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ABSTRACT

The increase in the frequency and intensity of droughts and heatwaves caused by climate change poses a major threat to
biodiversity. In aquatic systems, sedentary species such as freshwater mussels are generally considered more vulnerable to
changes in habitat conditions than mobile species such as fish. As mussels provide important ecosystem services, under-
standing the impacts of drought on freshwater mussels is of particular importance for the management of overall func-
tioning of aquatic ecosystems. We used a comprehensive literature search to provide a systematic overview of direct
and indirect effects of drought on freshwater mussels (Bivalvia: Unionida) and an evaluation of mitigation strategies.
We found that drought studies were concentrated mostly in the USA, with a focus on the Unionidae family. Topics ran-
ged from the physiological effects of high temperatures, emersion, and hypoxia/anoxia to behavioural and reproductive
consequences of drought and the implications for biotic interactions and ecosystem services. Studies spanned all levels of
biological organization, from individual responses to population- and community-level impacts and ecosystem-wide
effects. We identified several knowledge gaps, including a paucity of trait-based evaluation of drought consequences, lim-
ited understanding of thermal and desiccation tolerance at the species level, and the synergistic effects of multiple drought
stressors on mussels. Although we found many studies provided suggestions concerning management of populations,
habitat conditions, and anthropogenic water use, a systematic approach and testing of recommended mitigation strate-
gies is largely lacking, creating challenges for managers aiming to conserve freshwater mussel communities and popula-
tions in light of climate change.
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I. INTRODUCTION

Climate change is considered one of the most important
threats for biodiversity, especially in freshwater habitats
(Heino, Virkkala & Toivonen, 2009; Woodward, Perkins &
Brown, 2010; Reid et al., 2019; Sabater et al., 2023). This
includes extreme events such as droughts (i.e. prolonged
periods of drier than normal conditions, often coupled with
increased temperatures). Although not expected to increase
ubiquitously, the frequency and magnitude of droughts is
predicted to continue to increase in many parts of the world.
Coupled with increasing anthropogenic water use, drought
conditions will further exacerbate critical situations in associ-
ated freshwater ecosystems, particularly since the symptoms
of drought in river systems can act synergistically (Wild,
Nagel & Geist, 2023). Also, management practices and
hydrological alterations due to irrigation can cause artificial
drought conditions and can lead to extirpations (Peterson
et al., 2011; Araujo & Álvarez-Cobelas, 2016). Hydrological
alterations were recently identified as one of the most con-
cerning emerging threats to freshwater mussel conservation
(Aldridge et al., 2023).

Drought may impact freshwater organisms directly by
causing mortality and altering physiology in response to high
temperatures and desiccation, or more indirectly through
changes in interspecific interactions (e.g. predator–prey interac-
tions, competition, etc.; Fig. 1). Species-specific responses to
these impacts are influenced by physiological, morphological,
and behavioural traits. For instance, a species’ mobility may
influence its ability to seek refuge areas in drought-impacted
streams (Magoulick &Kobza, 2003). Species such as freshwater
mussels (Bivalvia: Unionida) are typically less mobile and thus
more vulnerable to local changes in habitat conditions and
recurrent droughts. Hence, knowledge of how drought and
dewatering impacts vulnerable organisms like freshwater mus-
sels is essential for developing effectivemanagement and conser-
vation strategies. Since many species of freshwater mussels can
be considered keystone species of aquatic systems (Geist, 2010,
2011) that provide important ecosystem services (Vaughn,
2018; Zieritz et al., 2022), understanding the impacts of drought
on this group is of particular importance for overall ecosystem
functioning.

To date, several papers have reviewed certain aspects of
drought in relation to mussels, most recently thermal
tolerance (Fogelman et al., 2023) and environmental flows
[general and mussel-specific (Gates, Vaughn & Julian,
2015; Arthington et al., 2018)]. Moreover, there are sev-
eral regional case studies and patchy evidence of single
factors, but a systematic overview of direct and indirect
effects of drought on freshwater mussels and an
evidence-based evaluation of mitigation strategies is cur-
rently lacking. Consequently, the objectives of this review
were to (i) synthesise current knowledge of direct and indi-
rect impacts of drought on freshwater mussels at different
levels of biological organization (individual, population/
community, ecosystem) and (ii) summarise and assess
existing and suggested mitigation strategies to identify
recommendations for future directions based on existing
knowledge gaps.

II. MATERIALS AND METHODS

We conducted an initial literature search usingWeb of Science

for papers published prior to April 2024. To identify
drought- and drying-related articles associated with freshwa-
ter mussels, we used the following four search terms: ‘fresh-
water AND mussel* AND drought*’, ‘freshwater AND
mussel* AND desiccat*’, ‘freshwater AND mussel* AND
dewater*’, and ‘freshwater ANDmussel*AND temperature*’.
We evaluated the resulting journal articles for relevance
based on their title and abstract and eliminated any arti-
cles that were outside of our scope or unrelated to Union-
ida. We then expanded our literature search to the
reference sections of each article, retaining any addi-
tional articles that pertained to the order Unionida and
contained relevant information associated with drought
and drying. We thus collected articles involving drought,
desiccation, dewatering, high temperatures, or low dis-
solved oxygen concentrations. We also included articles
that dealt with artificial dewatering such as dam draw-
downs that led to emersion or low-water conditions that
impacted mussels. Our literature search was limited to
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peer-reviewed literature that was easily accessible
(i.e. freely available online or through Texas State Uni-
versity libraries or Interlibrary Loan) and available in
English. In a few cases, we attempted to contact authors
regarding inaccessible articles. In addition, a subset of
articles provided only the abstract section in English, so
our review was limited to the information contained in
the abstract. Data analysis was performed using R soft-
ware (R Core Team, 2023), and trends in the number of
articles published over time were analysed using a

Mann-Kendall test from the Kendall package in R
(McLeod, 2022).

III. RESULTS AND DISCUSSION

(1) Results of the literature search

Our initial literature search on Web of Science yielded 2243
unique articles, 211 of which we retained based on relevance.

Fig. 1. Examples of direct and indirect impacts of drought on freshwater mussels, including loss of suitable habitat due to dewatering
at several locations (A–D) in the San Saba River, Texas, emersion and desiccation (E), and host fish mortality (F). Photograph credits:
Kiara Cushway, and Tara Lanzer.
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We obtained an additional 50 articles from the reference
sections of the initial articles, providing a total of 261 articles.
Of these, eight articles were evaluated based (solely) on their
abstract because the rest of the article was not in English.
Ten articles were excluded because of accessibility issues,
but given the large number of articles identified, we feel
that our review accurately covers the relevant knowledge
regarding drought impacts. Our final literature review
included the 251 articles that were determined to be both
relevant and accessible (see online Supporting Informa-
tion, Table S1).

Most studies were conducted in North America (N = 136),
which aligns with the high levels of diversity on this continent
(Graf & Cummings, 2021). North America was followed
by Europe (N = 75), Asia (N = 21), Oceania (N = 9),
Africa (N = 5), and South America (N = 3). In addition
(not included in the counts above), one study was a global
assessment that used data from North America, South
America, Asia, Africa, and Europe (Pfister et al. 2019). A
second study (also not included in the counts above)
with an abstract in English compared populations in

Europe (Spain) and Russia but did not specify the region
of Russia (which spans both Europe and Asia;
Ziuganov, 2004).
Within North America, most studies were conducted in

the USA (N = 128), and more specifically, in Texas (N = 25),
Oklahoma (N = 18), and North Carolina (N = 14; Fig. 2).
After the USA, Germany and Portugal had the most studies
(N = 11 each, respectively), followed by Spain (N = 10;
Fig. 2). Areas of southern and eastern Asia (e.g. India,
China, and Thailand) have high Unionida richness and high
drought and baseline water stress, but few studies were con-
ducted in these areas (Lehner & Grill, 2013; Graf &
Cummings, 2021; Kuzma et al., 2023; Figs 2 and S1).
Most studies addressed mussels in the families Unionidae

(N = 195) or Margaritiferidae (N = 31) only, with a limited
number of studies focused on mussels from the Hyriidae
(N = 10), Iridinidae (N = 1), and Mycetopodidae (N = 1)
families. The remaining 13 studies addressed multiple fami-
lies, with only one study including the family Etheriidae
(Table S2). Within these families, the specific impacts of
drought and drying were examined for 128 individual species

Fig. 2. Maps showing (A) number of papers related to drought impacts on Unionida per country or per state in the USA;
(B) Unionida species richness by subregion; (C) global drought risk; and (D) global baseline water stress. Subregions in B were
based on Graf & Cummings (2021), adapted from http://www.feow.org (Abell et al., 2008). Drought risk (C) and baseline water
stress (D) categories were based on baseline annual data from 1979 to 2019 available from the World Resources Institute
Aqueduct 4.0 (Lehner & Grill, 2013; Kuzma et al., 2023). Drought risk is a measure of drought likelihood and exposure and
vulnerability of populations/assets (Kuzma et al., 2023). Baseline water stress is a measure of water demand versus available water
resources that are renewable (Kuzma et al., 2023). If the state or country a study was conducted in was not specified, it was
assigned to the state or country of the first author at the time of publication.

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

4 Kiara C. Cushway and others

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13142, W

iley O
nline L

ibrary on [12/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.feow.org


(Table S3). Studies spanned all life-history stages, with most
addressing adults (N = 194; note that if life-history stage
was unspecified in a study, we assumed that mussels were in
the adult life stage), followed by juveniles (N = 14), and lar-
vae (i.e. glochidia or lasidia;N = 7). The remaining 36 studies
addressed multiple life stages (Table S4).

There were slightly more studies with solely experimental
(N = 120) components than observational (N = 112) compo-
nents, 13 studies that included both observational and
experimental components, and one study that contained
observational, experimental, and review components. Five
additional studies were literature reviews (Fig. 3). Of the
246 non-review studies, 108 had solely laboratory or
mesocosm components, 84 had solely field components,
14 used shell chronologies, 10 used solely modelling tech-
niques, five were solely meta-analyses, and 25 studies used
multiple approaches (including genetic techniques not dis-
cussed above) (Table S5). The number of studies increased
over time according to a Mann-Kendall test (τ = 0.73,
P ≪ 0.001), with most studies published since 2000,
including peaks in 2014, 2015 and 2018 (Fig. 3).

The endpoints investigated in studies varied across levels
of biological organization, with several studies addressing
multiple endpoints and multiple levels of biological organiza-
tion (Fig. 4). At the individual level, most studies considered
physiological responses (N = 99), mortality (N = 75), or behav-
iour (N = 37). Population, distribution, and community-level
responses were addressed by 77 studies, of which 50 studies
used historical comparisons of pre- and post-drought mussel

communities. Fifty articles addressed indirect biotic effects
such as predation, interaction with invasive species, or
recruitment and host fish interactions. Habitat conditions
(e.g. low dissolved oxygen concentration, changes in water
and sediment chemistry, habitat suitability, etc.) were the
most widely addressed topic (N = 183) for drought impacts
on mussels, which included 99 observational studies, 71 stud-
ies with an experimental component, nine studies with both,
three review studies, and one study with experimental, obser-
vational, and review components. Sixteen studies addressed
ecosystem services. Finally, 39% of articles provided sugges-
tions for managing and mitigating drought risk.

(2) Mortality and physiological responses

The effects of drought on freshwater mussels at the individual
level may be lethal (i.e. mortality) or sublethal (i.e. physiology
and growth). These include acute (<7 days), medium
(7–20 days), or chronic (≥21 days) effects (Fogelman
et al., 2023). Twenty-two experimental studies examined
the lethal effects of drought, 67 examined sublethal effects
(e.g. behaviour, physiology, etc.), and 31 studies examined
both lethal and sub-lethal effects. Fourteen experimental
studies addressed other effects (e.g. host fish survival or hab-
itat suitability). Fifty-eight experimental studies examined
the acute effects of drought, 17 examined medium effects,
and 17 examined chronic effects. In addition to assessments
at single time points, 22 studies addressed effects at two time
points, and three studies addressed effects at all three time

Fig. 3. Number of articles related to drought impacts on Unionida published per year. The proportion of experimental and
observational studies, studies using multiple approaches, and reviews are shown in different colours. The number of articles
published has increased significantly over time according to a Mann-Kendall test (τ = 0.73, P ≪ 0.001).
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points. The remaining 17 experimental studies addressed
other effects where timing of mussel exposure did not apply
[e.g. effects on other organisms like host fish or parasites,
organ performance (e.g. mitochondria from dissected mus-
sels), etc.]. The factors tested during experimental trials com-
monly fell under three categories: effects of temperature,
effects of emersion and desiccation, or effects of hypoxia
and anoxia (Table 1). These effects often interact in complex
ways during drought events, with concurrent effects poten-
tially amplifying the challenges faced by mussels during
drought. More research is necessary on the synergistic effects
of drought to understand how interacting stressors may
intensify the negative consequences for mussels, similar to
recent work in fish (Wild et al., 2023).

(a) Thermal stress

Temperature and thermal stress represent important direct
impacts of drought on mussel species, which have been
chronically understudied. High temperatures can have both
immediate and delayed consequences for mussels (Wagner
et al., 2024; Table 1). Lethal thermal tolerances have been
estimated for less than 10% of North American fauna
(Fogelman et al., 2023), despite evidence that several species
are already living at or above their lethal thermal tolerances
(Pandolfo et al., 2010b; Ganser, Newton &Haro, 2013; Khan
et al., 2020; Goldsmith et al., 2022; Fogelman et al., 2023;
Cushway & Schwalb, 2024; Rangaswami et al., 2023b;

Pandolfo et al., 2024). Generally, larvae and juveniles are
more sensitive to thermal stress than adult mussels
(Fogelman et al., 2023), with mollusc thermal tolerance
increasing with age (Collas et al., 2014). Traits contributing
to thermal tolerance may be conserved phylogenetically
across genera or taxonomic groupings (Khan et al., 2020;
Goldsmith et al., 2022), but may also exhibit differences
across life-history strategies, and at the species and popula-
tion level (Goldsmith et al., 2022). Density may also be impor-
tant for temperature resistance, as dense mussel beds may be
less susceptible to high temperatures because of increased
thermal inertia from the bed acting as an aggregate and slow-
ing collective heating (Wagner et al., 2024).
The effects of high temperatures on mussels may be influ-

enced by acclimation temperature (Galbraith, Blakeslee &
Lellis, 2012; Galbraith et al., 2020), although studies examin-
ing this have yielded mixed results (Nagabhushanam &
Lomte, 1970; Falfushynska et al., 2014; Abdelsaleheen,
Kortet & Vornanen, 2022; Fogelman et al., 2023) and
extreme warming may negate potential increases in
thermal tolerance due to acclimation (Falfushynska
et al., 2014). Despite this, small increases in temperature
can yield considerable increases in mortality (Pandolfo
et al., 2010b; Khan et al., 2020; Wagner et al., 2024). Given
that Fogelman et al. (2023) have already reviewed lethal
thermal tolerances of North American freshwater mussels,
we will focus mostly on the sublethal effects of thermal
stress as they relate to drought.

Fig. 4. Systematic view of drought impacts. Numbers in parentheses indicate the section number where the topic is discussed in the
text. Arrows indicate an effect, e.g. nutrient cycling and biofiltration affect ecosystem services. At the individual level, impacts on
mortality and physiological and behavioural responses may vary among species and species groups with different traits.
Reproduction and recruitment of mussels is not only directly affected by high temperature and dewatering, but also indirectly
affected by impacts on their host fish. Effects on mussel populations and communities include direct and indirect effects, including
predation, invasion, and habitat conditions. Both changes in abiotic conditions and mussel communities affect ecosystem services
provided by mussels.
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Temperature increases speed up metabolic processes in
poikilothermic organisms like mussels (Kiibus & Kautsky,
1996; Chen, Heath & Neves, 2001; Ganser, Newton &
Haro, 2015), including oxygen consumption, respiration,
and excretion (Table 1). At the same time, increasing
stream temperatures result in lower dissolved oxygen con-
centrations in streams (Piatka et al., 2021). This can be
problematic during drought, given that metabolic
resources like dissolved oxygen or food may be limited
(Haag, 2012; Ganser et al., 2015).

Mussels coping with drought often face energetic trade-
offs associated with metabolic demands and resource utilisa-
tion. Thermally tolerant species may benefit from stronger
adaptive responses to high temperatures, which permit con-
tinued allocation of energy to processes like growth, despite
increased metabolic demands and stressful conditions
(Spooner & Vaughn, 2008; Payton, Johnson & Jenny,
2016). The negative impacts of elevated temperatures tend
to be compounded as exposure time increases (Ganser
et al., 2013). Juvenile mussels may have reduced adaptive
capacity, resulting from limited prior exposure to conditions,
further exacerbating these impacts (Ganser et al., 2013).
Examples of sublethal physiological effects of high tempera-
ture on mussels can be found in Table 1.

In addition to the direct effect of high temperatures,
emerging research has examined the combined effects of ele-
vated temperatures and pollutants (Kumar et al., 2013; Beggel
et al., 2017; Falfushynska et al., 2019; Bogatov, Prozorova &
Nikulina, 2023). In many cases, elevated temperatures exacer-
bate the negative effects of pollutants like pesticides and herbi-
cides (Mane & Muley, 1989; Moulton, Fleming & Purnell,
1996; Keller & Ruessler, 1997; Kumar et al., 2013; Khoma
et al., 2021), ammonia (Pinkney et al., 2015; Bogatov
et al., 2023), metals and metal compounds (Pandolfo, Cope &
Arellano, 2010a; Gnatyshyna et al., 2014; Falfushynska
et al., 2014, 2015, 2018), and pharmaceutical and municipal
effluents (Gagné et al., 2006; Khoma et al., 2021). However, a
few studies indicate that temperature does not always interact
synergistically with pollutants (Tessier, Vaillancourt &
Pazdernik, 1994; Beggel et al., 2017; Kunz et al., 2021), and
one study found that high temperatures may actually positively
influence mussel metabolic responses to sublethal levels of zinc
oxide, although the mechanisms behind this are unknown
(Falfushynska et al., 2019). Synergistic effects of temperature
and pollution may in part be dependent on the concentration
of pollutants and the temperatures tested (Falfushynska
et al., 2015; Kunz et al., 2021). Stress response pathways utilised
in response to multiple stressors may be unable to compensate
for synergistic stressors (Falfushynska et al., 2015), and as anthro-
pogenic impacts on streams continue to increase, more research
is necessary on how drought and high temperature may impact
the toxicity of pollutants.

(b) Emersion and desiccation stress

Desiccation tolerance is, in part, dependent on temperature
and humidity (Peredo et al., 2006; Bartsch et al., 2000; Gough,

Gascho Landis & Stoeckel, 2012) and physiological responses
vary between short- and long-term emersion. Some studies
have reported that mussels can tolerate emersion at moder-
ate temperatures for short time periods [e.g. hours (Waller
et al., 1995, Greseth et al., 2003, Peredo et al., 2006)]. Toler-
ance of short-term emersion (i.e. less than 60 min) may be
indicated by minimal changes in carbohydrate, lipid, and
protein concentrations in the mantle tissue at different tem-
peratures (Greseth et al., 2003). However, emersion for lon-
ger periods can have various physiological consequences for
individual mussels that may result in reduced growth, mortal-
ity, and reproductive output (Table 1). Some species are rel-
atively intolerant of emersion [e.g. Pyganodon grandis (Say,
1829), Lampsilis teres (Rafinesque, 1820)], while others
[e.g. Uniomerus tetralasmus (Say, 1831)] can survive several
months to over a year of emersion (Holland, 1991; Mitchell
et al., 2018).

Conditions that induce high oxidative stress and reduce
growth and mass (related to starvation and dehydration)
are related to lower emersion tolerance during extended air
exposure (i.e. periods of days), and species with greater lon-
gevity tend to be more tolerant of emersion (André,
Bibeault & Gagné, 2021). A single study examined the syner-
gistic effects of acute water-borne pollution (specifically 96 h
exposure to zinc oxide and nano-zinc oxide) and aerial expo-
sure (Gagné et al., 2015). Mussels exposed to pollution were
more susceptible to mortality and survived for shorter
periods of emersion (Gagné et al., 2015). Overall, the syner-
gistic effects of emersion and other anthropogenic or envi-
ronmental factors are largely understudied.

(c) Hypoxia and anoxia

One of the indirect effects of high temperature and dewater-
ing caused by drought (Fig. 4) concerns changes to water
chemistry, particularly low dissolved oxygen (DO) concen-
trations (Piatka et al., 2021). During drought, DO concentra-
tions may decline as temperatures increase, or as reduced
fluvial discharge results in remnant pools with water stratifi-
cation. Siltation and colmation of interstitial spaces (Geist &
Auerswald, 2007), accumulation and decomposition of rot-
ting leaf litter, or massive blooms of aquatic plants like duck-
weed during drought can also create hypoxic conditions
(Hoess & Geist, 2020; Bogatov et al., 2023). Additionally, sil-
tation due to reduced discharges can bury or suffocate mus-
sels (Inoue et al., 2014).

Some mussel species are able to sustain respiration during
periods of low DO concentration (i.e. oxyregulators), while
others require steady DO concentrations (i.e. oxyconformers;
Sheldon & Walker, 1989). Oxyconformers that thrive in riffle
habitats, where higher discharges support high DO concentra-
tions, may bemost vulnerable to drought because shallow riffles
are most susceptible to drying (Chen et al., 2001). Some species
may be relatively tolerant of hypoxia but are more negatively
affected during anoxia [e.g. Pleurobema sintoxia (Rafinesque,
1820)], during which they exhibit elevated glucose levels
(Badman & Chin, 1973). Juvenile individuals may experience
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lethal effects of low DO concentrations soon after exposure
(Dimock & Wright, 1993). Specific physiological effects of hyp-
oxia and anoxia on freshwater mussels are listed in Table 1.

(3) Behavioural responses to drought

Thirty-seven articles examined behavioural responses of
freshwater mussels to drought. Most articles focused on verti-
cal or horizontal movement (N = 19), but articles also exam-
ined gaping behaviour, valve closure, foot extension,
siphoning, reproductive behaviours, righting behaviour
(i.e. movement of the mussel to an upright position), surfac-
ing, and adjusting aperture width (Table 2).

Movement behaviour during drought included vertical
movement (e.g. burrowing) to seek thermal refuge, horizon-
tal movement such as tracking receding water lines, and
righting behaviour (Waller, Gutreuter & Rach, 1999; Gough
et al., 2012; Lymbery et al., 2021). Movement behaviour was
influenced by environmental conditions such as high temper-
atures (Waller et al., 1999; Block, Gerald & Levine, 2013;
Archambault, Cope & Kwak, 2013, 2014b), emersion
(Samad & Stanley, 1986; Waller et al., 1999; Archambault
et al., 2014b), and dewatering rate (Galbraith, Blakeslee &
Lellis, 2015; Mitchell et al., 2018), which is likely to differ
between regulated and unregulated streams. High tempera-
tures may inhibit both horizontal and vertical mussel move-
ment (Archambault et al., 2013, 2014b), but could also
evoke greater movement to escape unfavourable conditions
(Block et al., 2013; Zapitis et al., 2021). When dewatering
and emersion occurs, retreating water may serve as a stimu-
lus for horizontal movement (Curley et al., 2022). However,
the success of mussels in tracking receding water lines is var-
iable, with some studies reporting some directionality of
movement (Gough et al., 2012; Curley et al., 2022; Lymbery
et al., 2021), while other studies reported limited or inconsis-
tent tracking success (Samad & Stanley, 1986; Mitchell
et al., 2018). Habitats that have steeper slopes may help mus-
sels track receding water when dewatering occurs
(Burlakova & Karatayev, 2007; Curley et al., 2022), but faster
rates of dewatering may provide insufficient time for mussels
to respond with tracking (Galbraith et al., 2015; Mitchell
et al., 2018).

Movement can be influenced by mussel size, age, and pop-
ulation density, although findings have not been consistent
across studies. Curley et al. (2022) found that larger mussels
exhibited more movement and had more directional move-
ment during drawdowns. By contrast, Lymbery et al. (2021)
found that smaller mussels may be more successful when
tracking receding water. Juvenile mussels have been shown
to display vertical movement towards the sediment surface
when interstitial oxygen concentrations are particularly low
(Sparks & Strayer, 1998). Higher native mussel density may
also increase the probability of movement, although the rea-
sons for this are unknown (Curley et al., 2022).

Movement strategies in response to drought are species
specific (Waller et al., 1999; Galbraith et al., 2015; Newton,
Zigler & Gray, 2015) and may be influenced by species’ traits

or life-history strategies (Gough et al., 2012; Mitchell
et al., 2018). Drought-tolerant species may be more likely to
exhibit vertical burrowing movement (Gough et al., 2012),
while intolerant species may exhibit higher rates of horizon-
tal movement to escape unsuitable conditions (Gough
et al., 2012; Mitchell et al., 2018). Some species fail to exhibit
thermal compensation during behavioural responses, possi-
bly because of a lack of evolutionary pressure in the past
(Lurman, Walter & Hoppeler, 2013, 2014). These species
may be inadequately equipped to cope with rising tempera-
tures, making them more susceptible to mortality.

(4) Effects on reproduction and recruitment

Successful reproduction and recruitment of freshwater mus-
sels requires that several important conditions are met at
each stage in the mussel life cycle, all of which may be
impacted by drought (Fig. 5). Most mussel species go through
a parasitic life stage (termed glochidia or lasidia, referred to
here as larvae) that requires an obligate relationship with a
host fish, making them especially vulnerable to drought
(Modesto et al., 2018). The effects of drought on reproduction
comprise disruption of reproductive strategies and success of
adult mussels, larval health and infestation success, and juve-
nile metamorphosis and survival (Fig. 5).

(a) Adult reproductive success, fertilisation, and host attraction

At the adult life stage, stressful conditions induced by drought
may prevent successful mussel reproduction if necessary
energy reserves are diverted towards maintaining
homeostasis (Ganser et al., 2015). Furthermore, mussels
are sperm-casters: male mussels will release sperm into
the water column, which females inhale to achieve fertili-
sation (Haag, 2012). As a result, low discharges and isola-
tion due to loss of stream connectivity can inhibit
fertilisation (Mosley, 2012) because this process depends
on the availability of water for filtration (Gough et al.,
2012). Some mussels, however, exhibit hermaphroditism
and are able to self-fertilise (Bauer, 1987). Such strategies
are more prevalent in populations that occur in standing
water with minimal flow velocity (Hinzmann et al., 2013).
High temperatures can also initiate sex reversal and her-
maphroditism through regulation of sex-related genes like
Dmrt1 (Xu et al., 2022). Therefore, more frequent low-
discharge or high-temperature conditions could increase
the prevalence of hermaphroditism, with implications for
genetic diversity, especially in isolated populations.
If fertilisation is successful, mussels brood fertilised

embryos in modified gill tissue (i.e. marsupial gill) until they
are fully developed and ready to infest a host fish (Graf &
Foighil, 2000). At this stage, female mussels have a variety
of strategies for attracting host fish including luring behav-
iour with a modified mantle flap, broadcasting larvae into
the water column, or developing conglutinates (i.e. packages
of larvae) that resemble prey items (Haag, 2012). However,
hypoxic stress and high temperatures initiated by drought
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conditions may lead to premature larval abortion to enable
female mussels to increase their gill surface area for enhanced
oxygen uptake (Aldridge & McIvor, 2003; Schneider,
Nilsson & Österling, 2018; Khalloufi, Aissaoui & Béjaoui,
2019; Sangsawang, Kovitvadhi & Kovitvadhi, 2019;
Fluharty, Abdelrahman & Stoeckel, 2023). Tankersley &
Dimock (1993) found that female mussels brooding larvae
consume less oxygen and respire less than male mussels, pos-
sibly because of inhibited circulation in marsupial gills,
reduced gill surface area, or competition with larval mussels
for oxygen resources (Fluharty et al., 2023). High tempera-
tures may inhibit luring strategies and trigger a switch from
luring to conglutinate release, alleviating the respiratory
burden of housing larvae in the gills (Gascho Landis
et al., 2012). Extreme temperatures have also resulted in
a switch from univoltine to bivoltine reproduction, which
may divert females’ energy away from other important life pro-
cesses to support increased reproduction (Pichler-Scheder,
Gumpinger & Csar, 2011).

(b) Larval health and host infestation

The timing of development and release of larvae may be
influenced by thermal and hypoxic cues: drought or heat-
wave conditions could alter the timing of reproduction,
potentially decoupling mussel reproductive activity and
host availability (Hastie et al., 2003; Galbraith &
Vaughn, 2009; Österling, 2015; Schneider et al., 2018;

Melchior, Clearwater & Collier, 2023). Changes in timing
or reproductive behaviours can result in decreased recruit-
ment success if larvae are released before they are fully
developed, or where female mussels fail to attract a host
(Gascho Landis et al., 2012).
Larval success may also be hindered by drought condi-

tions. Low discharges can prevent larvae or conglutinates
from being suspended or transported in the water column,
affecting larval dispersal and reducing the probability of host
fish exposure (Johnson et al., 2001). Larval viability, survival,
and hypoxic tolerance are also reduced at higher temperatures
and lower DO concentrations (Zimmerman & Neves, 2002;
Akiyama& Iwakuma, 2007; Schneider et al., 2018; Sangsawang
et al., 2019; Benedict & Geist, 2021; Hyvärinen et al., 2022; Flu-
harty et al., 2023), with infestation success and length of the
brooding and parasitic phases decreasing as temperatures
increase (Widarto, 2001; Pandolfo, Kwak & Cope, 2012;
Marwaha et al., 2017; Schneider et al., 2018). In general,
colder temperatures help suppress host fish immune
responses. Consequently, higher temperatures associated
with drought may cause higher rates of larval rejection
(Taeubert, El-Nobi & Geist, 2014) or shorter encystment
times (Johnson et al., 2001).
Successful infestation also depends on the availability of

host fish. Spooner et al., (2011) projected that decreased dis-
charge could result in fish species extirpations of 5–60%
based on future climate scenarios. Furthermore, increasing
temperatures could negatively impact coldwater species like

Fig. 5. Processes that can be affected by drought during various stages of the freshwater mussel life cycle.
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salmonids, an important host for margaritiferid mussels
(Hastie et al., 2003; Geist, 2010). Drought conditions may
result in high mortality of drought-intolerant fish and can
cause a decoupling of host and adult mussel distributional
ranges as fish move to cooler water (Pandolfo et al., 2012;
Taeubert et al., 2014; Terui et al., 2014). Early life stages
of fish are particularly susceptible to drought effects, which
is problematic for mussels because infestation success is
higher on younger fish with weaker immune responses
(Sternecker, Denic & Geist, 2014; Modesto et al., 2018;
Wild et al., 2023). In addition, drought-related loss of
stream connectivity can limit fish movement (Irmscher &
Vaughn, 2015), lowering the chances of larval attachment
in deeper pools (Neves & Widlak, 1987).

(c) Juvenile metamorphosis and survival

High temperatures can decrease metamorphosis and recruit-
ment success (Taeubert et al., 2014; Gosselin et al., 2023) and
newly transformed juveniles may be physiologically stressed
by reduced flow, high temperatures, low DO concentrations,
or high siltation induced by drought conditions (Clarke,
2010; Pandolfo et al., 2012; Irmscher & Vaughn, 2015;
Hoess & Geist, 2020). Altered timing of metamorphosis in
response to increased temperature could also lead to juvenile
mussels dropping off fish in the winter, when higher dis-
charges prevent settlement and limit availability of suitable
habitat (Österling, 2015). In addition, high temperature
and desiccation can inhibit byssus production in juvenile
mussels, potentially impacting juvenile dispersal capabilities
(Archambault et al., 2013, 2014b).

(5) Population and community-wide responses to
drought

In addition to individual impacts, drought can have varied
but important effects on mussels at the population and com-
munity levels. This includes the effects of habitat conditions
on mussel distribution and species’ ranges.

(a) Population responses

At the population level, mass mortality events and declining
populations have been documented in response to heatwaves
and drought and drying events across the globe
(e.g. Samad & Stanley, 1986; Mima, Tutumi & Kondo,
1996; Gagnon et al., 2004; Haag & Warren, 2008; Mouthon
& Daufresne, 2010; Jones & Byrne, 2010; Kakino et al., 2011;
Vaughn, Atkinson & Julian, 2015; Sousa et al., 2018; DuBose,
Ashford & Vaughn, 2020; Paschoal et al., 2020; Cosgrove
et al., 2022; Lopez et al., 2022; Bogatov et al., 2023). Effects
are particularly severe when habitats dry completely, and
some studies have reported mortality levels exceeding
65–98% of the population, risking local extirpations
(Samad & Stanley, 1986; Haag & Warren, 2008; Randklev
et al., 2013). Populations affected by drought tend to have
long recovery times (Mouthon & Daufresne, 2015; Nogueira

et al., 2021), especially if species densities fall below levels that
support reproduction (Haag & Warren, 2008). However,
less-severe drought conditions are unlikely to cause pro-
nounced effects (Howells, Mather & Bergmann, 2000; Golla-
day et al., 2004). Isolation caused by repeated drought events
can lead to loss of intraspecific genetic diversity (Inoue &
Berg, 2017; Gomes-dos-Santos et al., 2019) or genetically dis-
tinct populations (Inoue, Lang & Berg, 2015).

In some populations, shifts in size distribution and age
structure can occur (Sousa et al., 2018; Nogueira et al.,
2021). Mussels during early life-history stages (i.e. larval
and juvenile stage) are generally more sensitive to drought-
related impacts than are adult mussels. Juvenile mussels
and smaller individuals may have higher mortality due to
greater susceptibility to external temperature increases,
resulting from higher surface area to volume ratios (Bartsch
et al., 2000; Sousa et al., 2018). However, some studies have
found higher levels of mortality in large mussels, which may
be driven by age-related habitat preferences (juvenile mussels
in limnic habitats may differentially occupy deeper water and
more stable habitats; Paschoal et al., 2020). Other studies
have found that drought may influence all size classes simi-
larly (Güler, 2020; Nogueira et al., 2021). More research
regarding how drought differentially impacts different age
and size classes of mussels is necessary to elucidate how
drought-related mortality across classes may impact long-
term survival outcomes for mussel populations.

(b) Community-wide responses

Community-wide declines in response to drought have been
observed in many systems (Gagnon et al., 2004; Galbraith,
Spooner & Vaughn, 2010; Karatayev, Miller &
Burlakova, 2012; Vaughn et al., 2015; Karlin, Buer &
Stark, 2017; Lopez et al., 2022; S�anchez Gonz�alez
et al., 2021; Tarter et al., 2023). Communities often fail to
recover to pre-drought levels, causing long-term declines
(Mouthon & Daufresne, 2015; Vaughn et al., 2015; Tarter
et al., 2023), and providing opportunities for colonisation
by invasive species such as Corbicula spp. (Mouthon &
Daufresne, 2010), which are more likely to outcompete
native mussels under disturbed conditions (Geist et al.,
2023). As a result of community-wide declines, species occur-
rence post-drought is correlated with abundances prior to
drought conditions (Haag & Warren, 2008; Mitchell
et al., 2021), with changes in community composition result-
ing from extirpation of rare species (Haag & Warren, 2008;
Brown, Daniel & George, 2010; Markovic et al., 2014; Collas
et al., 2018).

Not all freshwater mussel species or genera respond in the
same way to the effects of drought (Holland, 1991; Gough
et al., 2012; Mitchell et al., 2018). Rather, as demonstrated
in Sections III.2, III.3, and III.4, there is evidence that spe-
cies’ traits (e.g. life-history strategy, physiology, behaviour)
influence drought tolerance (Gates et al., 2015; Mitchell
et al., 2018; Lopez et al., 2022). However, only 11.6% of the
studies we reviewed used a trait-based evaluation,
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emphasising the need to incorporate species’ traits into
drought studies. Community structures will be impacted by
drought-induced declines based on mussel traits (Spooner
et al., 2011). Host specialists will be more impacted than host
generalists due to loss of sensitive fish species (Spooner
et al., 2011). Shifts in community composition towards more
drought- or thermally tolerant species have also been
observed (Galbraith et al., 2010; Graeber et al., 2013; Nakano
et al., 2017; S�anchez Gonz�alez et al., 2021; Lopez et al., 2022).
Opportunistic species that are adapted to high levels of dis-
turbance and can tolerate high temperatures and low DO con-
centrations (e.g. Leaunio lienosa; Mitchell et al., 2018), or
reproduce and recolonize quickly after droughts [e.g.Utterbackia
imbecillis (Haag, 2012; Lopez et al., 2022)], may dominate
drought-prone systems in the future.

(c) Effects of habitat conditions on mussel distribution and range

Mussel distribution is affected by drought and climate
change at local and regional scales (Gagnon et al., 2004;
Jones, 2007; Dascher et al., 2018). At a fine scale, water depth
or mesohabitat type (e.g. riffle, run, pool) may influence
whether mussels are exposed to drying and desiccation,
influencing their distribution within or across habitat types
(Layzer & Madison, 1995; Clarke, 2010; Randklev et al.,
2018b). Loss of stream connectivity and increased fine bed
material deposits can reduce mussel and host fish dispersal,
reducing species distributional ranges (Baldan et al., 2021).
Refuge habitats may also influence where mussels are able
to persist (Table 3). Larger, basin-wide or regional distribu-
tions may be influenced by habitat conditions during
drought, in part due to the influence of stream size and
stream position (Reckendorfer et al., 2006). Habitat

conditions in larger streams are more buffered from drought
because of larger quantities of water, so mussel assemblages
are often less impacted compared to small streams (Gagnon
et al., 2004; Haag & Warren, 2008; Shea et al., 2013). For
example, Mitchell et al. (2021) found that smaller streams
experiencing the highest temperatures and lowest discharges
during a drought in Texas exhibited the greatest declines in
species richness. Mussel distribution in drought-prone
regions may be a legacy of past drought conditions (Gagnon
et al., 2004), and over time, frequent disturbances in small
streams can lead to depauperate communities composed
mainly of tolerant species (Gagnon et al., 2004). In more tem-
perate regions, however, smaller streams may provide more
stable temperatures as temperature becomes less variable
closer to springs and less likely to exceed thermal limits of
mussels (Drainas et al., 2023). As increased drought severity
and intermittency lead to local extirpation of some species
(Haag & Warren, 2008; Brown et al., 2010; Markovic
et al., 2014; Collas et al., 2018), species ranges are also likely
to contract when drought-prone habitat becomes unsuitable,
limiting mussel persistence, particularly in small streams
(Spooner et al., 2011; Shea et al., 2013; da Silva et al., 2022).
In cases of reduced fluvial discharge, changes in water and
sediment chemistry, such as increased salinity, can affect
mussel distribution and habitat suitability as well, particu-
larly in coastal areas or heavily anthropogenically impacted
streams (Peterson et al., 2011; Karatayev et al., 2012; Pinkney
et al., 2015).

(6) Biotic interactions

The documented indirect biotic effects of drought and drying
on mussels were mostly associated with three main factors:

Table 3. Potential drought refuges suggested by articles examining the impact of drought on freshwater mussels (order Unionida).
Thirty-four articles we reviewed included suggestions for refuge habitats, with some articles suggesting multiple habitat types.

Scale Refuge type
Number
of sources

Relevant citations

Global or
regional

High-order streams 1 Shea et al. (2013)
High-altitude rivers 2 Bolotov et al. (2018); da Silva et al. (2022)
Regions with stable climate
and low invasion potential

1 Gallardo & Aldridge (2013)

Habitats where the natural
flow regime is maintained

1 Araujo & Álvarez-Cobelas (2016)

Local Habitats with hyporheic,
alluvial, groundwater, or
spring cool water inputs

6 Gagnon et al. (2004); Briggs et al. (2013); Dascher et al. (2018); Karlin et al.
(2017); Holcomb et al. (2018); Rangaswami et al. (2023a)

Deep pools and areas near
thalweg

7 Jones (2007); Haag & Warren (2008); Randklev et al. (2018b); Sousa et al.
(2018); Bogan et al. (2019); Hoess et al. (2022); Bogatov et al. (2023)

Wetlands and backwater areas 2 Tarter et al. (2023); Bogatov et al. (2023)
Irrigation ponds 1 Nakano et al. (2017)
Cool, water-saturated
sediment

7 Newton et al. (2013); Archambault et al. (2014a,b); Güler (2020); Lymbery
et al. (2021); Pandolfo et al. (2024); Wagner et al. (2024)

Habitats with woody debris 3 Gagnon et al. (2004); Golladay et al. (2004); Sousa et al. (2018)
Water mill canals and
anthropogenic habitats

6 Burlakova & Karatayev (2007); Kakino et al. (2011); Nakano (2018);
Sousa et al. (2019); Sullivan & Littrell (2020); Cushway & Schwalb (2024)
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impacts on host fish, predation, and interactions with inva-
sive species. One additional article discussed the interaction
of mussels with parasitic trematodes, which experienced
increased duration of cercarial shedding in response to high
temperatures, potentially leading to increased reproductive
success and higher parasitic loads for mussels (Taskinen
et al., 2022). A thorough overview of the impacts of drought
on fish populations is outside of the scope of this review [see
Magoulick & Kobza (2003) or Lennox et al. (2019) for more
information], but see Section III.4 for more details on
drought impacts on host fish.

(a) Predation

Emersion and aerial exposure due to dewatering during
drought increases predation risk for mussels (Sparks &
Strayer, 1998; Karlin et al., 2017). Dry seasonal conditions
that expose mussels and limit terrestrial prey availability
may lead to seasonal use of mussels as an opportunistic food
source (Shannon & Mendyk, 2009; van Ee, Nickerson &
Atkinson, 2020). Drought-induced predation on mussels
has been observed for several organisms (Table 4), and in
some cases predation rates may be extremely high: some
studies reported 41–90% of drought-related mortality was
associated with predation (Morales, Peñin & Lizana, 2011;
Lymbery et al., 2021) observed after several days of emersion.
Size-selective predation may result in greater loss of smaller
individuals because they are easier to consume (Walters &
Ford, 2013; Lymbery et al., 2021). Moreover, the dispersal
and invasion success of non-native predators such as the
North American signal crayfish [Pacifastacus leniusculus (Dana,
1852)], which preferentially preys upon native European
freshwater mussels (Dobler & Geist, 2022), may be enhanced
by increasing temperatures.

(b) Invasive species

Negative interactions with invasive species may be exacer-
bated by drought and heatwave conditions (Geist
et al., 2023). Geographic ranges of invaders are expected
to increase in response to global warming (Collas et al., 2018;
Ferreira-Rodríguez et al., 2018a). Native and invasive species

may differ in physiological tolerance of thermal stress, but
even those invasive species that are more sensitive to increas-
ing temperatures could retain a competitive advantage in
response to heatwaves and drying events because of higher
reproductive outputs (Ferreira-Rodríguez et al., 2018b; Hil-
lebrand et al., 2024). Behaviours that help mussels avoid
emersion can be inhibited by the presence of invasive species
(Burlakova & Karatayev, 2007; Ferreira-Rodríguez, 2019).
For example, high densities of invasive plants can prevent
horizontal movement of mussels into deeper water because
of decreased habitat suitability resulting from higher temper-
atures, diel oxygen depletion, and reduced fluvial discharge
(Burlakova & Karatayev, 2007).

The impact of invasive Corbicula spp. on mussels during
droughts and heatwaves has been studied more intensively
in the USA and Europe (Iberian Peninsula) in recent years
(e.g. Cherry et al., 2005; Cooper, Bidwell & Cherry, 2005;
Ferreira-Rodríguez & Pardo, 2017; Ferreira-Rodriguez
et al., 2018a; Ferreira-Rodriguez, 2019). Ferreira-Rodríguez
(2019) found that higher densities of Corbicula spp. led to
decreased pedal movement in native Unio delphinus (Spengler,
1793) in laboratory conditions, which may inhibit movement
responses to climate stressors like heat waves. Furthermore,
high Corbicula spp. densities can inhibit native mussel physio-
logical rates (e.g. faeces production and food acquisition)
through competition at high temperatures, decreasing the
food resources available to native mussels to cope with higher
metabolic demands (Ferreira-Rodríguez & Pardo, 2017).
Mass mortality of sensitive invasive species can also degrade
water quality and result in reduced DO concentrations,
nitrogen pulses, and altered nutrient cycling (McDowell &
Sousa, 2019). Due to their relative thermal intolerance,
drought and heatwave conditions can lead to mass die-offs
of Corbicula spp. The decomposition of invasive mussels can
increase water-column and pore-water ammonia to poten-
tially lethal levels for early life stages of native mussels
(Cherry et al., 2005; Cooper et al., 2005; Oosterhuis, Pardo &
Ferreira-Rodríguez, 2021). However, temperature, discharge,
pH, and Corbicula density all influence ammonia concentration,
and relatively high Corbicula densities may be needed to induce
lethal levels of ammonia in overlying water (≥10,000
individuals m−2) and porewater [≥200 individuals m−2

Table 4. Organisms recorded preying on freshwater mussels (order Unionida) during drought events.

Organism
Number
of sources

Relevant citations

Wild boar (Sus scrofa, Linnaeus, 1758) 3 Morales et al. (2011); Sousa et al. (2018); Nogueira et al. (2021)
Raccoon (Procyon lotor, Linnaeus, 1758) 2 Burlakova & Karatayev (2007); Walters & Ford (2013)
Skunk (Mephitis mephitis, Schreber, 1776) 1 Burlakova & Karatayev (2007)
Monitor lizard (Varanus panoptes panoptes, Storr, 1980) 1 Shannon & Mendyk (2009)
Black rat (Rattus rattus, Linnaeus, 1758) 1 Lymbery et al. (2021)
Crow (Corvus spp.) 2 Sandaas et al. (2004); Cosgrove et al. (2022)
Oystercatcher (Haematopus ostralegus, Linnaeus, 1758) 1 Sandaas et al. (2004)
Purple swamp hen (Porophyrio porophyrio, Linnaeus, 1758) 1 Lymbery et al. (2021)
Australian wood duck (Chenonetta jubata, Latham, 1801) 1 Lymbery et al. (2021)
Gull (family Laridae) 2 Sandaas et al. (2004); Cosgrove et al. (2022)
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(Cherry et al., 2005; Cooper et al., 2005; McDowell,
McDowell & Byers, 2017)].

(7) Effects on ecosystem services

Freshwater mussels provide a variety of ecosystem
services that serve essential roles in aquatic ecosystems. These
include biofiltration, biodeposition, nutrient cycling and stor-
age, food-web support, and habitat alteration and creation
(Vaughn, 2018; Zieritz et al., 2022; Atkinson et al., 2023;
Boeker et al., 2016; Lummer, Auerswald & Geist, 2016).
The supply of ecosystem services depends on environmental
conditions (e.g. fluvial discharge and temperature) that are
influenced by drought and drying (Vaughn, Spooner &
Galbraith, 2007; Spooner & Vaughn, 2012; Spooner,
Vaughn & Galbraith, 2012). At low discharges, materials
that are excreted by mussels may accumulate in slow-
moving habitats, increasing the impact of services like
nutrient cycling (Spooner & Vaughn, 2006). Mussels may
also subsidise aquatic food webs during drought,

increasing macroinvertebrate density and facilitating sur-
vival of fish (DuBose et al., 2020). Drought-induced mass
mortality events can produce large nutrient pulses (mainly
nitrogen and phosphorus), stimulating short-term ecosys-
tem productivity in aquatic systems and the surrounding
terrestrial environment (B�odis, Toth & Sousa, 2014;
DuBose et al., 2019; Paschoal et al., 2020).
Despite some mussel-provided services being amplified

during drought conditions, many ecosystem services are
hindered. For instance, poor environmental conditions
can lead to loss of bioturbation and nutrient cycling
(Oosterhuis et al., 2021). Large nutrient pulses may also
result in algal blooms that create hypoxic conditions and
degrade water quality (Galbraith et al., 2020). Filtration
rates of mussels can be affected by low discharges and high
levels of total suspended solids (Dycus, Wisniewski &
Peterson, 2015; Luck & Ackerman, 2022). Furthermore,
mussel species that are thermally intolerant may contrib-
ute less to ecosystem services (e.g. nutrient cycling) during
drought because their rates of assimilation decrease at

Fig. 6. Topics covered by papers addressing mitigation strategies, including (A) management of mussel populations, (B) management
of habitat conditions, and (C) management of anthropogenic influences.
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higher temperatures (Spooner & Vaughn, 2008; van Ee,
Johnson & Atkinson, 2022). Contribution to different eco-
system services depends partly on the functional traits of
species (Spooner & Vaughn, 2012; van Ee et al., 2022).
Thus, shifts in the dominance of certain species or changes
in community composition in response to drought condi-
tions can decrease areal nitrogen and phosphorus excre-
tion (Atkinson, Julian & Vaughn, 2014). Drought-related
mass mortality events can result in declines in mussel bio-
mass and loss of sensitive species that lead to considerable
losses of ecosystem services and ecosystem function
(Atkinson et al., 2014; Vaughn et al., 2015; DuBose
et al., 2019). The Kiamichi River in Oklahoma exhibited
massive declines (i.e. 60% population loss) in freshwater
mussels after two drought events over two decades
(1991–2011), leading to reductions in estimated biofiltra-
tion (�60–80% estimated reduction), nitrogen recycling
(�50–70% estimated reduction), and phosphorus recy-
cling (�50–80% estimated reduction) at 35 �C (Vaughn
et al., 2015). Long-term declines in biofiltration, nutrient
capacitance and storage, and decreased habitat heteroge-
neity from mussels and shells are also expected with
drought-induced mussel losses (DuBose et al., 2019). In sys-
tems where native mussels have largely been replaced by
more thermally sensitive invaders like Corbicula spp.,
drought-related mass mortality may result in an almost
complete loss of biofiltration services (McDowell
et al., 2017). While shells that remain after these mass
die-offs can release nutrients slowly over time, overall eco-
system services like nutrient storage and habitat are lost
(DuBose et al., 2019).

(8) Mitigation strategies

Less than half (�39%) of the articles we reviewed provided
suggestions for managing and mitigating drought risk. Few
articles offered specific recommendations (i.e. quantified or
testable information) for mitigation strategies [but see
Layzer & Madison (1995), Castelli, Parasiewicz & Rogers
(2012), Wolaver et al. (2014), Gates et al. (2015), Goldsmith
et al. (2022), and Khan et al. (2020) for examples], and even
fewer actually tested or modelled the effectiveness of mitiga-
tion strategies (see Peterson et al., 2011;Wisniewski, Abbott &
Gascho Landis, 2016; Gates et al., 2015; Cosgrove
et al., 2022). Without knowledge of the effectiveness of differ-
ent mitigation strategies, it can be difficult for managers to
evaluate the limitations and costs that inherently influence
management decisions. Suggestions for mitigation ranged
from broad and large scale to specific and small scale and fell
into three general categories (Fig. 6): management of mussel
populations (Table 5), management of habitat conditions
(Table 6), and management of anthropogenic influences
(Table 7).

A consistent theme across several articles was the need for
site-specific management considerations when mitigating
drought-related risks and managing mussel species
(Table 5). Given the heterogeneity in habitat characteristicsT

ab
le
7.

(C
on
t.
)

C
at
eg
or
y

St
ra
te
gy

D
es
cr
ip
tio

n
C
ha
lle
ng
es

N
um

be
r
of

so
ur
ce
s

R
el
ev
an
tc
ita

tio
ns

M
an
ag
em

en
to

f
hu

m
an

w
at
er

us
e

M
an
ag
e
w
at
er

ab
st
ra
ct
io
n

R
eg
ul
at
e
su
rf
ac
e
w
at
er

an
d

gr
ou

nd
w
at
er

us
e
du

ri
ng

dr
ou

gh
tc
on

di
tio

ns
;

in
cl
ud

in
g
es
ta
bl
is
hm

en
to

f
w
at
er

m
as
te
r
(a
dm

in
is
te
rs

w
at
er

ri
gh
ts
)

M
ay

be
di
ffi
cu
lt
to

m
on

ito
r;

po
ss
ib
le
pu

bl
ic
op

po
si
tio

n
10

C
ur
le
y
et
al
.(
20
22
);
H
ol
co
m
b
et
al
.

(2
01
8)
;I
no

ue
et
al
.(
20
14
);
K
ar
at
ay
ev

et
al
.(
20
12
);
K
ha
n
et
al
.(
20
19

);
M
itc
he
ll
et
al
.(
20
21

);
R
an
dk
le
v

et
al
.(
20
18
a,
b)
;W

ol
av
er

et
al
.(
20
14
);

C
us
hw

ay
&
Sc
hw

al
b
(2
02
4)

W
at
er

m
ar
ke
ts
,

in
te
rb
as
in

tr
an
sf
er
s

T
ra
ns
fe
r
of

w
at
er

fr
om

el
se
w
he
re

C
re
at
es

su
rf
ac
e
or

gr
ou

nd
w
at
er

de
fi
ci
te
lse
w
he
re
;p

ot
en
tia

l
is
su
es

w
ith

un
in
te
nd

ed
sp
re
ad

of
pa
th
og
en
s
an
d
in
va
si
ve

sp
ec
ie
s

1
W
ol
av
er

et
al
.(
20
14
)

A
qu

ife
r
st
or
ag
e

an
d
re
co
ve
ry

an
d
of
f-
st
re
am

st
or
ag
e

St
or
e
su
rp
lu
s
w
at
er

du
ri
ng

fl
oo
ds

or
ra
in

ev
en
ts
fo
r
us
e

in
dr
ie
r
pe
ri
od

s

C
om

pe
tit
io
n
w
ith

ot
he
r
hu

m
an

w
at
er

de
m
an
ds

2
W
ol
av
er

et
al
.(
20
14
);
M
al
le
n-
C
oo
pe
r
&

Z
am

pa
tt
i(
20
20
)

R
ed
uc
e
hu

m
an

w
at
er

co
ns
um

pt
io
n

e.
g.
us
e
of

tr
ea
te
d
w
as
te
w
at
er

fo
r
in
du

st
ri
al
or

ir
ri
ga
tio

n
us
es

L
ac
ki
ng

in
fr
as
tr
uc
tu
re

1
W
ol
av
er

et
al
.(
20
14
)

Biological Reviews (2024) 000–000 © 2024 The Author(s). Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

Impact of drought on freshwater mussels 25

 1469185x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/brv.13142, W

iley O
nline L

ibrary on [12/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



and the variation in species traits, a ‘one-size-fits-all’
approach for management does not sufficiently recognise
the range of approaches that may be necessary to mitigate
drought-related risks.

To better guide management decisions related to drought,
there is a need for (i) increased long-term monitoring of mus-
sels and their host fish (Table 5), (ii) identification of biodiver-
sity hotspots to protect diverse and abundant communities
that may facilitate rare species (Table 5; Perez Rocha
et al., 2023), (iii) trait-based approaches (e.g. Gates
et al., 2015,Mitchell et al., 2018) to provide useful frameworks
for effective management plans (Gates et al., 2015), and (iv)
more comprehensive and evidence-based studies evaluating
sublethal drought-related stress and tolerance for mussel spe-
cies with non-lethal means. This is especially important for
rare or endangered species. For example, stress hemolymph
and tissue biomarkers have been shown to respond to ther-
mal stress and variation in fluvial discharge (Fritts
et al., 2015a,b). In addition, to identify thresholds that should
be avoided to protect mussels during high temperatures and
reduced fluvial discharge, Uniform Continuous Above
Threshold (UCAT) analysis can be applied (Castelli
et al., 2012; Goldsmith et al., 2022; Rangaswami et al.,
2023b). Multi-stressor and weight-of-evidence approaches
can help provide a more holistic view of how environmental
factors associated with drought affect mussels, incorporating
multiple approaches that consider physiological, cellular,
and molecular responses (Ferreira-Rodríguez et al., 2018b;
Galbraith et al., 2020; Luck & Ackerman, 2022). Strategies
that go beyond monitoring mussel growth and condition
alone are required to capture the full range of consequences
that mussels face during drought (Clarke, 2010). Additional
strategies exist for managing mussel populations (Table 5),
managing habitat conditions (Table 6), and managing
anthropogenic influences (Table 7).

IV. CONCLUSIONS

(1) Our review indicates that the effects of drought on fresh-
water mussels are far-reaching and comprehensive. Drought
affects all levels of mussel biological organization, starting
from individual mussel physiology, mortality, behaviour,
and reproductive success, scaling up to population and com-
munity responses, and finally, interspecific interactions and
ecosystem services. While our knowledge of how drought
can directly and indirectly impact mussels is growing, there
is an urgent need to identify specific, actionable research
topics that will help scientists and managers predict and
respond to challenges facing freshwater mussels in a future
where droughts are likely to increase in frequency and mag-
nitude for much of the world.
(2) Increasingly, research has indicated that species’ traits
play an important role in governing drought tolerance in
freshwater mussels. However, few (<15%) of the articles we
reviewed incorporated trait-based evaluations, emphasising

the need to account for mussel traits in future research.
Trait-based approaches will shed light on how responses to
droughts may be generalizable to species with similar traits,
perhaps alleviating some of the cost and time required to
evaluate individual species’ responses.
(3) While there is extensive research on many of the individ-
ual effects of thermal, desiccation, and hypoxic stress for
freshwater mussels, a greater understanding of the synergistic
effects of multiple stressors will be an important aspect of
future research. Understanding how different stressors inter-
act to affect mussels exposed to drought will be especially
important in systems that are increasingly plagued by both
climate change and anthropogenic impacts.
(4) Studies on the impacts of drought and dewatering on
mussels have largely focused on North American unionids,
one of the most diverse assemblages worldwide. However,
recent research has indicated that portions of Asia also har-
bour extremely diverse mussel communities that may be
especially threatened by high drought risk and baseline water
stress now and in the future. There is an urgent need to
explore the impacts of drought in regions like this that sup-
port high diversity and endemism, as well as in less-diverse
but chronically understudied Unionida families (e.g.
Hyriidae, Iridinidae, Mycetopodidae, Etheriidae).
(5) While many studies we reviewed suggested potential mit-
igation strategies to help protect and conserve mussels in
drought-prone or anthropogenically impacted systems, there
is a lack of systematic testing to inform mussel conservation
and management. Long-term monitoring, site- or species-
specific management plans, and non-lethal monitoring
methods will be important aspects of successful mitigation
actions. More testing of mitigation strategies is urgently
required to arm managers and scientists with the knowledge
required to ensure that freshwater mussels and the ecosystem
services they provide will continue to persist in the future.
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Araujo, R. & Álvarez-Cobelas, M. (2016). Influence of flow diversions on giant
freshwater pearl mussel populations in the Ebro River, Spain. Aquatic Conservation:
Marine and Freshwater Ecosystems 26, 1145–1154.

Archambault, J. M., Cope, W. G. & Kwak, T. J. (2013). Burrowing, byssus, and
biomarkers: behavioral and physiological indicators of sublethal thermal stress in
freshwater mussels (Unionidae). Marine and Freshwater Behaviour and Physiology 46,
229–250.

Archambault, J. M., Cope, W. G. & Kwak, T. J. (2014a). Influence of sediment
presence on freshwater mussel thermal tolerance. Freshwater Science 33, 56–65.

Archambault, J. M., Cope, W. G. & Kwak, T. J. (2014b). Survival and behaviour of
juvenile unionid mussels exposed to thermal stress and dewatering in the presence
of a sediment temperature gradient. Freshwater Biology 59, 601–613.

Archambault, J. M., Cope, W. G. & Kwak, T. J. (2018). Chasing a changing
climate: reproductive and dispersal traits predict how sessile species respond to
global warming. Diversity and Distributions 24, 880–891.

Arthington, A. H., Kennen, J. G., Stein, E. D. & Webb, J. A. (2018). Recent
advances in environmental flows science and water management—innovation in
the Anthropocene. Freshwater Biology 63, 1022–1034.

Atkinson, C. L., Hopper, G. W., Kreeger, D. A., Lopez, J. W., Maine, A. N.,
Sansom, B. J., Schwalb, A. & Vaughn, C. C. (2023). Gains and gaps in
knowledge surrounding freshwater mollusk ecosystem services. Freshwater Mollusk

Biology and Conservation 26, 20–31.
Atkinson, C. L., Julian, J. P. & Vaughn, C. C. (2014). Species and function lost:

role of drought in structuring stream communities. Biological Conservation 176, 30–38.
Badman, D. G. & Chin, S. L. (1973). Metabolic responses of the fresh-water bivalve,

Pleurobema coccineum (Conrad), to anaerobic conditions. Comparative Biochemistry and

Physiology Part B: Comparative Biochemistry 44, 27–32.
Baldan, D., Kiesel, J., Hauer, C., Jähnig, S. C. & Hein, T. (2021). Increased

sediment deposition triggered by climate change impacts freshwater pearl mussel
habitats and metapopulations. Journal of Applied Ecology 58, 1933–1944.

Bartsch, M. R., Waller, D. L., Cope, W. G. & Gutreuter, S. (2000). Emersion
and thermal tolerances of three species of unionid mussels: survival and behavioral
effects. Journal of Shellfish Research 19, 233–240.

Barua, D.&Heckathorn, S. A. (2004). Acclimation of the temperature set-points of
the heat-shock response. Journal of Thermal Biology 29, 185–193.

Bauer, G. (1987). Reproductive strategy of the Freshwater Pearl Mussel Margaritifera

margaritifera. Journal of Animal Ecology 56, 691–704.
Beggel, S., Hinzmann, M., Machado, J. & Geist, J. (2017). Combined impact of

acute exposure to ammonia and temperature stress on the freshwater mussel Unio
pictorum. Water 9, 455.

Benedict, A. &Geist, J. (2021). Effects of water temperature on glochidium viability
of Unio crassus and Sinanodonta woodiana: implications for conservation, management
and captive breeding. Journal of Molluscan Studies 87, eyab011.

*Black, B. A., Dunham, J. B., Blundon, B. W., Brim-Box, J. & Tepley, A. J.

(2015). Long-term growth-increment chronologies reveal diverse influences of
climate forcing on freshwater and forest biota in the Pacific Northwest. Global
Change Biology 21, 594–604.

Black, B. A., Dunham, J. B., Blundon, B. W., Raggon, M. F. & Zima, D. (2010).
Spatial variability in growth-increment chronologies of long-lived freshwater mussels:
implications for climate impacts and reconstructions. �Ecoscience 17, 240–250.

Block, J. E., Gerald, G. W. & Levine, T. D. (2013). Temperature effects on
burrowing behaviors and performance in a freshwater mussel. Journal of Freshwater
Ecology 28, 375–384.

B�odis, E., T�oth, B. & Sousa, R. (2014). Massive mortality of invasive bivalves as a
potential resource subsidy for the adjacent terrestrial food web. Hydrobiologia 735,
253–262.

Boeker, C.,Lueders, T.,Mueller,M., Pander, J.&Geist, J. (2016). Alteration of
physico-chemical and microbial properties in freshwater substrates by burrowing
invertebrates. Limnologica 59, 131–139.

Bogan, M. T., Leidy, R. A., Neuhaus, L., Hernandez, C. J. & Carlson, S. M.

(2019). Biodiversity value of remnant pools in an intermittent stream during the
great California drought. Aquatic Conservation: Marine and Freshwater Ecosystems 29,
976–989.

Bogatov, V. V., Prozorova, L. A. &Nikulina, T. V. (2023). Loss of large bivalves
in the rivers of the southern Primorye (Russian Far East) in summer and autumn of
2021. Russian Journal of Ecology 54, 31–41.

Bolotov, I. N., Makhrov, A. A., Gofarov, M. Y., Aksenova, O. V.,
Aspholm, P. E., Bespalaya, Y. V., Kabakov, M. B., Kolosova, Y. S.,
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VII. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1. Scientific, peer-reviewed articles obtained from
Web of Science searches or from the reference sections of
selected Web of Science articles.
Fig. S1. Compiled estimate of overall risk based on drought
risk, baseline water stress, and Unionida species richness.
Table S2. Total number of studies addressing drought
effects on families in the order Unionida.
Table S3. Species in the order Unionida studied with
respect to drought conditions, including high temperatures,
desiccation, and low dissolved oxygen.
Table S4. Total number of studies addressing drought
effects on each life stage of freshwater mussels in the order
Unionida.
Table S5. Total number of studies using different scientific
approaches to investigate the effects of drought on mussels in
the order Unionida.
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