
©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
The final published version of this work is available online at: https://doi.org/10.1109/ETFA61755.2024.10710791

Flexible Modeling and Execution of Semantic
Manufacturing Processes for Robot Systems

Ingmar Kessler, Alexander Perzylo
fortiss, Research Institute of the Free State of Bavaria associated with Technical University of Munich

Guerickestraße 25, 80805 München, Germany
{ikessler, perzylo}@fortiss.org

Abstract—The potential benefits of digital transformation
for manufacturing companies include reduced costs, increased
interconnectedness, and improved adaptability. Semantic Web
technologies such as IRIs, RDF graphs, OWL ontologies, and
SPARQL requests are a well-known and actively researched ap-
proach for supporting these transformation efforts. One challenge
with this concept of knowledge augmentation is identifying where
and how to integrate such semantic technologies into a manu-
facturing system, as it could require frequent translations into
other non-semantic representations, which may entail a loss of
expressivity and other disadvantages. Therefore, this work aims
to use semantic technologies in a knowledge-augmented robotic
manufacturing platform as directly and natively as possible.
This approach includes the semantic modeling of manufacturing
processes (similarly to flow charts) and context knowledge such
as generalized mechanisms of how to apply them. All of this
semantic knowledge is instantiated and persistently stored in a
Robot Knowledge Base application, which implements mecha-
nisms to automatically derive the next robot skill invocations and
their parameter values during process execution. These semantic
description models and the Robot Knowledge Base were tested
in simulation as well as integrated into a physical mobile robot
system with an articulated arm tackling an industrial use case.

Index Terms—Knowledge-Based Robot Systems, Semantic Pro-
cess Models, Automated Mapping & Execution, OWL Ontologies,
RDF, SPARQL, Semantic Web, PPR, Tasks, Capabilities, Skills

I. INTRODUCTION

Digital transformation is a key challenge of manufacturing
companies to stay competitive in current and future mar-
kets [1]. One aspect of this is increasing automation on
both the hardware and software level to lower costs but also
to increase speed and flexibility. For robotic manufacturing
systems this means that they would no longer be isolated
and static work stations, but increasingly autonomous and
adaptive systems with a wider set of automated operations.
This requires increased interconnectedness to base decisions
on additional knowledge and understanding as well as to share
generated manufacturing knowledge with other actors in a
product’s lifecycle management.

This leads back to a general need in digital transformation
to move away from insular information systems and towards
platforms as software-defined infrastructures that connect dif-
ferent people and systems within and across the boundaries
of departments and organizations [2]. To enable both humans
and machines like this, proprietary interfaces that exchange
raw data are not enough. Instead, semantic knowledge would
be formally represented using OWL ontologies and other

Semantic Web technologies such as SPARQL, so that it can
be more easily shared and combined.

Therefore, this work presents an approach for using seman-
tic knowledge to firstly model products, processes, and re-
sources (PPR) and to secondly apply it in an automated robotic
manufacturing system. Section II gives a short overview of
other high-level control and semantic approaches for robot
systems. Section III describes how semantic manufacturing
processes and context knowledge can be flexibly modeled on
a task and object level. Section IV shows how they can be
applied during the execution of a manufacturing process to
automatically derive suitable skill invocations and parameter
values. Section V illustrates how the semantic models and the
software component were used as part of a larger robot system
in an industrial use case and Section VI concludes this work.

II. RELATED WORK

There are several approaches to high-level robot control
such as task planners, state machines, behavior trees [3], or
flow charts [4]. Data structures such as trees of world states,
data flows, local/global variables, blackboards, or databases
are varyingly suitable and common to such approaches – each
on its own or in combination with others. Furthermore, various
efforts have been made to introduce semantic representations
and technologies into these approaches and therefore the used
data structures.

Semantic technologies such as triplestores, i.e., RDF graph
databases, are designed to natively support and leverage the
advantages of semantic representations. This includes func-
tionality for (and based on) OWL ontologies such as import,
export, and persistent storage; built-in automatic inference
and consistency checks; and the semantic query and update
language SPARQL. For example, an OWL ontology uses pre-
existing or new properties based on the formally defined OWL
vocabulary and it is stored in a triplestore as a set of asserted
triple statements. Thus, the built-in reasoner of a triplestore
can automatically compute an additional set of inferred triple
statements that are also part of the set of total triple statements
that is available to any SPARQL query. Therefore, using
semantic representations without semantic technologies would
mean losing some of their practical benefits.

The combination of and translation between different repre-
sentations and technologies to achieve high-level robot control
is an established approach in research (which may also entail

https://doi.org/10.1109/ETFA61755.2024.10710791


additional effort and other issues). For example, task planners
find (in the simplest terms) a sequence of actions from an
initial state to a goal state, but whether an action is possible in
the current state may be infeasible to express and evaluate on
a purely symbolic level. Consequently, advanced hierarchical
planners [5] have found success in real-world scenarios [6] by
combining symbolic task planning and subsymbolic geometric
motion planning. Another example are state machines where
the robot system dynamically reacts to environmental changes
or signals to transition from one state (or action) to another.
There, information may be represented in a volatile and local
manner at runtime, as data flows between the states. RAF-
CON [7] is based on advanced, hierarchical state machines
and has also been used in robot systems in combination with
a separate database that acts as a central world model [8].

Such combinations and translations have also been applied
to semantic representations and technologies. For example,
a PDDL task planner has been combined with dynamic and
static OWL ontologies that have been loaded into the OWL
API by using a fluent and query interface that maps entities
between the planner perspective and the OWL perspective [9].
However, while this has shown some benefits (and current
limitations), it still requires additional effort to define the inter-
face each time and some PDDL atoms still remain outside the
mapping by the interface. Furthermore, the knowledge itself
is still modeled separately in two different representations,
PDDL queries have a lower expressivity than OWL 2 [10],
and in PDDL no new objects can be created (at runtime) [10].
As this example illustrates, the challenge of where and how
to integrate semantic technologies into robot systems to best
leverage their advantages remains.

The contribution of our work in this regard is a focus on
investigating the direct and native usage of semantic repre-
sentations and technologies to minimize the disadvantages
entailed by such combinations and translations. This is done
via our work on a flexible robotic manufacturing system where
abstract processes modeled in OWL ontologies (similarly to
flow charts) are applied to and executed in specific workcells
by using generalized mechanisms in a Robot Knowledge Base.
In line with the above, we also mainly use standard OWL
reasoning and SPARQL requests instead of, e.g., custom rule
languages, to preserve the advantages of using standardized
Semantic Web technologies in the first place. These were
deliberate choices to investigate this approach, while knowing
that they would make it (at first) less suitable, e.g., to task
planners due to (initially) lower performance among other
reasons, as this is not (yet) a focus of this approach and a
known limitation.

For the semantic representations, our approach is based
on the PPR paradigm [11], where products, processes, and
resources as well as how they relate to each other are formally
represented in OWL ontologies so that semantic manufacturing
knowledge can be abstracted and reused, with skills tying
these models together [12]. Furthermore, a semantic capability
model [13] to match production requirements with resource ca-
pabilities can enable adaptivity and automatic reconfiguration

of a manufacturing system as well as complement the PPR
models. In the context of manufacturing systems, a skill can
be defined as “a specific realization of a functionality that is
provided by a hardware or software component” [14] and acts
as an interface, e.g., in the OPC UA middleware, abstracting
the underlying implementation.

Other works utilize semantic representations and technolo-
gies in the context of automated manufacturing systems as
well, but with different focuses. For example, [15] uses a
capabilities and skills ontology to bind abstract “capability
processes” to available production resources to automatically
transform them into executable “skill processes”. That ap-
proach is based on standard-compliant extensions to an exist-
ing BPMN (Business Process Model and Notation) graphical
modeling tool and execution engine, which facilitates the
integration of production processes with typical IT functional-
ities, such as user interactions and notifications. However, the
“capability processes” are stored as BPMN-compliant XML
files instead of being modeled in ontologies and together with
likewise missing product ontologies this means that there is
no comprehensive semantic world state or relevant context
knowledge, e.g., for expressive SPARQL queries to represent
conditions in the processes. Other work [16] presents intricate
capability models for automatic matchmaking in a semantic
context of products, processes, and resources, but the results
are only shown as SPARQL queries in the graphical ontology
editor Protégé and not integrated into an automated process
execution. Likewise, [17] focuses on how PPR ontologies
can benefit decision workflows across team boundaries (e.g.,
product designers and mechanical engineers) by similarly
using capabilities and skills. However, the results are again
only shown as SPARQL queries in the graphical ontology
editor Protégé and as a linear task sequence that does not
indicate any branching or dynamic reactions at runtime.

In comparison, as stated previously, our approach focuses on
modeling abstract process models in OWL ontologies similarly
to flow charts and their automated application. During the
process execution of a robotic manufacturing system, they
are automatically mapped to the current resource configuration
in a specific workcell by generalized mechanisms in a Robot
Knowledge Base. This is one of the aspects that are intended
to enable our overall Platform Engineering approach using
knowledge augmentation and capability exploration to realize
Everything-as-a-Service (XaaS) in the manufacturing domain.
This work is an extension of the approach in our previous
work [18] with a closer focus on the semantic manufacturing
process models and their application (as part of real-world
robot systems), which were only briefly described before.

III. SEMANTIC DESCRIPTION MODELS

The semantic description models are a set of OWL on-
tologies that formally represent and relate the product to be
built, the production process that creates the product, and the
manufacturing resources that perform the process, via various
classes, properties, and instances. From the manufacturing
perspective, they provide all relevant information to enable



hasNext (from CN)4

hasNext (from PN)5

hasNextElse6

type1

2 startsWith
3 hasNext (from task)

CN = Condi�onalNode
PN = ParallelNode
FN = FinalNode

3

5

4

6

CN-2CN-1

CN-5 CN-6 CN-7 CN-8

CN-4CN-3

PN-1

FN-2

FN-1 TriggerPmTask-1

ScanEnvironmentTask-1

PanicTask-1

GoToTagTask-3 GoToTagTask-1 GoToTagTask-2ReplaceBoxTask-1 ReplaceTrolleyTask-1 ScanEnvironmentTask-2

¬unpunchedPillowInPm ∨ ¬pmOpera�onal ∨ pmRunning ∨ pmInEmergencyStop

¬boxFull

grippersInPm ∧ ¬pillowsInPm produce
dNumber <

 ta
rge

tN
umber

∧ pmOpera�
onal

¬trolleyEmpty ∨ (pillowInPm ∧ producedNumber ≥ targetNumber - 1)

else

1

Abstract

Uc1-Process-1

2

Process
producedNumber ≥ targetNumber ∨ un

else else

else

else

A�achGripperInPmTask-18 CN-9 CN-10 CN-11 CN-12 CN-13PerformAutoQcTask-1

PN-2

PickPillowFromTrolleyTask-1 DetachGripperPmTask-1

WaitTask-1

(pillowOK ∨ pillowNOK) ∧ (confidence ≥ 90 %) ∧ (consecu�veFailures < 3)

PlacePillowInBoxTask-1 

PerformManualQcTask-1

pillowRepairable ∨ (confidence < 90 %) ∨ (consecu�veFailures ≥ 3)

punchedPillowInPm ∨ ¬pmOpera�onal ∨ pmRunning ∨ pmInEmergencyStop

producedNumber ≥ targetNumber ∨ ¬pmOpera�onal ∨ pmRunning ∨ pmInEmergencyStop¬pillowOnGripper

else else

Fig. 1: OWL ontology of an abstract process with tasks, control nodes, and SPARQL-based semantic conditions to manufacture
pillows of two types. It is similar to flow charts and begins with Uc1-Process-1 and ends once CN-2’s condition is no longer
true. Task parameters and semantic effects are not shown. Only one hasNextElse edge is shown, representatively.

the execution of a manufacturing process by modeling it and
relevant context knowledge on a task and object level. In this
work, such a process model consists of a directed graph of
tasks and control nodes such as conditional, parallel, and final
nodes (see Figure 1).

This approach, which resembles flow charts, was deliber-
ately chosen, because it appeared to be the simplest one that
is feasible when using semantic technologies as natively as
possible, while others could be investigated in the future. For
example, a task planner approach may require extensive inves-
tigation into how to solve performance and other scalability
issues with the management of many world states during the
search of the state space, since the entire database repository
could be viewed as the world state. An advantage of the chosen
approach is that the conditions of conditional nodes can be
represented semantically as SPARQL queries that have access
to the entire semantic world state.

Furthermore, flow charts are well-known to and easily
understandable by application domain experts, who may not
be robotics or ontology experts, thus potentially facilitating
knowledge exchange by centering it around initially informal
flow charts. Due to their similar structure, they could then
be translated and formalized relatively easily into a semantic

Abstract process 
description

Tasks requiring 
capabilities

Object models

Specific workcell 
description

Skills implementing 
capabilities

Object positions

Executable specific 
process description

Automatic mapping 
procedure

Heterogeneous 
application 

domains

Modular 
hardware 

componentsRequirements Capabilities

Fig. 2: High-level overview of the inputs and outputs of the
automatic mapping procedure in the Robot Knowledge Base.

process model. More generally, expert knowledge is often
only stored implicitly in the heads of experienced employees
or encoded implicitly in source code or a robot’s low-level
programming. Hence, semantic approaches like the one in this
work aim to flexibly model such expert knowledge explicitly
in ontologies to make it more easily reusable and maintainable.

In this work, the focus is on the semantic descriptions
themselves, which is why they were modeled (semi)manually,
for now. Previous works [18], [19] show how GUIs and
converter tools can be used to create similar models either
manually in an intuitive way or automatically. Additionally,
the idea is that, as much as possible, semantic descriptions
are only modeled once and then shared and reused.

Semantic manufacturing processes like in Figure 1 are
called abstract processes to distinguish them from so-called
specific processes that represent one execution or production
run in a specific workcell (see also Figure 2). In an abstract
process, each task and its parameters (e.g., a robot, tool, or
object) can be referenced by multiple tasks and other entities.
Additionally, they are also abstract entities, which means that
they are essentially placeholders or unbound variables in a
template. Thus, an abstract process and each of the abstract
tasks and other instances in it can be mapped multiple times
(and potentially differently) to the current resource configura-
tion and physical object positions of a specific workcell. This is
also how entities within a process model can be deep-linked to
and make use of entities within product and resource models.

This enables an abstract process to be flexibly deployed
in multiple workcells without needing to adjust it, storing
multiple specific processes for logging purposes, and reusing
object-level task parameters within a single process, e.g.,
during multiple iterations of a loop. Multiple abstract instances
of the same object type are possible in one abstract process
and, due to a form of unique name assumption (UNA) that is



ScanEnvironmentTask-1-1

1

Specific

Uc1-Process-1

2

Process type1

2 startsWith
3 hasNext (from task)

3
DetachGripperInPmTask-1-1 A�achGripperInPmTask-1-2 PickPillowFromTrolleyTask-1-2 DetachGripperInPmT

TriggerPmTask-1-1

A�achGripperInPmTask-1-1 PickPillowFromTrolleyTask-1-1

Task-1-2 A�achGripperInPmTask-1-3 PerformAutoQcTask-1-1 PlacePillowInBoxTask-1-1 PickPillowFromTrolleyTask-1-3 DetachGripperInPmTask-1-3 A�achGripperInPmTask-1-4 PerformAuto

TriggerPmTask-1-2 TriggerPmTask-1-3

Fig. 3: Excerpt of the OWL ontology of a specific process that was mapped from its abstract process to the specific workcell
in Section V and executed on its physical robot system. The local names of the abstract and specific process are the same, but
their namespaces differ. The hasNext property constitutes a partial ordering where some tasks can be executed in parallel.

made here, they are mapped to different specific instances. If
an abstract task parameter instance has already been mapped to
a specific robot, tool, or object in the current specific workcell,
this mapping is reused by default for succeeding tasks that
share this parameter. If no such mapping exists yet, a still
unmapped specific instance is found based on the abstract
instance’s types and properties, which may include, e.g., its
parent object in the semantic scene graph or literal values.

To model and manage complex behaviors, such as the
switch between and parallel production of the pillow types in
Figure 1 (see also Section V) or more generally multiple iter-
ations of a loop, several mapping properties between abstract
and specific instances are available. wasMappedFrom is the
default mapping property and causes a mapping to be reused,
wasMappedFromArchived causes a mapping not be reused
(e.g., so that not the same but the next object on an infeed tray
is picked in the next loop iteration), and wasMappedFromFree
causes a mapping to be done from scratch and only represents
that the previous mapping existed (e.g., for logging purposes).
Such mapping property assertions can be modified, e.g., by

Skill(s)

Semantic MESSemantic MES

HW or SW 
component(s)

HW or SW 
component(s)

external system
or GUI

external system
or GUI

trigger production

optional SPARQL requests

initialize_specific_process
get_next_skills

optional SPARQL requests

set_task_status
sparql_command

Robot Knowledge
 Base (RKB)

Robot Knowledge
 Base (RKB)

Knowledge Base (KB)Knowledge Base (KB)

triplestore 
(GraphDB)
triplestore 
(GraphDB)

Robot Knowledge
 Base (RKB)

Knowledge Base (KB)

triplestore 
(GraphDB)

Fig. 4: Overview of a generalized system architecture focusing
on the RKB. The dotted line indicates that a skill may query
the RKB, but by default its parameters should suffice.

semantic effects, which are modeled as SPARQL updates, of
tasks or control nodes in an abstract process.

The hardware and software abstraction of abstract processes
is further enabled by modeling the skills that a resource
provides. Taxonomies of skill types can provide standardized
interfaces for parameterizing and calling commands of robots
and tools from different manufacturers [14]. When mapping an
abstract process to a specific workcell, each task is matched to
a skill based on the required capabilities of the task and the im-
plemented capabilities of each available skill that is provided
by the resources in the workcell. A capability could range
from simply its type to, in principle, e.g., a compatible grasp,
payload, or gripper span [13], [20]. The actual skill parameter
values for invoking it can then be automatically derived from
the task parameters and context knowledge. This is modeled
in the OWL ontologies as a SPARQL CONSTRUCT query
for each skill type that is associated with it, and therefore its
subtypes, so that the parameters can be processed and adapted.

Similarly to the skill parameters, the mapping of tasks
and task parameters is defined for each task type in the
class taxonomy using one or multiple SPARQL updates. They
are modeled as so-called SPARQL commands within the
OWL ontologies by defining, among other things, an IRI,
the request string, and a certain number of parameters [18].
This allows them to be called from inside and outside the
Knowledge Base in a common manner, e.g., by associating
these so-called mapping updates with the task types using the
same hasMappingUpdate property and giving them the same
parameters. This is one of the occasions where OWL reasoners
are useful, as they allow to automatically infer whether a
SPARQL command applies to a task instance based on whether
it was associated with any of its explicit or implicit types.

IV. AUTOMATED PROCESS EXECUTION

It is not enough to define semantic models, because they
also need to be filled with instances and processed in an
application. The Knowledge Base (KB) software component
was created to persistently store all of this semantic knowl-
edge and provide, e.g., domain-independent general services



such as sparql command or related sparql command [18] to
parameterize and execute the SPARQL commands described
in Section III. While their mechanism is general, they can
be used to call specially-defined SPARQL commands during
process execution to, e.g., add new specific object instances
detected by a perception component or object statuses by an
automatic quality check component.

Figure 4 shows a generalized system architecture diagram
with a focus on the KB. It uses the RDF4J API to transparently
connect to either an embedded or a remote triplestore, in
this case Ontotext GraphDB. The KB is independent of any
particular domain such as robotics or manufacturing. The
Robot Knowledge Base (RKB) is a subclass of the KB and
provides services useful to the robotics domain like initial-
ize specific process, get next skills, and set task status, but
it is still independent of any particular project or use case,
i.e., those are modeled semantically in the OWL ontologies
without changing its source code. Both the semantic descrip-
tion models, including the skill models for the resources, and
the RKB are independent of any particular middleware, with
OPC UA and ROS1 wrappers having been implemented for
use in a larger robot system.

Usually, the RKB primarily communicates with a Semantic
MES (sMES) component that calls the RKB’s services. Since
the sMES works on the skill level, whereas the RKB works
on the task level, these services translate between the levels
and provide the information in an appropriate format. The
sMES primarily cares about the parameterization, invocation,
and results of skills, which is why it does not receive tasks
and their parameters, but the skills and their parameters to
be invoked, with only the matching task as a reference. For
example, when the RKB performs the matching between tasks
and skills, in some cases there may not be a single matching
skill available to directly execute a supertask, but this supertask
could still be achieved by matching its subtasks to skills and

Semantic MESSemantic MES
external system 

or GUI
external system 

or GUI
HW or SW 

component
HW or SW 

component
Robot 

Knowledge Base
Robot 

Knowledge Base

looploop

break

[no next skills]

break

[no next skills]

start execution of abstract process in specific workcell

initialize_specific_process
generated

specific process IRI

get_next_skills
next skills and

their parameterizations

set_task_status to
RUNNING for oldest task

parameterize and
invoke matched skill

result
sparql_command to

update semantic wold state

set_task_status to
COMPLETED for oldest task

Fig. 5: Simplified sequence diagram of a process execution
illustrating interactions between system components over time.

invoking those. Then, the sMES never receives the supertask
and does not call set task status to set its status to running,
as this is handled implicitly by the RKB when the sMES sets
the first subtask’s status to running. Hence, skill invocations
and their parameters are not sent directly from the RKB to
low-level HW and SW components, which are resources such
as robots, tools, and sensors that provide those skills. Instead,
the skills and their parameters are received by the sMES using
a generic interface (that uses the N-Triples syntax), such that
new skill types can be added to the OWL ontologies without
changing any source code in the RKB or sMES.

As explained in Section III, an abstract process is mapped
to a specific workcell to automatically generate an executable
specific process, from which suitable skill invocations and
their parameter values can be derived for the given production
environment. The RKB performs this in the so-called automatic
mapping procedure (see Figure 2). It is not performed all at
once at the beginning of the process execution, but in the
get next skills service after each task ends to dynamically
react with both the mapping updates and the SPARQL-based
semantic conditions to events or sensor information at runtime.
For example, this can be automatic quality check results that
have been sent using the sparql command service (see also
Figure 5). Using this service also keeps knowledge in the
ontologies, instead of, e.g., putting database request strings
into other components’ source code.

Specific task instances are generated by the mapping up-
dates associated with the task types as described in Sec-
tion III. After mapping a task or its parameters, the RKB
checks whether the mapping was successful, i.e., whether the
specific task instance exists and whether it has all parameters
implied by its class. Afterwards, the task-to-skill matching
is performed. It is considered distinct from the mapping,
because, e.g., a PickAndPlaceTask could have a robot, gripper,
and object as parameters, but the robot may not provide a
PickAndPlaceSkill. In this case, a composite skill software
component could provide a PickAndPlaceSkill and the robot,
tool, and object identifiers would be its parameters [14]. After
a task or control node ends, its SPARQL-based semantic
effects are applied (see Section III). They can, e.g., update the
symbolic (or geometric) position of an object in the semantic
world state or more specifically in its semantic scene graph.

The RKB detects whether the mapping and matching have
been successful as well as whether a final node has been
encountered when no next task has been be found. If not, error
handling is performed by following the hasNextElse property
in the abstract process instead of the default hasNext property.
This enables the error handling to be modeled semantically on
the task level in the ontologies. The RKB can also be set to
retry the task parameter mapping until it succeeds, e.g., until
a perception component detects that a missing object has been
placed in the workcell or an empty infeed storage has been
refilled. If no skill could be matched to a task, the RKB first
checks if any subtasks were defined for the task in the abstract
process or a so-called task template has been associated with
its type, which defines on a semantic level how appropriate



At the beginning of the process ScanEnvironmentTask-1-1 AttachGripperInPmTask-1-1 (LP) PickPillowFromTrolleyTask-1-1 (LP)

DetachGripperInPmTask-1-1 (LP) AttachGripperInPmTask-1-2 (SP) PickPillowFromTrolleyTask-1-2 (SP) DetachGripperInPmTask-1-2 (SP)

AttachGripperInPmTask-1-3 (LP) PerformAutoQcTask-1-1 (LP) PlacePillowInBoxTask-1-1 (LP) PickPillowFromTrolleyTask-1-3 (LP)

Fig. 6: Physical environment after the first few tasks in a real-world process execution. (LP) and (SP) refer to tasks with a large or
small pillow. TriggerPmTasks have little visible change afterwards and are performed in parallel after DetachGripperInPmTasks.

subtasks could be automatically generated for it [18].
Figure 3 shows the first few tasks in a specific process

ontology that was generated from the abstract process ontology
in Figure 1 by mapping it to the specific workcell of the
use case in Section V and executing it on the physical
robot system. Unlike in an abstract process, the tasks in a
specific process constitute a partial ordering in a directed graph
without any loops or conditions and only one kind of hasNext
property. Figure 3 does not show the matched skills as well

Fig. 7: SPARQL-based visualization of the current semantic
world state in the RKB after AttachGripperInPmTask-1-3.

as the mapped abstract and specific task parameters. Overall,
a specific process ontology provides the semantic knowledge
necessary at a current point in time during a process execution
to derive suitable skill invocations and their parameter values.
Afterwards, it is a history log on the semantic level for a
specific production run, e.g., to calculate KPIs.

The simplified sequence diagram in Figure 5 illustrates how
the system components in Figure 4 interact with each other
during a process execution. First, an external system or a
human using a GUI triggers the production run in the sMES,
which in turn calls the initialize specific process service of
the RKB to set up a specific process instance and context
based on the given abstract process and specific workcell IRIs.
Afterwards, the interaction between the sMES and the RKB
loops until no more next skills can be returned. This consists
of the sMES calling the get next skills service, which triggers
the RKB’s automatic mapping procedure and returns a set
of the next skills, including their parameters and matching
tasks for reference. For each of these skills, the sMES sets
the matching task’s status to running, invokes the skill using
the given parameter values, and then waits until the skill
returns its result, e.g., success/error or an object status from an
automatic quality check. Afterwards, sMES sets the task status
to completed or error depending on the skill’s result. Once
the RKB returns no more skills to the sMES, e.g., because
a ProcessFinalNode has been encountered, the sMES ends its
process execution and the RKB sets the process’s overall status
to completed (or error).

V. USE CASE

The semantic description models and the RKB have been
used in several use cases as part of various robot systems
across multiple research projects. In the VOJEXT project,



technical partners and end users prepared and discussed rele-
vant information about several use cases to iteratively define
scenario specifications that include step-by-step descriptions
of the process in plain text as well as the interfaces between
components and the skills they provide.

The use case that was chosen to exemplify the approach
in this work is about automating the production of foam
pillows. Currently, one human worker walks between multiple
infeed storages (trolleys), workstations (punching machines),
and outfeed storages (boxes). Additionally, they have to quality
check each pillow as well as handle edge cases like any of
the trolleys being empty or boxes being full. The project
partners created together a collaborative mobile robot system
with an articulate arm, where the semantic description models
and the RKB were a higher-level part of this larger prototype
demonstrator system. The mobile robot should handle most of
the work on its own and only call a human worker when there
is an error that it cannot handle on its own or an operation
that was not yet feasible to automate like replacing full boxes,
turning around half-empty trolleys, or replacing completely
empty ones. An online video1 gives a short overview of the
VOJEXT project, a quick look at some of its other use cases,
a small introduction to the industrial end user of the chosen
use case, and a brief presentation by them about one of the
real-world process executions during an integration workshop.

In this use case, the mobile robot needs to make decisions
based on multiple data sources, sensors, and external systems
such as human gestures, an automatic quality check station,
and the punching machines’ status (operational, running,
or inEmergencyStop). The values of all of these inputs are
represented in the semantic description models that are stored
in the RKB, so that the semantic conditions in the abstract
process in Figure 1 can take them into account. Additionally,
in this use case, two pillows of different variants are produced
at the same time in an interleaved fashion. This was modeled in
the abstract process by reusing the same tasks while swapping
the subtypes of the abstract task parameter pillow instances in
each loop iteration. The selection of the right target box for the
PlacePillowInBoxTasks was modeled similarly as a semantic
effect following the PerformAutoQcTasks. It temporarily sets
the subtype of the abstract box instance to correspond to good
large pillows, good small pillows, or bad pillows of either type.
This influences the selection of the specific box instance in the
generic mapping update for the PlaceObject parameter that is
associated with the PlacePillowInBoxTask type among others.

The semantic description models and the RKB can work
on several abstraction levels. In other projects, such as [18],
low-level skills like CartesianLinearMoveSkill and Grasp-
GripperSkill along with geometric coordinates were part of
the semantic description models. In the VOJEXT project, the
partners requested that the abstraction levels of the system
components are such that the OWL ontologies work mostly
on a symbolic level with little to no geometric information.
The abstract process and semantic conditions in Figure 1

1https://youtu.be/tyyFJBAa44Q

are relatively complex for an introductory example, but were
chosen to exemplify the approach in this work, because they
cover the behavior of a robot system including several edge
cases in a real-world industrial use case. A further example of
such edge cases in addition to the previously mentioned ones
was encountered during the real-world process executions.
A punching machine may become inoperational and then,
while the system has seamlessly continued working with only
the other punching machine, may become operational again.
When this happens, the system behavior differs depending
on whether the punching machine is empty, or there is a
gripper inside it, or there is still a pillow inside it that has
either already been “punched” or not. The representation of
this persists in the semantic description models stored in the
RKB after a punching machine becomes inoperational and is
taken into account by the semantic conditions once it becomes
operational again.

Figure 6 shows the mobile robot in the physical envi-
ronment at the facility of the industrial end user after each
task during the beginning of a real-world process execu-
tion that corresponds to the specific process in Figure 3.
ScanEnvironmentTask-1-1 added new pillow instances to the
semantic scene graph. Because the robot cannot physically
unload a pillow from the tray-like grippers into a punching ma-
chine, DetachGripperInPmTask-1-1 placed the entire gripper
including the pillow in one of the punching machines, which
is supported by the semantic scene graph. TriggerPmTask-1-1
and AttachGripperInPmTask-1-2 show that while a punching
machine was working on the first large pillow, the mobile
robot could in parallel already switch production to the other
pillow type and pick a small pillow from the second trolley.
Later collaborative tasks in the process would be replacing
full boxes, replacing empty trolleys, and the manual quality
check, which is performed when the confidence level of an
automatic quality check result has been too low, a pillow has
been determined to be repairable, or there have been too many
bad pillows in a row.

During process execution, the ontologies in the RKB can
be automatically queried using SPARQL not only to enable
the execution but also to visualize the current semantic world
state. Figure 7 shows a screenshot from a viewer component
of a preexisting Web-based application that was adapted to
periodically send SPARQL queries to the RKB and use their
results to visualize the semantic scene graph of the workcell
environment. Here, it shows the current semantic world state
after AttachGripperInPmTask-1-3 equivalently to Figure 6.
There are still pillows in the trolleys, the boxes are not yet
full, a gripper and the first small pillow have been placed in
the second punching machine, and the mobile robot is now
back at the first punching machine, where it has just attached
a gripper and thereby picked the first large pillow back up.

VI. CONCLUSION

This work presented an approach for semantic PPR models
and showed their application in a real-world industrial use case
as part of a larger robot system. In particular, the focus was on

https://youtu.be/tyyFJBAa44Q


how to flexibly model semantic manufacturing processes for
different use cases in a generalized manner. This also included
semantically modeled mechanisms of how to apply these
models and a Robot Knowledge Base that implemented them,
so that suitable skill invocations and their parameter values
could be automatically derived during process executions.

A limitation of this work is that, while relevant PPR
knowledge may also need to be defined for current industrial
solutions or other approaches and intuitive GUIs or automatic
data import were part of previous work, they were not within
the scope of this work. Performance was sufficient for the
encountered use cases, but additional features such as frequent
updates to geometric positions and other approaches like task
planners would require further investigation. While reusability,
scalability, and maintainability were considered during the
modeling of the semantic descriptions, these aspect would
benefit from further investigation. Additionally, while the sim-
ilarities between abstract processes and flow charts may make
them more intuitive and SPARQL-based semantic conditions
etc. appear to be expressive, they currently require ontology
experts to write them.

Relevant future work includes improving usability related
to the mentioned limitations and linking the semantic knowl-
edge with larger outside systems, as this was one of the
main reasons to use Semantic Web technologies in the first
place. Domains other than robotics could also benefit from a
knowledge-augmented and capability-exploring platform, and
such semantic description models and an equivalent of the
Robot Knowledge Base could be a part of that.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme (H2020-DT-2019-2) under grant agreement
952197 (VOJEXT).

REFERENCES

[1] P. Leão and M. M. da Silva, “Impacts of digital transformation on
firms’ competitive advantages: A systematic literature review,” Strategic
Change, vol. 30, no. 5, pp. 421–441, 2021. [Online]. Available:
https://doi.org/10.1002/jsc.2459

[2] P. Brauner, M. Dalibor, M. Jarke, I. Kunze, I. Koren, G. Lakemeyer,
M. Liebenberg, J. Michael, J. Pennekamp, C. Quix, B. Rumpe,
W. van der Aalst, K. Wehrle, A. Wortmann, and M. Ziefle,
“A Computer Science Perspective on Digital Transformation in
Production,” ACM Trans. Internet Things, vol. 3, no. 2, pp. 1–32, 2022.
[Online]. Available: https://doi.org/10.1145/3502265

[3] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A
survey of Behavior Trees in robotics and AI,” Robotics and
Autonomous Systems, vol. 154, pp. 1–18, 2022. [Online]. Available:
https://doi.org/10.1016/j.robot.2022.104096

[4] M. Weck and R. Dammertz, “OPERA – A New Approach to Robot
Programming,” CIRP Annals, vol. 44, no. 1, pp. 389–392, 1995.
[Online]. Available: https://doi.org/10.1016/S0007-8506(07)62348-8

[5] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in 2011 IEEE International Conference on
Robotics and Automation, 2011, pp. 1470–1477. [Online]. Available:
https://doi.org/10.1109/ICRA.2011.5980391

[6] B. Kast, S. Albrecht, W. Feiten, and J. Zhang, “Bridging the Gap
Between Semantics and Control for Industry 4.0 and Autonomous
Production,” in 2019 IEEE 15th International Conference on
Automation Science and Engineering (CASE), 2019, pp. 780–787.
[Online]. Available: https://doi.org/10.1109/COASE.2019.8843174

[7] S. G. Brunner, F. Steinmetz, R. Belder, and A. Dömel, “RAFCON:
A graphical tool for engineering complex, robotic tasks,” in
2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, pp. 3283–3290. [Online]. Available:
https://doi.org/10.1109/IROS.2016.7759506

[8] P. Lehner, S. Brunner, A. Dömel, H. Gmeiner, S. Riedel, B. Vodermayer,
and A. Wedler, “Mobile manipulation for planetary exploration,” in
2018 IEEE Aerospace Conference, 2018, pp. 1–11. [Online]. Available:
https://doi.org/10.1109/AERO.2018.8396726

[9] T. John and P. Koopmann, “Towards Ontology-Mediated Planning
with OWL DL Ontologies,” in Proceedings of the 36th International
Workshop on Description Logics (DL 2023), 2023, pp. 1–14, CEUR-
WS.org/Vol-3515. [Online]. Available: https://hdl.handle.net/1871.1/
b728c56c-0f75-4e54-aaf4-7b54cd00f182

[10] S. Borgwardt, J. Hoffmann, A. Kovtunova, M. Krötzsch, B. Nebel,
and M. Steinmetz, “Expressivity of Planning with Horn Description
Logic Ontologies,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 36, no. 5, 2022, pp. 5503–5511. [Online]. Available:
https://doi.org/10.1609/aaai.v36i5.20489

[11] A. Cutting-Decelle, R. Young, J. Michel, R. Grangel, J. L. Cardinal,
and J. Bourey, “ISO 15531 MANDATE: A Product-process-resource
based Approach for Managing Modularity in Production Management,”
Concurrent Engineering, vol. 15, no. 2, pp. 217–235, 2007. [Online].
Available: https://doi.org/10.1177/1063293X07079329

[12] A. Björkelund, H. Bruyninckx, J. Malec, K. Nilsson, and P. Nugues,
“Knowledge for Intelligent Industrial Robots,” in AAAI Spring
Symposium on Designing Intelligent Robots: Reintegrating AI, 2012,
pp. 1–6. [Online]. Available: https://lup.lub.lu.se/record/4679237

[13] M. Weser, J. Bock, S. Schmitt, A. Perzylo, and K. Evers, “An
Ontology-based Metamodel for Capability Descriptions,” in 2020
25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), 2020, pp. 1679–1686. [Online]. Available:
https://doi.org/10.1109/ETFA46521.2020.9212104

[14] S. Profanter, A. Perzylo, M. Rickert, and A. Knoll, “A Generic Plug &
Produce System Composed of Semantic OPC UA Skills,” IEEE Open
Journal of the Industrial Electronics Society, vol. 2, pp. 128–141, 2021.
[Online]. Available: https://doi.org/10.1109/OJIES.2021.3055461

[15] A. Köcher, L. M. V. Da Silva, and A. Fay, “Modeling and Executing
Production Processes with Capabilities and Skills using Ontologies and
BPMN,” in 2022 IEEE 27th International Conference on Emerging
Technologies and Factory Automation (ETFA), 2022, pp. 1–8. [Online].
Available: https://doi.org/10.1109/ETFA52439.2022.9921564

[16] E. Järvenpää, N. Siltala, O. Hylli, and M. Lanz, “The development of
an ontology for describing the capabilities of manufacturing resources,”
Journal of Intelligent Manufacturing, vol. 30, no. 2, pp. 959–978,
2019. [Online]. Available: https://doi.org/10.1007/s10845-018-1427-6

[17] M. Ahmad, B. R. Ferrer, B. Ahmad, D. Vera, J. L. Martinez
Lastra, and R. Harrison, “Knowledge-based PPR modelling for
assembly automation,” CIRP Journal of Manufacturing Science
and Technology, vol. 21, pp. 33–46, 2018. [Online]. Available:
https://doi.org/10.1016/j.cirpj.2018.01.001

[18] A. Perzylo, I. Kessler, S. Profanter, and M. Rickert, “Toward a
Knowledge-Based Data Backbone for Seamless Digital Engineering
in Smart Factories,” in 2020 25th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2020, pp.
164–171. [Online]. Available: https://doi.org/10.1109/ETFA46521.2020.
9211943

[19] A. Perzylo, N. Somani, S. Profanter, I. Kessler, M. Rickert, and A. Knoll,
“Intuitive instruction of industrial robots: Semantic process descriptions
for small lot production,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2016, pp. 2293–2300.
[Online]. Available: https://doi.org/10.1109/IROS.2016.7759358

[20] A. Perzylo, J. Grothoff, L. Lucio, M. Weser, S. Malakuti,
P. Venet, V. Aravantinos, and T. Deppe, “Capability-based
semantic interoperability of manufacturing resources: A BaSys
4.0 perspective,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 1590–
1596, 2019, 9th IFAC Conference on Manufacturing Modelling,
Management and Control MIM 2019. [Online]. Available:
https://doi.org/10.1016/j.ifacol.2019.11.427

https://doi.org/10.1002/jsc.2459
https://doi.org/10.1145/3502265
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1016/S0007-8506(07)62348-8
https://doi.org/10.1109/ICRA.2011.5980391
https://doi.org/10.1109/COASE.2019.8843174
https://doi.org/10.1109/IROS.2016.7759506
https://doi.org/10.1109/AERO.2018.8396726
https://hdl.handle.net/1871.1/b728c56c-0f75-4e54-aaf4-7b54cd00f182
https://hdl.handle.net/1871.1/b728c56c-0f75-4e54-aaf4-7b54cd00f182
https://doi.org/10.1609/aaai.v36i5.20489
https://doi.org/10.1177/1063293X07079329
https://lup.lub.lu.se/record/4679237
https://doi.org/10.1109/ETFA46521.2020.9212104
https://doi.org/10.1109/OJIES.2021.3055461
https://doi.org/10.1109/ETFA52439.2022.9921564
https://doi.org/10.1007/s10845-018-1427-6
https://doi.org/10.1016/j.cirpj.2018.01.001
https://doi.org/10.1109/ETFA46521.2020.9211943
https://doi.org/10.1109/ETFA46521.2020.9211943
https://doi.org/10.1109/IROS.2016.7759358
https://doi.org/10.1016/j.ifacol.2019.11.427

	Introduction
	Related Work
	Semantic Description Models
	Automated Process Execution
	Use Case
	Conclusion
	References

