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Abstract. In order to optimize the efficiency of operations in organiza-
tions, the control flow of business processes and the resources allocated to
process tasks have to be considered in an intertwined way. In real-world
process scenarios, resources might even manipulate the control flow, e.g.,
if the allocation of a certain resource to one task renders the execution
of another task superfluous. Hence, we advocate to equip resources with
change patterns, resulting in process configuration at instance level. This
raises the challenge of determining executable process configurations with
valid and, at the same time, optimal resource allocations w.r.t. some op-
timization goal. To this end, we introduce and utilize the concept of the
Resource-Augmented Process Structure Tree (RA-PST) with insert, re-
place, and delete patterns for resources. The RA-PST combines the vari-
ability of configurable process models with optimization-focused resource
allocation modeling. It is shown how the validity of the resource alloca-
tion and the soundness of the resulting process instance can be checked
based on the constructed RA-PST. For the combinatorial optimization
problem of resource allocation, we adopt a genetic algorithm and test it
on five different sets of resources. The results showcase the effectiveness
of focusing on resource optimization during business process modeling
and demonstrate how an optimal configuration can be achieved, i.e., the
genetic algorithm finds (near-) optimal solutions, especially when heuris-
tics are not able to handle the additional complexity.

Keywords: Process Configuration · Resource Allocation · Process Struc-
ture Tree · Genetic Algorithm

1 Introduction

While the focus on the structural soundness of process models is an important
enabler for automation, it limits itself to the control-flow perspective [5]; the
process models can reflect the logical order of operations in a formalized way,
but often miss the impact of involved actors (resources) on the actual process
execution [7]. In contrast, optimization models from Operations Research (OR)
focus on the distribution of operations over a set of resources in a system. These
approaches are considered universal and applied in many business areas, such
as manufacturing, transportation, and health care. Its practitioners claim that
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their optimization methods have substantially impacted global productivity over
the last decades [14]. The idea that process optimization can be achieved purely
by focusing on control-flow soundness is a misconception [5]. As we can see from
OR applications, optimization must also consider the involved physical resources
that drive the execution of a process [6].

In recent years, the interest in process optimization has risen, and many
scholars advocate the combination of BPM and OR methods [5,16,18,24]. How-
ever, a structural process framework is missing that combines the strengths of
both fields. On the one hand, the structural soundness of a process model must
be ensured to enable process automation. On the other hand, it must be able to
incorporate the optimization of resource allocations for a process or system as
known from OR. Based on OR literature, we argue that such a framework must
enable variability of the control-flow and set a focus on executing resources [14].

Hence in this work, we propose a process model that is inspired by optimiza-
tion models from OR. The approach allows resources to alter the control-flow in
a structured manner, if they become a participant in the process (i.e., are allo-
cated to a task). This resembles the modeling structure of known OR problems,
e.g., the parallel machine scheduling problem [8]. The proposed approach enables
control-flow variability, a multi-perspective view, and ensures structural sound-
ness. Resources are allowed to insert, replace, and delete tasks in the control-flow
to create variability. The optimal operational process performance can then be
achieved through sophisticated resource allocation methods known from OR. To
the authors’ knowledge, no current modeling approach enables this interdepen-
dency between resource perspective and control-flow perspective.

The formalized model is based on a Process Structure Tree (PST). This PST
is enhanced with information on possible resource allocations and the changes
they will introduce to the control-flow. To do so, we extend the tree structure by
resource, resource profile, and change pattern nodes. We show how this struc-
ture can be used for i) validity verification of the resulting process configuration
at process instance level (including structural soundness and valid resource al-
location) and ii) optimization of the resource allocation of the full process by
adopting a genetic algorithm to solve the resource allocation problem.

Based on the idea of Resource-Driven Process Manipulation for a single task
as described in [23], this work fully formalizes the RA-PST and provides an
algorithm to create an RA-PST with allocation information for a full process
model. This enables us to find a (near-) optimal allocation and configuration
for a complete process instance by considering the dependencies between the
different allocations. The newly introduced “delete” change pattern requires the
consideration of both valid and invalid branches to be able to find the best
global allocation. Therefore, we show the requirements needed to find a valid
configuration for an instance. We provide a genetic algorithm to find global
solutions to the resulting combinatorial optimization problem and compare it to
the best branch heuristic, which only finds local solutions through the sequential
allocation of single tasks without considering the dependencies between different
allocations.
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Section 2 formalizes the RA-PST. Section 3 shows how process instance mod-
els are configured based on the RA-PST and how the validity of a process config-
uration can be verified based on the RA-PST. Section 4 describes how to design a
genetic algorithm to solve the allocation problem posed by the RA-PST. Section
5 gives an overview of related work and Sect. 6 concludes the paper.

2 Augmenting Process Structure Trees with Resource
Allocations – The Process Model Level

Let the control flow of a process P consist of a set of tasks N and a set of
directed edges E, i.e., P := (N,E). In this work, we assume that P follows
the meta model of the Process Structure Tree (PST) [25]. The structure of a
PST is defined as the composition of multiple Single-Entry-Single-Exit (SESE)
fragments. By adapting Theorem 2 in [25] to the PST the PST is sound if and
only if all child fragments are sound and the PST that is obtained by replacing
each child fragment with an activity is sound. Moreover, the task-based structure
of the PST allows us to implement the approach in a TPST-like manner as
described in [26]. Figure 1 shows a running example process model in BPMN
(bpmn.org) notation (a) and the corresponding PST in (b).

Fig. 1: Running example: a) Process in BPMN; b) Process as PST; c) Resource
description with three resources and resources profiles

bpmn.org
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Next, we define resource profiles which form the basis for resource allocation
and resource-driven manipulation of the PST.

Definition 1 (Resource Profile, adapted from [23]). Let T be the set of all
process tasks, R be the set of resources, Role be the set of roles, A be the set of at-
tributes, and CP = {Insert(x, y, before|after|parallel), Replace(x, y), Delete(x)},
x, y ∈ T a set of change patterns [23,19]. A resource profile rp is defined as
rp := (r, role, t, Attr, cp) with

– r ∈ R is a resource
– role ∈ Role a role
– t ∈ T
– Attr ⊆ A a set of attributes
– cp ⊆ 2CP a set of change patterns

As can be seen from Def. 1, a resource profile rp refers to a resource r and
its role Role which, in turn, is linked to a process task t to achieve a role-based
allocation structure [20]. Typically, process tasks define one or more roles that
specify authorization to perform the task. Implicitly, we assume that the role
specified at the task corresponds to the role in the resource profile. This might
seem redundant at first glance, but is necessary for future extension for role-
based change pattern inheritance.

rp can manipulate the process based on a selection of change patterns as
provided in literature [19,23], i.e., inserting a task x before, after, or parallel to
task y, replacing a task x by another task y, and deleting x. In the sequel, the
correct application of the change patterns on process models will be ensured by
the validity verification as presented in Sect. 3.

To enable the optimization towards a process-specific optimization goal, dif-
ferent attributes such as costs or execution time can be part of a resource profile.

Figure 1c) depicts three resources, i.e., Associate, Trainee, and Manager.
For Associate, for example, two resource profiles exist. RP1 has role Level1 and
refers to task Evaluate Risk. If Associate is allocated with RP1, the process
is manipulated by inserting task Confirm Risk after Evaluate Risk.

The main question is how to allocate the resources given the set of resource
profiles such that the resource allocation is valid and optimal w.r.t. some opti-
mization target, for example, minimizing the cumulative costs of all allocations.
As stated in literature [20] and transferred to the terminology of this paper, re-
source allocations are valid iff they do not refer to resources that are not present
in any resource profile and the allocation can be satisfied by at least one resource
in the set of resource profiles. As opposed to existing approaches, checking valid-
ity might become more challenging due to the ability of resources to manipulate
the PST, especially for delete operations.

In the following, we present the concept of the Resource-Augmented PST
(RA-PST), i.e., a PST augmented with the resource allocations defined in the
resource profiles. The benefit of this augmentation is that all interactions be-
tween resource allocations and the associated change operations with the PST
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and among each other can be systematically analyzed and invalid resource al-
locations can be detected. Moreover, the costs of each resource allocation can be
determined and serve as input for the optimization problem.

Fig. 2: a) RA-PST resulting from process and resource description in Figure 1; b)
Possible branch configurations for RA-PST with costs. Invalid task/configuration
red, best configuration green, duplicate configuration grey, to be deleted task
crossed out; c) Configured RA-PSTinstance model for optimal solution <1,2>
with allocated resources, derived from a) through change pattern application

The basic idea of augmenting the PST of process P with the allocation
information of the resource profiles and resources has been introduced in [23] for
insert and replace change patterns. This work, in addition, considers the delete
change pattern, which adds another level of complexity to the resource allocation
problem. Extending [23], the delete change pattern creates interdependencies
between branches, which require the creation of an RA-PST for the full process
model instead of creating an allocation tree for only one task. This enables
the (optimal) configuration of a whole instance instead of looking at the local
allocation for one task. The delete change pattern influences the presence of
tasks for other resource allocations. Invalid branches can not be pruned from
the RA-PST and must be considered in the configuration step in order to find
an optimal solution.

The RA-PST is constructed as described in Alg. 1 and takes the PST and the
set of associated resource profiles as input. Figure 2a represents the full RA-PST
for the given example at the process model level. After selecting a combination
of branches for each leaf in the original PST, the change patterns contained
in the branches of the RA-PST are applied to the original PST, configuring the
corresponding RA-PST instance model RA-PSTinstance (cf. Figure 2c). This RA-



6 F. Schumann, S. Rinderle-Ma

PSTinstance can be executed by a process engine. The configuration of the RA-
PSTinstance model is presented in Sect. 3, together with the validity verification.

Algorithm 1: build_RA-PST_tree
input : PST for P=(N,E), set of resource profiles RP with

rp := (r, role, t, Attr, cp) ∈ RP
output: RA-PST

1 excluded_tasks := ∅
2 for task in N do

//Add allocation tree as child to each task node
3 excluded_tasks := ∅
4 build_allocation_tree(task, RP ))
5 end
6 Function build_allocation_tree(task, RP):
7 for rp in RP do
8 if rp.t == task & rp.role == task.role then
9 r_node := add_child(t, {rp.r})

10 rp_node := add_child(r_node, {rp.role,rp.Attr})
11 for ct in cp do
12 if ct.x in excluded_tasks then
13 remove_child(rp_node) //prevent cyclic allocation
14 continue
15 end
16 ct_node := add_child(rp_node, {rp.ct})
17 if ct.type == delete then
18 continue
19 end
20 if ct.type == replace ∨ insert then
21 excluded_tasks.append(ct.x)
22 build_allocation_tree(ct.x, RP )
23 end
24 end
25 if r_node.children == ∅ then
26 remove_child(r_node)
27 end
28 end
29 end
30 return task

For constructing the RA-PST, the basic principle is to assign to each task (aka
leaf in the PST, Line 1 in Alg. 1), all resource allocations that correspond to the
task specified in the resource profile in order to meet the following requirements:
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1. The RA-PST represents all possible combinations of resource allocations and
change patterns.

2. The resulting construct is an (augmented) PST based on which the validity
and costs of a branch can be determined automatically.

3. Applying the change patterns of a combination of branches configures a
structurally sound, executable RA-PSTinstance model for which the validity
and cumulative costs of the resource allocations can be determined.

In order to meet Req. 1, the resource allocations in the RA-PST are ex-
pressed by branches/trees. To this end, the node set of the original PST for
P=(N,E) is augmented with nodes of three additional node types reflecting i)
the resource (r_node, Line 3), ii) the resource profile (rp_node, Line 9) and
iii) the change patterns (ct_node, Line 15). The nodes are then arranged into
one branch in an alternating way, starting from the resource node assigned to
a task, then generating and appending the resource profile node, and finally
appending the change pattern node. The semantics of this construction is that
a task is assigned a resource through a resource profile which can hold spe-
cific change patterns. The change patterns, in turn, might refer to tasks that
might be referenced by other resource profiles, hence resulting in the addition
of further resources. The construction of the resource allocation branches is de-
scribed in function build_allocation_tree (Lines 5 – 26, cf. Alg. 1) which
generates the respective nodes and uses them to construct a branch. Note that
function build_allocation_tree is called recursively to append resource allo-
cations based on the specified change patterns.

Based on the PST and resource profiles depicted in Fig. 1, the RA-PST shown
in Fig. 2a is built. For task Evaluate Risk, two resources can be allocated, i.e.,
Associate, and Manager (depicted as oval-shaped nodes). Hence, two resource
nodes are generated and added as children to the task node. At the same time,
the corresponding resource profile nodes RP1 in the context of Associate and
node RP2 in the context of Trainee are generated and appended as child nodes
to the respective resource nodes (depicted as diamond-shaped nodes). Then it
is checked which of the resource profiles specifies a change pattern, i.e., RP1 for
Associate in this case. Hence, a change pattern node is generated and appended
to the resource profile node (depicted as rounded rectangle). The change pattern
inserts tasks Confirm Risk. Confirm Risk is a task in resource profile RP2 for
resource Trainee and RP4 for Manager. Hence, two resource nodes are created
and appended to the change pattern node, together with their child resource pro-
file nodes. For these resource profiles there is no more change pattern specified.
Hence, the construction of the resource allocation branches for task Evaluate
Risk stops at this point. The RA-PST also contains the costs per resource al-
location branch (bottom) by summing up all costs stored in the resource profile
nodes along the branch (cf. Figure 2a).

Allocating resources and subsequently configuring the process model based
on the RA-PST constitutes the transition from the process model to the process
instance level (cf. Req. 2 & 3). In Fig. 2a, for example, the RA-PST at the
process model level is configured based on change pattern resolution and resource
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allocation into the RA-PSTinstance at the process instance level depicted in Fig.
2c, i.e., into an executable process with resource allocation. In Sect. 3, we present
process configuration based on resolving change patterns in resource profiles
as contained in the RA-PST, together with the validity of the resulting RA-
PSTinstance (cf. Req. 3). Further we show how to to allocate resources based on
finding the best combination to optimize costs.

3 Process Configuration – The Process Instance Level

In this section, we show how to configure a valid process instance model RA-
PSTinstance. We start with its definition in Def. 2.

Definition 2 (Resource-Augmented PST Instance Model). Let RA-PST
be a resource-augmented PST constructed based on Alg. 1 for a process model
P=(N,E) reflected by PST and a set of resource profiles RP. The resource-
augmented PST instance model RA-PSTinstance is configured from RA-PST by
selecting one resource allocation branch for each n ∈ N , applying all change op-
erations contained in these branches to the PST, resulting in instance task set
N ′ = (N ∪ Nadded) \ Ndelete, and assigning to each task n ∈ N ′ the resource
specified as child node of the task (Nadded: all tasks added by insert/replace op-
erations; Ndelete: all tasks removed by delete/replace operations).

Consider the RA-PSTinstance model shown in Fig. 2c for a selection of Branch
1 for task Evaluate Risk, Branch 2 for task Create Proposal, and Branch 1
for task Decide on Proposal. The application of inserting Confirm Risk and
the deletion of Decide on Proposal result in N ′ = {Evaluate Risk, Confirm
Risk, Create Proposal} constituting RA-PSTinstance. The resource allocation
results in: first the risk is evaluated by an associate, followed by confirming the
risk by a trainee, and finally creating the proposal by a manager

Not every selection and combination of resource allocation branches in a RA-
PST will result in an instance model that can be executed in the sequel: change
patterns might not be applicable and/or tasks might exist for which no resource
can be allocated. For the RA-PST in Fig. 2, for example, choosing Branch 2 for
task Decide on Proposal will result in inserting a task for which no resource
profile exists and hence no resource can be allocated. Hence, a validity notion
for the RA-PSTinstance is required (see Def. 3).

Definition 3 (Valid Instance Model). Let RA-PST be a resource-augmented
PST constructed based on Alg. 1 for a process model P=(N,E) and a set of re-
source profiles RP. Then a RA-PST instance model RA-PSTinstance configured
based on RA-PST is valid iff PSTinstance exists on N ′ = (N ∪Nadded) \Ndelete

and ∀n ∈ N ′ ∃ a valid resource allocation ra : N ′ 7→ RP with ra(n) =
(rp.r, rp.role, rp.attr).

In the following, we show how validity as defined in Def. 3 can be checked at
the model level, i.e., on the RA-PST. Being able to check validity before process
configuration contributes to efficiency when searching for a valid configuration.
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Theorem 1 (Validity of Instance Model). Let RA-PST be a
resource-augmented PST constructed based on Alg. 1 for a process model P=(N,E)
and a set of resource profiles RP. Then, a resource allocation represented by a
branch in RA-PST with leaf node ln is valid if

type(ln) = rp_node ∨ (type(ln) = ct_node(Delete(x))withx ∈ N) (1)

with type() determining the node type.
A valid resource-augmented PST instance model RA-PSTinstance can be config-
ured based on RA-PST by selecting one valid resource allocation branch ∀n ∈ N .

Proof. We first prove the validity conditions for a resource allocation branch
in a RA-PST. Based on the construction of the RA-PST, we differentiate the
following three cases, i.e., a resource allocation branch has leaf node of type i)
resource profile, e.g., Branches 1–3 for task Evaluate Risk, ii) insert/replace,
e.g., Branch 2 for task Decide on Proposal, and iii) delete, e.g., Branch 2 for
task Create Proposal (all cf. Fig. 2a).
i) Branch leaf is a resource profile: Here we can differentiate two cases, i.e., the
resource allocation branch i1) does not contain any change pattern nodes or i2)
it contains insert/replace change patterns. Note that it is not possible that a
resource profile node becomes a leaf node referencing a delete change pattern,
i.e., if a delete change pattern node exists in the RA-PST, it is a leaf node. For
case i1), validity is fulfilled for the allocation branch, as no change is applied to
the PST and the resource of the resource profile leaf node can be assigned to
the task, e.g., for Branch 2, allocating resource Manager to task Evaluate Risk
is a valid solution. For case i2), the resource profile in the leaf node shows that
all insert/replace patterns in the resource allocation branch can be resolved, i.e.,
they insert tasks for which, again, resource profiles and subsequently a resource
to be allocated exist. For Branches 1 and 2 for task Evaluate Risk in Fig. 2a),
for the insertion of task Confirm Risk, two resource profiles can be found; both
are valid resource allocations.
ii) Branch leaf is insert/replace task: In this case, the resource allocation branch
does not reflect a valid resource allocation as, obviously, for the newly inserted
task no resource profile exists, hence no resource allocation is possible. In Fig. 2a,
Branch 2 for task Decide on Proposal reflects an invalid branch (indicated by
red rectangle) as for task Supervise Decide on Proposal to be newly inserted
into the PST, no resource to be allocated exists.
iii) Branch leaf is delete task: If a branch ends with a delete pattern (e.g., Branch
2 for task Create Proposal in Fig. 2a), the resource allocation branch is valid
if the task to be deleted exists in the process model, i.e., is in x ∈ N . In the
example, Decide on Proposal exists in the PST, and hence, resource Manager
can be allocated to task Create Proposal as in the RA-PST shown in Fig. 2b.

From i)–iii), we can conclude the validity pre-condition for single resource
allocation branches in Theorem 1.

Now we prove that the RA-PSTinstance model that is configured based on
valid resource allocation branches ∀n ∈ N is valid, i.e., 1) the process model on
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N ′ = (N ∪ Nadded) \ Ndelete forms a PST and 2) ∀m ∈ N ′ a resource can be
allocated.
1) N ′ forms a PST: N forms a PST (cf. Alg. 1). Insert, replace, and delete, in this
work, only operate on tasks, i.e., per se sound SESE fragments 1. Insertion does
not violate block-structuredness as tasks are inserted directly before, after, or
parallel to an existing task in the PST (cf. Def. 1). Replace internally deletes an
existing task from the PST and inserts another task at the exact same position.
Delete can be correctly applied if the task to be deleted exists [21]; this follows
from (1) in Theorem 1.
2) ∀m ∈ N ′ a resource can be allocated: As we select a valid resource allocation
∀n ∈ N , the tasks in N \ Ndelete are supplied with a resource. For the newly
added tasks ∈ Nadd, (1) in Theorem 1 ensures that the associated insert/replace
operation is not a leaf node, i.e., it exists a resource profile for each of these tasks
and hence the resources from these profiles can be allocated.

While the RA-PSTinstance built from valid branches is valid, creating a con-
figuration from invalid branches, can also result in a valid RA-PSTinstance, i.e.
if task Supervise Decide on Proposal in Fig. 2a would be deleted, Branch 2
would become valid. Such configurations might result in even better solutions in
terms of the optimization goal (e.g. cumulative costs) and thus need to be con-
sidered by optimization approaches. The validity of the RA-PSTinstance must
then be checked during the application of the change patterns at configuration.

To configure the RA-PSTinstance, for a combination of branches for N , the
change patterns contained in a branch are applied to build the RA-PSTinstance.
The change patterns cp are applied in a serial manner from task n to the cor-
responding leaf. In coherence with cases i) & ii), the insertion and replacement
of tasks in serial manner is feasible, since no interdependency to other branches
exists. In contrast, the implication of the delete pattern is not restricted to a
local branch. The delete pattern can delete (invalid) parts of a different branch,
making the order of applying the change patterns critical. We advocate to delay
the application of a branch containing a delete pattern until all other branches
are configured. In doing so, the number of valid solutions is maximized. Later
inserted tasks can fulfill the pre-condition for delete.

Thus, to configure the RA-PSTinstance as shown in Figure 2c, for Branch 1
of task Evaluate Risk, the task Confirm Risk is inserted. The application of
change patterns for Branch 2 of Create Proposal are delayed, and Branch 1
for Decide on Proposal is allocated first. Then the delete pattern is applied on
Decide on Proposal. As a result, Decide on Proposal is deleted.

Deleting a task requires also to roll back previously applied change patterns.
As shown in Figure 2a) deleting the task Decide on Proposal does require the
subsequent deletion of the task Supervise Decide on Proposal if it has been
inserted earlier. A cascade delete of all children of the given task is done. Here
the RA-PST structure is indispensable to resolve the delete operation.

1 In future work, we will enable the insertion, replacement, and deletion of fragments.
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Note, at the current state of implementation, we refrain from further ordering
multiple delete operations. Deletes are applied in coherence with their position
in the RA-PST. This might lead to a loss of a few valid solutions in cases where
two delete operations target tasks in the same branch. Yet, the resulting solution
is often the same. This loss could be mitigated by deleting tasks first, that are
closest to leaves in the RA-PST. Suppose in the given example, a second delete
pattern to delete task Supervise Decide on Proposal is present. If delete pat-
tern Decide on Proposal is applied first, the second delete pattern Supervise
Decide on Proposal would render invalid. Meanwhile, if Supervise Decide
on Proposal is deleted first, also Decide on Proposal can be deleted success-
fully. The resulting RA-PSTinstance would be equal.

The RA-PSTinstance depicted in Fig. 2c reflects only one combination of
resource allocation branches in the RA-PST. Figure 2b(top) depicts the set of
all possible combinations of branches, i.e., 12, regardless of whether or not they
are valid. We refer to any combination of branches as solution and the set of all
solutions as solution space. The size of the solution space can be determined by
multiplying the number of branches for each task n ∈ N . A solution is valid iff
the resulting RA-PSTinstance is valid for the given configuration. The cost of a
solution is the sum of costs of all allocations in the RA-PSTinstance.

Determining a process configuration (solution) with a valid and a (near-)
optimal allocation of resources for all tasks n ∈ N in a process P is a combina-
torial optimization problem. The traditional resource allocation problem is
a general assignment problem [14]. In our case, the general assignment problem
is extended by multiple aspects: First, a resource can be assigned to multiple
tasks. Further, assigning a resource to a task might change the total number
of needed assignments (cf. case iii)). As shown, standard solution methods for
the assignment problem, such as a heuristic choosing the cheapest valid branch,
might not find an optimal solution to this combinatorial problem, especially since
the dynamic number of needed assignments increases complexity. Representing
the solution space, consider Fig. 2b, where in the middle the valid solutions, and
at the bottom, the unique valid solutions that remain after applying the change
patterns are depicted.

4 Solving the Combinatorial Optimization Problem

Typical solution approaches for combinatorial optimization problems are simu-
lated annealing, tabu search, and genetic algorithms [3]. When comparing the
different solution approaches to problems of resource allocation and scheduling,
[3] finds that the genetic algorithm performs best. For the presented problem, the
interdependencies between allocations caused by change patterns are expected to
further reduce the quality of simulated annealing, and tabu search [3]. Instead of
these local search approaches, genetic algorithms identify good “building blocks”
in different areas of the search space and combine them. They are then passed on
to the next generation and recombined with other good building blocks to even-
tually find a good solution [10]. Another argument for using genetic algorithms
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is their capability to solve problems with multiple optimization objectives, e.g.,
multiple resource attributes which will become important in future [11,4].

Figure 3 shows the different parts of a genetic algorithm adapted to the run-
ning example shown in Figure 2. The main challenge is to map the allocation
problem by splitting the RA-PST into such a building block structure. Therefore,
an encoding of the branch structure (cf. Figure 2) is applied. One individual de-
scribes a possible combination of different branches of the RA-PST and therefore
represents one solution of the solution space. By considering invalid branches, we
expect the genetic algorithm to find better solutions to the allocation problem
than a heuristic considering only valid branches (cf. Theorem 1). In our case,
one gene of the individual encodes the chosen branch for one task n ∈ N for
process P .

Fig. 3: Genetic algorithm with elitism.

An initial population is built from a random set of solutions out of all so-
lutions in the solution space (cf. Fig. 2b(top)). These solutions are created by
randomly assigning one allocation branch to each task n ∈ N of process P .

A binary tournament selects the best individuals. In each tournament, a fixed
number of individuals are randomly chosen from the population and compared by
their fitness. The individual with the best fitness in the tournament is then picked
for further evolution [1]. The tournament selection allows to deal with invalid
solutions in a straightforward manner. The best valid solution in the tournament
is picked as long as at least one solution in the tournament is valid. If no valid
solution is available in the tournament, a random invalid solution is picked for
the evolution. Therefore, no penalty calculation is needed for invalid solutions.
The two individuals for evolution are found by holding two tournaments.

The fitness of one solution is defined as the sum of all costs of the encoded
solution (cf. Fig. 2). Thus, in order to calculate a solution’s fitness, the encoded
individual must be decoded to the RA-PSTinstance as described in Sect. 3. The
two individuals selected in the tournament are crossed with each other to create
a new offspring solution. The position of the crossover point in the individual
is chosen randomly. Following, the offspring is mutated to enable better explo-
ration of the search space. These operations can be fully done on the encoded
representation and do not need any decoding back to the RA-PSTinstance.



Optimizing Resource-Driven Process Configuration 13

In terms of improving run-time, [17] propose the early abandoning once no
better solution can be found in a certain amount of iterations. Based on a testing
phase, the authors decided to stop the evolution after twelve generations without
improvement. Another improvement in terms of design and the evolution of the
population is called elitism, which ensures that the best-fitting individual in
a population is carried over into the next population without any changes. By
doing so, the final population must contain the best individual found throughout
all generations.
Experiments: To see if the genetic algorithm can find better solutions than
the cheapest valid branch heuristic, both approaches are applied on the process
model shown in Fig. 4. Different resource description files were generated for
this process based on the description of resource profiles given in Sect. 2. Table
1 shows the metadata for the resource configurations used in the experiments.
For each resource configuration, the RA-PST is built and given to the solution
search algorithm.

Fig. 4: Process model enhancing example in Fig. 1a (using SAP Signavio)

The configurations are designed by the authors to cover different scenarios,
such as resulting in many invalid branches (invalid_branches), resulting in
many configurations with similar costs (close_maxima), or having no deletes
in the configuration (no_deletes). Two resource sets are created (in part) ran-
domly. In set heterogen, the change patterns and resources are set manually,
and the attribute costs for each resource profile are randomly assigned a value
between 0 and 150. For the fully_synthetic set, the change patterns and re-
source profiles are added randomly for certain tasks. Comparable to [9], the
configurations cover scenarios in which a genetic algorithm might struggle, i.e.,
a global optimum in a small region surrounded by a region of low fitness [1].

To evaluate the performance of the genetic algorithm, we compare the basic
genetic algorithm, the same genetic algorithm with the notion of elitism, and
the cheapest valid branch heuristic. The cheapest valid branch heuristic finds a
solution by only choosing the best valid branch per task n (cf. Sect. 3, Theorem
1). Both genetic algorithms stop if, in twelve generations, no new best solution
is found. As a quality benchmark, the optimum solution for each resource con-
figuration is found by iteratively searching the full solution space. Due to the
high computational complexity, searching the full solution space is not feasible
for real-world applications. Since the genetic algorithm is non-deterministic, it
is not sufficient to consider a single execution for the evaluation. We compare
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#Solutions #Res. #RPs #CPs Ins. Del. Rep.
heterogen 537600 5 49 11 7 4 0
no_deletes 691200 5 49 11 9 0 2

invalid_branches 1658880 6 51 20 15 5 0
close_maxima 4147200 6 55 14 10 4 0
fully_synthetic 7779240 5 49 36 24 8 4

Table 1: Overview of the different resource configurations used for the experi-
ments sorted by the size of the resulting solution space. The columns show the
number of resources (#Res.), resource profiles (#RPs), change patterns (#CPs)
& the distribution over the change pattern types

the mean outcome of ten runs of the genetic algorithm with the heuristic and
iterative approach. As metrics, the computation time and the best found solu-
tions (for genetic algorithms, the average of the best in ten runs) are compared
to the benchmark. To better evaluate the variance in outcomes of the genetic
algorithm, the average delta to the optimum solution is given, as well as the
standard deviation. The percentage of times the algorithm found the optimum
out of the ten tries is given as optimum percentage.
Results: Table 2 presents the results of the experiments. Both genetic algorithms
are run with the same parameters and have not been object to any parallelization
or hyperparameter tuning. The focus of the experiments is to apply a genetic
algorithm to the stated problem as a baseline for future development and to
test if a genetic algorithm can find better solutions than the cheapest valid
branch heuristic. The experiment data and results are available2. The results
show that the genetic algorithms can find better solutions than the heuristic for
the close_maxima and invalid_branches resource sets. Both approaches find
the optimal solution in nearly all tries.

For the fully_synthetic resource set, the genetic algorithm with the elitist
approach outperforms both the basic genetic algorithm and the heuristic ap-
proach. None of the approaches manages to find the optimal solution. The elitist
approach gets the closest. On big solution spaces the genetic algorithm appears
to find better solutions than the heuristic. As expected, the heuristic approach
finds the optimum, if no deletes exist in the change patterns. The performance of
the genetic algorithms for experiments with a small number of possible solutions
is low. Only the elitist approach finds the optimal solution in some of the tries.

The results show that the adaptation of the genetic algorithm is feasible to
solve the combinatorial resource allocation problem and can find better solutions
than the cheapest valid branch heuristic. The comparatively bad performance of
the genetic algorithm for resource sets with few branch interdependencies shows
the genetic algorithms’ weakness. A combination of the heuristic approach and
the genetic approach could help to overcome this issue in the future. [11] proposes

2 https://github.com/Schlixmann/RA-RPST-Allocation

https://github.com/Schlixmann/RA-RPST-Allocation
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Dataset:
Solver: Benchmark Heuristic Plain Genetic Elitist Genetic

heterogen
size: 537600

time in sec 1661 0.01 17.97 6.54
best 491.0 492.0 542.7 494.6
delta (std) 0.0 1.0 51.7 (22.93) 3.6 (8.1)
optimum perc. 100.0% 0.0% 0.0% 80.0%

no_deletes
size: 691200

time in sec 1301.12 0.01 12.08 3.62
best 492.0 492.0 575.9 501.1
delta (std) 0.0 0.0 83.9 (29.33) 9.1 (12.33)
optimum perc. 100.0% 100.0% 0.0% 50%

invalid_branches
size: 1658880

time in sec 6198.89 0.01 26.47 5.54
best 187.0 253.0 187.1 187.0
delta (std) 0.0 66.0 0.1 (0.32) 0.0 (0.0)
optimum perc. 100.0% 0.0% 90.0% 100.0%

close_maxima
size: 4147200

time in sec 13904.79 0.01 8.14 3.72
best 172.0 183.0 172.1 172.0
delta (std) 0.0 11.0 0.1 (0.32) 0.0 (0.0)
optimum perc. 100.0% 0.0% 90.0% 100.0%

fully_synthetic
size: 7779240

time in sec 62618.45 0.01 34.87 10.5
best 357.0 370.0 439.4 361.8
delta (std) 0.0 13.0 82.4 (41.07) 4.8 (5.79)
optimum perc. 100.0% 0.0% 0.0% 0.0%

Table 2: Comparison of different solution search approaches. Outcomes for the
genetic algorithms as average over ten iterations. The table is sorted in ascending
order based on the size of the solution space.

the initialization of the genetic algorithm with local optimal solutions instead
of random ones. Applying this improved initialization could improve the genetic
algorithm’s performance and help to find an optimal solution quicker. By ini-
tializing with a good solution, the exploration features of the genetic algorithm
can be exploited better. The RA-PST as a process modeling approach is inde-
pendent of the used optimization technique. Other approaches than the genetic
algorithm can be applied on the RA-PST and tuned to deliver good results.

5 Related Work

The proposed RA-PST approach is related to literature on process variability
(see [22] for an overview). [2] provides work to enable variability on Configurable
Refined Structure Trees (cPST). In contrast to the RA-PST approach, the con-
figurable refined process structure trees define configurable areas as part of the
tree by restriction and do not support multiple perspectives. Provop [13] pro-
poses to design a base process model with variability points where new process
fragments can be inserted. [12] shows typical issues with such bottom-up vari-
ability approaches. One is to find a suitable crossover point between the base
model that should be extended and the separately modeled extensions. As most
variable approaches, Provop focuses on the control-flow. An approach combining
the variability of a process model with multiple process perspectives is shown in
[15]. The authors combine multi-perspective i-EPCs with configurable objects
and resources. The outcome is called C-iEPCs. Here, not only the control-flow is
configurable, but also the resources and data objects that will be involved in the
execution of the process. However, interdependencies between the different per-
spectives are not considered. The importance of this interconnection is pointed
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out in [7], especially considering multiple dimensions. The RA-PST approach en-
ables the analysis of such interdependencies and also uses them for performance
optimization. [24] offers the possibility to automatically learn scheduling models
from event data. The RA-PST could help improve the definition of these models
and enable an easy transfer from BPM to scheduling optimization.

6 Conclusion

The presented core idea is that an allocated resource can actively change the con-
trol flow of a process instance. The RA-PST provides the formal framework for
a process model that holds information on possible resource allocations and how
they might affect the control-flow of the executed instance. It is also the basis for
checking the validity of resource allocations and the configuration of RA-PST
instance models. With the RA-PST a valid and good RA-PSTinstance can be
found by a heuristic. The combinatorial optimization problem of determining a
valid and optimal resource allocation is tackled with a genetic algorithm. We
plan to optimize its performance further by, e.g., parallelizing the fitness cal-
culation and through hyperparameter tuning. Besides genetic algorithms, the
RA-PST provides a process structure that enables the application of advanced
solution algorithms to the resource allocation problem. Hence, the RA-PST helps
to further intertwine resource allocation and structural process requirements to
achieve business process optimization.
Acknowledgements: This work was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) - Project number 277991500
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