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Abstract. Quality control processes in manufacturing often still rely on
manual tasks. Applying decision mining can support users by providing
valuable insight into the process. This paper discusses the potential of
integrating contextual information into decision mining to achieve accu-
rate and meaningful decision rules in the context of a case study stem-
ming from the manufacturing domain. To explore this, a new approach,
DigiEMine, is presented, which addresses the gap between information
extraction and practical decision mining applications by integrating in-
formation extracted from engineering drawings with time sequence data
in the form of diameter measurements of workpieces. The discovery of
relational decision rules is enabled, allowing for contextualization of the
decision rules. The output of this approach is presented in both tex-
tual decision rules and visually on engineering drawings, empowering
users to make informed quality control decisions. The case study in-
cludes three datasets originating from cylindrical workpiece production.
Results demonstrate the feasibility of the approach and the ability to gen-
erate meaningful decision rules across the tested datasets. Its potential
applicability extends beyond the presented case study, with conceivable
scenarios in multiple domains, such as healthcare or logistics, where inte-
grating context information, such as regulatory data, with time sequence
data is required to provide additional context for decisions.

Keywords: Decision Mining · Context Data · Manufacturing · Quality
Control.

1 Introduction

Process mining, including process discovery, conformance checking, and process
enhancement [1], plays an essential role in driving automation and digitalization
and can be applied in multiple ways, delivering valuable insights into operations
and enabling the identification of bottlenecks, inefficiencies, and deviations from
the intended process flow. This information can be used to optimize produc-
tion processes, reduce waste, and improve overall productivity [20]. An essen-
tial aspect of process mining involves decision mining, i.e., discovering decision
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points and the underlying decision rules in processes [15]. The need for improv-
ing knowledge about and around decisions is increasing as “[e]ffective decision
making – that is connected, contextual and continuous – results in a host of busi-
ness benefits, including greater transparency, accuracy, scalability and speed” 4.
Decision mining enables increased transparency in processes by capturing the
underlying logic of decisions, allowing users to understand the decisions in a
process. Decision mining typically employs classification techniques and aims to
provide decision rules that are in human-readable form. This, in turn, can lead
to faster detection of deviations and allows for evaluation whether these detected
deviations are intentional or due to errors, decreasing the time until errors are
detected and thereby minimizing the impact of errors on the overall outcome.

Typically, the input data for decision mining comprises process event log
data for determining decision points in the process and process data such as
patient age or the loan amount to determine the decision rules at the decision
points based on classification techniques, mostly decision trees [15]. In domains
where IoT data provides context to process event data, e.g., manufacturing,
logistics, and healthcare, sensor data might also influence decisions and should
hence be part of potentially more complex decision rules, i.e., turning from, e.g.,
“temperature> 30” to “temperature exceeds 30 for three times in a row” [2,9,23].

Input data for decision mining might comprise additional structured or un-
structured context data. Context data defined as being “additional process-
related information” [5] might be crucial for decisions in a process. An example
of context data in manufacturing are engineering drawings (EDs). EDs are the
source of information on how a product is going to be produced and also serve as
input for quality checks after production [21] and, therefore, provide important
process-related information.

Including context data explicitly in decision mining can lead to more accurate
and meaningful results with decision rules that are set in the appropriate context.
This means that the resulting decision model and the mined decision rule are
more meaningful to employees using and interpreting the decision rules. However,
integrating data, specifically less structured data such as images, is not trivial
and might lead to features that are not easy to interpret for humans. Including
context data explicitly, therefore, requires the use of features that can transport
as much information as possible to the users. This can be done by building
relational features, where two features are connected, e.g., “age customer <=
maximum age”. Multiple decision mining approaches exist in the literature; see
[15], including approaches that enable the extraction of relational decision rules
[3,14,22]. So far, to the best of our knowledge, no approach exists that enables
the integration of time sequence data and unstructured context data. However,
combinations of time sequence data and additional context data occur in multiple
domains, for example in manufacturing where sensor data is set in relation to
specifications. This paper, therefore, explores the integration of context data in
decision mining embedded in a case study from the manufacturing domain to
answer the following research question RQ:

4 www.gartner.com/smarterwithgartner/how-to-make-better-business-decisions

www.gartner.com/smarterwithgartner/how-to-make-better-business-decisions
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RQ: How can context data, such as dimensioning information,
and time sequence data be combined and integrated into decision
mining algorithms?

We employ a case study methodology [19] to gain an in-depth understanding
of the challenges and complexities of a specific use case and the corresponding
implementation, providing valuable insights into its functionality and poten-
tial challenges. The main contribution of this paper is the introduction of the
DigiEMine approach. This novel approach integrates unstructured context data
with time sequence data for decision mining, allowing the construction of rela-
tional decision rules that provide explicit reference to the input data. Thereby,
the traceability and reconfigurability of the resulting decision rules are increased.
Traceability refers to understanding why a specific value is essential in a decision
rule. In contrast, reconfigurability refers to decision rules being easily adapted
if the underlying decision logic changes. The presented approach bridges the
gap between information extraction from engineering drawings and its practical
application in decision mining, contributing to a more seamless and effective
automated quality control process.

The rest of the paper is organized as follows: a case study exploring the
research challenges in depth is presented in Sect. 2. The DigiEMine approach is
described in Sect. 3 and the results of applying the approach to the cases are
presented in Sect. 4. The results are then discussed in Sect. 5 and related work
is presented in Sect. 6. A conclusion is given in Sect. 7.

2 Case Study

The case study stems from the manufacturing domain, particularly the pro-
duction of cylindrical workpieces, such as valve lifters. These workpieces are
produced in small batches using a turning machine. The dimensions stem from
a CAD (Computer Aided Design) model, which is nowadays mainly used in pro-
duction. In addition, an engineering drawing is generated from the CAD model,
where additional information, such as applicable regulatory guidelines and de-
fault tolerances, is noted. After producing the workpiece, its quality is assessed by
measuring different attributes and comparing the measurements to the require-
ments specified in the corresponding ED. The best-case scenario would involve
all specifications being part of the CAD model, including tolerances, which can
be automatically extracted for quality control. However, engineering drawings
are still frequently applied as a contractual basis and as a reference for quality
control as the necessary information is often missing in the CAD models [12].

As shown in Fig. 1, the quality control process involves taking two measure-
ments for efficiency and quality reasons. Firstly, a silhouette measuring machine
(Keyence) checks the workpiece diameter. This step takes a few seconds but
can be inaccurate as not all essential quality factors can be measured this way.
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Therefore, the workpieces are transferred to a second measuring machine (Mi-
croVu) to measure more attributes, e.g., surface quality and flatness, resulting in
more precise results. This step takes a couple of minutes. Hence, an optimization
of the quality control would be to classify instances as “ok” or “not ok” after
Keyence and let only workpieces with a high probability of being “ok” continue
to MicroVu. This optimization can be expressed by a decision point (DP1), high-
lighted by a red circle in Fig 1; at this point, the Keyence measurements should
be compared to the dimensions and tolerances stated in the ED.

Fig. 1. Valve lifter production process, engineering drawings, measurement values, and
resulting decision rule.

The Keyence measuring machine5 works by illuminating the workpieces with
a green LED and a telecentric lens. When the workpiece is put through the
machine, it breaks the beam, creating a shadow on the sensor. Different features,
such as size and angle, can be calculated by measuring this shadow. As the valve
lifter is a cylindrical workpiece, the main feature is the diameter of the workpiece.
The resulting measurements correspond to the outline of the workpiece (cf. close-
up in Fig. 2). The data points up to timestamp 10000 (measured in milliseconds)
correspond to the actual silhouette of the workpiece. For the remaining time, the
measured values, including the steep increase, are artifacts produced by the robot

5 https://www.keyence.eu/ss/products/measure/measurement library/type/optical,
accessed:12/04/2024

https://www.keyence.eu/ss/products/measure/measurement_library/type/optical, accessed: 12/04/2024
https://www.keyence.eu/ss/products/measure/measurement_library/type/optical, accessed: 12/04/2024
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arm holding the workpiece in place while it is being measured. It can be seen that
the measurements do not explicitly correspond to discrete values measuring each
dimension but are continuous measurements, i.e., time sequence measurements,
as the workpiece is pulled through the laser beam.

Fig. 2. Keyence measurements for valve lifter.

The continuous data represents a challenge in automating quality control, as
the discrete values from the engineering drawings have to be compared with a
series of measurements from the Keyence machine. The challenge is to find which
exact segments from the time sequence have to be compared to the specifications,
which is not a trivial problem. In literature, approaches exist that use statistics,
e.g., Extreme Point Selection (EPS), to determine which parts of continuous
data should be used for quality control [7]. However, this problem can be avoided
using decision mining algorithms as the algorithm automatically determines the
significant parts of the measurements if the time sequence is discretized and
split into segments. Therefore, setting the Keyence measurements into relation
to the requirements and tolerances specified in the ED can enable the mining of a
meaningful decision rule for DP1 and thereby support quality control by enabling
tracking of which decision logic is actually used to make quality decisions as well
as provide a basis for automated quality control.

A decision rule can consist of multiple conditions, which are usually of the
form v(ariable) op(erator) c(onstant), for example “measurement1 > 18.5”,
which are concatenated to form a decision rule. However, in scenarios like the
one described above, including the tolerance values in the conditions to embed
the measurements in the context of the required dimensions can provide bene-
fits. The corresponding condition is of the form v(ariable) op(erator) v(ariable),
for example “measurement1 > tolerance1”. These relational conditions cap-
ture the relationships between two variables. An example of a relational con-
dition in a loan application scenario is: “IF amount < amount treshold”, where
amount threshold is referring to contextual data, e.g., compliance regulations,
instead of the classic decision rule: “IF amount < 100.000”. Similarly, an exam-
ple from the healthcare domain could be: “IF heart rate > max threshold OR
blood pressure < min threshold” In these examples, the relational conditions
compare a variable to another variable that is derived from contextual data, such
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as regulatory documents or guidelines. This allows the rules to be more flexible
and adaptable to changing circumstances. In addition, it provides context infor-
mation to the user as it is not a constant value but specifies what it relates to;
thereby, potential deviations from the intended process can be detected more
easily. In the case study, a potential insight could be whether the workpiece
quality is assessed based on the required dimensions or on arbitrary values. In
addition, constant values might not be exactly the same as the specifications set
in the drawing due to learning of the algorithm; e.g., 2.00 was approximated as
a threshold instead of the true maximum value of 1.98, which could potentially
sum up to account for bigger errors. Therefore, using relational conditions en-
ables more transparent and informative decision rules. An exemplary decision
rule for DP1 using relational conditions can be seen in Fig. 1.

Applying decision mining to support quality control in the case study involves
several challenges. Firstly, the dimensioning information must be extracted from
the engineering drawing in a form that allows for further automated processing.
Secondly, the measurements are in the form of time sequence data, which has to
be integrated with the dimensioning information in a meaningful way to classify
the workpieces accurately. Thirdly, the classification rules have to be commu-
nicated to the domain experts transparently [25], i.e., the user has to know
according to which rules the workpieces are classified to evaluate if the rules re-
late to the actual specifications or if unwanted deviations occurred in the quality
control process. This process and the related challenges are similar for various
workpieces produced using a turning machine, i.e., cylindrical workpieces.

Previous work [21] shows how dimensioning information can be extracted
from technical drawings. However, how this information can be implemented as
part of the process was not further investigated. Decision mining approaches
found in the literature can extract decision rules from event log data [15]. Still,
so far, these approaches are not able to relate time sequence data to other data,
i.e. embedding the measurements in the context of the required dimensions.

Therefore, integrating information from EDs with time sequence data for
decision mining in a meaningful way to automate and optimize the quality as-
surance process remains to be done. Thus, the primary object of this paper is
to bridge the gap between information extraction from EDs and its practical
application in decision mining to contribute to seamless and effective automated
quality control. This integration is achieved by the DigiEMine approach, which
enables the classification of workpieces according to their quality and the extrac-
tion of decision rules set in the specifications’ context.

Methodology: This paper follows a case study methodology [19]. A case study
approach was chosen due to its suitability for in-depth exploration of the real-
world complexities involved in implementing and testing the system within this
unique use case. The case study and the research questions are introduced as
part of this section. Data collection involves implementing and applying the
DigiEMine approach on three datasets from the presented scenario. Results are
analyzed with regard to their performance as well as their ability to include
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context information, allowing us to understand the strengths, challenges, and
overall effectiveness of the implementation for this use case.

3 The DigiEMine Approach

The DigiEMine approach is defined through Alg. 1 and consists of three phases.
An overview of the approach can be seen in Fig. 3. The gray highlighted lines
mark lines that use existing algorithms. As input, the engineering drawing as
well as the event log of the production process, are needed.

Fig. 3. Overview of the DigiEMine approach (modeled using Signavio©).

In the first phase, dimensioning information, including nominal values and
tolerances, is extracted from an engineering drawing using the approach pre-
sented in [21]. The nominal values are combined with the tolerances to get upper
and lower boundaries, which are used for feature engineering in the next phase.

In the second phase, time sequence data, in this case, the measurement data
of the individual workpieces, is extracted from the event logs. New features rep-
resenting the underlying pattern are extracted from the measurements. These
features are combined with the information extracted in Phase 1 to form rela-
tional features, which enable the mining of relational conditions. Subsequently,
a decision mining algorithm uses the generated features to mine decision rules.

In the third phase, the mined rules are displayed to the user textually. In
addition, all tolerances that are part of the resulting decision rule are highlighted
in the ED. Therefore, the algorithm’s output consists of the decision rule and
the highlighted drawing.
Phase 1 Extraction of Dimensions - Alg. 1 Lines 1-3
The algorithm starts by calling a function provided by [21], using an ED as input,
returning dimensioning requirements (D) and coordinates of the bounding box
(C) of those requirements on the drawing. The requirements are in JSON format,
where the nominal value and the upper and lower tolerances are given, e.g. 4.8,
+0.2, -0.2. The next step includes using regular expressions to get from the
requirements in the above-described form to requirements of the form “lower
acceptable value” and “upper acceptable value”, e.g., 4.6 and 5 for the example



8 B. Wais and S. Rinderle-Ma

given above. These values are referred to as boundaries. A data frame (DF )6

is created, and the lower and upper boundaries (B) are saved as features that
stay constant for all instances. The algorithm can be adapted to extract the
information from the ED only once and reuse this information every time a new
batch of workpieces is produced.

Phase 2 Feature Engineering + Decision Mining - Alg. 1 Lines 4-16

The next step is to get the measurements (TSvalues) and status information
(Status) for all workpieces (W ) from event log files. For the investigated use
cases, the log files are in yaml format. For each instance, the measurement values
of the Keyence measuring process and the result of the MicroVu measuring
process, i.e., the status that indicates whether the workpieces are “ok” or “not
ok”, are extracted from the event log and stored in the data frame. As the
decision mining technique used in this approach is a decision tree, a supervised
learning technique, a ground truth must be available, here in the form of MicroVu
status. The measurement values, i.e., the time sequence values extracted from
the log file and the status, are then stored in the data frame for each instance.

Next, the time sequence values are used to create new features(TSF ) that re-
flect the characteristics of the time sequence by applying the feature engineering
part of the EDT-TS approach [23]. EDT-TS is an approach to discover decision
rules that depend on time series data and works by applying different feature en-
gineering methods reflecting different time sequence characteristics. Three types
of features are produced: 1) global features that summarize the entire time se-
ries, 2) interval-based features that calculate features for subsequences of the
time series, and 3) pattern-based features that look at the distribution of values
in a time series, e.g., a value has to appear more than five times. The algo-
rithm works by pre-processing event log data to detect time sequence values.
Subsequently, different time sequence features are calculated for each instance.
Examples of global features generated by EDT-TS are the maximum value, e.g.,
diameter maximum, the slope of a time series, or more complex values such as
a Fourier transform. The time series is divided into intervals for interval-based
features, and features are calculated for each interval. The time series can be split
by measurement points or time spans. Examples include the mean, maximum,
and percentage change of each interval, e.g., diameter segment2 percentchange,
referring to the percent change of values in the second interval. Per default the
time series is split into three, five and ten intervals, however this can be manually
adapted to fit the specific use case. In this case, the default intervals were used.
Pattern-based features consider the distribution of values in the time series. The
algorithm identifies values that occur more often in one class than in another.
These values are then used as thresholds to create binary features. For example,
if the value 26 occurs more than four times in the temperature time series, the
feature temperature list.count(26.0) >= 4.0 would be set to True. As all poten-
tial features are calculated for each instance, the number of features increases
exponentially, leading to increased computational complexity. To avoid work-

6 Using pandas, https://pandas.pydata.org/pandas-docs/stable/reference/api/
pandas.DataFrame.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
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Algorithm 1 DigiEMine Approach

Input: ED, Workpiece Event Logs WL
Output: Textual Decision Rules, Highlighted ED

1: D,C ← dimensions and coordinates from ED ▷ Using [21]

2: DF ← new data frame
3: DF [B]← upper and lower boundaries from D using regex
4: for W ∈WL do
5: DF [W ][TSvalues]← measurement values for W
6: DF [W ][Status]← final status of W
7: end for
8: TSF ← generate time sequence features ▷ Using [23]

9: for tsf ∈ TSF do
10: if abs(correlation(tsf, Status)) > 0.1 then
11: DF [RelevantTSF ]← tsf
12: end if
13: end for
14: DF [RelationalF ]← generate relational features(DF,B) ▷ Using [22]

15: DM ← build decision tree using DF
16: DR← generate decision rules using DM
17: for Condition C ∈ DR do
18: RelevantBoundary ← use regex to find which boundary included in C
19: if RelevantBoundary = ∅ then
20: for blower, bupper ∈ B do
21: if blower < Cvalue < bupper then
22: RelevantBoundary ← B
23: end if
24: end for
25: end if
26: if RelevantBoundary = ∅ then
27: for b ∈ B do
28: if mindifference(Cvalue, b) then
29: RelevantBoundary ← B
30: end if
31: end for
32: output warning to user
33: end if
34: CB ← coordinates for RelevantBoundary using C
35: draw rectangle around CB on ED
36: end for
37: return textual decision rules and highlighted ED

ing with potentially irrelevant features, the correlation between the engineered
features and the resulting outcome, i.e., the status (OK/NOK), is computed.
This is done using the Phi Coefficient for two outcome classes and the Pearson
correlation coefficient for more than two outcome classes. Only features with an
absolute correlation coefficient of at least 0.1 are considered potentially relevant
(RelevantF ) and used for the next steps. The threshold of 0.1 worked well for
the tested cases but can be adapted.
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In the next step, relational features are created to enable extracting relational
conditions instead of conditions using constant values. The relevant features
(RelevantF ) are combined with the boundaries B to create relational features
(RelationalF ), i.e., features of the form measurement1 <= boundary1, to set
the measurements in relation to the boundaries. After all potential combinations
of measurements and boundaries are created, they are calculated (true/false) for
each instance, leading to features such as “measurement1 <= boundary1 ==
TRUE”. The last step in phase 2 consists of mining decision rules. Decision rule
mining is usually done using classification algorithms; see [15]. Decision trees
are especially useful as these produce white-box decision models and allow for
the generation of textual decision rules. Therefore, decision trees are also used
in this use case7 The created features (RelationalF and RelevantF ) are used
as input to the decision tree implementation. Decision trees recursively split the
feature space into distinct regions based on the values of input features. Each
internal node within the tree represents a decision condition based on a specific
feature, with different branches from nodes corresponding to different possible
feature values [4]. This partitioning process continues until a stopping criterion is
reached, typically when the data points within the leaf node are predominantly
of a single class. The resulting decision model (DM) contains a tree structure,
enabling the classification of new instances by traversing the tree from the root
node to a leaf node based on the feature values of the instance. As a result,
textual decision rules containing one or more conditions are generated(DR).

Phase 3 User Output - Alg. 1 Lines 17-37

In the last phase, the mined decision rule has to be communicated to the domain
expert. In production, not all specifications in the ED are relevant to the result.
The further use of the workpiece is often decisive in determining which features
are essential and which are less critical. However, the production process can
also influence which dimensions are most critical, e.g., chips might form on one
specific part of a workpiece. Therefore, knowing which parts of the workpiece are
most relevant to the outcome enables additional insight. To enable a visual un-
derstanding of which dimensions contribute to the classification of an instance,
all boundaries that are part of the decision rule are mapped to the correspond-
ing dimension and highlighted in the original ED. Therefore, regular expressions
are used to extract the boundaries (RelevantBoundary) used for each condi-
tion (C). The condition’s specific value (Cvalue) is analyzed if the conditions do
not contain relational features. The value is mapped to a dimension if it lies
between the upper and lower boundary (blower, bupper). If neither approach can
map conditions to dimensions, a textual warning is given to the user as dimen-
sions and rules do not overlap, and conformance issues could be involved. In
addition, the nearest boundary for each value, blower or bupper, is analyzed, with
“near” being defined as the minimum absolute difference, as this might be the
appropriate boundary. This mapping is speculative, and therefore, the warning
is displayed. Lastly, for all dimensions that are part of a condition, the coordi-

7 Here, the Scikit-learn implementation of CART is used, see [18]
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nates of the bounding boxes (CB)are retrieved to highlight the dimensions on
the ED, which is shown to the user and stored.

4 Case Study Findings

Algorithm 1 was implemented using Python and tested on three datasets stem-
ming from the production of cylindrical workpieces. The implementation is avail-
able online8, including all used datasets and the full results.

As this is, to the best of our knowledge, the first approach that enables inte-
gration of time sequence data and relational features, the evaluation focuses on
feasibility and applicability. The feasibility of the approach was shown by imple-
menting it. The approach is tested on three datasets to evaluate its applicability.
The resulting conditions are compared to EDT-TS results, which allows for the
integration of time sequence data but not the generation of relational features.
Accuracy is calculated for EDT-TS and DigiEMine to analyze if the application
of DigiEMine leads to changes in performance.

The datasets used for the case study should stem from a cylindrical workpiece
production process. In addition, the engineering drawing of the workpiece or at
least the tolerance values should be available. Furthermore, the dataset should
contain measurements of the workpieces and information about whether the
workpieces are “ok” or “not ok”, i.e., some ground truth has to be known to learn
the decision tree as well as to evaluate performance of the mined decision. As it is
challenging to find appropriate datasets, we used three datasets based on the case
study described in Sect.2: one real-life dataset (“Valve Lifter”) corresponding to
the case presented in Sect. 2, a second dataset taken from the same scenario but
involving a different workpiece, called “Turm” and a third, synthetically created,
dataset. The third dataset (“Synthetic”) is similar to the “Turm” dataset but
includes generated time sequence values.

Results: Tab. 1 shows the accuracy values achieved by the DigiEMine ap-
proach and EDT-TS approach for the three datasets and an excerpt from the
mined decision rules.

Table 1. Evaluation results for the datasets Valve Lifter, Turm and Synthetic.

DataSet /
Approach

DigiEMine EDT-TS

N Accuracy Example Condition Accuracy Example Condition

Valve Lifter 37 1 boundary10>=segment8 min is TRUE 0.75 segment5 min <= 15.79

Turm 33 0.75 boundary2>segment6 max is FALSE 0.75 segment1 max <= 77.73

Synthetic 70 1 boundary4<segment8 max is TRUE 0.86 segment5 max <= 22.17

The table shows that the accuracy values are medium to high for all datasets
and approaches. However, the values achieved by DigiEMine are at least as high
and, in some instances, even considerably higher than the results achieved by
EDT-TS. The conditions look similar in each approach. The EDT-TS conditions
involve minimum or maximum segment values which are set in comparison to a

8 https://github.com/bscheibel/digiemine

https://github.com/bscheibel/digiemine
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threshold value instead of a boundary. In the case of the valve lifter, EDT-TS
extracted dimensions that are not precisely accurate, i.e., the exact specifica-
tion would be 15.2 as the maximum value compared to the extracted value of
15.79; similarly, for the synthetic dataset, the specified maximum value is 22.1,
whereas 22.17 was mined as maximum in EDT-TS. These are minor differences
but can accumulate and may account for the differences in accuracy. In addition,
even minor differences might be impactful in production when exact measure-
ments are needed for specific workpieces. For the “Turm” dataset, the decision

Fig. 4. Valve lifter engineering drawing with highlighted dimensions.

rule discovered by EDT-TS involves only one condition. However, this condition
does not include a value related to the dimensions but is an artifact created
by measuring. Therefore, despite high-performance values, the discovered con-
ditions include no valid classification rule. The DigiEMine conditions involve
comparing a segment’s minimum or maximum to a boundary and specifying if
those conditions should be True or False. The full decision rules contain con-
catenations of three or more of those conditions, each comparing segments and
boundaries. Therefore, users working with these decision rules can assess which
segments have to be compared to which specifications set by the engineering
drawing. In addition, Fig. 4 shows the visual output for the described use case:
the dimensions used as part of the decision rule are highlighted in the original
ED.

5 Discussion

The application of the DigiEMine approach in the case study shows that the
approach is feasible and able to discover decision rules, including time sequence
and contextual data, and to set them in relation to each other, thereby providing
an answer to the RQ stated in Sect. 1. The results indicate that the performance
is at least as high or even higher than without the inclusion of dimensioning
requirements. The high accuracy values for DigiEMine can be due to the ability
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to use the exact specifications instead of having to approximate them using the
available instances. This is also a benefit for classifying new instances, as these
might include values not seen during testing.

In the results, excerpts of the mined decision rules are given, showing that
the measurements are always set in relationship to a boundary, i.e., a dimen-
sion from the ED. A visual output, in the form of an engineering drawing with
highlighted dimensions, is also provided. This can further support the employees
supervising the process as well as improve the understanding of which dimensions
are decisive for the outcome of the process. If measurements cannot be linked
to the dimensions found in the ED, this could indicate that the measuring pro-
cess cannot detect quality-relevant attributes; for example, only the diameter is
measured, which is irrelevant to the process outcome as only surface attributes
like flatness are decisive for the result. Alternatively, it could also indicate that
the classification of workpieces is not based on the requirements specified in the
ED. If this is the case, a potential conformance issue could be involved. On the
other hand, not all dimensions found in the ED can be linked to measurements,
as not all requirements can be measured using one measuring machine.

The integration of dimensions and tolerances through the use of an algorithm
can also lead to the introduction of errors. Therefore, ideally, the dimensions are
integrated into the CAD model and can be read automatically. However, as
mentioned in Sect.2 this is not industry standard. Extracting the dimensions
manually from a file is labor-intensive and error-prone, as an engineering draw-
ing can include hundreds of dimensions for complex workpieces. Therefore, the
automatic extraction can be used as a starting point and combined with a man-
ual check to ensure the extracted dimensions are valid. This application might
be particularly interesting for runtime application, as changes in the contractual
basis can be detected. If the measured dimensions do not change accordingly,
compliance issues can be registered, and employees notified accordingly.

The approach can be used in addition to manual checking or for fully auto-
mated pre-checking, thereby providing a smoother and more efficient manufac-
turing process, reducing quality assurance time, and providing the best quality
workpieces to customers. The application of the DigiEMine approach can provide
benefits to manufacturing companies that are on their way to digitalization but
still use some form of legacy data. Specifically companies that produce smaller
batches can benefit from this approach, as smaller batches mean less training
data. Relating the measurements to the boundaries might lead to faster learning
with less training data, as the boundaries do not have to be estimated using
many instances but can be learned from the information in the provided engi-
neering drawing. If this approach leads to faster learning will be evaluated in
future work. In addition, this approach also allows for automated updating if
customer requirements, i.e., the engineering drawing, change.

The approach can be generalized to a scenario where time sequence data
(e.g., sensor data) and additional context data (e.g. data extracted from regula-
tory documents or guidelines) should be combined to form meaningful decision
rules, which is conceivable in many scenarios, such as healthcare or logistics.
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An example in healthcare would be monitoring cardiac conditions where blood
pressure or heart rate measurements are compared to clinical guidelines, e.g., the
European Society of Cardiology (ESC) guidelines to diagnose specific illnesses.
An example from the logistics domain could be the combination of customer
requirements regarding transport conditions (e.g., temperature) extracted from
emails with the temperature measurement values. This paper provides an ap-
proach for a specific use case from manufacturing. However, the fundamental ap-
proach is similar, regardless of which data should be integrated. It consists of the
following steps: First, a Data Collection step, where contextual data and pro-
cess data are gathered. After that, Feature Engineering has to be performed,
where features are engineered from unstructured data, and subsequently, rela-
tional features are generated. If the decision points are already known, Decision
Mining can be performed in the next step. Depending on the use case, different
decision mining algorithms can be applied. If the decision points are not known,
process mining and decision point discovery have to be performed beforehand.
Quality metrics, see for example [25] and user feedback can be used to assess
and validate the resulting decision rules and potentially initiate a remining of
the decision rules, leading to an iterative process. Lastly, in the Output step,
textual decision rules are displayed to the user; in addition, visualizations can
be generated to help the user gain insights into the process.

Limitations and threats to validity: The most significant limitation is
the generalizability, as the implementation and evaluation of the approach are
set in the context of the case study. In addition, only silhouette measuring was
used; thereby, not all quality-relevant criteria can be evaluated. More testing
must be done to assess the generalizability of this approach to other kinds of
workpieces and in other settings. Furthermore, we currently assume that each di-
mension is unique. If multiple dimensions with the same values exist, we cannot
accurately map the conditions to the dimensions in the drawing. As the classifi-
cation technique is a supervised learning technique, a ground truth is necessary
to learn the decision rules, either by having a second measurement as in the
proposed scenario or by including manual measurements. As mentioned above,
an analogous usage of this approach in scenarios with time sequence data and
additional contextual information is conceivable. However, the approach must
be adapted and tested in other scenarios in future work.

6 Related Work

An extensive research domain investigates the extraction of information from
EDs in CAD formats (DXF, DWG, STEP or IGES) [28,30,31] or from scanned
images using vectorization and OCR [17]. DigiEMine uses the approach described
in [21] as this is the only approach extracting information from PDF format,
which brings together the ability to obtain textual information and to be more
accurate than by using OCR. Other kinds of contextual information are investi-
gated, such as extracting information from regulatory documents[6,27] or using
news sentiment analysis for additional context [29].
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Time series and time sequence data as context data, e.g., additional sensor
data or constraints, has been used in multiple scenarios to improve process min-
ing or process monitoring techniques [10,24]. Similarly, existing work integrates
time sequence data in process and decision mining by using feature engineering
methods [2,9,23]. However, these approaches did not analyze how time sequence
data can be connected with additional context data.
Decision Mining includes algorithms for mining decision points from processes
and classification techniques to mine the corresponding decision rules. A variety
of decision mining approaches exist, focusing on different aspects, such as finding
overlapping rules [16], aligning control and data flow to discover decision rules
[13], integrating time sequence data [9,23] or mining rules that involve relation-
ships between features, i.e. relational decision rules, [3,14,22]. An overview can
be found in [15]. This work integrates existing decision mining approaches to
work with time sequence-based and relational features.
A multitude of works investigate data mining for quality control in manu-
facturing [8,11,26]. These overviews include scenarios where techniques classify
instances according to their outcome. Often used techniques include neural net-
works, support vector machines, k-means, and decision trees. Decision trees are
specifically used to generate flowcharts to classify outcomes based on different
features. Some works use time sequence data and different discretization meth-
ods to generate higher-level features.

To the best of our knowledge, DigiEMine is the first approach that combines
the information contained in EDs with time sequence measurements, thereby
bridging multiple fields. DigiEMine is flexible in that the techniques used can be
replaced by other appropriate techniques, e.g., the generation of time sequence
features can also be done using other discretization methods.

7 Conclusion

The case study presented in this paper shows how the DigiMine approach can
support quality control processes in manufacturing. DigiEMine enables the inte-
gration of context information, specifically dimensioning information from EDs
with time sequence data, i.e., workpiece measurements, to enable the mining
of relational decision rules, providing more transparency in quality control pro-
cesses. The evaluation showed that the approach is feasible and produces results
setting time sequence data in relation to context data, achieving accuracy values
between 0.75 and 1 for the tested datasets. Further testing and generalization of
DigiEMine for different scenarios is planned for future work. Moreover, we aim
to use the approach in runtime decision mining scenarios to test the hypothesis
that this approach allows for faster mining of accurate decision rules. Further-
more, a user study can evaluate different presentations of the textual rules (e.g.,
in the form of trees or tables) as well as the visualizations in the drawing.
Acknowledgments: This work has been partly supported and funded by the
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Analyzing Time Series Data in Process Mining: Application and Extension
of Decision Point Analysis. In: Information Systems Engineering in Com-
plex Environments. pp. 68–84. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-19270-3 5

10. Ehrendorfer, M., Mangler, J., Rinderle-Ma, S.: Assessing the Impact of
Context Data on Process Outcomes During Runtime. In: Service-Oriented
Computing. pp. 3–18. Springer International Publishing, Cham (2021).
https://doi.org/10.1007/978-3-030-91431-8 1

11. Koeksal, G., Batmaz, I., Testik, M.C.: A review of data mining applications for
quality improvement in manufacturing industry. Expert Systems with Applications
38(10), 13448–13467 (Sep 2011). https://doi.org/10.1016/j.eswa.2011.04.063

12. Labisch, S., Weber, C.: Technisches Zeichnen Selbstständig lernen und effektiv
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