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Abstract— Industrial robots are essential for modern pro-
duction but often struggle to adapt to new tasks. Modular
(reconfigurable) robots can overcome this challenge by elim-
inating the need to replace the whole robot. However, finding
the optimal assembly for a task remains difficult because a
valid path has to be computed for each generated assembly
– consuming a significant fraction of the computation time.
Similar to online path planning, where previous approaches
adapt known paths to a changing environment, we show
that transferring paths from previously considered module
assemblies accelerates path planning for the next assemblies.
On average, our method reduces the planning time for single-
goal tasks by 50%. The usefulness of our method is evaluated
by integrating it in a genetic algorithm (GA) for optimizing
assemblies and evaluating it on our benchmark suite CoBRA.
Within the optimization loop for modular robots, the time used
to check a single assembly is shortened by up to 50%.
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I. INTRODUCTION

Modular (reconfigurable) robots realize more efficient
automation, especially in small-scale manufacturing: They
exploit economies of scale in robot production, adapt to
changing applications, reduce the complexity of many tasks,
and simplify maintenance [1]. Multiple companies and start-
ups exploit these advantages, e.g., Beckhoff1, Hebi2, and
RobCo3.

Adapting modular robots to a specific task is a complex,
hybrid optimization problem, requiring a joint optimization
of which modules to assemble and how to move them to
fulfill a given task [2]. Current optimization methods involve
path planning for each feasible assembly, e.g., [3]–[9], which
often dominates the computation time. To address this issue,
we introduce planning with reuse, i.e., we adapt previously
obtained paths to similar modular robot assemblies to reduce
computation time, as sketched in Fig. 1.

Our novel approach involves retrieving and adapting a
previous path to fulfill all user-provided specifications. We
first demonstrate the efficacy of our method in tasks with a
single goal, using a fixed set of known paths and assemblies.
Subsequently, we extend our approach to tasks with multiple
goals and integrate it into modular robot optimization based
on genetic algorithms. Our experiments show a reduction in
planning time of up to 50%.

All authors are with the Technical University of Munich, School of
Computation, Information and Technology, Assoc. Professorship for Cy-
ber Pphysical Systems, Boltzmannstraße 3, 85748, Garching, Germany.
{matthias.mayer, zihao.li, althoff}@tum.de

1https://www.beckhoff.com/de-de/produkte/motion/atro-automation-
technology-for-robotics/, accessed on July 4th, 2024.

2https://www.hebirobotics.com/, accessed on July 4th, 2024.
3https://www.robco.de, accessed on July 4th, 2024.
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Fig. 1. The green end-effector path p∗ between goals g1 and g2 was
planned for and executed on the previous assembly r∗. We modify the
previous solution by reusing the old path of joint angles p∗, resulting in the
red end-effector path of rN+1, and appending the blue path segments.

A. Related Work

Path planning for robots has been studied for a long
time [10]. One of the most commonly used approaches is
sampling-based planning, which includes multi-query and
single-query algorithms. The probabilistic roadmap plan-
ner (PRM) [11] and its variants are notable multi-query
algorithms. A Rapidly-exploring random tree (RRT) [12]
is a single-query algorithm with many variants growing a
tree from the start configuration by randomly sampling the
configuration space. In this work, we use RRT-Connect [13],
which grows trees from the start and goal configurations until
they connect; if RRT-Connect is used unaltered to plan a
complete path, we call this planning from scratch.

While the initial idea of RRTs is to explore the configura-
tion space, in practice, specific end-effector poses are usually
desired, e.g., the pick-up location of an object, which requires
the integration of inverse kinematics. The growth of rapidly-
exploring random trees can be biased toward the desired goal
pose [14] instead of towards a random direction. The work in
[15] suggested a two-staged extension of RRTs, combining
inverse kinematics with RRT-Connect.

Extending sampling-based planning to online methods that
react to changing environments has been tackled, e.g., by the
Lightening framework [16]. The authors propose a retrieve-
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repair method that looks up previous planning results based
on similar environments and repairs these retrieved paths
such that they are collision-free in the new environment. Data
from previous planning attempts can be stored, e.g., as sparse
roadmaps (SPARS) [17] used by [16] or as found paths with
their corresponding task [18]. Relevant previous planning
attempts can be determined by minimizing a similarity
function [19], [20].

Modular robots and their adaptation to specific tasks have
been studied extensively; a small overview is given in [21,
Ch. 22.2.5]. Proposed solutions to find optimal assemblies
include the reduction of the search space to common robot
kinematics [4], hierarchical testing with increasing complex-
ity [3]–[5], or reducing the constraints on the solution by
only requiring the existence of inverse kinematic solutions
instead of complete trajectories [6].

B. Problem Statement
Following [2], we want to find modular robots assembled

from a set of robot modules R that fulfill a task Θ. Each
task specifies the constraint set C and a set of goals G. Our
goal is to find

• assembled robots ri stored as a tuple of modules ri =
(m1, . . . ,ma),mi ∈ R, with ni ∈ N>0 degrees of
freedom, and

• associated ni-dimensional paths pi : [0, 1] → Rni sub-
ject to the constraints pi(0) = qstart, pi(1) = qgoal,∀t ∈
[0, 1],∀c ∈ C : c(pi(t)) ≤ 0.

In contrast to [2], we only consider tasks Θ with a fixed
robot base pose.

To leverage previous experience, we store all previously
obtained valid paths pi, i ∈ 1, . . . , N,N ∈ N for the
corresponding robot assemblies ri in a database P =
{(r1, p1), . . . , (rN , pN )}, where in contrast to [18], we store
robots and not environment states alongside the paths.
Promising previous paths p∗ ∈ P4 are retrieved by our novel
distance function and are adapted to the next assembly rN+1

by planning repair paths, as in [16].

C. Contributions
For the first time, we leverage previous experience in

modular robot optimization to accelerate the underlying
path planning. In contrast to similar works on online path
planning, we consider a problem where the robot changes.
In particular, we

• adapt path retrieval and repair to handle changing mod-
ular robot assemblies;

• reduce planning times for single and multiple goals;
• integrate our path planner into our modular robot opti-

mization based on genetic algorithms.
In the next section, we present our method, including path

retrieval in Sec. II-B, path repair in Sec. II-C, and integration
into modular robot optimization in Sec. II-D. We present
our numerical experiments in Sec. III, which we discuss in
Sec. IV. Lastly, we summarize our results in Sec. V.

4We use this slight abuse of notation to indicate that p∗ is an element in
one of the tuples inside P .

II. METHOD

Our new method planning with reuse is based on RRT-
Connect and consists of two steps: path retrieval and path
repair. A high-level overview of its sub-steps is provided in
Fig. 2. First, given a database P of N previous assemblies
and paths, path retrieval selects the most promising candidate
p∗ ∈ P (green in Fig. 1, 2a) from the database for reuse on
the next assembly rN+1 (red in Fig. 1, 2). Second, path
repair connects p∗ to the goals in the workspace of rN+1,
using RRT-Connect to plan the connecting path segments
(blue in Fig. 1, 2f). Our database P grows with each
successfully evaluated assembly rN+1, storing it with the
found collision-free path pN+1.

A. Notation

For each path pi solving task Θ on assembly ri, the
configurations at the start and end of the path are denoted
as qs

pi ∈ Rni and qg
pi ∈ Rni ; the corresponding end effector

poses are Tstart
pi ∈ SE(3) and Tgoal

pi ∈ SE(3), which are
calculated via the forward kinematics of assembly ri [22].
Our method section will mostly focus on tasks with a single
point-to-point (PTP) movement, defined by a desired start
pose Tinit ∈ SE(3) and goal pose Tdesired ∈ SE(3). The
configurations fulfilling Tinit and Tdesired with ri are denoted
as qts

i ∈ Rni and qtg
i ∈ Rni , and are calculated by inverse

kinematics implemented in [22].

B. Path Retrieval

Path retrieval is implemented according to Alg. 1 and is
used to find the best previous path p∗ ∈ P to adapt to the
next module assembly rN+1. We implement this retrieval by
minimizing a distance function, considering pose distance
δ1 and configuration distance δ2. Figs. 2a-2e show the steps
to find p∗. First, we select 0 < K ≤ N candidates by
minimizing the pose distance δ1, then use the configuration
distance δ2 to obtain the best path p∗. Both distance criteria
are based on the assumption that smaller joint space distances
result in quicker repairs, which is validated in our numerical
experiments. Next, the two distance functions are introduced.

1) Pose Distance δ1: Our pose distance function takes
the new assembly rN+1 and stored paths pi ∈ P as inputs.
Following [2], we use the shorthand ∆S(T,Tdesired) =
S(T−1

desiredT), to denote the distance between two poses under
a projection S. Our work uses the Euclidean distance rsph
and the rotation angle ΘR between the two poses to define

δ1,i =∆rsph(T
start
pi ,Tinit) + ∆ΘR

(Tstart
pi ,Tinit)+

∆rsph(T
goal
pi ,Tdesired) + ∆ΘR

(Tgoal
pi ,Tdesired),

(1)

which is calculated for each pi ∈ P by lines 1-2 in Alg. 1.
The K path candidates and corresponding assemblies with
the lowest distance δ1 are selected in line 3.

Intuitively, this distance helps to select paths that start
and end close to the intended goals if executed on the new
assembly rN+1. In Fig. 2a, these distances are measured at
either end of the path pi executed on the old ri (in green)
and new assembly rN+1 (in red). We show the distance
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Fig. 2. We show the sub-steps of path planning with reuse, mostly in joint space. 2a - 2e retrieve the candidate path p∗ to adapt to a new assembly
rN+1. In 2f, p∗ is repaired by planning the valid blue segments to Tinit,Tdesired and adding them to the start and end of p∗ resulting in pN+1.

Algorithm 1 Path retrieval

Input: Database P , new assembly rN+1, starting pose Tinit,
goal pose Tdesired, task Θ

Output: A path to reuse p∗ or ∅
1: [Tstart

pi ,Tgoal
pi ]← eval_fk(P, rN+1)

2: δ1,i ← calc_err(Tstart
pi ,Tgoal

pi ,Tinit,Tdesired)
3: candidates← select(δ1,i,K)
4: δmin, p

∗ ←∞,∅
5: for p in candidates do
6: if ¬validate(p,Θ, rN+1) then continue end if
7: [qts

N+1,q
tg
N+1]← solve_ik(rN+1,Tinit,Tdesired)

8: [qs,min
pi ,qg,min

pi ]←
find_nearest_config(p,qts

N+1,q
tg
N+1)

9: p← crop(p,qs,min
pi ,qg,min

pi )
10: δ2 ← eval_cost(qs,min

pi ,qg,min
pi ,qts

N+1,q
tg
N+1)

11: if δ2 < δ̄2 then continue end if
12: if δ2 < δmin then [δmin, p

∗]← [δ2, p] end if
13: end for

components in black – at the start of pi in orientation
and translation, with ∆ΘR

≈ 90◦, and at the end, a pure
translation of ∆rsph

.

2) Configuration Distance δ2: After obtaining the K best
candidate paths according to δ1, we minimize the distance in
configuration space to select the best path for reuse p∗. First,
each of the K candidate paths pi is validated (Alg. 1, line 6)
for rN+1 to ensure that pi does not collide with any obstacles
in the configuration space of rN+1. Colliding segments of
pi at either end are removed, as shown by the dotted line in
Fig. 2b. Any pi with a collision in its center is discarded.

At this point, the configurations at the ends of pi are not

moving the end-effector of rN+1 to the desired poses Tinit
and Tdesired (red circles in Fig. 1). To minimize the length
of repair paths, we find nearby inverse kinematic solutions
for rN+1. We take qs

pi and qg
pi (the configurations at either

end of pi) as initial guesses for the local inverse kinematics
solver from [22], which, if successful, returns qts

N+1, qtg
N+1

(Alg. 1, line 7). The black arrows in Fig. 2c indicate the
local search.

Afterwards, we determine the nearest configurations by
Euclidean distance on pi to qts

N+1 and qtg
N+1, denoted by

qs,min
pi and qg,min

pi in line 8 of Alg. 1 and Fig. 2d. The
candidate path pi is cropped between qs,min

pi and qg,min
pi ,

resulting in the final candidate to reuse; see removed red
dashed line-segment in Fig. 2d.

Lastly, we define the second distance (see Fig. 2e) as

δ2 =
∥∥∥qs,min

pi − qts
N+1

∥∥∥
2
+
∥∥∥qg,min

pi − qtg
N+1

∥∥∥
2
. (2)

We reject pi with δ2 over a threshold δ̄2 to avoid returning
paths requiring substantial repairs. The path p∗ and assembly
r∗ minimizing δ2 are selected for path repair:

(p∗, r∗) = argmin
p,r∈P

(δ2(p, r)), s.t. δ2 < δ̄2

We choose the first path if multiple paths with the same
minimal distance exist.

To extend path retrieval to a set of Ng > 1 goals G =
{g0, ..., gNg}, the start configuration qk−1

N+1 is fixed ∀k ∈
]1, Ng] when planning the path from goal gk−1 to gk, while
qk
N+1 can still be any inverse kinematic solution of gk for

rN+1. Paths are still retrieved when planning from one goal
to the next, as described previously.



C. Path Repair

In this section, we describe path repair, as illustrated by
the solid blue segments in Fig. 1 and 2f. Continuing from
the result of path retrieval p∗, one needs to find two path
segments connecting qs,min

pi and qg,min
pi directly to qts

N+1

and qtg
N+1, respectively. RRT-Connect is used to plan these

connecting path segments.
If both repairing paths are found, they are concatenated

with the retrieved path p∗. This is the desired path pN+1

connecting the goals Tinit and Tdesired with the assembly
rN+1. As with path retrieval, in multi-goal situations, path
repair needs to be applied to each p∗ retrieved between two
consecutive goals gk−1 and gk.

D. Integration into Modular Robot Optimization

An application of our problem statement from Sec. I-B
is modular robot optimization, e.g., using genetic algorithms
[5]. The optimization tries to find the assembly and associ-
ated path, which minimizes a cost function C, such as cycle
time, the negation of which (−C) is the fitness function of
the genetic algorithm. We integrate our novel algorithm from
Sec. II-B and II-C as the planner to calculate this fitness. In
this case, the database P stores valid paths of assemblies in
a single genetic algorithm run, which our method adapts to
assemblies in later generations.

When optimizing many assemblies, previous paths might
be reused multiple times, resulting in multiple repairs to
a path and, thereby, ever longer paths. Thus, we limit the
number dpi of previous paths included in a path pi. Only
path-assembly pairs with dpi below a threshold value d̄ ∈
N>0 are added to the database P .

In some cases, planning with reuse can fail for an as-
sembly rN+1. Therefore, we add planning from scratch, i.e.,
planning the complete path with RRT-Connect, as a fallback.
Any path found by planning from scratch is also added to P
together with rN+1. Commonly, the fallback happens if P is
empty at the start of optimization or the path retrieval/repair
methods fail.

III. NUMERICAL EXPERIMENTS

A. Setup

We use the RRT-Connect implementation from the Open
Motion Planning Library (OMPL) [23], and the modular
robot simulator Timor Python [22]. Our baseline is planning
from scratch, as presented in [5]. We compare the efficiency
of this baseline and our algorithm by the planning time tplan
required to find a valid path.

The path planners are tested on tasks from the Composable
Benchmark for Robotics Applications (CoBRA) [2], which
provides tasks with different goals and obstacles. We select
the tasks Whitman2020/with_torque/{3g_3o/22,
3g_3o/25, 5g_5o/16, 5g_5o/45}5 for our experi-
ments.

5Find each task by its ID on cobra.cps.cit.tum.de/tasks. The tasks contain
three or five goals and obstacles. We omit the common prefix for brevity.
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Our first experiment in Sec. III-B plans paths between
the first two goals of these four tasks. For each task, we
find Af , a set of assemblies with valid inverse kinematics
solutions at the goals of the task by applying the filters from
[5]. We tested the path planners with a random selection of
40 assemblies from Af and repeated each attempt 20 times,
using planning with reuse and from scratch, respectively. The
database P for reuse is initialized for each experiment with
the paths found by planning from scratch in the same round.
In this experiment, we limit the runtime of RRT-Connect in
both methods to 5 s.

Next, the experiment in Sec. III-C considers path planning
with multiple consecutive goals. Here, we sort the assembly
set Af used in Sec. III-B by regarding each assembly as a
string of ordered modules and consider the first 40 assem-
blies; thereby, minimizing the difference between consecu-
tive assemblies. Lastly, we test both planning methods within
modular robot optimization based on a genetic algorithm in
Sec. III-D.

B. Planning with a Fixed Database and a Single Goal

We first compare the performance of planning with reuse
and from scratch for planning a single path between two
goals, as shown in Fig. 1. Fig. 3 shows the histogram of
planning times tplan for task 3g_3o/22; the distributions
for the other tasks are quite similar. The average planning
time for the tasks is shown in the first two rows of Tab. I.
Overall, the planning time with the reuse method has a more
concentrated distribution, as seen in Fig. 3. On average, over
all tasks and runs, planning with reuse reduced the planning
time by 50.58%.

Fig. 4 plots the success rate of both planners vs. time-
out. In general, planning with reuse is more likely than
planning from scratch to find a valid path at any timeout.
We identify timeouts for the following experiments by a

https://cobra.cps.cit.tum.de/tasks?version=2022&scenario_id__icontains=with_torque%2F3g_3o%2F22
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https://cobra.cps.cit.tum.de/tasks?version=2022&scenario_id__icontains=with_torque%2F5g_5o%2F45
https://cobra.cps.cit.tum.de/tasks
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desired success rate of 95%. The timeout for planning with
reuse is, therefore, set to be 1.1 s (task 3g_3o/22), 1.2 s
(task 3g_3o/25), 1.5 s (task 5g_5o/16), and 1.7 s (task
5g_5o/45); for planning from scratch to 2.0 s, 2.0 s, 1.9 s,
and 2.3 s, respectively.

We assumed that the time to repair paths is proportional
to the pose and configuration distance between the path ends
and the goals of the task to motivate our distance functions.
To validate this, we analyze the Pearson correlation coef-
ficient6 between all observed pose distances δ1 or configu-
ration distances δ2 and planning times tplan. We determine
correlation coefficients with 95% confidence intervals via
bootstrapping within [0.384, 0.500 ] and [0.545, 0.652 ] for
pose and configuration distance, respectively. Permutation
testing rejects the hypothesis that there is no correlation in
both cases with a p-value of 10−5, i.e., the minimal possible
given 105 resamples.

C. Planning with a Growing Database and Multiple Goals

This sub-section compares both planners in the multi-goal
setting with an iteratively growing database, where planning
with reuse can only retrieve its previous results. The time
limits for both planners are set based on the time to reach
a 95% success rate in Fig. 4. We run the experiment on
a server in parallel; thus, the absolute runtime increases in
comparison to Sec. III-B.

First, we compare the planning time tplan, as shown in
the second half of Tab. I. Planning with reuse reduces it
on average by 23.22%. In 36.94% of attempts the fallback
from Sec. II-D is used. The average time to plan a path to a
single goal only with reuse is 0.913 s. With the time limits
determined in Sec. III-B, planning with reuse succeeds in

6Calculated using docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.pearsonr.html, accessed on July 4th, 2024.

98.81% of planning attempts, while planning from scratch
succeeds in 97.28%.

D. Integration into Modular Robot Optimization

We test planning with reuse inside the genetic algorithm
introduced in Sec. II-D and compare it to planning from
scratch, the previously used planner. For each task, we run
the genetic algorithm six times with planning with reuse/from
scratch embedded in the fitness function of the genetic
algorithm to calculate the fitness −C. C is the execution time
for a trajectory with limited joint velocities and accelerations
such that a real robot can track them. Each found path is
mapped to such a trajectory using [24].

We use the same initial population for the genetic al-
gorithm in each experiment with either planning method.
The initial population contains 120 individuals, evolving for
100 generations, resulting in 12 000 evaluated assemblies.
Because our novel planning algorithm is designed to only
test for feasible paths, we re-plan paths for the ten best
assemblies found from scratch and report their minimum
execution time as the final best cost C.

Tab. II summarizes the results of genetic algorithm opti-
mization with both planners. Comparing the average plan-
ning time for each assembly tplan, it is reduced by 6.96% to
50.26% when using planning with reuse instead of planning
from scratch. The distribution of the planning time is stochas-
tic, and the data lies in a big range, which is indicated by the
given standard deviations. Post-processing is useful for our
novel planning method, reducing the final cost versus the
results during fitness evaluation by 19.41%, making them
on average only 5% longer than the planning from scratch
results. Lastly, we count the assemblies that successfully find
paths and solve the tasks in the last two rows of Tab. II.

IV. DISCUSSION

A. Standalone Comparison of Planning Methods

The results in Sec. III-B and Sec. III-C both indicate that
planning with reuse outperforms planning from scratch in
planning time tplan. Compared to the multi-goal results, the
single-goal results in Sec. III-B show a larger planning time
reduction and shorter average planning time. This could be
due to a better database P where all entries are planned from
scratch in the single-goal setting. Additionally, the fallback
to planning from scratch increases the average runtime of
planning with reuse in the multi-goal setting. Lastly, in the
multi-goal setting, only the configurations of the next goal
pose can be chosen freely, resulting in a longer configuration
distance to repair from qs,min

pi to qk−1
N+1.

B. Comparison within Modular Robot Optimization

Sec. III-D shows that planning with reuse reduces the
average planning time tplan for a single assembly. As we
run these optimizations on a server in parallel, the absolute
runtime increases compared to Sec. III-B. The relative time
reduction is larger than in Sec. III-C. We suggest that com-
pared to the assemblies considered in Sec. III-C, the genetic
algorithm generates assemblies with increased similarity,
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TABLE I
PLANNING TIMES FOR PLANNING WITH REUSE (PWR) AND PLANNING FROM SCRATCH (PFS) FOR SINGLE AND MULT. GOALS (AVG. ± STD. DEV.).

BOLD VALUES INDICATE THE MINIMUM TIME PER TASK, CONSIDERED GOAL(S), AND MEASUREMENT.

Goals Subpart Algorithm 3g_3o/22 3g_3o/25 5g_5o/16 5g_5o/45

Single
- PWR (0.47± 0.32) s (0.50± 0.48) s (0.58± 0.53) s (0.63± 0.48) s

- PFS (1.12± 0.60) s (1.02± 0.61) s (1.06± 0.55) s (1.20± 0.66) s

Multiple

Reuse PWR (0.93± 0.71) s (0.76± 0.58) s (0.91± 0.68) s (1.05± 0.74) s

Fallback PWR (1.77± 0.70) s (1.60± 0.70) s (1.82± 0.74) s (1.82± 0.84) s

Total PWR (1.34± 0.82) s (1.06± 0.74) s (1.18± 0.81) s (1.30± 0.85) s

- PFS (1.53± 0.57) s (1.43± 0.56) s (1.69± 0.62) s (1.72± 0.76) s

TABLE II
RESULTS FOR PLANNING WITH REUSE (PWR) AND PLANNING FROM SCRATCH (PFS) USED INSIDE THE GENETIC ALGORITHM (AVG. ± STD. DEV.).

Observation Algorithm 3g_3o/22 3g_3o/25 5g_5o/16 5g_5o/45

Planning
time tplan

PWR (3.09± 2.13) s (2.87± 2.25) s (7.56± 4.68) s (10.02± 3.13) s

PFS (4.97± 1.24) s (5.77± 1.26) s (10.01± 3.08) s (10.77± 2.01) s

Final path
cost C

PWR (13.51± 2.70) s (13.64± 3.44) s (25.49± 4.71) s (28.80± 7.26) s

PFS (12.89± 3.57) s (13.24± 4.45) s (24.31± 3.31) s (26.15± 4.07) s

Planning
successes

PWR (106.67± 132.27) (120.00± 164.47) (19.83± 20.31) (7.00± 1.55)

PFS (102.17± 125.78) (90.83± 107.62) (20.33± 23.91) (8.17± 3.13)

as it mostly recombines previous ones with crossover and
mutation. Additional time savings are realized for identical
assemblies appearing in different generations.

In easier tasks, i.e., those with three goals and three
obstacles, the genetic algorithm will find more feasible
assemblies, resulting in a larger database of previous paths
P and, thereby, increasing the advantage of planning with
reuse, as shown in the left columns of Tab. II. The average
planning time for the 3g_3o tasks is reduced by about 44%,
while the 5g_5o tasks only saw a 16% decrease.

According to Tab. II, only a few assemblies can solve
each task. Even in the best case, paths were found for
less than 1% of assemblies. The other assemblies usually
cannot pass the filter requiring a valid inverse kinematics
solution for every goal, contributing to the overall runtime
of the genetic algorithm. Still, path planning accounts for a
relatively high fraction of overall genetic algorithm runtime
(17.46%− 30.19% with planning from scratch; 15.54%−
25.84% with planning with reuse). Also, increased overall
population fitness requires more path planning, increasing the
share of planning time tplan of total runtime. In most cases,
planning with reuse shortens the average total time of genetic
algorithms. This reduced optimization time does not affect
the final optimization output, as indicated by the comparable
best path costs found with both planning methods.

V. CONCLUSION

We propose planning with reuse – a novel method for
modular robot path planning. The method is inspired by the
slight changes to modular robots during common iterative
optimization algorithms, such as genetic algorithms. Our
method finds paths for new module assemblies by retrieving
a path planned for a previously considered assembly and
adapting it to the new assembly.

Compared to planning from scratch, planning with reuse
exhibits a reduced average planning time for all tasks,
whether planning for a single or multiple goals. Integrating
our approach in optimizing assemblies of modular robots
using genetic algorithms results in decreased planning times,
while the final solutions from both approaches have compa-
rable cycle times.
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