reflect on the first experience with the new
concept.

3.3. Artemis

Artemis (Krusche & Seitz, 2018) is a teaching platform that supports
interactive learning and is scalable to large courses with immediate and
individual feedback. It is open-source2 and used by multiple universities
and courses.

Artemis includes several functionalities to implement interactive
learning. In the following section, we present and discuss the essential
features. Instructors can create different exercises: programming,
modeling, quiz, text, and file upload. Artemis offers different assessment
modes: automatic, semi-automatic, and manual. It automatically as-
sesses programming and quiz exercises and provides a semi-automatic
assessment approach based on machine learning for modeling and text
exercises.

Artemis allows students to work collaboratively on the solution to
the given tasks in team exercises. Instructors can incorporate live
streams, recordings, and slides of lectures and embed exercises directly
into them using lecture units. Students can ask questions and receive
answers in a chat-based communication with emojis and references next
to exercises and lectures. In addition, Artemis offers an exam mode for
online exams. The exam mode includes additional functionalities, such
as exercise variants, plagiarism checks, and offline support.

3.4. Assessment

Assessment is a time-intensive (Chen et al., 2018; Cheng, 2017),
manual, and repetitive job. Efforts vary based on the size of the accepted
answer space: Lower cognitive processes are easier to assess (e.g.,

Fig. 2. Hierarchical goal taxonomy following the template from Wieringa (2014). An arrow indicates that a goal supports the other.

2 Artemis: https://github.com/ls1intum/Artemis.

J.P. Bernius et al.

https://github.com/ls1intum/Artemis

Computers and Education: Artificial Intelligence 3 (2022) 100081

4

remember) compared to higher processes (e.g., evaluate). That means if
an answer asks to state a term, the assessment is simple as the answer
either matches the solution or not. For complex exercises, students are
free in their answers and, e.g., explain a concept based on an example. In
this instance, assessment is difficult and time-consuming as graders need
to analyze the example and solve the exercise in the students’ context
themselves. In software engineering, many solutions can be acceptable
for a problem. Acceptable answers might change as paradigms shift, and
new engineering principles become the norm.

To address Knowledge Goal 1 (Investigation), we extrapolate the
assessment efforts required for large courses following the interactive
learning model to answer two knowledge questions (KQs):

Knowledge Question 1: How many assessments do large courses
need?

In the following, we calculate the required assessments for a course
featuring three lecture exercises and four homework exercises every
week. The course format is based our course “Introduction to Software
Engineering” (ISE) (cf. Subsection 8.1). We assume 2000 participating
students for one semester of 13 weeks:

#exercises = (3+ 4)⋅13 = 91 (1)

#assessments = #exercises⋅#students = 91⋅2, 000 = 182, 000 (2)

We conclude that an interactive course sets 91 exercises over the
course of the semester. Therefore, instructors need to complete 182,000
assessments in a large course with 2,000 students (KQ 1).

Knowledge Question 2: How much time do instructors spend on
manual assessments of exercises?

Given an average assessment time of 5 min per student solution, we
extrapolate the assessment total assessment time:

Σ Assessment Time = #assessments⋅5 min (4)

= 15, 166.6h = 1, 166.6h/Week (5)

We conclude that the large course requires 15,167 h of assessment
work which translates to 1,167 h every week (KQ 2). Data from ISE in
2021 shows that out of a total of 89 exercises, 24 were textual exercises
(27%). We, therefore, estimate that instructors need to spend 315 h on
assessments every week for textual exercises alone.

4. Treatment design – CoFee

To address the artifact design goal stated in Section 2, we derive an
artifact design problem, which we define by following the template
proposed by Wieringa (2014): We highlight artifacts, requirements, and
stakeholder goals.

We investigate how to provide students with feedback on their ex-
ercise solutions automatically. We present the CoFee approach, which
captures knowledge during the assessment process and provides in-
structors with feedback suggestions. CoFee allows instructors to assess
exercises faster and offer consistent feedback to students in large cour-
ses. We summarize this as follows:

Artifact Design Problem: How to implement a system (artifact)
that generates feedback on textual exercise solutions (requirement) so
that instructors can give better feedback in shorter cycles (stakeholder
goal)?

This section introduces the proposed treatment computer-aided
feedback for textual exercises. We describe the architecture and dy-
namic behavior of the treatment CoFee.

4.1. Architecture

Fig. 4 depicts the analysis object model (Bruegge & Dutoit, 2009) of
the problem domain: A Course consists of many Exercises. Students can
participate in an exercise by submitting their solutions. A Submission

can be decomposed into many Segments. Each of them encapsulates one
core idea of the answer. Segments can receive Feedback via a comment
and a score. We model the automatic generation of feedback and
instructor grading as a metaphorical factory, following the factory
method pattern (Gamma et al., 1994). Following the metaphorical
application of design patterns, the instructor is an expensive feedback
source. To cautiously and efficiently use this expensive subject, we
introduce the Automatic feedback engine as a proxy object to filter
which feedback requests it needs to forward to the real subject, the
Instructor.

4.2. Dynamic behavior

Fig. 5 presents an overview of the workflow. CoFee first segments a
submitted answer by splitting the answer into topically-coherent seg-
ments. These segments are annotated with one or more feedbacks as
they cover a single core idea. Next, CoFee groups the segments into
clusters by the similarity of their ideas. Based on the cluster classifica-
tion, CoFee suggests gradings based on the assessment knowledge from
the feedback pool. If enough assessment knowledge has been collected
for a specific segment, then automatic feedback can be suggested.
Otherwise, an instructor is required to complete the grading. Finally,
CoFee presents a partial grading to allow the instructors to benefit from
the knowledge generated. Instructors accept, change, or discard existing
feedback suggestions and provide new feedback. All feedback is sub-
mitted to the feedback pool for reuse in future grading sessions.

CoFee learns which answers to an exercise are considered correct in
the learning context. For further submissions, the learning platform
automatically generates suggestions for similar answers or even auto-
matically evaluates the answers. In doing so, the learning platform uses
the knowledge of previous assessments from lecturers. The more stu-
dents participate in an exercise, the more knowledge is generated and
the better feedback the learning platform can suggest.

This addresses the external stakeholder goals stated in Section 2. The
instructor’s goal is to provide high-quality feedback to all students while
decreasing the overall assessment time. The student’s goal is to receive
timely feedback. CoFee integrates into existing learning platforms that
need to provide an interface for students to submit their textual answers.
We utilize a segment-based feedback concept (Bernius & Bruegge,
2019), requiring assessors to provide feedback and score about a
segment of a student’s answer, resulting in relatable and reusable
feedback elements.

CoFee trains its assessment model with every feedback element and
becomes more accurate with every new feedback element. After the
assessment process, the system can detect conflicting assessments in
both comments and scores. Therefore, CoFee computes the similarity
among feedback comments. We claim that the similarity between two
segments should be proportional to the similarity between the feedback
comments. If this relation is violated, CoFee prompts the instructor to

Fig. 3. Interactive learning puts the individual student into the core of the
learning activity and follows an iterative process that is conducted multiple
times in lectures.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

5

review the pair of submissions and allows them to update the assessment
as needed. The learning platform may only release the feedback to
students after the instructors have resolved inconsistencies.

5. Related work

This section compares CoFee to alternative treatments from related
work in the literature. Compared to existing work, CoFee segments and
clusters student solutions automatically. By training the system during

the assessment process, we do away with a reference dataset before the
assessment. Furthermore, by training with correct and incorrect solu-
tions, we maintain a dataset to provide helpful feedback comments to
support the learning process. Finally, dynamically collecting the dataset
during assessment keeps the system independent of any domain and
allows for using the system with new exercises to incorporate the latest
knowledge into teaching.

Fig. 4. Analysis Object Model of the CoFee framework. The model describes the system from the stakeholder’s point of view and illustrates the concepts visible to the
stakeholder (Bruegge & Dutoit, 2009) (UML Class Diagram).

Fig. 5. Workflow of automatic assessment of submissions to textual exercises based on the manual feedback of instructors. CoFee analyzes manual assessments and
generates knowledge for the suggestion of computer-aided (automatic) feedback (UML activity diagram).

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

6

5.1. Assessment systems

Automated essay scoring computes scores on written solutions based
on previous submissions. Automated essay scoring systems require a
perfect solution to be available upfront (Mitchell et al., 2002; Pulman &
Sukkarieh, 2005; Sukkarieh et al., 2003). They primarily consider the
similarity to a perfect solution to determine the grade. Giving feedback
is not the focus of automated essay scoring systems. Manual clustering
and shared grading are concepts used in research (Pérez et al., 2005) and
commercial tools (i.e., Gradescope). Managing clusters is hard at scale,
especially communicating the exact differences between clusters among
many graders.

5.1.1. Atenea
Atenea is a computer-assisted assessment system for scoring short

answers in computer science (Pérez et al., 2005). Atenea maintains a
database of short-answer-questions with corresponding sample solu-
tions. Sample solutions are either written by an instructor or reused from
a highly graded student answer. Atenea combines latent semantic
analysis (LSA) and a modified bilingual evaluation understudy algo-
rithm hypothesizing that syntax and semantics complement each other
naturally. Combining these two natural language processing (NLP) tools
always performs better (with a higher hit rate). Furthermore, Pérez et al.
(2005) argue that syntactical and semantical analysis combinations lead
to greater automatic text assessment results.

Atenea compares student answers to a set of predefined answers. It
determines a grade based on the similarity to these predefined answers.
This approach is limited to exercises with a narrow answer space where
possible answers are known beforehand. High variability in answers
limits Ateneas applicability and requires a large set of sample solutions.
The focus of the Atenea system is grading, whereas Athena primarily
focuses on individual feedback. Athena does not require a sample so-
lution but collects knowledge on correct and incorrect solutions during
the manual assessment. The evaluation of Atenea focuses on comparing
NLP techniques in the context of grading using a dataset. We evaluate
Athena by using it in multiple courses and measuring its performance.

Atenea compares student answers to a set of predefined answers. Its
similarity to these predefined answers determines the grade. This
approach is limited to exercises with a narrow answer space where
possible answers are known beforehand. High variability in answers
requires a large set of predefined answers, limiting the system’s appli-
cability. The focus of the Atenea system is grading, whereas Athena is
primarily focused on individual feedback. Athena does not require a
predefined solution but collects knowledge on correct and incorrect
solutions during the manual assessment. The evaluation of the Atenea
authors focuses on a comparison of NLP techniques in the grading
context and is based on a dataset. We evaluate Athena by using it in
multiple courses and measuring its performance.

5.1.2. Powergrading
Powergrading is an automatic assessment approach for textual ex-

ercises (Basu et al., 2013) that provides feedback in the form of a nu-
merical score and a comment explaining why an answer is correct or
incorrect, similar to the comment of a human. In addition, Basu et al.
(2013) propose a system that clusters similar answers to a question so
that instructors can “divide and conquer” the correction process by
assessing a whole cluster with the same score and comment, therefore
reducing the correction time significantly. Clustering answers to a
question should happen based on a distance function composed of
different features and automatically tries to learn a similarity metric
between two students’ answers. Some of the implemented and used
features that are weighted in developing this distance function used for

clustering are, e.g., the difference in length between two answers, the
term frequency-inverse document frequency (TF-IDF)3 similarity of
words, or the LSA vectorial score based on the entirety of Wikipedia as a
training text corpus. The authors have tested their implementation with
test data from the United States Citizenship Exam in 2012 with 697
examinees. They concluded that around 97% of all submissions can be
grouped into similar clusters so that instructors would only have to
provide feedback for a single cluster and would still be able to reach and
correct multiple submissions at once, therefore reducing assessment
time significantly (Basu et al., 2013).

Powergrading is focused on short-answer grading, where a typical
answer does not exceed two sentences. Athena is not limited to a certain
answer length and uses segmentation to work with multiple sentences or
paragraphs. Similar to Powergrading, Athena groups segments into
clusters. Both systems assume hierarchical cluster structures. Power-
grading allows instructors to grade clusters rather than submissions,
whereas Athena will use the cluster structure to suggest feedback for the
following assessments.

5.1.3. Gradescope
Gradescope4 is a system geared toward assessing handwritten

homework and exam exercises (Singh et al., 2017) by scanning
paper-based work. Instructors grade the submissions online. Gradescope
allows the instructor to create grading rubrics at the assessment time
dynamically. Instructors can group similar submissions manually for
shared grading or rely on suggested groups for the assessment.

Athena also provides sharing feedback with groups of answers;
however, Athena groups individual segments, whereas Gradescope
groups entire submissions. Gradescope allows the grader to grade mul-
tiple submissions as one, similar to Powergrading, whereas Athena
shares individual feedback elements across multiple submissions.
Athena requires instructors to inspect every submission and supports
instructors by suggesting feedback items. Neither system requires a
training dataset of previously assessed answers. For exercises with a
limited answer spectrum, Gradescope does allow the grader to assess
several submissions efficiently as it reduces the number of solutions to
grade. However, this approach is more limited for exercises with high
variability in answers (e.g., when asking for examples) as more groups
with fewer elements need to be graded.

5.2. Language models

Automatically assessing text submissions requires comparing seg-
ments of those submissions and identifying similar pieces of text.
Therefore, we need a measurable abstraction of a text’s meaning as an
intermediate representation. This paper relies on existing approaches
and techniques from the domain of NLP, most notably language models
and word embeddings, to convert a piece of text into a comparable
format. Student answers can contain unknown words, incorrect
grammar and punctuation, and false statements.

Word embedding is a feature learning technique in NLP, where
words or phrases from the vocabulary are mapped to vectors of real
numbers (each word is associated with a point in a vector space) (Li &
Yang, 2018). The feature vector represents different aspects of the word,
and consequently, words with the same meaning are assigned similar
vector representations. Additionally, word embeddings can capture
word analogies by examining various dimensions of the differences
between word vectors (Pennington et al., 2014). For example, the
analogy “king is to queen as man is to woman” should be encoded in the
vector space by the vector equation king − queen = man − woman.

The distributed representation is learned based on the usage of the

3 TF-IDF: An information extraction statistic that indicates how significant a
word is to a document (Ramos, 2003).

4 Gradescope: https://gradescope.com.

J.P. Bernius et al.

https://gradescope.com

Computers and Education: Artificial Intelligence 3 (2022) 100081

7

words. This allows words used in similar contexts to have similar rep-
resentations, naturally capturing their meaning. Embeddings from
Language Models (ELMo) (Peters et al., 2018) is a word embedding
constructed as a task-specific combination of the intermediate layer
representations in a bidirectional language model. It models complex
characteristics of words-use in the language dictated by the syntax and
semantics. It also captures how these uses vary across linguistic contexts,
which is important for addressing polysemy in natural languages.

In a deep language model, the higher-level long short term memory
states are shown to capture context-dependent aspects of word meaning
while lower-level states model aspects of the syntax. By constructing a
representation out of all the layers of the language model, ELMo can
capture both language characteristics. ELMo representations have three
main characteristics to achieve state-of-the-art results in most common
NLP downstream tasks. First, ELMo representations are contextual: the
representation for each word depends on the entire context in which it is
used. They are also deep: the word representations combine all layers of
a deep, pre-trained language model neural network. Finally, ELMo
representations are purely character-based, allowing the network to use
morphological clues to form robust representations for out-of-
vocabulary tokens, unseen in training.

6. Treatment validation

We validate the treatment using a laboratory experiment to study the
feasibility of CoFee. The treatment validation answers two knowledge
questions that address the effects of the treatment artifacts:

Knowledge Question 3: Do groups of similar segments occur which
can receive the same feedback?

Knowledge Question 4: What portion of solutions can CoFee
assess?

Answering Knowledge Questions 3 and 4 addresses Knowledge Goal 2.

6.1. Exercise

We collected a dataset by running a textual exercise in the “Project
Organization and Management” (POM) course at Technical University
of Munich (TUM) using the Artemis platform. In the exercise “iterative
vs. incremental vs. adaptive,” students were asked to differentiate the
terms iterative development, incremental development, and adaptive devel-
opment using examples. 130 students participated in the exercise.

6.2. Study design

We manually evaluated all submissions by segmenting the answers
and separating all segments by their core idea. The 130 student sub-
missions resulted in 762 text blocks. We printed all segments on paper
cards and manually clustered them into groups by similarity in several
iterations. Fig. 6 shows the paper cards with classifications marked using
sticky notes. In the first iteration, we roughly sorted them into three
clusters. We then continued to subdivide each cluster in the following
iterations. The similarity refinement increased with every iteration over
the whole data set. We repeated the process until we reached a satis-
factory assignment into 75 clusters.

6.3. Results and findings

We identified that 95% of all segments could be assigned to clusters.
We found a total of 66 clusters in the dataset. The average cluster has 11
elements with a minimum of two and a maximum of 49; the median
cluster size was four. 717 out of the 762 segments can be assigned to a
cluster (94%).

Finding 1 (Clusters): Clustering of segments for shared grading is
possible. The majority of segments (94%) can be clustered.

The experiment results show that student solutions can be split into

Fig. 6. 760 text segments clustered by hand into 75 clusters.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

8

segments and grouped by similarity. Furthermore, the data suggests that
94% of segments can be part of a grading cluster.

Finding 2 (Grading Potential): Grading efforts can be reduced by
85% through automatic grading of clusters.

The overlap between student answers can reduce grading to one
segment per cluster and unclustered segments. In this instance, the
grading can be reduced to 85%:

(717 − 66)/762 = 85.4% (7)

The unclustered portion of 6% is not suitable for the concept of
shared grading. Therefore, the overall grading effort is reduced from 762
segments to 111 segments, which is 15% of the original grading effort:

(66+ 45)/762 = 14.5% (8)

With these findings, we conclude that CoFee is a suitable treatment
for the artifact design goal, and we proceed with the treatment
implementation.

7. Treatment implementation – Athena

We implemented CoFee in a reference implementation called
Athena5 (Bernius et al., 2021) integrated into the learning platform
Artemis (Krusche & Seitz, 2018). After the exercise deadline, Artemis
sends the students’ answers to Athena for processing. Athena will pre-
process the answers before the assessment begins and identify segments
suitable for the same feedback. Fig. 7 depicts the preprocessing activ-
ities: The system analyzes incoming student answers using NLP, divides
them into text segments, and uses them to create text clusters with
similar text segments from different answers. This is done using a
combination of segmentation and linguistic embeddings, particularly
deeply contextualized word representations (i.e., ELMo). This allows for
an understanding of students’ responses and the generation of individ-
ualized feedback. In this way, a learning platform can automatically
reuse manual feedback for contributions from different students. Auto-
matic individualized feedback suggestions can reduce the workload for
instructors and increase the consistency and quality of feedback to
improve students’ understanding. Fig. 8 depicts the top-level design of
the system, which consists of three steps: segmentation, language
embedding, and clustering.

First, Athena analyzes the answers (incoming text) to identify seg-
ments (Bernius et al., 2020). Therefore, Athena identifies common topics
described in the answers from all students. A keyword represents a topic.
To identify the important topics for an exercise, Athena counts the oc-
currences of lemmatized words across all students and selects the ten
most common words (Bernius et al., 2020). Next, Athena will break
down every student’s answer into clauses. Adjacent clauses that share
the same topic, represented by a keyword and the absence of a new
keyword, are merged to form a segment. If a new keyword appears in the
following clause, we identify a topic shift and start a new segment. The
result is a set of topically coherent segments.

Second, Athena uses an ELMo model to convert each segment to
vector form. ELMo vectors have 1,024 dimensions representing the in-
formation extracted from the segment. The vector representation allows
for a comparison of segments and identifying similarities. Athena uses a
pre-trained ELMo model (Peters et al., 2018) based on a dataset con-
sisting of 5.5B tokens from Wikipedia and news articles.6

Third, Athena employs the Hierarchical Density-Based Spatial Clus-
tering of Applications with Noise (HDBSCAN) clustering algorithm
(McInnes & Healy, 2017) to identify classes of similar text segments.
Within a cluster, Athena shares manually created feedback as sugges-
tions. The hierarchical clustering algorithm allows to determine the
number of clusters dynamically. Further, the hierarchical structure can

dynamically narrow or widen the search radius depending on the
availability of feedback. Narrow clusters provide more accurate feed-
back on the one side; but also limit the possible coverage. Larger clusters
increase the possibility of finding existing feedback to compose a sug-
gestion; however, they also increase the risk of false feedback.

During the manual assessment, Athena uses a prioritized assessment
order. Submissions with several segments in clusters without feedback
are prioritized, maximizing the possible coverage for automatic feed-
back suggestions. Athena searches their respective clusters for each
segment for existing feedback and suggests the closest feedback.
Furthermore, credit points associated with feedback are prioritized
based on the clusters’ credit average. Athena’s automatic feedback
suggestions are displayed to instructors within Artemis as part of the
assessment interface (Bernius & Bruegge, 2019), as depicted in Fig. 9.
Instructors can add additional feedback to unassessed parts of the stu-
dent solution. They can either approve the feedback suggestions or up-
date them as they see fit.

8. Implementation evaluation

This evaluation compares the quantity and quality of feedback in the
course ISE with and without the Athena system. We analyze feedback in
three instances of ISE: In 2019, text exercises on Artemis were intro-
duced during the course. The Artemis platform served as the submission
and feedback platform for students. All feedback was composed manu-
ally and published through Artemis. In 2020, the course introduced the
Athena system as part of Artemis. Students continued to use Artemis to
submit their feedback. Instructors receive feedback suggestions from
Athena when reviewing student answers. Instructors need to check the
feedback suggestions, add additional feedback where needed, and can
also update feedback suggestions as needed. In 2021, the course
continued its use of the Athena system. As part of this experiment, tutors
needed to manually review exercises during the first half of the course.
The Athena system was enabled for the second half, and tutors had to
work with the suggested feedback.

We compare the feedback for exercises using the Athena system
(treatment) with feedback composed manually (control group). We
compare the quantity of feedback, the quality of feedback comments, the
student satisfaction, and the assessment efforts before and after intro-
ducing the Athena system, the introduced intervention.

In this section, we describe the course ISE and the study design of the
evaluation. The evaluation consists of two parts. The first part analyzes
the feedback generated by the system Athena. We analyze how many
assessments receive feedback from Athena by inspecting exercises from
2020 to 2021 where the system was used. This can be summarized in the
following knowledge question:

Knowledge Question 5: What portion of grading can be supported
by Athena?

Further, we study the quality of the feedback suggestions. Therefore,
we study how instructors interact with the suggested feedback. Finally,
as instructors can overwrite the feedback suggestions, we analyze how
much feedback is published to the students. We summarize this as
follows:

Knowledge Question 6: How accurate is Athena feedback?
The second part of the evaluation compares Athena feedback to

instructor feedback. Therefore, we first ask students to rate their feed-
back and compare how Athena feedback performs compared to
instructor feedback.

Knowledge Question 7: How do students perceive Athena
feedback?

Second, we analyze student complaints on their feedback to study if
Athena feedback has a higher quality and attracts fewer complaints than
instructor feedback.

Knowledge Question 8: Does Athena feedback reduce the number
of student complaints on their feedback? 5 Athena: https://github.com/ls1intum/Athena.

6 AllenNLP - ELMo: https://allennlp.org/elmo.

J.P. Bernius et al.

https://github.com/ls1intum/Athena
https://allennlp.org/elmo

Computers and Education: Artificial Intelligence 3 (2022) 100081

9

Fig. 7. Overview of the machine learning activities making up the “Segment Submissions”, “Compute Language Embeddings”, and “Cluster Segments” activities in
Fig. 5. These are used to extract text segments and build text clusters for scoring and similarity analysis (UML activity diagram).

Fig. 8. Top-level design of the Athena system. Athena is composed of four components: Segmentation, Language Embedding, and Clustering implement the machine
learning activities depicted in Fig. 7. The Feedback Engine acts as the facade to Artemis and offers an API that the Assessment component uses to receive feedback
suggestions.

Fig. 9. Example of the instructor interface: Athena presents a feedback suggestion for the first text segment with a feedback comment and a score.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

10

Third, we inspect if the semi-automatic assessment concept in-
fluences the quantity of feedback provided to students.

Knowledge Question 9: Does Athena generate more feedback than
instructors?

8.1. Course

The course ISE is an introductory software engineering course, with
around 2,000 registered students who are mainly computer science
bachelor’s students in their second semester. Students with computer
science as a minor can also enroll in the course. The course covers
software engineering concepts, such as requirements analysis, system
and object design, testing, lifecycles, configuration management, project
management, and UML modeling (Krusche et al., 2020). Before starting
the course, students need fundamental programming experience (e.g.,
Introduction to Computer Science or Fundamentals of Programming).

The instructors use constructive alignment (Biggs, 2003) to align the
teaching concepts and exercises with the course objectives. For each
lecture, they define learning goals based on six cognitive processes in
Bloom’s revised taxonomy (Anderson et al., 2001). The course focuses
on higher cognitive processes: Students apply the concepts in concrete
exercises.

Following an interactive learning approach, ISE teaches software
engineering concepts with multiple small iterations of theory, example,
exercise, solution, and reflection (Krusche & Seitz, 2019). Therefore, it
utilizes exercises to foster student participation (Krusche, Seitz, et al.,
2017) and motivate the students to attend the lectures (Krusche, von
Frankenberg, & Afifi, 2017). The course involves different kinds of
exercises:

1. Lecture exercises as part of the lectures
2. Group exercises solved in small ad hoc groups

Table 1
ISE exercises over the years with their Feed back Factory (cf. Fig. 4) used each year: Instructor Feedback
(I), Athena Feedback (A), or Exercise not used (−).

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

11

3. Homework exercises to be solved throughout the week individually
4. Team exercises to be solved in a team in five 2-week periods
5. Exam exercises to assess the students’ knowledge after the course

has finished in multiple variants

Students were asked to submit their solutions to all but group exer-
cises to Artemis to receive an assessment with feedback and points. The
students could gain bonus points for the final exam when participating
in the exercises. The instructors utilize programming, modeling, tex-
tual, and quiz exercises in the course to train software engineering and
problem-solving skills. Table 1 lists all homework exercises conducted in
the course and marks whether Athena Feedback was employed in
2019–2021.

8.2. Study design

Fig. 10 shows the study design of the evaluation that was instantiated
for each exercise in which Athena was used for grading. The instructor
defines the exercise in Artemis with a problem statement, grading
criteria, example solutions, and a due date. The students can insert their
solutions in plain text on Artemis. After the due date, Artemis sends all
student answers to Athena to preprocess the answers as described in
Section 7. The instructors can review the student answers as soon as
Athena completes the preparation and stores the text clusters. The in-
structors create a review for every student’s answer consisting of mul-
tiple feedback items. The instructors used a chat room during the review
phase to discuss the grading criteria as needed.

Every review can either be classified into one of two categories:

Instructor and Athena feedback. A review is considered to receive
Athena feedback if at least one feedback item was suggested by Athena.
Reviews without feedback suggestions receive Instructor feedback.
Furthermore, Athena stores intermediate versions of all feedback items
to evaluate how instructors work with feedback suggestions.

After the instructors completed the review, we retrieved the classi-
fication of the reviews from the Artemis database using SQL queries.
Two researchers verified the correctness of the queries. We collected the
statistics on the feedback items from Athena. We inserted the mea-
surements in a spreadsheet for further analysis and graphing. Two re-
searchers reviewed the results for consistency and plausibility and took
several samples to check individual feedback entries.

8.3. Results: Athena Feedback

In the implementation evaluation, we answer five knowledge ques-
tions that address the influence of Athena on the grading process. These
knowledge questions address knowledge goal 3 stated in Section 2.

First, we classify the reviews into two two categories. Fig. 11 and
Fig. 12 depict the classification of the reviews. On average, 45%
(Homework 25.2%, Exams 53.9%) of all reviews received Athena
Feedback. In exercise E.19, the system performed best with 75% Athena
feedback. Exercises E.04 and E.14 have the least coverage, with 6%
Athena feedback.

Finding 3 (Coverage): Coverage Athena can cover up to 75% of
reviews with feedback suggestions without previous training data or a
predefined solution.

Second, we further analyze the reviews classified to receive Athena

Fig. 10. Research approach depicted with the involved actors and flow of events (UML activity diagram).

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

12

feedback above. Therefore, we inspect all feedback that is part of these
reviews.

We formulate this data as a binary classification to evaluate Athena’s
performance. Feedback suggestions generated by Athena are Positive,
and the absence of feedback for a given segment is Negative. We compare
initial suggested feedback with the final feedback from the instructor (cf.
Subsection 4.2) to classify both positive and negative suggestions as
either correct (True) or incorrect (False). This leads to the following four
classifications:

TP is a True Positive classification, in which Athena generated feed-
back on a segment that instructors published to students unmodified
or slightly modified, e.g., with an extension.
TN is a True Negative classification, in which Athena did not provide
feedback to a segment. The instructor did not see any need to
providing feedback, either.
FP is a False Positive classification, in which Athena generated false
feedback, and because of that, the instructor had to change the
feedback.
FN is a False Negative classification, in which Athena did not suggest
any feedback; however, feedback was needed for this segment.
Therefore, the instructors had to intervene and compose their own
feedback manually.

Following this classification, we can describe the performance of
Athena following both the sensitivity and specificity values, as well as
the accuracy (Witten et al., 2011):

The recall describes how much feedback has been correctly generated
by the Athena system; this metric is also known as the sensitivity or the
true positive rate (TPR).

TPR =
TP

TP + TN
(9)

The specificity describes the number of segments for which in-
structors did not provide feedback and were left without feedback by
Athena; this metric is also known as the true negative rate (TNR).

TNR =
TN

TN + FP
(10)

The precision describes the proportion of suggested feedback by
Athena published to students by instructors; this metric is also known as
the positive predictive value (PPV).

PPV =
TP

TP + FP
(11)

The accuracy summarizes how much feedback was suggested and
how many segments stayed without feedback correctly.

Accuracy =
TP + TN

TP + TN + FP + TF
(12)

Table 2 summarizes the binary classification results, which are
visualized in Fig. 13.

Finding 4 (Precision): Athena augments instructor feedback pre-
cisely in most cases (PPV = 92%).

The precision of 92% confirms our previous findings (Bernius et al.,
2021). This means that Athena Feedback successfully augments
instructor feedback, rarely suggests incorrect feedback, and is appro-
priate and respects the context within the solutions. In addition, we

Fig. 11. Homework exercises with their assessment ratios. Athena feedback
reviews received automated suggestions which were reviewed by instructors.
On average, 25% of all homework assessments were computer-aided.

Fig. 12. Exam exercises with their assessment ratios. Athena feedback reviews
received automated suggestions which were reviewed by instructors. On
average, 54% of all exam assessments were computer-aided.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

13

conclude that Athena does not generate extra efforts through manual
interventions required from instructors.

Finding 5 (Specificity): Athena does not generate unneeded feed-
back (TNR = 97%).

The specificity of 97% further confirms this, as Athena is good at
identifying segments that do not need feedback. Therefore, there is no
extra work in removing unnecessary or incorrect feedback.

Finding 6 (Accuracy): Up to 78% of the segments were correctly
graded by Athena (Accuracy = 60%).

The accuracy of 60% also supports Finding 3. Future work is needed
to improve Athena’s coverage, both for the portion of submissions and
segments covered in each solution. At the current stage, Athena can help
support instructors by contributing partial assessments. However, more
work is needed to fulfill the vision of autonomous grading and reach
feasible efforts when offering continuous feedback.

8.4. Results: Quality of Athena Feedback compared to instructor feedback

We measured the feedback quality in two ways. First, we asked
students to rate their feedback on a 5-star scale. Out of 15,868 total
reviews done by the instructors, the students rated 530 reviews. Artemis
asks students, “How useful is the feedback for you?” displayed underneath
their feedback and presents the 5-star scale input. Fig. 14 depicts the
distribution by star rating. In the study, 82% of the ratings were either 1-
star or 5-star. Students with computer-aided feedback were more likely
to give a 5-star rating (72%) when compared to students who received
manual feedback (57%). On the same page, computer-aided feedback
received 1-star ratings less often (15%) than manual feedback (25%). On
average, students giving a 5-star rating (94% and 91%, respectively) had

better scores than students giving 1-star ratings (70% and 62%,
respectively).

Finding 7 (Perceived Quality): The computer-aided feedback in
Athena has at least the same quality as manual feedback.

The second measure of feedback quality is students’ complaints – or
the absence or complaints. Students can complain about their feedback,
either requesting a re-evaluation of their solution from a second
instructor or requesting more detailed feedback from the same
instructor. As re-evaluations are time-intense, students are limited to
three complaints in the course; however, legitimate complaints are not
counted against this limit. This policy reduces minor or unjustified
complaints as submitting a complaint is deemed expensive.

Table 3 outlines the number of submissions for all exercises with
Athena feedback and the percentage of complaints. We tested the hy-
pothesis that gradings created using feedback suggestions from Athena
lead to fewer complaints than instructor feedback. A Welch Two Sample
t-test is not suited because the measurements are not normally distrib-
uted. Therefore, we employ the Brunner-Munzel Test (Brunner &
Munzel, 2000; Neubert & Brunner, 2007), a non parametric statistical
test for stochastic equality of two samples. The Brunner-Munzel Test is a
generalization of the Mann–Whitney U test (Mann & Whitney, 1947;
Wilcoxon, 1945) and is suggested as a modern replacement for

Table 2
Results of the binary classification (lest) and analysis (right).

Fig. 13. Visualization of Binary Classification (Table 2) in percent.
Fig. 14. All ratings for ISE homework exercises by star rating. In this figure,
ratings are grouped by Instructor Feedback (n = 428) or Athena Feedback (n =
102). The average score in percent is depicted per rating and assessment type.
In the study, 530 out of 15, 868 reviews were rated by students.

J.P. Bernius et al.

Computers and Education: Artificial Intelligence 3 (2022) 100081

14

nonparametric tests (Karch, 2021). We use the brunnermunzel R pack-
age7 to compute the test. The Brunner-Munzel Test, based on the
complaint rates, results in a test statistic value of t = 3.8146. The p −
value of the test is 0.000466, which is less than the significance level α =
0.01. We can conclude that the Athena-feedback’s complaint rate is
significantly lower than the Instructor-feedback’s complaint rate.

Finding 8 (Quality): Feedback generated from Athena leads to
fewer student complaints.

Third, we compare the ratio between segments with and without
feedback. We inspect all exercises from 2019 to 2021 and separate the
measurements between Athena feedback and instructor feedback.

Finding 9 (Feedback Quantity): No evidence suggests that Athena
leads to more feedback.

8.5. Limitations

This section discusses threats to the results’ trustworthiness and
whether the results are biased based on the researchers’ subjective point
of view. We distinguish between three aspects of validity: internal val-
idity, external validity, and construct validity (Runeson et al., 2012).

8.5.1. Internal validity
The accuracy of the feedback suggestions is measured by the

acceptance of the instructor. A second review from a control instructor
would allow for a more accurate measurement of accuracy. The
instructor might be biased toward confirming a feedback suggestion,
requiring less effort than providing a new comment. We noticed that
most instructors took the review of the automatic feedback suggestions
seriously, but we cannot guarantee that some of the 68 involved
teaching assistants failed to review the automatic feedback suggestions
thoroughly.

Two authors of this article have been involved in teaching the course
ISE and might have influenced the empirical evaluation. However, we
tried to separate the research and instructor perspectives. Further, two
additional instructors have been involved in the course ISE who are not
authors of this paper, and the third author reviewed the results carefully
without being involved in the course. In addition, we observed similar
results in a second course, which was taught by an independent
instructor who was not involved in the research (Bernius et al., 2021).

8.5.2. External validity
Most analyzed exercises have been in the domain of software engi-

neering and computer science in the same university. While we believe
that the approach is generalizable for other domains, we have not shown
this in this study.

8.5.3. Construct validity
The validity of the ratings might be affected by the question’s

wording and the score that the students received. Students with a higher
score are typically more satisfied and less likely to complain about the
quality of the feedback. Therefore, a good rating does not necessarily
mean that the feedback was of good quality. Another limitation could be
that students like the approach of getting feedback. The ratings measure
the perceived quality, which is subjective. We can only infer the quality
based on the ratings. Therefore, we consider Finding 7 on the quality of
the ratings as anecdotal evidence.

8.6. Discussion

The suggestion coverage of Athena is higher for exercises that do not
ask students to come up with their own examples but rather require
students to work based on a given problem context. In the exam exer-
cises E.01, E.03, E.09, E.15 - E.22, students were asked to extract re-
quirements or use cases from a problem statement. In those exercises,
the coverage was mostly above the average, ranging from 48% to 75%.
These questions still require students to apply problem-solving skills but
limit the variability of the answers. This leads to more similar answers
and more reusable feedback.

Exercises asking for examples, such as the ISE homework exercises,
have lower Athena suggestion coverage between 13% and 38%. This
may be due to the increased variability of answers where students
develop their own examples. As Athena tries to find similar text seg-
ments, it is more difficult to find a group with shared segments as stu-
dents choose examples from different problem contexts. Therefore,
students are less likely to produce similar answers, and Athena cannot
learn to reuse feedback among students.

Athena reuses reviews from instructors. Therefore, the quality of the
feedback suggestions depends on the manual feedback provided during
the instructor reviews. If instructors provide incorrect manual feedback,
Athena will not be able to provide correct feedback suggestions. In the
example of ISE, the instructors who review the submission consist pri-
marily of teaching assistants who have limited experience in grading or
providing feedback.

Nevertheless, the approach can improve the review process as it al-
lows instructors to handle larger amounts of reviews or to inspect ex-
amples. Other systems presented in Section 5 suggest comparing
answers only with a sample solution provided by an instructor (Pérez

Table 3
Student complaints on ISE 2019–2021 distinguishing Athena feedback and
instructor feedback. Athena feedback produces significantly fewer complaints
than instructor feedback.

Exercise 2019 2020 2021

Sub.

%
Compl.

Sub.

%
Compl.

Sub.

%
Compl.

H.11 1036 1125 1277
Instructor 1036 0.00% 930 0.86% 1277 1.17%

Athena / / 195 0.00% / /

H.12 943 1032 1122
Instructor 943 0.42% 744 1.88% 1122 2.76%

Athena / / 288 1.74% / /

H.14 998 1103 1228
Instructor 998 1.40% 877 2.96% 1228 2.36%

Athena / / 226 2.21% / /

H.17 890 1013 1112
Instructor 890 1.01% 881 1.70% 1112 2.79%

Athena / / 132 0.76% / /

H.18 943 1027 1165
Instructor 943 0.32% 662 1.06% 927 3.13%

Athena / / 365 0.55% 238 0.00%

H.19 950 1060 1164
Instructor 950 0.53% 1060 5.85% 1164 1.63%

H.20 832 933 1068
Instructor 832 1.68% 753 2.39% 881 2.95%

Athena / / 180 1.11% 187 0.00%

H.21 910 1006 1176
Instructor 910 3.63% 677 7.68% 1176 8.08%

Athena / / 329 3.65% / /

H.22 877 959 /
Instructor 877 1.94% 624 2.72% / /

Athena / / 335 3.58% / /

H.23 / / 1126
Instructor / / / / 945 3.17%

Athena / / / / 181 0.00%

H.24 898 1029 1151
Instructor 898 2.23% 700 1.57% 823 4.01%

Athena / / 329 1.82% 328 0.00%

H.25 882 1013 1118
Instructor 882 3.74% 767 2.22% 872 4.47%

Athena / / 246 1.63% 246 0.00%

7 brunnermunzel R package: https://github.com/toshi-ara/brunnermunzel.

J.P. Bernius et al.

https://github.com/toshi-ara/brunnermunzel

Computers and Education: Artificial Intelligence 3 (2022) 100081

15

et al., 2005), thus reducing the variability in the solution space, which
might limit the students’ creativity. However, creativity is an important
aspect of software engineering education (Krusche, Bruegge, et al.,
2017).

The use of Athena reduces the workload for instructors and, thereby,
enables instructors to better support students individually. All students
receive personal attention in the form of Virtual One-To-One (Bernius &
Bruegge, 2019) feedback. The efficiency gain in the frequent solution
cases results in more time to address specific solutions and take care of
problems. Individual feedback is better than presenting a sample solu-
tion in a lecture format (Higgins et al., 2002), especially in software
engineering, where many creative solutions can co-exist. Individual
discussions for different solutions are needed so students and instructors
can learn about the benefits, consequences, and trade-offs of new
solutions.

9. Conclusion

We have presented an approach that reduces assessment efforts of
textual exercises for instructors while scaling feedback for large courses.

The main contributions are: First, a formalization of the assessment
effort for a large-scale course using the interactive learning teaching
method.

Second, the machine learning-based framework “CoFee” outlines
how to capture assessment knowledge and automatically suggest feed-
back. The framework employs segment-based grading and reuses feed-
back based on segment similarity. We confirmed the frameworks’
validity in a laboratory experiment and found that CoFee can reduce the
instructors grading effort by 85%.

Third, the reference implementation “Athena” demonstrates how
to design and build a system that automatically assesses textual exercises
(Artifact Design Goal). Athena uses the ELMo language model to capture
core ideas of segments and HDBSCAN clustering to identify groups of
similar segments. Athena is open-source software published under the
MIT license and integrated into the Artemis system.

Fourth, the implementation evaluation describes the usage of
Athena in a large-scale software engineering course with up to 2,200
students and up to 68 instructors. The evaluation analyzed the generated
feedback and compared feedback given to the students with and without
Athena. The findings suggest that Athena can provide feedback for up to
75% of student answers. The feedback suggested is 92% precise and 60%
accurate. Athena does not lead to more feedback; however, students
perceive the feedback quality as identical, and fewer students complain
about Athena grading than manual grading. The evaluation further
shows that the accuracy of Athena feedback depends on the type of
textual exercise and the variability of possible answers. A higher vari-
ance within correct solutions leads to less coverage because of fewer
similarities in the student answers.

The article outlines how segment-based structured grading in CoFee
allows for collecting and reusing knowledge generated during the
manual assessment. Machine learning can support instructors with their
assessment work. Working with automated feedback suggestions re-
duces the assessment efforts and helps instructors deliver consistent
feedback and reduce student complaints. Athena does not require
training data before grading to learn correct answers and feedback
suggestions. Instead, it collects knowledge during the assessment. This
incremental process allows instructors to change or introduce new ex-
ercises as needed, preventing students from submitting solutions from
previous years.

10. Future work

Training based on assessments of past exercises allows Athena to
profit from additional knowledge captured in these reviews. However,
future work needs to evaluate whether training data from the same
exercise in previous years can improve the coverage or accuracy of

feedback suggestions.
In addition, the presented research can be extended in four ways:

First, additional intermediate representations of text segments can be
explored. Athena uses ELMo to capture core ideas within text segments.
Further research is needed to explore the accuracy of other types of
models, e.g., transformers such as the Bidirectional Encoder Represen-
tations from Transformers (BERT) model (Devlin et al., 2019) or the
Sparsely Gated Mixture-of-Expert (Jacobs et al., 1991; Lepikhin et al.,
2021) based Facebook WMT model (Tran et al., 2021).

Second, by migrating away from a language-dependent language
model, CoFee can improve on the current limitation to English answers.
Transformer-based models could enable language-independent grading
by converting a segment to a language-independent intermediate rep-
resentation, employing techniques currently used for machine trans-
lations. Following this approach would allow CoFee to create a
language-independent assessment knowledge and associate feedback
to answers independent of the used language. Language-independent
grading can allow international students to answer in their preferred
language. Instructors can thereby assess work in a foreign language they
do not speak themselves.

Third, language models can be fine-tuned by incorporating domain-
specific contexts from course materials, such as textbooks, slides, or
lecture notes. Customized language models allow CoFee to improve the
assessment of exercises requiring a special problem domain knowledge.
Transfer Learning could be applied to fine-tune a general-purpose neural
network for this specific task (Dai & Le, 2015; Howard & Ruder, 2018).
Mayfield and Black (2020) suggest that the relevant world knowledge is
already present in pre-trained BERT models.

Forth, another possibility is to combine CoFee’s content-based
grading with language grading as available in essay scoring systems
(cf. Subsection 5.1). The resulting system considers other aspects of the
work (e.g., grammar, writing style, and language use) and could extend
CoFee’s applicability beyond short-answer exercises.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

This article is based on previously published papers (Bernius &
Bruegge, 2019; Bernius et al., 2020, 2021).

The authors would like to thank Gregor Ziegltrum, Anna Kovaleva,
Ngoc-Minh Tran, Clemens Zuck, Adem Khachnaoui, Can Arisan, Jonas
Petry, Birtan Gültekin, Linus Michel, Michal Kawka, Maisa Ben Salah,
Ndricim Rrapi, Argert Boja, Valerie Bucher, and Tim Cremer for their
contributions to Athena as part of their Bachelor or Master theses.

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors.

References

Alario-Hoyos, C., Kloos, C., Estévez-Ayres, I., Fernández-Panadero, C., Blasco, J.,
Pastrana, S., & Villena-Román, J. (2016). Interactive activities: The key to learning
programming with MOOCs. In European stakeholder summit on experiences and best
practices in and around MOOCs (pp. 319–328).

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E.,
Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching,
and assessing: A revision of Bloom’s taxonomy of educational objectives. Longmans
Green.

Basu, S., Jacobs, C., & Vanderwende, L. (2013). Powergrading: A clustering approach to
amplify human effort for short answer grading. Transactions of the Association for
Computational Linguistics, 1, 391–402. https://doi.org/10.1162/tacl_a_00236

Bernius, J. P., & Bruegge, B. (2019). Toward the automatic assessment of text exercises.
In 2nd workshop on innovative software engineering education ISEE ’19. URL: http://c
eur-ws.org/Vol-2308/isee2019paper04.pdf.

J.P. Bernius et al.

http://refhub.elsevier.com/S2666-920X(22)00036-4/sref1
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref1
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref1
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref1
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref2
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref2
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref2
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref2
https://doi.org/10.1162/tacl_a_00236
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf
http://ceur-ws.org/Vol-2308/isee2019paper04.pdf

Computers and Education: Artificial Intelligence 3 (2022) 100081

16

Bernius, J. P., Kovaleva, A., Krusche, S., & Bruegge, B. (2020). Towards the automation
of grading textual student submissions to open-ended questions. In 4th European
Conference of software engineering education ECSEE ’20 https://doi.org/10.1145/
3396802.3396805

Bernius, J. P., Krusche, S., & Bruegge, B. (2021). A machine learning approach for
suggesting feedback in textual exercises in large courses. In 8th ACM Conference on
learning @ scale L@S ’21 https://doi.org/10.1145/3430895.3460135

Biggs, J. (2003). Aligning teaching and assessing to course objectives. Teaching and
learning in higher education: New Trends and Innovations, 2, 13–17.

Bruegge, B., & Dutoit, A. H. (2009). Object oriented software engineering using UML,
patterns, and java. Prentice Hall.

Brunner, E., & Munzel, U. (2000). The nonparametric behrens-Fisher problem:
Asymptotic theory and a small-sample approximation. Biometrical Journal, 42,
17–25. https://doi.org/10.1002/(sici)1521-4036(200001)42:1<17::aid-
bimj17>3.0.co;2-u

Chen, X., Breslow, L., & DeBoer, J. (2018). Analyzing productive learning behaviors for
students using immediate corrective feedback in a blended learning environment.
Computers & Education, 117, 59–74. https://doi.org/10.1016/j.
compedu.2017.09.013

Cheng, G. (2017). The impact of online automated feedback on students’ reflective
journal writing in an efl course. The Internet and Higher Education, 34, 18–27. https://
doi.org/10.1016/j.iheduc.2017.04.002

Dai, A. M., & Le, Q. V. (2015). Semi-supervised sequence learning. In advances in neural
information processing systems, 28Curran Associates, Inc.. URL: https://proceedings.
neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep
bidirectional transformers for language understanding. In 2019 conference of the
North American chapter of the association for computational linguistics: Human language
technologies, 1 pp. 4171–4186). Association for Computational Linguistics. https://
doi.org/10.18653/v1/N19-1423 (Long and Short Papers).

Feynman, R. P. (1994). Six easy pieces. Basic Books.
Förster, M., Weiser, C., & Maur, A. (2018). How feedback provided by voluntary

electronic quizzes affects learning outcomes of university students in large classes.
Computers & Education, 121, 100–114. https://doi.org/10.1016/j.
compedu.2018.02.012

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Addison-Wesley.

Higgins, R., Hartley, P., & Skelton, A. (2002). The conscientious consumer:
Reconsidering the role of assessment feedback in student learning. Studies in Higher
Education, 27, 53–64. https://doi.org/10.1080/03075070120099368

Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text
classification. In 56th annual meeting of the association for computational linguistics, 1
pp. 328–339). Association for Computational Linguistics volume. https://doi.org/
10.18653/v1/P18-1031. Long Papers.

Irons, A. (2007). Enhancing learning through formative assessment and feedback. Routledge.
Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of

local experts. Neural Computation, 3, 79–87. https://doi.org/10.1162/
neco.1991.3.1.79

Jensen, L. X., Bearman, M., & Boud, D. (2021). Understanding feedback in online
learning – a critical review and metaphor analysis. Computers & Education, 173,
Article 104271. https://doi.org/10.1016/j.compedu.2021.104271

Johanßen, J. O. (2019). Continuous user Understanding in software evolution. Dissertation
Technische Universität München München. URL: http://d-nb.info/1201482682/34.

Karch, J. D. (2021). Psychologists should use brunner-munzel’s instead of mann-
whitney’s u test as the default nonparametric procedure. Advances in Methods and
Practices in Psychological Science, 4, Article 251524592199960. https://doi.org/
10.1177/2515245921999602

Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educational Psychologist, 41, 75–86.
https://doi.org/10.1207/s15326985ep4102_1

Krusche, S., Bruegge, B., Camilleri, I., Krinkin, K., Seitz, A., & Wöbker, C. (2017).
Chaordic learning: A case study. In 39th international Conference on software
engineering: Software engineering Education and training ICSE-SEET ’17 (pp. 87–96).
IEEE. https://doi.org/10.1109/ICSE-SEET.2017.21.

Krusche, S., & Seitz, A. (2018). ArTEMiS: An automatic assessment management system
for interactive learning. In 49th ACM technical symposium on computer science
education (SIGCSE) (pp. 284–289).

Krusche, S., & Seitz, A. (2019). Increasing the interactivity in software engineering moocs
- a case study. In 52nd Hawaii international conference on system sciences (pp. 1–10).

Krusche, S., Seitz, A., Börstler, J., & Bruegge, B. (2017). Interactive learning: Increasing
student participation through shorter exercise cycles. In 19th Australasian computing
education conference (pp. 17–26). ACM.

Krusche, S., von Frankenberg, N., & Afifi, S. (2017). Experiences of a software
engineering course based on interactive learning. In Tagungsband des 15. Workshops
Software Engineering im Unterricht der Hochschulen (SEUH) (pp. 32–40). CEUR.

Krusche, S., von Frankenberg, N., Reimer, L. M., & Bruegge, B. (2020). An interactive
learning method to engage students in modeling. In International conference on
software engineering: Software engineering education and training (pp. 12–22).

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y., Krikun, M., Shazeer, N., &
Chen, Z. (2021). GShard: Scaling giant models with conditional computation and
automatic sharding. In International conference on learning representations. URL:
https://openreview.net/forum?id=qrwe7XHTmYb.

Li, Y., & Yang, T. (2018). Word embedding for understanding natural language: A survey.
In S. Srinivasan (Ed.), Guide to big data applications (pp. 83–104). Cham: Springer.
https://doi.org/10.1007/978-3-319-53817-4_4.

Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables
is stochastically larger than the other. The Annals of Mathematical Statistics, 18,
50–60. https://doi.org/10.1214/aoms/1177730491

Mayfield, E., & Black, A. W. (2020). Should you fine-tune BERT for automated essay
scoring?. In 15th workshop on innovative use of NLP for building educational applications
(pp. 151–162). Association for Computational Linguistics. https://doi.org/
10.18653/v1/2020.bea-1.15.

McInnes, L., & Healy, J. (2017). Accelerated hierarchical density based clustering. In
International conference on data mining workshops (pp. 33–42). https://doi.org/
10.1109/ICDMW.2017.12

Mitchell, T., Russell, T., Broomhead, P., & Aldridge, N. (2002). Towards robust
computerised marking of free-text responses. In 6th international computer assisted
assessment (CAA) conference. UK: Loughborough University.

Neubert, K., & Brunner, E. (2007). A studentized permutation test for the non-parametric
behrens-Fisher problem. Computational Statistics & Data Analysis, 51, 5192–5204.
https://doi.org/10.1016/j.csda.2006.05.024

Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word
representation. In Conference on empirical methods in natural language processing (pp.
1532–1543). Association for Computational Linguistics. https://doi.org/10.3115/
v1/D14-1162.

Pérez, D., Gliozzo, A. M., Strapparava, C., Alfonseca, E., Rodríguez, P., & Magnini, B.
(2005). Automatic assessment of students’ free-text answers underpinned by the
combination of a bleu-inspired algorithm and latent semantic analysis. In 18th
international Florida Artificial intelligence research society conference (pp. 358–363).
AAAI Press. URL: http://www.aaai.org/Library/FLAIRS/2005/flairs05-059.php.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L.
(2018). Deep contextualized word representations. In Conference of the North
American chapter of the association for computational linguistics: Human language
technologies (pp. 2227–2237). Association for Computational Linguistics. https://doi.
org/10.18653/v1/N18-1202.

Popper, K. R. (1934). Logik der Forschung – Zur Erkenntnistheorie der modernen
Naturwissenschaft. Springer.

Popper, K. R. (1959). The logic of scientific discovery. Hutchinson.
Pulman, S. G., & Sukkarieh, J. Z. (2005). Automatic short answer marking. In 2nd

Workshop on building educational applications using NLP EdAppsNLP 05 (pp. 9–16).
Association for Computational Linguistics. https://doi.org/10.5555/
1609829.1609831.

Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries. In 1st
instructional conference on machine learning, 242 pp. 1–4).

Runeson, P., Höst, M., Rainer, A., & Regnell, B. (2012). Case study research in software
engineering. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118181034

Singh, A., Karayev, S., Gutowski, K., & Abbeel, P. (2017). Gradescope: A fast, flexible,
and fair system for scalable assessment of handwritten work. In 4th Conference on
learning @ scale L@S ’17 (pp. 81–88). ACM. https://doi.org/10.1145/
3051457.3051466.

Sukkarieh, J., Pulman, S. G., & Raikes, N. (2003). Auto-marking: Using computational
linguistics to score short, free-text responses. In 29th Annual Conference of the
international Association for educational assessment IAEA (pp. 1–15).

Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for
problem solving in learning algebra. Cognition and Instruction, 2, 59–89. https://doi.
org/10.1207/s1532690xci0201_3

Trafton, J. G., & Reiser, B. J. (1993). Studying examples and solving problems: Contributions
to skill acquisition. Washington, DC, USA: Technical Report Naval HCI Research Lab.

Tran, C., Bhosale, S., Cross, J., Koehn, P., Edunov, S., & Fan, A. (2021). Facebook AI’s
WMT21 news translation task submission. In 6th conference on machine translation
(pp. 205–215). Association for Computational Linguistics. URL: https://aclantholog
y.org/2021.wmt-1.19.

VanLehn, K. (1996). Cognitive skill acquisition. Annual Review of Psychology, 47,
513–539. https://doi.org/10.1146/annurev.psych.47.1.513

Wieringa, R. J. (2014). Design science methodology for information systems and software
engineering. Springer. https://doi.org/10.1007/978-3-662-43839-8

Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometric Bulletin, 1,
80–83. https://doi.org/10.2307/3001968

Williams, R., & Haladyna, T. (1982). Logical operations for generating intended
questions (logiq): A typology for higher level test items. In G. H. Roid, &
T. M. Haladyna (Eds.), Toward a technology of test-item writing (pp. 161–187). New
York: Academic Press.

Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining: Practical machine learning tools
and techniques. Elsevier.

J.P. Bernius et al.

https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3396802.3396805
https://doi.org/10.1145/3430895.3460135
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref7
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref7
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref8
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref8
https://doi.org/10.1002/(sici)1521-4036(200001)42:1<17::aid-bimj17>3.0.co;2-u
https://doi.org/10.1002/(sici)1521-4036(200001)42:1<17::aid-bimj17>3.0.co;2-u
https://doi.org/10.1016/j.compedu.2017.09.013
https://doi.org/10.1016/j.compedu.2017.09.013
https://doi.org/10.1016/j.iheduc.2017.04.002
https://doi.org/10.1016/j.iheduc.2017.04.002
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/7137debd45ae4d0ab9aa953017286b20-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref14
https://doi.org/10.1016/j.compedu.2018.02.012
https://doi.org/10.1016/j.compedu.2018.02.012
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref16
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref16
https://doi.org/10.1080/03075070120099368
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref19
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1162/neco.1991.3.1.79
https://doi.org/10.1016/j.compedu.2021.104271
http://d-nb.info/1201482682/34
https://doi.org/10.1177/2515245921999602
https://doi.org/10.1177/2515245921999602
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1109/ICSE-SEET.2017.21
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref26
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref26
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref26
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref27
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref27
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref28
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref28
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref28
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref29
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref29
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref29
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref30
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref30
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref30
https://openreview.net/forum?id=qrwe7XHTmYb
https://doi.org/10.1007/978-3-319-53817-4_4
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.18653/v1/2020.bea-1.15
https://doi.org/10.18653/v1/2020.bea-1.15
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref36
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref36
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref36
https://doi.org/10.1016/j.csda.2006.05.024
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://www.aaai.org/Library/FLAIRS/2005/flairs05-059.php
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref41
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref41
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref42
https://doi.org/10.5555/1609829.1609831
https://doi.org/10.5555/1609829.1609831
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref44
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref44
https://doi.org/10.1002/9781118181034
https://doi.org/10.1145/3051457.3051466
https://doi.org/10.1145/3051457.3051466
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref47
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref47
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref47
https://doi.org/10.1207/s1532690xci0201_3
https://doi.org/10.1207/s1532690xci0201_3
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref49
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref49
https://aclanthology.org/2021.wmt-1.19
https://aclanthology.org/2021.wmt-1.19
https://doi.org/10.1146/annurev.psych.47.1.513
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.2307/3001968
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref54
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref54
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref54
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref54
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref55
http://refhub.elsevier.com/S2666-920X(22)00036-4/sref55

	Machine learning based feedback on textual student answers in large courses
	1 Introduction
	2 Methodology
	3 Problem investigation
	3.1 Feedback in the learning process
	3.2 Interactive learning
	3.3 Artemis
	3.4 Assessment

	4 Treatment design – CoFee
	4.1 Architecture
	4.2 Dynamic behavior

	5 Related work
	5.1 Assessment systems
	5.1.1 Atenea
	5.1.2 Powergrading
	5.1.3 Gradescope

	5.2 Language models

	6 Treatment validation
	6.1 Exercise
	6.2 Study design
	6.3 Results and findings

	7 Treatment implementation – Athena
	8 Implementation evaluation
	8.1 Course
	8.2 Study design
	8.3 Results: Athena Feedback
	8.4 Results: Quality of Athena Feedback compared to instructor feedback
	8.5 Limitations
	8.5.1 Internal validity
	8.5.2 External validity
	8.5.3 Construct validity

	8.6 Discussion

	9 Conclusion
	10 Future work
	Declaration of competing interest
	Acknowledgments
	References

