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Abstract— In this paper, we introduce a knowledge-based
Programming by Demonstration (kb-PbD) paradigm to facili-
tate robot programming in small and medium-sized enterprises
(SMEs). PbD in production scenarios requires the recognition
of product-specific actions but faces challenges in the lack of
suitable and comprehensive datasets, due to the large variety
of involved hand actions across different production scenarios.
To address this issue, we utilize standardized grasp types as the
fundamental feature to recognize basic hand movements, where
a Long Short-Term Memory (LSTM) network is employed
to recognize grasp types from hand landmarks. The product-
specific actions, aggregated from the basic hand movements, are
formally modeled in a semantic description language based on
the Web Ontology Language (OWL). Description Logic (DL) is
used to define the actions with their characteristic properties,
which enables the efficient classification of new action instances
by an OWL reasoner.

The semantic models of hand actions, robot tasks, and work-
cell resources are interconnected and stored in a Knowledge
Base (KB), which enables the efficient pair-wise translation
between hand actions and robot tasks. For the reproduction
of human assembly processes, actions are converted to robot
tasks via skill descriptions, while reusing the action parameters
of involved objects to ensure product integrity. We showcase
and evaluate our method in an industrial production setting
for control cabinet assembly. Demonstration video available at:
https://kb-pbd.github.io/.

I. INTRODUCTION

Small and medium-sized enterprises (SMEs) often need to
adapt their products to changing customer demands. How-
ever, the traditional industrial robot programming methods
are designed for large-scale production and require expert
knowledge in the automation domain. They are thus less
suitable for small-lot production in SMEs, where the robots
need to be frequently re-programmed to reflect product
changes or variants. Current approaches address this problem
with the introduction of intuitive graphical user interfaces
(GUIs), such as Rafcon [1] or our own solution from
previous work [2]. Such GUI-based methods allow the user
to compose a sequence of robot tasks for product reconfigu-
ration. Nevertheless, the manual process of constructing task
sequences can be time-consuming and requires knowledge
in working with such systems.

Programming by Demonstration (PbD) with passive ob-
servation stands out as the most intuitive approach in robot
programming, which enables the operator to perform the
demonstration in a high Degree of Freedom (DOF) us-
ing their body and requires almost no extra training [3].
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Fig. 1: Concept of our kb-PbD paradigm with the industrial
use case of control cabinet assembly. For the correct repro-
duction with robots, the product-specific actions have to be
recognized and linked to the robot skills.

Different approaches have been introduced in recent years
for manufacturing tasks such as Peg-in-hole or Slide-in-
the-groove [4]. However, these methods focus on teaching
kinematics or policies for individual assembly operations,
whereas product reconfiguration at SMEs requires the gen-
eration of robot task sequences.

In flexible manufacturing systems, skills are defined as
parameterizable, executable function blocks that provide spe-
cific functionalities [5]. For example, an InsertTerminalBlock
skill offers the product-specific functionality of inserting
terminal blocks onto DIN rails in a control cabinet assembly
process as depicted in Fig 1. Such skills possess distinct
characteristics across different manufacturing scenarios, and
their parameterization is critical for ensuring safe and correct
production that satisfies the product configuration, which in
the case of the InsertTerminalBlock skill, are the specific type
of terminal block and its installation positions on the DIN
rail. Notably, humans can also perform actions analogous to
the InsertTerminalBlock skill with equivalent functionality in
production. Consequently, in this work, we extend the skill
definition to encompass the human action domain. Within
this concept, we address the challenges in PbD for SMEs by
categorizing the product-specific human actions as skills, and
the correct parameterization for robot tasks to fulfill product
specifications.

Current vision-based action recognition methods require
training on dedicated video datasets [6]. However, existing
datasets, e.g., presented in [7], only involve everyday activi-
ties and are not directly applicable to industrial contexts, such



as recognizing an InsertTerminalBlock action. A comprehen-
sive dataset for hand actions in manufacturing settings is still
missing, due to the large variety of product-specific hand
actions across different production scenarios. In addition,
SMEs often lack the expertise required for data collection
and annotation in their production environments, which
further limits the applicability of current methods. Despite
the manifold hand action types in production, the human
grasps exhibit recurring shapes that can be categorized within
a grasp taxonomy [8], facilitating the generalization of the
vision-based action recognition across different production
scenarios. Furthermore, the characteristics of the human
grasps described in the grasp taxonomy are useful for robot
task parameterization.

In this work, we propose a knowledge-based Program-
ming by Demonstration (kb-Pbd) paradigm to facilitate robot
programming in SMEs. We showcase the usability of the
proposed method within an industrial assembly setting for
control cabinet production. Our main contributions in this
work can be summarized as: a) A hand action recognition
method is proposed and implemented utilizing features of
grasp type and hand velocity, saving the effort for collection
of the dedicated datasets for product-specific hand actions;
b) We semantically modeled hand actions in Web Ontology
Language (OWL) incorporating task-level action properties.
The product-specific actions are defined in logical expres-
sions with restrictions on action properties, allowing the auto-
matic classification with OWL reasoner; c) Robot executable
tasks are efficiently constructed and parameterized from
the product-specific hand actions with their functionality
description.

II. RELATED WORK

PbD for industrial use cases often requires safe and robust
reproduction using available robot skills, which involves the
recognition of product-specific actions and the reproduction
at a robot-centric task level. [9] introduced a task-level PbD
(TLPbD) with the kinesthetic teaching of a robot, resulting
in significant efficiency gains compared to a conventional
GUI-based programming method. The skill recognition is
enabled by utilizing the Planning Domain Definition Lan-
guage (PDDL) for skill descriptions, which reasons under
the closed-world assumption.

Web Ontology Language (OWL) is often used for knowl-
edge representation, but reasons under the open-world as-
sumption. Ramirez et al [10] utilized semantic logical expres-
sion in Description Logics (DL) to define human activities,
enabling the automatic classification of task-related actions
by an OWL reasoner. In their following work [11], the OWL
rule-based method is validated for teaching robots new skills
for industrial tasks such as sorting fruits. Within their works,
only action features regarding hand velocities and distances
to objects are used to implement a compact perception
pipeline. In the scope of this paper, we aim to integrate grasp
recognition to expand hand action properties. In addition,
OWL has been investigated in various approaches for knowl-
edge representation in industrial assembly scenarios [2], [12].

Fig. 2: Overview of the kb-PbD paradigm with a perception
pipeline for hand action recognition from RGB-D images
(left). The KB semantically encodes and stores the hand
action instances, within which a reasoning engine classifies
the skill-based actions via logical inference (top right). Robot
tasks are constructed from hand actions and executed in the
workcell (bottom right).

In this paper, we further investigate the semantic modeling
of production-related hand actions and approaches to convert
them into robot tasks for reproduction using OWL.

Vision-based action recognition has advanced rapidly in
recent years [13], where most of the methods rely on training
on the dedicated dataset for the specific hand actions [7],
[14]. However, recognizing product-specific actions (skills)
in industrial assembly is still challenging due to the difficulty
in collection and annotation of datasets, and their poor
generalization across different products. For example, [14]
presented a dataset with long action sequences from the
assembly processes of toy trucks. Although they proved the
generalization of this method to new toy types, the dataset
may not be directly used for other types of products.

In addition to the direct recognition of specific actions
from video sequences, general features from hand-object
interaction, such as hand landmarks, grasp types and contact
areas, allow for action recognition across different scenarios
and even at internet scale [15]–[17]. As humans deploy the
same grasp types in different tasks, studies have focused
on the comprehensive description and categorization using
the grasp taxonomies [8], [18], which have been utilized
for generating robust robot grasps [19], [20]. The hand
action dataset from [7] collected hand landmarks in high
precision using magnetic sensors and conducted an analysis
on their frequency in everyday activities. Similarly, [15]



Fig. 3: An example for action recognition from the RGB-D video. We utilize grasp types and hand velocities (with a
threshold ϵ set to 0.3 m/s) as criteria to instantiate the PrimitiveActions in the KB. A PickAndPlaceAction is composed upon
the primitive ones and inferred on the product-specific type defined in DL expressed in 2 on action parameters.

deployed MediaPipe [21] to generate hand landmarks in an
autonomous annotation pipeline for various human activities
in the kitchen, which offers valuable insights on action
recognition that may be transferred to industrial assembly.

In our earlier concept paper [22], we introduced the
concept of grasp type recognition utilizing hand landmarks
generated with MediaPipe from RGB images only. In this
work, we extend our concept paper with the implementation
and evaluation of the kb-PbD paradigm, where a perception
pipeline with grasp recognition is combined with a seman-
tic action model for the efficient recognition of product-
specific actions. The extended approach is further applied
to the industrial use case of equipping wiring cabinets in a
prototypical workcell.

III. CONCEPT

An overview of our kb-PbD paradigm is depicted in
Fig. 2. Within the perception component (see Sec. III-A), two
modalities are used to monitor hand action properties: a Long
Short-Term Memory (LSTM) network for grasp type recog-
nition using hand landmarks generated from Mediapipe [21],
and a hand tracking module to calculate hand pose and
hand velocity from an RGB-D video. Changes in grasp
types and hand velocity trigger the generation of new actions
through a Finite State Machine (FSM). A Knowledge Base
(KB), using a GraphDB1 repository, persistently stores the
semantic knowledge encoded in the Web Ontology Language
(OWL). This includes the domains of the hand actions (see
Sec. III-B), as well as the workcell, and the robot tasks
introduced in our previous work [23]. During the perception
phase, the KB is populated with new action instances and
their associated properties, such as hand pose, grasp types,

1https://www.ontotext.com/products/graphdb/

and interaction objects. Within the semantic model of hand
actions, product-specific actions are defined with restrictions
on action properties, enabling the automatic classification
of new action instances by an OWL reasoner. As our KB
follows a full materialization approach, derived facts are
again persistently stored in the semantic repository and are
made available for subsequent querying. For robot-based
reproduction of actions (see Sec. III-C), robot tasks are
pair-wise translated from the human actions using SPARQL
queries (SPARQL Protocol and RDF Query Language). A
semantic skill model establishes the semantic link between
the robot tasks and the human actions that share the same
functionality in production, which further enables task pa-
rameterization through the reuse of action parameters to
satisfy product configurations. The converted processes can
then be executed by the semantic manufacturing execution
system (sMES) [23] utilizing the resources in a given robot
workcell.

A. Perception

This section introduces how basic hand actions are recog-
nized from an RGB-D video and how the high-level actions
are composed upon them.

Within the perception pipeline, the grasp type recogni-
tion serves as the foundation for tackling the challenge of
recognizing diverse hand actions across various production
scenarios. We consider the grasp types within hand actions
as time series data and train an LSTM on the dataset of hand
landmarks for grasp recognition. Mediapipe [21] is used to
generate 2.5D hand landmarks with 21 joints as shown in
Fig. 2.

During the dataset collection of hand landmarks, the
operator performs a single grasp type while holding product
parts or tools in hand for 2000 frames in front of the camera.



Fig. 4: Overview of partial ontologies within our semantic KB. The action ontology contains the semantic model of
PrimitiveActions and CompositeActions. The product-specific actions are defined as SkillBasedActions using Description
Logic (DL) and can be automatically classified from general PickAndPlaceAction. The skill ontology interconnects the
action and the tasks for pair-wise task construct, where the objects inside the workcell are used for parameterization.

For example, the dataset for grasp type “SmallDiameter”, as
depicted in Fig. 9b, is recorded with a screwdriver held in
hand. Since each dataset only contains a single grasp type,
the manual annotation on each frame is not needed. The
dataset is then trained on the standard LSTM model from
TensorFlow2 to classify the grasp types with a time series
length of 30 frames. The compact yet robust 8-layer LSTM
model achieved a 96.7% recognition rate on the test set and
an average Frames per Second (FPS) of 15, deployed on
a computer equipped with an Intel i7-9850H CPU and an
Nvidia Quadro T2000 GPU.

A hand tracking module locates the hand position in the
RGB-D image and calculates the hand orientation from the
normalized hand landmarks. The hand pose in the world
coordinate system is further used for the calculation of the
hand velocities.

The grasp types and the hand velocity serve as the key
properties to identify the basic hand actions, defined as
PrimitiveActions in this work. Partial processing result of
an RGB-D video during assembly is shown in Fig. 3 for
illustration. A hand action finite state machine (FSM) is
used to generate new PrimitiveActions of Grasp, Move, Hold,
Release and Idle, each defined as states within the FSM. For
example, a Grasp is initiated when the grasp type changes
from NoGrasp to Tripod, while a Move action is generated
when the hand velocity exceeds a predefined threshold ε
of 0.3m/s. Interacted objects maintain crucial contextual
information on specific hand actions and are also detected by
calculating the nearest object to hand. While object detection
does not remain the focus of the work, the objects are placed
in a calibrated tray with their positions semantically stored
in the workcell description.

A sequence of PrimitiveActions further aggregates to form
a PickAndPlace action, where the Grasp and Release actions
represent the start and the end of it as shown in the second
layer of action in Fig.3. The generated hand action sequence,
along with associated action-related properties, e.g. grasp
types, hand poses, and interacted objects, is then inputted into

2https://www.tensorflow.org/api_docs/python/tf/
keras/layers/LSTM

the semantic model within the Knowledge Base for instantia-
tion. Until this step, only general actions without production
context are recognized and will be further classified within
the semantic action model.

B. Semantic hand action model

This section introduces the semantic hand action model
within our Knowledge Base and the inference of the product-
specific actions from the general actions using the OWL
reasoner.

The perceived actions are stored in the KB as new OWL
instances within the hand action model, categorized under
two classes as shown in Figure 4: a PrimitiveAction class
containing subclasses of Grasp, Move, Hold and Release, and
a CompositeAction class containing subclasses of a general
PickAndPlace action and other SkillBasedActions.

The PrimitiveActions are instantiated in the ontology and
directly linked to the action-level parameters of:

• Grasp types, that are semantically modeled as instances
under 3 enumerated classes (power, intermediate, and
precision), while the properties within the grasp taxon-
omy [8] are preserved, e.g. the width, handling weight,
etc.

• Hand poses defined by the hand position [x, y, z] and
orientation [α, β, γ] in the world coordinate system.

• Interacted objects including the parts or tools used
for production that are stored as OWL instances in the
semantic workcell model.

The characteristic properties of each grasp type may offer
complementary context for the robot task parameterization
during the reproduction. For example, the grasp types like
SmallDiameter or Tripod, both can be performed in a
ScrewTighten action but indicates different torque values
applied to the screw.

The CompositeActions are modeled on a higher layer
and consist of a sequence of the PrimitiveActions. The
PickAndPlace action, considered as the general type of
CompositeActions, is defined using the Description Logic
(DL) in (1) without explicit restrictions on action parameters.
The parameters of the PrimitiveActions are further extracted



Fig. 5: An example of pair-wise translation from a hand
action to a robot task that is semantically connected to the
skill domain. The construction and the parameterization of
robot tasks are enabled by a SPARQL query (Listing 6),
which efficiently reuses the action parameters (marked in
red) to ensure the correct reproduction.

and reused for parameterization of the PickAndPlace. For ex-
ample, the parameters of hasPickObject and hasPlaceObject
properties are inherited from the parameters of performsOn
in the Grasp and Release actions as shown in Fig 3.

PickAndPlace : −
∃hasPickObject(GeneralObject) (1)
∧ ∃hasPlaceObject(GeneralObject)

Different from general PickAndPlace actions, product-
specific actions categorized under SkillBasedAction class are
distinguished by their unique action parameters, allowing
them to be modeled as OWL defined class. In OWL, defined
classes can be modeled with necessary and sufficient condi-
tions with restrictions on properties. Instances that fulfill the
conditions will be classified to the defined class by the OWL
reasoning engine. In our system, product-specific actions are
modeled as defined classes under the general PickAndPlace
action with restrictive conditions on the action properties.
For our use case in control cabinet assembly, the product-
specific action InsertTerminalBlock is modeled as a defined
class with restrictive conditions on the types of the interacted
objects, as expressed in DL (2). Consequently, when a human
picks up a terminal block and places it on the DIN rail,
this PickAndPlace action is automatically classified as a
InsertTerminalBlock action by the OWL reasoner, i.e. OWL2
DL Optimized [24] in our system.

InsertTerminalBlock : −
∃hasSuperClass(PickAndPlace)

∧ ∃hasPickObject(TerminalBlock) (2)
∧ ∃hasPlaceObject(DinRail)

C. Robot reproduction

This section introduces the process of converting a hand
action sequence into a semantic sequence of robot tasks that
can be executed on robots for production.

Skills, as defined in [2], are parameterizable program
blocks that fulfill certain functionalities on the production.
For the efficient reuse of skills, robot tasks are semantically
modeled to represent individual assembly steps within the

INSERT {
#construct and parameterize a new robot task
$newRobotTask rdf:type ?TaskType;

?hasTaskParameter ?skillRelatedParameters .
} WHERE {

# find the skill type performed by the given action
$handAction rdf:type ?actionType.
?actionType rdfs:subClassOf action:skillBasedAction;

skill:performsSkill ?skillType.
# find the task type requiring the same skill
?taskType skill:requiresSkill ?skillType.
# find action parameters related to the skill
$handAction ?hasActionParameters ?actionParameters .
?actionParameters rdf:type skill:hasObjectParameters .
# find template task parameters
?taskType ?hasTaskParameters ?taskTemplateParameters.
# Pairing of parameters of action and task
?actionParameters rdf:type ?parameterTypes;
?taskTemplateParameters rdf:type ?parameterTypes. }

Fig. 6: A pseudo SPARQL query for construction and
parameterization of a robot task from a given human action.
The task type is determined by skill-level matchmaking with
the action. The task reuses the action parameters for correct
reproduction.

production process. Each task requires the corresponding
skill implementation on robots for execution. The tasks and
the skills are semantically connected with the OWL proper-
ties of requiresSkills, which allows a semantic Manufacture
Execution System (sMES) [25] to dynamically execute the
tasks on the workcell components that offer the required
skills. For example, a GraspTask can be executed on any
robot grippers within the workcell that possess the Grasp-
Skill, which is a Robotiq 2f-85 Gripper in the given workcell
as shown in Fig.7. Furthermore, high-level tasks, such as the
general PickAndPlace task or product-specific tasks, can be
composed from a sequence of basic ones.

Product-specific hand actions, which share the same func-
tionalities as the robot skills, can be semantically linked
through an OWL property of performsSkills. This property
further enables the pair-wise match between hand actions and
robot tasks as shown in Fig.5. Thus, the translation of the
hand action sequence to a robot task sequence is enabled.

The reproduction that satisfies the product integrity re-
quires the generation of robot tasks with the correct task
types and the correct parameterization. During the action
recognition, the action parameters, such as interacted objects,
are also stored as OWL instances in our KB, allowing them
to be efficiently reused for the parameterization of robot
tasks. The parameters essential for the product configura-
tion are defined under the skill domain in the ontology to
distinguish them from the general ones. For example of
the InsertTerminalBlock, parameters like the specific type of
terminal blocks and the DIN rail to be installed, are most
essential for configuring a specific type of control cabinet.
The construction and parameterization of robot tasks are
enabled through a SPARQL Query (Listing 6) that iteratively
performs the following steps: (1) takes an instance of the
hand action each time and identifies the skill performed by
the human on current step; (2) determine the corresponding
robot task type associated with the skill type; (3) create a new



Fig. 7: Workcell setup for evaluation with the industrial use
case of control cabinet assembly.

task instance from the task template of this type; (4) identifies
the reusable action parameters that are relevant for product
configuration and replace the task template parameters with
them.

IV. EXPERIMENTS & DICUSSION

The reproduction within our proposed kb-PbD requires
the semantic model of robot tasks and the implementation
of the product-specific robot skills, which makes a direct
comparison with other PbD methods difficult. However, the
robot tasks are executed with the skills that yield deter-
ministic results with the correct parameterization, which
further depends on the correct recognition of the product-
specific hand action. Thus, we focus on the evaluation of
the usability of our knowledge-based action recognition with
two experiments. In the first experiment (see IV-A), we
compare our knowledge-based action recognition with a
baseline method using a cnn+lstm network proposed by [26]
in an industrial setting, as shown in Fig 7, where the action
recognition accuracies of both methods are compared, and
the generalization for other production scenarios is discussed.
Subsequently, in the second experiment (see IV-B), we
evaluate the modeling capability of our DL rule-based action
model on a public dataset [7] with a large variety of hand
actions. In addition, a preliminary comparison of the pro-
gramming efficiency between the kb-PbD and a conventional
GUI-based programming approach is conducted in Sec. IV-
C.

A. Baseline comparison

1) Experiment setup: A robot workcell, depicted in Fig. 7,
is set up to match a real production scenario for electrical
control cabinets. As part of the workcell, a UR5 robot is
equipped with a Robotiq 2F-85 parallel gripper and offers
the primitive skills of MoveArm or Open/Close Gripper, as
well as the composite skills of PickAndPlace and Insert-
TerminalBlock. On a DIN mounting rail, different types of
terminal blocks can be installed at arbitrary positions. The
objects in the workcell are placed in the calibrated trays for

(a) (b) (c)

Fig. 8: Overview of required skills for the control cabinet
assembly process (from left to right PickAndPlace, Insert-
TerminalBlock and ScrewTighten).

(a) (b) (c) (d)

Fig. 9: Overview of involved grasp types within the hand
actions from Fig. 8 (from left to right: IndexFingerExtension,
SmallDiameter,Tripod and TipPinch).

precise robot manipulation. An Intel D415 camera perceives
the RGB-D image of the human demonstrations from an
overhead perspective. In the manual production of a control
cabinet, three distinct types of human actions are performed:
a general PickAndPlace action 8a and 2 product-specific
actions, InsertTerminalBlock 8b and ScrewTighten 8c.

Due to the lack of hand action datasets that covers the
above-mentioned hand actions, we collected our own datasets
for training our LSTM grasp recognition network within
our kb-PbD paradigm, as well as for the training of a
baseline method using a cnn-lstm network [26]. For training
the LSTM network, a dataset of hand landmarks generated
from Mediapipe is collected, which contains 4 representa-
tive grasp types involved in this production as in Fig. 9,
i.e., IndexFingerExtension 9a, SmallDiameter 9b, Tripod 9c,
Tippinch 9d, along with a NoGrasp type. For training the
cnn-lstm network from [26], an RGB-D video dataset of
human action sequences in assembly is recorded including 80
video sequences for the 3 required actions as in Fig.8 plus an
Idle action. Subsequently, both methods are evaluated within
the workcell, where an operator consequently performs an
assembly process of a control cabinet including 15 actions.
The results of action recognition are compared to manually
annotated labels of each frame in the RGB-D video.

TABLE I: Comparison of our method with a baseline
method [26] on recognition accuracy and dataset properties.

Method
Action recognition rate Dataset

Pick Insert Screw Size ReusabilityAndPlace TerminalBlock Tighten (frames)
kb-pbd 87.50% 90.13% 92.22% 8000 high
cnn-lstm 75.60% 76.74% 90.48% 7801 low

2) Result: Table I provides a comparative analysis on
the recognition accuracy and dataset properties of both
methods. Ours could recognize all 3 actions with an av-
erage accuracy of around 90%. The recognition accuracy



is calculated on whether the PrimitiveActions are generated
and parameterized on the correct RGB-D frames, since the
CompositeActions are not recognized on each frame but are
classified by the OWL reasoner upon the composition of new
PickAndPlace actions. Within this experiment, all 15 Com-
positeActions within the assembly process are recognized
with the correct parameterization. The cnn-lstm method has
similar recognition accuracy for the ScrewTighten action
compared to ours, but is less accurate on the PickAndPlace
and InsertTerminalBlock action. This could be caused by the
similar features of both actions in the RGB-D videos.

TABLE II: Result of grasp type recognition in experiment
IV-A.2. Frames with low confidence from MediaPipe are
abandoned.

Total actions Total Frame Correct Abandoned Accuracy
15 3029 2130 121 73.24%

A detailed result on the grasp recognition within our kb-
PbD paradigm using Mediapipe and LSTM is presented as in
table II. During the evaluation, the hand-camera distance was
increased compared to the distance during dataset collection,
resulting in unreliable hand landmarks generated from Me-
diapipe. To ensure the correct hand action recognition, the
hand landmarks with confidence below 50% are abandoned,
yielding an overall accuracy in grasp recognition of 73.23%.
Our action recognition method shows robustness (around
90% in TableI) against false grasp recognition for two
reasons: (1) only changes in grasp type from or to Idle would
instantiate new hand actions, where false recognized grasp
types within an action has no effect and (2) the grasp type
Idle, indicating a fully open hand, is more distinctive to other
grasp types with object in hand.

To conclude, our method resulted in higher accuracy
in recognizing product-specific actions than the cnn-lstm
method. In addition, the cnn-lstm only recognized action
types but not the action parameters, while our method also
recorded the action parameters in the KB during the recog-
nition, facilitating the efficient reuse in parameterization of
robot tasks. The dataset size reflects the implementation
effort of the method, which is similar for both methods in
this single production scenario. However, the grasp dataset
can be easily expanded and reused for other production
scenarios, whereas the cnn-lstm method requires the record-
ing of new production-specific datasets and thus, is less
applicable for SMEs. The robot reproduction of the human
assembly process of the control cabinet can be found in the
complementary video.

B. Generalization of action recognition

Our method requires manually engineered logical expres-
sions in DL to define product-specific hand actions, which
are critical for action recognition with the OWL reasoner.
In this experiment, we evaluate whether our semantic hand
action model would satisfy the need for modeling a large
variety of hand actions. Due to the lack of a comprehensive
description for product-specific hand actions in production,

we hence modeled the action types from an everyday action
dataset [7] using DL.

TABLE III: Example of everyday actions that can be suc-
cessfully modeled in our semantic model.

Skill Rescrictive properties
hasPickObject hasPlaceObject

PutTeabag Teabag Mug
CloseMilk MilkLid MilkBottel

hasPickObject hasGraspType
SqueezeSponge Sponge SmallDiameter
ScratchSponge Sponge AdductedThumb

In a total of 44 everyday actions with interacted objects
(exclude HighFive), 31 can be distinctively modeled as
defined OWL classes in the semantic model. 20 actions can
be modeled with their unique interacted objects, such as
PutTeabag or Open/CloseMilk. 11 actions may have overlap-
ping object properties but can be further distinguished with
performed grasp types. For example, the SmallDiameter and
the AdductedThumb grasps are differently performed in the
scratch/squeeze sponge actions. Some representative action
classes that are successfully defined are given in Table III.

Among the 13 actions that we failed to model, 8 actions
could only be distinguished by their characteristic fine hand
movements that are not perceivable from our current percep-
tion modalities. For example, either Sprinkle, ScoopSpoon
or Stir is performed with the Stick grasp on the spoon
handle that can only be grouped under a UseTool(Spoon)
action in our model. For the same reason, DrinkingMug is
still considered a failed model since the tilt action during
drinking differs itself from a general PickAndPlace(Mug)
action. 5 other failed actions share the duplicate action
properties but result in changes in the object’s shape or pose,
such as the FlipSponge caused the rotation of a sponge,
or the TearPaper and OpenEnvelope result in object shape
change. The underlying cause for these failures is the lack
of perception modalities. However, our framework remains
adaptable to other perception modalities and is capable of
encoding their results in our KB for recognition of the new
action properties.

C. Preliminary efficiency evaluation for PbD

To offer a preliminary overview of the efficiency of our
PbD robot programming method, we conducted a compara-
tive experiment against a conventional task-level program-
ming approach using a self-implemented GUI similar to
RAZER [27]. The operator is instructed to program four
predefined robot assembly processes of a control cabinet
with both methods. Each assembly process contains five
InsertTerminalBlock tasks including two types of terminal
blocks. In the first two processes, the installation positions
of the terminal blocks on the rail were not explicitly defined,
while in the last two, an insertion on a precise position
was required, imitating the production scenarios where the
position of the terminal block on the rail is critical for the
product configuration. Within the PbD process, the installa-
tion positions were read from the hand poses of the Release



actions after the insertion. The GUI-based approach offered
a slider element corresponding to rail positions. This design
allowed us to have a first look at programming efficiency
with and without precision considerations. A preliminary
result indicates that half of the time required for the GUI-
based programming can be saved with a PbD-based ap-
proach. However, when precise parameterization of a man-
ufacturing process is considered, GUI-based programming
may be beneficial. A more comprehensive experiment with
more participants is to be conducted in the near future.

V. CONCLUSION

Within this work, we proposed a kb-PbD paradigm with
the integration of a grasp taxonomy and semantic models,
enabling the efficient recognition of product-specific actions
across various industrial assembly processes without the
need to train the perception on dedicated datasets. The
product-specific actions are defined in DL and related to
their functionalities during production, which enables the
generation of correct assembly steps, and the reuse of action
parameters for product integrity. The reproduction of the
human-demonstrated assembly is achieved on a task level.
We further evaluated and showcased the system in a control
cabinet assembly workcell to prove its usability. Within the
current system, the grasp types are recognized for generating
new hand basic movements. In future works, this grasp-
related context can be utilized for the parameterization of
robot tasks, or even for the composition of new skills. Our
proposed method is capable of integrating new perception
modalities and aggregating the perception results in the
KB, allowing the recognition of more complicated actions.
We believe the proposed kb-PbD method can be used in
other industrial scenarios and also in service robotics for
manipulating household objects.
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