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Abstract

We study decompositions of the bath correlation function using a Debye and Ohmic
spectral density. These decompositions are based on the Residual theorem to produce
a sum of exponentials. We used the Laurent series expansion to simplify the Bose
function. The residue theorem and Laurent expansion yield results for the Debye
spectral density, though they do not provide sufficient accuracy for the Ohmic spectral
density.
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1. Introduction

An open quantum system develops memory effects while coupled to a target, such
as a qubit, atom, or molecule. These memory effects vary over time and can be
expressed by the bath correlation function [SCE15]. We decompose this function into a
sum of exponentials. This representation holds significant benefits with subsequent
calculations, e.g., the hierarchy of pure states to solve open quantum system dynamics
with non-Markovian structured environments [SES14].

Quantum systems are volatile due to influences from their environment, which is
called bath. The bath is modeled as a series of vibrating particles called the spin-boson
model. These particles develop strong connections and influence each other, known as
coupling. On the other hand, a relaxation behavior causes the return of these particles
to a state of balance with their environment after being disrupted [Bre+84].

The spin-boson model has obtained a rising interest in the field of quantum com-
puting. Researchers are interested in modeling long coherence times and being able
to engineer parts of the properties of a quantum system, e.g., superconducting qubits
coupled to their control and readout electronics [WKV04]. Aspects of quantum systems
are of growing importance for biological simulations. The spin-boson model allows to
describe extremely low temperatures and account for a vast number of vibrators. Key
aspects of the simulation are coupling behaviors between proteins or energy transfers.
[XS94]

In summary, many microscopic phenomena in science are modeled as an open
quantum system, which can be further described using the bath correlation function
[GM06][SS11]. This function includes integrals that cannot easily be solved analytically.
We compare decomposition methods to find solutions for the exponential sum bath
correlation function. We approximate parts inside the function and tested them numer-
ically. The code that was used to generate all plots in this thesis is openly available
under [Bla24].
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2. Background

2.1. Open quantum systems

Numerous phenomena in science are modeled by open quantum systems which pre-
dict their behaviors. These systems contain nontrivial internal dynamics, as they do
not behave according to classical mechanics. They experience loss of energy to the
environment (dissipation), entanglement between the system and its environment, or
the loss of a superposition (decoherence) [GPW99]. These effects are well described
by the spin-boson model [GM06] [GOA94] [Leg+87] [GPW99]. This model revolves
around particles called Bosons, which are subatomic particles with an integer spin. A
Boson oscillates at a frequency and appears in a distinct energy level, which enables
an exchange of energy when coupled to another particle. We can quantify the Boson’s
correlation effect on a distinct target over time using the bath correlation function
[SCE15].

Target T

TE2TE1

System S

Environment/Bath E

Figure 2.1.: Schematics of the system S consisting of the target T, the environment E,
and interactions TEk

An open quantum system S includes a target T, e.g., a molecule, an atom, or a
quantum bit (qubit), and an environment E. The system’s energy (Equation 2.1) is
described by the Hamiltonian HS.

HS = HT + HE + HTE (2.1)
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2. Background

The environment/bath E is a sum of K linearly coupled harmonic oscillators con-
nected to the target T. A harmonic oscillator is a common tool to model an environment
by reducing it to particles [GOA94]. In our model, these particles are represented by
frequency ωk.

HE =
K

∑
k=1

ω̂k â†
k âk (2.2)

The Hamiltonian of the environment is expressed as a sum of the Boson’s frequency
multiplied by bosonic creation and annihilation operators, â†

k and âk, as shown in
Equation 2.2 [Sap23] [SCE15].

The harmonic oscillators are represented as frequency-specific bath modes. Figure
2.2 is a simplified illustration of the two bath modes, visualized as harmonic oscillators
with three states. They are manipulated by the bosonic creation and annihilation
operators, â†

k and âk. The resulting Bosons interact with the target T, with a coupling
strength of Lkγk.

â1

ω1

γ1L1

Target T

γ2L2

â†
2

ω2

Figure 2.2.: Two bath modes as harmonic oscillators with three states at frequency ωk,
each linearly interacting with target T, with coupling strength Lkγk

The Hamiltonian for the interaction between target and environment HTE is expressed
in Equation 2.3 as the sum of the respective coupling strength Lkγk of each bath
mode multiplied by the kth bosonic creation operator a†

k , and the transposed complex
conjugate h.c.

HTE =
K

∑
k=1

(
γkLk · â†

k + h.c.
)

(2.3)

We visualized these bath modes with an illustrated thought experiment in Figure 2.3,
which consists of two pendulums, each connected by a spring to target T in the center,
and swinging from a pole at the respective edges of the system at different frequencies
ω1 and ω2. The springs, connecting the pendulums to the target, represent the coupling
strength Lkγk of the bath modes.

The energy level of a bath mode is observed to be correlated with its frequency. The
spectral density function S(ω) maps each frequency to their corresponding energy
density [SCE15].

3



2. Background

frequency ω1 frequency ω2

Target T

spring L2γ2spring L1γ1

Figure 2.3.: Two pendulums at frequencies ω1 and ω2 connected to target T by springs
representing coupling strengths L1γ1 and L2γ2

2.2. Spectral density

This spectral density of an open quantum system, e.g., a superconducting quantum bit
coupled to a noisy electronic circuit, can be derived from effective friction or the noise
from the environment [WKV04]. The spectral density function in this work must be
anti-symmetrical due to later requirements in the decomposition process and approach
zero for high frequencies as the environment only provides finite energy.

Depending on the exponential scaling factor of the frequency, spectral densities can
be divided into Ohmic, Sub-Ohmic, and Super-Ohmic. Ohmic spectral densities (when
the scaling factor is 1) are linearly dependent on the frequency when the frequency is
low. Sub-Ohmic spectral densities (when the scaling factor is less than 1) and Super-
Ohmic spectral densities (when the scaling factor is greater than 1) are non-linearly
dependent on the frequency [Zha+21].

A prominent example of the Ohmic spectral density is the Debye spectral density
expressed in Equation 2.4 and graphed as the green curve in Figure 2.4 with the param-
eters η = 0.5, γ = 0.25, with η resembling the coupling strength and γ representing the
characteristic bath frequency.

S1(ω) = η
ωγ

ω2 + γ2 (2.4)

The function’s name comes from exhibiting the Debye dielectric relaxation [Wan+99]
[Shi+09]. Spectral densities are usually more complicated under real-world conditions,
however all general features are sufficiently captured by the Debye spectral density
[Wan+99].
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2. Background

We introduce another Ohmic function, shown in Equation 2.5, which we later address
simply as the Ohmic spectral density. The parameter Ω marks the exponential cutoff
frequency [Wan+99]. We set Ω = 0.4 to resemble the Debye spectral density.

S2(ω) = πωe−| ω
Ω | (2.5)

Figure 2.4.: Debye (green curve) and Ohmic (red curve) spectral densities

The function is anti-symmetrical and approaches zero for high frequencies. It is
visualized in Figure 2.4 as the red curve. Compared to the exponential-cutoff of the
Ohmic spectral density, the Debye spectral density has a wider frequency range, visible
for |τ| > 2 in Figure 2.4 [Wan+99].

2.3. Bose function

Sappler (2023) used the Bose function, as shown in Equation 2.6, to incorporate tem-
perature in the bath correlation function [Sap23]. Le Dé et al. (2024) characterized
the product of the Bose function and spectral density as the temperature-dependent
spectral density [Le +24].

fBose(ω) =
1

1 − e−ωβ
(2.6)

The inputs at ωk = 2πik
β , k ∈ Z are not defined since defining them would force a

division by zero. Undefined inputs of a function are called singularities. At a singularity,
a mathematical object stops behaving well by lacking analyticity or differentiability
[Dim13] [FK88]. A simplified example of a singularity occurs in the reciprocal function
g(x) = 1

x when x = 0.
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2. Background

2.4. Laurent expansion

Multiple expansion methods of the Bose function have been under research, a function
that holds relevance in many areas of open quantum physics [HXY10].

The Laurent series builds on the Taylor series with an added singular part that
includes negative exponents so that the expansion of the function approaches singularity
more smoothly. Hu et al. (2010) computed the Laurent expansion of the Bose function,
as seen in Equation 2.7 and 2.8, [HXY10].

1
1 − e−x ≈ 1

x
+

1
2
+ x

2N−1

∑
k=0

akx2k +O(x4N+1) (2.7)

ak =
2k + 1

2(2k + 3)!
−

k−1

∑
j=0

a1

2k + 1 − 2j)!
(2.8)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Va
lu

e

Comparison of Laurent Function and Reference Values

Reference Values
n=1
n=2
n=3
n=4
n=5
n=6
n=7
n=8
n=9

Figure 2.5.: Laurent expansion for the Bose function with increasing approximation
terms n
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2. Background

In Figure 2.5, the graphs with more terms were drawn in brighter colors and were
observed to be closer to the reference values. However, this pattern appears valid only
when |x| < 2π, with the graphs no longer following the reference values outside this
frame [HXY10].

We visualized the parts of the bath correlation function as building blocks of a
pyramid (Figure 2.6) to provide an overview of its structure. The top building block is
the spectral density, which maps the frequency of the bath mode to its energy level. We
used the Fourier transform and applied the Bose function for thermal integration into
the model to obtain the time-dependent correlation values of the bath.

S(ω)

eiωt

fBose

2
π

∫ ∞
0

[
. . .

]
dω

Spectral density (Section 2.2)

Bose function (Section 2.3)

Residue theorem (Section 2.6)

Figure 2.6.: Structure of the bath correlation function: Spectral density, Fourier trans-
form eiωτ, Bose function, and the residue theorem with related sections in
the Background

2.5. Continuum of bath modes

The bath modes on the frequency spectrum are illustrated in Figure 2.7. Three bath
modes at frequencies ω1, ω2, ω3 are drawn, indicating a different energy level and
coupling strength Lkγk for each mode on the continuum.

The open quantum system, as seen in Figure 2.1, is now sufficiently described. The
correlation values of the environment result in the bath correlation function (Equation
2.9 and [SCE15] for the derivation).

α(τ) =
2
π

∫ ∞

0
S(ω) fBoseeiωτ (2.9)

This integral represents a sum of limits of frequencies, but is difficult to solve analyti-
cally.

7



2. Background

ω1

L1γ1 L2γ2

ω2

L3γ3

ω3

Figure 2.7.: Continuum of bath modes: Each bath mode k represents a frequency ωk on
the spectrum with coupling strength Lkγk

Süß et al. (2014) and other researchers used the bath correlation function represented
with the hyperbolic cotangent [SES14] [Sap23] [RE14].

α(τ) =
1
π

∫ ∞

0
S(ω)

[
coth(

ω

2T
) cos(ωτ)− i sin(ωτ)

]
dx (2.10)

We aim to decompose the bath correlation function into a sum of exponentials,
resembling Equation 2.11. Our goal is to find parameters gk, ωk to fit the bath correlation
function. This representation holds significant benefits for subsequent methods and
calculations.

α(τ) ≈
K

∑
k=1

gke−ωkτ (2.11)

2.6. Residue theorem

The representations of the bath correlation function (Equation 2.9 and 2.10) are mathe-
matically challenging. Singularities can appear in the spectral density, adding further
complexity. The tools to solve these challenges include the residue theorem. We extend
the integral to the negative side by using the function’s symmetry. Afterward, we apply
the residue theorem and transform the integral into a sum.

8



2. Background

The base for solving this integral is a mathematical path σ on which the integration
occurs, as expressed in Equation 2.12. This path integral can capture points on the
complex plane and integrate the function.∫ ∞

−∞
f (x)dx =

∫
σ

f (ω)dω (2.12)

This theorem is based on the residue of a singularity. We can compute this value
when approaching the singularity (Equation 2.13, Fischer & Kaul, p.566) [FK88]. We
examine the function g(z) inside an integral with singularities at points zk.

Res(g, zk) = lim
z→zk

(z − zk)g(z) (2.13)

The integral can be evaluated by constructing a large path on the real axis, as shown
in Figure 2.8. This path approaches negative and positive infinity on each end of the
axis. The limits are abstracted to a respective endpoint, which connects to the axis to
form a semicircle in the complex plane [FK88].

Figure 2.8.: Schematic representation of the residue theorem: Imaginary singularities
are black dots and path integral is represented by the black semi-circle
(Fischer & Kaul, p.570) [FK88]

The theorem transforms the integral into the sum of all residue in the region enclosed
by the semicircle. We apply the residue theorem to the bath correlation function, which
results in Equation 2.14.

α(τ) =
1
π

∫ ∞

−∞
S(ω) fBoseeiωτdx =

1
π

[
2πi

∞

∑
k=1

Res(zk)
]

(2.14)

9



2. Background

We present a thought experiment for this theorem with Figure 2.9. The grey surface
on the left resembles a landscape with various dips and curves. Above the surface,
two green watering cans are pouring water onto it. The surface has different regions
with multiple colors, indicating variations in height across the surface. The image
symbolizes a system receiving inputs (the water inflow) into a complex environment
(the wavy surface) and outputs (the water outflow).

On the right, the mathematical function is plotted.

f (x) =
1

(x + 15)2 +− 1
(x + 7)2 − 1

x2 +
1

(x − 4)2 (2.15)

It has four singularities at zi ∈ {−15,−7, 0, 4}. The watering cans and surface on the
left are an analogy for the graph with poles. The residue theorem can determine the
landscape by taking the poles into account. We keep in mind that the residue theorem
is based on imaginary poles, which is not considered in this analogy.

Figure 2.9.: Analogy for the residue theorem

10



3. Related Work

Numerous studies have extensively explored the bath correlation function, which is
crucial in understanding the dynamics of open quantum systems. In the following,
we provide a non-exhaustive overview of associated research, mainly focusing on the
exponential sum decomposition as illustrated in Equation 2.11.

3.1. Exponential sum decomposition

In 2014, the bath correlation function was expressed as a sum of damped harmonic
oscillators to a given spectral density by Ritschel & Eisfeld (2014) [RE14]. The authors
expanded the hyperbolic cotangent, rather than the Bose function, using the alternative
representation of the bath correlation function, presented in Equation 2.10. Additionally,
they used the residue theorem, analogous to Equation 2.14, to generate the exponential
sum. This decomposition is crucial, as multiple numerical methods describing open
quantum systems require the bath correlation function in this form [RE14]. The sum of
exponentials is further beneficial as relevant spectral distribution can be fitted to this
form [DPW12].

3.2. Methods based on the exponential sum decomposition

Dattani et al. (2012) provided an overview of calculations in which this decomposition
is useful [DPW12]. Namely the Nakajima-Zwanzig equation [SV10], the Hierarchi-
cal Equations of Motion (HEOM) [Tan90] and the Non-Markovian Quantum state
Diffusion- Zeroth Order Functional Expansion (NMQSD-ZOFE) Quantum Master Equa-
tion [Rit+11].

The Hierarchical Equations of Motion is a leading method for analyzing open
quantum systems and continues to be the subject of extensive scientific investigation
[Fay22] [Cui+20]. Xu & Yan (2007) constructed a formalism based on a calculus-on-
path-integral algorithm [XY07] and Ke et al. (2022) used a twin-space formulation of
the hierarchical equations of motion approach in combination with matrix product
state representation [KBT22].
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3. Related Work

In a different approach, Süß et al. (2014) used stochastic evolution equations for
quantum trajectories and applied them to the spin-boson model [SES14]. They also
expanded the hyperbolic cotangent like [RE14] with a Padé expansion. Following that,
Sappler (2023) implemented the Hierarchy of Pure States and the Hierarchy of Matrix
Product States and calculated the Matsubara frequencies for the Debye spectral density
[Sap23]. Matsubara frequencies represent the method of a closed bath correlation
applied to the residue theorem.

3.3. Bath correlation function

The bath correlation function eventually determines the influence of the environment on
the system [SCE15]. This fundamental influence results in a wide range of applications
and a long history of research. Breton et al. (1984) studied different relaxations of a
quantum system and determined relaxation super-operators with the bath correlation
function [Bre+84]. De Boeij et al. (1996) derived the bath correlation function from
conventional and time-gated stimulated photon echo experiments [BPW96]. Strümpfer
& Schulten (2011) integrated the bath correlation function in their research about
photosynthesis [SS11]. Schönleber et al. (2015) constructed so-called pseudomodes into
the bath and integrated a temperature-dependent bath correlation function [SCE15].

3.4. Spin-boson model

The spin-boson model describes the open quantum system shown in Figure 2.1. This
model is the simplest nonlinear system, which includes the interaction of quantum
coherence and thermal fluctuations and has a wide range of applications [Wei12].

In 1994, the spin-boson model was applied to characterize the coupling between
protein motion and electron transfer in the photosynthetic reaction center by Xu &
Schulten (1994) [XS94]. Gilmore & McKenzie (2006) inspected the Förster resonant
energy transfer between two optically active molecules, described by a spin-boson
model [GM06].

3.5. This work’s objective

To conclude this overview, the introduced concepts in the background strongly interest
the science community. We acknowledge that exponential sum decomposition methods
achieve strong relevancy. In the latter, we aim to decompose the bath correlation
function using methods including residue theorem and Laurent expansion.

12



4. Results

We decompose the bath correlation function, see Equation 2.9, in multiple steps, in
which we face mathematical challenges. The structure of the function, visualized as a
pyramid in Figure 2.6, is extended by three main research areas in Figure 4.1. Initially, a
numerical reference framework is provided to validate our results, followed by applying
the residue theorem. This theorem supports the decomposition process by providing a
way to solve challenging integrals. We then expand the Bose function, which allows us
to express the Bose function as an infinite sum. Finally, we test our procedure with the
Ohmic spectral density.

S(ω)

eiωt

fBose

1
π

∫ ∞
−∞

[
. . .

]
dω

Selecting spectral density (Section 4.4)

Approximating Bose Function (Section 4.3)

Solving the Integral (Sections 4.1, 4.2)

Figure 4.1.: Pyramid structure of the bath correlation function with respective sections

4.1. Numerical validation framework

We build a consistent framework to keep the decomposition results in check and
rely on numerical approximation. This approximation focuses on validation, and
numerical accuracy is of minor priority. The design of this framework includes reduced
computational resources and fast run times. We use Equation 2.9 with Debye Spectral
density and apply the general integration approach from the SciPi [Sci24] library.

We split the integral, see Equation 2.9, as we approach a singularity at ω = 0. a, b are

13



4. Results

lower and upper integration limits and ϵ denotes the distance to the singularity.

α(τ) =
1
π

∫ ∞

−∞
S(ω) fBoseeiωτdω ≈ 1

π

[ ∫ −ϵ

a
S(ω) fBoseeiωτdω +

∫ b

ϵ
S(ω) fBoseeiωτdω

]
(4.1)

These integration limits and the distance to the singularity are evaluated in Figure
4.2.

0 5 10 15 20 25 30
0.2

0.0

0.2

0.4

0.6

Plot of  vs 
a= -1, b= 1, e=0.01
a=-16, b=16, e=0.01
a=-64, b=64, e=0.01
a=-128, b=128, e=0.01

0 5 10 15 20 25 30
0.01

0.00

0.01

0.02

0.03

0.04

0.05

Plot of  vs 
a= -1, b= 1, e=0.01
a=-16, b=16, e=0.01
a=-64, b=64, e=0.01
a=-128, b=128, e=0.01

Figure 4.2.: Real and imaginary part: Comparing integral limits

The significant share of the integral lies near zero as both real and imaginary curves,
see Figures 4.2, between a = −1, b = 1 incorporate many characteristics from curves
with higher integration limits. For the real part, in Figure 4.2, we acknowledge
numerical irregularities with limits greater than |a| > 16. These irregularities are
flagged as an ’Integration Warning’ by the library function, indicating potential issues
with the accuracy of the integration. The imaginary plot displays further approximation
errors within higher limits. We base our limits on a = −16, b = 16 to minimize these
irregularities and still have a steady curve compared to smaller limits.

0 5 10 15 20 25 30
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0.0

0.1

0.2

0.3
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0.5

Plot of  vs 
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e=0.001
e=0.0005
e=0.0001

Figure 4.3.: Real and imaginary part: Distance to singularity

We approach this singularity with different distances ϵ in Figures 4.3. These Figures
indicate that the area around zero is significant for evaluating the integral. The real
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4. Results

distance to the singularity impacts the resulting integral. Still, for smaller distances, the
difference gets less relevant. We apply ϵ = 0.01 as a trade-off between accuracy and
practicality.

4.2. Utilizing the residue theorem

The residue theorem disassembles the function as the characteristics of the function
make the integration hard to solve. The real-valued integral over complex numbers is
transformed into the integral over a complex path and further into a sum of exponentials
supported by the residue theorem, as shown in Equation 2.14 in the Background. We
derived this decomposition for the Debye spectral density in Appendix A.1 Equation
A.30.

αDebye(τ) ≈ ηiγ
1

1 − e−iγβ
e−γτ +

K

∑
k=1

η
(4πkTγ)

(4π2k2T2 + γ2)
e−2πkτ (4.2)

We insert the parameters η = 0.5, γ = 0.25, T = 1, K = 5, [SES14] [Sap23] and
compare it with general purpose integration approximation. We present the real part
of this decomposition. We use the residue theorem and take the singularity z0 = iγ
and zk = 2πik into account.
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Figure 4.4.: Real and imaginary part: Compare numerical reference with residue de-
composition

The residue decomposition successfully approximates the bath correlation function.
The correlation values α(τ) declines for higher time intervals τ, see Figure 4.4. Values
smaller than zero appear, which is impossible for the residues as the e function only
approaches and never passes zero. To enhance visibility, we plot the absolute error in a
logarithmic scale in Figure 4.5. The error rates to the numerical approximation are, in
general, minimal.
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Figure 4.5.: Real and imaginary part: Error rates of the residue decomposition

We spitted the first four terms of the exponential sum (Equation 4.2) and plotted the
significance of the individual terms of the exponential sum.

Term Expression
k = 0 ηiγ 1

1−e−iγβ e−γτ

k = 1 η (4πTγ)
(4π2T2+γ2)

e−2πτ

k = 2 η (8πTγ)
(16π2T2+γ2)

e−4πτ

k = 3 η (12πTγ)
(36π2T2+γ2)

e−6πτ

k = 4 η (16πTγ)
(64π2T2+γ2)

e−8πτ

Table 4.1.: First four terms of the expansion of αDebye(τ) for k = 0 to k = 4.

As shown in Figure 4.6, the first term (k = 0 in purple) is exclusively responsible for
the accuracy of the decomposition. The remaining terms of the sum do not sufficiently
influence the integral.
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Figure 4.6.: Influences of terms: Real and Imaginary Part

We gathered information about the importance of the terms that lead to the final result
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with αnum as the numerical reference and tk the kth term of the decomposition—starting
with k0 as the leading term.

pk =
∣∣∣1 − αk − αnum

αnum

∣∣∣ (4.3)

leading to Figure 4.7. pk denotes the ratio between the numerical reference value αnum

and the kth term αk. The first term has noticeably more impact than the other terms, as
it accounts for over 80% of the reference value for τ < 5, as shown in Figure 4.7.

The first term (k = 0) originates from the singularity of the spectral density. However,
certain spectral density do not exhibit imaginary singularities (see Equation A.67) and
their decomposition might only rely on the singularities of the Bose function. That
might lead to a comparable minimal impact and reduced accuracy of the decomposition.
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Figure 4.7.: Column diagram of the four data series

We conclude that the singularity z = iγ originating from the Debye spectral density
is the central aspect of the decomposition. The remaining singularities (of the Bose
function) do not appear relevant for the decomposition in this parameter configuration,
at least for T = 1.
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4. Results

4.3. Laurent expansion

In the next step, we examine the Laurent expansions for the Bose function. As men-
tioned in the Background, the Bose function is a prominent function in quantum physics
and has been profoundly researched [HXY10]. We use the Laurent series to express
the Bose function more compactly. As seen in the Background, only a few terms are
enough to yield a decent approximation of the original Bose function. We choose N = 2
as a sufficient approximation.

fBose(ωβ) =
1

1 − e−ωβ
≈ 1

x
+

1
2

(4.4)

As seen in the appendix A.2, we derived the exponential sum decomposition:

α(τ) =
[η

β
+ iη

γ

2

]
e−γτ (4.5)

The numerical approximation with the Bose function (Figure 2.5) is accurate with
the Laurent approximation. Still, it is only a minor focus as it does not provide more
insights to decompose into a sum of exponentials.

Figure 4.8 shows the Laurent expansion approximating the bath function correlation
function. Further research could also look into Padé expansion [Sap23] as potentially
more singularities are available for the residue theorem. The imaginary part in Figure
4.8 appears accurate.

0 5 10 15 20 25 30

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Plot of  vs 

Numerical reference
Residue decomposition with Laurent expansion
Residual decomposition

0 5 10 15 20 25 30
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Plot of  vs 
Numerical reference
Residue decomposition with Laurent expansion
Residue decomposition

Figure 4.8.: Real and imaginary part: Compare numerical reference with Laurent ex-
pansions

This approximation is relatively sophisticated, as depicted in Figure 2.5. The green
curve represents the decomposition with an expanded Bose function.
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4.4. Ohmic spectral density

The function, as shown in Equation 2.5, is transformed with the residue theorem into a
sum of exponentials, see Appendix A.3 and Equation A.67:

α(τ) ≈ −4π2
K

∑
k=1

ke−2πkT( 1
Ω+τ) (4.6)
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Figure 4.9.: Real and imaginary part: Compare numerical reference with residue de-
composition

0 5 10 15 20 25 30

10 2

10 1

Plot of  vs 
Error rate

0 5 10 15 20 25 30

10 12

10 10

10 8

10 6

10 4

10 2

Plot of  vs 
Error rate

Figure 4.10.: Real and imaginary part: Error rates of the residue decomposition

We insert the parameters Ω = 0.4, T = 1. In Figure 4.9, the residue curve immediately
drops to zero, and the imaginary curve is indifferent from zero, which is also supported
by the error plots in Figure 4.10. They display the deviations on a logarithmic scale.
There are deviations from up to 0.6 at the start, which resembles nearly the numerical
reference value. The decomposition follows the same trend but can not be seen as a
meaningful approximation.

It’s important to note that the Ohmic spectral density does not show singularities
on the imaginary axis. Therefore, the residue theorem depends on the Bose function’s

19



4. Results

singularities. As we saw with the debye decomposition, these singularities have nearly
no influence on the integral. The Ohmic spectral density with no own imaginary
singularities is challenging to decompose with this method.

4.5. Comparing different temperature regimes

We broaden our hypothesis by applying a more comprehensive range of temperatures
to decompositions. We selected four temperature configurations: T ∈ {0.02, 0.5, 2, 5} as
we already covered T = 1. Brighter colors in green represent smaller temperatures, and
darker reds represent smaller temperatures in the numerical reference.

4.5.1. Debye spectral density

For the Debye spectral density, we use η = 0.5, γ = 0.25, K = 5. In Figure 4.12
(next page), all the temperature curves are accurately decomposed except for the low-
temperature T = 0.02. The imaginary curve is accurate and unchanged for different
temperatures.
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Figure 4.11.: Temperature Comparison for Debye spectral density: Real and Imaginary
Part

Figure 4.11 shows increasing decomposition terms for temperature T = 0.02. Sapper
(2023) applied more approximation terms to fix the decomposition at T = 0.02 and
achieve meaningful approximation at K = 1000 [Sap23]. However, this result could
not be replicated with our model. We used different numbers of approximation terms
K ∈ {5, 50, 100, 500, 1000, 10000}.

Figure 4.11 illustrates no meaningful approximation for T = 0.02 with increasing
approximation terms. We observed a rise in the initial value up to α(0) ≈ 15.029 for
K = 10000. As for K = 5 in Figure 4.12, the imaginary curve is sufficiently approximated
by the decomposition.
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Figure 4.12.: Temperature Comparison for Debye spectral density: Real and Imaginary
Part

4.5.2. Ohmic spectral density

In the numerical validation framework for T = 0.02, we encountered a ’RuntimeWarn-
ing’ for the Ohmic decomposition. An overflow for ’return 1/(1-numpy.exp(-x/T))’ is
flagged, which highlights that numerical integration are prone to numerical errors, and
the need for a fast and accurate decomposition is emphasized.
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Figure 4.13.: Temperature Comparison for Ohmic spectral density: Real and Imaginary
Part

For the Ohmic spectral density decomposition, we use Ω = 0.4, K = 5. All real
curves in high-temperature areas are close to zero. The curve for T = 0.02 stabilizes
and has extremely high values (α(0) ≈ 16.161). However, none of the curves provides
a meaningful decomposition. We could not compare the imaginary values of the
decompositions as Equation 4.6 has no imaginary part.
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5. Discussion

We exhaustively examine selected parameters, values, and meta-information to identify
connections or errors that might compromise the accuracy and validity of our data. We
plotted τ between 0 and 30 and with step size 1, following [Sap23]. Possible errors
include integration of the parameters, the residue calculation, the residue proof chain,
or errors in the implementation.

5.1. Numerical reference framework

The numerical reference framework is not exhaustively accurate, as the framework
compares the overall trend of the bath correlation function and validates the residues
on a broad scale while maintaining fast run times. As of the symmetric properties of
the integral, the positive part would have serviced for our calculations.

We used the general purpose integration (quad) of the SciPi library [Sci24]. This
library provides fast results and integrates the time parameter in the integral. There
are other possible modes of integration, e.g., the equispaced sampling technique by
Romberg or the arbitrary spacing with the Simpson rule [Sci24].

The limits are chosen at a = −16, b = 16 because of sufficient accuracy in approxi-
mation and numerical errors at higher limits. The library function includes an option
for limits at -∞,+∞ to make it as accurate as possible, which was unnecessary in our
case. The numerical framework validates trends of the decomposition with the residue
theorem.

5.2. Residue theorem

The main property of the decomposition is the number of approximation terms in
usage. Research has shown that this decomposition method is more applicable to
higher frequencies [MT99], which we could replicate in Figure 4.12. We used a limited
number of K = 5 terms, but we increased the approximation terms for low-temperature
applications. The added terms did not increase the accuracy of the decomposition as
expected, and potential errors in the implementation of the calculations can be subject
to future work. The main result of our analysis is that the result of the decomposition
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5. Discussion

relies heavily on the first term, as over 80% of the numerical reference value was covered
by the first term for the Debye spectral density at T = 1 as for the first τ = 5 time steps.

The Ohmic spectral density, which does not rely on an imaginary singularity, was
not decomposed successfully. The numerical framework showed massive deviations.

5.3. Parameters of spectral densities

We instantiated Ohmic and Debye spectral density with the parameter η = 0.5, γ = 0.25
for the Debye spectral density. Prior research relied on these values [Sap23] [SES14].

We chose parameter Ω = 0.4 for the Ohmic spectral density to resemble the curve of
the Debye spectral density in order to achieve a consistent comparison. In comparison,
the Debye spectral density spans a broader range in frequencies than the Ohmic.
However, their trend is similar [Wan+99]. Parameters for temperature were tested
primarily for T = 1 and in the latter for a range of low to high temperatures (T = 0.02
to T = 5) with difficulties in the low-temperature regime.

5.4. Laurent expansion

The Laurent series successfully expands the Bose function. We are using N = 2
terms for the approximation, sufficient to expand the Bose function. These series
expansions can be further applied using different methods. Other research was focused
on expanding the hyperbolic cotangent [SES14]. A possible future work would be to
find an expansion for the temperature-dependent spectral density—the combination
of spectral density and Bose function [Le +24]. Further possible expansions include
the Padé and Fano expansions, which aim to solve the difficulties in low-temperature
regimes [HXY10] [Le +24].
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6. Conclusion

We tested decomposition methods for the bath correlation function, including the
residue theorem and the Laurent series expansion. We applied the often-used Debye
spectral density and a newly constructed Ohmic spectral density, which had resembling
characteristics. We compared these with the numerical general-purpose integration,
and the results were accurate for the Debye spectral density. The method was not
successful for the Ohmic spectral density. The the data shows an apparent deviation in
all temperature ranges. The Laurent series expansion had similar results for the Debye
spectral density. The series expansion could be further verified in future work with
more spectral densities and more advanced expansion methods. We suggest assessing
spectral density with larger differences to assess the behavior of the bath correlation
function.
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A. Residue theorem

This appendix contains supplementary material, such as detailed derivations and
calculations on the residue theorem.

As the residue theorem operates on integral from −∞ to +∞, the bath correlation
function is extended to the complete real axis. We make use of its symmetric properties
and transform into Equation A.2:

α(τ) =
2
π

∫ ∞

0
S(ω) fBose(ωβ)eiωτdω (A.1)

α(τ) =
1
π

∫ ∞

−∞
S(ω) fBose(ωβ)eiωτdω (A.2)

A.1. Derivation for the Debye spectral density

α(τ) =
1
π

∫ ∞

−∞
η

ωγ

ω2 + γ2
1

1 − e−ωβ
eiωτdω (A.3)

g(ω) = η
ωγ

ω2 + γ2
1

1 − e−ωβ
eiωτ (A.4)

The residue theorem is applied with these residues z0 = iγ zk = 2πikT, k ∈ N+ The
function inside the integral is expressed as:∫ ∞

−∞
η

ωγ

ω2 + γ2
1

1 − e−ωβ
eiωτdω = 2πi ∑

ℑ(zk)>0
Res(g, zk) (A.5)

= 2πi
[
Res(g, i) +

∞

∑
k=0

Res(g, 2πikT)
]

(A.6)

A.1.1. Residuum at iγ

Using 0 ̸= γ ∈ R \ C in the following:
The residue of the function g(z) at z0 is given by, (Fischer & Kaul, p.566) [FK88] :

Res(g(z), z0) = lim
z→z0

(z − z0)g(z) (A.7)
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A. Residue theorem

First, simplify by noting that (z − iγ) can be left out:

Res(g, iγ) = lim
z→iγ

η
zγ

(z + iγ)
1

1 − e−zβ
eizτ (A.8)

Since e−γ ̸= 1, there is no additional singularity from 1
1−e−zβ .

Substitute z = iγ into the expression:

Res(g, iγ) = η
(iγ)γ

(iγ + iγ)
1

1 − e−iγβ
ei(iγ)τ (A.9)

Simplify the expression:

Res(g, iγ) = η
iγ2

2iγ
1

1 − e−iγβ
e−γτ (A.10)

Thus, the residue is:

Res(g, iγ) = η
γ

2
1

1 − e−iγβ
e−γτ (A.11)

A.1.2. Residuum at zk = 2πik

The residue of g(z) at zk is given by:

Res(g, zk) = lim
z→zk

(z − zk)g(z) (A.12)

Substitute zk = 2πikT:

Res(g, zk) = lim
z→2πikT

(z − 2πikT)η
zγ

z2 + γ2
1

1 − e−zβ
eizτ (A.13)

Rearrange:

= lim
z→2πikT

η
zγ

(z − iγ)(z + iγ)
(z − 2πikT)

1 − e−zβ
eizτ (A.14)

We split the limes, as they are both converging (Fischer & Kaul, p.164) [FK88]

= lim
z→2πikT

η
zγ

(z − iγ)(z + iγ)
eizτ lim

z→2πikT

(z − 2πikT)
1 − e−zβ

(A.15)

Apply de l’Hospital derivation rule on the second limes, (Fischer & Kaul, p.195)
[FK88]

= lim
z→2πikT

η
zγ

(z − iγ)(z + iγ)
eizτ lim

z→2πikT

d
dz (z − 2πikT)

d
dz (1 − e−zβ)

(A.16)
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A. Residue theorem

Take the derivative:

= lim
z→2πikT

η
zγ

(z − iγ)(z + iγ)
eizτ lim

z→2πikT

1
e−zβ

(A.17)

As γ ̸= 2πikT, substitute the value in both limes:

= η
(2πikT)γ

(2πik − iγ)(2πikT + iγ)
1

e−(2πikT)β
ei(2πikT)τ (A.18)

Transform:

= η
(2πik)γ

(2πik)2 − γ2
1

e−(2πik)
e−2πkTτ (A.19)

Since e−2πikTβ = 1:

= η
(2πik)γ

(2πikT)2 − γ2 e−2πkTτ (A.20)

Multiply the parentheses:

= η
2πikTγ

4π2i2k2T2 − γ2 e−2πkτ (A.21)

Get out the -1
= η

2πikTγ

−4π2k2T2 − γ2 e−2πkτ (A.22)

= η
2πikTγ

−(4π2k2T2 + γ2)
e−2πkτ (A.23)

Combine the terms:

α(τ) =
1
π

2πi

[
Res(g, z0) +

∞

∑
k=1

Res(g, zk)

]
(A.24)

Substitute:

= 2i

[
η

γ

2
1

1 − e−iγβ
e−γτ +

∞

∑
k=1

η
2πikTγ

−(4π2k2T2 + γ2)
e−2πkτ

]
(A.25)

Multiply factors 2i inside:

=

[
ηiγ

1
1 − e−iγβ

e−γτ +
∞

∑
k=1

η
4πi2kTγ

−(4π2k2T2 + γ2)
e−2πkτ

]
(A.26)
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A. Residue theorem

Since i2 = −1:

=

[
ηiγ

1
1 − e−iγβ

e−γτ +
∞

∑
k=1

η
−(4πkTγ)

−(4π2k2T2 + γ2)
e−2πkτ

]
(A.27)

Simplify:

= ηiγ
1

1 − e−iγβ
e−γτ +

∞

∑
k=1

η
(4πkTγ)

(4π2k2T2 + γ2)
e−2πkτ (A.28)

α(τ) = iηγ
1

1 − e−iγ e−γτ +
∞

∑
k=1

η
4πkγ

4π2k2 + γ2 e−2πkτ (A.29)

We only apply limited approximation terms K:

α(τ) = iηγ
1

1 − e−iγ e−γτ +
K

∑
k=1

η
4πkγ

4π2k2 + γ2 e−2πkτ (A.30)

A.2. Derivation for the Debye spectral density with Laurent
expansion

α(τ) =
1

2π

∫ ∞

0
S(ω)

[ 1
ωβ

+
1
2

]
eiωτdω (A.31)

After the transformations from [Sap23]:

α(τ) =
1
π

∫ ∞

−∞
S(ω)

[ 1
ωβ

+
1
2

]
eiωτdω (A.32)

α(τ) =
1
π

∫ ∞

−∞
η

ωγ

ω2 + γ2

[ 1
ωβ

+
1
2

]
eiωτdω (A.33)

g(ω) = η
ωγ

ω2 + γ2

[ 1
ωβ

+
1
2

]
eiωτ (A.34)

T = 1 z0 = iγ zk = 2πik, k ∈ {1, 2, 3 . . . }
We now take the residue theorem, which is the same as the extended integral∫ ∞

−∞
η

ωγ

ω2 + γ2

[ 1
ωβ

+
1
2

]
eiωτdω = 2πi ∑

ℑ(zk)>0
Res(g, zk) (A.35)

α(τ) = i ∑
ℑ(zk)>0

Res(g, zk) (A.36)

We insert all the imaginary singularities

α(τ) = i
[
Res(g1, i) +

∞

∑
k=0

Res(g1, 2πik)
]

(A.37)
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A. Residue theorem

A.2.1. Residuum at iγ

mit 0 ̸= γ ∈ R \ C

The residue of the function g(z) at z0 is given by:

Res(g, z0) = lim
z→z0

(z − z0)g(z) (A.38)

Given g(z) = η zγ
(z−iγ)(z+iγ)

[
1

zβ + 1
2

]
eizτ, we can compute the residue at z0 = iγ as

follows:
First, simplify by noting that (z − iγ) can be left out:

Res(g, iγ) = lim
z→iγ

η
zγ

(z + iγ)

[ 1
zβ

+
1
2

]
eizτ (A.39)

Since 1
iγ ̸= 0, there is no additional singularity

Substitute z = iγ into the expression:

Res(g, iγ) = η
(iγ)γ

(iγ + iγ)

[ 1
iγβ

+
1
2

]
ei(iγ)τ (A.40)

Simplify the expression:

Res(g, iγ) = η
iγ2

2iγ

[ 1
iγβ

+
1
2

]
e−γτ (A.41)

Multiply the γ2

2γ inside the parenthesis

Res(g, iγ) = η
[γ2

2γ

1
iγβ

+
γ2

2γ

1
2

]
e−γτ (A.42)

Simplifying

Res(g, iγ) = η
[ 1

2iβ
+

γ

4

]
e−γτ (A.43)

Bring imaginary unit up

Res(g, iγ) = η
[−i

2β
+

γ

4

]
e−γτ (A.44)

Separate imaginary and real part:

Res(g, iγ) =
[
(−i)

η

2β
+ η

γ

4

]
e−γτ (A.45)

α(τ) =
1
π

2πi
[
(−i)

η

2β
+ η

γ

4

]
e−γτ (A.46)

Reduce the factors at the beginning and resolve i(−i) and multiply with i

α(τ) =
[η

β
+ iη

γ

2

]
e−γτ (A.47)
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A. Residue theorem

A.3. Derivation for the Ohmic spectral density

α(τ) =
1
π

∫ ∞

−∞
S(ω) fBose (ωβ) eiωτdω (A.48)

α(τ) =
1
π

∫ ∞

−∞
πωe−| ω

Ω | 1
1 − e−ωβ

eiωτdω (A.49)

Positive imaginary singularities appear at ω = 2πikT, k ∈ N+ and we define:

g(z) = πze−| z
Ω | 1

1 − e−zβ
eizτ (A.50)

α(τ) =
1
π

2πi

[
∞

∑
k=0

Res(g, 2πikT)

]
(A.51)

A.3.1. Residuum at zk = 2πik

Res(g1, 2πikT) = lim
z→2πikT

(z − 2πikT)πze−| z
Ω | 1

1 − e−zβ
eizτ (A.52)

We split the limes in two, as they are both converging (Fischer & Kaul, p.164) [FK88]

= Res(g1, 2πikT) = lim
z→2πikT

(z − 2πikT)πze−| z
Ω |eizτ lim

z→2πikT

1
1 − e−zβ

(A.53)

We apply de l’Hospital derivation rule on the second limes, (Fischer & Kaul, p.195)
[FK88]

= lim
z→2πikT

πze−| z
Ω |eizτ lim

z→2πikT

(z − 2πikT)
1 − e−zβ

(A.54)

We take the derivative:

= lim
z→2πikT

πze−| z
Ω | 1

e−zβ
eizτ (A.55)

Next, we substitute z = 2πikT:

= (2π2ikT)e−| 2πik
Ω | 1

e−(2πiTβ)
ei(2πik)τ (A.56)

Since e2πikTβ = 1:

= (2π2ikT)e−| 2πikT
Ω |ei(2πik)τ (A.57)

With i2 = −1, we simplify to:
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A. Residue theorem

= (2π2ikT)e−| 2πikT
Ω |e−(2πikT)τ (A.58)

Remove the absolutes, with: |z| =
√

a2 + b2, z = a + ib

= (2π2ik)e−
2πkT

Ω e−(2πkT)τ (A.59)

Adding the exponents together

= (2π2ik)e−
2πkT

Ω −2πkTτ (A.60)

Factor out −2πkT:
= (2π2ik)e−2πkT( 1

Ω+τ) (A.61)

Factoring out constants:

= i(2π2k)e−2πkT( 1
Ω+τ) (A.62)

Including the sum of residues and bath scaling factor

α(τ) =
1
π

2πi

[
∞

∑
k=1

i(2π2k)e−2πkT( 1
Ω+τ)

]
(A.63)

Since i2 = −1:

= 2

[
∞

∑
k=1

−(2π2k)e−2πkT( 1
Ω+τ)

]
(A.64)

Factor in 2

=

[
∞

∑
k=1

−4π2ke−2πkT( 1
Ω+τ)

]
(A.65)

Factoring out −4π2:

α(τ) = −4π2
∞

∑
k=1

ke−2πkT( 1
Ω+τ) (A.66)

We only use limited approximation terms K

α(τ) = −4π2
K

∑
k=1

ke−2πkT( 1
Ω+τ) (A.67)
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