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A B S T R A C T

The provision of geometric and semantic information is among the most fundamental tasks in BIM-based
building design. As the design is constantly developing along with the design phases, there is a need for a
formalism to define its maturity and detailing. In practice, the concept of Level of Development (LOD) is
used to specify what information must be available at which time. Such information is contractually binding
and crucial for different kinds of evaluations. Numerous commercial and open-source BIM tools currently
support the automatic validation of semantic information. However, the automatic validation of the modeled
geometry for fulfilling the expected detailing requirements is a complex and still unsolved task. In current
practice, domain experts evaluate the models manually based on their experience. Hence, this paper presents
a framework for formally analyzing and automatically checking the Level Of Geometry (LOG) of building
information models. The proposed framework first focuses on generating a LOG dataset according to the
popular LOD specifications. Afterwards, multiple geometric features representing the elements’ complexity
are extracted. Finally, two tree-based ensemble models are trained on the extracted features and compared
according to their accuracy in classifying building elements with the correct LOG. Measuring the modeling
time showed a 1.88–2.80-fold increase between subsequent LOGs, with an 8–15-fold increase for LOG 400
compared to LOG 200. The results of classifying the LOG indicated that the combination of 16 features can
represent the LOG complexity. They also indicated that the trained ensemble models are capable of classifying
building elements with an accuracy between 83% and 85%.
1. Introduction

The design and detailing decisions made throughout the building
design phases significantly influence a project’s time, effort, and cost [1,
2]. Starting from the schematic design, the project size, building shape,
and materiality are defined broadly in order to explore the different
possible options. The decisions made in the early phases form the
design intent, representing the basis for further detailing [1,3]. Such
detailing includes refining the elements’ geometry and evaluating the
different combinations of material layers.

As construction projects are multi-disciplinary, a fundamental pillar
for integrating building information models is describing the required
elements’ maturity at every milestone and for every deliverable through
the design phases. This is crucial for the overall collaboration among
the project participants because it acts as an agreement on (what)
information should be available at what time (when). Based on the
available information, it can be decided what the model can be used
for (purpose), which makes it possible to determine what model deliv-
erables are expected from the actors involved (who) [4]. The exchange
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of complete and compliant Building Information Modeling (BIM) data
within the Architecture, Engineering, and Construction (AEC) industry
is crucial, as it is prescribed in legal agreements, where the content
of the individual elements is specified. Accordingly, a common legal
framework for organizing this data is required.

Data quality is described by compliance with its requirements’ char-
acteristics [5]. More specifically, the quality of building information
is expressed by the correctness and completeness of the topological
relationships, geometric detailing, and semantics. Various guidelines
have been published to deliver a standard that practitioners can use as
a basis for a common language in their projects. When describing the
detailing decisions, the Level of Development (LOD) [6], is a popular
concept for defining the content of a model at a certain point during
the design process. The LOD refers to the completeness and reliability
of the building elements’ information.

For more than a decade, practitioners have relied on the LOD
terminology to specify which information they need to carry out and
deliver their tasks [2,7,8]. However, as the different LOD definitions are
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loosely defined [8,9], each practitioner has a different interpretation of
what a specific LOD means and which information should be present
in the model [7–9]. Such inconsistencies cause severe miscommuni-
cation and additional expenditure, which increase project risks [2,7].
Therefore, multiple efforts have been dedicated to developing com-
prehensive specifications worldwide to provide a consensus on the
required information at the different LODs (more details are provided
in Section 2.3). The most popular among these are the BIMForum’s
LOD specification [6] and Trimble’s Project Progression Planning [10],
which are used as the basis for the research conducted in this paper.

The geometric detailing of building elements is essential for carrying
out different kinds of analyzes and evaluations (e.g., energy analy-
sis, evaluation of design options, and cost estimation) that support
decisions during design and construction [7,11–13]. For example, ac-
cording to the BIMForum’s specification, performing clash detection or
analyzing the constructability of the outer building shell requires mod-
eling the precise geometry (available from LOD 300) and connections
between the elements (available from LOD 350). The requirements
of each LOD comprise both semantic information (a.k.a. Level of In-
formation (LOI)) and geometric detailing (a.k.a. Level Of Geometry
(LOG)). The LOI is represented by a set of properties, whereas the
LOG is described by the geometric parts that need to be modeled, like
modeling the overall shape precisely or the necessary reinforcement
parts.

As the LODs are referenced in contracts and BIM execution plans,
their requirements must be fulfilled when delivering and exchanging
building models. In this regard, automatically checking the complete-
ness of the semantic information is straightforward [14] and supported
by numerous commercial and open BIM tools. However, automat-
ically checking that the detailing of the modeled geometry fulfills
the expected LOG requirements is a complex and still unsolved task;
currently, domain experts evaluate the models manually based on their
experience. Therefore, the primary focus of this paper is to formally
define the LOGs to identify a given BIM element’s LOG in accordance
with these specifications.

Machine Learning (ML) algorithms, including Support Vector Ma-
chines (SVM), Random Forests (RF), and Artificial Neural Networks
(ANN), have demonstrated high performance in addressing non-linear
multi-class classification and regression problems in different domains
[15]. Generally, these approaches utilize statistics in order to extract
generalizable and predictable patterns from a training dataset. Accord-
ingly, the basic concept lies in implicitly deducing correlations between
the provided data (input) and the expected result (output). In the AEC
industry, the application of ML algorithms has become popular for
multiple use-cases. For example, Zhang et al. developed a RF model
for predicting the uniaxial compressive strength of lightweight self-
compacting concrete [16]. Dong et al. trained an eXtreme Gradient
Boosting (XGBoost) model [17] to predict concrete electrical resistivity
for structural health monitoring [18]. Finally, Braun et al. developed
a deep-learning model for supporting progress monitoring through
detecting elements in point cloud data and comparing them to the BIM
model [19].

This paper addresses the currently existing gap of determining the
LOG of building elements by investigating the major characteristics
representing the degree of detailing based on a formal metric. To this
end, a set of different BIM element types (a.k.a. families) are modeled
at multiple LOGs, and the geometric information of each level is investi-
gated. In more detail, the elements are modeled using Autodesk Revit1

nd exported into triangulated meshes. Then, for each LOG, the geo-
etric features are extracted, and their complexity is measured using
combination of multiple advanced geometry processing algorithms.

inally, RF and XGBoost models are trained on the extracted geometric

1 https://www.autodesk.com/products/revit/overview.
2

features to classify the LOG of any given building element automati-
cally. The contributions of this study are threefold: First, evaluating and
measuring the necessary time and effort in modeling according to the
common LOD specifications. Second, identifying the geometric features
that are capable of representing the building elements’ complexity
across the LOGs. Third, evaluating the performance of state-of-the-art
ensemble-learning models for classifying the LOG of elements. In this
paper, Shape Complexity is a high-level term used to describe the overall
shape composition, including the modeled parts on the different LOGs.
Additionally, the term Geometric Complexity describes the geometric
eatures necessary for representing the different shape parts, including
ertices, edges, etc.

The paper is organized as follows : Section 2 discusses the back-
round and related work, including shape complexity, LODs, and
nsemble-learning. Section 3 provides an overview of the framework
eveloped in this paper, explaining the process followed in model-
ng the different families to generate the LOG dataset. Additionally,
ection 3 presents the geometric features selected to represent the
uilding elements’ complexity at the different LOGs. For classifying the
OG of building elements, RF and XGBoost models are developed and
valuated in Section 4. Moreover, Section 4 assesses the trained models’
obustness by evaluating their performance on a re-meshed test dataset.
ection 5 emphasizes the applicability of using the developed approach
n practice via a real-world case study. Finally, Section 6 summarizes
ur results and presents an outlook for future research.

. Background and related work

.1. 3D shapes

The 3D representation of objects is a fundamental perspective for
umerous domains, from computer graphics to BIM. Especially in BIM,
he 3D representation of building elements is the primary way of defin-
ng the shape of a building and its components. It is also a fundamental
spect for performing a variety of tasks, including clash detection,
uantity take-off, or even exploring the reliability of the building
nformation across the design phases [11,20]. In BIM models, the 3D
eometry is typically represented through two main approaches [21],
1) explicit modeling (a.k.a. boundary representation), which describes
he geometrical surface characteristics, volume, and topology through
graph of faces, edges, and vertices, and (2) implicit modeling, which
escribes the geometric features through a sequence of operations that
orm the final representation when performed in the defined order.

A popular approach of explicit modeling is the polygon mesh rep-
esentation [22–24]. Polygonal meshes require only a small number of
olygons to represent simple shapes (regardless of their size). Addition-
lly, a polygonal mesh has the necessary capability to comprehensively
epresent complex shapes with high resolution, capturing the salient
urface features. Accordingly, simple shapes are represented by a few
arge polygons, while detailed and complex shapes are represented by
any small polygons. Polygons comprise a set of vertices, which are

nterpolated through a connectivity graph to approximate the desired
urface. On the other hand, Constructive Solid Geometry (CSG), ex-
rusions, and sweeps are common operations of procedural modeling.
n comparison to explicit modeling, procedural approaches have the
dvantage that the modeling history can be transported, which provides
he potential for modifying the geometry in the receiving application.
s however, misinterpretations are more likely when processing pro-
edural descriptions, boundary representations are often favored over
rocedural representation in many BIM exchange scenarios [21].

Extracting the geometric features from building models is a fun-
amental part of the methodology presented in this paper. Hence, it
s crucial to choose and follow a unified approach during the study.
ince the implicit modeling approaches can also be represented using
oundary representations, all the 3D shapes investigated in this paper
ere represented as polygon meshes.

https://www.autodesk.com/products/revit/overview
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2.2. Shape complexity

The meaning and measurement of shape complexity varies ac-
cording to different aspects. Processing geometric models can be as
simple as iterating over a mesh’s vertices, faces, and edges, or as
complex as performing different calculations to extract information
about curvature or shape topology. Numerous researchers have de-
veloped algorithms to retrieve the most dominant features of the dif-
ferent shapes [22], including detecting sharp edges, deducing sur-
face patches, and decomposing the shape into smaller and meaningful
shapes, a.k.a. segmentation [25]. Dominant features provide an es-
sential description of the geometrical objects’ resolution and detail.
In the same context, Hanocka et al. and Nikhila et al. have devel-
oped MeshCNN [26] and PyTorch3D [27] by employing deep-learning
approaches to analyze, process, and extract features from 3D shapes.

A popular classification for shape complexity was first introduced
by Forrest, who defines three main types [28]: (1) geometric, which
describes the shapes’ basic features, such as lines, curves, faces, etc.,
(2) combinatorial, which refers to the topology of the shape, i.e., the
number of components that it comprises, and (3) dimensional, which
classifies the shape as 2D, 2.5D, or 3D. Other researchers have inter-
preted 3D shapes and their complexity through shape grammars [29].
Shape grammars describe the shape decomposition as a set of rules and
a series of transformations, including addition, subtraction, rotation,
etc.

Accordingly, defining what shape complexity means in the AEC
industry requires the specification of which geometric features are
essential for capturing the degree of maturity of building elements at
the different LOGs [30].

2.3. Level of Development (LOD)

As a response to the need to have a consensus about what informa-
tion should exist during the design process of building elements, various
guidelines were published to deliver a standard that practitioners can
use as a basis for a common language in their projects. Prior to the
LOD concept, a relatively similar concept, a.k.a. Level of Detail (LoD),
was already common in computer graphics. The LoD is used to bridge
the graphical complexity and rendering performance of a computer
program by regulating the amount of detail used to represent the virtual
world. In computer graphics, the LoD concept is mainly concerned
with geometrical detailing [31]. In the context of the data exchange
standard CityGML, the LoD represents different levels of geometric
and semantic complexity of a city model [32]. The software vendor
VicoSoftware [10,33] was the first to apply the concept in a similar
fashion to BIM models.

In the AEC industry, the term Level of Development (LOD) was
favored over Level of Detail (LoD) as it represents the maturity, com-
pleteness, and reliability of the geometrical and semantical information
provided by building elements [6]. The LoD concept has then been
adopted and refined by the American Institute of Architects (AIA) to
become LOD [34]. The AIA introduced a LOD definition that comprises
five levels, starting from LOD 100 and reaching LOD 500. The BIMFo-
rum working group developed a new level, LOD 350, and published the
Level of Development Specification based on the AIA definitions [6].
At the same time, Trimble’s Project Progression Planning [10] was
published and is widely used in practice.

Numerous countries, especially in Europe, have proposed different
terms for their regions. In the UK, the Level of Definition [35] has
been introduced. It consists of seven levels and introduces two com-
ponents: Levels of model detail, which represents the graphical content
of the models, and Levels of model information, which represents the
semantic information. The Danish definition includes seven Information
Levels that correspond roughly to the traditional project life-cycle
stages [8]. Similarly, in Germany, the Modelldetaillierungsgrad (MDG)
comprises 10 levels (010, 100, 200, 210, 300, 310, 320, 400, 510, 600)
3

that also correspond to the project life-cycle stages [36]. The Italian
LOD definition adopts the BIMForm’s specification while adjusting it
to seven levels with letters in ascending order from LOD A – LOD
G [37]. In Switzerland, the LOD concept is based on the BIMForum’s
definitions, but at the same time, its usage is assigned to project
life-cycle stages [38].

Recently, a similar concept was introduced by the European Stan-
dardization Organization (CEN) [39], which defines the term Level
of Information Needs comprising specifications for LOG and LOI for
supporting a particular use-case.

2.4. Supporting the design process using LODs

As the LODs provide means for specifying and communicating
which information is expected to be present at a specific time, they
were used by numerous practitioners and researchers for defining
the required information throughout the design phases [14,40–42].
Abualdenien and Borrmann developed a meta-model approach for spec-
ifying the design requirements of individual families using the LODs,
incorporating the information uncertainty [14]. In the same context
Gigante-Barrera et al. included the LODs as an indicator for the neces-
sary information within Information Delivery Manuals (IDMs). Abou-
Ibrahim and Hamzeh developed a framework for applying lean design
principles based on LODs [43]. Additionally, Grytting et al. introduced
a conceptual model of a LOD decision plan, based on a set of interviews
and use-cases, to support design decisions [44].

To support the decision-making process from the early design
phases, Abualdenien et al. used the LODs to integrate the design process
with energy simulations and structural analysis [45]. Additionally,
Exner et al. proposed a LOD-based framework for comparing the dif-
ferent design variants and their detailing [46]. To exchange design re-
quests and issues between projects participants, Zahedi et al. proposed
a communication protocol that leverages the LODs to describe design
requirements [13]. Finally, Abualdenien and Borrmann developed mul-
tiple visualization techniques to depict the information uncertainty
associated with the LODs throughout the design phases [11].

2.5. Analysis and validation of LOGs

The process of adopting a LOD specification in a particular country
(or even internally in individual firms) requires a comprehensive anal-
ysis and understanding of which geometric and semantic information
should be present at each LOD. However, practitioners have an incon-
sistent understanding of the information necessary at each LOD [8,14].
The main reason is that although the specification of semantics is
usually simplified to a list of properties, systematically checking the
geometric detailing is an unresolved task.

In this regard, Leite et al. evaluated the modeling effort associated
with generating BIM models at different LoDs. The authors have shown
the need for an increased modeling time, ranging from doubling the
modeling effort to eleven folding it, to detail models further to reach
a higher LoD [7]. In comparison to our research, Leite et al. were
referring to the overall building model or the combination of building
elements while experimenting with the LoDs, whereas in this paper, the
detailing and experiments are conducted per the individual families.

In the same context, van Berlo and Bomhof has analyzed 35 building
models (where each comprises multiple building elements), taking into
account different ratios between volume, triangles, space areas, and the
number of properties, in an attempt to find a relationship between the
different LODs [8]. However, the authors did not find any pattern for
the increase of detailing across the LODs. The main reason for that is
the inconsistencies and the different interpretations of the LOD spec-
ifications [9,14,40]. While some approaches use the LOD concept for
describing the maturity of the overall building model, others do so only
for the individual element types. van Berlo and Bomhof performed their
experiments on the overall building models rather than the individual
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elements. By contrast, the LOD specifications provided by the AIA [34],
BIMForum [6], and Trimble [10] describe the geometric and semantic
information of the individual elements rather than the overall building
model. On a wider scale, Wong and Ellul analyzed the geometry of
3D city models for fit-for-purpose by looking into the ratios between
the number of buildings, geographic area, geometrical details, and disk
size [47].

In essence, there is a significant research gap resulting in a lack of
computational methods that formally specify levels of geometry on the
basis of a corresponding metric, and subsequently, apply this metric on
concrete building models to assess the LOG they provide.

2.6. Ensemble-learners

The process of inferring generalized patterns from a training dataset
(consisting of a set of instances where their classes are known) is
described as inductive inference [48]. The simplest way to analyze a
training dataset is to develop a classification system that consecutively
splits the data (based on feature values) in a way that groups similar
classes together as much as possible. It is important to note that the
metric of similarity is not pre-defined but part of the solution-finding
process. Given a set of 𝑁 instances where each belongs to one of 𝐾
classes, a classification system can construct a set of rules through
training on the set of instances. This is precisely what a decision
tree performs while following a particular route, yielding a specific
result [49].

A decision tree comprises a series of nodes (Boolean questions or
tests), branches (results of the tests), and leaves (classification classes).
Each node questions the data and splits it into two branches, eventually
leading to a predicted class. In order to measure the quality of the
split, two criteria are commonly used: Information Gain, which uses the
entropy measure to split the data in a way that returns the most homo-
geneous branches, and the Gini Index, which represents the likelihood of
classifying a new instance incorrectly [50]. For a given training dataset
𝑇 , the Gini Index can be expressed as Eq. (1) [50]:
∑∑

𝑗≠𝑖
(𝑓 (𝐶𝑖, 𝑇 )∕|𝑇 |)(𝑓 (𝐶𝑗 , 𝑇 )∕|𝑇 |) (1)

Where 𝑓 (𝐶𝑖, 𝑇 )∕|𝑇 | is the probability that a specific element belongs to
lass 𝐶𝑖.

Real-world data is imperfect and includes noise arising from mis-
classifications or inaccurate measurements. Modeling such data using
one decision tree results in the generation of a long tree, which is, in
this case, overfitted to the selected dataset. This is mainly because a
decision tree is based on a greedy model, meaning it tries to find the
most optimal decision at each step and does not consider the global
optimum. Therefore, smaller trees are preferable, as they are less prone
to overfitting [49], which imposes a trade-off between developing a
generalized model versus its accuracy. To overcome this limitation,
researchers have invented the concept of ensemble learners, which will
be discussed in the next subsections.

2.6.1. Random Forest (RF)
Random forests fall into a broader category called ensemble learn-

ers [49], which generate multiple weak models and then aggregates
their classifications to produce better results. As illustrated in Fig. 1,
a random forest model constructs a set of decision trees and aggre-
gates the unweighted average of their classifications (a.k.a. votes) to
determine the final prediction [49].

Using methods such as bootstrap aggregating or bagging [51,52],
each of the decision trees within a forest is built using a randomly
selected set of features and instances. Such methods manipulate the
training data to generate diverse classifiers (which makes it hard to
overfit). Additionally, these methods support parallelization, making it
possible to construct and train the trees within a random forest model
independently from each other, which is relatively faster than other
models, such as boosting, which will be discussed in more detail in the
4

next section.
2.6.2. eXtreme Gradient Boosting (XGBoost)
From the same category as random forests, gradient boosting is an

ensemble learner (combining the result of multiple weak models) [53].
The main difference between a random forest and boosting is that the
former constructs decision trees independently, simultaneously, and
uses an unweighted average of votes, while the latter iteratively builds
and evaluates individual trees (which are usually short, a.k.a. decision
stumps) and tries to learn from wrongly classified observations by
adding a higher weight on them in the subsequently built trees [52,53]
(the concept is illustrated in Fig. 2). An increased weight represents
an increased contribution of a class or an instance to the loss function.
Then, as boosting cannot be parallelized (the weights used for each tree
are dependent on the results of the previously constructed tree), it takes
much longer to train than a random forest.

Numerous popular boosting-based algorithms have recently been
developed, including Adaptive Boosting (AdaBoost) [53] and eXtreme
Gradient Boosting (XGBoost) [17]. AdaBoost is follows the weighting
approach discussed previously. However, XGBoost (the currently dom-
inant algorithm [18,54]) defines a loss function, and while iteratively
constructing new trees, it focuses on minimizing that loss function.
XGBoost can be expressed as Eq. (2) [17]:

�̂�𝑖 = 𝜙(𝑥𝑖) =
𝐾
∑

𝑘=1
𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹 (2)

Where 𝑓𝑘 represents an independent decision tree, 𝐹 is the space of
trees, 𝑥𝑖 represents the independent variables, and 𝐾 are the additive
functions. The goal is to minimize Eq. (3) [17]:

(𝜙) =
∑

𝑖
𝑙(�̂�𝑖, 𝑦𝑖) +

∑

𝑘
𝛺(𝑓𝑘) (3)

Where  is a loss function and 𝛺 is a penalty value representing the
complexity of the model by taking into account the number and score
of leaves.

3. Methodology

The hypothesis of this paper is that the detailing of the individual
elements at the different LOGs can be correlated with multiple geomet-
ric features. These features form the basis for formally assessing the
geometric complexity of a given model. Thereby, the LOG of building
elements can be identified through analyzing the detailing patterns of
the extracted features across the LOGs.

As depicted in Fig. 3, the proposed approach consists of two main
steps. First, a LOG dataset is modeled according to the most common
LOD specifications (described in detail in Section 3.1). The dataset gen-
eration took into account modeling different kinds of building elements
as well as additional cases for including openings and reinforcement.
Afterwards, multiple geometry processing algorithms are performed
to extract the most prominent features representing the detailing of
each building element. The result is a dataset of geometric features for
diverse building elements at the LOGs 200–400.

The second step describes the process of classifying the LOG of a
given element that was not part of the training set (a new element). The
geometric features of the new element are extracted in a similar way
to the dataset generation. The individual features are then compared
to the features available in the dataset to classify the LOG of the new
element. This step represents the actual application of the developed
approach for classifying the elements of a BIM model provided by the
end-user. The complete framework is discussed in detail in the next

subsections.
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Fig. 1. Random Forest (RF) Schematic Representation: it consists of multiple decision trees, where the unweighted average of their classifications is calculated to decide on the
final classification.
Fig. 2. eXtreme Gradient Boosting (XGBoost) Schematic Representation: it builds decision trees consecutively and tries to learn from wrongly classified observations by adding a
higher weight on them in the subsequently built trees.
Fig. 3. The developed approach presented in this paper consists of two main steps: (1) generation of a dataset containing the geometric features representing the complexity of
the individual building elements across the LOGs, and (2) classification of new building elements in which their LOG is unknown.
3.1. Modeling according to the LOD specifications

In this study, the BIMForum’s LOD specification [6] and Trimble’s
Project Progression Planning [10] were comprehensively reviewed and
followed during the modeling of different families on multiple LODs.
In addition to the authors’ practical experience, the combination of
the mentioned specifications was followed. Although the BIMForum’s
definitions are descriptive for many building elements, they are, in
many cases, vague in describing the progression of the geometric
detailing. Despite the fact that the specification is prepared in a way
that visualizes the newly added parts in every LOD, the graphical
illustrations for many elements are missing or inconsistent and ambigu-
ous. For example, when modeling a staircase, information regarding
the riser count and height should be available starting from LOD
300 (per the text description). However, the graphical illustration at
LOD 200 already includes these information. Whereas, in Trimble’s
specification, for this particular case, the graphical illustration reflects
the available information clearly. Therefore, it was necessary to use
both specifications.

According to the LOD specifications, LOG 100 (conceptual model)
is limited to a generic representation of the building, meaning no
shape information or geometric representation is provided. At LOG 200
(approximate geometry), elements are represented by generic place-
holders depicting the overall area reserved by their volume. At LOG
5

300 (precise geometry), the elements’ main shape is refined, showing
the fundamental detailing required for describing the element type.
Next, at LOG 350 (construction documentation), any necessary parts
for depicting the connections with other elements that are attached or
connected are additionally modeled. Modeling these parts, like supports
and connections, is crucial for the coordination with different domain
experts. Finally, at LOG 400, elements and their connections are fully
detailed, providing the accuracy required for fabrication, assembly, and
installation. LOG 500 represents the field verified model state, but in
terms of design and detailing, it is the same as LOG 400.

The modeling process followed to generate the dataset has focused
on the LOGs 200–400. To have confidence in how to model the families,
those which are associated with both textual description and visual
illustration were modeled first. Afterwards, we expanded the dataset
size by making use of the available BIM objects libraries2 In this regard,
the families were downloaded and adjusted to fit the requirements of
the different LOGs. In total, the modeled dataset includes 408 objects
(102 families at four LOGs). A complete list of the modeled family

2 www.bimobject.com, http://www.nationalbimlibrary.com, http://market.
bimsmith.com, http://www.revitcity.com, http://www.familit.com, http://
www.arcat.com.

http://www.bimobject.com
http://www.nationalbimlibrary.com
http://market.bimsmith.com
http://market.bimsmith.com
http://www.revitcity.com
http://www.familit.com
http://www.arcat.com
http://www.arcat.com
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Fig. 4. LOG Dataset: A small selection of the building elements at different LOGs.
names is provided in Fig. 5. Fig. 4 shows a selected set of families on
multiple LOGs from the modeled dataset. Additionally, the part of the
dataset for which the authors possess full ownership is provided as open
data to the public.3

While modeling the different families, the necessary time for mod-
eling each LOG of each family was measured. The modeling process
was conducted by two domain experts, who were responsible for the
measurements. The experts are trained designers who work in an ar-
chitectural office. They have a clear understanding of the LOD concept
and sufficient experience in modeling families. The time starts after
discussing and deciding which geometric features should be included
in each family to fulfill the descriptions provided by the LOD specifica-
tions and ends after modeling all features. The aim is to investigate the
necessary modeling effort associated with detailing the families from
one LOG to the subsequent one.

3 http://u.pc.cd/6fXctalK.
6

Fig. 6 presents the resultant time measurements from modeling the
entire dataset. The figure shows the minimum, maximum, and average
necessary time (in minutes) for modeling the building elements at each
LOG. Modeling elements at LOG 200 required between two and 40 min.
Detailing the elements further to LOG 300 utilized two to threefold of
the time at LOG 200. That is mainly because modeling the outer shape
at LOG 300 needs to describe the overall shape’s dimensions precisely.
When modeling connections with the surrounding elements at LOG
350, the necessary time increases to be between four and seven-fold
the time at LOG 200. Finally, as LOG 400 demands fabrication-level
detailing, the necessary time doubles, reaching eight to 15-fold com-
pared to LOG 200. When comparing the increase in the time between
subsequent LOGs, we observe that it ranges between 1.88–2.80-fold.

3.2. Analysis and extraction of LOG features

Typically, shapes having more numerous or smaller features can be
viewed as more detailed. The challenge in identifying the LOG through

http://u.pc.cd/6fXctalK
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Fig. 5. Families Dataset: list of the modeled family names.
Fig. 6. LOG Dataset: an investigation of the necessary modeling time when detailing building elements from LOG 200–400. The figure shows the minimum, maximum, and average
time (in minutes).
analyzing the geometric features lies in deducing a standard pattern
(a metric) that describes the individual LOGs. The simplest geometric
metrics can be based on the total number of vertices, faces, and edges.
However, an increased number of these features does not necessarily
mean an increased detailing or higher LOG. For example, a window at
LOG 200 (rectangular shape) consists of 30 vertices, 16 faces, and 78
edges, while a cylindrical column or heating tank at LOG 200 could be
formed by 2,358 vertices, 4,268 faces, and 13,244 edges.

Thus, the sole consideration of vertices, faces, and edges does
not provide a suitable metric. To measure the geometric detailing
(i.e., LOG) of elements, the set of selected features needs to be capable
of representing the geometric detailing of elements taking into account
7

the overall shape complexity. Hence, in this paper, we propose com-
bining the extracted results of multiple geometric features to observe
various aspects of the shape’s detailing. In total, we investigated the
effect of detailing across the LOGs through three main aspects, which
are discussed in detail in the next subsections.

3.2.1. Basic features: Vertices, faces, and edges
Vertices, faces, and edges represent the most fundamental ingredi-

ents for describing the detailing of any shape. In this regard, the ratio
of vertices to faces is capable of providing an insight into the overall
shape form. Based on our experiments, a shape with only rectangular
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Fig. 7. Basic Geometric Features: count and percentage of edges’ lengths across the LOGs for the elevator element depicted in Fig. 4. Here, the mean of the edges’ length as well
as the total length of 50%, 62.5%, and 75% of the edges after ordering them in an ascending order were measured. Prioritizing the short edges provides an indicator for the
increase in detailing.
parts always has a ratio of two. When adding more complex parts, like
screws or reinforcement, the ratio is substantially reduced.

The count and length of edges can also provide a strong description
of the shape resolution and complexity [55]. When a shape comprises
a low number of edges with a similar length, then the overall shape
is basic and does not include high details. On the other hand, when
the majority of edges are relatively short, then the shape comprises
numerous complex parts. In this regard, we measure the mean of the
edges’ length as well as the total length of 50%, 62.5%, and 75% of
the edges, after ordering them in ascending order to prioritize the short
edges, as they are an indicator for the increase in detailing. Then, the
measured lengths’ ratio to the total edges’ length is calculated at the
different LOGs. For example, for a particular element, the length of 75%
of the edges could represent 60% of the length of the total edges at LOG
200, while the length of 75% of the edges represents 10% at LOG 400.

Fig. 7 presents the different lengths of edges on the 𝑥-axis and
the total count of each length on the 𝑦-axis for the elevator element
depicted in Fig. 4. The edges’ lengths (on the x-axis) were rounded to
the first decimal place and grouped. The edges’ counts (on the y-axis)
are shown on a logarithmic scale (to the base of two) to highlight the
different lengths. At LOG 200, the total count of edges is 492. Here,
we can notice that the edges’ counts are relatively comparable across
the lengths of zero to five and mostly dense in the middle. At LOG 300,
the total count of edges became 93,852 (19-fold the count at LOG 200).
Although numerous relatively long edges were added, the majority of
the edges are short. The increase in the count and length of edges across
the LOGs 350 and 400 follows a similar pattern.

Additionally, Fig. 7 lists the statistical percentages of the edges’
counts and lengths. Such statistics highlight the overall geometrical
detailing. In more detail, at LOG 200, the shape is expected to be an
8

approximation, represented by bounding boxes. Therefore, the length
of 62.5% and the length of 75% of the edges equals 48.22% and 68.46%
of the overall length, respectively, which are relatively high. Whereas,
at LOG 300, the shape is refined further to represent a precise shape,
resulting in numerous additional short edges. Accordingly, the length
of the edges is much shorter than at LOG 200. Next, at LOGs 350
and 400, connections and additional geometric details (for example,
for fabrication or even vendor-specific details) are modeled, gradually
increasing the length of the statistical percentages.

3.2.2. Sharp edges and feature lines
Feature lines identify the most prominent surface characteristics

of a geometric shape [56]. The extraction of these lines has been
intensively researched in various domains, including the analysis of
medical data [57] and point clouds [58]. The fundamental description
of feature lines is the local extrema of principal curvatures along
with corresponding principal directions [56]. In other words, the angle
between the two normal vectors of adjacent triangles is measured, and
when the angle is sharp (the surface curvature is changing), then the
edge is considered as a feature edge. Finally, the detected edges form
the shape’s feature lines.

We extract and count the sharp edges as well as the number of
surface patches bound by these edges. Fig. 8 shows a stair and a window
at LOG 200. Here the sharp edges are marked with a red color.

3.2.3. Diameter-based segmentation
In this approach, the shape is segmented into smaller meaningful

pieces based on the change in its diameter [25]. The segmentation
is based on measuring the Shape-Diameter Function (SDF) at every



Advanced Engineering Informatics 51 (2022) 101497J. Abualdenien and A. Borrmann
Fig. 8. Sharp Edges: an example of a stair and window at LOG 200. The edges marked with red represent the extracted sharp edges.
Fig. 9. Diameter-based Segmentation: two examples highlighting the results of segmenting the building elements. The colors here represent the individual visible segments.
point, where the change of an SDF value from a point to its neighbors
determines whether there is a new segment. Let 𝑀 be a triangulated
mesh surface of any building element. The SDF is defined as the scalar
function on the surface 𝑓𝑣 ∶ 𝑀 → R, representing the diameter
at every neighbor point 𝑝 ∈ 𝑀 . The SDF provides an effective link
between the object’s volume to its surface. The algorithm provided
by Shapira et al. [25] applies clustering on the facets according to
their corresponding SDF values. Afterwards, the dihedral-angle and
concavity of the surfaces is taken into account to produce the final
segments.

This kind of segmentation provides additional insights into the com-
plexity of the parts that are forming the building element. Therefore,
we count the segments, measure their area, and evaluate their shape
(flat surfaces, cubic, or cylindrical). Segments with similar shapes are
grouped, and the ratio of their count and area is used to characterize
the form and complexity of the overall shape. For example, a window
at LOG 200 comprises few surfaces and cubic segments. Whereas,
in the case of a tube system at LOG 200, it comprises few surfaces
and cylindrical segments. Additionally, at LOG 400, numerous smaller
segments with diverse shapes are typically added. Fig. 9 shows two
examples, highlighting the individual segments.

To highlight the benefit of counting and grouping the shape of the
extracted segments, Fig. 10 shows the segments’ shapes on the 𝑥-axis
and the total count of segments on the 𝑦-axis for the elevator element
depicted in Fig. 4. Besides increasing the total number of segments,
these statistical calculations provide additional insights into what kind
of detailing was added at each LOG. Additionally, this information
facilitates identifying the shape characteristics. For example, based on
9

our evaluations, when the count of the cylindrical segments is low and
represents more than ∼50% of the overall area, the overall shape has
a high probability of having a cylindrical overall shape (a pipe, for ex-
ample). Moreover, rectangular and complex shapes (such as a window
and a stair) at the LOGs 350 and 400 are composed of a high number
of cylindrical segments representing less than ∼40% of the overall
area, which indicates the presence of screws and additional detailing
parts. When reinforcement is modeled, then the number of cylindrical
segments is relatively high (∼50%–80%), while their aggregated area
is less than ∼40% of the overall area.

3.2.4. Features dataset
The discussed geometric features above were extracted for the LOG

dataset presented in Section 3.1. Additionally, multiple ratios were
calculated to capture any positive or negative correlations among the
features, including the average area per surface patch and per segment,
as well as the average number of vertices per face, patch, and segment.
Finally, the extracted features were normalized to make the features
correspond to the elements’ geometric complexity regardless of their
total area or total length of edges.

To get an overview of the degree of association between the ex-
tracted features, a pair-wise Pearson correlation coefficient (PCC) [59]
was calculated. PCC measures the level of linear correlation between
two variables. Accordingly, these coefficients are leveraged during the
ensemble models’ training to filter and optimize which features are
selected for the training process. The features that prove a linear corre-
lation (0.8 – 1 PCC) are considered the first candidates to be dropped
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Fig. 10. Diameter-based Segmentation: statistical analysis of the extracted segments based on their shape (surface, cubic, and cylindrical). These calculations were extracted from
the elevator element depicted in Fig. 4. The 𝑥-axis lists the segments’ shape and the 𝑦-axis shows the total count of segments.
Table 1
Features Dataset: an example of the selected features for training the ensemble models. The examples shown here belong to a Brick Wall and a Reinforced
Concrete Pier across the LOGs.

LOG Vertices
Faces

Vertices
Patches

Vertices
Segments

Faces
Patches

Area
Patches

Area
Segments

(%)
SharpEdges

SharpEdges
Area

SharpEdges
Vertices

200 1.8 4.5 4.5 2.5 12.5 12.5 37.5 2.78 1
300 1.8 4.5 4.5 2.5 6.25 6.25 37.5 1.39 1
350 0.73 62.53 62.53 85.96 0.88 0.88 12.58 0.02 0.59
400 0.64 72.1 74.32 112.57 0.031 0.03 8.81 0.001 0.45
200 0.67 1.34 8 2 16.67 100 33.34 8.34 1.5
300 0.57 1.6 16 2.8 10 100 28.57 4.17 1.5
350 0.53 1.65 37.45 3.11 0.2 4.55 27.44 0.078 1.56
400 0.50 1.43 172.17 2.84 0.02 2.08 28.40 0.007 1.69

LOG (%)
Mean
edges length

(%)
75% edges
length

(%)
Mean segments
area

(%)
62.5% segments
area

Cylindrical
segments area

(%)
Cylindrical
segments count

(%)
Cylindrical
segments area

200 2.08 76.97 12.85 13.81 0 0 0
300 1.04 59.72 6.34 23.30 0 0 0
350 0.006 33.89 0.89 12.73 2.39 22.81 4.24
400 0.0001 35.92 0.03 12.024 25.74 19.41 25.65
200 5.56 55.23 100 100 3.78 100 100
300 2.38 38.48 100 100 3.93 100 100
350 0.04 18.77 4.56 3.74 4.41 100 100
400 0.004 3.25 2.09 12.46 5.75 100 100
to simplify the vector representation of each element. Additionally,
the PCCs were combined with the features’ importance (shown in
Fig. 12) to decide which features could be dropped. Such filtering is
important when training tree-based models since unimportant features
could construct weak trees that could then affect the model’s accuracy.
The features dataset included 22 features per element before filtering
and 16 features after filtering. Table 1 depicts sample features of two
10
building elements, a Brick Wall and a cylindrical Reinforced Concrete
Pier, across the LOGs.

4. Classification of LOG

The analysis of the extracted geometric features indicated multiple
patterns that are helpful in identifying the LOG. Identifying which class
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(i.e., LOG) an observation (i.e., the features representation of an ele-
ment) belongs to is a classification problem. The manual classification
of the LOG from the extracted features is an unfeasible task due to
the large number of features and the heterogeneity of the different
families. Hence, in this paper, we propose classifying the LOG of
building elements using RF and XGboost, tree-based ensemble-learning
models. Such models are popular nonlinear predictive models. In the
following, we compare the approaches regarding their performance for
the problem at hand.

4.1. Models training setup

The features dataset presented in Section 3.2.4 was split into train-
ing and testing sets with a ratio of 80% (326 elements) and 20%
(82 elements), respectively. Splitting the dataset involved taking into
account the different classes (LOGs 200, 300, 350, and 400) and the
type of families (to ensure a sufficient diversity). Some families at a
specific LOG were only available in one of the sets.

Training an ensemble model involves tuning its hyperparameters to
make its architecture more suitable for the used features. Such activity
highly influences the model’s accuracy and capability to generalize
from individual observations. During the tuning of parameters, the best
performing values are identified by searching through a range of values
and evaluating all the possible combinations. In order to evaluate the
performance of each set of parameters, we use a technique called k-fold
cross-validation (K-foldCV) [60]. K-foldCV iteratively splits the training
set into 𝑘 smaller sets. For each 𝑘 of the folds, the model is trained using
𝑘−1 while tested on the remaining part to evaluate the model’s accuracy
during training. Afterwards, the performance of the final model is
measured by validating it against the test set. A too-large k-fold means
that a low number of samples is validated in every iteration. Therefore,
based on multiple experiments and given the diversity and size of the
dataset used in this study, 5-fold cross-validations were performed to
cover enough samples in every iteration.

The interpretation of the classifications resulting from the ensem-
ble models is critical to understand the contribution of the individ-
ual features. Therefore, we use the SHapley Additive exPlanations
(SHAP) [61] approach to assign each feature an importance value for
each LOG class, providing detailed features’ importance. SHAP is based
on game theory [62] and local explanations [63]. Assume an ensemble
model that is trained on all feature subsets 𝑆 ⊆ 𝐹 , where 𝐹 is the set
of all features. The contribution of each feature 𝜙𝑖 on the model output
is computed based on its marginal contribution compared to the rest
of the features. The computation of SHAP values for a withheld feature
can be represented as Eq. (4) [61]:

𝜙𝑖 =
∑

𝑆⊆𝐹∖{𝑖}

|𝑆|!(|𝐹 | − |𝑆| − 1)!
|𝐹 |!

[

𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆 (𝑥𝑆 )
]

(4)

Where 𝑥𝑆 represents the values of the input features in the set 𝑆.
Additionally, 𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) represents the model’s classification when
trained on all features without the withheld feature, and 𝑓𝑆 (𝑥𝑆 ) is the
model’s classification when trained on the withheld feature (See [61]
for more details).

4.2. RF model training

The hyperparameters that require tuning when training a RF model
are shown in Table 2. The figure includes the range of values examined
to find the best combination of parameters, which are also shown in a
separate column (with Selected as a title). The selection of parameters

as based on evaluating the model’s accuracy while examining all
he possible combinations. In addition to these parameters, the RF
odel is configured to bootstrap the training data while constructing

he decision trees. Bootstrapping brings more variation to the training
amples through shuffling and random filtering. Finally, the Gini Index
11

is selected as the function to measure the quality of each split.
To explore the structure of the decision trees comprising the RF
model, Fig. 11 shows a randomly selected tree out of the 170 trees in
the forest. Each tree in the forest is built differently, where different
order and feature types are used to split the dataset at every node.
For each tree, the upper nodes split the data into smaller clusters,
while the leaves classify the data into different LOG classes, speci-
fying the confidence of every classification. The confidence of final
classifications is represented using the Gini Index measure, where zero
means 100% confidence and one means 100% uncertain. All nodes are
colored according to their respective LOG class, and the color saturation
reflects the classification confidence. For example, LOG 300 and 100%
confidence (0.0 gini) is colored with dark green, while LOG 200 with
50% confidence (0.5 gini) is colored with light orange.

For the particular example shown in Fig. 11, 211 elements out of
the 326 were selected using boosting (other trees are constructed using
a differently selected set of elements). In this example, the percentage
of the cylindrical segments to all segments is the first feature splitting
the training set to LOG 200 (75 elements) and LOG 350 (136 elements).
Then, the total area ratio to all segments splits the data at the upper
branches to LOG 300 (42 elements) and 200 (33 elements), whereas,
the percentage of the cylindrical segments splits the elements at the
lower branch to LOG 350 and 300. This process of splitting the dataset
continues until reaching the leaves. At the leaves, a final classification
is predicted for each group of elements. For instance, the first blue leaf
at the top is 100% confident of classifying three of the samples as LOG
350, and the third green leaf under it is 81% confident of classifying
ten samples as LOG 300. To provide additional insight on the RF model
structure, multiple decision trees are provided online.4

As shown in Fig. 11, tree-based models base their classifications
on the combination of different features. Typically, the features that
contribute more to determining the final classification have higher
importance. Such features are present multiple times within the con-
structed trees and split the data with high confidence. Fig. 12 presents
the importance of the features within the RF model (based on all 170
decision trees). A higher SHAP mean value implies higher importance
of the corresponding features. Additionally, the bar of each feature is
divided into four parts to quantify its influence on classifying each LOG.
In this particular case, the top four important features involve the count
and area of the extracted segments as well as the count and length of
the detected sharp edges, including the resultant surface patches. On
the other hand, the basic geometric features, like the count of vertices,
faces, and edges, have considerably lower importance in contributing
to the final classifications. Although the overall importance of the top
five features is relatively higher than others, some of the other features
are essential for differentiating a particular LOG from others, such as
the cylindrical segments that are more present in LOG 400 than LOG
200, unless the overall shape is cylindrical.

4.3. XGBoost model training

For comparison, XGBoost was trained on the same dataset as it is
one of the best performing algorithms for solving classification prob-
lems [18,54]. The hyperparameters tuned during training are shown
in Table 3, including 150 decision trees, a maximum depth of four,
and multiple other parameters that influence the learning process.
Similarly to the RF model, choosing the model parameters was based
on evaluating a range of values.

Since the concept behind XGBoost is different from RF, the structure
of the decision trees is also different. The trees are built subsequently
and dependently rather than simultaneously and independently. Ac-
cordingly, the leaves of every branch within each tree produce a
margin value (between −1–1), contributing to the overall classification
probability of each class. This process is repeated for each class to

4 https://bit.ly/3jPJBeu.

https://bit.ly/3jPJBeu
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Table 2
RF model hyperparameters, including the search ranges and the selected values.
Parameter name Description Search range Selected

n_estimators Number of trees in the forest 20–1000 170
max_depth Maximum depth of the trees 2–20 5
max_features Maximum number of features to consider when splitting

the data at a particular node
2–8 2

min_samples_leaf Minimum number of samples required to be at the leaf 2–6 2
min_samples_split Minimum number of samples required to split a node 2–6 2
Fig. 11. RF model: showing one decision tree out of 170. The nodes are colored according to their respective LOG class, and the color saturation reflects the classification
onfidence. For example, LOG 300 with 100% confidence is colored with dark green, while LOG 200 with 50% confidence is colored with light orange.
epresent the probability that a path through each tree classifies each
lass with a particular value. In the end, the sum of values from the
ubsequent trees provides the overall classes probabilities (see Fig. 13).

Fig. 14 presents more insights on the overall features’ importance
or the XGBoost model. In this regard, the top four features are similar
o the RF model, involving the count and area of the extracted segments
s well as the count and length of the detected sharp edges, including
he resultant surface patches. However, those features have different
HAP mean values as well as different proportions for the LOG classes.
12

dditionally, the rest of the features are ordered differently from the RF
model. In general, we observe that the XGBoost model relies on fewer
features than the RF model to make the final classification.

4.4. Evaluation of RF and xgboost models

The performance of the developed ensemble models was evaluated
on a new set of elements (a test dataset that consists of 82 elements,
entirely disjoint from the training set). The performance metrics are de-
scribed as precision, recall, and F1-Score. Precision describes the model

performance in positive predictions while considering false positives.
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Fig. 12. Features’ importance for the RF model (all trees): using SHAP mean values as an indicator, a higher value implies higher importance of the corresponding feature.
Table 3
XGBoost model hyperparameters, including the search ranges and the selected values.
Parameter name Description Search range Selected

n_estimators Number of trees in the forest 20–1000 150
max_depth Maximum depth of the trees 2–20 4
learning_rate Step size shrinkage used in update to prevent overfitting 0.001–1 0.001
gamma Minimum loss reduction required to make a further partition on a

leaf node of the tree
0.1–1 0.54

min_child_weight Minimum sum of instance weight (hessian) needed in a child. If the
tree partition step results in a leaf node with the sum of instance
weight less than min_child_weight, then the building process will
give up further partitioning

0.1–1 0.8

subsample Subsample ratio of the training instances 0.1–1 0.6
Fig. 13. XGBoost model: showing one decision tree out of 150. The leaves of every branch within each tree produce a margin value (either a positive or negative number), which
contributes to the overall classification of each element when combined with the previous and subsequent trees’ results.
13
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Fig. 14. Features importance for the XGBoost model (all trees): using SHAP mean values as an indicator, a higher value implies higher importance of the corresponding feature.
Table 4
Evaluation results: performance results of the RF and XGBoost models on test data. The performance metrics
are described as precision, recall, and F1-Score. Precision describes the model performance in positive
predictions while considering false positives. Recall incorporates false negatives instead of false positives,
and F1-score provides a balance between precision and recall.
LOG Precision Recall F1-score

RF XGBoost RF XGBoost RF XGBoost

200 0.96 1.00 0.81 0.81 0.88 0.90
300 0.74 0.75 0.85 0.90 0.79 0.82
350 0.71 0.73 0.71 0.79 0.71 0.76
400 0.86 0.90 0.90 0.90 0.88 0.90
Accuracy 0.83 0.85
Macro avg. 0.82 0.85 0.82 0.85 0.82 0.84
Weighted avg. 0.84 0.87 0.83 0.85 0.83 0.86
Recall incorporates false negatives instead of false positives, and F1-
score provides a balance between precision and recall. Table 4 presents
the evaluation results of both models. Generally, the performance
of both models in classifying the four LOGs is relatively close. The
XGBoost outperforms RF in the precision, recall, and F1-score for all
the LOGs. However, the F1-score’s difference is not substantial for most
LOGs (2–3% for all except LOG 350, 5%).

To understand the evaluation results in more detail, Fig. 15 shows
the confusion matrix for both models depicting the difference between
the actual and predicted LOGs. 68 and 70 out of 82 elements were
classified correctly using RF and XGBoost, respectively. When inves-
tigating the incorrect classifications further, we notice that the LOGs
were confused with their nearest neighbors. For instance, five elements5

at LOG 200 were classified as LOG 300, and two elements at LOG 300
were classified as LOG 350.6 This is mainly because the number of
changes modeled to detail the elements further from LOG 200 to 300
does not necessarily increase the shape complexity enough to be dif-
ferentiated. Moreover, this approach heavily relies on the dataset size

5 Fire Mains, Heating Pipe Fittings, Wood Stair, Trefoil Round Arch
Window, Ventilation System.

6 Multilayered Slab (Reinforced Concrete), Escalator (variant 2).
14
(finding similar observations). Thus, increasing the dataset size even
more has a potential for improving the accuracy of the classifications.

4.5. Experiment: Performance robustness evaluation

As discussed previously, the ensemble models developed produce
their classifications based on the extracted geometric features. The
elements dataset presented in this paper was entirely modeled by using
Autodesk Revit. Additionally, the Revit API was used to export the
triangulated mesh representations that were used to extract the differ-
ent geometric features. The Revit API provides specialized methods for
retrieving the geometric representation of the individual elements.7,8

Our implementation was based on an available example code provided
by Autodesk,9 where we used the maximum value for the LevelofDetail
parameter when generating the triangulated mesh. Considering that
every BIM-authoring tool might have its own geometry kernel, which

7 https://www.revitapidocs.com/2015/d8a55a5b-2a69-d5ab-3e1f-
6cf1ee43c8ec.htm.

8 https://thebuildingcoder.typepad.com/blog/2015/04/exporting-3d-
element-geometry-to-a-webgl-viewer.html.

9 https://jeremytammik.github.io/tbc/a/0792_obj_export_v1.htm#6.

https://www.revitapidocs.com/2015/d8a55a5b-2a69-d5ab-3e1f-6cf1ee43c8ec.htm
https://www.revitapidocs.com/2015/d8a55a5b-2a69-d5ab-3e1f-6cf1ee43c8ec.htm
https://thebuildingcoder.typepad.com/blog/2015/04/exporting-3d-element-geometry-to-a-webgl-viewer.html
https://thebuildingcoder.typepad.com/blog/2015/04/exporting-3d-element-geometry-to-a-webgl-viewer.html
https://jeremytammik.github.io/tbc/a/0792_obj_export_v1.htm#6
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Fig. 15. Evaluation results: confusion matrix of the RF and XGBoost models performance on test data. The 𝑥-axis represents the actual LOG, and the 𝑦-axis represents the predicted
LOG. The diagonal boxes show the correctly predicted LOG classes.
Fig. 16. Re-meshing experiment: a sample reinforced wall before and after re-meshing.
could represent the geometry with more or fewer triangles, this ex-
periment aims to evaluate whether the performance of the developed
ensemble models would be affected by re-meshing the testing dataset
with differently distributed triangles.

The re-meshing process was performed using the Isotropic Explicit
re-meshing algorithm [64], where the shapes became more condensed
and uniform. The Isotropic Explicit re-meshing can deal with a vari-
ety of mesh shapes and is widely used and implemented in multiple
geometry processing tools, such as Meshlab.10 Fig. 16 shows an ex-
ample of a multilayered reinforced wall before and after re-meshing.
The wall’s vertices, edges, and faces after re-meshing are ∼5.1-fold
their values before re-meshing. Any existing BIM-authoring tool will
typically export less condensed meshes, which are more similar to
the original dataset (before re-meshing). Thus, using such condensed
re-meshing is adequate for evaluating the robustness of the trained
models’ performance.

After re-meshing, the geometric features are extracted again for the
re-meshed test dataset. As illustrated by Fig. 16, the basic geometric
features of the re-meshed elements are approximately five-fold their
values before re-meshing. However, the extracted sharp edges and
segments were not affected by re-meshing, as neither the elements’
diameter nor their outline has changed. The features that are affected
by re-meshing are those which rely on the edges’ lengths as well as
the count of vertices, faces, and edges. As indicated in Figs. 12 and 14,
the affected features are not part of the top four important features.

10 https://www.meshlab.net/.
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However, the % of Mean Edges Length is the fifth feature, and the rest
of the features combined also contribute to the final classification of
the different LOGs.

After extracting the geometric features for the test dataset, they
were used to evaluate the performance of the already trained models
(in Sections 4.2 and 4.3). The evaluation results are presented in
Table 5. To highlight the difference to the performance before re-
meshing (Table 4), the metrics are colored according to the change
in their values; green when improved and red when degraded. When
comparing the overall accuracy of both models before and after re-
meshing, although the RF model metrics have increased and decreased
across the different LOGs, it maintained the same accuracy of 83%. In
contrast, the accuracy of the XGBoost model dropped from 85% to 78%
after re-meshing. The XGBoost has maintained its performance for the
LOGs 200 and 300, which is an advantage compared to RF. However,
the performance degraded at the LOGs 350 and 400. In this regard,
multiple elements at LOG 400 were classified as LOG 350 (see the
confusion matrix shown in Fig. 17). We observe that mesh density has
only a slight impact on the models’ performance. Hence, the trained
ensemble models are capable of classifying the LOG of elements that
are meshed differently than the training data.

5. Case study

This section highlights the applicability of the developed approach
in checking the LOG within the established workflows in practice. As
illustrated in Fig. 18, the requirements of the delivered BIM models
are typically specified in contracts and BIM execution plans. These

https://www.meshlab.net/
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Table 5
Re-meshing experiment results: performance results of the RF and XGBoost models on test data. The performance
metrics are described as precision, recall, and F1-Score. Precision describes the model performance in positive
predictions while considering false positives. Recall incorporates false negatives instead of false positives, and F1-
score provides a balance between precision and recall. The colors highlight the change in values compared to before
re-meshing (Table 4); green when improved and red when degraded.
LOG Precision Recall F1-score

RF XGBoost RF XGBoost RF XGBoost

200 1.00 1.00 0.78 0.81 0.88 0.90
300 0.70 0.75 0.95 0.90 0.81 0.82
350 0.69 0.52 0.79 0.86 0.73 0.65
400 0.94 0.92 0.81 0.57 0.87 0.71
Accuracy 0.83 0.78
Macro avg. 0.83 0.80 0.83 0.79 0.82 0.77
Weighted avg. 0.86 0.84 0.83 0.78 0.83 0.79
Fig. 17. Re-meshing experiment results: confusion matrix of the RF and XGBoost models performance on test data. The 𝑥-axis represents the actual LOG, and the 𝑦-axis represents
the predicted LOG. The diagonal boxes show the correctly predicted LOG classes.
Fig. 18. Illustration of the multidisciplinary design process, highlighting the specification of a project’s LOD requirements in contracts and BIM execution plans, and then validating
the specified requirements during the collaboration with different disciplines as well as delivery to the client.
specifications include the LOI and LOG of the individual element types
required from each domain expert on every design phase.

During every design phase, the different domain experts base their
work on models provided by experts from other disciplines. At this
point, the exchanged models need to be checked for fulfilling the mini-
mum requirements necessary by the recipient discipline for carrying out
its tasks. Once the different models are integrated and handed over to
16
the client, a final quality check for fulfilling the various requirements is
performed. When issues are detected in the project delivery, feedback is
sent back to the project participants requesting clarification and solving
the issues identified. Otherwise, the design phase delivery is confirmed
by the client, which will be used as a basis for developing the design
further in the subsequent design phase.
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Table 6
Example of an LOD specification, showing the required types of building elements and their corresponding LOG and LOI specifications.

Identification Level of
geometry

Level of information (LOI)

Element type IFC class LOG Name Core
material

Load-bearing
function

Surface
covering
(texture)

Fire protection
characteristics

Part of
escape route?

Sound
insulation
characteris-
tics

Is
external?

Thermal
transmittance

Windows IfcWindow 300 x x x x x x x
Walls IfcWall 350 x x x x x x x x x
Curtain Walls IfcCurtainWall 350 x x x x x x x x x
Stairs IfcStair 200 x x x x
Ramps IfcRamp 200 x x x x
Doors IfcDoor 200 x x x x
Ceiling IfcCeiling 300 x x x x
Sanitary IfcSanitary 100 x
Rooms IfcSpace - x x x
Slabs IfcSlab 300 x x x x x x
Roofs IfcRoof 300 x x x x x x
Beams IfcBeam 200 x x x x
Columns IfcColumn 200 x x x x x x
Structural truss IfcAssembly 200 x x x
Foundation IfcFooting 350 x x x x x
Framing IfcBuildingEle-

mentProxy
300 x x x x x
The example shown in Table 6 is a subset of the requirements
pecified for a real-world project (Ferdinand Tausendpfund GmbH & Co.
KG11 office building, in Regensburg, Germany). While modeling the
conceptual design, the owner decided to build a sustainable building
and explore multiple design options through evaluating the perfor-
mance of their structural system as well as embodied and operational
energy consumption [14,45]. The table lists a subset of the mappings
between the building element types and their geometric and semantic
requirements that must be delivered at the end of the conceptual
design.

To emphasize on the integration of checking the LOG within the de-
sign process, a plugin that uses the developed approach was developed
inside Revit, shown in Fig. 19. The figure shows a design option of the
Tausendpfund’s office building on the left and the results of checking
the LOG of the individual elements on the right. For this purpose, the
trained XGBoost model from this study was hosted on a Flask12 server,
where the plugin inside Revit sends the geometrical features of the
individual elements through a representational state transfer (REST)
web-service and receives the predicted LOG as a response. Then each
predicted LOG is compared to the project’s requirements (which are
selected as a CSV file at the top). Finally, the results are reported as
lists grouping the elements as Passed, Errors (when they did not pass),
and Warnings (for element types that are part of the specification and
were not found in the model). Checking the LOG revealed the following
deviations:

• Stairs and ramps were identified as LOG 350, whereas they are
required to be at LOG 200. The elements used in the model were
not as simple as generic representations as they have included
detailed railings and connections. After a discussion with the
modelers, their reasoning was that the used families are standard
and were developed for other similar projects.

• Interior walls were identified as LOG 200 rather than 350. After
inspecting the model, we found that the used walls are single-
layered walls and do not model the exterior or interior details
such as framing, insulation, or connections. Generally, interior
walls are not much developed at this phase; however, the speci-
fication should have differentiated between interior and exterior
walls.

• Entrance door was identified as LOG 300 rather than 200 as the
automatic door opener is additionally modeled.

11 https://www.tausendpfund.group/.
12 https://flask.palletsprojects.com/en/2.0.x/.
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Reconsidering the XGBoost’s evaluation matrix (Fig. 15), the
model’s accuracy is 83% due to confusion with the adjacent LOGs.
However, no LOG was confused with another LOG that is higher or
lower than one level, like confusing LOG 200 with LOG 350. Hence,
in this case study, the trained model could raise certain warning
flags when the modeled LOG is not compliant with the specification.
In some cases, when there is no considerable increase in detailing
between the LOGs 200 and 300, the model’s prediction might be less
accurate. In those cases, it would be helpful to inform practitioners
about the prediction probability (e.g., 65% to highlight any potential
inaccuracies) as well as enhance the accuracy of the LOG prediction by
checking the provided semantics. Additionally, custom industry cases
can be handled with tailored behaviors, such as considering elements
at a higher LOG than what is required as compliant and marking them
as passed.

6. Conclusions and future research

The automatic validation of building information for compliance
with the design requirements is crucial for an efficient and successful
project outcome. The LOD concept is used to specify the expected
information of the individual elements. Currently, automatically check-
ing the completeness of the semantic information against the LOD
specification is supported by multiple tools. However, validating the
conformance of the provided geometry to the required LOG is currently
a manual, laborious task and solely based on domain experts’ subjective
assessment.

This paper contributes a framework for formally defining and au-
tomatically checking the LOG of building elements. The proposed
approach is based on modeling and analyzing a dataset of 408 building
elements (102 families at the LOGs 200, 300, 350, and 400). The fami-
lies were modeled according to the most established and widespread
LOD specifications, the BIMForum’s LOD specification and Trimble’s
Project Progression Planning, and are provided to the scientific commu-
nity as open data. The existing descriptions and especially the graphical
illustrations from these specifications were used as baseline for the
modeling process. Additionally, measuring the necessary modeling time
(which reflects the required effort and cost) to detail the elements
further from one LOG to the subsequent one showed a 1.88 – 2.80-fold
increase.

From the experience gained in this study, we highlight that even
when modelers might have different interpretations of the fine details
expected at each LOD, the outcome would be comparable and sufficient

https://www.tausendpfund.group/
https://flask.palletsprojects.com/en/2.0.x/
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Fig. 19. A snapshot of the developed plugin inside Revit for checking the LOG of building elements.
as long as they follow a unified specification and understand which fea-
tures must be modeled (such as the exact shape dimensions at LOG 300
or connections at LOG 350). Additionally, following and interpreting
the specifications to model the geometry can be improved by providing
graphical illustrations for all families. Currently, numerous families
are only described with textual descriptions. Furthermore, providing
open-access LOG examples would support achieving a common under-
standing of what needs to be modeled. Currently, no LOG examples are
available online (other than the dataset published by this research).

On the basis of the created dataset, the detailing of the individual
building elements at each LOG was formally analyzed and represented
by a set of features. A main scientific contribution of the paper is the
identification of the relevant geometric features. The geometric features
were extracted using multiple geometry analysis techniques, including
the basic geometric features (such as vertices, faces, and edges), sharp
edges, and diameter-based segmentation. The extracted features were
then used to train RF and XGBoost models to classify the LOG of any
building element.

The results show that the extracted geometric features can describe
the elements’ complexity in a way that represents the modeled features
at every LOG. Both of the ensemble models were able to classify the
LOG of the test dataset with an accuracy of 83% for the RF model and
85% for the XGBoost model. After detailed investigations (as shown in
Fig. 15), we found that the misclassified elements (18% for RF and 15%
for XGBoost) were only confused with their nearest neighbors, e.g., LOG
200 with LOG 300. Hence, both of the trained models are capable of
providing practitioners a reliable indicator of the geometric detailing
of the individual elements. Additionally, to enhance the reliability of
predictions, we propose informing practitioners about the predictions’
probability to highlight potential inaccuracies that require a manual
inspection.

In order to evaluate the robustness of the trained models, the test
dataset was re-meshed in a much denser triangulation, where the RF
model maintained its accuracy of 83%. In contrast, the accuracy of
the XGBoost model dropped to 78%. These results demonstrate the
capability of the trained models in correctly classifying the LOG of ele-
ments that are meshed differently than the training data. Accordingly,
using the RF model in practice would provide more robust accuracy
for classifying the LOG, when the evaluated families are provided from
diverse BIM-authoring tools.

In general, the ensemble models have proven their capability of
learning the geometric features. Increasing the dataset size further has
18
a potential for improving the ensemble models’ accuracy, especially
given that the change from one LOD to the other does not substantially
increase the shape’s complexity for all the families. Based on the
knowledge gained from this paper, the process of extracting geometric
features is a sensitive and time-consuming task. As shown in this
study, the elements’ geometry must be pre-processed into a set of
(human-made) representative features when using ensemble learners,
which involves performing multiple computationally extensive tasks.
Therefore, as a next step, mesh convolutional neural networks will be
evaluated for directly extracting geometric features and classifying the
LOG of triangulated meshes. Classifying the LOG of building elements
directly from meshes would reduce the necessary processing effort and
could improve accuracy, since the geometric features would be statis-
tically inferred by the neural network rather than manually identified
and extracted.
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