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Abstract. In real-world process scenarios such as manufacturing and
logistics, the process outcome is frequently predicted by IoT sensor data
streams and their drifts, e.g., the quality of a product can be affected by
the temperature during the production process. In particular, drifts can
explain variations in the process outcome, and hence, their early detec-
tion can support the definition of mitigation actions, e.g., canceling the
production of probably low quality products. As in most cases, humans
have to define such actions, it is crucial to support them in making de-
cisions in the context of outcome prediction. Hence, this paper aims to
support the interactive visualization of drifts in specific points of sensor
data streams to show the development of critical sensor measurement
points over different traces. Furthermore, these critical points can be
identified based on drifts between distinct groups of traces. Being able
to visualize drifts and identify critical points enables (early) outcome
prediction, ranging from the analysis of drifts at single points or at spe-
cific timestamps in a trace to the investigation of average time series of
traces representing different outcomes, e.g., OK/NOK. Three different
methods to derive and visualize drift points are presented and evaluated
based on a prototypical implementation and a survey with users.

Keywords: BPM and IoT · Sensor Data Streams · Process Outcome
Prediction · Drift Visualization · Drift Analysis.

1 Introduction

Process models provide a blueprint on how and in which order the tasks of a
process should be performed. However, when process models are enacted repeat-
edly, over time, there might be changes in the order of the tasks or how they
are carried out. Such changes are called drifts which might ultimately lead to an
adaptation of the process model [1]. Naturally, such drifts can happen not only
in the control-flow perspective of the process (as described above) but also in
other perspectives, such as the organizational perspective, if roles carrying out
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the tasks change or the data perspective, when data elements obtained during
the process (e.g., amount of a loan or age of an applicant) start to shift over the
course of multiple enacted processes [11].

Another source for drifts to occur lies in the sensor data streams that are
recorded during the execution of different traces of a process [12]. Figure 1
presents an example, how a sensor data stream of a temperature recording could
look like for two traces. The drift between two traces here signifies a potential
thermal runoff affecting the process outcome. Its detection would allow users
to rectify the situation by increasing the machine downtime, to achieve a sta-
ble production procedure. Visual drift detection seems easy for two sensor data
streams, but becomes challenging for multiple sensor data streams with multiple
drifts between the traces. Hence, this work asks how users can be supported
in visually detecting drifts in sensor data streams and assessing their
effects on the process outcome.

In general, the detection of drifts in sensor data streams is important because
it provides information on how a specific process instance progresses and allows
to react if undesired behavior occurs. This can be done by either correcting the
situation for the currently analyzed instance or by letting a domain expert decide
on how and if such deviations/drifts could be avoided or handled in the future,
which leads to an improved process model.
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Fig. 1: Temperature Drift in a Production Process

The contribution of this paper is three-fold: Contribution C1: We propose
an approach to visualize drifts for multiple traces in an easy-to-perceive way.
Contribution C2: By using information about drifts between traces, we show
how outcome prediction by considering drifts in different points of the sensor data
streams, becomes possible. This method of outcome prediction has the advantage
that it perfectly explains which points led to the decision and how the sensor data
drifts in these points behave compared to other traces. Contribution C3: We
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evaluate the approach by implementation and conducting a survey with experts
in the field.

The remainder of the paper is structured as follows: Section 2 discusses re-
lated work, Section 3 describes the presented approach, Section 4 provides a sur-
vey and the results for outcome prediction performed with the proposed methods,
Section 5 discusses limitations, and Section 6 concludes the paper.

2 Related Work

The visualization of processes and their execution plays a crucial role in un-
derstanding and managing complex data flows and process behaviors. Business
process management often employs BPMN to model processes graphically, en-
abling stakeholders to comprehend workflows comprehensively and identify in-
efficiencies. Utilizing process models can significantly enhance decision-making,
potentially leading to improved operational efficiency and increased revenue [2].
On the execution side sensor event streams can play a crucial part in explaining
the root cause of deviations from expected process behaviors [12]. To visualize
these deviations this work aims to provide an interactive visualization frame-
work for drifts in sensor event streams, enhancing the understanding of process
outcomes and enabling more informed decision-making. [5] highlights the value
of visualizing data from manufacturing execution systems, drawing special at-
tention to how interactive visualizations empower users to selectively focus on
data points relevant to their decision-making needs. One approach in ubiqui-
tous computing visualizes time-series sensor data to aid in just-in-time adaptive
intervention design [10]. However, the mentioned works fall short of addressing
concept drifts and the challenges posed by concept drifts in process execution.

Concept drift and data drift affect the accuracy and reliability of numerous
real-world applications exposed to dynamic environments [14] [3]. Concept drifts
are changes in the control-flow of a process, which are detected through analyz-
ing process execution logs [11]. In existing work in machine learning, data drift
is defined as the discrepancies between the data set initially used to train a ma-
chine learning model and the data subsequently collected by the model during
real-world application [3]. This paper follows the definition of data drift as de-
fined by [11]: it is the change in process data, e.g., when machine errors change
machining parameters during production in manufacturing processes. Due to the
different types of input data and detection methods employed, many different
visualizations of concept drifts were developed in existing work across different
domains. Extensive research exists on the visualization of drifts between process
models [9], event logs [15], and multidimensional problem spaces [7]. Concept
drifts have also been visualized using feature importance on streaming data [8].
Other fields, such as cloud computing, produced works on cluster-based data
drift visualizations of CPU and memory resource usage [4]. However, the men-
tioned works do not examine external data such as IoT sensor data or visualize
drifts over distinct groups of traces.
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3 Approach

Three methods to visualize the drift between a specified point in a sensor data
stream and another sensor data stream are presented in Sect. 3.1. Further-
more, an approach to automatically determine interesting points in sensor data
streams which should be observed with the aforementioned methods is presented
in Sect. 3.2.

3.1 Visualization Approaches

Data Preparation Log files of process instances contain sensor event streams
that capture data from external sensors monitoring the physical conditions un-
der which the process is executed. Each data point corresponds to a single
time-stamped measurement from the sensor, which, compiled, constitute time
sequence data. This data needs to be resampled into discrete and equidistant
time series data like in [12] to tackle the problem of unevenly distributed time
sequences and obtain an even time scale over all available time sequences. After-
wards, the most recent time series are considered, and outliers (i.e., whole time
series that are too long/short) within this predetermined window are excluded
based on the criteria “sequences with a duration shorter than the first quartile
minus 1.5 times the IQR (Interquartile Range) or with a duration greater than
the third quartile plus 1.5 times the IQR, similar to boxplots. The IQR is calcu-
lated here between third and first quartile.” [12]. This outlier detection method
is adapted from [12] and modified to simultaneously detect outlier traces from all
available time sequence data instead of performing the method trace by trace.
Moreover, the method works only on already completed time series (because
start and end events must be known) and when outliers are detected, the whole
time series is excluded.

After outlier removal, traces are grouped to allow more efficient drift visual-
ization with a large number of time series. For each group an average time series
(ATS) can be calculated as described in [12], by utilizing the DTW Barycenter
Averaging (DBA) [6] algorithm as distance measure. Averaging sequences using
DBA involves an iterative refinement process that aims to minimize the squared
distance (DTW) to averaged sequences, even if the initial average sequence is
arbitrary [6]. As a result, the computation time for this technique is quadratic,
as a DTW matrix must be generated for each iteration [12]. In this paper, two
approaches for grouping the traces are used. In the first one, traces are split
up based on their time of occurrence into fix-sized groups to detect drifts that
happen over time, e.g., because of tool wear. In the second one, the traces are
grouped based on their process outcome, i.e., whether the part produced in the
process is OK or not OK.

Data Visualization The three novel drift visualization methods presented
comprise 90 degrees angle (90Deg), shortest distance (SD), and same timestamp
(ST ) drift visualization. They allow to compare a specified point in one time
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series (in the following called analyzed time series) to another time series
(in the following called target time series). Both time series can either be
a time series from an individual trace or an average time series obtained from
multiple traces. Figure 2 shows an illustrative example with a time series of sensor
measurements from an individual trace (i.e., black line) and average time series
(i.e., red, blue, and green lines), each being derived from sensor measurement of
multiple consecutive traces. Drifts between time series are shown with orange,
pink, and purple arrows at different points in time (green dots). Techniques that
scale the lengths of the lines with a user-selected factor and insert offsets to add
space between overlaps (see pale purple line between pink and purple lines) are
used to prevent overlapping lines and barely perceivable differences. Figure 2

Fig. 2: Underlying Idea Behind the Drift Visualization Techniques

shows that calculating drifts between time series depends on which point on the
target time series is used to measure the distance to the analyzed time series
(i.e., distance between the defined point on the analyzed time series and the one
chosen on the target time series). Different methods for finding the point on the
target time series are possible:

– 90Deg Drift Visualization Method: This method involves calculating a
line perpendicular to the point on the analyzed time series by considering
the slope of its neighboring points. Then, the nearest intersection point on
the target time series is found, and the distance between the starting point
on the analyzed time series and this point represents the drift. Algorithm 1
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outlines the pseudo code for this method. It requires a time series, a list of
average time series, a specific timestamp to be analyzed (point x), a scal-
ing factor, values for segment spacing, and neighbor point distance. First,
lists for storing line segments and process execution are initialized and then
the sensor measurement corresponding to point x is determined (get point

function) and used as the starting point of the drift calculations. The start-
ing point, alongside distance and the first average time series, is used to
calculate intersection points with the next time series by finding neighboring
points to construct the slope of a perpendicular line that crosses the next
average time series. The identify intersection function selects the closest
intersection point to p1, or the closest point on the average time series if no
intersection exists. The x-value of p1 is logged in proc exec. The method
iterates through subsequent average time series to calculate new intersection
points, which are then used as bases for the next calculations. Finally, the
line segments are scaled and offset for improved visualization, returning the
(modified) line segments and process execution identifiers. Figure 3a depicts
the expected behavior of this visualization.

(a) 90Deg Drift Visualization (b) ST Drift Visualization

Fig. 3: Behavior of 90Deg, ST Drift Visualizations

– SD Drift Visualization Method: This method portrays drifts as the
minimum distance between a point on the analyzed time series and the
target time series. At the specified point, the smallest distance to a point on
the target time series must be found. Algorithm 2 shows pseudo-code for this
method. It calculates the shortest distance from the starting point to the next
average time series, using the project method to find the minimum distance
and then linear interpolation to identify the data point on the average time
series. This point and starting point are added to line segments, and its
x-value to proc exec. This is done for each average time series, using the last
point found as the starting point for the next calculation. Line segments are
scaled, and offsets are added to prevent overlap if set by the user. Afterwards,
the (updated) line segments and proc exec list are returned.
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Input: ts, ats list, point x, scale factor, offset, distance
Output: scaled and spaced lengths, line segments, proc exec
line segments, proc exec = []
p1 = get point(ts, point x)
original = ts
proc exec.append(p1.x)
for ats in ats list do

intersections = get perp line(original, p1, dist, ats)
closest point = identify intersection(intersections, ats)
line segments.append([p1, closest point])
proc exec.append(closest point.x)
p1 = closest point, original = ats

end
scaled lengths = scale lengths(line segments, scale factor)
scaled and spaced lengths = add offset(scaled lengths, offset)
return scaled and spaced lengths, line segments, proc exec

Algorithm 1: Calculate 90Deg Drift

Input: ts, ats list, point x, scale factor, offset
Output: scaled and spaced lengths, line segments, proc exec
line segments, proc exec = []
p1 = get point(ts, point x)
proc exec.append(p1.x)
for ats in ats list do

closest point = ats.interpolate(ats.project(p1))
line segments.append([p1, closest point])
proc exec.append(closest point.x)
p1 = closest point

end
scaled lengths = scale lengths(line segments, scale factor)
scaled and spaced lengths = add offset(scaled lengths, offset)
return scaled and spaced lengths, line segments, proc exec

Algorithm 2: Calculate SD Drift

– ST Drift Visualization Method: This method visualizes the drift be-
tween a point in the analyzed time series and the target time series by
calculating the distances between measurements on these two time series at
the same timestamp. Algorithm 3 details the pseudo code: The method uses
linear interpolation to find a y-value corresponding to an x-value from the
next average time series, forming line segments for drift visualization with
the start point. The x-coordinate of this point is recorded for process in-
formation retrieval. This interpolation process repeats for each subsequent
average time series, with the last intersection point as the new start. The
resulting line segments are adjusted for scale and spacing according to the
input, and the method returns this information. Figure 3b displays the ex-
pected behavior of this method.
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Input: ts, ats list, point x, scale factor, offset
Output: scaled and spaced lengths, line segments, proc exec
line segments, proc exec = []
p1 = get point(ts, point x)
proc exec.append(p1.x)
for ats in ats list do

ipvy = interpolate(p1.x, ats)
closest point = (p1.x, ipvy)
proc exec.append(closest point.x)
line segments.append([p1, closest point])
p1 = closest point

end
scaled lengths = scale lengths(line segments, scale factor)
scaled and spaced lengths = add offset(scaled lengths, offset)
return scaled and spaced lengths, line segments, proc exec

Algorithm 3: Calculate ST Drift

3.2 Point of Interest Detection

The methods described in Sect. 3.1 allow visualization and calculation of drifts
in one point of an analyzed time series. However, which point(s) of interest
(POI(s)) are to be observed is not specified and in the following two approaches
to find such POIs are proposed:

Point of Interest Detection Based on Individual Traces Detecting POIs
for individual traces uses only information from the analyzed trace itself by fit-
ting a curve to the available points after the Data Preparation step (cf. Sect. 3.1).
Afterwards, maximal and minimal points (i.e., extreme points), as well as points
with a strong change (i.e., inflection points), are used as POIs of the series.
Therefore, each individual trace has its own POIs. However, the time series need
to already be completely recorded to allow curve fitting.

Point of Interest Detection Based on Analyzing Multiple Traces The
detection of POIs based on multiple traces is described in Alg. 4. First, traces
have to be split up into two classes based on some characteristic that identifies
them (e.g., traces leading to OK vs. not OK parts). Then, for each class, the
average time series can be calculated as described in Sect. 3.1. With these two
average time series as input for every point in one of the average time series
(ats A in the algorithm and the remainder of this section) the distance to the
other average time series (ats B in the algorithm and the remainder of this
section) is calculated based on one of the three methods described in Sect. 3.1.
The results are then separated by points where the distance between ats A to
ats B is zero or close to zero (i.e., where they intersect) to split the time series
into segments where they deviate. Finally, the maximal distance isMaxInSegment
in the algorithm, as well as extreme points (calculated by looking at upwards
trends of minimal length min trend length and then choosing the highest point
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out of the next points, denoted as isMaxInUpwardsTrend in the algorithm), are
used as POIs because in these timestamps ats A deviates the most from ats B
(under the used distance metric).

Input: (average time series) ats A, ats B, min trend length
Output: pois
segments, pois = []
for point in ats A do

if calculate distance(point,ats B) ≤ 0.01 then
segments.append([])

end
segments.last.append([point.x, calculate distance(point,ats B)])

end
for segment in segments do

for point in segment do
if isMaxInSegment(point,segment) OR
isMaxInUpwardsTrend(point,segment,min trend length) then

pois.append(point)
end

end

end
return pois

Algorithm 4: Determine POIs Based on Multiple Traces

4 Evaluation

The first part of the evaluation described in Sect. 4.1 assesses the proposed drift
visualization methods by conducting a survey comparing them (including their
additional features like getting rid of overlapping drifts) to the visualization of
raw sensor data streams. The second part described in Sect. 4.2 evaluates the
approaches for finding POIs by (1) using the automatically determined POIs to
predict outcomes for traces and (2) conducting a survey based on which criteria
experts would choose POIs and to which conclusion regarding the outcome of
traces they would come based on the chosen POIs.

The online questionnaire created for the evaluation contains closed-ended
questions about the visualization methods using a six-point Likert scale (series
of statements with which respondents can state their level of agreement [13]) as
answer options range from “Strongly Disagree” to “Strongly Agree”. According
to [13], using a six to seven-point rating scale is recommended. We opted for
a six-point scale to prevent neutral answers. Furthermore, open questions were
included to get additional insights. The second part of the questionnaire entailed
closed-ended questions inducing binary responses (yes/no) with some questions
also allowing “undecidable”. The questions deal with which points in a trace
should be analyzed in-depth and what that means for predicting the outcome
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of a trace. Additionally, open questions are asked to find out how respondents
came up with their answers. The survey was completed by ten experts in the
field of business process management (between 2 and 24 years experience) with
different areas of expertise reaching from process modelling and process mining
to resource allocation and IoT data integration.

The data set used for the questionnaire and evaluation contains logs of pro-
ducing 37 parts in a manufacturing process. Each part is produced by a machine
tool and measured directly afterwards by a fast, but imprecise measuring ma-
chine and finally by a slower, but more precise measuring machine. For the
evaluation, the sensor data stream of the first measurement, which measures the
diameter of the part while moved through the measuring machine, is used to
detect drifts between different traces. The second measurement is used to define
the outcome (18 parts are faulty while 19 are OK) of a trace.

The survey was performed using Google Forms and the questions are made
available on Zenodo 1 together with the results. The code used to create the
screenshots for the first part of the questionnaire focusing on the evaluation
of drift visualization methods, including a description of how to execute it, is
available on GitHub2. On two other GitHub repositories 3 4, the code utilized
in the second part of the questionnaire that analyzed traces based on different
drift visualization methods and used for the outcome prediction evaluation, can
be found. The repositories also contain the used data sets.

4.1 Evaluation of the Proposed Visualization Methods

The conducted survey evaluates if the drift visualization methods presented in
Sect. 3.1 are useful in displaying drifts happening in one sensor data stream over
several traces and investigates details of the approaches. Therefore, for three
different points in a trace, all three proposed methods for drift visualization
are applied. The participants are presented with a picture of a specific method
applied on a specific point together with a text explaining the parts of the picture.
Five questions (described below in more detail) assessing how well the drift
visualization works are asked with six answer options (from “Strongly Agree” to
“Strongly Disagree”) for each point/method combination.

For subfigures (a)–(e) in Fig. 4, we report on the number of positive re-
sponses (i.e., “Strongly Agree”, “Agree”, “Slightly Agree”) to the questions. For
the first question “Can you easily identify in which direction measurements have
drifted?” (see Fig. 4a) 8 out of 10 responses are positive for all point/method
combinations apart from the ST method at timestamp 4.75. The question “Can

1 https://doi.org/10.5281/zenodo.11654993, accessed on 14th June 2024
2 https://github.com/jennvheb/ba_drift_visualization, accessed on 14th June
2024

3 https://github.com/jennvheb/paper_drift_visualization, accessed on 14th
June 2024

4 https://github.com/me33551/drift_visualization_based_outcome_

prediction, accessed on 14th June 2024

https://doi.org/10.5281/zenodo.11654993
https://github.com/jennvheb/ba_drift_visualization
https://github.com/jennvheb/paper_drift_visualization
https://github.com/me33551/drift_visualization_based_outcome_prediction
https://github.com/me33551/drift_visualization_based_outcome_prediction
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you easily identify the overall amount of drift that occurred?” (see Fig. 4b)
also achieves at least 8 positive responses for all combinations except the ST
method at timestamp 4.75. For question “Can you easily identify individual
drift amounts between certain grouped traces (e.g., between traces 6-10 and 11-
15)?” (see Fig. 4c) positive responses are lower. Again, ST at timestamp 4.75 got
the lowest number of positive responses (4), and also for timestamp 1.55, only
5 participants respond positively to the question. Interestingly, the ST method
at timestamp 1 receives the most positive responses. For the question “Are the
details displayed for a certain drift (arrow) useful?” (see Fig. 4d) the ST method
at timestamp 1 receives 9 positive responses while the same method at times-
tamp 4.75 receives the least number of positive responses (3). The question “Is
the offset helpful in identifying individual drift amounts?” (see Fig. 4e) receives
between 7 and 10 positive responses for all combinations apart from the ST
method at timestamp 4.75. Overall, all participants, apart from one, disagree
(i.e., “Strongly Disagree”, “Disagree”, or “Slightly Disagree”) with the state-
ment that “A concept drift is easier to spot with the raw data visualization than
with ...” for every method shown (see Fig. 4f). However, disagreement is stronger
for the ST and SD visualization methods compared to the 90Deg method. Par-
ticipants’ answers in the open questions where they were asked (after seeing
each method for a specific timestamp) to sum up the strengths and weaknesses
of each method reveal that:

– For timestamp 1 participants agreed that they liked the ST method (because
it is easy to understand) best. However, one participant also mentioned the
90Deg method as intuitive.

– For timestamp 1.55 participants describe that using approaches 1 and 2
(i.e., 90Deg and SD visualization method) makes more sense for them when
looking at this timestamp compared to the first one because it also captures
some kind of “temporal” shift.

– For timestamp 4.75 participants again describe that using approaches 1 and
2 (i.e., 90Deg and SD visualization method) makes more sense for them
when looking at this timestamp. Additionally, they describe that the ST
visualization method does not provide any real insight into the data.

– The ST visualization method is perceived as the most native/easiest to un-
derstand while the other ones are described as slightly confusing by some
participants.

– Some participants state in their answers among different timestamps that
offsetting the drifts in the visualizations is useful for them.

Overall, participants’ answers to the open questions described above and the
questions summarized in Fig. 4 show that (1) drifts can be spotted easier with
the presented approaches than by just looking at the raw data, (2) even inside
the same scenario depending on the timestamp that should be analyzed different
visualization methods might be useful (3) preventing overlaps of the visualized
drifts makes it easier to perceive drifts.
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Fig. 4: Summarized Survey Results for the Proposed Visualization Methods

4.2 Point of Interest Detection for Outcome Prediction

Evaluating the detection of POIs and subsequent outcome prediction is done
by applying the techniques described in Sect. 3.2 and using the POIs found to
predict the outcome of traces. The trace is predicted to belong to the class to
which average time series more POIs of a trace are closer.

The results are presented in Tab. 1 and show in the leftmost column which
method was used to obtain POIs (either “individual trace” for the approach
described in Sect. 3.2 using individual traces for POI detection or 90Deg, SD,
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or ST for the approach described in Sect. 3.2 based on multiple traces). Addi-
tionally, it is important if the distance is measured from a point in the average
OK time series to the average not OK time series or the other way around
(i.e., which one is ats A and which one is ats B in Alg. 4), i.e.,“OK/NOK” or
“NOK/OK”. One row in the table uses POIs derived with the given method
(with min trend length = 3) and calculates the distance to the average OK and
not OK time series for each POI (i.e., each timestamp) in each trace. The three
methods described in Sect. 3.1 are utilized (see the first line of the table) for this
distance calculation. As explained above, the number of POIs closer to the OK
or not OK average time series is used to predict the produced part quality of
each trace. This is reported as the number of correctly classified traces (column
labelled “correct”/“c”), number of incorrectly classified traces (column labelled
“incorrect”/“i”) and number of “undecidable”/“u” traces (e.g., the same num-
ber of POIs is closer to the average OK and average not OK time series). It
can be seen in Tab.1 that the approaches based on finding points using multi-
ple traces (lines 4–9) are slightly better than the ones performed on each trace
individually (line 3). The approaches to find POIs shown in lines 4–9 perform
similarly even when using different distance metrics for measuring the distance
from POIs to the average OK or not OK traces. Overall, in these approaches
18–21 traces out of 37 are correctly predicted (≈ 48.65%–54.05%) while 4–8
traces remain undecidable (≈ 10.81%–21.62%) and 9–15 traces are incorrectly
classified (≈ 24.32%–40.54%).

Table 1: Predicted Outcome of Traces Based on Automatic and Manual POIs
90Deg SD ST

correct undecidable incorrect c u i c u i

individual trace 17 8 12 17 8 12 16 8 13

90Deg OK/NOK 19 4 14 20 4 13 21 4 12

90Deg NOK/OK 18 4 15 18 4 15 20 4 13

SD OK/NOK 18 6 13 19 5 13 20 8 9

SD NOK/OK 18 5 14 19 5 13 19 4 14

ST OK/NOK 18 4 15 19 4 14 20 4 13

ST NOK/OK 18 4 15 19 4 14 20 4 13

90Deg OK/NOK - Tr1 18 4 15 19 4 14 20 4 13

90Deg OK/NOK - Tr2 20 4 13 21 4 12 23 4 10

SD OK/NOK - Tr1 20 4 13 19 4 14 19 4 14

SD OK/NOK - Tr2 20 4 13 20 4 13 23 4 10

ST OK/NOK - Tr1 19 5 13 20 7 10 20 8 9

ST OK/NOK - Tr2 19 5 13 20 7 10 21 7 9

The survey carried out for this paper includes questions regarding which
points experts would examine in more detail to determine if an individual trace
is expected to produce an OK or not OK part. Figs. 5b, 5d and 5f show the
POIs found when using the three methods described in Sect. 3.1 as distance
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measure between the average OK and average not OK time series for Alg. 4.
Figs. 5a, 5c and 5e show which points experts wanted to examine more closely
- based on looking at two different traces for which the marked timestamps
as well as their drifts to the average OK and not OK time series were shown.
The experts then had to choose for these two traces if they thought the trace

Point A
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Point C
Point D
Point E
Point F
Point G
Point H
Point I

Point J
Point K
Point L

Point M
Point N
Point O
Point P
Point Q

0 1 2 3 4 5 6 7 8 9 10

second trace first trace

(a) Chosen Points From Fig. 5b
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(b) POIs Using 90Deg Method
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(c) Chosen Points From Fig. 5d
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(d) POIs Using SD Method
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(e) Chosen Points From Fig. 5f
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(f) POIs Using ST Method
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represented a process run where the outcome would be OK or not OK. The
results are shown in Fig. 6. As the first trace produces a correct part and the
second trace produces a not OK part nearly all participants chose the correct
option. Using only the points that have been selected by 5 or more participants
in the survey (see Figs. 5a, 5c and 5e) and conducting the same analysis as for
Tab. 1 rows 3–9 leads to the results shown in rows 10–15 - for each method the
points selected for each trace are used (“Tr1”/“Tr2”). Overall, there is not much
difference between the results achieved with the points selected by the experts
in the survey and the automatically generated POIs when applied to all traces.
Looking at the questions on how points that need to be analyzed in more depth
are chosen reveals that experts choose the points based on (1) the length of
the arrows/drifts, (2) where the difference between the arrows was sufficiently
big, and/or (3) where arrows (drifts) go in different directions. Afterwards, the
experts’ prediction of the trace’s class is based on which arrows are shorter (i.e.,
to which of the average time series chosen points are closer).

OK

not OK

undecidable

0 1 2 3 4 5 6 7 8 9 10

ST SD 90Deg

(a) Trace 1

OK

not OK

undecidable

0 1 2 3 4 5 6 7 8 9 10

ST SD 90Deg

(b) Trace 2

Fig. 6: Participants Prediction Results per Trace and Drift Visualization Method

5 Discussion

A limitation of the presented approach is that it can only be performed ex-post
because detection of outlier traces (see Sect. 3.1), as well as calculation of av-
erage time series, depends on traces (or at least analyzed sensor data streams)
being already completed. Additionally, the 90Deg approach depends on data
from timestamps to its left and right being available, which means it cannot be
applied on the latest recorded point of the sensor data stream. Another limita-
tion is that drifts are only visualized and analyzed for single sensor data streams.
However, potentially multiple sensor data streams are recorded per trace which
introduces the problem of determining which sensor data streams are important
for detecting drifts for the whole process. An additional challenge in visualiza-
tion is to consider the effects of large volumes of data (i.e., many traces being
recorded). With the presented visualization approaches this can be tackled by
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utilizing grouping sequences of traces and adjusting how many traces are in a
group together (therefore abstracting from information of the individual traces
in favor of presenting properties of the groups) to allow for a comprehensible
visualization.

The visualization approach presented in this paper shows drifts between dif-
ferent traces. This information is used to perform explainable outcome predic-
tion based on the drifts at certain timestamps (the methods used to find these
timestamps and determine the outcome of individual traces based on them is
described in Sect.4.2). However, while the results for predicting the outcome are
not satisfactory, as the quality of parts could only be predicted with ≈ 50% accu-
racy, the approach nonetheless shows that it is feasible to work towards finding
points and thus better prediction results in future work. Finally, we opted for
a qualitative study to gather insights directly from end users which helped us
in identifying strengths and weaknesses. But one potential problem of the ques-
tionnaire is, that it tests the understanding of the experts, and thus may lead to
biased results. We will thus in future work improve the assessment of how the
visualisation furthers data understanding, by conducting a quantitative study.
In addition, we plan to improve the visualization by including multiple sensor
data streams in the detection and visualization of drifts. Furthermore, we plan
to extend the methods to make them applicable for runtime/live scenarios.

6 Conclusion

The paper proposes three approaches for the visualization of drifts in sensor data
streams of different traces: “90 Degrees” (90Deg), “Shortest Distance” (SD),
and “Same Timestamp” (ST ). Furthermore, explainable outcome prediction is
performed by utilizing how far traces drifted from OK / not OK traces.

The applicability of the visualization approaches was tested through imple-
mentation (contribution C1) and through a survey with 10 experts (partially
contribution C3). 10 out of 10 experts considered 90Deg and SD as better suited
for identifying drifts than a raw trace visualization. Only 1 expert considered the
raw visualization slightly useful in comparison to ST. However, the best method
for visualizing drifts also depends strongly on the observed timestamp.

Contribution C2 of this paper, a way to use the visualization techniques at
automatically derived points in the time series to predict the process outcome,
was evaluated in the same survey (thus completing contribution C3). Here, the
results of the survey show that using this approach allows for correctly predicting
some of the trace outcomes (≈ 48.65%–54.05%) and label some as undecidable
(≈ 10.81%–21.62%). But also a significant number of traces (≈ 24.32%–40.54%)
was assigned the incorrect outcome. However, even if the outcome prediction
results are not satisfactory, the results show that when the right points are
chosen, explainable predictions become feasible. In future work, we will thus
focus on proposing methods for automatically finding points that yield better
results for the outcome prediction.



Interactive Drift Visualization in Sensor Data Streams 17

References
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