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Abstract. The design and development of information systems (IS) of-
ten requires not only software development expertise, but also a deep
understanding of the multitude of business processes supported by the
given IS. Such understanding is usually elicited via business process mod-
eling and numerous, often interrelated, process models can be created
even for a single IS. However, commonly used process modeling lan-
guages focus on single processes in isolation, while providing, at best,
only limited support for modeling process interactions. This does en-
force a clear scope on each process model, but also leads to a non-holistic
view of the IS behavior. In this exploratory paper, we take the position
that, instead of forcing existing “single-process-focused” models to be
changed, approaches should be provided for modeling their interactions
in a fine-grained and unambiguous manner. To meet this goal, we propose
developing a Multi-Model paradigm for Business Process Management,
where the same, already existing, declarative and procedural modeling
languages would be used to represent both the individual processes as
well as their interactions.

Keywords: Multi-Model Paradigm · Business Process Management ·
Business Process Modeling · Hybrid Process Model · Model Interplay.

1 Introduction

The connection between information systems (IS) and business process manage-
ment (BPM) can range from IS providing simple data storage to fully-fledged
Process-Aware Information Systems (PAIS) [1] often directly managing multiple
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interconnected business processes. From the IS design and development perspec-
tive, this necessitates a deep understanding of such processes, which is commonly
achieved by creating multiple, also often interrelated, process models [17].

A wide variety of languages can be used for that purpose, ranging from pro-
cedural (e.g., Petri nets [38]) to declarative (e.g., Declare [31]), and various
combinations in between (cf. [7]). Furthermore, an object-centric view for rep-
resenting processes has recently emerged in the field of process mining [2]. But
despite that variety, existing languages tend to provide significantly more expres-
sive power for modeling single processes, than for modeling their interactions.

This “single-process-focus” helps to considerably simplify modeling by giving
a clear scope to each process model. However, it also contributes to the emer-
gence of “process silos”, a phenomenon recently recognized as one of the most
important BPM problems yet to be solved [10]. In a nutshell, process silos often
lead to multiple, potentially heterogeneous and certainly misaligned processes,
that nevertheless need to be executed in combination.

In fact, interactions between business processes (and by extension, between
the corresponding models) are highly relevant, as demonstrated by ongoing re-
search in areas such as holistic BPM [9], collaborative processes [19], and process-
spanning constraints [41]. Similar interactions can also be observed in hierarchi-
cal process models where some activities may refer to other process models (sub-
processes) [37], customizable processes where a base model is combined with
models capturing its variations [26], and even guided process discovery where
(possibly interconnected) model fragments are used as an additional input [29].
While very different, all the above examples can be seen as manifestations of
a single underlying research question (RQ): ”How to represent and handle the
interactions of multiple (separately defined) business process models?”.

Our earlier work [3, 5] also began by tackling that same RQ in a narrow
context (i.e., online process monitoring), but was later extended into a data-
aware modeling language/approach [4], where individual processes (procedural
or declarative) can still be first modeled in isolation, and then simply combined
through the use of exactly the same modeling constructs.

Given the above examples, we propose that scenarios, where one or more
processes are best represented as sets of smaller interconnected models, are suf-
ficiently prevalent to warrant a dedicated line of research, which we refer to as a
Multi-Model paradigm for BPM. Furthermore, given our experience with [3–5],
we propose that already existing languages can be extended to meet modeling
requirements of these scenarios in a formally well-defined manner. In this paper,
we explore these ideas further by a language-agnostic analysis of four example
scenarios, based on which we derive a corresponding research agenda for [4].

More specifically, Section 2 analyzes a representative example of each sce-
nario, leading to a set of modeling requirements presented in Section 3. Then,
Section 4 discusses the requirements (not) met by [4] and the corresponding
future extensions. This is followed by a discussion on the limitations of this pa-
per in Section 5, and an overview of related approaches in Section 6. Finally,
Section 7 concludes the paper by outlining directions for future works.
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2 Multi-Model Scenarios

Based on numerous discussions among the authors of this paper, we identi-
fied four types of business processes in which multi-model scenarios are, in our
opinion, likely to emerge. These types were validated by searching for concrete
examples from the literature. However, as discussed in Section 5, we did not aim
for completeness, instead focusing on broadness and variety. We begin with a
relatively simple hybrid model, followed by progressively more complex examples
involving multiple interconnected process models.

2.1 Hybrid Processes: Management of Funding Applications

By hybrid processes, we refer to business processes which contain both structured
and unstructured parts, and therefore, require both the strictness of procedural,
as well as, the flexibility of declarative process modeling languages. One of the
most common approaches to hybrid processes is using a hierarchical structure
of sub-processes, with each being either declarative or procedural (e.g., [37]).

Fig. 1. Hybrid application model for the Dreyers foundation (taken from [37]).

As a concrete example, we use the application process of the Dreyer Foun-
dation from [37]. The same source provides two process models: a fully declara-
tive model using nested DCR Graphs [13]; and a hybrid model using a target-
branched Declare [14] sub-process within a Petri net. The fully declarative
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model is used in practice to drive the electronic case management system of
the Dreyer Foundation. However, given the complexity of that model, a hybrid
solution was investigated, resulting in the model shown in Fig. 1.

Without describing the full process here (cf. [37]), we highlight the following:

– Strict control flow – Based on Fig. 1 it is clear that most of the appli-
cation process is procedural, which is also the main reason why [37] started
exploring alternatives to using a fully declarative model.

– Flexible control flow – In contrast, application reviews are highly flexi-
ble and therefore modeled declaratively. The corresponding model (review
process) does not define concrete start and end activities, but does require
at least one execution of register decision. Authors of [37] also note the
flexibility related to account numbers and payments, but state that this part
is modeled procedurally due to it having two entry points.

– Sub-processes – The declarative model is integrated into the procedural
one as a sub-process. More specifically, firing the Petri net transition review

process means executing the corresponding declarative model. The process
itself does not contain a concrete activity review process, meaning that
review process in the hybrid model is effectively a model reference.

– Data conditions – While not present in the hybrid model, the fully declar-
ative model contains data conditions defining which reviewer should review
which type of application. These conditions are in the form of variable-to-
constant comparisons, e.g, UddelingPulje = 2.

– Time perspective –While not present in the hybrid model, the fully declar-
ative model also specifies a time interval of three days between two reviews.

2.2 Orchestration Processes: Assessment of Loan Applications

By orchestration processes, we refer to scenarios where different roles, systems,
artifacts, etc., have their own models to be executed in parallel with others, while
following some cross-model dependencies. The most common of these dependen-
cies stem from a shared subject (e.g., a patient) between the models, which
may, for example, lead to shared data values (e.g., blood pressure of the patient)
and synchronization points (e.g., admission of the patient). This is analogous to
orchestration processes in BPMN [30], but with a distinct model for each lane.

As a concrete example, we rely on the loan application event log [16] of BPIC
2017 and our corresponding analysis in [4]. This event log explicitly distinguishes
application state changes, offer state changes and workflow events, thus providing
a natural basis for three interconnected process models as shown in Fig. 2. Each
model is represented procedurally using Data Petri nets, while the interactions of
models are defined by milestones, shared variables, and declarative constraints.

Without describing the full process here (cf. [4]), we highlight the following:

– Strict control flow – Based on Fig. 2, it is clear that the overall process
is largely procedural. However, there is some flexibility in how the activities
of the models can interleave, especially after the activity A Complete.



Towards a Multi-Model Paradigm for Business Process Management 5

Fig. 2. Orchestration processes for loan application assessment (taken from [4]).

– Cross-model variables – Activity A Create Application in M1 stores
the loan application type (variable app type). This stored value is then used
in M1 to decide if A Submitted will be executed. Furthermore, the same
value is also used in M2 to decide if W Handle leads will be executed.

– System variables – Model M2 stores a value for the variable (o sent) which
is required to execute W Call after offers in M3. However, based on [4],
this variable is not part of the original process, but, instead, used specifically
to enforce an additional synchronization between M2 and M3.

– Data conditions – All three models contain variable-to-constant compar-
isons, with r : and w : denoting read and write operations respectively, and
{. . .} used as a shorthand for possible matching constants.

– Cross-model activities – Activities A Accepted, A Complete, and app fin

constitute milestones of this process. These activities can only be executed
when they are allowed by all models, and a single execution progresses all
models concurrently, making them cross-model activities (milestones).

– Declarative interleavings – Interleavings of these models are further con-
strained by three pairs of activities (e.g., O Accepted and A Pending), where
executing one requires executing the other at some point in the same trace.

– Execution cardinalities – As highlighted in [4], Fig. 2 falls short if mul-
tiple loan offers (executions of M2) are made for a single loan application
(execution of M1). For example, it would fail to capture that at most one
offer can be accepted (O Accepted) per successful application (A Pending).

2.3 Collaborative Processes: Manufacturing of Car Parts

By collaborative processes, we refer to scenarios in which multiple organizations,
each having their own business processes, collaborate in a way that creates some
dependencies between their processes. Such scenarios are usually tackled by mod-
eling a message flow between process activities, such that each activity having
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incoming messages can only be executed after receiving all of them, thus pro-
viding a mechanism for modeling synchronizations. A prime example of this
approach is the use of pools and message flows in BPMN, along with the related
collaboration and choreography diagrams [30].

Fig. 3. Collaborative model of processes for manufacturing car parts (taken from [19]).

As a concrete example, we rely on [19], which presents the real-life collabo-
ration of three partners involved in manufacturing car parts, i.e., a car manu-
facturer, and partners responsible for injection molding and electro plating. As
shown in Fig. 3 the process of each partner is modeled using BPMN, while ad-
ditional black and green lines are used between the models to represent message
exchanges and data dependencies respectively.

Without describing the full process here (cf. [19]), we highlight the following:
– Strict control flow – The overall process, as shown in Fig. 3, is largely

procedural. However, some flexibility in process interleavings is possible.
– Public representation of private tasks – Almost all activities in Fig. 3

are modeled as complex tasks to hide internal processes from other partners.
– Sub-processes – While all other activities could be treated as atomic,

electro-plate parts (Partner 3) is explicitly connected to both the start
and the end event of the same concrete process model, effectively turning
electro-plate parts into a sub-process reference.

– Execution triggers – The process of Partner 3 is triggered by the execution
of arrange transport to electro-plater (Partner 1) and needs to be
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completed for executing the next activity of Partner 1. A sub-process is not
suitable here due to the partners being different and also because the process
of Partner 3 does not refer back to the same activity that triggered it.

– Activity types – The model for electro-plate parts differentiates be-
tween user and service activities.

– Data conditions – The model for electro-plate parts contains variable-
to-constant conditions on variables data.bath quality and data.gloss.

– Cross-model variables – As stated before, each green line represents a
data dependency between the processes, i.e., data generated by one process is
available for the execution of another process (possibly as shared variables).

– Message exchange – The data dependencies represented by the green lines
can also be seen as as a message exchange mechanism between the processes.

– Cross-instance messages – Each execution of this collaboration produces
information for the next execution, as represented by the data dependency
from resource planning (Partner 2) to place order (Partner 1). Here, we
consider each iteration of the outer-loops as one execution.

2.4 Instance-Spanning Processes: Operation of a Printing Agency

In addition to model interactions, the examples in Sections 2.2 and 2.3 also con-
tain some instance-spanning behavior, and one can easily argue that the example
in Section 2.1 is likely to contain such behavior as well (e.g., the overall funding
budget is likely to be limited). In the literature, these types of behaviors/rules
are referred to as instance-spanning constraints [18], and, in essence, they relate
multiple instances of the same process to each other in some way.

Fig. 4. Instance-spanning processes of a printing agency (taken from [41]).

As a concrete example, we rely on [41], which presents a scenario inspired by
an extensive collection of real-life examples of instance-spanning constraints [34].
It consists of three interconnected processes (P1, P2, P3 in Fig. 4), where P1
and P3 describe the design, printing and delivery of fliers and posters respec-
tively, and P2 manages the corresponding bills for both. While not explicitly
modeled, [41] also describes six instance- and process-spanning constraints for
this scenario, ranging from batching behavior to concurrency constraints.

Without describing the full process here (cf. [41]), we highlight the following:
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– Strict control flow – Based on Fig. 4 all three processes are modeled
procedurally and have largely linear control flows.

– Execution triggers – One of the constraints in [41] states that “if a flyer or
poster order is received then P2 (billing process) is started”, which effectively
means that the first activity of either P1 or P3 triggers the execution of P2.

– Message exchange – Related to this, P2 receives some billing information
from either P1 or P3, which is modeled as an envelope in Fig. 4.

– Time perspective – Two constraints in [41] relate to the time perspec-
tive. First, finished orders are delivered in the evening. Second, at least 95%
printing activities must take 10 minutes or less. The former relates to the
time of day, while the latter is basically a key performance indicator (KPI).

– Batch activities – Concerning deliveries, [41] also states that all completed
deliveries are made simultaneously, which effectively means a single batch
activity progressing multiple instances concurrently.

– Batch conditions – Printing is also a batch activity in [41], but with an
added condition that fliers and posters must be printed separately from bills.

– Cross-instance cardinalities – Concerning printing, [41] also states that
“printer 1 may only print 10 times per day”, which means that a cross-
instance cardinality constraint on an activity should hold, with added con-
ditions on data and time.

3 Modeling Requirements

The highlights of the example scenarios in Section 2 directly lead to the modeling
requirements for developing a Multi-Model paradigm for BPM. A corresponding
overview is provided in Table 1.

Overall, we identified 16 requirements on modeling expressiveness, which we
further categorize as requirements on i) individual models, ii) model interactions,
and iii) instance interactions. For the individual models, the requirements cover
control flow, data flow, and time perspectives. Across the use cases, a mix of strict
and flexible control flow as well as support for at least constant-to-variable data
conditions is needed. Support of time and system variables is also important,
but depends on the use case.

Developing a multi-model paradigm demands for interaction of models. The
corresponding requirements (Table 1) cover a range of interactions from nesting
of models via sub-processes to interactions based on message exchanges, cross-
model variables, and cross model activities. Furthermore, execution of models
or activities across models can be further refined through declarative rules for
interleavings, execution cardinalities, and execution triggers.

As seen in Table 1, the particular model interactions differ between scenarios.
In the hybrid example, the interaction between declarative and procedural mod-
els is based on their nesting as sub-processes. In the loan example, models are
orchestrated based on shared activities and variables, together with declarative
definitions of additional interleaving rules. For the collaboration, a choreography
interaction style (based on message exchanges) is used, where the receiving of a
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Table 1. Categorized requirements on expressiveness and their applicability to example
scenarios. Highlights from Section 2 are marked with “+”, while “+/-” marks likely
applicability. The last column is used to provide an overview of Section 4.1.

Requirements
Hybrid Orchest. Collab. Inst-Span. Supported

by [4]Funding Loan Car Printing

Individual
models

Req1: Strict control flow + + + + +
Req2: Flexible control flow + +/- +/- +
Req3: Data conditions + + + +/- +
Req4: Time perspective + +
Req5: System variables + +

Model
interactions

Req6: Sub-processes + +
Req7: Message exchange +/- + +
Req8: Cross-model variables + +/- +
Req9: Cross-model activities + +
Req10: Execution cardinalities +
Req11: Execution triggers +/- + +
Req12: Declarative interleavings + +/- +/- +

Instance
interactions

Req13: Batch activities +/- +
Req14: Batch conditions +
Req15: Cross-instance messages +
Req16: Cross-instance cardinalities +/- +

message can be also seen as an (activity) execution trigger. Meanwhile, the print-
ing example is structured similarly to an orchestration, but the models interact
through message exchanges and additional rules across process instances.

Instance level interactions require at least the ability to model batch activ-
ities, which progress multiple instances concurrently, along with conditions on
which instances belong to the same batch. Furthermore, messages (and possi-
bly data values in general) may cross the instance boundary and the number of
activity (and possibly process) executions may be limited across instances.

Finally, we note that two of the highlights from Section 2 are not present in
Table 1. First, public representation of private tasks was not added since it can be
solved through traditional usage of sub-processes, which is already covered by the
requirements. Second, activity types are not added as they are purely informative
in the corresponding example. Additionally, KPIs and resource perspective are
left out of the scope of this paper (cf. Section 5).

4 Exploring a Potential Baseline Language

Given that, to the best of our knowledge, no existing modeling languages nor
frameworks meet all the requirements outlined in Section 3, we could either
design a completely new language from ground up or build on already existing
works. In this paper, we opt for the latter, which, regardless of the specific works
chosen, necessitates an analysis of these works w.r.t. the modeling requirements,
and laying out a plan for addressing any potential shortcomings identified during
that analysis. In the following, we go through these steps (Section 4.1 and Sec-
tion 4.2 respectively) on the basis of [4], while noting that a similar exploration
could also be undertaken on the basis of other existing works (cf. Section 5).



10 A. Alman, F.M. Maggi, S. Rinderle-Ma, K. Winter, A. Rivkin

4.1 Current Capabilities

As stated in Section 1, we choose the formal modeling language of [4] as our base-
line. The main reason is that it already provides means to represent multi-model
scenarios by using Data Petri nets (DPNs) [12, 20, 28], accounting for procedural
components, and Declare with “local filters” (LF-Declare) [4], accounting
for declarative components. The latter is also used in [4] to model complex in-
teractions between DPN components and to further refine their behavior. This
fully meets Req1, Req2 and Req12.

Activities in [4] are instantaneous and come with attributes in the form of
attribute-value pairs (similarly to MP-Declare [11]). Both LF-Declare con-
straints and DPNs may contain conditions (in the case of DPNs, such condi-
tions are attached to transitions) over these attributes in the form of variable-
to-constant comparisons, using the comparison operators =, <,> and boolean
connectives ¬,∧,∨. This meets Req3 and Req5, but with some caveats (cf.
Section 4.2). Meanwhile, Req4 is not met, as [4] lacks a notion of time.

Each activity in [4] is enriched with a special provenance identifier referring
to a concrete model to which the activity belongs. This allows LF-Declare
constraints to refer to activities of specific models, even if other models have
same-labeled activities, thus further reinforcing Req12. However, activity prove-
nance is not required, and in such cases an activity is considered global across all
models, which meets Req9. Furthermore, variables in [4] can similarly be either
local or global, with the latter meeting Req8. A combination of global/local
variables can also be used to mimic message-passing protocols (Req7), but this
requires significant modeling effort.

Finally, the LF-Declare constraints in [4] capture complex DPN interleav-
ings, but yet fall short of meeting Req6, Req10 and Req11 as only concrete
activities (and not entire models) can be constrained. For example, Req6 would
require defining constraints on each potential start and end activity of a sub-
process, and even then, the corresponding “high level” activity would effectively
remain instantaneous (i.e., it is executed and the sub-process starts afterwards).
Furthermore, LF-Declare constraints also hinder from meeting Req13-16 as
instance-spanning behavior was not originally considered in [4].

4.2 Language Extensions

While [4] meets the most crucial modeling requirements (e.g., declarative and
procedural control flow, interleavings, etc.) out of the box, we also discovered
that it is not sufficiently expressive to fully deal with the scenarios discussed
in this paper. We have analyzed these results and identified a set of extensions
which would transform the modeling language of [4] into one suitable for a Multi-
Model paradigm for BPM. In the following, we discuss each of these extensions,
highlighting the requirements it either solves directly or contributes to solving.

Declarative process models. Although LF-Declare constraints in [4] al-
ready meet Req2, there is one caveat that should be addressed. LF-Declare
constraints use simple filters (i.e., activities are matched based on data payload
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values in addition to activity labels), while DPNs use more sophisticated read
and write conditions that allow to store and manipulate data within DPN lo-
cal or global variables. DPN conditions can precisely replicate the behavior of
LF-Declare filters, but not the other way around, since LF-Declare lacks a
distinction between read and write conditions and the corresponding storage ca-
pabilities. Therefore, LF-Declare should be enhanced with precisely the same
guard language as used in DPNs, thus enabling Req5 within declarative models.

Model references. Both DPN transitions and LF-Declare constraints can
only refer to concrete activities in [4], which is not sufficient for meeting Req6
and Req11. However, this can be overcome by allowing both LF-Declare
constraints and DPNs to refer to entire process specifications, which would meet
Req6, while Req11 may also require references specifically to the beginning and
end of models. Furthermore, this extension can be designed in such a way that
it also addresses Req10 through declarative cardinality constraints referencing
entire models, and contributes to covering Req7, as message exchanges can, in
some cases, also serve as execution triggers (cf. Section 2.3).

Execution goals. In our previous works [3–5], one of the points of contention
was a decision on what should drive the process execution in a multi-model set-
ting, while having a strong requirement that all process components must suc-
cessfully complete their executions. To accommodate the latter, two options have
been explored: one may consider the DPN final markings and/or the satisfaction
of LF-Declare constraints as execution goals. However, both options fall short
(in the context of [4]) when the execution of a model is required only under
specific conditions or constraints (e.g., a model is the sub-process of an optional
higher level activity or a model may not be executed more than a certain number
of times). To address such issue one may introduce process-spanning constraints,
allowing for fine-grained specification of component behaviors, and complement
such constraints by requiring each model to be configured as either “mandatory”
or “optional”. Like that, potentially multiple mandatory models can drive the
execution (using the goal conditions from above), leaving the execution of other
models optional according to specific execution constraints set among them. This
would cover Req10 and Req11, while also reinforcing Req12.

Richer comparison operations. The first two requirements on instance in-
teractions (Req13 and Req14) can possibly be solved with LF-Declare con-
straints by introducing correlation conditions. This would allow each constraint
to distinguish and reliably handle activities of different executions through the
implicit data condition same case id, while omitting that condition would effec-
tively result in a cross-instance constraint, thus allowing also to meet Req16.
The solution for DPNs likely involves extending their expressive power towards
formalisms like the one of colored Petri nets [23].

Arithmetic operations. An alternative (and possibly complementary) ap-
proach to meet Req16 is adding support for arithmetic operations (e.g., ad-
dition, multiplication) and functions (e.g., average, sum), which would also re-
inforce Req3 and Req5. A way of achieving this is to extend the language of
conditions currently used in DPNs (similarly to [20]) allowing for such expres-
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sions as i′ = i + 1, which increments a (possibly global) variable i whenever a
corresponding transition is fired. By requiring this increment to happen across
multiple instances (thus requiring i to be global), one also contributes to Req15.

Time perspective. The most natural way of working towards Req4 in declar-
ative process models is extending LF-Declare with the already existing Timed
Declare language [39]. However, activities in Timed Declare are still instan-
taneous and modeling truly durative activities (over, e.g., dense time intervals) is
out of reach of the language and requires further investigation. As for procedural
components, one may think on extending DPNs from [4] towards the support of
time, similarly to Timed Petri nets [32]. This extension would also contribute to
Req3 and would be relevant for Req13 in some cases (cf. Section 2.4).

Message exchanges. Technically, message exchanges (Req7) can already be
represented using the modeling language from [4]. Specifically, sending messages
can be mimicked by updating values of corresponding global variables to the
content of the message, while receiving and reading messages can be modeled by
copying the values of the same global variables into local variables of a process.
Furthermore, the same approach would likely apply to Req15 after the addition
of cross-instance variables (cf. Arithmetic operations). However, modeling these
exchanges explicitly would be a significant burden for a type of interaction that
is very common in many types of processes (cf. Section 2.3). Instead, a simpler
modeling construct should be added, which can then be seamlessly translated
into the corresponding interactions through global and local variables.

5 Limitations

In the following, we discuss the main limitations of this paper in more detail.

Selection of multi-model scenarios.We cannot claim any notion of complete-
ness in our selection of example scenarios (Section 2) as it is primarily based on
discussions between the authors of this paper. A more systematic review (e.g.,
based on [25]) was considered, however, we opted against it due to terminological
issues. In general, interactions of process models are studied within the context of
specific research areas, each using their own terminology. For example, [41] uses
the term “process-spanning constraints”, while [37] uses terms “hierarchical” and
“sub-processes”. Meanwhile, more general terms such as “model interaction” or
“model interplay” are used in neither. This means that, on the one hand, any
systematic review must rely on the specific terminology of the relevant research
areas, but, on the other hand, these areas are difficult to systematically identify
due to the lack of a common terminology. Given these reasons, we believe that
the approach taken in this paper is the most feasible, and also meets the main
goal of identifying a broad set of diverse multi-model scenarios.

Completeness of modeling requirements. The modeling requirements pre-
sented in Section 3 are likely to be non-exhaustive as we may have missed some
research areas and other examples of the areas that we included may lead to
additional requirements. Furthermore, there are two broader categories of re-
quirements, which we decided to be out of the scope of this paper. First, the
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requirements on resources, partly because it was not discussed in any of the se-
lected examples, but also because resources can be addressed, at least to some
extent, through data conditions. However, we acknowledge that a more explicit
representation of resources and/or roles (akin to BPMN lane constructs) can
be beneficial in process models. Second, incorporating existing probabilistic lan-
guages, such as [6], could also be considered. This would allow further refine-
ment of instance-spanning behavior within and between the individual models,
and could additionally be used to represent the underlying business rules of KPIs
(cf. the scenario in Section 2.4). However, incorporating a probabilistic dimen-
sion would increase the scope of this paper considerably and, for this reason,
should be tackled separately.

Reliance on a specific baseline language. Section 4 is focused on the analysis
and extension of one specific language, namely [4], which is also developed by the
authors of this paper. This choice is mainly motivated by our in-depth expertise
on [4], based on which we believe it is a natural starting point for developing a
multi-model paradigm for BPM. However, we acknowledge that this opinion may
be biased by our involvement in [4]. For alternatives, one could consider more
well-known formalisms, such as Colored Petri nets [24] and Open Petri Nets [8],
or some of the approaches mentioned in Section 6. To accommodate that, we
have structured this paper in a way that would allow reusing Sections 2 and 3
as-is for any potential baseline language, while, Section 4 can be leveraged as an
example of analyzing a specific language in the context of the given requirements.

6 Related Work

In this section, we highlight a variety of related works ranging from high-level
modeling approaches to more detailed approaches specific to Section 3.
Business process architectures. While usually not resulting in multi-model
representations akin to the ones analyzed in Section 2, larger collections of pro-
cesses are commonly managed using business process architecture models (also
referred to as enterprise maps, process ecosystems, process landscapes, process
maps, etc.) [21]. In these approaches, the focus is on representing the overall
structure of business processes and their relationships at a high level of abstrac-
tion, while details of the processes (e.g., control flow) are usually omitted. A
notable exception, bordering between organizational and process modeling, is
the DEMO methodology [15], which incorporates multiple types of models, such
as interstriction model, action model, process model, etc., that collectively con-
stitute the essential model of an organization. However, as demonstrated by the
Ford case in [15], that essential model may remain exactly the same even in the
case of radical reengineering of the underlying business processes.
Process Choreographies and Compositions. Authors in [22] identify prob-
lems in the synchronization of independently defined but concurrently executed
workflow models. [38] discusses how to compose business processes modeled us-
ing Petri nets. In particular, the Petri nets are connected using shared places,
thus enabling synchronization. The above approaches do not consider data nor
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declarative components. Other formally well-defined alternatives could be Col-
ored Petri nets [24] and Open Petri Nets [8], while a less formal approach could
be achieved with collaboration and choreography diagrams of BPMN [30].

Hybrid and Hierarchical Modeling. Authors in [33] highlight the need for
hybrid process modeling approaches and propose a research agenda for their
development. Later on, other works have defined formal semantics for hybrid
processes. For example, [37] presents a formal semantics that uses a hierarchy
of models, where each of model may be specified in either an imperative or
declarative fashion. A conceptual framework and a common terminology for
hybrid models has been proposed in [7] and a number of open research challenges
related to hybrid processes have been identified in [36].

Process-Spanning and Instance-Spanning Constraints. Instance and pro-
cess spanning constraints have been addressed from several perspectives like
modeling and enactment [27], supporting runtime and design time verification
through formalization with Event Calculus [18] and elicitation of patterns rely-
ing on Proclets and timed colored workflow nets [40]. Though these approaches
provide means for handling interactions between multiple instances, they mainly
require specific formalizations hampering the seamless integration of models ex-
pressed in different modeling languages. Therefore, those approaches are only
contingently suitable for a multi-model paradigm as envisioned in this paper.

7 Conclusion

As highlighted in the introduction, this paper proposes that scenarios, where one
or more processes are best represented as sets of smaller interconnected models,
are sufficiently prevalent to warrant a dedicated line of research, which we call
a Multi-Model paradigm for BPM. In support of this, we derived corresponding
modeling requirements from four fundamentally different scenarios and, further-
more, explored a potential baseline language for meeting these requirements. In
doing so, we have taken a crucial step in our overarching efforts to provide a
fully-fledged framework for addressing a plethora of research areas from hybrid
processes to the broader issues related to “process silos”.

While the focus of this paper is on the language presented in [4], we described
the characteristics of the paradigm in a language-agnostic manner. As a result,
both the analysis of the modeling scenarios and also the corresponding require-
ments can be used as input for developing a similar multi-model solution from
scratch or on the basis of any other existing approaches.

For future work, we plan to further investigate the extensions of [4] proposed
in this paper with the goal of developing a corresponding complete formaliza-
tion. This will, in turn, enable us to tackle concrete problems, related to IS de-
velopment, such as automatic validation and execution support for multi-model
scenarios. We also believe that modeling patterns in the style of [35] would need
to be developed further down the line. Finally, we reiterate that the resource
perspective and potential inclusion of KPIs warrants further investigation.
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