
Neuromorphic force-control in an industrial task: validating energy and
latency benefits

Camilo Amayaa, Evan Eamesa, Gintautas Palinauskasb, Alexander Perzyloa, Yulia Sandamirskayac,
Axel von Arnima

Abstract— As robots become smarter and more ubiquitous,
optimizing the power consumption of intelligent compute
becomes imperative towards ensuring the sustainability of
technological advancements. Neuromorphic computing hard-
ware makes use of biologically inspired neural architectures
to achieve energy and latency improvements compared to
conventional von Neumann computing architecture. Applying
these benefits to robots has been demonstrated in several works
in the field of neurorobotics, typically on relatively simple
control tasks. Here, we introduce an example of neuromorphic
computing applied to the real-world industrial task of object
insertion. We trained a spiking neural network (SNN) to
perform force-torque feedback control using a reinforcement
learning approach in simulation. We then ported the SNN to
the Intel neuromorphic research chip Loihi interfaced with a
KUKA robotic arm. At inference time we show latency com-
petitive with current CPU/GPU architectures, and one order
of magnitude less energy usage in comparison to traditional
low-energy edge-hardware. We offer this example as a proof of
concept implementation of a neuromoprhic controller in real-
world robotic setting, highlighting the benefits of neuromorphic
hardware for the development of intelligent controllers for
robots.

I. INTRODUCTION

Moving towards the integration of intelligent robots in
daily life, sustainability considerations require stricter op-
timization of energy consumption not only for actuation, but
also for the computing involved in robot control. The current
energy requirements of GPUs and CPUs either limit the scale
and “intelligence” of edge computation, or require high-
latency communication protocols for cloud computing. While
moving an AI system such as IBM Watson or ChatGPT to the
edge requires killowatts of power for continuous inference1

[1], [2], the human brain accomplishes much more complex
behaviour at a tiny fraction of this [3]. Biological inspiration
therefore continues to influence both algorithm and hardware
development in the field of neuromorphic computing, with
an increasing number of applications in robotics.

Neuromorphic hardware refers to a novel hardware ar-
chitecture that uses principles of computing in biological
brains and neural systems and has been shown to drastically
improve latency and energy usage for many computing tasks

a Department of Neuromorphic Computing, fortiss – Research
Institute of the Free State of Bavaria, Munich, Germany
<LastName>@fortiss.org

b The author was with the Department of Neuromorphic Comput-
ing, fortiss. He is now with Robominds GmbH, Munich, Germany
gpa@robominds.de

c ZHAW Zurich University of Applied Sciences/Intel Neuromorphic
Computing Lab yulia.sandamirskaya@zhaw.ch

1Ignoring training energy costs.

[4], in particular ones that rely on recurrent, temporal, and
sparse computation, as often the case in motion planning
and control [5]. Typically, following biological inspiration,
neuromorphic processors realise in hardware so called Spik-
ing Neural Networks (SNNs) [6], [7]. These differ from
more ubiquitous Artificial Neural Networks (ANNs) in better
exploitation of sparsity and recurrency through asynchronous
multi-core processing (there is no global clock) and statefull
neurons. Moreover, abundance of local memory enables effi-
cient continual learning, along with the neural state updates.
In recent years there has been an increasing interest in using
neuromorphic hardware and SNNs for their advantages in
energy and time efficiency in robotics — a domain referred to
as “neurorobotics”. We have proposed a roadmap for future
development and deeper inspiration from biology for such
systems [8].

Although a young area of research, neurorobotics has
begun to see some first results. Examples include automotive
object avoidance [9], SLAM [10], underwater propulsion
[11], drone control [12], [13], and grasping force control
[14]. See [15] for an overview. On the simulation front, the
Neurorobotics Platform has been developed in the European
Human Brain Project specifically as a sandbox for such
applications [16].

However, as of yet the bulk of research has been carried
out either partially or entirely within simulation [11], [17],
[18], [19], [20]; with neuromorphic sensors paired with clas-
sical non-spiking hardware [21], [22], [23]; or with simple
motion profiles (e.g. 1-dimensional movement) that do not
constitute full use cases [24], [25], [26], [12], [14], [13].
Other efforts have used customized neuromorphic circuits in
which direct energy/latency measurements are not possible
[27] or hybrid approaches that are only partially guided by
neuromorphic hardware [28]. See [29] for a full review. The
consequence is that expected neuromorphic benefits cannot
be inferred for real-world systems with practical applications.

To address this, we present a real-world neurorobotic
system in which a robotic arm equipped with a force-
torque (FT) sensor accomplishes an insertion task while fully
controlled by neuromorphic hardware. The classic robotic
insertion task has been chosen as it serves as the foundation
for a number of related sub-tasks such as screw insertion,
cable attachment, part assembly, etc. Additionally, the “peg-
in-hole” task has historically served as a benchmark for
robotic integration of new algorithms, sensors, and hardware
[30], [31], [32], [33], [34], [35], [36], etc (see [37] for an
overview).

The arm is trained in simulation using spiking reinforce-
ment learning (RL). The trained network is then ported to an
Intel Loihi neuromorphic research chip, which is connected
to our KUKA robotic arm. We use sim2real techniques to
accomplish insertion with the real robot. An accompanying
video can be viewed at https://tinyurl.com/y2szkbyb.

This RL in simulation + sim2real technique is similar to
that recently applied to drone and quadrupedal maneuvering
using conventional ANNs [38], [39], [40], [41]. Our approach
is similar, but realised with SNNs and deployed on a neu-
romorphic chip. We argue that, as the hardware matures,
this could lead to energy efficient trained controllers for a
broad deployment of intelligent robots. Our experiments have
shown one order of magnitude less energy usage in com-
parison to current SotA non-neuromorphic edge-optimized
hardware at a similar latency.

We highlight the following novel contributions of this
work: this is the first real-world non-trivial robotic use-case
(peg-in-hole insertion with an industrial robotic arm) fully
guided by neuromorphic hardware. In this setting, energy and
latency measurements of neuromorphic hardware were herein
performed for the first time. We have found energy spent
on running the network on the neuromorphic chip to be in
the microjoule range. Moreover, this is the first neurorobotic
system to incorporate a force-torque sensor.

II. METHODOLOGY

We first develop a simulation of the robotics setup, train
the neural network based controller with spiking-RL using
Pytorch, port the network to neuromorphic hardware, and
finally run the trained policy on the real robot, applying var-
ious techniques to address the Sim2Real gap. A visualization
of these steps is shown in Figure 1.

A. Simulation Setup

The setup is simulated within the Neurorobotics Platform
(NRP) [16], developed as part of the Human Brain Project
[42] and based on ROS [43] and Gazebo [44]. A robotic arm
with 7 DOF mounted to a table is modelled. The end-effector
consists of a cylindrical peg with a flat end and a 6-axis FT
sensor. The table consists of a board with a circular hole.
The peg can fit in the hole with a clearance of ≈ 1 mm,
and is initialized as per a Gaussian distribution centered on
the hole with σ = 2 cm. This setup closely resembles the
one used by previous teams (i.e. [34]). The setup is shown
in Figure 2. The full details of the simulation setup and
underlying programming have been outlined in a separate
complimentary publication [45]. It primarily explores the
implementation of RL within the NRP.

B. Reinforcement Learning

The simulated robotic arm is trained to find the hole
using the spiking reinforcement learning technique described
in [46]: a Population-encoded Spiking Actor Critic method
(PopSAN). We base our state/action convention on that
previously used by other teams in non-SNN works [37]. The
state space consists of [x⃗, θ⃗, F⃗ , τ⃗]: position, angle, forces and

torques (relative to the end-effector). These are encoded into
spikes using population encoding, in which neurons represent
discrete real numbers. A continuous input can be encoded
through multiple neurons spiking in various combinations. To
arrive at this, in our case the spiking actor network was tuned
such that each of the 13 dimensions of the state space were
encoded by 10 neurons (for a total of 130). The policy returns
an action consisting of [x⃗, θ⃗]: a new target cartesian position
and angle for the end-effector (returned as spikes, and then
decoded into 6 real values for the low-level controller2). Each
of the values in the action space is similarly represented by
10 neurons.

The network connected to the population-encoded neurons
was a fully connected SNN composed of Leaky Integrate
& Fire (LIF) neurons arranged into layer sizes: 130 ×
256× 256× 60, and was implemented using Intel’s NxSDK
software library [5]. The critic networks are fully connected
ANNs with ReLU activation functions for the hidden layers
and hyperbolic tangent activation functions for the output
layer. Both Q-networks had sizes 19 × 256 × 256 × 1. For
further details regarding the networks and parameters used
refer to [46].

After experimenting with a number of reward functions for
RL, we settled on the following dense engineered reward:

R = w1||fd − f ||2 + w2||τd − τ ||2 + w3||zd − z||2 (1)

Here fd, τd, zd are the desired force, torque, and depth.
Similarly f, τ, z are the measured values for these three
quantities. The weights w allow us to adjust the importance
we assign to each of these terms. Recall that the goal is to
learn insertion based on the force-torque profile experienced
by the end-effector. This is the motivation behind the first
two terms. The third term serves to quickly teach the arm to
remain on the table. Without this term the number of training
episodes becomes impractically large.

For our purposes, we take fd and τd to be zero (this en-
courages a gentle insertion with minimal forces and torques).
zd is set to be −0.07 m — the bottom z coordinate of the hole.
The w terms are heuristically adjusted based on the resulting
behaviour. Explicitly, assigning high weight to the force and
torque terms (effectively penalties, with fd = τd = 0) makes
the arm hesitant to touch the table. Conversely, assigning
these terms low weight can lead to erratic behaviour and
dangerous forces that could damage the real set-up. For the
z term, high weight leads to less exploration in favour of
simply pushing down, and low weight leads to indifference
to the actual insertion. We set weights w⃗ = [0.05, 0.05, 0.9].

C. Neuromorphic-Hardware-in-the-Loop

The policy is initially trained on an SNN simulated in
PyTorch. Simultaneously, SNNs with the same architecture
are defined in the corresponding frameworks for different
neuromorphic hardware platforms (NxSDK for Loihi 1 and

2 Notice that even though the robot has 7 DOF, the policy does not control
the nullspace as it is not deemed relevant to the task. The nullspace could
be used in future works to optimize other metrics, such as energy efficient
joint control, but this was out of the scope of this project.

Fig. 1: Learning and inference approach. HIL refers to ‘Hardware-In-Loop”. An in-depth look at the third step can be found
in Figure 4.

Fig. 2: Neurorobotics simulation setup.

LAVA3 for Loihi 2 [47]). The trained weights can then
be loaded onto the equivalent networks. The models may
differ, as Loihi uses 9-bit precision values to describe the
synaptic weights and neuron states, while the simulation
allows for full precision values (64-bit floats). However, the
differences were found to be negligible for this application.
More specifically, we used two Intel Loihi 1 research chips
in a USB-stick form factor system called Kapoho Bay [48]
(seen in Figure 3), and a single Loihi 2 chip (Oheogulch)
accessed remotely through the Intel Neuromorphic Research
Cloud.

D. Real Robot Setup

We use a KUKA IIWA arm with 7 DOF4. As in the
simulation the end-effector consists of a solenoidal peg
attached to a 6-axis FT sensor. The box containing the hole
is 3D printed, as is the end-effector peg. An image of the
experimental setup is shown in Figure 3.

The spiking neural network trained in Section II-B controls
the robot by providing a series of target poses. These targets

3https://github.com/lava-nc
4See footnote 2

can be connected through a smoothed path for reducing
jerk in the motion, finally the path can be fed to a low-
level impedance controller. The connection between these
components is depicted in Figure 4.

Fig. 3: Demonstrator setup with a KUKA IIWA 7 R800 robot
and attached cylindrical peg, black target box with hole, and
Kapoho Bay containing two Loihi chips (on the tabletop).

1) Controller: A low level compliant controller was de-
signed and implemented both for simulation as well as for the
real robot. More precisely, a Cartesian Impedance Controller
(CIC) was implemented and tuned using the methodology
outlined in [49]. The controller was implemented with the
KUKA Fast Research Interface (FRI).

2) Path Updating: Small changes in the force-torque and
positional values being measured from one moment to the
next can trigger the policy to output a vastly different action
from the previous one. Thus, the path must constantly be

Fig. 4: An overview of the communication mechanism
between the high-level neuromorphic controller running on
Loihi and the low level controller operating on the FRI.

updated as new actions are received. For the compliant
controller to accommodate smooth transitions between paths
we use a fifth-degree polynomial for our path interpolation.
This is chosen as it has been shown to reduce jerk, which, in
turn, reduces manipulator wear and improves the trajectory
accuracy and speed [50].

With the receipt of a new action from Loihi, the path is
recalculated using the current pose, current velocity, current
acceleration, and the final position (specified by the action).
The final velocities and accelerations are taken to be zero.

3) Sim2Real: To bridge the Sim2Real gap we employ
both Domain Randomization and System Identification.
These methods have been shown to work well for robotic
manipulation tasks when first training in simulation [51]. As
the real coefficient of surface friction cannot be perfectly
known (and can vary if switching end-effectors or surfaces)
we allow the coefficient to take three values within the
simulation [0.34, 0.38, 0.42]. From these, one is picked at the
initialization of each training episode. These values are based
upon repeated measurements of the real coefficient of friction
on the printed surface. Multiple values assure robustness to
variations in real surface friction [52].

Additionally, the sensor force-torque noise distribution
was characterized and employed during training. The noise
profile follows a Gaussian distribution and is modelled on
the slight changes in these values felt by the real FT sensor
when not touching any surface.

Finally, we added a scaling factor to the received target
orientations such that the amplitude of angular movements
matches those in simulation. The mismatch was mainly
due to unmodeled differences in the controller with respect
to chattering between consecutive non-adjacent orientations.

This could be acknowledge either by making the simulated
controller more closely resemble the real equivalent, includ-
ing safety measurements and interpolators to prevent actuator
damage, or by adding a component in the reward function
during training to prevent said chattering behaviour from
being learned. However, for the sake of the task at hand we
found that a simple scaling factor in the orientation provide
a simpler solution.

III. RESULTS

A. Training

The training (Figure 1, left) was run for 100 epochs, with
500 episodes and 2000 interactions each. Figure 5 shows
the training profile of 20 different random seeds in terms
of mean return value and corresponding standard deviation.
We find a 100% insertion success rate using a trained policy
(across 50 runs, where the system is deemed to have failed
if it does not insert within 30 s). Furthermore, there was
no detected performance drop after porting the policy to
real neuromorphic hardware while still using the simulated
robotic arm (Figure 1, center). Even though the models
differ slightly due to quantization effects, these differences
represent only negligible behavioural variations and still lead
to the same success rates.

Fig. 5: Learning curves showing the results of training with
20 random seeds, the mean performance and the standard
deviation.

B. Real-World Performance

When the policy is initially run on the real robot (Figure 1,
right), we find an insertion success rate of 0% (across
10 runs, where the system is deemed to have failed if it
does not insert within 30 s). After the Sim2Real techniques
(Section II-D.3) we find a 100% insertion success rate across
50 runs. Using success rate to compare the simulated and
real implementations is therefore not possible, so we instead
use the time to insertion (shown in Table I). All values are
calculated across 50 runs.

A similar median and minimum insertion time is observed.
Note that the mean real insertion time is roughly double

the simulated time. This is due to a small number of outlier
runs in which the peg has trouble navigating the complex
real friction profile and temporarily gets stuck (which also
explains the maximum insertion time discrepancy). Yet,
perfect friction modelling is not our goal, and median
insertion time on the order of a few seconds is comparable
with SotA implementations (see, for example, Figure 16 in
[36]). We now move to the energy and latency.

TABLE I: Time to Insertion

Simulation Real

Mean 3.7 s 8.4 s
Median 3.4 s 5.3 s

Minimum 2.5 s 2.2 s
Maximum 7.4 s 28.1 s

C. Latency & Energy

Measuring the latency on the Loihi chip using the state
probes we find the time profile shown in Figure 6. We find
slightly smaller latency on the Loihi 2 chip (1.5± 0.10 ms).

Fig. 6: SNN execution time on Loihi 1 measured with state
probes over 9 steps — equivalent to one inference. The total
is 1.8 ms (Table II). Pre-learning management and learning
are zero as the learning was off-line (and is additionally not
relevant for inference).

We find a per inference dynamic energy cost (removing
the background energy cost of running the hardware) of
52 ± 17 µJ. This corresponds to a few tens of milliwatts.
These results, in addition to comparisons with CPU and
GPU values, are summarized in Table II.

TABLE II: Energy and Time Profiling

Hardware
Edynamic [µJ] Latency [ms]

CPU † 3800 1.4± 0.1
GPU ∼ a few 100‡ 2.0± 0.1*

Loihi 1** — 1.8
Loihi 2 53± 17 1.5± 0.1
† CPU: 11th Gen Intel® Core™ i7-1165G7 @ 2.80GHz × 8.

‡ NVIDIA® / Pascal 256 CUDA cores @ 1300 MHz / Jetson TX2 ([53] Alg. 1 +

personal communication with author)

* NVIDIA® / Mesa Intel® Xe Graphics (TGL GT2) / GeForce MX550

** Note: Energy values are not available on Loihi 1 due to probe limitations.

IV. DISCUSSION

A. Latency & Energy

Contrasting the recorded Loihi energy values with SotA
non-neuromorphic edge computational hardware (Table II),
the potential benefits are evident. Currently, optimized edge-
hardware requires energy on the order of hundreds of µJ
per inference for similar tasks/networks [53], [54], [55],
an order of magnitude more than neuromorphic hardware.
Such hardware could therefore allow for more complex
computations on autonomous robots, as well as orders-of-
magnitude longer times between recharging. Additionally,
non-neuromorphic edge-hardware often achieves low power
consumption at the cost of latency (generally on account of
cloud communication). For instance, [54] cite latencies on
the order of hundreds of milliseconds, compared to a few
milliseconds by computing directly on Loihi (Figure 6). It
is also important to remember that Loihi is intended as a
flexible research platform and has not been optimized for
specific tasks.

Previous RL implementations of peg-in-hole (e.g. [34],
[56], [31]) generally invoke ANNs of a similar size to the
SNN introduced here. Therefore, we should expect that the
inference-time energy improvements over CPU and GPU
(Table II) apply here. Of course, inference (and computation
in general) represents only one part of the entire robotic
control system. For larger robots (10s of kg), the power
requirements of the mechanical actuators are roughly one
order of magnitude larger than the power requirements of
computation [57]. Yet for sub-kilogram robots computation
is likely to be a non-negligible source of power-consumption.
As edge-robots become smaller and the tasks we expect them
to perform become more complex, efficient compute will
become even more imperative.

The measured energy and latency results are comparable
to those reported in simulated neuromorphic use cases,
hence validating the idea that the benefits of neurorobotic
systems continue to hold when moved from simulations and
simplistic use cases to more complex real-world applications.
For example, [19] reports ≈ 200 µJ and ≈ 1 ms per inference
using a slightly larger network on Loihi 1 for simulated
robotic control. [12] run a 4-layer SNN on Loihi 1D drone
control. Although energy values are not reported, they do
find a latency of 0.05 ms per step, corresponding to an
equivalent of ≈ 0.5 ms per inference. This value may be

smaller than what we find on account of especially sparse
data (coming from a neuromorphic camera). We noted that
the latency values for CPU and GPU vary largely between
devices. Indeed, [19] cite 15 ms latency on CPU, 10 times
larger than our value. Ultimately we find similar latency
between CPU and neuromorphic hardware.

It should be noted that Table II refers to the computation
times on-chip. On account of a known I/O bottleneck in
Loihi 1 the robot-chip communication, which in theory
should be negligible, ultimately increases the latency to
≈ 16 ms. Although addressed in Loihi 2 [58], we do not have
an on-site physical chip, and therefore cannot measure the
end-to-end latency on account of the cloud-communication
cost. There is no reason, however, that the end-to-end la-
tencies should be larger than what is quoted in Table II.
We also remind the reader that the energy per inference
represents only one part of the overall energy required for
computation. Loihi currently requires significant power for
overhead operations (such as for spike I/O - handled by a
separate FPGA). These are not included, as they are expected
to be optimized with subsequent chip releases, to the point
that the inference energy is primary (as was the case for
classical chips).

B. Application Specific / Peg-in-hole

The insertion times (Table I) are comparable between
simulation and the real robot. We find quantization effects
on Loihi (previously explored by [59]) to be negligible. We
notice that, even when applying domain randomization in
simulation training to vary the friction coefficient (Section II-
D.3) the movement behaviour still differs somewhat due to
the complex friction profile between the peg and surface.
Notably, on the real surface, the peg will often initially
not move, and then jerk forward when the friction is over-
come. This jerking was not captured in simulation, although
insertion on the real robot is still successful regardless.
Velocity and acceleration limits are the standard KUKA
preset values. We do not expect varying the limits would
affect the outcome, although this would need to be explicitly
tested.

We had initially hypothesized that the arm, using the FT
sensor and ability to move in angular space, would learn
to feel the force-torque profile corresponding to being on
the edge of the hole. We find that the trained policy is
such that the angular movement is quite small (± ≈ 1° for
all three axes). This means that generally the peg is held
approximately vertical. Additionally, during the exploration
phase, the trained policy returns actions sending the end-
effector back-and-forth into the positive and negative x and
y directions (relative to the hole). Although the peg appears
to sometimes react to arriving at the edge of the hole (by
moving towards the hole centre), in a number of runs we
certainly see the peg slipping into the hole, likely by accident,
from this learned sweeping behaviour. However, in the case
where the peg only slips part-way into the hole, the slight
angular movements do appear to help it arrive at the bottom.

In a future work, it would be worthwhile exploring a larger
policy network allowing for more complex behaviour, more
robust noise modelling (to account for the above-mentioned
jerky motion), and holes at different angles to make the
sweeping motion insufficient for insertion.

C. Neurorobotic Outlook

We have demonstrated robotic insertion using a neuro-
morphic high-level controller as a proof of concept, meant
to emphasize that neuromorphic computing is no longer
simply up-and-coming, but rather sufficiently mature to move
towards tackling real robotic use cases. This implementation
is additionally intended to act as a software base for future
neurorobotic development.

Indeed, flexible research platforms such as Loihi can
already be used as test-beds and prototyping tools for current
non-research neuromorphic and mixed-signal devices with
SoTA performance5. Neuromorphic hardware also allows for
“online” and “continuous” learning unique to SNNs and
inspired by the human brain which, although found not
to be needed for successful insertion in our use case, we
nonetheless hope to explore in a future publication.

Looking forward, it is worth mentioning that current
actuators do not operate on spiking principles. With neu-
romorphic hardware and sensors already in existence, spike-
based actuators would allow for neurorobots in which energy
and latency is not lost to encoding and decoding spikes
between neuromorphic and non-neuromorphic components.
Additional research is here needed to unlock the true poten-
tial of neurorobots.

Ultimately, and as with the first RL peg-in-hole implemen-
tation, we hope that this first neuromorphic implementation
contributes to an exciting new domain of robotics and
automatization — that of neurorobotics.

CODE

Code available upon request.

ACKNOWLEDGEMENTS

The research at fortiss was supported by the HBP Neu-
robotics Platform funded from the European Union’s Horizon
2020 Framework Program for Research and Innovation under
the Specific Grant Agreements No. 945539 (Human Brain
Project SGA3).

REFERENCES

[1] Larry Greenemeier. Will ibm’s watson usher in a new era of cognitive
computing? Scientific American, November 2013.

[2] Tom B. Brown et al. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020.

[3] Vijay Balasubramanian. Brain power. Proceedings of the National
Academy of Sciences, 118(32):e2107022118, 2021.

[4] Dennis V. Christensen et al. 2022 roadmap on neuromorphic com-
puting and engineering. Neuromorphic Computing and Engineering,
2(2):022501, may 2022.

[5] Mike Davies et al. Advancing neuromorphic computing with loihi: A
survey of results and outlook. Proceedings of the IEEE, 109(5):911–
934, 2021.

5eg. DYNAP-SE, ROLLS, Innaterra, etc.

[6] A. L. Hodgkin and A. F. Huxley. A quantitative description of
membrane current and its application to conduction and excitation
in nerve. The Journal of Physiology, 117(4):500–544, 1952.

[7] John V. Arthur and Kwabena A. Boahen. Silicon-neuron design: A
dynamical systems approach. IEEE Transactions on Circuits and
Systems I: Regular Papers, 58:1034–1043, 2011.

[8] Yulia Sandamirskaya, Mohsen Kaboli, Jorg Conradt, and Tansu Ce-
likel. Neuromorphic computing hardware and neural architectures for
robotics. Science Robotics, 7(67):eabl8419, 2022.

[9] J. Parker Mitchell, Grant Bruer, Mark E. Dean, James S. Plank,
Garrett S. Rose, and Catherine D. Schuman. Neon: Neuromorphic
control for autonomous robotic navigation. In 2017 IEEE International
Symposium on Robotics and Intelligent Sensors (IRIS), pages 136–142,
2017.

[10] Guangzhi Tang, Arpit Shah, and Konstantinos P. Michmizos. Spiking
neural network on neuromorphic hardware for energy-efficient unidi-
mensional SLAM. CoRR, abs/1903.02504, 2019.

[11] Emmanouil Angelidis et al. A spiking central pattern generator for the
control of a simulated lamprey robot running on spinnaker and loihi
neuromorphic boards. Neuromorphic Computing and Engineering, 1,
08 2021.

[12] Antonio Vitale, Alpha Renner, Celine Nauer, Davide Scaramuzza, and
Yulia Sandamirskaya. Event-driven vision and control for uavs on
a neuromorphic chip. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[13] F. Paredes-Vallés, Jesse J. Hagenaars, Julien Dupeyroux, Stein
Stroobants, Ying Xu, and G.C.H.E. de Croon. Fully neuromorphic
vision and control for autonomous drone flight. ArXiv Preprint,
abs/2303.08778, 2023.

[14] Chao Bao, Tae-Ho Kim, Amirhossein Hassanpoor Kalhori, and Woo
Soo Kim. A 3d-printed neuromorphic humanoid hand for grasping
unknown objects. iScience, 25(4):104119, 2022.

[15] Chiara Bartolozzi, Giacomo Indiveri, and Elisa Donati. Embodied
neuromorphic intelligence. Nature Communications, 13:1024, 02
2022.

[16] Egidio Falotico et al. Connecting artificial brains to robots in a
comprehensive simulation framework: The neurorobotics platform.
Frontiers in Neurorobotics, 11, 2017.

[17] Alex Volinski, Yuval Zaidel, Albert Shalumov, Travis DeWolf, Lazar
Supic, and Elishai Ezra. Data-driven artificial and spiking neural
networks for inverse kinematics in neurorobotics. Patterns, 3:100391,
11 2021.

[18] Marina González-Álvarez, Julien Dupeyroux, Federico Corradi, and
Guido de Croon. Evolved neuromorphic radar-based altitude controller
for an autonomous open-source blimp. CoRR, abs/2110.00646, 2021.

[19] Travis DeWolf, Kinjal Patel, Pawel Jaworski, Roxana Leontie, Joe
Hays, and Chris Eliasmith. Neuromorphic control of a simulated
7-dof arm using loihi. Neuromorphic Computing and Engineering,
3(1):014007, feb 2023.

[20] Gintautas Palinauskas, Camilo Amaya, Evan Eames, Michael
Neumeier, and Axel Von Arnim. Generating event-based datasets for
robotic applications using mujoco-esim. In Proceedings of the 2023
International Conference on Neuromorphic Systems, ICONS ’23, New
York, NY, USA, 2023. Association for Computing Machinery.

[21] Rajkumar Muthusamy, Abdulla Ayyad, Mohamad Halwani, Dewald
Swart, Dongming Gan, Lakmal Seneviratne, and Yahya Zweiri. Neu-
romorphic eye-in-hand visual servoing. IEEE Access, 9:55853–55870,
2021.

[22] Abdulla Ayyad, Mohamad Halwani, Dewald Swart, Rajkumar
Muthusamy, Fahad Almaskari, and Yahya Zweiri. Neuromorphic
vision based control for the precise positioning of robotic drilling
systems. Robot. Comput.-Integr. Manuf., 79(C), feb 2023.

[23] Wallace Lawson, Anthony Harrison, and J. Gregory Trafton. Sigma-
delta networks for robot arm control. In Proceedings of the 2023 An-
nual Neuro-Inspired Computational Elements Conference, NICE ’23,
page 35–40, New York, NY, USA, 2023. Association for Computing
Machinery.

[24] Rasmus Stagsted, Antonio Vitale, Jonas Binz, Alpha Renner, Leon
Larsen, and Yulia Sandamirskaya. Towards neuromorphic control: A
spiking neural network based pid controller for uav. In Robotics:
Science and Systems 2020, 07 2020.

[25] Yuval Zaidel, Albert Shalumov, Alex Volinski, Lazar Supic, and
Elishai Ezra Tsur. Neuromorphic nef-based inverse kinematics and
pid control. Frontiers in Neurorobotics, 15, 2021.

[26] Alejandro Linares-Barranco, Fernando Perez-Peña, Angel Jiménez-
Fernandez, and Elisabetta Chicca. Ed-biorob: A neuromorphic robotic
arm with fpga-based infrastructure for bio-inspired spiking motor
controllers. Frontiers in Neurorobotics, 14, 2020.

[27] Ashwin Sanjay Lele, Yan Fang, Justin Ting, and Arijit Raychowdhury.
An end-to-end spiking neural network platform for edge robotics:
From event-cameras to central pattern generation. IEEE Transactions
on Cognitive and Developmental Systems, 14:1092–1103, 2022.

[28] Michael Ehrlich et al. Adaptive control of a wheelchair mounted
robotic arm with neuromorphically integrated velocity readings and
online-learning. Frontiers in Neuroscience, 16, 2022.

[29] Muhammad Aitsam, Sergio Davies, and Alessandro Di Nuovo. Neu-
romorphic computing for interactive robotics: A systematic review.
IEEE Access, 10:122261–122279, 2022.

[30] H. Brussel and J. Simons. Adaptable compliance concept and its
use for automatic assembly by active force feedback accommodations.
Proceedings of the 9th International Symposium on Industrial Robots,
pages 167–181, 01 1979.

[31] M. Nuttin and H. Brussel. Learning the peg-into-hole assembly
operation with a connectionist reinforcement technique. Computers
in Industry, 33:101–109, 08 1997.

[32] Kuangen Zhang, MinHui Shi, Jing Xu, Feng Liu, and Ken Chen. Force
control for a rigid dual peg-in-hole assembly. Assembly Automation,
37:200–207, 04 2017.

[33] B.H. Yoshimi and P.K. Allen. Active, uncalibrated visual servoing. In
Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pages 156–161 vol.1, 1994.

[34] Tadanobu Inoue, Giovanni De Magistris, Asim Munawar, Tsuyoshi
Yokoya, and Ryuki Tachibana. Deep reinforcement learning for high
precision assembly tasks, 2017.

[35] Cristian C. Beltran-Hernandez, Damien Petit, Ixchel G. Ramirez-
Alpizar, and Kensuke Harada. Variable compliance control for robotic
peg-in-hole assembly: A deep-reinforcement-learning approach. Ap-
plied Sciences, 10(19):6923, oct 2020.

[36] Monica Sileo, Nicola Capece, Monica Gruosso, Michelangelo Nigro,
Domenico D. Bloisi, Francesco Pierri, and Ugo Erra. Vision-enhanced
peg-in-hole for automotive body parts using semantic image segmen-
tation and object detection. Engineering Applications of Artificial
Intelligence, 128:107486, 2024.

[37] Jing Xu, Zhimin Hou, Zhi Liu, and Hong Qiao. Compare contact
model-based control and contact model-free learning: A survey of
robotic peg-in-hole assembly strategies. CoRR, abs/1904.05240, 2019.

[38] Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza. Deep drone acrobatics.
CoRR, abs/2006.05768, 2020.

[39] Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller,
Vladlen Koltun, and Davide Scaramuzza. Learning high-speed flight
in the wild. Science Robotics, 6(59):eabg5810, 2021.

[40] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,
Vladlen Koltun, and Marco Hutter. Learning robust perceptive
locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

[41] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias
Müller, Vladlen Koltun, and Davide Scaramuzza. Champion-
level drone racing using deep reinforcement learning. Nature,
620(7976):982–987, Aug 2023.

[42] Alois Knoll and Mark-Oliver Gewaltig. Neurorobotics : A strategic
pillar of the human brain project. pages 35–39. Science/AAAS Custom
Publishing Office, 2016.

[43] Morgan Quigley et al. Ros: an open-source robot operating system. In
2009 ICRA Workshop on Open Source Software, volume 3, 01 2009.

[44] N. Koenig and A. Howard. Design and use paradigms for gazebo, an
open-source multi-robot simulator. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

[45] Camilo Amaya and Axel von Arnim. Neurorobotic reinforcement
learning for domains with parametrical uncertainty. Frontiers in
Neurorobotics, 17, 2023.

[46] Guangzhi Tang, Neelesh Kumar, Raymond Yoo, and Konstantinos P.
Michmizos. Deep reinforcement learning with population-coded
spiking neural network for continuous control, 2020.

[47] Garrick Orchard et al. Efficient neuromorphic signal processing with
loihi 2. In 2021 IEEE Workshop on Signal Processing Systems (SiPS),
pages 254–259, 10 2021.

[48] Mike Davies et al. Loihi: A neuromorphic manycore processor with
on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[49] A. Albu-Schaffer, C. Ott, U. Frese, and G. Hirzinger. Cartesian
impedance control of redundant robots: recent results with the dlr-
light-weight-arms. In 2003 IEEE International Conference on Robotics
and Automation (Cat. No.03CH37422), volume 3, pages 3704–3709
vol.3, 2003.

[50] S. Macfarlane and E.A. Croft. Jerk-bounded manipulator trajectory
planning: design for real-time applications. IEEE Transactions on
Robotics and Automation, 19(1):42–52, 2003.

[51] Leon Sievers, Johannes Pitz, and Berthold Bäuml. Learning purely
tactile in-hand manipulation with a torque-controlled hand, 04 2022.

[52] Lilian Weng. Domain randomization for sim2real transfer. lilian-
weng.github.io, 2019.

[53] Seyyidahmed Lahmer, Aria Khoshsirat, Michele Rossi, and Andrea
Zanella. Energy consumption of neural networks on nvidia edge
boards: an empirical model. In 2022 20th International Symposium on
Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks
(WiOpt). IEEE, September 2022.

[54] Jie Tang, Shaoshan Liu, Liangkai Liu, Bo Yu, and Weisong Shi.
Lopecs: A low-power edge computing system for real-time au-
tonomous driving services. IEEE Access, 8:30467–30479, 2020.

[55] Lucas Martin Wisniewski, Jean-Michel Bec, Guillaume Boguszewski,
and Abdoulaye Gamatié. Hardware solutions for low-power smart
edge computing. Journal of Low Power Electronics and Applications,
12(4), 2022.

[56] Jianlan Luo, Eugen Solowjow, Chengtao Wen, Juan Ojea, and Alice
Agogino. Deep reinforcement learning for robotic assembly of mixed
deformable and rigid objects. pages 2062–2069, 10 2018.

[57] Navvab Kashiri et al. An overview on principles for energy efficient
robot locomotion. Frontiers in Robotics and AI, 5, 2018.

[58] Intel. Intel advances neuromorphic with loihi 2, new
lava software framework and new partners. (available at
https://www.intel.com/content/www/us/en/newsroom/news/intel-
unveils-neuromorphic-loihi-2-lava-software.html), 2022.

[59] Mahmoud Akl, Yulia Sandamirskaya, Florian Walter, and Alois Knoll.
Porting deep spiking q-networks to neuromorphic chip loihi. In Inter-
national Conference on Neuromorphic Systems 2021, ICONS 2021,
New York, NY, USA, 2021. Association for Computing Machinery.

