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Abstract—With the advent of large language models (LLMs),
requirements engineers have gained a powerful natural language
processing tool to analyze, query, and validate a wide variety
of textual artifacts, thus potentially supporting the whole re-
quirements engineering process from requirements elicitation to
management. However, the input for the requirements engineer-
ing process often encompasses a variety of potential information
sources in various formats, especially graphical models such as
process models. Hence, this work aims to contribute to the state
of the art by assessing the feasibility of utilizing graphical process
models and their textual representations in the requirements
engineering process. In particular, we focus on the extraction of
textual process descriptions from process models as i) input for
the requirements engineering process and ii) documentation as
the result of process-oriented requirements engineering. To this
end, we explore, quantify, and compare traditional deterministic
and LLM-based extraction methods where the latter includes
GPT3, GPT3.5, GPT4, and LLAMA. The evaluation assesses
output quality and information loss based on one data set.
The results indicate that LLMs produce human-like process
descriptions based on the predefined patterns, but apparently
lack true comprehension of the process models.

Index Terms—AI4RE, Process Models, Process Descriptions,
Large Language Models

I. INTRODUCTION

The development of an information system (IS) is a complex
process which requires an understanding of the application
domain by requirements engineers, i.e., of its technical, orga-
nizational, and operational specificities [1]. Thus, requirements
engineers often deal with a multitude of either already existing
artifacts or artifacts that need to be created – ranging from text
artifacts, like user stories, use-cases, and scenario descriptions
to graphical artifacts like conversation flows, UML diagrams,
and graphical business process descriptions [2].

Especially business processes, or models thereof, can be
considered crucial artifacts. Given that business process orien-
tation is held as an effective approach to increasing corporate

performance [3], IS are often required to support and sustain
their business processes transparently [4]. Business processes
are a specific type of organizational routine [5] and engage
multiple stakeholders [6]. Typically, business process models
constitute (graphical) representations of business processes [6]
and the increasing scale and complexity of business operations
has led to a widespread increase in business process modeling
adoption [7].

Thus, the development and implementation of an IS is
connected with understanding, analysis and improvement of
one or multiple business processes and their dependencies [8].

According to [9] a requirements engineering (RE) process
consists of two phases: requirements development (RD) and
requirements management (RM). RD typically comprises four
phases, which are requirements elicitation, analysis, specifi-
cation, and validation. RM includes such activities as status
tracking, version control, and change control. All of these
phases and activities require that all the above-mentioned
artifacts are understood, made consistent with each other, and
organized in a way that allows for simple management and
(re-)validation.

With the advent of natural language processing (NLP),
and especially of large language models (LLMs), and their
recent application in the form of chatbots such as ChatGPT,
requirements engineers have gained a powerful tool to manage,
query and transform large requirements bases into different
artifacts. While many aspects have been explored, such as
conducting requirements elicitation in the form of interviews
between domain experts and chatbots, and transforming textual
process descriptions into graphical representations [10]–[12]
(also referred to as text-to-model or T2M transformation),
other aspects still require additional research.

In this work we focus on a particular aspect of requirement
elicitation and validation, i.e., understanding the content of
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business process models, and transforming them into tex-
tual descriptions. The motivation for this step is to make
the information contained in these graphical process models
(artefacts) available to all participants involved in the RE
process, enabling them to (1) understand the details of process
models even if they are not familiar with process model-
ing [13], (2) check consistency, and (3) transform the textual
information back into up-to-date business process models of
possibly higher quality [14]. In order to exploit the capabilities
of LLMs, we investigate their feasibility for the generation
of process descriptions from process models (referred to as
model-to-text or M2T transformation), and compare them with
traditional (deterministic) M2T methods. The paper addresses
the following research questions:

• RQ1 What are suitable graphical representations, and
associated LLM prompts, that lead to successful M2T
transformation?

• RQ2 What are suitable key performance indicators (KPIs)
to quantify the quality of the textual descriptions gener-
ated through LLMs based on process models, enabling
the comparison of the results of LLMs to traditional M2T
methods?

• RQ3 Which level of information loss occurs during M2T
transformation, especially when utilizing LLMs?

We tackle RQ1 – RQ3 as follows: in Sect. II we discuss
existing M2T transformation approaches, i.e., traditional NLP
methods and LLM based approaches to introduce the topic and
provide the baseline for subsequent comparison. In Sect. III,
we explore the scenarios in which M2T transformation can be
utilized during the Requirements Engineering (RE) process.
In Sect. IV we outline the M2T approach proposed in this
work. We discuss the rationale for the selection of different
graphical model representations (and their associated file for-
mats), and discuss the LLMs and traditional M2T methods we
employed, as well as our experimental setup including KPIs
for assessment and comparison. Section IV addresses RQ1
and RQ2. Section V presents the evaluation of the proposed
approach for existing LLMs, i.e., GPT3, GPT3.5, GPT4, and
LLAMA based on an existing “baseline” data set [15]. We
measure the quality of the produced results regarding different
LLM prompts, traditional M2T methods ( 7→ RQ1 and RQ2),
and information loss (7→ RQ3), the latter based on similarity
metrics and the KPIs proposed in [11]. Finally, section VI
concludes and discusses the findings.

II. EXISTING TRANSFORMATION METHODS

Generally, model transformation methods can be classified
into three groups, i.e., text-to-model (T2M), model-to-text
(M2T), and model-to-model (M2M) [16].

T2M transformation will not be deeply addressed in the
context of this paper. Existing methods depend on text pattern
search, rule-based approaches, or semantic analysis (e.g., [17]–
[19]). Nevertheless, with recent advancements in machine
learning (ML) and generative AI, there is a growing inter-
est in applying classical supervised machine learning-based
approaches and LLMs [11], [12], [20], [21].

Model transformation is an approach to transform an in-
put model into a target model (M2M) or a target grammar
(M2T) [16]. M2M transformation is relatively straightforward,
involving the conversion of one structured object into another.
It is worth highlighting that M2M transformation is a long-
running challenge in business process management, in par-
ticular when it comes to the interoperability of BPMN-based
process models between tools of different vendors. Here, M2M
transformation is continuously improved by software vendors
participating in the OMG BPMN Model Interchange Working
Group (MWIG)1.

In contrast, M2T transformations target textual outputs,
often possessing arbitrary structures that do not correspond
to any specific meta-model. Existing traditional M2T transfor-
mation approaches can be categorized into three groups based
on their underlying implementation approach: visitor-based,
template-based, or hybrid [16].

Visitor-based approaches such as [22] navigate a tree-based
internal representation of the input model to generate infor-
mation based on the visited model elements. The generated
text is written after every element is visited. The order of
the visited elements is defined by transformation rules. In
template-based approaches, the generation of text for input
models is defined through templates. Templates include static
text and placeholders for data extraction. The transformation
is controlled by a meta-program accessing information stored
within the target models. Hybrid approaches employ template-
based approaches in combination with visitor-based patterns to
perform M2T transformation [16], and deliver the best results
of all traditional approaches..

As visitor-based approaches mostly integrate a three stage
pipeline (content determination, planning, realization) pro-
posed in [23], several challenges occur, mainly regarding text
and sentence planning to make the text lively and readable.
Template-based methods suffer from low flexibility, often
being specific to particular languages and lack generality,
which complicates their maintenance [24]. Overall, so far,
M2T approaches generate arbitrary, unstructured text, posing
difficulties in evaluating proposed approaches [25].

III. M2T TRANSFORMATION IN REQUIREMENTS
ENGINEERING PROCESS

RE can be considered a starting point of IS development. In
the scope of this work, we focus specifically on the RD phase
of the RE process (see Fig. 1). There are many stakeholders
involved in the RE process from both customer and developer
side, e.g., customers and end users, domain experts, project
managers, software developers, software testers, as well as
requirements engineers [26].

The level of involvement in a project depends on the role
of the particular stakeholder. However, requirements engineers
are actively involved throughout the entire project timeline, as
they serve as a bridge in communication between customer

1https://www.omgwiki.org/bpmn-miwg/doku.php
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Fig. 1: Requirements Development with Stakeholders and Documentation Data as a Part of RE Process

and development stakeholders in order to correctly identify
and document all requirements [27].

During requirements elicitation, all stakeholders who influ-
ence the requirements for the IS create various documents
containing information about stakeholder needs, organizational
standards and regulations, domain information, as well as
information about the AS-IS status of the IS (if existing) [9].
These documents serve as a foundation for requirements analy-
sis. After the requirements analysis, the requirements engineer
can start with the requirements specification. The main goal
of requirements specification is to extract requirements from
the elicited documents, resulting in an appropriate software
requirements specification (SRS) [28], i.e., one which declares
the crucial characteristics, functions, and capabilities of the
IS, along with its constraints. After the creation of the SRS,
it is essential to undergo a requirements validation process
facilitated by stakeholders who rely on this SRS.

The majority of the documents utilized across all four
phases of RD are written using natural language due to its
versatility, i.e., as it is familiar to all participants, does not
require additional skills, and can be used to express any kind
of requirements [29]. However, this can lead to imprecise,
incomplete, and inconsistent [30] requirements and makes the
RE process a more complex and time-consuming task [31].

Moreover, natural language is not always the best represen-
tation of organizational routines. Depending on the purpose,
the content, and the stakeholders involved in a business pro-
cess, various representation formats such as process models,
spreadsheets, and checklists might be employed in addition to
natural language text [2].

Process models can be employed during the software
development cycle, particularly in the context of process-,
component-, and service-oriented software development. Pos-
sible application scenarios might involve the implementation
of executable business processes, the generation of artifacts
for automated code creation, and the formulation of models

defining the logic of the IS [32]. [33] provides guidance
on addressing common challenges during the activities of
requirements engineers by exploiting BPMN process models2.

The complexity associated with creating, integrating, and
maintaining multiple representations during the RE process
can be challenging. However, selecting only one particular
representation can lead to insufficient involvement of stake-
holders and requirements engineers in the RE process and
may cause an incomplete and inaccurate understanding of
organizational routines [34]. According to Cognitive Theory of
Multimedia Learning (CTML) [35], describing the concept of
learning preference, the simultaneous presentation of multiple
representations is recommended.

The representation of information through both natural
language and graphical process models can encourage a more
inclusive and effective communication process. In the context
of this paper, we aim to highlight following two scenarios
where M2T transformation (i.e., BPMN model to text) can
provide comprehensive support to all participants within the
RE process and simplify their routing (see Fig. 1):

1 In cases where an existing AS-IS model is present,
M2T transformation becomes useful, enabling stakeholders,
independent of their modelling skills, to ensure the relevance
of the current process model. This capability assists in the
avoidance of potential confusion and errors that may arise
when a requirements engineer receives an outdated model
during requirements analysis.

2 Within the analysis phase, a requirements engineer
generates a new TO-BE model that reflects the up-to-date state
of the system after consideration of all elicited requirements.
Here, M2T transformation assists in the creation of process

2BPMN stands for Business Process Model and Notation and constitutes
a standardized notation and de-facto lingua franca for business process
modeling (bpmn.org). Hence, we will refer to BPMN as process modeling
notation in the remainder of the paper.

bpmn.org


documentation, which provides benefits for comprehension of
the processes and conducting checks for inconsistencies during
requirements validation.

How texts generated from process models can be utilzed for
RE has been covered in other works such as [24], we instead
focus on means to generate such texts.

IV. M2T TRANSFORMATION WITH LLM-BASED AND
HYBRID APPROACHES

At first glance, M2T transformation performed by LLMs
seems to be pretty straightforward: (a) present the desired
model to the LLM; (b) instruct the LLM to convert this model
into the text; (c) estimate whether the generated content is
consistent with the provided model (i.e., evaluate the quality of
M2T transformation). However, several challenges arise during
M2T transformation. (a) and (b) refer to the orange tasks and
(c) refers to the whole procedure (see Fig. 2).

Graphical Representation. Firstly, to enable the commu-
nication between the end user and the LLM, a tokenizer
is employed. The tokenizer breaks down input texts into
tokens, which can be various unit of text as a word, a sub-
word or a single character [36]. However, a common LLM
input/output token window is between 1,000–8,000 tokens.
Due to this limitation, it is not always possible to utilize stan-
dard XML serialization of BPMN models, especially for the
more complex models with multiple elements and attributes.
Thus, the transition from the standard XML serialization into
a simplified abstract graphical representation of the BPMN
model is required.

There are multiple graph description languages available
like PlantUML3, Mermaid.js4, Graphviz DOT5 or D26 [37]
[38]. Graphviz DOT and Mermaid.js have been selected, as
both have a simple syntax, support multiple diagram types, and
are well-known, as well as well-documented. For example, the
following textual process description can be converted from
the standard XML serialization of a BPMN model into the
selected graphical representation, as shown in Fig. 3.

“After task A, either task B or task C are
conducted. After the control flow is merged, task
D is executed.” (Process Description PD1)

Prompt Engineering. Secondly, the LLM is instructed to
perform M2T transformation. The prompt aims to instruct
the LLM about the task it has to perform [39]. Several
studies highlight the importance of good prompt design and
engineering to achieve a reasonable LLM response [40]. Since
LLMs are sensible to the prompts and there are always several
ways to describe one particular task, we designed two prompts
for the M2T transformation. In “Prompt 1” we ask the LLMs
to generate a process description for a specific model using
simple natural language. “Prompt 2” was modified to prevent
the usage of modeling-language specific terms, as we aim for
the text to be written naturally for easy comprehension by

3https://plantuml.com/
4https://mermaid.js.org/
5https://graphviz.org/doc/info/lang.html
6https://d2lang.com/tour/intro

various RE process stakeholders without modeling knowledge.
The prompts are available on GitHub7.
Prompt 1: Read this

<representation_type> model: <model>.
Convert this model to a textual process
description using simple natural language.
Return only text summary.
Prompt 2: Read this

<representation_type> model: <model>.
Convert this model to a textual process
description using simple natural language
without mentioning types of the model
elements (i.e., task, start event, end
event, gateway, etc.). Return only text
summary.

Quality of M2T Transformation. To assess the quality of
LLM-based M2T transformation it is necessary to assess (a)
how efficient is the M2T transformation (cf. Sect. V-A); (b) the
information loss or excess occurring during continuous trans-
formations (cf. Sect. V-A3); and (c) how well the LLM-based
transformation performs in comparison to hybrid approaches
(cf. Sect. V)?

The whole evaluation process will be structured as per
Fig. 2, the raw evaluation results are available on GitHub8.

The traditional (hybrid) approach: For comparison, we
use a hybrid approach of text generation (non-AI). In this
approach graphical models are transformed into trees, where
each task, or gateway is represented by a node in the tree.
The trees are then traversed, and the text/meaning of each
node inserted into templates, similar to [22].

In the scope of this work two different templates are used.
The first template named “reduced” assumes local context,
i.e., if the text contains information that task should occur in
the second branch of a decision node it is assumed that the
most recently decision is meant. If there is nested decision this
could potentially lead to confusing texts.

Thus the second template named “extended” contains in-
formation about an ID for every decision and every parallel
node, so that with every information about a task we can refer
to where it is inserted. I.e, “The task X occurs in the second
branch of decision D1”.

As for the approach utilized in [22] no code is available,
we implemented a transformation pipeline9 containing the
following types of components:

• Source Components: Three different source components
(BPMN2, Mermaid, Graphviz), extract data from the re-
spective text formats to a generic node/link data structure.

• Transform Component: The node/link representation
is converted into a Refined Process Structure Tree

7https://github.com/com-pot-93/m2t-trans/tree/main/prompt_engineering,
last access: 2024-01-29

8https://github.com/com-pot-93/m2t-trans/tree/main/evaluation, last access:
2024-01-29

9https://github.com/etm/promptgen which contains the data sets, all the
conversion results, and a conversion script; the library https://github.com/etm/
cpee-transformation utilized by the conversion script, contains the conversion
logic itself; last access: 2023-12-08

https://plantuml.com/
https://mermaid.js.org/
https://graphviz.org/doc/info/lang.html
https://d2lang.com/tour/intro
https://github.com/com-pot-93/m2t-trans/tree/main/prompt_engineering
https://github.com/com-pot-93/m2t-trans/tree/main/evaluation
https://github.com/etm/promptgen
https://github.com/etm/cpee-transformation
https://github.com/etm/cpee-transformation
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(RPST) [41], with a focus on fixing simple modeling
errors, and producing well-formed BPMN.

• Target Components: We use four target components.
A CPEE10 [42] RPST XML representation to be able
to visually inspect the RPST, and three different text
representations based on slightly different templates and
tree traversal algorithms.

Finally, we discuss (a), (b) and (c) introduced at the start
of this section, based on the subsequent evaluation steps (also
shown in Fig. 2) which yield a number of KPIs:

• OT2GT: Compare original to generated texts
– readability: FKGL - Flesch-Kincaid Grade Level and

FRE - Flesch Reading Ease;
– quantitative measures: #S - number of sentences, #W

- number of words, and #WS- number of words per
sentence;

– text similarity: TS-NC - non-contextual text similarity
and TS-C - contextual text similarity;

– modeling references: #MR - number of generated texts
containing references to the modeling elements;

• OM2OT+GT: Compare original models to original and
generated texts
– model-to-text similarity: TS-C - contextual text simi-

larity;
– model-to-text overlap: O-OM - percentage of the tasks

in the original model, that were not aligned to the
sentences in the generated text and O-OT - percentage

10Cloud Process Engine: https://cpee.org/

of the sentences in the generated text, that were not
aligned to the tasks in the original model;

• OM2GTL: Compare original models to extracted tasks
from generated texts
– quantitative measures: #T - number of tasks in the

model and number of extracted tasks;
– model-to-tasks similarity: TS-C - contextual text simi-

larity;
– model-to-tasks overlap: O-OO - percentage of the tasks

in the original model, that were not aligned to the tasks
from the generated text and O-OG - percentage of the
tasks from the generated text, that were not aligned to
the tasks in the original model;

For non-contextual similarity, we use algorithms in which
only the actual words are considered for the similarity cal-
culation, without taking into account the context in which
each word appears. On the other hand, contextual similarity
considers the surrounding context in which different words
appear. To measure the non-contextual similarity (TS-NC) we
apply TD-IDF vectorizer and for the contextual one (TS-C)
- BERT base model as a word embedding model. To obtain
both similarities we calculate a cosine similarity metric [43].

To measure the model-to-text overlap we compute the TS-
C between each task in the model and each sentence in the
text. Then we sum up all tasks and all sentences that reach the
predefined similarity threshold, i.e., are matched to each other
(overlap). After that we count how many task in the model
(O-OM) and sentences in the text (O-OT) are misaligned.
The calculation of Model-to-tasks overlap follows the same
principle.



start
event task A

end
event

task B

task C

task D

flowchart LR
  0:startevent:((startevent))‐‐>1:task:(task A)
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(ii) Mermaid.js serializa�on

task A

task B

task C

task D

digraph G {
  rankdir = LR;
  node[style=filled,fillcolor=lemonchiffon];
  "start_1"[shape=circle label=""]; "end_1"[shape=doublecircle label=""];
  "seg_1"[shape=diamond label="X"]; "meg_1"[shape=diamond label="X"];
  "task A"[shape=rectangle]; "task B"[shape=rectangle];
  "task C"[shape=rectangle]; "task D"[shape=rectangle];
  "start_1"‐> "task A"; "task A"‐> "seg_1"; "seg_1"‐>"task B"; "seg_1"‐>"task C"; 
  "task B"‐>"meg_1"; "task C"‐>"meg_1"; "meg_1"‐>"task D"; "task D"‐> "end_1";
}

(iii) DOT Graphviz serializa�on

<defini�ons exporter="Signavio Process Editor, h�p://www.signavio.com" .... processType="None">
<extensionElements>
<signavio:signavioDiagramMetaData metaKey="prozessreifegrad" metaValue=""/>
<signavio:signavioDiagramMetaData metaKey="iso9000ff" metaValue=""/>
<signavio:signavioDiagramMetaData metaKey="processgoal" metaValue=""/>
<signavio:signavioDiagramMetaData metaKey="meta‐processowner" metaValue=""/>
<signavio:signavioDiagramMetaData metaKey="revisionid" metaValue="c50edd50e4b343f3927e2a296ddbc75e"/>
</extensionElements>
<startEvent id="sid‐A398990D‐F097‐4190‐BD70‐16F6FBE38DCE" name="">
...
</defini�ons>

task A

task B

task C

task D

(i) Standard XML  BPMN serializa�on; # of GPT4 tokens: 5122

Fig. 3: Selected Graphical Representations for PD1

V. EVALUATION

For the evaluation we utilize the PET dataset11. PET is an
annotated dataset for process extraction from natural language
text tasks (i.e., process descriptions). It comprises 45 textual
process descriptions from different domains alongside human-
annotated process elements. Only 7 examples out of the 45
from the PET dataset also utilized by [44] are used. These
examples represent subgroups of diverse size and complexity
in a sample, allowing us to draw more precise conclusions
by representing the entire population and minimizing the
possibility of bias. Such a diversity is also significant because
it directly influences the quality of the generated response by
the LLMs [45].

All tables present average values derived for the 7 selected
examples. Considering the average across the entire sample
aims to capture the overall tendency observed within it, even
though these values may not fully capture the nuances present
in individual documents.

Selected examples in the sample are between 30 and 162
words, and on average 79 words, in the selected process de-
scriptions. Based on these process descriptions and annotations
provided in the PET data set, BPMN models are created. The
BPMN models are then converted into simplified graphical
representations, utilizing Mermaid.js (MER) and Graphviz
DOT (GV) as the underlying serialization languages.

The created process models consist of two basic categories
of BPMN elements: (a) flow objects, including start and end
events, tasks, exclusive and parallel gateways, and (b) con-
necting objects, represented by sequence flows. Each model
contains between 3 and 11 tasks, and at least 2 events (one
start event and one end event). In addition, 5 out of 7 process

11https://huggingface.co/datasets/patriziobellan/PET

models include exclusive gateways, while 1 process model
contains parallel gateways as well (all models are available at
github12).

Each of the created models is utilized to generate its
corresponding process description. Subsequently, for the final
evaluation the list of tasks is extracted from each generated
process description.

We refer to: i) the 7 selected process descriptions from
the PET dataset as the original texts (OT); ii) the process
models that are created based on these process descriptions
and their annotations as the original models (OM); iii) the
texts generated using LLMs or traditional approaches based
on the OM as the generated texts (GT); iv) the lists of tasks
extracted from the GT as the lists of tasks extracted from
generated texts (GTL) (see Fig. 4).

A. Quality Assessment of M2T Transformation

1) OT2GT.: In this subsection we compare complexity,
structure, as well as contextual and non-contextual similarity
of texts generated by LLMs and by utilizing a traditional
hybrid approach. The following LLMs are used: text-davinci-
003 (GPT3), gpt-3.5-turbo (GPT3.5), and gpt-4 (GPT4) from
openai.org 13, as well as Llama-7b-chat-hf 14 and Llama-70b-
chat-hf 15 from hugging-face. See the examples of generated
texts in Fig. 5.

In general, according to the Flesch–Kincaid readability tests
(i.e., tests designed to indicate how difficult a passage in

12https://github.com/com-pot-93/m2t-trans/tree/main/pet_models, last ac-
cess: 2024-04-2

13https://platform.openai.com/docs/models
14https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
15https://huggingface.co/meta-llama/Llama-2-70b-chat

https://huggingface.co/datasets/patriziobellan/PET
https://github.com/com-pot-93/m2t-trans/tree/main/pet_models
https://platform.openai.com/docs/models
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat


The MPON sents the dismissal to the MPOO.
The MPOO reviews the dismissal.

The MPOO opposes the dismissal of MPON or
 the MPOO confirmes the dismissal of the MPON .

Prompt 1, GPT4:
The process begins with the start event. 

The first task is that MPON sends the dismissal. 
After this, the task moves to MPOO who reviews the 
dismissal. Following this review, there is an exclusive 
gateway. If MPOO opposes the dismissal, the process 
moves to the task of MPOO opposing the dismissal. 
If MPOO confirms the dismissal, the process moves 

to the task of MPOO confirming the dismissal. 
Both these paths then converge at another exclusive 
gateway. The process then ends with the end event.

Evalua�on Artefacts

OT OM

GT GTL

Prompt 1, GPT4:
1.Start event

2.MPON sends dismissal
3.MPOO reviews dismissal

4.Exclusive gateway
5.MPOO opposes dismissal (if applicable)
6.MPOO confirms dismissal (if applicable)

7.Converge at exclusive gateway
8.End event

startevent MPON sends 
dismissal

endevent

MPOO opposes 
dismissal

MPOO confirms
 dismissal

MPOO reviews
 dismissal

Fig. 4: Examples of Evaluation Artefacts

English is to understand [46]16), both Flesch scores (FKGL≃7
and FRE≃68) indicate that the generated texts are simple
enough to be successfully read by 80% of readers in the
USA. In addition, we can see that all LLM-generated texts
have the same level of complexity as the original texts, created
by humans (see Tab. I, II). However, this might suggest that
texts in the selected dataset are overly simplistic and may not
accurately reflect reality: texts incorporating domain-specific
knowledge and terminology could be more intricate in real-
world scenarios.

Comparing the structure of original texts to the LLM-
generated texts, the generated texts feature more sentences and
a similar number of words, contributing to a more structured
appearance (also shown in Tab. I, II).

The LLM-generated texts achieve up to 85% and 81% non-
contextual text similarity (TS-NC) by GPT and Llama models
respectively, suggesting that during text generation, LLMs
employ similar words and concepts as humans do. Taking into
account contextual text similarity(TS-C), which considers not
only the similarity of words themselves but also the context,
a maximum of 89% (GPT) and 87% (Llama) similarity was
reached (again, see Tab. I, II).

Considering non-contextual, contextual text similarity and
number of existing references to the model elements it could
be seen that mostly the texts generated from GV achieve better
results than texts generated out of the MER models. However,
the difference is not significant (again, see Tab. I, II). Such
behavior can be explained by noting that Graphviz is an older
tool, and as a result, it might be more commonly found in
the training data. In addition, “Prompt 2” seems to be more
successful as “Prompt 1”.

When comparing different LLMs, GPT3 creates shorter
texts than other models (i.e., around 25% less sentences
comparing to the original texts and 50% shorter than the texts
generated by other LLMs on average). However, despite the
fact that GPT3 texts contain less characters and sentences,
the non-contextual text similarity between texts generated by
GPT3 and the original text is only 2%-points smaller than

16Recent research highlights shortcomings of Flesch-Kincaid scores, indi-
cating that it should not be used as an optimization target [47]. Here, we
merely use this score as a rough indicator of complexity and do not argue for
maximizing it.

for texts generated with GPT3.5 and GPT4 and 3%-points
higher comparing with the texts generated by Llama models
on average. This might suggest that almost 50% of the content
within the text descriptions generated by other LLMs is not
relevant for the process content (i.e., if it were removed from
the process description, we would still be able to obtain the
same model). At the same time, it might indicate that human-
written texts are closer to the texts generated with GPT3.5,
GPT4 and Llama models than to those, generated with GPT-
3.

Taking into account prompt specific results, up to 46%
of all texts generated from MER and “Prompt 1” contain
references to the model elements and up to 29% by utilizing
GV representation. When examining texts generated from
MER by GPT3.5 and GPT4, references to specific modeling
elements are present in 100% of the examples.

Using “Prompt 2” it is determined that only utilizing
GPT3.5 in 2 out of 7 generated texts from MER and 1 out of 7
from GV references are still present (see #MR in Tab. I, II) and
using other GPT models texts are reference-free. Considering
“Prompt 2” and LLama models only texts generated from GV
by Llama-70 are reference-free. In all other cases 1 out of 7
texts contains references to the types of model elements.

Despite the fact that none of the prompts are able to generate
texts without mentioning model elements and their types,
“Prompt 2” can be considered as sufficient, as 91% of all texts
are reference-free in comparison to 63% with the “Prompt 1”.

Generally, utilizing GPT3 and GPT4 yields to better results
and Llama-70 appears to have a higher performance.

In comparison to LLM generated texts, the tradition-
ally generated texts produce different results, as depicted in
Tab. III.

None of the traditionally generated texts (independent of
template and traversal algorithm) yields as good results as
the LLMs. Mainly, due to the usage of templates that corre-
spond to element types in the modeling language, traditional
approaches produce language that is rigid, unnatural, and stale.
We suspect that such correspondence to the modeling language
can impact the perception of process description by various
stakeholders without modeling knowledge and experience (we
have to quantify potential positive and negative effects in a



TABLE I: Basic evaluation of generated text from original model with GPT3, GPT3.5 and GPT4, where FKGL - Flesch-
Kincaid Grade Level, FRE - Flesch Reading Ease, #S - Num. of Sentences, #W - Num. of Words and #WS- Num. of Words
per Sentence, TS - Text Similarity and #MR - Num. of generated texts containing references to the modeling elements

GR prompt LLM FKGL FRE #S #W #WS #MR↓ TS-NC↑ TS-C↑
original text human 7.00 67.25 5.00 79.00 14.62 0

Prompt 1

MER

GPT3 6.80 71.95 4.00 51.00 12.75 0 0.7 0.89
GPT3.5 6.40 71.75 8.00 110.00 13.75 7 0.69 0.78
GPT4 6.60 73.17 9.00 107.00 12.17 7 0.75 0.79
avg. 6.60 72.29 7.00 89.33 12.89 4.67 0.71 0.82

GV

GPT3 6.60 73.58 5.00 68.00 14.00 0 0.75 0.87
GPT3.5 7.30 70.84 6.00 89.00 14.83 3 0.76 0.84
GPT4 6.50 73.78 7.00 91.00 14.80 1 0.79 0.83
avg. 6.80 72.73 6.00 82.67 14.54 1.33 0.77 0.85

avg. all 6.70 72.51 6.50 86.00 13.72 3.00 0.74 0.83

Prompt 2

MER

GPT3 7.60 65.73 2.00 46.00 15.50 0 0.69 0.87
GPT3.5 5.60 73.34 8.00 94.00 11.75 2 0.63 0.85
GPT4 6.60 71.41 8.00 83.00 11.00 0 0.80 0.85
avg. 6.60 70.16 6.00 74.33 12.75 0.67 0.71 0.86

GV

GPT3 7.60 64.71 4.00 42.00 14.50 0 0.73 0.88
GPT3.5 6.90 67.45 7.00 101.00 14.43 1 0.72 0.82
GPT4 7.60 65.62 7.00 82.00 13.67 0 0.81 0.86
avg. 7.37 65.93 6.00 75.00 14.20 0.33 0.75 0.85

avg. all 6.98 68.04 6.00 74.67 13.48 0.50 0.73 0.86

TABLE II: Basic evaluation of generated text from original model with Llama7 and Llama70; see abbreviations in the Table I

GR prompt LLM FKGL FRE #S #W #WS #MR↓ TS-NC↑ TS-C↑
original text human 7.00 67.25 5.00 79.00 14.62 0

Prompt 1

MER
Llama-7 7.40 66.13 5.00 100.00 15.43 2 0.60 0.78

Llama-70 6.40 73.78 4.00 62.00 13.30 0 0.75 0.87
avg. 6.90 69.96 4.50 81.00 14.37 1.00 0.68 0.83

GV
Llama-7 9.60 58.82 5.00 94.00 20.86 3 0.67 0.84

Llama-70 5.80 70.39 12.00 140.00 10.83 3 0.72 0.84
avg. 7.70 64.61 8.50 117.00 15.84 3.00 0.70 0.84

avg. all 7.30 67.28 6.50 99.00 15.11 2.00 0.69 0.83

Prompt 2

MER
Llama-7 8.30 61.56 6.00 82.00 15.33 1 0.55 0.77

Llama-70 8.20 59.70 5.00 70.00 14.00 1 0.73 0.85
avg. 8.25 60.63 5.50 76.00 14.67 1.00 0.64 0.81

GV
Llama-7 9.50 57.98 6.00 97.00 17.67 1 0.65 0.76

Llama-70 7.90 64.91 9.00 115.00 13.00 0 0.85 0.87
avg. 8.70 61.44 7.50 106.00 15.34 0.50 0.75 0.82

avg. all 8.48 61.04 6.50 91.00 15.00 0.75 0.70 0.81

TABLE III: Basic evaluation of generated text from original model with the traditional approaches; see abbreviations in the
Table I

Approach FKGL FRE #S #W #WS #MR↓ TS-NC↑ TS-C↑
original text 7.00 67.25 5.00 79.00 14.62 0

LLMs 7.26 67.83 6.35 86.20 14.18 1.60 0.72 0.84
reduced 7.60 71.04 11.00 207.00 18.56 7 0.6 0.6
extended 7.50 71.24 12.00 214.00 18.14 7 0.62 0.57

separate study). As can be seen in Tab. III the readability score
together with the number of words per sentence slightly in-
creased on average. At the same time, the number of sentences
doubled and the number of words per process description
increased by 2.5 times on average, but both contextual and
non-contextual text similarity decreased by 25%- and 11%-
points comparing to LLM-generated process descriptions on
average.

2) OM2OT+GT.: To confirm the appropriateness of the
LLM-generated texts, it is crucial to evaluate not only the
text-to-text similarity and the readability of the generated texts
but also the relationships between the model and both the

original and generated text. To find out the extent to which the
model covers the content of the original text and how well the
generated text covers the content of provided model, we use
following metrics: (a) text similarity (TS-C) (i.e., comparing
the text with all the tasks in the model), and (b) overlap
between the text and the model i.e., how many sentences in
the text align with tasks in the model (O-OM - only in original
model, O-OT - only in original text).

As depicted in Table IV, the texts generated by LLMs
achieve a text similarity score ranging from 76% to 86%. This
result can be considered significant, as the similarity score
between the original text and the model is 83%. The texts



Prompt 1 Prompt 2

OT The MPON sends the dismissal to the MPOO. The MPOO reviews the dismissal. The MPOO opposes the dismissal of MPON or 
the MPOO confirms the dismissal of the MPON.

GPT3 MPON sends the dismissal which is then reviewed by MPOO. MPOO
can either oppose the dismissal or confirm it.  If  MPOO  opposes the  
dismissal, the process ends there. If MPOO confirms the dismissal, 
the process is completed.

MPON sends the dismissal, which is then reviewed by MPOO. 
Depending on the outcome, MPOO either opposes or confirms 
the dismissal, and the process is completed.

GPT3.5 The process starts with the "startevent" where MPON sends the 
dismissal. Then, the task moves to MPOO who reviews the dismissal. 
After that, there is an exclusive gateway where two paths can be taken. 
If MPOO opposes the dismissal, the task moves to another task. If 
MPOO confirms the dismissal, the task moves directly to the next 
exclusive gateway. From there, if the task goes to the next task, it again 
reaches an exclusive gateway. Finally, the process ends with the 
"endevent".

The process starts with an event where MPON sends the 
dismissal. Then, MPOO reviews the dismissal. After that, 
there is a decision point represented by an exclusive gateway.
If MPOO opposes the dismissal, the process goes to a task. If 
MPOO confirms the dismissal, it also goes to a task. Both 
paths converge at another exclusive gateway. From there, the 
process either goes to an end event or returns to a task. 
Finally, the process ends at an end event.

Llama7 The process begins when MPON sends a dismissal notice. Then, 
MPOO reviews the notice and makes a decision whether to oppose or 
confirm the dismissal. If MPOO opposes the dismissal, the process 
ends. If MPOO confirms the dismissal, the process continues until it 
reaches its conclusion.

The MPON sends a dismissal notice to the MPOO (step 1). 
The MPOO then reviews the dismissal (step 2). If the MPOO 
opposes the dismissal, the process ends (step 3); otherwise, the 
MPOO confirms the dismissal (step 6). Once the dismissal is 
confirmed, the process ends (step 7).

Llama70 The MPON sends a dismissal, which is then reviewed by the MPOO. 
The MPOO can either oppose or confirm the dismissal. If opposed, 
the process ends. If confirmed, the MPOO confirms the dismissal and 
the process ends.

The MPON (Managerial Personnel Oversight Committee)
sends a dismissal request to the MPOO (Management 
Personnel Oversight Officer). The MPOO reviews the request 
and decides whether to oppose or confirm the dismissal. If 
opposed, the MPOO sends the request back to the MPON. If 
confirmed, the MPOO sends the confirmation to the MPON. 
Finally, the process ends.

Legend process content irrelevant information
information added during M2T transformation

Extended First, a task with the id a1567 and the label "MPON sends the dismissal" occurs. Then a task with the id a1569 and the label 
"MPOO reviews the dismissal" occurs. Afterwards, this is followed by an exclusive decision with 2 branches. This decision will be 
furthermore refered to as D1. The first branch task of D1 is executed if the condition is "". The only entry in the first branch of D1 is 
a task with the id a1573 and the label "MPOO opposes the dismissal". The second branch of D1 is executed if the condition is "". 
The only entry in the second branch of D1 is a task with the id a1575 and the label "MPOO confirmes the dismissal". At this point 
all branches of D1 are finished, and the process ends.

GPT4 The process begins with MPON sending the dismissal. 
Following this, MPOO reviews the dismissal. After the 
review, there are two possible outcomes. Either MPOO 
opposes the dismissal or MPOO confirms the dismissal. 
Regardless of the outcome, the process concludes at the end.

The process begins with the start event. The first task is that MPON 
sends the dismissal. After this, the task moves to MPOO who reviews 
the dismissal. Following this review, there is an exclusive gateway. If 
MPOO opposes the dismissal, the process moves to the task of 
MPOO opposing the dismissal. If MPOO confirms the dismissal, the 
process moves to the task of MPOO confirming the dismissal. Both 
these paths then converge at another exclusive gateway. The process 
then ends with the end event.

Fig. 5: Examples of Generated Texts utilizing Diverse Approaches

TABLE IV: OM2OT+GT Evaluation

original reduced extended GPT3 GPT3.5 GPT4 Llama7 Llama70
TS-C↑ 0.83 0.59 0.57 0.86 0.80 0.81 0.76 0.84

O-OM↓ 0.07 0.09 0.11 0.11 0.02 0.01 0.14 0.06
O-OT↓ 0.23 0.49 0.54 0.13 0.35 0.35 0.40 0.38

generated utilizing traditional approaches achieve a similarity
score of 58% only.

The majority of the model tasks are successfully aligned
with the sentences in the texts, with only 8% of all tasks not
matching with the sentences in the generated texts on average
(see O-OM in IV). The best alignment is achieved with the
texts generated by GPT models.

A high percentage of non-aligned sentences (see O-OT
in IV) suggests the presence of the process content irrelevant

information in the texts: up to 50% for texts generated by
traditional approaches and up to 40% for LLM-generated
texts in comparison to 23% for the human-generated process
descriptions. Such results are consistent with the findings from
the previous section (see Sect. V-A1).

Such outputs can indicate that the information loss for pro-
cess content relevant information during M2T transformation
is not significant.

Adjusting the granularity of the sentences can impact both,



the text and the model overlap. The usage of smaller sentences
in the text makes it easier to align the model tasks with them.
However, if the text contains a lot of specific information that
cannot be covered by a model, high granularity will lead to
higher misalignment between the text and the model.

3) OM2GTL.: To investigate the information loss (i.e.,
how much information was lost during M2T transformation)
more precisely, we will extract tasks from generated texts
and compare them to the original models. Task extraction
is performed solely with GPT4, for both, LLM-generated
and traditionally generated texts. The prompt for the tasks
extraction can be found here7.

All subsequent discussion points are based on Tab. V.To
conduct a comparison between the original models and the
extracted tasks from the generated texts, we first examine the
number of tasks. Only models derived from texts generated
using traditional approaches have similar number of tasks as
the original model. Original models contain on average of
6.57 tasks, whereas the average number of tasks extracted
from traditional approaches is 7.43 for reduced and 7.14 for
extended approaches. The next closest to the original value
was obtained by GPT3 and is equal to 7.93 tasks on average.
Extracting tasks from texts generated by all other LLMs
resulted in an average finding of approximately 30% more
tasks in comparison to the original models.

TABLE V: OM2GM: Average number of tasks in original
models and tasks extracted from generated texts

GPT3 GPT3.5 GPT4 L7 L70

P1
Mer 8.00 10.86 9.29 9.14 9.14
GV 8.43 9.71 9.57 8.71 7.71
avg. 8.21 10.29 9.43 8.93 8.43

P2
MER 7.57 8.86 8.14 9.14 10.14
GV 7.71 9.57 9.00 9.57 11.71
avg. 7.64 9.21 8.57 9.36 10.93

avg. 7.93 9.75 9.00 9.14 9.68

When moving on to the contextual task similarity (TS-
C) (see Tab. VI), an average similarity of 88% is observed.
The models produced from texts generated by traditional
approaches achieve the highest scores of 96% on average.
However, models created from LLM-generated texts demon-
strate commendable values, reaching up to 91% with GPT-3
and GPT-4. Llama models perform slightly worse than GPT
models (2%-points on average) reaching up to 87% contextual
text similarity.

Such results can be considered as acceptable, as the level
of similarity between the original text and the original model
is 83% (see Tab. IV). However, to estimate whether the infor-
mation loss or excess occurs during the M2T transformation
we look at the model-to-tasks overlap.

Considering model-to-tasks overlap, on average, only 2%
of all tasks presented in the original model are not aligned
with the tasks extracted from generated texts (see O-OO in
Tab. VI). The best results are, again, achieved with the text
generated by traditional approaches, where information loss
strives for zero (again, see O-OO in Tab. VI). When using text

generated by LLMs, only up to 3% of information from the
original models was lost for both representations (1% using
GV and 3% using MER). GPT models perform better than
Llama models. Generally, there is no great difference between
selected GPT models. Referring to Llama models, Llama70
performs notably better than Llama7.

We can also see, that there is no significant difference
between “Prompt 1”and “Prompt 2” and it is evident that
there is no noteworthy distinction between MER and GV
representations.

The low percentage of the tasks in the original model,
that were not aligned to the tasks from the generated text
(see O-OO in Tab. VI) indicates a low level of information
loss for process content relevant information during M2T
transformation.

The lower O-OG value between the tasks extracted from
original models and texts generated by traditional approaches
in comparison to LLM-generated texts (see Tab. VI) may
signify that traditional approaches either tend to reduce the
amount of generated content or hold it in a more structured
way, whereas LLMs tend to generate some additional content
based on their foreknowledge and advanced text generation
capabilities.

In addition, up to 49% of all tasks extracted from LLM-
generated texts are not aligned with the tasks in the original
model (see O-OG in Tab. VI). It might demonstrate that new
tasks are added during task extraction. The data in Tab. V can
also confirm such behavior, where the number of extracted
tasks increases in comparison to the original model.

This indicates that, during M2T transformation, new content
is inserted into the process description by LLMs, which
can lead to future errors and inconsistencies. Currently, we
cannot definitively say whether newly added tasks are just
misclassified as the tasks, are just hallucinations of the LLMs,
or are a product of analysis and reasoning and are supposed
to substitute those missing in the original models.

B. Threats to Validity

Caution should be exercised when interpreting obtained
results, due to the nature of the dataset, selected models, and
the limited sample size. The selected examples are simple and
straightforward. The employed models were created based on
annotations primarily utilized for process extraction evalua-
tion, thus possessing an artificial nature.

The presented results capture the average picture and may
not fully encapsulate the entire scope of the dataset. Omitting
to consider results for individual documents in addition to
average values might obscure variations within the data.

One limitation of our approach is tied to the quality of
the BPMN artifacts provided by the stakeholders. The more
modeling errors, or semantic errors are contained in the
models, the harder it will be to extract useful information.
Also, the range of BPMN constructs investigated in this work
is limited (see Sect. V) and does not contain, for example,
most events, pools (for modeling organizational roles) and
specialized gateways (e.g., event-based gateway). Based on



TABLE VI: OM2GM Evaluation

traditional prompt 1 prompt 2 avg.
Metric GR red. ext. GPT3 GPT3.5 GPT4 L-7 L-70 GPT3 GPT3.5 GPT4 L-7 L-70

TS-C↑ MER 0.96 0.96 0.90 0.79 0.87 0.82 0.87 0.91 0.82 0.91 0.85 0.87 0.88
GV 0.90 0.85 0.90 0.82 0.87 0.90 0.82 0.89 0.83 0.87 0.88

O-OO↓ MER 0.00 0.00 0.00 0.02 0.02 0.04 0.04 0.02 0.02 0.02 0.11 0.00 0.03
GV 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.02 0.00 0.01

O-OG↓ MER 0.08 0.12 0.21 0.45 0.34 0.42 0.33 0.21 0.39 0.26 0.39 0.44 0.30
GV 0.25 0.37 0.39 0.43 0.26 0.19 0.37 0.32 0.49 0.46 0.31

the aforementioned limitations, of course it is a reasonable
assumption, that LLMs may sometimes drop requirements, or
even hallucinate additional requirements (signs of this can be
seen in the evaluation in Sect. V-A3).

Furthermore, in this paper, the evaluation of information loss
only involved a single round (i.e., OM → GT → GTL). In sce-
narios where multiple M2T and T2M transformations occur,
the resulting outcomes could potentially vary significantly.

Finally, the quality assessment of the performed M2T
transformation focuses on completeness, considering both the
structure of the generated texts and the degree to which
they cover information from the original texts and models.
However, it is important to note that for now we cannot make
any assumptions about the correctness of the generated texts,
specifically regarding whether the control flow presented in
the original model is accurately depicted.

VI. CONCLUSIONS AND DISCUSSION

In this work, we propose two scenarios in which the
integration of LLM based M2T transformation can yield
advantages for stakeholders in requirements engineering pro-
cesses. In particular, we focus on extracting textual process
descriptions from process models as 1 a component of input
documentation for the requirements engineer gathered during
requirements elicitation and 2 one of the resulting documents
after requirements specification, particularly in the context
of process-, service-, and component-oriented requirements
engineering (see also Fig. 1).

We propose and evaluate two graphical representations that
can substitute standard XML serialized BPMN models, as well
as two LLM prompts to achieve successful M2T transforma-
tion. In addition, we propose and discuss a set of KPIs to
quantify the results of M2T evaluations, i.e., readability score,
text similarity, model-to-text, and model-to-tasks overlap.

The evaluation is conducted by converting LLM-generated
models back to texts, extracting the tasks from these texts, and
comparing the original with the generated artifacts. Regarding
RQ1 we design and supply two prompts for achieving M2T
with LLMs (see Sect. IV). Regarding RQ2 we present a hybrid
(non-AI) M2T approach for generating texts, which allows us
to compare the LLM results with more traditional methods and
a list of KPIs to assess the difference (see Sect. IV). Finally,
to tackle RQ3 we discuss the level of information loss which
occurs during M2T, based on a set of KPIs (see Sect. V).

Based on the performed evaluation (see Sect.V), we observe
that using “Prompt 2” allows us to decrease the amount of

generated text that lacks process content value. However,
there isn’t a significant difference between “Prompt 1”and
“Prompt 2” based on selected KPIs. Similarly, there’s no
notable distinction between MER and GV representations.

When it comes to M2T generation, LLM-based approaches
exhibit better readability scores and demonstrate superior
performance, achieving higher similarity between the origi-
nal and generated text, as well as between the model and
generated text in comparison to traditional hybrid approaches
(see Tab. I, II). Even though LLM-based approaches produce
better texts according to the selected KPIs (see Tab. III),
texts generated by hybrid approaches seem to be better suited
for reverse T2M transformation, as they can guarantee the
correctness of the generated process description for a particular
model (i.e., no additional information or hallucinations), and
can offer full control over the process, which is not possible
when employing LLMs (see Tab. V).

A combination of both traditional and LLM-based ap-
proaches can offer significant benefits leveraging the strengths
of both methodologies, i.e., the precision provided by tradi-
tional methods to ensure the correctness of created process
descriptions and the naturalness and fluency of the text en-
hanced by LLM-based approaches.

The correlation between the completeness of a generated
model and quality and structure of its textual description
underscores that LLMs produce human-like text using prede-
fined patterns but may lack true comprehension. We are able
to perform a M2T transformation using both traditional and
LLM-based approaches, with minimal information loss (2% on
average). However, it is important to mention that introduced
KPIs concentrate only on completeness of generated models
and texts. At this point, we cannot make any assumptions
about the correctness of the texts (i.e., whether the generated
texts accurately represent the correct control flow introduced
in original models).

Future research will focus on evaluating and improving the
correctness of the generated models and texts, to automatically
eliminate inconsistencies, and further improve and enlarge
the datasets to provide a stable foundation for developing
conversational modeling.
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