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Abstract

Strongly correlated quantum many-body systems can exhibit a wide variety of phe-
nomena, such as high-temperature superconductivity or the fractional quantum Hall
e↵ect. Numerical simulations of these systems are challenging due to the expo-
nential scaling of the dimension of the many-body Hilbert space with system size.
Tensor network methods o↵er powerful algorithms to approach these systems nu-
merically, extracting predictions and measurable signatures from candidate theories
for comparison with experiments. We discuss several algorithmic improvements for
tensor network algorithms. In particular, we propose and benchmark (i) a modified
truncation step in matrix product state simulations that enables the full benefit of
hardware acceleration by avoiding singular value decompositions. We propose and
benchmark (ii) a gradient-based approach for the optimization of tensor networks
for finite two-dimensional systems, enabling ground state search and time evolution.
Finally, we introduce (iii) a framework to incorporate nonabelian symmetries, as
well as fermionic or anyonic exchange statistics into tensor network simulations on
the tensor level.
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Zusammenfassung

Stark korrelierte Quanten-Vielteilchensysteme können eine Vielzahl von interessan-
ten Phänomenen aufweisen, wie z.B. Hochtemperatursupraleitung oder den fraktio-
nalen Quanten-Hall-E↵ekt. Die numerische Simulation solcher Systeme stellt jedoch
eine Herausforderung dar, da die Dimension des Vielteilchen-Hilbertraums mit der
Systemgröße exponentiell anwächst. Tensornetzwerk-Methoden bieten leistungsstar-
ke Algorithmen, um diese Systeme numerisch zu untersuchen, und aus Kanditaten ei-
ner Theorie des Systems Vorhersagen von Messgrößen zu extrahieren, und Vergleich
mit Experimenten zu ermöglichen. In dieser Arbeit stellen wir mehrere algorithmi-
sche Verbesserungen für Tensornetzwerk-Algorithmen vor. Insbesondere (i) schlagen
wir einen modifizierten Trunkierungsschritt in Matrixproduktzustand-Simulationen
vor, der durch die Vermeidung von Singulärwertzerlegungen die volle Hardware-
beschleunigung, z.B. von Grafikkarten ermöglicht, (ii) entwickeln und testen wir
einen gradientenbasierten Ansatz zur Optimierung von Tensornetzwerken für endli-
che zweidimensionale Systeme, der sowohl die Simulation von Grundzuständen, als
auch von Zeitentwicklung erlaubt, und (iii) stellen wir ein mathematischen Rahmen
vor, um nichtabelsche Symmetrien sowie fermionische oder anyonische Austausch-
statistiken auf der Tensorebene in Tensornetzwerk-Simulationen zu integrieren.
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Chapter 1

Introduction

Understanding the rich phenomenology of strongly correlated quantum many-body
systems, such as e.g. high-temperature superconductivity [5, 6] or the fractional
quantum Hall e↵ect [7–9] remains an open challenge in condensed matter physics.
One key step in this quest is extracting predictions of measurable quantities from
candidate theories, allowing for a connection to experiments. Due to the strong
correlations, even in idealized models, such as the Hubbard model [10] and the
related t-J model, which are proposed as minimal models to understand supercon-
ductivity [11–13], this is not possible analytically without further simplification or
approximation, and thus requires numerical methods.

The main challenge in numerical approaches to analyzing these quantum many-body
models is the curse of dimensionality, meaning that the dimension of the many-
body Hilbert space grows exponentially with system size. Thus, direct approaches
– commonly dubbed exact diagonalization (ED) – which find the ground state of
a Hamiltonian by directly tackling the eigenvalue problem numerically, are limited
to small system sizes. Quantum Monte Carlo methods [14] do not operate on these
exponentially dimensional objects and instead stochastically sample the quantities
of interest such that large systems can be simulated e�ciently. Thus, if the sign
problem [15] can be addressed, Monte Carlo methods o↵er arguably the most stable
and e�cient numerical approach to simulating quantum many-body systems. They
encounter di�culties, however, in fermionic or geometrically frustrated settings and
simulation of real-time dynamics. In these settings, variational methods and, in
particular, tensor network methods are usually the most stable numerical approach
to simulating these systems. In this thesis, we focus on tensor network methods.

Conventional wisdom in the community is that the key property to identify the cor-
rect class of tensor network to approximate a given target state is its entanglement.
This correspondence between entanglement structure and variational power is exact
for matrix product states (MPSs), where it is proven that ground states of gapped,
local 1D Hamiltonians fulfill the area law of entanglement [16] and that any area
law state can be e�ciently approximated as an MPS [17, 18]. For the other classes
of tensor network ansaetze and corresponding models, analogous statements are not

3



4 CHAPTER 1. INTRODUCTION

as straightforward to establish rigorously but are believed to hold for most relevant
models. This includes tree tensor networks (TTNs) [19–21] or the multiscale entan-
glement renormalization ansatz (MERA) [22–24] in one or more dimensions, which
can capture the scale invariance and the entanglement structure of critical states,
with a logarithmic correction and have indeed been found to describe some critical
systems well. A generalization of MPS to higher dimensions gives the projected
entangled pair state (PEPS) [25, 26]. While the correspondence between ground
states of local gapped Hamiltonians and states that can be e�ciently approximated
by tensor product state (TPS) is believed to generalize to higher dimensions, at least
for a wide class of physically relevant systems, establishing it both rigorously and
on general terms was not possible so far.

While the entanglement structure of the target state may establish that it can in
principle be well-approximated by a tensor network state (TNS) of the chosen struc-
ture, this is only half of the story, as we also need an algorithm to e�ciently find
this good approximation within the variational manifold. For MPS in 1D, this has
been realized by e.g. the density matrix renormalization group (DMRG) [27, 28]
and variational uniform matrix product state (VUMPS) [29] ground state search
algorithms, which exploit the canonical form [30, 31] of MPS – a particularly conve-
nient choice to fix the internal gauge degrees of freedom. The expectation of finding
similar success using natively higher-dimensional TNS such as PEPS, however, has
not been met, and PEPS simulations are typically less stable and more challenging
conceptually and computationally.

In this thesis, we pursue three avenues to push the performance of tensor network
simulations, extending the limits of what is accessible to them. Exploiting (i) hard-
ware acceleration, such as e.g. the power of graphics processing units (GPUs) or
dedicated tensor processing units (TPUs) is a promising avenue for pushing the
boundaries of what is accessible to TNS simulations [32–34]. As such, tensor net-
works follow in the footsteps of neural networks, where hardware acceleration played
a central role in the rise of artificial intelligence and machine learning tools. From
an algorithmic point of view, this requires using linear algebra routines that are e�-
cient on GPU, and in particular, to avoid the standard singular value decomposition
(SVD), which is ine�cient on GPUs. Next (ii), we explore global gradient-based
optimization methods that recently gained traction as a more robust way to opti-
mize PEPS, and in particular for ground state search on infinite systems, in new
algorithmic settings, such as dynamics of finite PEPS. Lastly (iii), exploiting sym-
metries of the model, which is a well-established technique to improve the accuracy
and performance of tensor network algorithms [35, 36]. Symmetric states can be
targeted by constructing them as a variational tensor network of symmetric tensors.
These symmetric tensors require fewer free parameters than general tensors, such
that storing them requires less memory and operating on them requires fewer central
processing unit (CPU) operations, increasing performance. Additionally, enforcing
the conservation of a symmetry can increase the accuracy of the simulation, allows
targeting specific charge sectors explicitly, and gives access to symmetry-resolved
data.
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The thesis is structured as follows.

In chapter 2, we review tensor network methods, introducing relevant concepts, no-
tation, and the established TNS algorithms. In particular, we discuss the connection
between entanglement and the variational power of common classes of TNS. We in-
troduce the class of MPS, their isometric and canonical form, and the DMRG, time
evolving block decimation (TEBD) and matrix operator based time evolution (MPO
evolution) algorithms. We discuss tensor networks in higher-dimensional systems,
mainly focusing on PEPS for 2D systems. We introduce the ansatz, approximate
contraction methods, and briefly summarize common algorithms. We discuss how
to exploit symmetries in TNS simulations in terms of the block-sparse structure that
a symmetry imposes on tensors, focusing on abelian symmetry groups for concrete-
ness. We briefly introduce the Tensor Network Python (TeNPy) python package
that o↵ers MPS simulations, exploiting abelian symmetry groups.

In chapter 3, we develop techniques to accelerate truncation steps in TNS algo-
rithms by replacing the truncated SVD that is commonly used to renormalize the
bond dimension of a tensor network with other low-rank factorization routines. We
first focus on one particular routine developed in a previous publication [1] in the
context of the TEBD algorithm for MPS time evolution, which we dubbed the QR
decomposition (QR)-based truncation. We then discuss how this approach is related
to randomized linear algebra and, in particular, can be understood as a modified
version of a randomized singular value decomposition (rSVD) that is particularly
suited for the MPS context. We propose a best-of-both-worlds synthesis of the
truncation algorithm before showing benchmark results of the QR-based truncation
routine.

In chapter 4, we propose an approach to the global, gradient-based optimization of
finite PEPS, motivated by the success of similar methods for infinite systems [37–39],
using automatic di↵erentiation. We study the interplay of numerical gradient evalu-
ation with the approximation methods needed to evaluate the cost function and the
pathologies that we find arise. These pathological optimization trajectories optimize
the approximately evaluated cost function not by optimizing the exact expression
for the cost but rather by causing the approximation to become uncontrolled. We
propose to remedy this by using the approximate contraction methods to evaluate
an exact expression for the gradient instead of following the scheme of automatic
di↵erentiation, which computes the derivative of the approximation. We formulate
a ground state search algorithm, as well as a time stepper, and showcase benchmark
results, simulating the 2D quantum transverse field Ising model, computing ground
states, and extracting the dynamical spin structure factor from quench dynamics.

In chapter 5, we introduce strategies to enforce nonabelian symmetries in tensor
networks on the tensor level, based on fusion trees. We give a detailed pedagogical
introduction to the underlying mathematical framework – the theory of monoidal
categories, providing side-by-side an intuitive and a more rigorous perspective, with
a common graphical language. This categorical approach to symmetries allows the
machinery to be applied to tensors that intrinsically have the statistics of fermionic
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or anyonic excitations and can thus be used to build tensor network representations
or approximations of fermionic/anyonic many-body states. We identify the free
parameters of a symmetric tensor and derive in detail how to perform common
linear algebra routines on them, such as combining, splitting, or re-arranging legs,
pairwise contraction, and factorizations. This is the basis for a new version of
TeNPy, currently under active development, with a working prototype developed
by the author.

We conclude with a summary, a discussion of common themes throughout the chap-
ters, and an outlook regarding future directions in chapter 6.

In appendix A, we provide the topological data of common symmetries. This is
the data required to use the given symmetry in the framework of chapter 5, to
represent and operate on tensors that have this symmetry. This includes a review a
representation theory in section A.1, and data for the group symmetries N , U(1)
and SU(2) in sections A.2-A.4 respectively, for fermionic grading in section A.5,
for Fibonacci anyons in section A.6, and how to combine multiple symmetries in
section A.7.

In appendix B, we provide derivations for the autodi↵ formulae stated in section 4.2.

The author emphasizes the benefits of open-source culture in science and provides
all code associated with this thesis publicly on GitHub1.

1
https://github.com/Jakob-Unfried/phd_thesis

https://github.com/Jakob-Unfried/phd_thesis


Chapter 2

Review of tensor network methods

Tensor networks have a long history, and related concepts were independently dis-
covered from multiple perspectives, traced in detail, e.g. in [40, Sec. I.B]. The first
works that can be considered precursors to the modern tensor network perspective
dealt with classical statistical mechanics problems [41, 42]. First applications of
related ideas in the realm of quantum mechanics, as a wavefunction ansatz [43, 44]
led to the development of the class of finitely correlated states (FCSs) [45–47], which
are closely related to MPSs. The reformulation of the density matrix renormaliza-
tion group (DMRG) [48, 49] – an algorithm designed to study ground states of 1D
systems – as a variational ground state search in the class of MPSs [27, 28, 46, 50]
established TNS methods in their modern form. Various technical improvements of
the algorithm have since pushed the boundaries of what can be e�ciently simulated
using MPSs. For example, exploiting abelian [35, 51] or nonabelian [36, 52, 53] sym-
metries, representation in hybrid real and momentum spaces [54, 55], and density
matrix perturbations [56, 57] have improved convergence, accuracy and performance
of DMRG simulations. A formulation for translationally invariant infinite matrix
product state (iMPS) allows to study the thermodynamic limit directly, using infinite
DMRG [58] or VUMPS [29] methods, as well as excitations on top of the ground
states using tangent space methods [30, 31, 59]. Beyond ground states, thermal
states can be simulated using purification methods [60, 61], and real-time evolution
[62] allows access to e.g. transport properties and non-equilibrium phenomena. In
the field of quantum computing, MPS methods can serve as a benchmark [63, 64]
or a simulation of the quantum device itself [65, 66].

Beyond MPS, various other tensor network ansaetze with di↵erent connectivity of
the tensors have been developed to address di↵erent settings and fall under the um-
brella term of tensor network state (TNS). This includes TTNs [20] and the MERA
[22, 24] for studying critical systems, originally in 1D, but readily generalized to
higher dimensions [67, 68], as well as PEPS [25, 26], which are the direct general-
ization of MPS to higher-dimensional systems. Various algorithms for optimizing
variational PEPS ansaetze in both finite and infinite systems range from full up-
date (FU) [69] to gradient-based methods [37–39], and many more. These natively
higher-dimensional approaches, however, lack many of the favorable properties of

7
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MPS in 1D, such as prominently the canonical form. While attempts have been
made at establishing canonical forms [70, 71] and fixing the gauge freedom [72] of
PEPS, they fall short of the advantageous properties of the canonical form in MPS.
This discrepancy goes so far that MPS simulations are often the preferred way of
studying 2D systems by mapping a thin stripe or thin cylinder to a chain at the cost
of increasing the range of couplings in the Hamiltonian.

In this chapter, we provide a pedagogical introduction to many aspects of tensor
network simulations. This compilation covers only select topics, and we refer the in-
terested reader to the review articles [28, 40, 62, 73, 74]. In section 2.1, we introduce
basic concepts of (bipartite) entanglement, the area law, and how the entanglement
structure of the target state determines the appropriate TNS ansatz. In section 2.2,
we briefly introduce the graphical notation of tensor networks and basic operations
on tensors before discussing MPSs in section 2.3. We cover the canonical form,
emphasizing its weaker, more general version, the isometric form, and discuss the
DMRG ground state search, as well as TEBD and MPO evolution methods for sim-
ulating dynamics. We discuss TNS approaches to higher-dimensional (more than
one spatial dimension) systems in section 2.4, with a focus on PEPS methods. In
section 2.5, we review in detail the mathematical framework for exploiting (abelian)
symmetries in tensor networks as a basis for discussing decomposition routines for
symmetric tensors in chapter 3, and as the base case for discussion of more gen-
eral symmetries in chapter 5. Finally, we highlight the TeNPy software package for
tensor network simulations in section 2.6.

2.1 Entanglement

Entanglement is a key measure to quantify the complexity of strongly correlated
quantum states. It can be understood as a resource in quantum state preparation
[75–77], allows a classification of critical states, e.g. in terms of the central charge in
the presence of conformal invariance [78–80] and exhibits characteristic signatures
of topological order [81–83]. The entanglement structure of a given target state is
the basis for approximating it with a tensor network ansatz.

2.1.1 Schmidt decomposition and Bipartite Entanglement

The most common and most accessible measure for entanglement is given by the
bipartite entanglement entropy. Consider a quantum system described by a Hilbert
space H and a fixed bipartition H = HL ⌦HR, which is usually chosen as a spatial
bipartition, i.e. HL describes the degrees of freedom within a certain spatial region
of the whole system and HR its complement. The bipartite entanglement entropy

SL,R = SvN(⇢L) (2.1)

of a pure state | i 2 H is then given by the von-Neumann entropy SvN(⇢L) =
�Tr (⇢L log ⇢L) of the reduced density matrix

⇢L = TrR (| ih |) . (2.2)
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Note that the definition is symmetric, i.e. SL,R = SvN(⇢B), which is particularly
apparent using the Schmidt decomposition, which allows direct access to the entan-
glement entropy.

A Schmidt decomposition with respect to the bipartition H = HL ⌦HR consists of
two orthonormal sets {|L↵i} ⇢ HL, and {|R↵i} ⇢ HR of states on either subsystem,
known as the left and right Schmidt states, together with non-negative real numbers
⇤↵, the Schmidt values, such that

| i =
kX

↵=1

⇤↵ |L↵i ⌦ |R↵i , (2.3)

where k = min(dim HL, dim HR). It is guaranteed to exist for any state | i and is
unique up to the relative phase of the Schmidt states, (L↵, R↵) 7! (ei�↵L↵, e�i�↵R↵),
assuming non-degenerate Schmidt values. The Schmidt decomposition allows direct
access to the reduced density matrices and the bipartite entanglement entropy, as

⇢L =
kX

↵=1

⇤2

↵ |L↵ihL↵| and ⇢R = TrL (| ih |) =
kX

↵=1

⇤2

↵ |R↵ihR↵| (2.4)

have the same set {⇤2

↵|⇤↵ 6= 0} of nonzero eigenvalues, such that

SL,R = �
X

↵

⇤2

↵ log ⇤2

↵. (2.5)

2.1.2 Area law

Let us now assume a many-body system consisting of N sites, each with a Hilbert
space H, such that the many-body Hilbert space is H =

NN
n=1

H. Further, consider
a spatial bipartition into L sites to the left and R = N � L sites to the right such
that HL =

NL
n=1

H and HR =
NN

n=L+1
H, and assume that L  R. Now, for a

generic state, the Schmidt spectrum w.r.t. such a bipartition is roughly constant,
that is ⇤↵ ⇡ 1/

p
k = const. such that S ⇡ log k ⇡ L. It has been shown [84] that

for L = R = N/2 we find on averaging over all states of the system an entropy of
S = L log d � 1

2
⇠ L. This scaling S ⇠ L with the size/volume L of the subsystem

for L� 1 is commonly called volume law.

This is in contrast to area law states, for which entanglement scales only with the
volume (“area” as a (D�1)-dimensional measure) of the boundary between the two
subsystems. In 1D, this is a constant, and it can be shown that these area law states
correspond exactly to the ground states of gapped, local Hamiltonians. The intuition
here is that entanglement or correlations are a finite resource, and minimizing the
energy of the local terms in the Hamiltonian prefers building correlations between
spatially close degrees of freedom over correlations between distant sites. As a result,
the ground state has a correlation length ⇠, and only those sites in a finite strip of
width ⇠ ⇠ to either side of the boundary contribute to the entanglement between
the subsystems. Thus, for large enough subsystems L� ⇠, we find that the entropy



10 CHAPTER 2. REVIEW OF TENSOR NETWORK METHODS

S ⇠ |@L| scales with the volume of the boundary @L of the subsystem. While
this heuristic carries over to higher dimensions and may be realized in this way for
certain models, the correspondence between area law states and ground states of
local Hamiltonians is not exact.

For area law states, the distribution of Schmidt values in the decomposition (2.3)
has its weight concentrated in a small number of Schmidt values. As a result, we
can e�ciently approximate area law states by truncating the Schmidt spectrum. In
particular, the number � of Schmidt values that are required to achieve a target
error ✏, i.e. such that

�����| i �
�X

↵=1

⇤↵ |L↵i ⌦ |R↵i

�����  ✏ (2.6)

is finite and independent of (sub-)system size.

For a given tensor network geometry, an upper bound for the entanglement scaling
can easily be derived. Find a minimal1 cut through the tensor network that splits it
into the bipartition of interest. This cut gives a factorization of the many-body wave
function with rank K =

Q
i �i given by the total dimension of the cut virtual legs,

each with bond dimension �i. Thus, we have at most K non-zero Schmidt values
for the bipartition, and thus at most S = log K =

P
i log�i. For MPS, we only

need to cut a single bond and find an area law of S  log� = const.. For MERA in
1D, we need to cut a number of bonds that grows logarithmically with subsystem
size, giving us logarithmic corrections S  log L log�, assuming all virtual bonds
have the same dimension �. For TPS in higher dimensions, we find an area law
S  |@L| log�, assuming all virtual bonds have the same dimension �.

For MPS in 1D, any area law state can be e�ciently approximated by an MPS with a
bounded bond dimension, independent of system size. This is because the canonical
form of MPS connects a truncation of MPS bond dimension on a single bond to a
truncation of a Schmidt decomposition (2.6). It can be shown that repeating this
truncation for the remaining bonds results in an error that remains controllable,
such that approximation within a fixed error threshold is still possible at finite bond
dimension independent of (sub-)system size.

2.2 Tensors and diagrammatic notation

The building blocks of TNSs are tensors. From a mathematical perspective, tensors
are elements of a tensor product space, e.g. T 2 C5 ⌦ C3 ⌦ C2 is a three-leg ten-
sor. More straight-forwardly we can think of tensors as multi-dimensional arrays of
numbers, generalizing the notion of a matrix A with entries Aij to more (or fewer)
than two indices, giving us tensors such as e.g. T with entries Tijk. There is a graph-
ical notation for tensors and tensor networks that is established in the community.

1Any cut gives an upper bound. Choose a minimal cut for the tightest possible upper bound.
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Tensors are represented with shapes with legs, which represent the indices, e.g.

Tijk =:

Ti

j

k

. (2.7)

This involves a fixed convention regarding which leg points in which direction.

Tensor contraction, that is a sum over a shared index, is represented by connecting
the legs, that is, e.g.

X

k

TijkBk`m =:

Ti

j

B

`

m

. (2.8)

The labels i, j, `, m are typically omitted in equations where both sides are given
diagrammatically, such as e.g. in (2.9), and indices are identified not by matching
index, but by matching position and orientation of the leg.

Another ubiquitous step in tensor networks is to apply matrix decompositions to
tensors. This is done by first reshaping to a matrix, meaning combining indices into
two groups Tijk` = T(ij),(k`) and understanding the result as a matrix, and performing
standard factorization, such as e.g. an SVD on that matrix. Finally, we ungroup
the legs of the factors, e.g. as U(ij),m = Uijm to obtain a tensor factorization, which
shares the properties of the SVD

T 7!
T SVD

=
U S W

7! U S W . (2.9)

We use boxes with one rounded side for the isometric tensors U, W , where a left
(right) isometry, such as, e.g., U (W ), is an isometric map from the group of the
left (right) and a bottom leg to the right (left) leg. In particular, this means

U

U

= . (2.10)

2.3 Matrix Product States (MPS) in one dimen-
sion

A (finite) matrix product state (MPS) is a quantum state on a chain of N sites,
where the coe�cients of the wavefunction in computational bases {|ini} on each site
n, is given by the following tensor network
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| i :=
X

i1,...,iN

M [1]

i1

M [2]

i2

M [3]

i3

. . .

. . .

M [N ]

iN

|i1, . . . , iNi , (2.11)

where the dashed lines indicate a trivial index that can only take on a single value.

For fixed physical indices i1, . . . , iN , the three-leg tensors M [2] reduce to a matrix
M [2]i2 of the two remaining virtual indices, such that the wavefunction coe�cients

hi1, . . . , iN | i =
X

↵1,...,↵N�1

(M [1]i1)1,↵1(M
[2]i2)↵1,↵2 . . . (M [N ]iN )↵N�1,1 (2.12)

are given as a product of matrices, which coins the name of the ansatz. The bond
dimension �n of the n-th bond between sites n, n + 1 is given by the dimension of
the contracted index ↵n between the respective tensors M [n], M [n+1]. The maximal
bond dimension � = maxn �n is also referred to simply as “the bond dimension of
the MPS”.

In this section, we discuss several algorithmic aspects as basics for the later chapters
of this thesis. We cover the gauge freedom of MPS and how to exploit it to enforce
special properties, namely the isometric form as a weaker requirement or the canon-
ical form as a stronger special case, the DMRG algorithm for ground state search,
as well as the TEBD and MPO evolution algorithms for simulating dynamics. We
do not cover the time dependent variational principle (TDVP) algorithm [85, 86] for
time evolution, infinite MPS [87], the VUMPS algorithm for ground state search [29],
or tangent space methods for excitations [30, 31, 59], and refer the interested reader
to the given references or reviews [40, 73].

Throughout the section, we employ the following slight abuse of notation for brevity.
We use dot products to indicate the contraction of virtual MPS legs and imply the
behavior of the physical legs, which remain untouched and in order of occurrence.
Any symbol with a superscript in square brackets is an MPS tensor and is understood
to have three indices ↵, i, � with i being the physical index, while other symbols are
assumed to have only two virtual indices ↵, �. If neither symbol has a physical leg,
the dot product denotes the matrix product (R ·L)↵,� =

P
� R↵�L��. If there is one

or two physical indices, we think of them as follows.

(M [n] · R)↵in� :=
M [n]↵

in

R �

; (L · M [n])↵in� :=
L↵ M [n] �

in

(M [n] · M [m])↵inim� :=
M [m]↵ M [m] �

in im

(2.13)
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2.3.1 Gauge fixing, isometric form and canonical form

A common feature of TNS is a gauge freedom on every virtual bond, meaning there
are many choices for the tensors in a tensor network, such that the physical quantum
state is the same. We may insert a resolution of identity = GnG�1

n in terms of
any invertible matrix Gn 2 GL(�n) on the n-th virtual bond of dimension �n, and
absorb it into the respective tensors, that is

M [n] M [n+1]

= M [n] Gn G�1

n M [n+1]

=: M̃ [n] M̃ [n+1] , (2.14)

such that clearly the quantum state (2.11) remains unchanged.

We can use this gauge freedom to enforce desirable properties on the tensors of the
MPS. In particular, consider the following family of states on the subsystem left of
bond n, indexed by ↵ = 1, . . . ,�n

��L(n)

↵

↵
=

X

i1,...,in

M [1]

i1

M [2]

i2

. . .

. . .

M [n]

in

↵

|i1, . . . , ini . (2.15)

Let us assume that those states span a �n-dimensional subspace, since otherwise,
the MPS could have been written down with a smaller bond dimension, namely the
dimension of the span. A gauge transformation (2.14) acts on them as |L(n)

↵ i 7!
|L̃(n)

↵ i =
P

�(Gn)↵�|L(n)

� i. Now we may choose the transformation Gn, such that in

the new gauge, these states are orthonormal hL̃(n)

↵ |L̃(n)

↵0 i = �↵,↵0 . If we iterate this
gauge choice for all bonds from left to right, we find a new set of tensors A[1], . . . , A[N ]

which give the same state |MPS(M [1], . . . , M [N ]))i = N|MPS(A[1], . . . , A[N ]))i, pos-
sibly up to a normalization factor N > 0, and fulfill the (left) isometric property

A[n]

A
[n]

= . (2.16)

Note that to enforce this property for the last tensor, we e↵ectively just rescale
it such that the MPS is normalized. We call such tensors “left isometric”, or “in
(isometric) A form”, as they are left isometries when reshaped to a matrix A[n]

(↵i),�.

To bring a given MPS to isometric A form in practice, note that we do not need to
compute the transformation Gn. We only need to find the new tensors A[n], M̃ [n+1]

such that the former is in A form and such that the state is unchanged A[n] ·M̃ [n+1] =
M [n] · M [n+1]. This can be achieved with a QR decomposition

M [n] M [n+1] QR

= A[n] R M [n+1]

=: A[n] M̃ [n+1]

, (2.17)
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which for a full A form of the entire MPS needs to be iterated for all bonds, that
is for n = 1, . . . , N � 1. This procedure is contained as a special case m = N in
algorithm 2.1. Note that we only require the orthogonal property of the Q factor
and do not use the triangular properties of the R factor in the QR decomposition.

We can alternatively go right to left instead and map the family

���R(n)

�

E
=

X

in+1,...,iN

M [n+1]�

in+1

M [n+2]

in+2

. . .

. . .

M [N ]

iN

|in+1, . . . , iNi

(2.18)
of states on the right of a given bond to an orthonormal set. Note that the super-
script refers to the n-th bond of the system on which the index � lives, such that
the first site of the state is site n + 1, to the right of that bond. This yields MPS
tensors in right isometric form, or isometric B form, with the property

B[n]

B
[n]

= . (2.19)

It can be achieved in practice by sweeping LQ decompositions from left to right,
forming X = M [n] · L and LQ decomposing X = L · B[n] instead, see algorithm 2.1
with m = 1.

Or we can go to a mixed isometric form, where we gauge all bonds to the left of a
given tensor n to A form and all bonds to the right to B form. As a result, we find

| i =
X

i1,...,iN

A[1]

i1

. . .

. . .

A[n�1]

in�1

C [n]

in

B[n+1]

in+1

. . .

. . .

B[N ]

iN

|i1, . . . , iNi .

(2.20)

We call a tensor in isometric central form, or isometric C form, if the MPS can be
written with only A tensors to its left and only B tensors to its right, as above. Such
tensors are also referred to as an orthogonality center. It is common to normalize
the C form tensor to kC [n]kF = 1, as this gives a normalized MPS k| ik = 1. A
procedure to establish a mixed isometric form is given in algorithm 2.1.

We can perform an additional orthogonalization, e.g. a QR factorization of C [n], to
shift the orthogonality center from a site to a bond and find

| i =
X

i1,...,iN

A[1]

i1

. . .

. . .

A[n]

in

⌅(n) B[n+1]

in+1

. . .

. . .

B[N ]

iN

|i1, . . . , iNi .

(2.21)
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Algorithm 2.1 Establishing an isometric form

Given an MPS | i = |MPS(M [1], . . . , M [N ])i and integer m 2 {1, . . . , N}, find
tensors A[1], . . . , A[m�1] in isometric A form, C [m] and tensors B[m+1], . . . , B[N ] in
isometric B form such that | i = N|MPS(A[1], . . . , A[m�1], C [m], B[m+1], . . . , B[N ])i,
where N = k| ik. The result is in isometric B form if m = 1, in A form if m = N and
in a mixed isometric form otherwise. We employ the dot product notation (2.13).

1. Initialize R = 1 2 C1⇥1.
2. For n = 1, . . . , m� 1 (left to right):
3. Form X = R · M [n]

4. Update R and set A[n] by computing the QR factorization X = A[n] · R
5. Set M̃ [m] = R · M [m]

6. Initialize L = 1 2 C1⇥1.
7. For n = N, N � 1, . . . , m + 1 (right to left):
8. Form X = M [n] · L.
9. Update L and set B[n] by computing the LQ factorization X = L · B[m].

10. Update M̃ [m]  M̃ [m] · L
11. Compute N = kM̃ [m]k and set C [m] = M̃ [m]/N .

If the given state | i can be written in this fashion, with isometric A form tensor
to the left of the bond and B tensors to its right, we call ⌅(n) a bond matrix. Note
that in an isometric form, unlike in the stronger canonical form, the bond matrices
are not determined by the state | i alone but also depend on the choice of the A
and B tensors. From this bond central form, we find

| i =
X

↵�

⌅(n)

↵�

��L(n)

↵

↵
⌦
���R(n)

�

E
. (2.22)

This already looks structurally similar to the Schmidt decomposition (2.3), but we
have not yet chosen the particular bases for the left/right subsystem in which the

coe�cients ⌅(n)

↵� become diagonal.

The A, B, and C isometric forms are related as follows

A[n] ⌅(n)

= C [n]

= B[n]⌅(n�1)

. (2.23)

Note that an A tensor at the very right site is by definition also in C form A[N ] =
C [N ], and similarly, a B tensor at the very left B[1] = C [1]. This motivates the defini-
tion for the bond matrices ⌅(0) = ⌅(N) = 1 2 C1⇥1 for the trivial bonds at the system
boundary, such that both sides of (2.23) hold also for n = 1 and n = N . Storing
the bond matrices in addition to the MPS tensors allows convenient conversion be-
tween di↵erent forms on the fly. It does, however, require us to consider if the bond
matrices remain valid when updating MPS tensors. Note that algorithm 2.1 does
not yield the bond matrices. To establish an isometric form with all bond matrices,
we instead need to use algorithm 2.2, but can relax the SVD to a deformed singular
value decomposition (dSVD), that is a SVD-like decomposition X = U · ⌅(n) · B[n]

with a non-diagonal central factor ⌅(n), see section 3.1.4.
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Demanding an isometric form (A, B or mixed) only partially fixes the gauge free-
dom, and transformations of the form (2.14) leave both the state and the isometric
properties invariant, if we restrict to Gn 2 U(�n), i.e. to unitary gauge transforma-
tions. We can further fix some of the remaining gauge freedom by demanding the
canonical form. We can take two equivalent perspectives on how to arrive there.
First, instead of choosing Gn to map the |L(n)

↵ i to any orthonormal set, we may
choose it to map to the particular orthonormal set given by the left Schmidt states.
This gives rise to the procedure summarized in algorithm 2.2, which is similar to
algorithm 2.1, except we need to perform an SVD instead of QR decompositions.
Alternatively, we can gauge an existing isometric form with bond matrix (2.21) to
match the Schmidt decomposition by performing an SVD of the bond matrix

A[n] ⌅(n) B[n+1] SVD
=

A[n] Un S(n) V †

n B[n+1]

=: Ã[n] =: B̃[n+1]

. (2.24)

Thus, if we have access to all bond matrices and perform their SVD ⌅(n) =: UnS(n)V †

n ,
we obtain the Schmidt values S(n) for all bonds (which are the bond matrices of the
canonical form) and can obtain the MPS tensors in canonical form (with tilde) from
their counterparts in isometric form (no tilde) as follows

Ã[n]
= A[n]U †

n�1
Un

B̃[n]
= B[n]V †

n�1
Vn

C̃ [n]
= C [n]U †

n�1
Vn .

(2.25)

As an explicit definition, an MPS is in left canonical form, or canonical A form, if
the left states |L(n)

↵ i, defined in (2.15) are left Schmidt states of the bipartition on
every bond n. Similarly it is in right canonical form, or B form, if the right states
|R(n)

� i in (2.18) are right Schmidt states of the bipartition on every bond n, and in
mixed canonical form if the A property holds up to some bond, while the B property
holds for the rest. Thus, a canonical form is a special case of an isometric form,
where the bond matrices ⌅(n) are diagonal, real, and non-negative, which means
that they are the Schmidt values S(n) of | i w.r.t. a bipartition on bond n. The
canonical form almost fixes the gauge; the remaining freedom is Gn 2

L�
i=1

U(1),
meaning a phase choice for every Schmidt state, or possibly larger U(N) if there is
a multiplet of N degenerate Schmidt values.

The main benefit of an isometric or canonical form are the isometric properties (2.16)
and (2.19). They allow us to operate locally in algorithms. Firstly, expectation
values of local operators, e.g. of h |On| i where On is a single site operator acting
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Algorithm 2.2 Establishing a right canonical form

Given an MPS | i = |MPS(M [1], . . . , M [N ])i and integer n 2 {1, . . . , N}, find the
Schmidt values S(1), . . . , S(N�1) of | i, as well as tensors B[1], . . . , B[n�1] in canonical
B form, C [n], and tensors A[n+1], . . . , A[N ] in canonical A form, such that | i =
N|MPS(B[1], . . . , B[N ])i, where N = k| ik. The result is in canonical B form if
n = 1, in A form if n = N , and in mixed canonical form otherwise. We employ the
dot product notation (2.13).

1. Initialize W = 1 2 C1⇥1 and use the dummy value S(0) = 1 2 C1⇥1

2. For m = 1, . . . , n� 1 (left to right):
3. Form X = S(m�1) · W · M [m].
4. Update W and set A[m], S(m) by computing the SVD X = A[m] · S(m) · W .
5. Set M̃ [n] = S(n�1) · W · M [n].
6. Initialize U = 1 2 C1⇥1 and use the dummy value S(N) = 1 2 C1⇥1.
7. For m = N, . . . , n + 1 (right to left):
8. Form X = M [m] · U · S(m)

9. Update U and set S(m), B[m] by computing the SVD X = U · S(m) · B[m]

10. Update M̃ [n]  M̃ [n] · U · S(n).
11. Compute N = kM̃ [n]k and set C [n] = M̃ [n]/N .

on site n reduce to

A[1] . . . A[n�1] C [n] B[n+1] . . . B[N ]

O

C
[n]

A
[1]

. . . A
[n�1]

B
[n+1]

. . . B
[N ]

=

C [n]

O

C
[n]

, (2.26)

where we can obtain C [n] on the fly from any canonical form via (2.23), if we have
access to the bond matrices. Secondly, the isometric property connects the norm
k�kH of the many-body Hilbert space to the local 2-norm k�kF of single tensor(s)
in the following sense. Consider modifying an MPS in mixed canonical form by
changing the tensor at the orthogonality center. Then, the distance between these
two states in the Hilbert space norm is simply given by the 2-norm distance of the
respective tensors

����
. . . A[n�1] C [n] B[n+1] . . . � . . . A[n�1] C̃ [n] B[n+1] . . .

����
H

=

���� C [n] � C̃ [n]

����
F

, (2.27)

where

���� M
����

F

=

vuuuut
M

M

=

sX

↵,i,�

|M↵,i,�| 2 (2.28)
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is the Frobenius norm of a tensor M .

As a result, we can derive updates locally, meaning such that they are optimal in
the local norm k�kF and get global optimality in the Hilbert space norm as a result.
Having this feature without any caveats is unique to loop-free tensor networks such
as MPS, and we believe it to be a main factor in the success of MPS algorithms.

The full canonical form, compared to an isometric form, has comparatively few
additional benefits. For one, the canonical form allows direct access to the Schmidt
values of the state, e.g. to extract bipartite entanglement entropies, which would
require additional SVDs of the bond matrices in an isometric form. On the other
hand, (almost) fixing the gauge may be beneficial for stability in some algorithmic
settings.

The canonical form allows us to conceptually connect the MPS representation to a
Schmidt decomposition with respect to any single bond. In particular, truncating
that bond by keeping only some of the singular values and corresponding slices of
MPS to either side of the bond realizes a truncation of the Schmidt decomposition
and inherits the optimality properties of its error (2.6). Repeating this truncation
on every bond yields an MPS approximation of the original state, and the resulting
error can be controlled by tight bounds – see, e.g., Lemma 1 in [88]. In particular,
we find that the required bond dimension to approximate an area law state up to
some target error threshold is finite and independent of system size.

However, achieving the truncation in practice does not rely on the canonical form,
as instead of truncating the singular values in a canonical form, we may employ any
approximate low-rank factorization of the bond matrix in an isometric form. Thus,
to truncate a single bond of an isometric MPS from dimension � to �̃ < �, we may
perform an approximate factorization of the bond matrix as follows

A[n] ⌅(n)

�
B[n+1]

�
dSVD⇡

A[n] Un

�
⌅̃(n)

�̃
V †

n

�̃
B[n+1]

�

=: Ã[n] =: B̃[n+1]

. (2.29)

Here, the approximate factorization of ⌅(n) must have isometric factors Un, V †

n like
an SVD, but the central factor ⌅̃(n) does not need to be diagonal. We call such a
factorization a deformed singular value decomposition (dSVD), see section 3.1.4. If a
standard SVD, a special case of the above, is used, we end up in a canonical form for
this bond, but in general, the result is only in isometric form. The local truncation
error of this approximate factorization is equal to the global error we incur w.r.t. the
original many-body state because of the isometric properties. Truncating all bonds
in a general isometric form (not requiring the bond to be an orthogonality center) is
achieved by approximately factorizing all bond matrices ⌅(n) ⇡: Un⌅̃(n)V †

n and then
updating the MPS analogous to (2.25).

Of course, if the MPS was in canonical form to begin with – i.e. such that the bond
matrix ⌅(n) = S(n) is diagonal, real, positive – the low-rank approximation can be
read o↵ directly, by setting U †

n = V †

n to the �̃ ⇥ � projector that keeps the largest
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singular values, i.e. such that S̃(n) = U †

nS
(n)Vn is diagonal and contains the largest �̃

singular values. In that case, the truncation can be carried out cheaply by extracting
rows/columns.

Note that while truncating a single bond in this fashion gives the optimal error
for the given bond dimension (if using an optimal local truncation), a sequence of
multiple such truncation steps that is required to truncate all bonds of an MPS to
below some threshold is in general not optimal. We discuss an improved algorithm
based on variational updates in section 2.3.5.

2.3.2 Matrix Product Operators (MPOs)

Several MPS algorithms, e.g. DMRG, TDVP and MPO evolution, rely on a com-
patible representation of the relevant operators, e.g. the Hamiltonian or evolution
operator, in the form of a matrix product operator (MPO). An MPO is an opera-
tor whose coe�cients in the computational basis are given in the form of a tensor
network with a structure similar to an MPS, i.e. an operator of the form

X

i1,...,iN
j1,...,jN

W [1]

i1

j1

W [2]

i2

j2

W [3]

i3

j3

. . .

. . .

. . .

W [N ]

iN

jN

|i1ihj1|⌦ · · ·⌦ |iNihjN | .

(2.30)

In fact, we can understand MPOs as MPSs in the space Hop = Hom (H, H) ⇠=
H ⌦H? of operators. We use a chamfered box for the MPO tensors, which has no
particular meaning other than being a reminder that they parametrize an operator,
not a state.

While in principle, any operator can be written as an MPO, the required bond
dimension for general operators is exponential in system size. Hamiltonians of phys-
ical models, however, are commonly given in a highly structured form that allows
explicit construction [89–92] of MPOs using finite state machines. This framework
can be extended [93] to approximate the time evolution operator e�iH �t induced by
such a Hamiltonian H in a Suzuki Trotter-like approximation assuming small �t.
For complicated models, in particular models which are (a) two-dimensional, (b)
have many degrees of freedom per site, and/or (c) have long-range couplings, the
resulting bond dimensions may still be unfeasibly large. Since MPOs are MPSs in
the doubled Hilbert space, they may be compressed, i.e. approximated by a lower
bond dimension MPO, using MPS compression methods, as discussed in section 2.3.1
and 2.3.5.
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2.3.3 Time evolving block decimation (TEBD)

The time evolving block decimation (TEBD) algorithm, originally devised as a time
evolution algorithm, can be generalized to apply sequences of arbitrary nearest
neighbor operators to an MPS, and approximate the resulting state again as an
MPS.

Let us first derive this gate sequence for the time evolution induced by a nearest
neighbor Hamiltonian H =

PN�1

n=1
hn,n+1. We can employ a Suzuki Trotter decom-

position to approximately factorize its time evolution operator as

U(�t) = eiH�t = Ue(�t) Uo(�t)| {z }
=:U(1)(�t)

+O(�t2) (2.31)

or
U(�t) = Ue(�t/2) Uo(�t) Ue(�t/2)| {z }

=:U(2)(�t)

+O(�t3) (2.32)

in either first or second order, where

Ue(o)(t) :=
NY

n=1

n even (odd)

Un,n+1(t) ; Un,n+1(t) := eihn,n+1t . (2.33)

This results in a brick-wall circuit for the time evolution operator. Given an initial
MPS | 0i = |MPS({M [n]})i, the task for TEBD is then to approximate the action
of e.g. a first order Trotterized step

U (1)(�t) | 0i =

X

i1,...,iN

M [1] M [2] M [3] M [4] . . . M [N�1] M [N ]

U1,2(�t) U3,4(�t) . . .

U2,3(�t) . . . UN�1,N(�t)

i2i1 i3 i4 . . . iN�1 iN

|i1, . . . , iNi

(2.34)

as an MPS with bounded bond dimension. Repeating this many times allows us
to simulate time evolution by providing access to [U (i)(�t)]m| 0i ⇡ [U(�t)]m| 0i =
| (t = m �t)i.

The gates Un,n+1 are then applied one after the other by updating only the two MPS
tensors at the sites n, n + 1 where the gate acts. The gate can be applied exactly,
resulting in a two-site wavefunction ✓̃ given by

C [n] B[n+1]

Un,n+1

=: ✓̃ trunc⇡ Ã[n] C̃ [n+1]
, (2.35)
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which subsequently needs to be factorized to retain the MPS form. To keep the bond
dimension of the MPS bounded, this factorization needs to be truncated, e.g. using a
truncated SVD ✓̃ ⇡ Ã[n] · (S · W [n+1]) =: Ã[n] · C̃ [n+1]. It is crucial that the isometric
form of the MPS is such that one of the tensors above the gate – here C [n] – is
the orthogonality center. This guarantees that a locally optimal truncation of ✓̃ is
optimal globally, analogous to (2.27).

If the gates are unitary, this can be done by always maintaining a right isometric
form2 of the tensors, and keeping track of the bond matrices, to obtain local wave-
funtions on the fly via (2.23), as suggested in [94]. This is because a unitary gate
acting on sites n, n + 1, applied according to the first equality in (2.35), preserves
the defining property of the isometric B form for all other bonds. To the right of
the update, this is trivial, since the right Schmidt-like states (2.18), that is |R(m)

� i
for m > n are unchanged, while to the left, the Schmidt-like states |R(m)

� i for m < n
retain their orthonormality if the gate is unitary. Since similar arguments apply to
A form tensors, the bond matrices ⌅(m) for m 6= n, for all bonds except where the
gate was applied, remain valid bond matrices. If the isometric form happens to be
a canonical form, we can understand this from a di↵erent perspective: a unitary
transformation acting only on one of the subsystems does not change the Schmidt
values or states of a given bipartition, and thus, the canonical form is preserved for
all bonds that the gate does not act on.

We can perform the TEBD update as

B[n] B[n+1]⌅(n�1)

Un,n+1

=: ✓̃ dSVD⇡ A ⌅̃(n) B̃[n+1]

(2.36)
and find the new B form tensor for site n + 1, as well as the new bond matrix for
the updated MPS. From a deformed singular value decomposition (dSVD), we get
the left tensor in an isometric A form, however. To restore the B form, we need to
solve (2.23) and find

B̃[n]

:= A ⌅̃(n)(⌅(n�1))�1 ⇡

B[n] B[n+1]

Un,n+1

B̃
[n+1]

, (2.37)

where the approximate equality follows by left-multiplying (2.36) with (⌅(n�1))�1

and projecting onto B̃
[n+1]

. It is the preferred way to form B̃[n] in practice since it
avoids instabilities from inverting the bond matrix. Note that this uses the assump-
tion of unitarity since we use the unmodified bond matrix ⌅(n�1) for bond i � 1.
Note also that the contraction for B̃[n] shares intermediate objects with the contrac-
tion of ✓̃. As a result, any sequence of gates can be applied in this fashion, and we

2This is a conventional choice, and operating in a left isometric form is possible too.
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do not rely on the particular brickwall structure of the circuit that arises from the
Trotterization.

If the gates are not unitary, on the other hand, applying the gate invalidates the
bond matrices on every bond. This is because the orthonormality of the Schmidt-
like states |L(n)

↵ i to its right or of the |R(n)

� i to its left is broken by applying a
gate, which invalidates any isometric A form to its right and B form to its left and
thus invalidates all bond matrices. In particular, we may not use the unmodified
⌅(n�1) to convert the A form tensor that we get out of a deformed singular value
decomposition (dSVD) to B form. Additionally, the isometric or canonical form of
the MPS tensors is only preserved if it is a mixed canonical form with orthogonality
center at either of the two active sites n, n + 1. Thus, in this case, the update
needs to be performed according to equation (2.35). Since the bond matrices are
immediately invalidated when the next gate in a sequence is applied, there is no
need to store them in non-unitary TEBD.

There are two ways of carrying out the truncated factorization, which is a truncated
QR-like decomposition (tQR) as discussed in section 3.1.3. We can either have
✓̃ ⇡ Ã[n] · C̃ [n+1], which has the isometric factor on the left and is suitable for a
subsequent update to the right, on sites n + 1, n + 2. Alternatively, we can have
✓̃ ⇡ C̃ [n] · B̃[n+1] with a right isometry B̃[n+1] which is suitable for updating the bond
to the left next. Thus, a staircase pattern is more convenient for non-unitary TEBD
than a brickwall circuit. If the brickwall structure is unavoidable, we may intersperse
steps that simply shift the orthogonality center, using e.g. a QR decomposition for
an isometric form or an SVD if a full canonical form is enforced, similar to (2.51).

The computational cost of TEBD is typically given as O(d3�3), where the dominant
contribution comes from the factorization of ✓̃. Using a standard truncated SVD for
this step results in the above scaling. However, using cheaper truncated factorization
routines, we can bring the cost down to O(d2�3), as we discuss in chapter 3. The
cost can not be brought down further than that by improving the factorization, as
the cost of forming ✓̃ from the MPS tensors is in O(d2�3).

The TEBD algorithm is limited to nearest neighbor gates, and thus can only di-
rectly simulate time evolution of a nearest neighbor Hamiltonian. Models with
slightly longer-ranged couplings (or circuits with few body gates) can be addressed
by grouping sites until the couplings between e↵ective sites are nearest neighbor
terms again. This comes at the cost of increasing the dimension d of the e↵ec-
tive local Hilbert space – and thus also the cost of all algorithms – exponentially
and is therefore limited to very short-ranged couplings. For general longer range
terms, time evolution can be simulated using MPO evolution, see section 2.3.5, or
TDVP [85, 86].

The TEBD algorithm can also be used to approximate the imaginary time evolution
of a given nearest neighbor Hamiltonian, which projects the initial state onto the
ground state in the limit of infinite evolved imaginary time. Thus, imaginary time
TEBD can, in principle, be used as a ground state search. This is, however, subop-
timal, as such a method is restricted to nearest neighbor models (after potentially
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grouping sites), slow to converge, and prone to local minima. In virtually all cases,
the DMRG method gives better results, faster.

2.3.4 Density matrix renormalization group (DMRG)

Due to its long history, and reformulation as a tensor network method, there are
several ways to understand why the DMRG algorithm for MPS ground state search
works. Here, we choose the perspective of a variational updating algorithm, where
the goal is minimizing the energy E = h |H| i of a trial MPS | i while keeping
h | i = 1. We assume the Hamiltonian H = MPO(W [1], . . . , W [N ]) is given as an
MPO. The strategy is then to update the MPS tensors on two neighboring sites,
the “active sites”, while keeping the other tensors fixed. Starting from some initial
guess in MPS form, these updates are then repeated for all pairs of sites, and for
a number of iterations, until e.g. the energy of the trial state converges. Since the
update is, in general, not unitary, the discussion regarding TEBD with non-unitary
gates applies, and an isometric form of the MPS is only preserved by the update
if the form has an orthogonality center at either one of the active sites. Moreover,
bond matrices ⌅ for the other bonds are invalidated by the update. Therefore, the
isometric / canonical form is handled such that we always have A tensors to the left
of the active site(s) and B tensors to the right, and there is no need to keep track
of the bond matrices.

To derive the update, we first find the optimal two-site wavefunction ✓↵,i,j,� such
that the modified MPS-like state

| i =
X

i1,...,iN

A[1]

i1

. . .

. . .

A[n�1]

in�1

✓

in in+1

B[n+2]

in+2

. . .

. . .

B[N ]

iN

|i1, . . . , iNi

(2.38)
gives the lowest possible energy, where A[1], . . . , A[n�1] and B[n+2], . . . , B[N ] are the
MPS tensors of the current best guess, before the update. The optimization problem,
formulated in terms of ✓ is

✓† · Hn,n+1

e↵
· ✓ ! MIN while ✓† · Nn,n+1

e↵
· ✓ = 1 , (2.39)

where the e↵ective Hamiltonian Hn,n+1

e↵
and e↵ective norm matrix Nn,n+1

e↵
for active

sites (n, n + 1) consist of the other tensors and the MPO and are in particular
constant as a function of ✓. They are given by

�
Hn,n+1

e↵

� ↵ij�
↵0i0j0�0 :=

W [1] . . . W [n�1] W [n] W [n+1] W [n+2] . . . W [N ]

A[1] . . . A[n�1] B[n+2] . . . B[N ]↵
i j

�

A
[1]

. . . A
[n�1]

B
[n+2]

. . . B
[N ]↵0

i0 j0
�0

,
(2.40)
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where {W [n]} are the MPO tensors of the Hamiltonian, as well as

�
Nn,n+1

e↵

� ↵ij�
↵0i0j0�0 :=

A[1] . . . A[n�1] B[n+2] . . . B[N ]↵
i j

�

A
[1]

. . . A
[n�1]

B
[n+2]

. . . B
[N ]↵0

i0 j0
�0

.

(2.41)

The e↵ective norm matrix Nn,n+1

e↵
= reduces to the identity because of the iso-

metric properties (2.16) and (2.19). Therefore, we can find the optimal two-site
update by finding the lowest eigenvector of the eigenvalue problem Hn,n+1

e↵
· ✓ = ✏✓

and directly obtain the energy ✏ of the resulting state. Conceptually, we should find
a normalized eigenvector, such that ✓†✓ = 1, but this can be taken care of by the
normalization after the truncation step in practice.

The e↵ective Hamiltonian is given in a factorized form, such that matrix-vector
products

Hn,n+1

e↵
· ✓ = Ln W [n] W [n+1] Rn+1

✓

(2.42)

can be computed more e�ciently than forming the whole He↵ matrix. The left and
right environment tensors are defined recursively as

Ln+1 := Ln W [n]

A[n]

A
[n]

; Rn�1 := RnW [n]

B[n]

B
[n]

,

(2.43)

with the base cases L1 = RN = 1 2 C1⇥1⇥1. Additionally, we have access to an
initial guess for the solution – the two site wavefunction from the MPS before the
update – which becomes better and better the closer the outer DMRG loop is to
convergence. For these two reasons, it is beneficial to use an iterative eigensolver,
such as e.g. the Lanczos algorithm, to find the ground state ✓̃ of Hn,n+1

e↵
.

At this point, we proceed similar to the TEBD algorithm to renormalize the two-site
update ✓̃, by approximating it in MPS form with a bounded bond dimension. This
two-site update is then repeated for all pairs of sites, sweeping first left to right, then
right to left. These sweeps are repeated until a convergence condition is met. Typi-
cally, one looks at the convergence of energy and bipartite entanglement entropy. If
both are no longer changing substantially, with relative changes below a threshold
of e.g. ⇠ 10�8, we consider the algorithm converged. The resulting procedure is
summarized in algorithm 2.3. We call it “simple” since additional algorithmic con-
siderations, such as dynamically increasing the maximum bond dimension or adding
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Algorithm 2.3 Simple two-site finite DMRG

Given a hermitian operator H = MPO(W [1], . . . , W [N ])), a maximum bond dimen-
sion �, and an initial guess | i = |MPS(M̃ [1], . . . , M̃ [N ])i, computes a normalized
MPS approximation |�i = |MPS(M [1], . . . , M [N ])i of the ground state of H with
bond dimension at most �. Regarding notation, we think of only a single variable
M [n] for every site that stores the MPS tensor for the current best guess. We use
subscripts to keep track of its isometric form, but e.g. M [n]

A and M [n]

B refer to the
same variable. We employ the dot product notation (2.13).

1. Initialize MPS tensors M [1]

A , M [2]

C , M [3]

B , . . . , M [N ]

B by bringing | i to a mixed iso-
metric form with orthogonality center on site m = 2, e.g. using algorithm 2.1.

2. Compute the right environments Rn for n = N, . . . , 2 using (2.43).
3. Initialize the left environments Ln for n = 1, . . . , N � 1 with placeholders.
4. Repeat until convergence:
5. For n = 1, . . . , N � 2 (right to left):

6. Form ✓0 = M [n] · M [n+1] (the isometric form is M [1]

A M [2]

C or M [n]

C M [n+1]

B ).
7. Find the ground state ✓̃ of Hn,n+1

e↵
, (2.42), iteratively with initial guess ✓0.

8. Decompose ✓̃ ⇡ U [n] ·C [n+1] with rank  � such that U [n] is left isometric.
9. Update M [n]

A  U [n] and M [n+1]

C  C [n+1]/kC [n+1]k.
10. Update Ln+1 using (2.43). Note that the Rn is now invalid.
11. For n = N � 1, . . . , 2 (left to right):

12. Form ✓0 = M [n] ·M [n+1] (the isometric form is M [N�1]

C M [N ]

B or M [n]

A M [n+1]

C ).
13. Find the ground state ✓̃ of Hn,n+1

e↵
, (2.42), iteratively with initial guess ✓0.

14. Decompose ✓̃ ⇡ C [n] · W [n+1] at rank  � s.t. W [n+1] is right isometric.
15. Update M [n]

C  C [n]/kC [n]k and M [n+1]

B  W [n+1]

16. Update Rn using (2.43). Note that Ln+1 is now invalid.
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density matrix perturbations [57] are omitted. The decomposition in steps 8 and 14
can e.g. be performed using truncated SVDs, or with other approximate low rank
decompositions, see section 3.1. For completeness, let us mention that single-site
versions of DMRG have been formulated [56], which we do not discuss here.

The computational cost of the two-site algorithm is in O(d2⌘�3), where d is the
dimension of the local Hilbert space, ⌘ the bond dimension of the MPO and � the
MPS bond dimension, assuming d⌘  �. Under the same assumptions, the pure3

single-site version has a cost in O(d⌘�3).

2.3.5 MPO Time evolution

Let us now discuss methods to approximately apply a matrix product operator
(MPO) O = MPO(W [1], . . . , W [N ]) to an MPS | i = |MPS(M [1], . . . , M [N ])i, that is
to approximate O| i ⇡ |�i by a new MPS |�i = |MPS(M̃ [1], . . . , M̃ [N ])i of bounded
bond dimension. This problem may arise from time evolution if O = e�iHt is (an
approximation of) the time evolution operator of a given system, but can also arise
in di↵erent settings, such as simulating quantum circuits. In either case, it is known
under the keyword “MPO evolution”.

A straight-forward approach is to first perform the contraction exactly and then – if
needed – truncate the bond dimension similar to (2.24), by establishing an isometric
form in a first sweep of QR steps and then truncating using a second sweep of SVD
steps. It turns out that the contraction and the QR sweep can be conveniently
achieved in parallel by iterating

M [n]

W [n]

R QR

= Ã[n] R (2.44)

from left to right, such that |MPS(Ã[1], . . . , Ã[N ])i = 1

N
O| i equals the target state

exactly (up to normalization) and is in left isometric form. The resulting MPS
has bond dimension ⌘�, where ⌘ is the bond dimension of the operator O and �
the bond dimension of the state | i. Next, we sweep right to left with truncated
SVDs to achieve an approximation with the desired bond dimension. The resulting
procedure is summarized in algorithm 2.4.

Here, the isometric form guarantees that if a single truncation is optimal locally,
e.g. by using a truncated SVD, it is also optimal globally. However, the sequence
of multiple truncations in the SVD-based compression scheme is not optimal and,
in general, does not find the best MPS approximation at a given bond dimension.
Better approximations can be obtained with a variational algorithm, similar to the
DMRG algorithm, but instead of minimizing the energy, we minimize the square

3Some approaches to add density matrix perturbations (“mixing”) have a higher cost scaling,
namely in O(d2⌘�3), same as the two-site DMRG, though typically with a smaller prefactor. We
do not consider these costs here.
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Algorithm 2.4 SVD-based MPO compression

Given O = MPO(W [1], . . . , W [N ]) and | i = |MPS(M [1], . . . , M [N ])i and a bond
dimension �, find a normalized MPS approximation O| i ⇡ N|MPS(B̃[1], . . . , B̃[N ])i
in right isometric form with bond dimension  �, where N > 0 is the norm of the
approximation. We employ the dot product notation (2.13).

1. Initialize R = 1 2 C1⇥1⇥1

2. For n = 1, . . . , N � 1
3. Update R and set Ã[n] via the contraction and QR decomposition of (2.44)
4. Set C̃ [N ] as the LHS of (2.44), without decomposing it.
5. Compute N1 = kC̃ [N ]k and normalize C̃ [N ]  C̃ [N ]/N1.
6. Initialize C = 1 2 C1⇥1.
7. For n = N, . . . , 2:
8. Form X = Ã[n] · C.
9. Set C and B̃[n] via truncated SVD X ⇡ U · (SW [n]) =: C · B̃[n] at rank  �.

10. Compute N2 = kCk and set B̃[1] = C/N2 as well as N = N1N2.

distance

�2 = k|�i � U | ik 2 = h�|�i � 2Re h�|U | i+ const. (2.45)

and parametrize the trial state |�i = N|M̃ [1], . . . , M̃ [N ]i as a normalized MPS and
a normalization factor N > 0.

If we again focus on a two-site version first, the local problem to solve for a two-site
wavefunction ✓ at an orthogonality center at sites n, n + 1 is now

�2 = ✓† · ✓ � 2Re ✓† · 'n,n+1

e↵
+ const.! MIN . (2.46)

The overlap is taken with 'n,n+1

e↵
, the evolved state projected by the other tensors

of the trial state

�
'n,n+1

e↵

�
↵,i,j,�

:= W [1] . . . W [n�1] W [n] W [n+1] W [n+2] . . . W [N ]

M [1] . . . M [n�1] M [n�1] M [n�1] M [n+2] . . . M [N ]

A
[1]

. . . A
[n�1]

B
[n+2]

. . . B
[N ]↵

i j
�

,
(2.47)

where M [n] are the MPS tensors of the old state | i and A[n], B[n] are the MPS
tensors of the trial state that is currently updated. Unlike DMRG, where we have
to solve for the ground state of the e↵ective Hamiltonian numerically, this local
problem has the closed form solution ✓̃ = 'n,n+1

e↵
. Like in DMRG, it is practical to

contract it using environment tensors, which are partial contractions of (2.47) that
can be reused for subsequent updates on other sites
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�
'n,n+1

e↵

�
↵,i,j,� = Ln W [n] W [n+1] Rn+1

M [n] M [n+1]

i j

↵ �

. (2.48)

Note that the environment tensors now have MPS tensors of the old state | i in
the ket layer, in any isometric form, and tensors of the current trial MPS in fixed
isometric form in the bra layer

Ln+1 := Ln W [n]

M [n]

A
[n]

; Rn�1 := RnW [n]

M [n]

B
[n]

,

(2.49)

where again the base cases are L1 = 1 2 C1⇥1⇥1 = RN .

Now, like in DMRG, after solving the local problem and finding the optimal two-
site wavefunction ✓̃, we need to factorize it and truncate to restore the MPS form.
Note that a subsequent update on a neighboring pair of sites immediately overrides
one tensor from the previous update, such that it is not necessary to compute it,
and we only need both factors at the very end of a sweep where the algorithm may
terminate. A common convergence criterion for the outer loop is a convergence of
the square distance �2. The resulting procedure is summarized in algorithm 2.5.

Instead of updating two active sites at a time, a single-site version of the variational
algorithm can be formulated. For a local update, we require the current trial MPS to
be in mixed canonical form with orthogonality center at the active site. Analogously
to the two-site version, the optimal single-site update is C̃ [n] = 'n

e↵
, which is given

by

('n
e↵

) ↵,i,� = Ln W [n] Rn

M [n]

i
↵ �

, (2.50)

using the same environments (2.49) as for the two-site version. There is no trun-
cation step required, such that we need to shift the orthogonality center explicitly,
e.g. using a QR decomposition on a right sweep

C̃ [n] · B[n+1] QR

= Ã[n] · R · B[n+1] =: Ã[n] · C̃ [n+1] (2.51)
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Algorithm 2.5 Two-site variational MPO compression

Given an operator O = MPO(W [1], . . . , W [N ])), a state | i =
|MPS(M [1], . . . , M [N ])i, a maximum bond dimension �, and an initial guess |�0i
in MPS form, computes an MPS approximation |�i = N|MPS(M̃ [1], . . . , M̃ [N ])i ⇡
O| i with bond dimension at most �. This is in terms of a normalized MPS and
the factor N > 0 is the norm of the approximation. We employ the same notation
as in algorithm 2.3, where e.g. M̃ [n]

A and M̃ [n]

B refer to the same variable and the
subscript only indicates its current isometric form. We employ the dot product
notation (2.13).

1. Initialize MPS tensors M̃ [1]

A , M̃ [2]

C , M̃ [3]

B , . . . , M̃ [N ]

B by bringing |�0i to a mixed
isometric form with orthogonality center on site m = 2, e.g. using algo-
rithm 2.1.

2. Compute the right environments Rn for n = N, . . . , 2 using (2.49).
3. Initialize the left environments Ln for n = 1, . . . , N � 1 with placeholders.
4. Repeat until convergence:
5. For n = 1, . . . , N � 2: (right sweep)
6. Form 'n,n+1

e↵
given by (2.48).

7. Decompose 'n,n+1

e↵
⇡ U [n] · C [n+1] at rank  � s.t. U [n] is left isometric.

8. Update M̃ [n]

A  U [n]. Note that there is no need to update M̃ [n+1].
9. Update Ln+1 using (2.49). Note that the Rn is now invalid.

10. For n = N � 1, . . . , 2 (left sweep)
11. Form 'n,n+1

e↵
given by (2.48).

12. Decompose 'n,n+1

e↵
⇡ C [n]·W [n+1] at rank  � s.t. W [n+1] is right isometric.

13. Update M̃ [n+1]

B  W [n+1]. Note that M̃ [n] is not needed unless n = 2.
14. Update Rn using (2.49). Note that Ln+1 is now invalid.

15. Compute N = kC [2]k and update M̃ [2]

C  C [2]/N .
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and could then proceed to update the active next site n + 1. Note that if there is a
subsequent update, i.e. unless the algorithm terminates, there is no need to compute
C̃ [n+1], as it will be overridden in the next update anyway. The resulting procedure
is summarized in algorithm 2.6.

Algorithm 2.6 Single-site variational MPO compression

Given an operator O = MPO(W [1], . . . , W [N ])), a state | i =
|MPS(M [1], . . . , M [N ])i, and an initial guess |�0i in MPS form, computes an
MPS approximation |�i = N|MPS(M̃ [1], . . . , M̃ [N ])i ⇡ O| i with the same bond
dimensions as |�0i. This is in terms of a normalized MPS and the factor N > 0 is
the norm of the approximation. We employ the same notation as in algorithm 2.3,
where e.g. M̃ [n]

A and M̃ [n]

B refer to the same variable and the subscript only indicates
its current isometric form. We employ the dot product notation (2.13).

1. Initialize MPS tensors M̃ [1]

C , M̃ [2]

B , M̃ [3]

B , . . . , M̃ [N ]

B by bringing |�0i to a mixed
isometric form with orthogonality center on site n = 1, e.g. using algorithm 2.1.

2. Compute the right environments Rn for n = N, . . . , 1 using (2.49).
3. Initialize the left environments Ln for n = 1, . . . , N with placeholders.
4. Repeat until convergence:
5. For n = 1, . . . , N � 1: (right sweep):
6. Form 'n

e↵
given by (2.50).

7. Update M̃ [n]

A by computing the QR decomposition 'n
e↵

= M̃ [n]

A · R.
8. Update Ln+1 using (2.49). Note that the Rn�1 is now invalid.
9. For n = N, . . . , 2 (left sweep):

10. Form 'n
e↵

given by (2.50).

11. Update M̃ [n]

B by computing the LQ decomposition 'n
e↵

= L · M̃ [n]

A .
12. Update Rn�1 using (2.49). Note that Ln+1 is now invalid.

13. Update M̃ [1]

C  M̃ [1]

A · L.

14. Compute N = kM̃ [1]

C k and update M̃ [1]

C  M̃ [1]

C /N .
15. Optionally, establish a full canonical form using algorithm (2.2).

Note that unlike for the two-site version, the bond dimension of the trial MPS can
not dynamically grow and is fixed by the initial guess, which should therefore be
chosen with the full target bond dimension. This can be remedied by incorporating
subspace expansion methods (“mixing”) similar to the adjustments in single-site
DMRG [56, 57]. While this seems to be strictly necessary to get good results with
single-site DMRG, single-site MPO evolution can work well even without mixing.

Both of these variational algorithms require an initial guess. In a general setting we
may start from well-chosen states with exact MPS representations, such as product
states, from an MPS with random tensor entries, or from a state that results from any
other MPO evolution method, such as the SVD-based compression of algorithm 2.4.
For this particular purpose, a modified version of the SVD-based compression may be
employed, that trades accuracy for performance, which is commonly called the zip-
up method. It is similar to the SVD-based method, but directly performs truncation,
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even if there is no isometric form established yet. This is done by iterating

M [n]

W [n]

C trunc⇡ B̃[n]C , (2.52)

with a truncated QR-like decomposition (tQR) factorization, or rather an LQ version
of it, see section 3.1.3. This is clearly sub-optimal and in general the results are not
accurate enough to use this as a stand-alone method, but it is significantly cheaper
in the presence of strong truncation. We summarize this approach in algorithm 2.7.

Algorithm 2.7 Zip-up MPO compression

Given an operator O = MPO(W [1], . . . , W [N ])), a state | i = |MPS(M [1], . . . , M [N ])i
and a maximum bond dimension �, computes a crude approximation |�i =
N|MPS(B̃[1], . . . , B̃[N ])i ⇡ O| i with a normalized MPS in isometric B form, bond
dimension at most � and norm N > 0. The resulting approximation is generally
of low quality and intended as an initial guess only. We employ the dot product
notation (2.13).

1. Initialize C = 1 2 C1⇥1

2. For n = N, N � 1, . . . , 2 (right to left):
3. Update C and set B̃[n] via the contraction and factorization of (2.52).
4. Set C̃ [1] as the LHS of (2.52), without decomposing it.
5. Compute N = kC̃ [1]k and set B̃[1] = C̃ [1]/N

We give the computational cost for all four methods in table 2.1.

Method Definition Cost scaling Dominant step(s)

Two-Site Var. Alg. 2.5 O(d2⌘�3) + Cinit Contractions for 'n,n+1

e↵

Single-Site Var. Alg. 2.6 O(d⌘�3) + Cinit Contractions for 'n
e↵

, Ln, Rn

SVD compression Alg. 2.4 O(d2⌘3�3) QR decomposition
Zip-up Alg. 2.7 O(d2⌘�3) dSVD

Table 2.1: Computational cost scaling for di↵erent MPO-MPS compression
methods. We consider the scaling with the dimension d of the local Hilbert
space, the bond dimensions � of the state | i to apply the operator O to,
and the bond dimension ⌘ of that operator. We assume that we want to find
an MPS approximation of O| i with the same bond dimension �, which is
realistic e.g. during time evolution when the state | i to be evolved already
has the maximal allowed bond dimension. For the variational methods, Cinit

denotes the cost of computing the initial guess, for which we have proposed
either the other methods with costs listed here or methods with subdominant
costs. We simplify the big O expressions, and decide which contribution is
dominant under the mild assumptions d  ⌘ and d⌘  �.
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The variational compression methods can be generalized to approximate states as
bounded bond dimension MPS in a more general setting, as long as the e↵ective
local states �e↵ of (2.47) or (2.50) can be computed e�ciently. In particular, this
applies to compressing states that are given as MPS already, to a smaller bond
dimension, i.e. compressing them. We can achieve this by simply “leaving out” the
MPO tensors from the diagrams above, or alternatively we can formally view the
operator O = with tensors W [n] 2 C1⇥d⇥d⇥1 given by W [n]

↵,i,i0,� = i,i0 = �i,i0 , such
that its tensors can be contracted for free. This improves upon simply truncating
the Schmidt values in a canonical form or iterating (2.24) in an isometric form.

2.4 Tensor networks in higher dimensions

A common way to approach the simulation of two-dimensional systems using ten-
sor network methods is using MPS [95, 96]. Even though their intrinsic network
connectivity and the variational power they are guaranteed by the entanglement
paradigm are suggestive of a 1D geometry, the MPS algorithms, such as e.g. DMRG
are exceptionally powerful and performant. As a result, MPS simulations have been
established as state-of-the-art tools to simulate systems with entanglement beyond
the 1D area law that the entanglement paradigm would otherwise restrict them
to. This includes the study of 1D critical states [97], long-range interactions [90],
two-dimensional systems [95, 96], as well as non-equilibrium dynamics [85, 93, 98–
100]. It is particularly telling that rather than using the natively 2D ansaetze, such
as PEPS, it is common to numerically approach 2D systems by winding an MPS
around a thin cylinder, mapping the 2D model to a 1D geometry [96, 101–103].

This is done by choosing either a thin strip (with open boundary conditions in the
thin direction) or a thin cylinder (with periodic boundary conditions) and treating
the system as e↵ectively 1D along the “long” direction, which we call the x direction
or horizontal direction. There are two complementary perspectives on this approach.
On the one hand, we can think of embedding the MPS in a snake geometry through
the strip or cylinder or as a coil around the cylinder and understanding it as tensor
network ansatz for a 2D quantum state, where virtual bonds only exist between
some pairs of neighboring sites. Alternatively, we can think of mapping the 2D
Hamiltonian to a 1D geometry, which comes at the price of increasing the range of
horizontal couplings. The resulting algorithms typically have an unfavorable scaling
with the vertical system size Ly, i.e. the width of the strip or circumference of the
cylinder. This is because, for vertical bipartition, a 2D area law state has a bipartite
entanglement that scales linearly with Ly and thus requires an MPS bond dimen-
sion exponential in Ly to approximate it up to some target precision. As a result,
while the horizontal system size can easily be chosen large, or even infinite using
iMPS, simulations are limited to thin systems, which can make extrapolation to the
thermodynamic limit challenging. Nevertheless, these MPS methods are competi-
tive with (and in many cases preferred over) the natively 2D methods because of
superior performance and stability.

These 2D TNS, such as PEPS [25, 26] or MERA [22–24], on the other hand, are
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expected to well represent their class of target states – 2D area law states and 2D
critical states respectively – at some finite bond dimension that does not scale with
system size. While they have been successfully used to simulate 2D models, e.g. in
Refs. [104–106], the advantage over MPS methods in practice is not as pronounced
as the above would suggest. Algorithms to find good approximation within the vari-
ational manifold seem to be less powerful and less stable, and algorithmic develop-
ment seems to have seen less progress compared to MPS methods. As demonstrated
by the benchmark results in section 4.4, even for simple models such as the trans-
verse field Ising model, established PEPS algorithms do not come close to finding
the optimal PEPS at a given bond dimension. Even just evaluating observables
in a given PEPS is a hard problem, both computationally and conceptually. It is
an open question to what extent this discrepancy is due to a fundamental barrier
induced by the network geometry and to what extent algorithmic improvements on
the PEPS side can close the gap. We believe that the di�culty of fixing the gauge
or establishing some sort of canonical form in TNS with loops is one of the greater
hurdles, and approaches to partial gauge fixing have brought improvements [107,
108].

For the rest of this section, we discuss the PEPS ansatz for 2D systems, establish
basic methods for evaluating observables, and briefly summarize established algo-
rithms. This introduction also appears in the manuscript [2] by the author.

2.4.1 Projected Entangled Pair States (PEPS)

A projected entangled pair state (PEPS) is a TNS that is the natural generalization
of MPS to higher dimensions. It results from the recipe of putting a tensor with a
single physical leg on every site of the physical lattice and connecting neighboring
tensors with a virtual leg. We assume a 2D square lattice, but higher-dimensional
versions have been proposed [109, 110], and other lattices are accessible by either
generalizing the ansatz [111] or mapping them to a square lattice. The ansatz

| i =
X

i1,1,...,iX,Y

i1,1 iX,1

iX,Y

A[x,y]
|i1,1, , . . . , iX,Y i (2.53)

is given in terms of a five leg tensor A[x,y] for every lattice site (x, y). Throughout
this section, we typeset graphical equations with a 5 ⇥ 5 system but understand
this as a sketch with straightforward generalization to any system size X ⇥ Y .
Additionally, we do not label every object and refer to e.g. A[x,y] as a generic label
instead of labeling all tensors A[1,1], A[2,1], . . . , A[X,Y ]. The tensors A[x,y]

ix,y ,u,l,d,r
each

have a physical index ix,y 2 {1, . . . , d} labeling an element |ix,yi of an orthonormal
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basis for the local Hilbert space on site (x, y), and four virtual indices, and may be
di↵erent on each site. At the boundary, the respective virtual indices that do not
connect to a neighbor are assumed to be one-dimensional and can thus be removed.

An infinite version, called infinite projected entangled pair state (iPEPS) [112], can
be obtained by repeating a rectangular unit cell of A tensors to tile the infinite
plane. We focus on finite PEPS throughout this section.

Like for MPS, there is a gauge freedom for PEPS. While gauge fixing plays an
important role in PEPS algorithms [107, 108], and analogs for a canonical form have
been proposed [72, 113, 114], isometric properties analogous to (2.16) that establish
an orthogonality center can in general not be achieved by using the gauge freedom.
Enforcing 2D analogs of the isometric property and establishing an orthogonality
center results in a strict subclass of PEPS, called isometric PEPS, or isometric TNS
[70, 71].

In analogy to MPOs, defined in (2.30), we define projected entangled pair operators
(PEPOs) as a tensor network with the same connectivity of virtual legs as a PEPS,
but with two physical legs on each site, representing an operator on the many-body
Hilbert space. Thus, a PEPO is an operator of the form

X

i1,1...iX,Y

i01,1...i
0
X,Y

i1,1

i0
1,1

iX,1

i0
1,Y

iX,Y

i0X,Y

W [x,y]

��i1,1 . . . iX,Y

↵⌦
i0
1,1 . . . i0X,Y

�� .

(2.54)

Similar to the finite state machine construction for MPOs, schemes to write local
Hamiltonians as PEPOs have been proposed [115, 116], and we provide an explicit
construction for nearest neighbor models in section 4.4.1.

2.4.2 Contracting diagrams: boundary MPS method

Since we do not have access to an isometric property for PEPS, a simplification of
the diagrams for norm or local expectation values similar to MPS, e.g. in (2.26),
does not occur. As a result, e.g., the norm of a PEPS is given by

h | i =

F [x,y]

;
F [x,y]

:=
?

A[x,y]

A
[x,y]

, (2.55)
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where we defined the double layer tensor F [x,y]
(uu0)(ll0)(dd0)(rr0) :=

P
i A

[x,y]
iuldrA

[x,y]
iu0l0d0r0 . The

respective virtual legs pointing in the same lattice direction, e.g. u, u0 pointing up-
ward are combined to a single leg. Note that this composite object is mainly in-
troduced for visualization purposes – to avoid three-dimensional diagrams – and
should not be formed in practice. Any contraction involving F [x,y] should instead be

accomplished by performing the contractions with A[x,y] and with A
[x,y]

sequentially,
which is cheaper.

Expectation values, e.g. of a local operator O acting on a site (x̃, ỹ), are achieved
by modifying one of the respective double layer tensors

h |O| i = F [x,y]

F [x̃,ỹ]
O

;
F [x̃,ỹ]
O

:=

?

A[x̃,ỹ]

O

A
[x̃,ỹ]

. (2.56)

The expectation values of a PEPO with tensors {W [x,y]} is given by a similar three-
layer diagram

h |OPEPO| i =

F [x,y]
W

;
F [x,y]
W

:=

?

A[x,y]

W [x,y]

A
[x,y]

.

(2.57)
Overlaps h�| i between di↵erent PEPS or matrix elements h�|O| i of operators
are structurally analogous and simply have di↵erent PEPS tensors in the ket (top)
layer than in the bra (bottom) layer. Since all of these objects, norms, overlaps,
expectation values, and matrix elements have the same structure of a square lattice
of tensors and only di↵er in the details of their multi-layer structure, it is enough
conceptually to focus on only the norm diagram.

Evaluating the norm, or an expectation value, is exponentially expensive in the lin-
ear system size [117]. If we consider, for example, an L⇥L system and a PEPS with
bond dimension D and evaluate the norm via pairwise tensor contraction, we will
eventually encounter an intermediate tensor with an extensive number ⇠ L of open
D-dimensional legs. Its number of entries is exponential in L, e.g. typically D2L+2,
and thus the memory cost to store it and the floating point operation (FLOP) count
to perform the next contraction are exponential as well. This is unfeasible, even for
moderate system sizes, and the goal of evaluating these quantities exactly must be
relaxed. Some approaches resort to Monte Carlo style sampling to obtain, e.g. ex-
pectation values [118, 119]. Here, we focus on introducing approximations on the
tensor network level, and in particular, the boundary matrix product state (bMPS)
contraction method [26, 107, 120]. The intuition behind bMPS contraction is to



36 CHAPTER 2. REVIEW OF TENSOR NETWORK METHODS

view the rows4 of the diagram as either a state (for the top row) in a virtual Hilbert
space of the PEPS bonds or an operator on it (for the bulk rows). Upon collapsing
the multi-layer structure, the top row is a tensor network with the structure of an
MPS, and it is commonly called a boundary matrix product state (bMPS). In anal-
ogy, we refer to the bulk rows as bulk matrix product operators (bMPOs), which
are MPOs with additional multi-layer structure.

Evaluating a PEPS diagram, such as e.g. the norm h | i or an expectation value
h |O| i thus amounts to applying a sequence of bMPOs to a bMPS. While rigorous
justifications require further assumptions [120, 121], it is observed in practice that for
relevant PEPS arising e.g. as candidates during ground state search of some 2D local,
gapped Hamiltonian, the intermediate states on the virtual Hilbert space remain
lowly entangled and can therefore be well-approximated by a bMPS of bounded bond
dimension �. Observables, and in particular the variational energy as a measure of
the quality of the variational ground state approximation, should, in practice, be
verified by a careful scaling analysis with �. Sequentially applying the bMPOs,
introducing approximations where necessary to keep the bMPS bond dimension
bounded gives us a scheme

F [x,y]

bMPO

bMPS

⇡

M [x]

⇡
M̃ [x]

⇡ . . . (2.58)

to evaluate PEPS diagrams. Note that the orange bMPS tensors {M [x]} or {M̃ [x]}
do not have a double layer structure. Therefore, the bMPS in the norm diagram,
preserve the property of positivity as a map from the bottom layer legs associated
with the bra PEPS to the top layer (ket) legs only approximately. While preserving
positivity exactly would be desirable, enforcing it leads to inferior algorithms, see
e.g. discussion in [107, 120].

Let us now focus on the problem of (approximately) applying a bMPO to a bMPS
that is

? ? ? ? ?

M [x]

A
[x,y]

⇡

M̃ [x]

. (2.59)

We can achieve this using the methods developed in the context of MPO evolution,
discussed in section 2.3.5. The multi-layer structure of the bMPO makes no di↵er-
ence conceptually, and in practice only needs to be considered in the contraction
orders. Whenever an object needs to be contracted with a bMPO tensor F [x,y], it

4This is a conventional choice. The contraction can also be analogously carried out column-
wise. Which way is better may depend on the details of the system size and bond dimensions of
the state or the operators, which may have anisotropic bond dimensions.
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should be contracted with its factors layer by layer. We give the computational cost
scaling in table 2.2. These are essentially the costs of MPO evolution summarized in
table 2.1 where “physical” dimension and bMPO dimension coincide as D2 for the
norm and ⌘D2 for the expectation value, but takes into account that contractions
are cheaper due to the multi-layer structure.

Method norm expectation value dominant step(s)

Two-Site Var. O(D6�3) + Cinit O(⌘3D6�3) + Cinit Contractions & dSVD
Single-Site Var. O(D4�3) + Cinit O(⌘2D4�3) + Cinit Contractions & QR
SVD compression O(D10�3) O(⌘5D10�3) QR
Zip-up O(D6�3) O(⌘3D6�3) dSVD

Table 2.2: Computational cost scaling for PEPS contraction using the bMPS
method. The methods are the same MPO evolution methods as in table 2.1.
We give the cost for (a) evaluating the norm of a PEPS with bond dimension
D and (b) the expectation value of a PEPO with bond dimension ⌘ in such
a PEPS, both at a (maximum) bMPS bond dimension �. We have simplified
the scalings under the assumptions dD2  �2 and d⌘2  D2. Note that
using the multi-layer structure of the bMPO reduces the cost of contraction
steps, e.g. down to the same scaling as the decompositions for the varia-
tional methods. Here, Cinit denotes the cost of computing the initial guess
for the variational methods, for which we propose either the zip-up method,
a random bMPS, or the bMPS tensors from a related PEPS contraction in
a previous iteration of an outer loop of a PEPS algorithm.

Returning to the task of contracting an entire diagram (2.58), we can evaluate the
norm of a PEPS, or an expectation value by absorbing rows into a top or bottom
bMPS, until all but one row of the diagram are absorbed. Then, we can evaluate
them as

h | i ⇡

M̃ [x]

M [x]

F [x,y]

; h |O| i ⇡

M̃ [x]

M [x]

F [x,y]
O

, (2.60)

via pairwise contraction. The cost of this contraction is in O(D4�3) for the norm
diagram of a local operator and in O(⌘2D4�3) for a three-layer diagram with a
PEPO. This is the same scaling as for the cheapest method to perform the bMPS-
bMPO absorption, single-site variational sweeping, and thus never dominant. Note
that for a local operator O it is convenient to sandwich the row on which the operator
acts, since then the bMPS are the same as for the norm diagram and may be re-used.

From the bMPS contraction, we get access to the e↵ective environment of a given
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site (x, y), which consists of the four tensors surrounding F [x,y] on the RHS of

h | i ⇡

M̃ [x]

M [x]

F [x,y]

=:

M̃ [x]

M [x]

Lx Rx

F [x,y]

. (2.61)

It is a central object in variational updating algorithms, and may also be evalu-
ated using di↵erent approximate contraction schemes, such as e.g. corner transfer
renormalization group (CTMRG) [122].

2.4.3 PEPS ground state search algorithms

Let us now review algorithms to find a good approximation to the ground state of a
Hamiltonian within the manifold of PEPS of a given bond dimension D. We focus
on methods that apply to finite systems.

In the original PEPS work in Ref. [26], the authors propose both a variational energy
minimization, as well as an imaginary time evolution approach. The variational
approach is conceptually related to the single site DMRG algorithm, iterating single-
site updates which keep all other tensors constant, but crucially without an isometric
form. As a consequence, the local problem, analogous to (2.39) comes with a non-
trivial e↵ective norm environment Ne↵ arising from (2.61) and finding its optimal
solution requires solving a generalized eigenvalue problem He↵ ·✓ = "Ne↵ ·✓, which is
often ill-conditioned. We expect these single-site updates without mixing approaches
to su↵er from similar convergence issues as single-site DMRG. The imaginary time
evolution approach involves applying a global approximation e�H�⌧ ⇡ �H�⌧ of the
time evolution operator, and subsequently truncating the PEPS bonds variationally,
similar to variational MPO evolution, see section 2.3.5. Again, since there is no
canonical form established, the local problem involves a non-trivial e↵ective norm
matrix and is often ill-conditioned.

The FU algorithm [112] implements imaginary time by applying the two-body gates
arising from a Trotter decomposition sequentially, i.e. one at a time. Many adapta-
tions of the FU, including reduced local updates [107, 123], as well as gauge fixing
[108, 120] have been employed to improve stability and performance. The simple
update (SU) algorithm [124], on the other hand can be viewed as a version of the
FU that makes strong simplifications of the e↵ective norm environment. As a result,
updates are in general further from optimality, since they are derived from a norm
that is a worse approximation of the true many body norm, but are significantly
cheaper, and thus allow larger bond dimensions. Thus, the SU allows ground state
search in a larger variational manifold, that generically contains a better approxi-
mation to the true ground state, but the search algorithm is inferior and generically
finds a worse candidate then a FU search in the same manifold would. It is an open
question, under what circumstances the trade-o↵ introduced by relaxing to a SU is
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worth it. Note that (generically), the FU does not find the optimal ground state
approximation in its search manifold either, as we demonstrate in section 4.4.

Gradient-based approaches have been employed for both finite [115, 125–128] or infi-
nite systems [37–39, 129], and minimize the variational energy, by globally updating
all tensors at once. For infinite systems, it is common to evaluate gradients using
automatic di↵erentiation (AD), which seems to work well and give stable optimiza-
tion trajectories. For finite systems, a similar approach seems to interact poorly
with the approximations needed to evaluate the variational energy, e.g. using the
bMPS method. We propose an approach to stable gradient-based optimization of
finite PEPS in chapter 4.

2.4.4 PEPS time evolution algorithms

Regarding simulation of time evolution, infinite PEPS simulations typically employ
sequential gate application [130, 131]. The derivation of the update conceptually
breaks the translational invariance of the ansatz, by assuming that the infinite en-
vironment surrounding a unit cell remains fixed, while deriving a local update for a
few, typically two, tensors in the unit cell. Translational invariance is then restored
by performing the so derived update in all unit cells. This is an approximation to a
truly translationally invariant application of the gate to all unit cells simultaneously.
In addition to the FU and SU environment schemes, a significant performance im-
provement was gained by the invention of the fast full update (FFU) [108], which
exploits that the state does not change much under small time steps and thus new en-
vironments can be obtained from the old environments in only a single CTMRG [132]
renormalization step.

While the original PEPS work [26] mentions applying the evolution approach also
to real time dynamics, we are not aware of any published works simulating real-time
dynamics of finite PEPS, and we have not been able to obtain sensible results from
variational schemes with local updates.

Simulating local quench dynamics, e.g. to extract response functions, however, re-
quires either a finite system, or a translationally invariant state with a large unit
cell. In either case, the system is expected to well-approximate the thermodynamic
limit for a limited time, until correlations from the initial quench have spread to the
boundary of the finite system or the unit cell. The approach using infinite systems
with a large unit cell (15⇥ 15) is done in Ref. [133], using sequential time evolution
with local updates derived from FFU environments. Let us mention for complete-
ness the approach of Ref. [134] to simulate local excitations using a translationally
invariant superposition, employing SU simulations with a small (2⇥ 2) unit cell.

We propose a gradient-based time evolution algorithm for finite PEPS in chapter 4.
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2.5 Symmetries

If the Hamiltonian has a symmetry, that is, if it commutes with a unitary U ,
it has a block-diagonal structure in the eigenbasis of the symmetry. This block-
diagonal structure can be exploited for computational performance in both memory
and FLOPs, as fewer numbers need to be stored for such symmetric matrices, and
operations on them, such as contractions and decompositions can be done blockwise
and require fewer FLOPs.

In this section, we focus on a “global symmetry”, that is a unitary representation
U (n) of a symmetry group G on every local Hilbert space at site n, such that the
Hamiltonian is invariant under the global action [H,⌦N

n=1
U (n)(g)] = 0 for every

group element g 2 G. The assumption that the symmetry factorizes into on-site
unitaries, i.e. that it has a spatial structure, allows it to cooperate with the tensor
networks which have an inherent spatial structure as well. We introduce a more
general framework that goes beyond symmetries induced by group representations
in chapter 5, but discuss the group case here as an instructive special case and
restrict to abelian groups for the concrete consequences on the tensor level.

We give a detailed review of the basics of representation theory and state central
results such as Schur’s lemma in section A.1. The main points are that first, any
unitary representation decomposes into the direct sum of irreducible representations
– irreps for short. For each group, G, the irreps can be classified and we write Ua

for the representative of an equivalence class of irreps, where the labels are e.g.
a 2 for G = U(1) or a 2 N for G = N . Secondly, Schur’s lemma part 1 states
that equivariant maps, that is, linear maps f : V ! W that are compatible with
representations UV (UW ) on V (W ) in the sense that f � UV (g) = UW (g) � f for all
g 2 G must vanish if UV � UW are inequivalent and irreducible. Lastly, the tensor
product Ua ⌦ Ub of irreps is itself irreducible and thus equivalent to an irrep Ua+b,
which defines the addition rule for irrep labels.

As an example, consider the spin-1

2
Heisenberg chain in a field, with Hamiltonian

H =
N�1X

n=1

Sn · Sn+1 + hz
NX

n=1

Sz
n. (2.62)

It has a U(1) symmetry, which conserves the total magnetization Q =
P

n Sz
n. For

completeness, let us state the concrete representation

U (n)(ei�) = ei�2Sz
n/~ = ei� |"ih"| + e�i� |#ih#| , (2.63)

where ei� 2 U(1) is a general group element. We find that the representation
decomposes as U (n) = U1 � U�1, where Un are the representative irreps of U(1)
labelled by integers n 2 , see section A.3. Note that this singles out the z basis as
an advantageous computational basis since the representation decomposes directly
into irreps in this basis, which it would, e.g. not do in the x basis. This is a common
pattern; a symmetry group implies a canonical choice for the computational basis.
In practice, we do not need to work with the representation explicitly and only care
about the irrep label for each basis element, in this case 1 for | "i and �1 for | #i.
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2.5.1 Symmetric States from Symmetric Tensor Networks

Let us first focus on symmetric states that is, many-body states | i that are invariant

⌦N
n=1

U (n)(g) | i = | i (2.64)

under the group action. We extend the resulting framework to covariant states
(that transform non-trivially under the symmetry) afterward. Now, what are the
implications for tensor network representations of | i?

First, let us consider one particular way to force tensor networks to yield symmet-
ric states, namely by building them from symmetric tensors. First, we require a
representation of the symmetry group on each virtual Hilbert space of the tensor
network. Up to equivalence, which can be safely gauged away, the only relevant
property of this representation is its irrep content, that is, which irreps appear and
how often. We can view this as choosing a separate bond dimension of the vir-
tual Hilbert space in every symmetry sector, a choice that influences the variational
power of the ansatz. In algorithms where bond dimensions can dynamically grow,
such as in most MPS algorithms, this never needs to be chosen manually since the
Schmidt spectrum assigns priorities to the respective basis states and allows a clear
choice, which irreps to keep.

Given such representations, a tensor T is symmetric if it is invariant under the
simultaneous group action on all of its legs, that is, for all g 2 G

T

U (1)(g)

U (2)(g)

U (3)(g) U (4)(g)

U (5)(g) = T , (2.65)

where we have drawn a five leg example tensor for concreteness.

Now if two symmetric tensors are contracted, the contracted legs need to be com-
patible, in the sense that one is the dual of the other, i.e. one is “bra-like”, while
the other is “ket-like”. As a result, the representation | i 7! U(g)| i on one leg is
cancelled by the contragradient representation h�| 7! h�|U †(g) = h�|U(g�1) on the
dual leg

A

U (1)(g)

U (2)(g)

B

U (3)(g)

U (4)(g)

= A

U (1)(g)

U (2)(g)

U (c)(g�1) U (c)(g) B

U (3)(g)

U (4)(g)

(2.65)

= A B ,

(2.66)
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such that the contraction results in a composite tensor, which is itself symmetric.
Thus, a tensor network consisting of symmetric tensors gives a symmetric state.

For loop-free tensor networks, such as MPS, we can also argue the other way, namely
that if a symmetric state can be written as a tensor network at all, then it can be
written as a tensor network of symmetric tensors at the same bond dimensions.
For finite MPS, e.g., we can formally see this by performing a sequence of SVDs of
the full wave function. At each SVD, the number of non-zero singular values and,
thus, the resulting rank is the same as in the network of non-symmetric tensors. For
infinite MPS, see e.g. the discussion in [40, Sec. III.A.1]. As a result, we do not lose
any variational power by restricting to networks of symmetric tensors.

2.5.2 Symmetric Tensors

In this section, we establish a parameterization for symmetric tensors. This allows us
to store only the free parameters when storing tensors and operate only on those pa-
rameters when manipulating tensors instead of all entries of general, non-symmetric
tensors. We assume that the symmetry group is abelian at this point; see chapter 5
for the non-abelian case. There are two routes to obtain these results commonly
used in the literature, either using the Wigner-Eckart theorem or Schur’s Lemma.
We follow the latter route, but the consequences are the same.

Since Schur’s lemma is a statement about maps, we recast tensors as linear maps.
In particular a tensor T 2 V1 ⌦ · · ·⌦ VN is equivalent to a linear map

t : C! V1 ⌦ · · ·⌦ VN ,↵ 7! ↵T (2.67)

and we can recover T = t(1). Now, T is a symmetric tensor w.r.t. representations
U (n) on each of the spaces Vn if and only if t is an equivariant map between the
trivial representation U0 on C and

N
n U (n) on

N
n Vn. Let us assume that on

every leg n of the tensor we have chosen the computational basis such that the
group representation is a direct sum of irreps U (n) =

L
dimVn

i=1
U
a
(n)
i

which defines a(n)

i

as the irrep label of the i-th component in the decomposition of U (n). A general
entry Ti1,...,iN is now an equivariant map between U0 and

NN
n=1

U
a
(n)
in

⇠= U
a
(1)
i1

+···+a
(N)
iN

.

By part 1 of Schur’s lemma – see section A.1 – it can only be non-zero if these
representations are equivalent. This gives rise to the charge rule for symmetric
tensors

a(1)

i1 + a(2)

i2 + · · · + a(N)

iN
6= 0 ) Ti1,i2,...,iN = 0. (2.68)

As a consequence, symmetric tensors have a sparsity structure, where a significant
fraction of entries are forced to vanish by charge conservation. Now, if we choose
the order of the computational basis such that those indices in that have the same
irrep label a(n)

in appear consecutively, this results in a block-sparse structure of the
tensors. Thus, it is enough to store only those non-zero blocks in memory. Addi-
tionally, operations on tensors reduce to operations on the smaller blocks, with some
additional book-keeping to identify the indices corresponding to the resulting blocks.
This applies to combining and splitting legs, contracting tensors, decomposing them
in e.g. SVDs, and more. We do not go into detail regarding implementation at this
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point and refer the interested reader to the literature [35, 51, 135] since we develop a
more general framework that covers the abelian groups as a special case and describe
operations on tensors in detail, in chapter 5.

For a bra space, it is convenient to keep track of the irreps of its dual ket space
instead, which di↵er from its own irreps by a minus sign. This is because the irreps
are sorted for performance optimization, and this convention results in a compatible
order in the dual space, which facilitates contraction. As such, the irrep for the
i-th index on a bra space is �ai, where ai is the irrep of the i-th index on the
corresponding ket space. This introduces explicit signs ⇣(n) = ±1 for each leg to the
charge rule, indicating if the respective leg is a ket space (+1) or bra space (�1).

Additionally, it is convenient to introduce a “total charge”, which is an irrep label
A and replace the trivial irrep U0 on the domain C by UA. Now if the map t
is equivariant between UA and

NN
n=1

U
a
(n)
in

, this means that the tensor transforms

under UA if the symmetry is applied, meaning

Tcharged

U (1)(g)

U (2)(g)

U (3)(g) U (4)(g)

U (5)(g) = UA(g) Tcharged (2.69)

for all g 2 G. Here, UA(g) is just a complex phase, as it is a unitary representation
on C. We call such tensors charged (as opposed to symmetric).

The resulting charge rule, with explicit signs and a total charge, is then

⇣(1)a(1)

i1 + ⇣(2)a(2)

i2 + · · · + ⇣(N)a(N)

iN
6= A ) Ti1,i2,...,iN = 0. (2.70)

It is often directly formulated in terms of charges instead of irrep labels. Charge
values are eigenvalues q(ai) of a conserved charge operator of the form Qn =P

i q(ai)|iihi|, i.e. an operator diagonal in the basis induced by the irrep decom-
position, whose diagonal entries depend on the irrep label such that irreps have
a unique charge value. For a concrete example, consider a spin system with the
U(1) symmetry that conserves Qn = Sz

n in the sense that [H,
P

n Qn] = 0. We

find Qn = Sz
n =

P
i
~
2
a(n)

i |iihi|. Recall that for U(1), we choose integer irrep labels
a 2 . In the case of U(1) specifically, the conserved charge is up to a prefactor
the representation of the Lie algebra generator, such that the representation of the
group is given by U (n)(ei�) = ei�2Sz

n/~. From this perspective, a symmetric state
O

n

U (n) | i = | i 8g 2 G ) Q | i = q(0) | i (2.71)

is an eigenstate of the conserved charge with eigenvalue Q = q(0), which is typically5

5The zero-point of Q is arbitrary since constants can be added to get a conserved charge that
is just as valid. It is common to set the zero point to correspond to the symmetric state, e.g. zero
Sz magnetization or zero particle number w.r.t. some reference filling fraction.
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but not necessarily Q = 0. A charged state, on the other hand
O

n

U (n) | i = UA(g) | i 8g 2 G ) Q | i = q(A) | i (2.72)

is an eigenstate with a di↵erent eigenvalue. Thus, it can e.g. be used to parametrize
states with finite magnetization, or if the U(1) symmetry conserves particle number,
with finite filling.

Of particular interest in this thesis is the special case where we only have two legs (or
legs have been grouped into two groups), i.e. symmetric matrices. This is the form
that allows decomposition, e.g. SVDs of symmetric tensors, by first grouping legs to
a matrix, decomposing it, and subsequently ungrouping to recover the original leg
structure, see e.g. (2.9). We focus on only the central step, decomposing symmetric
matrices. We assume that the computational basis is sorted by charge sectors/irreps.
As a result, those irrep labels aq with q = 1, . . . , Q that appear on both legs of a
matrix ✓ each correspond to a block ✓q, and all other entries – not in one of these
blocks – vanish by the charge rule. We obtain a block-sparse structure, such as e.g

✓ =

✓1

✓2

✓3

✓4

0

0

. (2.73)

Note that each row (column) contains at most one block, and there may be rows
(columns) that do not have a block, if the irrep associated with the index of that
row (column) has no matching irrep in the other leg. We refer to the sizes mq ⇥ nq

of the blocks ✓q as the block-sizes of ✓.

We can then achieve standard decompositions of these matrices by acting blockwise,
such as e.g. algorithm (2.8) for an SVD.

Algorithm 2.8 Truncated SVD for block-diagonal matrices

Given an m⇥ n block-sparse matrix ✓ with block sizes {mq ⇥ nq} and a target rank
k  min(m, n), compute the truncated SVD ✓ ⇡ USV † consisting of block-diagonal
left isometries U, V , and S the diagonal matrix containing the k largest singular
values of ✓.

1. For every block q, compute the SVD ✓q =: UqSqV †

q with rank kq = min(mq, nq).
2. Identify a threshold value � � 0, such that

P
q |{i = 1, . . . , kq|(Sq)ii > �}| = k,

i.e. such that exactly k singular values are larger.
3. For every block q, truncate its SVD to ✓q ⇡ ŨqS̃qṼ †

q , by keeping only singular
values from Sq which are above � and corresponding columns of Uq, Vq.

4. Form U, S, V from the blocks {Ũq}, {S̃q}, {Ṽq}

This can clearly be modified to incorporate additional criteria for which singular
values to keep. The important part is that the selection of singular values to keep
should be coordinated between the blocks.
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2.6 The Tensor Network Python (TeNPy) library

The Tensor Network Python (TeNPy) library [4] is a python package for tensor
network simulations. The library is based on previous (non-public) codes used in
references [136, 137], developed by the authors of these works. It was rewritten in
its current structure by Johannes Hauschild during his PhD and released as an open
source package [135]. The package is currently maintained by Johannes Hauschild
and the author of this thesis, and has recently seen a version 1.0 release [3]. Current
active development aims to improve the low-level part of the package handling lin-
ear algebra of tensors, to support nonabelian symmetries, generalized symmetries,
and fermionic or anyonic degrees of freedom – see chapter 5 – as well as hardware
acceleration on GPUs, to incorporate e.g. the concepts discussed in chapter 3. A
prototype of the new implementation was developed by the author of this thesis,
and is currently being optimized for performance and incorporated into the rest of
the library.

The package o↵ers high-level functionality that abstracts entire simulations of, e.g. a
response function from time evolution or a phase diagram sweep that performs
ground state search at many parameter values and extracts order parameters. These
are implemented in terms of “mid-level” algorithms, such as e.g. the DMRG, TEBD
and MPO evolution algorithms discussed in sections 2.3.3-2.3.5 respectively, as well
as TDVP and VUMPS. The focus is currently mostly on MPS simulations in one
and two spatial dimensions. Many features exist to facilitate the specification of
the physical models, in terms of a 1D, quasi-1D, or 2D lattice geometry. As a
result, Hamiltonians can be specified in the natural language of local operators
and couplings on the lattice, and the construction of e.g. MPO representations
of the Hamiltonian is fully automated. This allows non-experts to set up, e.g. a
DMRG simulation for a particular physical model without knowing any details of the
tensor network representation of its Hamiltonian, or run TEBD without interacting
with the Trotterization and the order in which gates are applied. The low-level
functionality o↵ers linear algebra routines on symmetric tensors, supporting abelian
symmetry groups, as discussed in section 2.5.

The code is open source and maintained publicly on GitHub [4]. Refer to the online
documentation6 to get started.

6
https://tenpy.readthedocs.io/en/latest/

https://tenpy.readthedocs.io/en/latest/
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Chapter 3

Fast time evolution of matrix
product states

This chapter, and in particular sections 3.2 and 3.5, are based on a previous publi-
cation of the author [1].

A common pattern in TNS algorithms are truncation steps, where an update that is
derived in an enlarged search space needs to be approximated within the variational
manifold. For example, the two-site updates of MPS during TEBD or two-site
DMRG, as described in sections 2.3.3 and 2.3.4 respectively, lie outside the manifold
of fixed bond-dimension MPS and thus need to be truncated. In most cases, this
requires an approximate matrix factorization ✓ ⇡ E [n] ·F [n+1] with a bounded rank of
at most k and is typically implemented with a truncated SVD. Additional properties,
e.g. isometric properties of some factors can be desirable in many settings.

In this chapter, we discuss several alternative factorizations that (a) have lower cost
scaling, (b) allow for hardware acceleration, or (c) stabilize automatic di↵erentiation.
In order to discuss the advantages and disadvantages of these matrix factorization
routines, we can mostly take the point of view of general-purpose numerical linear
algebra. There are two important aspects to consider, however, if we come from
the context of tensor networks, and in particular MPS. Firstly, we need to be able
to both deal with and exploit the block-sparse structure arising from symmetries.
Secondly, from the TNS algorithm, we may assume that we have access to a related
matrix ✓̂ which is close to ✓ and has an exact factorization ✓̂ = ÊF̂ with rank k̂  k.
This is natural in tensor networks since the purpose of the truncation is to restore
the factorized TNS form that was present before the update. Additionally, the pre-
update ✓̂ is naturally close to the update ✓, e.g. in TEBD where it di↵ers by time
evolution by a small time step ✓̂ = ✓ + O(�t), or in variational algorithms such as
DMRG, if they are close to convergence.

First, in section 3.1, we summarize properties of standard matrix factorizations and
establish categories for truncated factorizations with the minimal properties to be
useful in tensor network simulations. We introduce the QR-based factorization and

47
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its algorithmic variations in section 3.2 and discuss its relation to randomized linear
algebra in section 3.3. In section 3.4, we propose synthesized routines, incorporat-
ing elements from randomized linear algebra in the QR-based scheme, perform a
benchmark in section 3.5 and conclude in section 3.6.

3.1 Matrix factorizations

This chapter deals extensively with matrix factorizations. In this section, we there-
fore first establish di↵erent (categories of) factorizations and summarize their prop-
erties. We will place a particular focus on truncated factorizations, that is, low-rank
approximations of the input matrix with particular properties analogous to the cor-
responding exact factorization. We give automatic di↵erentiation (AD) formulae,
in particular in light of truncation and for the deformed version of the SVD in
section 4.2.

3.1.1 Singular Value Decomposition (SVD)

The singular value decomposition (SVD) is ubiquitous in tensor networks. It is the
most direct and provably optimal way to find a truncated decomposition of a general
input matrix. An SVD of an m⇥ n matrix ✓ is a factorization

✓ = USV † (SVD)

U 2 Cm⇥k left isometry: U †U =

S 2 k⇥k real, non-negative, diagonal, non-increasing:

Si,i � Si+1,i+1 � 0 and Si,j = 0 if i 6= j

V 2 Cn⇥k left isometry: V †V = ,

(3.1)

where k = min(m, n), as this is the “reduced” or “economic” version. Computing
it has a runtime complexity in O(mnk). It seems that currently available imple-
mentations for SVD on GPUs are ine�cient, preventing any benefit from hardware
acceleration. In fact, in the benchmark in section 3.5, we find that while SVD-free
algorithms have a speedup of almost two orders of magnitude on GPU, comparing
a specific pair of GPU and CPU models, a similar algorithm that is using SVDs
heavily, is actually slower on the GPU.

An SVD can be truncated to a target rank �  k by taking slices such that only the
first � singular values are kept, i.e. defining Ũ = U[:,:�], S̃ = S[:k,:k] and Ṽ = V[:,:�]. As
a result, we have an approximate factorization ✓ ⇡ Ũ S̃Ṽ †, such that the truncation
error

"SVD =
���✓ � Ũ S̃Ṽ †

���
F

=

vuut
kX

i=�+1

S2

i,i =
��S[�:,�:]

��
F

(3.2)

is provably the lowest possible error for a rank � factorization. As such, the SVD is
the gold standard for low-rank factorizations.
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3.1.2 QR Decomposition

A QR decomposition of a tall rectangular m⇥ n matrix ✓ where m � n is a factor-
ization

✓ = QR (QR)

Q 2 Cm⇥n left isometry: Q†Q = n

R 2 Cn⇥n upper triangular: Ri,j = 0 if i > j.

(3.3)

Its computational cost has the same scaling O(mn2) as an SVD of the same input
matrix. The prefactor suppressed by the big O notation is, however, commonly
much smaller. There are e�cient GPU implementations. There is no direct way
to truncate a standard QR decomposition, at least not with a controlled trunca-
tion error; see the modified variant described in the next section. While the upper
triangular property of the R factor is needed in many numerical linear algebra appli-
cations, such as solving linear systems or least squares problems, in tensor networks,
we typically only care about the isometric property of the Q factor and the reduced
dimension of the new index.

The related LQ decomposition of wide rectangular m ⇥ n matrix ✓ where m  n
has the properties

✓ = LQ (LQ)

L 2 Cm⇥m lower triangular: Li,j = 0 if i < j.

Q 2 Cm⇥n right isometry: QQ† = m

(3.4)

and we find that ✓† = Q†L† is a QR, such that the two factorizations are essentially
equivalent by swapping the roles of rows and columns.

3.1.3 Truncated QR-like decompositions (tQR)

Let us now focus on approximate low-rank factorizations and require only those
properties that are actually required in tensor network methods. Consider, for
example, the truncation step (2.35), where we require an approximate factorization
✓ ⇡ A · C, where the only relevant properties are the bounded dimension of the
new index and the isometric property of the first factor. Due to the structural
similarity to the QR decomposition, we call such factorizations truncated QR-like
decomposition (tQR), captured by the following defining properties

✓ ⇡ QR (tQR)

Q 2 Cm⇥k left isometry: Q†Q = n

R 2 Ck⇥n no required properties.

(3.5)

Note that unlike the QR, we do not impose a triangular structure on the second
factor.

A decomposition of this form can be obtained from a truncated SVD as ✓ ⇡ U(SV †),
with an optimal truncation error. Similarly, any dSVD, as introduced in section 3.1.4
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below, yields a tQR. Relaxing to the weaker properties of the tQR allows us to also
consider other truncated factorizations, such as QR decomposition with column
pivoting (QRCP) [138, 139], see also [140, §5.4], or its randomized versions [141–
143].

3.1.4 Deformed SVD

While truncated SVDs are commonly used for truncation in TNS algorithms, the
property that the central factor S̃, the truncated singular values, are real, positive,
diagonal is rarely needed. With MPS truncation, e.g. in (2.37), we only need it
if we insist on a full canonical form. If we relax to an isometric form, however,
we only require the isometric properties of the Ũ , Ṽ factors and that ✓ ⇡ Ũ S̃Ṽ † is
a good approximation. This motivates the following definition of a broader type
of approximate factorization, which we dub deformed singular value decomposition
(dSVD).

A deformed SVD of an m⇥ n input matrix ✓ is an approximate factorization with
the following properties

✓ ⇡ U⌅V † (dSVD)

U 2 Cm⇥k left isometry: U †U = k

⌅ 2 Ck⇥k no required properties

V 2 Cn⇥k left isometry: V †V = k

deformed singular value properties: ✓V = U⌅ and U †✓ = ⌅V † .

(3.6)

We can understand it as arising from a truncated SVD, deformed by two independent
unitary gauge transformations Q, P to the left and right of ⌅, that is, as

✓
SVD⇡ Ũ S̃Ṽ † = (ŨQ)(Q†S̃P )(Ṽ P )† =: U⌅V †. (3.7)

The “deformed” singular value properties are an optional additional requirement.
Note that they are trivially fulfilled for the approximation ✓approx := U⌅V † but are a
non-trivial requirement with the input matrix ✓. They imply that the correction � =
✓�U⌅V † is entirely in the orthogonal complements U? (V?) of U (V ), meaning there
is some ⌅? such that � = U?⌅?V †

?
, and have consequences for AD, as discussed

in section 4.2.2. In other words, the k columns of U (V ) are linear combinations of
only k left (right) singular vectors of ✓. If the truncation is chosen such that those k
singular vectors correspond to the k largest singular values of ✓, the dSVD inherits
the optimal truncation properties from the SVD.

Note that we do not require this to be the case and allow approximations with
slightly larger truncation error k✓ � U⌅V †k than the optimal error achieved by a
truncated SVD. A dSVD is only a sensible concept in the presence of truncation,
that is if k < min(m, n), since e.g. for k = m = n, ✓ = ✓ is a valid dSVD, but
entirely useless.

By construction, a (truncated) regular SVD is a dSVD. It can also be achieved
by postprocessing any truncated QR-like decomposition (tQR) ✓ ⇡ UM = ULQ
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with an additional LQ factorization. This approach is closely related to the QLP
or UTV [144] factorizations, see e.g. [140, §5.4.6], which are also special cases of a
dSVD, where the central factor ⌅ has a triangular structure. More broadly, most
common approximations to the SVD fulfill the requirements, such as e.g. randomized
singular value decomposition (rSVD) [145] or randomized versions of the QRCP [141]
or QLP [144, 146, 147]. The QR-based truncation routine introduced in section 3.2
is a dSVD as well.

3.2 QR-based truncation

The QR-based decomposition introduced in a previous publication [1] can be thought
of as a dSVD ✓ ⇡ USV †, that is as a subroutine that computes a low-rank factoriza-
tion of a two-site wavefunction and can replace the truncated SVD in many settings.
In particular, it can be used in the truncation step (2.37) of TEBD, which is the
application highlighted in the publication. In this section, we rephrase the algorithm
in a broader context and in the notation of this thesis.

The error
✏ =

��✓ � USV †
��

F
(3.8)

is almost optimal in the following sense; The error of any rank k factorization is
lower-bounded by the minimal error

✏SVD =

vuut
min(m,n)X

i=k+1

⇤2

i , (3.9)

where ⇤i are the singular values of ✓ in descending order, i.e. the smallest possible
error is given by the weight of the discarded singular values and is achieved by a
truncated SVD. The QR-based truncation is almost optimal, i.e. only slightly less
accurate than a truncated SVD, in the sense that

|✏� ✏SVD|⌧ ✏SVD. (3.10)

It can, therefore, replace the truncated SVD, which is typically used in MPS algo-
rithms.

We emphasize that while we can derive heuristic explanations, the observation of
small truncation errors is empirical. It should be explicitly verified in practice that
the error ✏ is indeed small enough to be tolerable. Such a sanity check should be
performed in tensor network simulations anyway to get a quantifiable handle on
gauging if the bond dimension is large enough. Since U and V † are not the exact
singular vectors of ✓, computing the error similarly to equation (3.9), i.e. based
only on the discarded singular values in S is not possible and we need to explicitly
evaluate equation (3.8). This comes at a non-negligible cost, with the same formal
scaling as computing the QR-based truncation in the first place. Therefore, it may
be beneficial to consider when the error is actually needed. In TEBD, for example,
the error is not required at every time step; computing it at only every tenth time
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step or so allows the same kind of analysis in determining the maximum simulation
time after which entanglement growth prohibits accurate MPS approximation.

The simple version of the QR-based truncation scheme, as described in [1, sec II],
is rephrased in algorithm 3.1.

Algorithm 3.1 Simple QR-based Truncation

Given an m⇥n matrix ✓ and an n⇥k “initial guess” ⌦, computes a dSVD ✓ ⇡ U⌅V †

with rank k, and properties listed in (3.6).

1. Form Y = ✓⌦ and compute its QR decomposition Y = UR.
2. Form Ỹ = U †✓ and compute its LQ decomposition Ỹ = ⌅V †.

We can think of ⌦† as an initial guess for the right factor of ✓ and choose it in right
isometric form if possible, making ⌦ itself left isometric. We propose to use the factor
from the pre-update wavefunction ✓̂ = ÊF̂ as an initial guess, which is naturally
given in right-isometric form in a TEBD simulation, that is, setting ⌦ = F̂ †. In some
settings, such as e.g. in a left sweep of DMRG, we may only have an isometric form
established for the right factor Ê. In that case, the QR-based truncation scheme
can be readily adjusted by “vertically mirroring”, e.g. by requiring an m⇥ k matrix
⌦̃ and LQ decomposing ⌦̃✓ instead of step 1, and doing a QR in step 2.

A heuristic explanation for why this algorithm achieves accurate truncation in the
sense of (3.10) is to understand it as a variational single-site algorithm. Given an
initial guess (Ei, Fi) for a factorization ✓ ⇡ EF , let us assume that Fi is right iso-
metric. Then, the optimal update for the first factor, which minimizes the distance
k✓ � YiFikF, is given by Yi = ✓F †

i . In order to make a similar update for the right
factor, we shift the isometric form, using a QR decomposition, i.e. we transform our
current best guess (Yi, Fi) 7! (Qi, RFi), which leaves the distance unchanged. Now
the optimal right update is Ỹi = Q†

i✓ and we again shift the isometric form using
an LQ decomposition (Qi, Ỹi) 7! (QiLi, Q̃i) =: (Ei+1, Fi+1), which concludes one
sweep of single site updates. If we repeat this until convergence, e.g. for q steps, we
e↵ectively realized an alternating least squares (ALS) algorithm and have achieved
✓ ⇡ EqFq = QqLqQ̃q, which already fulfills the target SVD-like isometric properties.
This approach is transcribed in algorithm 3.2. An alternative perspective, why the
QR-based truncation works is outlined in section 3.3.

Now, in the TEBD setting, we found that using the pre-update right factor F̂ as an
initial guess leads to convergence of the resulting error after only a single iteration,
i.e., at q = 1. Setting q = 1 reduces algorithm 3.2 to algorithm 3.1. As observed
empirically, it allows accurate truncation in TEBD time evolution, however, with a
few minor drawbacks; Since the central bond matrix ⌅ is not diagonal, we do not
have direct access to the singular values of ✓. Therefore, an MPS algorithm using the
simple QR-based truncation scheme can not establish the full canonical form and
has to work with an isometric form, with general (i.e. not diagonal) bond matrices
in place of Schmidt values. Additionally, the new virtual space – the column space
of V † and row space of U – is fixed by the choice of ⌦, e.g. to be the same as
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Algorithm 3.2 Iterative Simple QR-based Truncation

Note: This is included for pedagogical purposes only. In practice, we find that setting
q = 1 is su�cient, such that the algorithm reduces to algorithm 3.1.

Given an m⇥ n matrix ✓, an integer q > 0 and an n⇥ k initial guess ⌦, computes
a dSVD ✓ ⇡ U⌅V † with rank k, see (3.6).

1. Set Q̃0 = ⌦† and iterate the following steps for i = 1, . . . , q:
1.a. Form Yi = ✓Q̃†

i�1
and compute its QR decomposition Yi = QiRi.

1.b. Form Ỹi = Q†

i✓ and compute its LQ decomposition Ỹi = LiQ̃i.
2. Set U = Qq, ⌅ = Lq and V † = Q̃q.

before the time step in TEBD. This means that the bond dimension of the tensor
network can not be adjusted dynamically; it can neither grow to accommodate
growing entanglement nor can it be reduced if entanglement is still low early in the
evolution. If symmetries are preserved, it additionally fixes the charge sectors of the
new virtual leg, again to be the same as before for the time step, which severely
limits the variational power of the ansatz, especially in transport simulation, where
charges are expected to change significantly.

We can adjust the algorithm to address these shortcomings with the following two
modifications; Firstly, by performing a truncated SVD of the bond matrix L = ⌅ as
a final step. This allows us to select the optimal virtual space based on the singular
values, however, constrained to a subspace of the column space of ⌦. Secondly, by
selecting an initial guess ⌦ with an enlarged virtual leg of dimension ` for the simple
QR-based truncation, before truncating back to k  ` in the final step. Note that
the `⇥ ` bond matrix L is smaller than the m⇥n input matrix ✓, such that the cost
of this final SVD is subdominant. The resulting scheme is given by algorithm 3.3
and achieves an almost optimal truncation, which allows dynamically adjusting the
virtual space based on the singular values of L.

Algorithm 3.3 QR-based Truncation with bond expansion

Given an m⇥n matrix ✓ and an integer `  min(m, n), computes a dSVD ✓ ⇡ USV †

with rank k  `, see (3.6).

1. Select a `⇥m column projection ⇧ and form the n⇥ ` test matrix ⌦ = (⇧✓)†.
2. Form Y = ✓⌦ and compute its QR decomposition Y = QR.
3. Form Ỹ = Q†✓ and compute its LQ decomposition Ỹ = LQ̃.
4. Compute a dSVD of the `⇥ ` matrix L ⇡ ŨSṼ †.
5. Form U = QŨ and V † = Ṽ †Q̃.

This is the algorithm presented in [1, sec III], with variable names adjusted to
facilitate discussion in the following sections. Additionally, the eigen-decomposition
step is replaced with a dSVD; see the discussion in section 3.2.1. It remains to
choose the entries of the projection ⇧. We propose to choose what we call a column
projection, that is for an `⇥m projection ⇧ we choose its rows from the rows of the
identity matrix, such that ⇧✓ is cheaply computed, simply by selecting rows from
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✓. Here, rows of ✓ which are numerically close to zero should be avoided. In the
TeNPy implementation, we choose the columns of ✓ with the largest vector 2-norms,
though other choices are possible, such as randomly choosing from those columns
with norms above a threshold.

An alternative is to start with the pre-update factor F̂ and add rows of ✓. This
modification enables the intuition that ⌦† is a good initial guess for a factor of ✓,
since

✓ ⇡ ✓̂ = ÊF̂ =
⇥
Ê 0

⇤  F̂
⇧̃✓

�
=:

⇥
Ê 0

⇤
⌦†, (3.11)

where the square brackets denote concatenation of matrices and ⇧̃ is an (`� k̂)⇥m
column projection. We also considered adding random rows instead of ⇧̃✓. We found
these variations to give virtually the same quality in terms of truncation error.

Similar to the simple QR-based truncation, we can understand steps 2 and 3 of
algorithm 3.3 as single site updates that could be repeated (replacing ⌦ with Q̃†)
until convergence. Again, we find empirically that a single iteration is su�cient to
converge the truncation error.

The computational cost is dominated by the matrix products1 in steps 2 and 3
and is in O(mn`). Truncation via standard SVD, for comparison, has a cost in
O(mn min(m, n)). In the setting of an MPS update, we typically have m = n = d�,
where d is the dimension of the physical on-site Hilbert space and � the MPS bond
dimension, which we assume to be uniform for simplicity. To keep the MPS bond
dimension bounded, we want to truncate back to k = �. We found that in the setting
of infinite time evolving block decimation (iTEBD), we can truncate the arising two-
site wavefunctions with the same accuracy as SVD truncation if we choose ` ⇠ 1.1�,
i.e. ten percent larger than the target rank, and in particular independent of d.
This results in a cost in O(d2`�2) = O(d2�3) compared to the O(d3�3) for SVD
truncation. Since the truncation is the dominant cost in TEBD, this results in a
speedup factor of ⇠ d.

3.2.1 Decomposing the bond matrix

In the publication, we proposed to do an eigendecomposition of the hermitian square
L†L = Ṽ †S2Ṽ instead of an SVD of the bond matrix L, see step 4 of algorithm 3.3.
As a result, the left singular vectors of L are not available, and we can not compute
the (approximate) left singular vectors – the U factor in a dSVD (3.6) – of ✓. This
causes no issue in the context of TEBD, as they are not needed in (2.37). If U
is needed, it could be computed as ✓V S�1 ⇡ USV †V S�1 = U , though the inverse
singular values may be numerically unstable. Alternatively, if the algorithmic setting
allows it, we can relax to a tQR, or rather an LQ version thereof, to be precise, by
forming ✓ ⇡ (✓V )V †.

The reason for choosing to compute S, Ṽ via this eigendecomposition in the publica-

1The QR and LQ decompositions have a cost in O(`2n) and O(`2m) respectively, and are
assumed to be subdominant in the main text, as is the final SVD with cost in O(`3).



3.2. QR-BASED TRUNCATION 55

tion is the performance on GPUs; the available GPU implementations for diagonal-
ization of hermitian matrices are significantly faster than the SVD. The conditioning
of the hermitian square is, however, generally worse than for the original matrix L,
such that this eigendecomposition is less stable. This did not cause any problems
for us, which we partially attribute to the preceding QR-based steps, which may
already truncate the tail of the singular spectrum. Let us emphasize again that
we trust the resulting factorization not because of these heuristics but because we
observe that the truncation error – a quantity that should be analyzed anyway – is
indeed small.

On CPU hardware, where SVD performance is comparable to hermitian diagonal-
ization, decomposing the bond matrix L via SVD should always be preferred.

3.2.2 QR-based decomposition with symmetries

In the presence of symmetries, the input and output matrices have a block-sparse
structure; see section 2.5. As a first version for doing QR-based truncation, we can
consider simply applying algorithm 3.3 to each block ✓q of ✓. This requires choosing
a dimension `q for the projection ⇧ for each block, which then upper bounds the
number of singular values kq  `q per block. While the total bond dimension
k =

P
q kq is typically prescribed in TNS context, it is unclear a priori how it should

distribute among the charge sectors q for optimal truncation.

We propose a heuristic approach that uses an exactly factorized matrix ✓̂ = ÊF̂ that
is close to ✓ and has the same block structure with sizes {mq ⇥ nq}, e.g. from the
tensor network before the update. Let the blockwise ranks of the factorization be k̂q;
that is, the block sizes of Ê are {mq⇥k̂q}. The heuristic we propose is then to choose
each `q slightly larger than the corresponding k̂q, up to the following two caveats;
We can impose an upper bound `q  min(mq, nq) since an exact decomposition is
possible at equality. Further, we should impose a lower bound of O(1) to allow the
update to explore new charge sectors, even if they are not present in the old leg.
The resulting heuristic can be expressed as

`q = min
h
max

⇣l
(1 + ⇢)k̂q

m
, µ
⌘

, mq, nq

i
, (3.12)

where ⇢ > 0 is the expansion rate, µ 2 >0 the minimum block size and d�e denotes
rounding to the next highest integer. We typically choose ⇢ = 0.1 and µ = 2. This
fully specifies the shape and block structure of the column projection ⇧; it remains to
choose the entries. Again, vanishing columns of ✓ should be avoided, and we propose
to select only columns with vector norm above a threshold or pick the columns with
largest norms in each block.

As in the non-symmetric case, the test matrix can be modified to use the rows of
F̂ , supplemented with either rows of ✓ or random vectors. This modification would
mean choosing the blocks of ⌦ as

⌦q =
⇥
F̂ †

q (⇧̃q✓q)†
⇤

, (3.13)
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where ⇧̃q is a (`q � k̂q)⇥mq column projection.

As an improvement over a strictly blockwise decomposition, the SVD in step 4
should be truncated by keeping the largest singular values overall, i.e. coordinating
which singular values to keep among all blocks, as discussed in section 2.5. The
resulting algorithm for a QR-based decomposition is outlined in algorithm 3.4. It is
implemented2 in TeNPy.

Algorithm 3.4 QR-based truncation for block-sparse matrices

Given an m ⇥ n block-sparse matrix ✓ with block sizes {mq ⇥ nq} and integers
`q  min(mq, nq) for every block q, computes an approximate block-sparse dSVD
✓ ⇡ USV † with block-wise ranks kq  `q.

1. Select a block-sparse column projection ⇧ with block sizes {`q ⇥mq}.
2. Form ⌦ = (⇧✓)† by block-wise matrix product.
3. Form Y = ✓⌦ and compute its block-wise QR decomposition Y = QR.
4. Form Ỹ = Q†✓ and compute its block-wise LQ decomposition Ỹ = LQ̃.
5. Compute a (truncated) SVD: L ⇡ ŨSṼ †, following algorithm 2.8.
6. Form U = QŨ and V † = Ṽ †Q̃ by block-wise matrix product.

3.3 Connection to randomized linear algebra

We became aware after publication that the QR-based truncation algorithm is
closely related to the ideas of randomized linear algebra [148]. In this section, we
highlight these parallels and di↵erences, and put the ideas of QR-based truncation
into the framework of randomized matrix factorization.

Let us first summarize the setup and general idea for randomized matrix decompo-
sitions. The input is an m⇥n matrix ✓ with numerical rank k, meaning it has rank
k up to floating point errors, i.e. only its first k singular values are distinguishable
from zero at machine precision.

The first step in a randomized factorization is to obtain a m ⇥ ` left isometry Q
that approximates the range of ✓, such that QQ†✓ ⇡ ✓. If ` = k, this is guaranteed
to be possible, however numerically just as hard as simply computing a standard
factorization of ✓, e.g. truncated SVD. The idea is then to allow oversampling,
i.e. allow ` slightly larger than k. This typically involves drawing a random test
matrix, which we can understand as ` sample vectors from some distribution. For
a fixed sample size `, error estimates, i.e. bounds on the truncation error ✏Q =
k( �QQ†)✓kF can be proven to hold with some fixed probability close to one.

As a result, an approximate factorization ✓ ⇡ Q(Q†✓) with rank ` is achieved. As
a second step, it can be post-processed to further reduce the rank to k or achieve

2The truncation is implemented as tenpy.algorithms.truncation.decompose theta qr based

and is used by tenpy.algorithms.tebd.QRBasedTEBDEngine realizing TEBD, as well as by
tenpy.algorithms.mps common.QRBasedVariationalApplyMPO realizing variational MPO
application.

https://tenpy.readthedocs.io/en/latest/reference/tenpy.algorithms.truncation.decompose_theta_qr_based.html
https://tenpy.readthedocs.io/en/latest/reference/tenpy.algorithms.tebd.QRBasedTEBDEngine.html
https://tenpy.readthedocs.io/en/latest/reference/tenpy.algorithms.mps_common.QRBasedVariationalApplyMPO.html
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desirable properties such as those of a dSVD (3.6). If the numerical rank k and
thus the sample size ` are small compared to the input size m, n, this can be done
by acting with standard factorizations on smaller matrices, e.g. on Q†✓, and is thus
cheaper than direct standard factorizations of ✓. This concludes a brief overview
that is, of course, condensed and simplistic, omitting many possible algorithmic
improvements and variations.

A common randomized algorithm for computing an approximate truncated factor-
ization uses a structured test matrix ⌦ such that the matrix product ✓⌦ can be
computed e�ciently. The test matrix proposed by Halko et al in [148, chpt. 4] is
given by ⌦ =

p
n/`DF⇧, where D is a n ⇥ n diagonal matrix of uniformly dis-

tributed random complex phases, F is the n ⇥ n discrete Fourier transform and ⇧
is a random n ⇥ ` column projections, whose rows are randomly selected from the
rows of the n⇥n identity matrix. Therefore, Y = ✓⌦ can be computed by applying
the phases from D scaled by

p
n/`, followed by a subsampled fast Fourier transform

(FFT) [149] at a total cost in O(mn log `). They refer to this class of test matrix ⌦
as subsampled random Fourier transforms (SRFTs).

Algorithm 3.5 Randomized SVD with Fast Randomized Range Finder

This is an equivalent reframing of algorithms 4.5 and 5.1 in reference [148] to match
the notation of this thesis.

Given an m⇥ n matrix ✓ and an integer `  min(m, n), computes an approximate
SVD ✓ ⇡ USV † with rank k  `.

1. Draw a n⇥ ` random SRFT (see main text) test matrix ⌦.
2. Form Y = ✓⌦ via subsampled FFT
3. Compute the QR decomposition Y = QR.
4. Form the `⇥ n matrix B = Q†✓ and and compute its SVD B = ŨSV †.
5. Form U = QŨ .

The resulting algorithm, the randomized SVD, is transcribed in algorithm 3.5. Steps
1-3 realize a randomized range finder, and steps 4-5 can be thought of as post-
processing to achieve the SVD properties.

As a first notable di↵erence, for the QR-based truncation – and in the TNS context
in general – we do not assume that we truncate only to the numerical rank k of the
matrix, but to some pre-determined target rank k that is potentially significantly
smaller. While we require the truncation error (3.8) to remain small, for the sim-
ulation to be sensible, the resulting rank k may be significantly smaller than the
numerical rank of the input matrix ✓, i.e. we do discard singular values, that – while
“small” – are significantly larger than machine precision.

Let us then compare the QR-based truncation variants of the previous section with
the randomized scheme of algorithm 3.5. Compared with the simple QR-based
truncation of algorithm 3.1, we can identify a similar broad structure but see a
di↵erent test matrix ⌦; instead of a random sample, it uses an informed initial
guess. The following QR step is the same as for the randomized SVD algorithm
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and concludes the range finder; as we confirm empirically, we have UU †✓ ⇡ ✓ at
this point. In addition to the heuristic of the previous section, we can understand
this result also in the context of the randomized range finder; the deterministically
selected test matrix of the QR-based scheme seems to be typical enough of a random
distribution to allow the same accurate approximation of the range of ✓. In other
words, the choice of the test matrix is not fine-tuned enough to hit those low-
probability cases where the randomized range finder breaks down. The second step
of 3.1 is then simply post-processing to the target SVD-like factorization. The
pedagogical example of iterating single site updates, as outlined in algorithm 3.2 can
be understood as an alternative randomized range finder, the “randomized subspace
iteration”, see [148, alg. 4.4], which realizes a power method to improve the subspace
spanned by ⌦. As a simple version with no subsequent further truncation, the simple
scheme has ` = k.

The full QR-based truncation scheme of algorithm 3.3, on the other hand, does allow
for oversampling with ` > k. Other than that, the range-finding step is the same
as before and can be understood in the same way. The post-processing, realized in
steps 3-5, on the other hand, is unnecessarily complicated and exists in this form
since it arose incrementally from the simple algorithm 3.1. Indeed, we can instead
compute a truncated SVD directly of Ỹ = ŨSV †, omitting the LQ factorization, as
is done in the randomized SVD. The resulting cost has the same formal scaling but
with a smaller prefactor.

3.4 Synthesized truncation routines

In this section, we propose combined routines, incorporating the lessons learned from
comparison with randomized linear algebra into the QR-based truncation routines.

We keep the two-stage structure of a range-finding stage and a post-processing stage.
First, for the test matrix ⌦ in the range finder, we propose to use rows from the
pre-update factor3 F̂ , and add additional samples from SRFT to achieve the target
oversampled rank `, that is choosing

⌦ =
h
F̂ †

q
n
`�k̂

DF ⇧̃
i

, (3.14)

where, as in the previous section, the second block can be computed via subsampled
FFT.

After the range finder stage, we found a Q such that ✓ ⇡ Q(Q†✓), and perform a
standard factorization of Y = Q†✓ next. There are approaches to avoid forming the
explicit matrix product that defines Y to bring down the computational cost, losing
some accuracy as a trade-o↵, as outlined in reference [148, section 5.2]. In a TNS
context, this is typically not worth it, as the tensor contractions in the rest of the
algorithm – outside the truncation subroutine – have a cost with the same or higher
cost scaling than forming Y anyway. In TEBD, for example, forming the two-site

3Recall that we assume that we have access to a related matrix ✓̂ ⇡ ✓ with an exact factorization
✓̂ = ÊF̂ with rank k̂  k.
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wavefunction ✓ in the first place has the same formal scaling in O(d2�3) as forming
Y explicitly.

The straightforward choice for the standard factorization of Y is an SVD. Having
GPU acceleration in mind, however, we propose to investigate other choices, which
result in a factorization of ✓ with weaker properties. In particular, we consider as
alternatives the deformed singular value decomposition (dSVD) or tQR, see sec-
tions 3.1.4 and 3.1.3.

Any of these factorizations can be post-processed into any other. If given an SVD
✓approx = USV †, we already have a dSVD trivially and ✓approx = U(SV †) is a tQR.
Given a dSVD ✓approx = Ũ S̃Ṽ †, we can perform an SVD of S̃ = U 0S(V 0)†, to obtain
the SVD ✓approx = (ŨU 0)S(Ṽ V 0)†, or form the tQR ✓approx = Ũ(S̃Ṽ †). Given a
tQR ✓approx = QR, we can perform an SVD R = U 0SV † of R, to obtain the SVD
✓approx = (QU 0)SV †, or if we just want a dSVD, it is enough to perform either a QR
or tQR of R† = Q0S̃ 0 to obtain the dSVD ✓approx = QS 0†Q0†.

We can understand the relationship between these di↵erent forms of factorization
in the following way;

✓ ⇡ Ũ Q† S P Ṽ † =:

8
>>>>><

>>>>>:

U S V † SVD

Ũ ⌅ Ṽ † dSVD

Ũ C tQR

(3.15)

The inner legs describe the fine-tuned basis choice of the singular vectors of ✓, such
that the central factor S is real, non-negative, and diagonal. Then, the unitary basis
transformations Q, P map to some other basis of the same respective subspaces,
such that the combined central matrix ⌅ := Q†SP no longer has any particular
properties. Since the bases span the same spaces, however, any optimal truncation
properties are inherited from the SVD. We can combine the factors in di↵erent ways
as indicated to obtain the di↵erent types of factorizations.

Going from one factorization to the other is cheap compared to forming them in the
first place, as the procedures above act on matrices that have the smaller truncated
dimension k < min(m, n) as either width or height. Nevertheless, we emphasize
that it is worth it to reconsider in the TNS algorithm, which properties are actually
needed and meet the truncation routine halfway.

Finally, to post-process ✓ ⇡ QY to any of the three classes of factorizations (SVD,
dSVD and tQR), we need to perform the same kind of decomposition of Y and
absorb its left factor into Q.
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3.5 Benchmark

For a benchmark of the QR-based truncation routine, we consider the d-state quan-
tum clock model

H = �
X

n

⇣
ZnZ

†

n+1
+ h.c.

⌘
� g

X

n

(Xn + h.c.) , (3.16)

where the clock operators are given by

Z =
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BBBBB@

1
!
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. . .
!d�1

1

CCCCCA
, X =

0

BBBBBB@

0 1
0 1

0
. . .
. . . 1

1 0

1

CCCCCCA
, (3.17)

with ! = e2⇡i/d. We consider the model on an infinite chain. The model can be seen
as a generalization of the transverse field Ising model (TFIM), which is the d = 2
special case. It is particularly suited to highlight the scaling with the dimension d
of the on-site Hilbert space. The model has a critical point at g = 1 for d  4 and
an extended critical region for d � 5 [150, 151].

We start with the Z = 1 product state and evolve it in time with the g = 2
Hamiltonian. This constitutes a global quench from g = 0 to g = 2, crossing at
least one critical point. We perform the simulation using the iTEBD algorithm,
with updates given by (2.36) in four algorithmic variations. First (“SVD”), we use
a standard truncated SVD ✓̃ ⇡ USV † for decomposing the evolved wavefunction.
Secondly (“EIG”), we perform the same decomposition but numerically evaluate
it by diagonalizing the hermitian square ✓̃†✓̃ = V S2V †, see the discussion in sec-
tion 3.2.1. Thirdly (“QR”), we employ the simple QR-based truncation routine of
algorithm 3.1 and lastly (“QR+CBE”), we use the QR-based truncation with bond
expansion, as described in algorithm 3.3. We run the benchmark on an NVIDIA
A100 GPU (80GB RAM) with CUDA version 11.7, as well as an AMD EPYC 7763
CPU with 64 physical cores and MKL version 2019.0.5. The two units have simi-
lar power consumption: 300W and 280W thermal design power, respectively. All
simulations are performed in double precision (i.e., complex128 in python). The
implementation used for the benchmark and the data are available on GitHub4.

In Fig. 3.1, we perform full TEBD simulations of the quench protocol for a d = 5
clock model. We run the simulation beyond times where the approximation of the
evolved state as an MPS of the given bond dimension breaks down, as quantified
by a large truncation error. In the time regime of acceptable error ✏trunc . 10�5,
that is until t . 2 depending on bond dimension, we observe excellent agreement
between the di↵erent TEBD schemes in the extracted expectation values hZi and
entanglement entropy SvN up to relative deviations of 10�11 ⇠ 10�12. For the QR-
based scheme, we do not have access to all singular values of ✓̃, from which the

4
https://github.com/Jakob-Unfried/Fast-Time-Evolution-of-MPS-using-QR

https://github.com/Jakob-Unfried/Fast-Time-Evolution-of-MPS-using-QR
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Figure 3.1: TEBD Simulation of a global quench in the d = 5 quantum clock
model from g = 0 to g = 2 with a time step of �t = 0.05. We show a local Z
expectation value (top), the half-chain von Neumann entanglement entropy
(center), and truncation error (bottom). We compare data from SVD-based
(solid lines) and QR-based (triangles) TEBD simulations at a range of bond
dimensions �max (colors). For the QR-based scheme, we employ controlled
bond expansion, that is algorithm 3.3, with ` = max(100, 1.1�) and plot only
every tenth data point. For both schemes, we discard Schmidt values smaller
than 10�14 and keep at most �max of them. Time in the legend denotes the
total wall time needed for each simulation, i.e. to generate the shown data
from scratch.
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Figure 3.2: Timing benchmark for the application of a single gate to an
MPS for di↵erent hardware (marker colors) and truncation schemes (marker
shapes). We give the average wall time needed to perform a single TEBD up-
date, that is contracting and decomposing the evolved wavefunction ✓ given
by (2.36) and contracting the new B tensor according to (2.37). For the de-
composition of ✓̃, we consider the following di↵erent schemes; a (truncated)
SVD, a truncated hermitian eigendecomposition ✓̃†✓̃ ⇡ V †S2V , the simple
QR-based truncation described in algorithm 3.1, and the QR-based trunca-
tion with bond expansion (CBE) described in algorithm 3.3. For CBE, we
replace the truncated SVD of the bond matrix with a truncated hermitian
eigendecomposition and choose ` = 1.1�, the same expansion rate as for
Fig. 3.1. The initial MPS has a bond dimension �, and the evolved state is
truncated to the same dimension �. Solid (dashed) lines are powerlaws with
the expected cubic (quadratic) scaling with the physical dimension d. The
missing data points for large d in the right panel were not possible to obtain
on the available hardware due to memory limitations.
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truncation error is extracted in SVD-based TEBD. We instead explicitly compute
the distance between the evolved wave function ✓̃ and its low-rank approximation.

In Fig. 3.2, we benchmark runtimes for the core algorithmic step (2.36) of contract-
ing and subsequently decomposing the evolved wavefunction ✓̃, that is evaluating
equation (2.36) and (2.37). We repeat this for all combinations of truncation scheme
and hardware, as well as a range of Hilbert space dimensions d.

We clearly observe the improved scaling of the QR-based algorithm, which is qua-
dratic in d instead of cubic, as well as a speed-up of one to two orders of magnitude
from hardware acceleration for EIG and QR-based algorithms. For example, the
QR-based truncation scheme on the GPU with � = 1024, d = 20 reaches a speed-
up factor of 2700 compared to the SVD-based scheme on the same GPU and 750
compared to SVD on CPU.

3.6 Conclusion

In this chapter, we have established the properties of truncated factorizations that
are actually required by common tensor network algorithms, e.g. in terms of the de-
formed singular value decomposition (dSVD) for MPS algorithms in isometric form.
We have proposed the QR-based truncation routine, which is a dSVD, discussed its
relation to randomized numerical linear algebra, and suggested a best-of-both-worlds
synthesis. We have demonstrated that the QR-based truncation scheme allows simu-
lation of the time evolution of MPS to the same degree of accuracy, but compared to
the SVD-based scheme drastically increases runtime, especially on GPU hardware.
The improved scaling with the local Hilbert space dimension d implies substantial
performance increase even on CPU for large d, e.g. in simulations of open systems
or bosonic systems.

The truncation schemes can be used to accelerate TNS truncation in a broader
class of algorithmic settings. This has already been successful for MPO evolution
in Ref. [152]. Applications of the randomized SVD have been suggested in [153],
but to our knowledge, they have not been systematically compared in a published
work. Studying the interaction with the decompositions proposed in this chapter
with DMRG, and in particular subspace expansion approaches, is another interesting
avenue for future development. The algorithm should seamlessly apply to truncation
steps in isometric TNS [70, 71] as well.

To our knowledge, it is an open question how to compute approximations to the
SVD, such as e.g. the QLP decomposition (QLP) for symmetric matrices. This is
because determining the target ranks for each block is challenging without access to
the full singular value spectrum.

We also suggest a full comparison of di↵erent methods for future work. This should
compare (a) the di↵erent range finders featured in Algorithm 3.5, in Algorithm 3.1,
the synthesized version in equation (3.14), or not performing randomized range
finding at all and directly decomposing the full matrix. Next (b), it should compare
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the dense matrix factorization steps, covering e.g. the standard SVD, as well as the
QRCP and QLP. Lastly, it should run (c) and a wider class of di↵erent hardware
and (d) consider conservation of symmetries versus not doing so.



Chapter 4

Gradient-based optimization of
Projected Entangled Pair States
(PEPS)

The variational methods for PEPS optimization based on local updates have not
been able to fulfill the promise of extending the success of DMRG to TPS in higher
dimensions. We attribute this in part to the lack of a canonical form with orthog-
onality centers. Recent developments of gradient-based methods [37, 38, 129, 154],
and in particular, approaches using automatic di↵erentiation (AD) have found suc-
cess in optimizing PEPS for infinite systems. Applying similar methods to finite
PEPS, however, seems to cause problems in the stability of the resulting algorithms
and require ad-hoc adjustments [115, 125]. We attribute this to the interaction of
the gradient-based approach with the approximations that are necessary to evaluate
the loss function being optimized, e.g. the variational energy.

In this chapter, we propose a scheme for evaluating the gradients that results in
stable optimization trajectories, and derive from it a ground state search and a time
evolution algorithm for finite PEPS. We introduce the gradient-based approaches
in section 4.1, formulating both ground state search and time evolution as opti-
mization problems. We discuss automatic di↵erentiation (AD) as an approach to
compute the gradients of the resulting cost functions in 4.2, and then focus on the
explicit gradient evaluation scheme in section 4.3. We show benchmark results of
the resulting algorithms in section 4.4 before concluding in section 4.5.

4.1 Gradient based approach

A gradient-based optimization method is a global method, where simultaneous up-
dates of all tensors are derived based on values and gradients of some target loss
function. For ground state search, this means finding the PEPS tensors {A[x,y]}

65
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parametrizing a trial state |�i such that the variational energy

E
�
|�i

�
:=
h�|H|�i
h�|�i (4.1)

as a function of the PEPS tensors {A[x,y]} is minimized. This gives us a ground
state approximation

|GSi ⇡ arg min
|�i2PEPS(D)

E
�
|�i

�
. (4.2)

Equation (4.2) becomes exact as D ! 1, and at a given finite D, we obtain a
PEPS approximation using a numerical optimization algorithm, such as conjugate
gradient or quasi-Newton methods. This requires us to evaluate the loss function
and its gradient at any point in the variational manifold. The “point” is given by a
set {A[x,y]} of tensors that parametrize a PEPS |�i and the gradient is similarly a
set of components

G[x,y] :=
@E(|�i)
@A

[x,y]
. (4.3)

As a result, we get a gradient-based ground state search, as e.g. employed in Refs. [38,
115].

We propose a time evolution method using a similar gradient-based minimization of
the square distance between the exactly evolved state and a trial state of bounded
bond dimension. This has the same goal as the MPO evolution algorithm for MPS
time evolution but is approached with global gradient-based updates instead of local
variational updates. Assume we have an approximation of the unitary time evolution
operator U(�t) for a small time step in the form of a PEPO. Now, by minimizing
the square distance

�2
�
|�i , U(�t) | (t)i

�
:=

����
|�i
k|�ik �

U(�t)| (t)i
kU(�t)| (t)ik

����

= 2� 2
Reh�|U(�t)| (t)ip
h�|�ih (t)| (t)i

(4.4)

we obtain an approximation of the evolved state up to normalization. Concretely,
this means

1

N | (t + �t)i =
1

N U(�t) | (t)i ⇡ arg min
|�i2PEPS(D)

�2
�
|�i , U(�t) | (t)i

�
(4.5)

with some normalization factor N > 0. Again, the approximation becomes exact if
the bond dimension D !1 is unbounded, such that the minimization explores the
entire many-body Hilbert space.

The time evolution method can be generalized to approximately apply arbitrary
operators, that is, optimize |�?i ⇡ 1

N
O| i for a PEPO O and a PEPS | i. Note,

however, that we used the unitarity of the time evolution operator in equation (4.4),
and in the general case with non-unitary O, we have

�2
�
|�i , O | i

�
= 2� 2

kO| ik
Reh�|O| ip
h�|�i

=: 2� 2

kO| ik⌦(|�i , O | i). (4.6)
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Evaluating the norm
p
h |O†O| i in the denominator may be prohibitively expen-

sive, and since it is constant as a function of the trial state |�i, we may instead
maximize the overlap ⌦. Since �2 is a strictly decreasing function of ⌦, this is
equivalent and the only downside is that unlike �2 = 0, we do not know the the-
oretical optimum value for ⌦ at which the approximation |�?i ⇡ 1

N
O| i becomes

exact.

The remaining challenge is evaluating the gradients, e.g. (4.3) of the variational
energy, and similarly the gradients of (4.4).

4.2 Gradients from automatic di↵erentiation

A popular approach is to compute the gradients using automatic di↵erentiation
(AD), which can take the implementation of a function and compute its derivative
by composing known derivative formulae of its building blocks using the chain rule.

4.2.1 Automatic di↵erentiation – a brief introduction

We refer to Refs. [155, 156] for detailed introductions to and reviews of AD. Let us
establish some terminology and give a simple example for reverse-mode AD. The
central objects in reverse-mode are the adjoints or cotangents �X associated with
every variable X. They can be thought of as derivatives �X = @L/@X of the target
loss function L such that dL =

P
i �XidXi in the real case. In the complex case

(with a real-valued cost function L of complex variables Xi), we can think of Xi and
X i as independent variables and have

dL =
X

i

�
�XidXi + �Xi

dX i

�
=
X

i

�
�Xi

dX i + c.c.
�

. (4.7)

In most AD schemes for complex variables, only the adjoints of the conjugate vari-
ables, that is, the �Xi

are stored, since the �Xi = �Xi
are not independent. Now,

for a matrix A of variables Aij, this takes the convenient form

dL =
X

ij

⇣
�Aij

dAij + c.c.
⌘

= Tr
�
�AdA† + c.c.

�
. (4.8)

As a concrete example, let us derive the AD formula for a basic function in the real
case. Consider addition of two variables, that is forming x = a + b. The goal is now
to express the input cotangents �a, �b in terms of the output cotangent �x, as well
as the values x, a, b. To this end, equate �xdx = dL = �ada + �bdb and plug in the
di↵erential dx = da + db of the defining equation to find �a = �b = �x. Similarly,
for taking a power y = cn, we find �c = ncn�1�y.

The core of automatic di↵erentiation is then to derive the input cotangents of a
composite function L, given these kinds of formulae for a set of building block
functions that L is composed of. In reverse-mode, this is done by establishing
a computation graph for the function L, which formally assigns distinct variable
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names to each intermediate result in the computation of a value of L and organizes
the order in which they are computed in a graph. The computation of a value of L is
commonly referred to as the forward pass. It starts with values for the input variables
and terminates with a value for the output L. This graph is then traversed in the
opposite direction, in the “backward pass”, starting from the cotangent �L := 1,
and terminates with cotangents of the input variables.

As a concrete example, consider the function L(x, y) = (4x + y)2 with input values
x = 1/2 and y = 3. For the forward pass we compute

w1 := 4x = 2

w2 := w1 + y = 5

L = (w2)
2 = 25

(4.9)

and for the backward pass we start with �L := 1 and compute

�w2 = 2w2�L = 10

�w1 = �w2 = 10 ; �y = �w2 = 10

�x = 4�w1 = 40 .

(4.10)

This computation has given us the derivatives @L/@x = �x = 40 and @L/@y =
�y = 10, evaluated at (x, y) = (1/2, 3), which we can easily verify by hand. It
results from going through the steps of (4.9) in reverse order and applying the AD
formula for each respective operation. In particular, this can be automated, resulting
in automatic di↵erentiation (AD).

4.2.2 Backward formula for the truncated SVD

It is crucial, and not widely implemented in common AD libraries, to use appro-
priate backward formulae for the truncated SVD. The backward formula for the
complex SVD was only found recently [157], and the use of AD in the context of
PEPS optimization has recently led to the introduction of corrected formulae in
the presence of truncation [39]. We state the backward formula for the truncated
SVD here, and refer to the derivations, and related result for truncated hermitian
eigendecompositions in appendix B. The result for the general case is essentially a
restatement of the results of Ref. [39], and we develop a new result for simplification
in the special case of the enlarged gauge transformation, where requirements on
the decomposition are relaxed to those of a deformed singular value decomposition
(dSVD).

For the purposes of AD, we view the truncated SVD is a mapping A 7! (U, S, V ) of
an input matrix A 2 Cm⇥n such that

A = USV † + XY Z†. (4.11)

Here, U 2 Cm⇥k, X 2 Cm⇥(m�k), V 2 Cn⇥k and Z 2 Cn⇥(n�k) are (left) isome-
tries and X (Z) is the orthogonal complement of U (V ) and S 2 k⇥k and Y 2
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(m�k)⇥(n�k) are real matrices that vanish o↵ the main diagonal, where S is strictly
positive and Y is non-negative. We consider A ⇡ USV † as the approximation,
the truncated SVD. The result for the AD backward formula for the function
A 7! (U, S, V ), in particular with a non-conjugated V as the third output is

�A = �(S)

A
+ �(Uo)

A
+ �(Vo)

A
+ �(diag)

A
+ �(tr)

A

=
1

2
U
⇣
�S + �†

S

⌘
V † + U(J + J†)SV † + US(K + K†)V †

+
1

2
US�1(L† � L)V † +

⇥
XX†�V † + U'†ZZ†

⇤
,

(4.12)

where

J := F � (U †�U) ; K := F � (V †�V ) ; L := � (V †�V ). (4.13)

Fij :=

(
0 i = j

1/(S2

i � S2

j ) i 6= j
(4.14)

Here, � denotes elementwise matrix multiplication and �,' are the solutions to the
coupled Sylvester equations

�U = �S � AZZ†'

�V = 'S � A†XX†� .
(4.15)

The Sylvester equations (4.15) have a unique solution if and only if S and Y have
no singular values in common, such that splitting multiplets of (nearly) degenerate
singular values should be avoided. The formula simplifies in the following relevant
special cases:

1. For a real SVD, i.e. such that the input A and all outputs U, S, V are real-
valued, we find �(diag)

A
= 0.

2. If there is no truncation, i.e. if k = min(m, n), the Sylvester equations have a
closed form solution which results in �tr

A
= XX†�US�1V † + US�1�†

V
ZZ†.

3. If A is square and there is no truncation, that is for k = m = n, we have
�tr

A
= 0.

4. If the loss function is invariant under the enlarged gauge transformation

U 7! UQ , S 7! Q†SR , V 7! V R (4.16)

with arbitrary k⇥k unitaries Q, R, that is if L(U, S, V ) = L(UQ, Q†SR, V R),

we have �(Uo)

A
= �(Vo)

A
= �(diag)

A
= 0 and �S

A
= U�SV †. Note that this case no

longer relies on any properties of S, such that it holds for the dSVD (3.1.4),
if the deformed singular value properties hold, as we assumed in the setup.

The last special case drastically simplifies the AD formula and removes the common
sources of instabilities, namely from F in the presence of (nearly) degenerate singular
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values and from S�1 in the presence of vanishing (small) singular values. We may
use it whenever the truncated SVD as an algorithmic step may be relaxed to a
dSVD, e.g. if we only care about the correct subspaces spanned by U and V for
truncation, and do not rely on the particular bases for these subspaces that make S
diagonal.

If this is not possible, other strategies have been employed to stabilize these expres-
sions. First, note that singular values so small as to make the inverse S�1 unstable
should be truncated and would thus not appear in S, but in Y . Secondly, forming
F in the presence of (nearly) degenerate singular values is unstable. One common
approach to adress this is to realize that F is always used in conjunction with a
factor of S. Therefore, we can instead form

Gij :=

(
0 i = j

1/(Si + Sj) i 6= j
; Hij :=

(
0 i = j

1/(Si � Sj) i 6= j
, (4.17)

such that FS = (H �G)/2 and SF = (H + G)/2. Forming G is numerically stable,
and forming H should be more stable in practice than F . Therefore we can compute
the following parts of �(Uo)

Ā
and �(Vo)

Ā
as

(J + J†)S =
H �G

2
� (U †�Ū � h.c.) (4.18)

S(K + K†) =
H + G

2
� (V †�V̄ � h.c.) . (4.19)

Additionally, a broadened inverse x/(x2 + ") is commonly used in place of 1/x.

For practical implementations, note that the (truncated) SVD is often implemented
as a mapping A 7! (U, S, V †), where the third output is W := V † instead of V .
The AD formula for such a function is readily obtained from the result above by
substituting V = W † and �V̄ = �†

W̄
in (4.12).

4.3 Explicit gradient evaluation

Note that the typical cost functions, such as the variational energy (4.1), require ap-
proximations to be evaluated, e.g. using the bMPS method discussed in section 2.4.2.
Therefore, using automatic di↵erentiation (AD) will yield the gradient of the approx-
imation, which is not necessarily a good approximation of the true gradient.

This does not seem to be a problem when optimizing infinite PEPS with the vari-
ational energy evaluated using the CTMRG approximate contraction method. The
resulting optimization scheme seems to give good results, e.g. in Refs. [38]. For finite
PEPS, however, the resulting optimization trajectories when using AD to evaluate
the gradients seem unstable.

We propose the following explanation for the instabilities. There is – empirically
verified – a substantial region of parameter space, where approximate contraction
methods, such as e.g. bMPS contraction, give a good approximation of the true
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energy of the PEPS at those parameters. However, parameters can be fine-tuned
to make the approximations unsound. Now, using AD for the gradients results in
a minimization of the quantity that is computed by bMPS contraction and may
converge to one of these points outside the region of sound approximation. We
have observed this behavior in numerical experiments. For a finite system, using
bMPS contraction for the energy and unmodified AD for the gradients, a Limited
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimizer converges to a
PEPS whose energy, as computed by the same bMPS scheme, is well below the
spectrum of the Hamiltonian, i.e. unphysical. Increasing the bMPS bond dimension
beyond its value during optimization reveals this and gives a physical energy, much
larger than DMRG reference values for the ground state energy. Thus, we have
optimized not for a good ground state but only for parameters that “cheat” the
approximate contraction.

Approaches to remedy this behavior have been employed in Ref. [128] but are only
heuristically motivated, and it is unclear if they are su�cient in general. Let us
emphasize that in light of the approximations in the cost function, the quality of
the result as a variational trial state must be judged at a higher accuracy in the
approximation, e.g. a higher bMPS bond dimension, than what was used during the
optimization. It seems that PEPS optimization obeys Goodhart’s law: “When a
measure becomes a target, it ceases to be a good measure”[158].

We propose an alternative approach to stabilize the optimization. Instead of di↵eren-
tiating the approximate cost function, we develop approximate contraction methods
for evaluating the derivative. To illustrate the di↵erence, let A[�] denote the ap-
proximate contraction of a quantity that involves a tensor network contraction. For
example, A[E] is the result of evaluating the variational energy using approximate
contraction. From the AD approach, we would then obtain rA[E] as the gradient
and thus e↵ectively optimize A[E], which may have its minimum outside the re-
gion where A[E] ⇡ E is a good approximation. We instead propose to use A[rE],
i.e. writing down an expression for the components of the exact gradient rE as a
tensor network and then introducing approximations to evaluate them.

The gradient of the variational energy (4.1) is given by

@E(|�i)
@A

[x,y]
=

1

h�|�i
@

@A
[x,y]
h�|H|�i � E(|�i) 1

h�|�i
@

@A
[x,y]
h�|�i (4.20)

and similarly for the square distance (4.4) we get

@�2

@A
[x,y]

= � 1p
h�|�ih (t)| (t)i

@

@A
[x,y]
h�|U(dt)| (t)i+ 2��2

2

1

h�|�i
@

@A
[x,y]
h�|�i .

(4.21)
In particular, in both cases, we need to evaluate derivatives of the norm, expecta-
tion value or of matrix elements. All of those objects depend only linearly on the

conjugate tensor A
[x,y]

and thus their derivatives are obtained simply by leaving that
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tensor out in the bra layer, e.g.

@

@A
[x,y]
h�|�i =

@

@A
[x,y]

TTr
h
A

[0,0]

A[0,0] . . . A
[x,y�1]

A[x,y�1]A
[x,y]

A[x,y] . . .
i

= TTr
h
A

[0,0]

A[0,0] . . . A
[x,y�1]

A[x,y�1] A[x,y] . . .
i (4.22)

for the square norm. This results in a tensor network of the form

@

@A
[x,y]
h�|�i =

@

@A
[x,y] ? = , (4.23)

where the diagram consists of double layer tensors F [x,y] as defined in (2.55), and we
expand the double layer structure only at site (x, y). We now evaluate this diagram
using the same bMPS method (2.58) as for the value of the norm. Note that we
need to sandwich the row on which the derivative acts with bMPS to find

@

@A
[x,y]
h�|�i ⇡ , (4.24)

where the top and bottom row are bMPS, approximating the rest of the diagram.
For expectation values of a PEPO H with tensors W [x,y] drawn as red diamonds,
we find

@

@A
[x,y]
h�|H|�i ⇡ , (4.25)

where the red square tensors in the middle row are three-layer tensors (2.57) con-
taining the PEPO. Derivatives of matrix elements h�|U(dt)| (t)i are analogous.

In this scheme, the bMPS, and partial contractions of e.g. (4.24), can be re-used

between the components of the gradient, i.e. between the derivatives @/@A
[x,y]

w.r.t. tensors on di↵erent sites (x, y). Note also that in a gradient-based algorithm,
we have an outer loop of the optimization algorithm that suggests a converging
sequence of trial parameters. Thus, we may store the bMPS that we find during
the evaluation of the cost function or its gradient to use as an initial guess for the
variational bMPS method in the next iteration of the outer loop.

If the bMPS environments are used for local expectation values, their prefactors
cancel between the numerator and denominator of a normalized expectation value.
This is not the case here, and we need to explicitly keep track of the bMPS norm.
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4.4 Benchmark

Let us now perform a benchmark simulation of the gradient-based methods. We
consider the quantum transverse field Ising model (TFIM)

H = �
X

hi,ji

�x
i �

x
j � g

X

i

�z
i (4.26)

on an L ⇥ L square lattice with open boundary conditions, where �↵ denote Pauli
operators with eigenvalues ±1. The model exhibits a phase transition from a �x-
ordered ferromagnet for g < gc to a disordered paramagnet for g > gc at a critical
field strength gc ⇡ 3.05 [159].

4.4.1 Hamiltonian Representations

To employ the gradient-based methods, we need to represent the relevant operators
in a compatible way, e.g. as PEPOs. For ground state search, we can write the
Hamiltonian (4.26) either as a sum of ⇠ L2 bond operators, as a sum of 2L MPOs,
or the sum of 2 PEPOs. In the following, we provide explicit constructions for all
of these representations.

Sum of bond operators First, we find

H =
X

hi,ji

h[ij] h[ij] := ��x
i �

x
j �

1 + �hi,ji
4

g�z
i �

1 + ⇢hi, ji
4

g�z
j , (4.27)

where �hi,ji, ⇢hi,ji 2 {0, 1} correct for double counting of sites by setting �hi,ji = 1 i↵
site i is at an open boundary and similarly ⇢hi,ji = 1 i↵ j is at a boundary.

Sum of MPOs Alternatively, we may use the finite state machine construc-
tion [89] to write all terms within a single row or single column as an MPO, that
is

H =
LX

x=1

H [x,:] +
LX

y=1

H [:,y] , (4.28)

where the operators act on only a single row (column) and are given as MPOs with
the following coe�cients

⌦
ix,1 . . . ix,L

��H [x,:]
��i0x,1 . . . i0x,L

↵
=

vL vR
i0x,1

ix,L

C [x,y]

. (4.29)

The MPO tensors are given by

C [x,y]

↵ � :=

0

@
�x �1

2
g�z

0 0 ��x

0 0

1

A

↵�

, (4.30)
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where we suppress the physical indices and identify them with the indices that the
operator-valued entries of the matrix have in the computational basis. The boundary
vectors are vL = (1 0 0)T and vR = (0 0 1)T.

Sum of PEPOs Lastly, we can employ a finite state machine MPO construction
to form a PEPO that is the sum of all horizontal MPOs above. Note that if we
replace a single MPO tensor, e.g. at position ỹ with

I [x,y]

↵ � :=

0

@
0 0
0 0 0
0 0 0

1

A

↵�

, (4.31)

the modified MPO

vL vR
i0x,1

ix,L

C [x,y] I [x,ỹ]

=
⌦
ix,1 . . . ix,L

�� [x,:]
��i0x,1 . . . i0x,L

↵
(4.32)

gives us the identity operator on the same row. Now, define the six-leg tensor

D[x,y]

↵ �

�

�
:=

 
I [x,y]
↵� C [x,y]

↵�

0 I [x,y]
↵�

!

��

. (4.33)

We find the following intermediate result, where we substitute one MPO tensor at
some arbitrary positition 1 < ỹ < L for a D tensor to get the MPO-like tensor
network with an extra pair of virtual legs

vL vR
i0x,1

ix,L

�

�

C [x,y] D[x,ỹ]

=

*
ix,1 . . . ix,L

�����

✓
[:,y] H [:,y]

0 [:,y]

◆

��

�����i
0

x,1 . . . i0x,L

+
.

(4.34)
Thus, with the boundary vectors vB = (1 0)T and vT = (0 1)T, we can construct
the PEPO

vL

vR

vT

vBi1,1 iX,1

i0
1,Y i0X,Y

=
⌦
{ix,y}

��Hhor

���i0x,y
 ↵

(4.35)
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for the horizontal terms in

H = Hhor + Hvert :=
LX

y=1

H [:,y] +
LX

x=1

H [x,:]. (4.36)

An analogous construction applies to Hvert.

Choosing the representation comes down to a trade-o↵ between the number of terms
that make up the whole Hamiltonian and how di�cult it is to deal with each such
term. For bMPS contraction, using MPOs is not significantly harder than using
bond operators and should thus always be preferred. For evaluating the expectation
value, using the MPOs is convenient since then the bMPS from the two-layer norm
diagram may be used to sandwich the column or row on which the MPOs acts. This
is not possible, however, for evaluating gradients, and we have found using PEPOs
most practical in that case.

4.4.2 Evolution Operator Representations

For the time evolution method, we require an expression for the time evolution
operator U = e�iH�t as a PEPO, usually in a Trotter(-like) approximation for small
�t. We explicitly provide constructions for two di↵erent approaches.

From product of bond gates First, consider a Trotterization of the sum of bond
operators (4.27). We can identify four groups of bonds, such that within each group,
bonds do not overlap, and thus, the bond operators h[ij] commute. We choose as the
first two groups the horizontal bonds with even (odd) x coordinate of the left site,
and as the remaining two groups the vertical bonds with even (odd) y coordinate of
the bottom site. We write ↵ to denote one such group of bonds. We find

e�iH�t = exp

2

4�i
X

↵

X

hi,ji2↵

h[ij]�t

3

5 ⇡
Y

↵

exp

2

4�i
X

hi,ji2↵

h[ij]�t

3

5 =
Y

↵

Y

hi,ji2↵

e�ih[ij]�t,

(4.37)
where the approximation is up to corrections in O(�t2). Now, to embed this into a
PEPO, we require a factorization

e�ih[ij]�t =:
⌘X

k=1

X [i],j
k Y [j],i

k ; e�ih[ij]�t = X Y (4.38)

of the bond gate in terms of two three-leg tensors. Here, the superscript in brackets
indicates which site is acted on, while the second superscript identifies the second
site of the bond that h[ij] acts on. Such a factorization is always possible at rank
⌘  d2 = 4 with (truncated) factorizations. For the TFIM at finite filed strength
g > 0, we require ⌘ = 4. We can now define PEPO tensors

W [i]

l r
d

u

:=

(
X [i],i+ey

u Y [i],i�ey
u X [i],i+ex

u Y [i],i�ex
u i 2 A

Y [i],i�ey
u X [i],i+ey

u Y [i],i�ex
u X [i],i+ex

u i 2 B
, (4.39)
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where the di↵erence between the cases for A and B sublattices is only a swapped
order of the operators. Note that we again suppress the physical indices associated
with the vertical legs and associate them with the operators on the RHS. As a
result, a PEPO (2.54) built from these tensors realizes (4.37). To see this, consider
the following patch of the larger PEPO network

= (4.40)

and observe that the bond operators indicated by gray background boxes each mul-
tiply to the gate e�ih[ij]�t on the respective bond.

As a result, we have constructed a PEPO for the evolution operator of the TFIM
with bond dimension ⌘ = 4.

From product of MPOs Alternatively, we may first Trotterize between the
group of horizontal and the group of vertical MPOs in equation (4.28). Within
these groups, the MPOs mutually commute, and we can take the exponential of
each MPO according to the W I/II methods of Ref. [102]. The resulting MPO has
a bond dimension one smaller than for the corresponding Hamiltonian, i.e. ⌘ = 2
for the TFIM. Assume that C [x,y] for y = 1, . . . , L are the MPO tensors for the
approximate exponential e�iH[x,:]�t of the vertical MPO on column x, and similarly
C̃ [x,y] the tensors for e�iH[:,y]�t on row y. We define a PEPO tensor as

W [x,y]

=

C [x,y]

C̃ [x,y]

, (4.41)

which is designed such that on forming the PEPO tensor network, the MPO tensors
connect in such a way as to form the exponentials of row (column) Hamiltonians.
In particular, they parameterize a Trotterized time evolution PEPO

e�iH�t ⇡ e�iHhor�te�iHvert�t =

 
LY

y=1

e�iH[:,y]�t

! 
LY

x=1

e�iH[x,:]�t

!

⇡
 

LY

y=1

MPO(C̃ [1,y] . . . C̃ [L,y])

! 
LY

x=1

MPO(C [x,1] . . . C [x,L])

!

= PEPO(
�
W [x,y]

 
)

(4.42)

with bond dimension ⌘ = 2. Again, the approximation is up to corrections in O(�t2).
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4.4.3 Ground State Results

As a benchmark of the gradient-based ground state search, we optimize ground state
PEPS for the TFIM (4.26) at a field strength g = 3, which is close to criticality. For
an initial guess with bond dimension D = 2, we apply a D = 2 PEPO (4.42) of a
small step i�t = �⌧ ⇠ 0.01 of imaginary time evolution to a �z = +1 product state.
We then optimize at this bond dimension by minimizing the variational energy (4.1)
until convergence. For optimizations at larger PEPS bond dimension, we start from
the D = 2 result and increase its bond dimension, either by padding with zeroes or
by applying another imaginary time step exactly. In either case, we found it helpful
for stability to introduce a small random perturbation and to apply a random gauge
transformation on the bonds to avoid vanishing tensor entries. Without this step,
i.e. just embedding a D = 2 PEPS into D = 3, by padding with zeroes, all derivative
components corresponding to these new slices will vanish, and we will be stuck at a
saddle point for these entries.

L D This Work FU isoTNS DMRG

11
2 �3.17185 �3.17128 �3.15546

�3.172113 �3.17185 �3.17210
4 �3.17206 �3.17210 �3.16625

20
2 �3.18138

�3.181973 �3.18138
4 �3.18147

21
2 �3.18193 �3.18128
3 �3.18193 �3.18242
4 �3.18201 �3.18243

Table 4.1: Variational ground state energy per site E/L2 of the TFIM at
g = 3 on an L ⇥ L square lattice with open boundary conditions. For this
work and the Full Update (FU) algorithm [107], the variational manifold are
PEPS with bond dimension D. The DMRG2 algorithm [71] (denoted isoTNS)
finds a ground state approximation within the manifold of isometric PEPS
of bond dimension D, a strict subset of all PEPS. For comparison, we also
give energies obtained from MPS calculation, using the DMRG algorithm for
which D is meaningless. For the 11⇥11 system, we used TeNPy [3, 4], while
the 20⇥20 data was obtained in Ref. [32] using specialized hardware (TPUs)
and massive computational power at MPS bond dimension 216 = 65536.

In table 4.1, we compare variational energies as a measure of quality to other TNS
methods. At the lowest non-trivial bond dimension of D = 2, we have achieved bet-
ter ground state energies than any other PEPS work we are aware of. In particular,
we improve upon the FU results of Ref. [107] significantly and by more than the
margin of error of the approximately evaluated energy. We have fully converged the
result at L = 11, using a bMPS bond dimension �max = 300 for the last few opti-
mization steps close to the minimum, and evaluated the energies at �max = 350. We
can conjecture with reasonable certainty that the result is, up to numerical preci-
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sion, the global optimum within the manifold of PEPS with bond dimension D = 2.
For the larger systems, our proof-of-principle implementation reaches the limits of
its computational performance. Reaching a gradient norm of ⇠ 0.1 at �max = 200,
we are close to, but not fully converged, and still see change in the energy density
on the fifth digit. At the larger bond dimensions D = 3, 4, the results are not fully
converged. At D = 4, we were only able to perform ⇠ 100 optimizer steps for
L = 11, and only ⇠ 10 steps for L = 20, 21 after applying an imaginary time step
to the D = 2 result. We still obtain a competitive quality result.

4.4.4 Time Evolution Results

As a benchmark for the gradient-based time evolution algorithm, we simulate the
time evolution induced by the TFIM Hamiltonian (4.26) after a local quench. For
the quench, we apply �y

c to the central site c of a 11 ⇥ 11 lattice. This constitutes
a spin-flip excitation in both limits of the phase diagram. We then simulate the
dynamics

| (t)i = e�iHt�y
c |GSi (4.43)

by applying a sequence of time steps U(�t), giving us access to the evolved state at
a grid of discrete times tn = n�t. We then extract the time-dependent correlation
function

Cyy(r, t) := hGS|�y
r(t)�

y
c |GSi . (4.44)

We evaluate it from the quench dynamics as

Cyy(r, tn + ⌧) = eiE0⌧
⌦
GS(tn)

���y
re

�iH⌧
�� (tn)

↵
. (4.45)

Here, we may explicitly include a time evolution operator for some smaller time step
|⌧ |  �t/2 to increase the resolution at which we evaluate the correlation function.
This is does not dominate the cost, as (4.45) is a tensor network with the same
structure as the cost function for time evolution. It also allows for a consistency check
of the approximate time evolution and Trotter approximation, where a kink in the
data from tn+⌧max to tn+1�⌧max reveals problems in one of the two approximations.
Note that bMPS and partial contractions can be re-used between the evaluation
for di↵erent positions r. We observe that it is beneficial to use the same time
evolution method to explicitly evolve the ground state approximation instead of
assuming that hGS|eiHt = eiE0thGS|. This is because (a) the ground state is only an
approximation, and thus only approximately an energy eigenstate, and (b) the time
evolution contains approximations and does not conserve energy exactly.

We then form the dynamical spin structure factor (DSF)

Syy(k,!) =
1

2⇡

Z
1

�1

dt
X

r

ei(!t�k·r)Cyy(r, t). (4.46)

Let us first elaborate on the modifications needed to compute a proxy for the DSF
from the available data. Firstly, to get access to correlation data for negative times,
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we may observe that in an infinite system with translational invariance, the corre-
lation function fulfills

Cyy(r,�t) = hGS|�y
r(0)�y

c(t)|GSi = hGS|�y
c(t)�

y
r(0)|GSi = C

yy
(�r, t)

= C
yy

(r, t),
(4.47)

where we used invariance of the ground state expectation value under time shifts,
hermicity of the �y, translational invariance, and inversion symmetry. As a result,
we may evaluate the DSF as

Syy(k,!) =
X

r

e�ik·r 1

⇡

Z
1

0

dt Re
⇥
ei!tCyy(r, t)

⇤
. (4.48)

While this identity only holds for the infinite system, and translational invariance is
not given for the finite system, we may choose to extrapolate the expression (4.48)
to the thermodynamic limit instead of (4.46). Alternatively, one could repeat the
simulation to negative times by applying a sequence of U(��t) operators.

Secondly, we only have correlation data up to some finite cuto↵ time T , that is only
for t  T . Thus, for the time-to-frequency Fourier transform, e.g. for a general
function f defined as

f̂(!) =
1

2⇡

Z
1

�1

dt ei!tf(t) (4.49)

we need to introduce some approximations to deal with the |t| > T integration
range. If we simply truncate the integration range, e↵ectively including a windowing
function W (t) = ✓(T � |t|), we would find

1

2⇡

Z T

�T

dt ei!tf(t) =
1

2⇡

Z
1

�1

dt ei!tf(t)W (t) = (f̂ ⇤ Ŵ )(!) , (4.50)

where ⇤ denotes the convolution

(f̂ ⇤ Ŵ )(!) =

Z
1

�1

dy f̂(y)Ŵ (! � y) (4.51)

of two functions. We obtain the desired result f̂(!), but convoluted, i.e. broad-
ened by a sinc function Ŵ (!) = 2/! sin!T . This function has oscillating and
slowly decaying tails around a main peak, such that sharp features in f̂(!) would
be surrounded by ringing artifacts, which makes it di�cult to interpret features.
We employ a common approach to avoid these by choosing a di↵erent windowing
function, in particular, a Gaussian W�(t) = e�t2/2�2

which results in convolution
with

Ŵ�(!) =

r
�

2⇡
e��

2!2/2, (4.52)

i.e. a Gaussian with width 1/�. This is a significant improvement since Ŵ� decays
significantly faster, is strictly decreasing for ! > 0, and is positive, such that con-
voluting with it does not introduce ringing and only smooths out the features. We
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Figure 4.1: The dynamical structure factor Syy(k,!) of the TFIM at di↵erent
field strengths on an 11⇥ 11 square lattice with open boundary conditions.
The horizontal axis describes a closed triangular path through the Brillouin
zone with corners � = (0, 0), X = (10

11
⇡, 0), M = (10

11
⇡, 10

11
⇡). The lines are

the perturbative dispersions for low (blue) and high (green) field strengths,
i.e. equations (4.55) and (4.56). The width �! of the Gaussian broadening
that we artificially introduce is indicated in the left panel.

choose the width such that W�(T ) ⌧ 1 is su�ciently decayed, such that we may
truncate the integration range to |t| < T and introduce only a small error.

Lastly, we only have access to correlation data at discrete times, such that we need
to discretize the integral. Including these three modifications, we can evaluate the
broadened structure factor as

Ŵ�(!) ⇤ S(k,!) ⇡
X

r

e�ik·x Re

"
1

N

NX

n=0

ei!tnCyy(r, tn)

#
. (4.53)

We present results for the DSF from gradient-based time evolution in figure 4.1.
The extracted structure factor matches well with the perturbative dispersion rela-
tions. At g = 3, we see a small but significant gap of � ⇡ 1 at the � point. We
do not expect to see the gap close exactly because we simulate (i) slightly o↵ crit-
icality g = 3 . gc, (ii) at finite system size, and (iii) at finite entanglement (due
to the bounded bond dimension). The results agree well with other works, such as
isometric TNS in reference [71] and infinite PEPS in reference [133], which perform
very similar simulations of the DSF, as well as qualitatively with the infinite pro-
jected entangled pair state (iPEPS) excitation ansatz [160, 161], which extracts the
excitation spectrum (i.e. the dispersion relation) in the thermodynamic limit. We
attribute the faint features above the main branch at g = 1, 2 to two-magnon bound
states; the energy scale agrees with the result from the excitation ansatz [161].

We can obtain a reference for the DSF from perturbative calculations. In the limit
of small transverse fields, g ⌧ gc, the elementary excitations on top of the �x

polarized ground state are single spin flips, and the simulated quench does indeed
create such an excitation. Now, second-order time-dependent perturbation theory in
the field term results in a hopping model of these spin flips, where nearest neighbor
hopping is favored since the intermediate virtual state of two neighboring spin flips
dissatisfies the interaction term on only six bonds, compared to the eight bonds
for other configurations. In the opposite limit g � gc, the quench also induces a
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spin-flip, this time on top of a �x = +1 polarized ground state, and we directly find
a nearest neighbor hopping model of the spin flips in first-order perturbation theory
of the interaction term. In both cases, we find sharp features

Syy(k,!) = �(! � ✏(k)) (4.54)

in the structure factor with weight on the dispersion relations, which are given by

✏g⌧gc(k) = 8� g2

4
[1 + cos kx + cos ky] + O

�
g3
�

(4.55)

✏g�gc(k) = 2g

✓
1� 1

g
[cos kx + cos ky] + O

✓
1

g2

◆◆
. (4.56)

These dispersion relations are overlayed in figure 4.1 for comparison.

4.5 Conclusion

We have proposed an approach to the gradient-based optimization of tensor network
states, in particular finite PEPS, in light of approximate contractions. This avoids
the pathological states that can result from naively optimizing an approximately
contracted cost function using automatic di↵erentiation. By instead evaluating the
exact expression of the gradient of the cost function using the same approximate
contraction method, we have achieved a stable and successful optimization algo-
rithm. In this proof of principle work, we do not exploit symmetries, limiting the
bond dimension achievable on larger systems. Nevertheless, we see better results
than any other publication (for finite PEPS) we are aware of at the lowest bond di-
mension D = 2, where we reach convergence and achieve comparable energies at the
larger bond dimensions. Notably, our ground state results, simulated sequentially
on tens of CPU cores, yield results competitive with the massively parallel DMRG
simulation of Ref. [32] running on a thousand cores of specialized TPU hardware.
This discrepancy further illustrates the potential of natively two-dimensional tensor
network methods, such as PEPS, for the simulation of 2D quantum systems. The
gradient-based approach allowed us to perform dynamics simulations even at the
lowest bond dimensions, which – to our knowledge – do not admit accurate time
evolution by other means.

Our results showcase conventional wisdom established when comparing simple up-
date (SU) and full update (FU) ground state searches that the maximal bond di-
mension reached by a PEPS simulation only loosely correlates with the quality of
the results. We observe that local updates do not fully exhaust the variational power
of the fixed bond dimension manifold. The global, gradient based method on finite
system o↵ers an approach complementary to the TEBD-style local updates on large
unit cell infinite systems of Ref. [133], to extract spectral functions in 2D. O↵ering a
competitive alternative to MPS simulations on cylinder geometries, especially when
considering more strongly correlated models than the TFIM, is an open challenge.

Nevertheless, gradient-based approaches seem to be a promising avenue to leverage
the full variational power of the PEPS ansatz, depending on how far performance
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can be pushed. In any case, hybrid approaches may prove fruitful, leveraging the
performance of established algorithms, such as e.g. FU or similar, to get a good
approximation, then further improving on it with a few costly, but e↵ective gradient
steps, as is done in Ref. [115]. The di↵erent convergence properties of global energy
minimization and imaginary time evolution may also complement each other to
avoid local minima and plateaus.

The future directions are to push the performance to fully converge the ground state
results for the larger systems and larger bond dimensions, and we refer future read-
ers to a future published version of [2]. We also plan to study the implications of
the simplification of the AD formula of the truncated SVD, given in section 4.2.2
for gradient-based optimization using gradients from AD, and if it might stabi-
lize the optimization. It may also prove beneficial for performance to employ the
GPU-friendly truncation routines discussed in chapter 3 in the bMPS contraction
to exploit hardware acceleration.



Chapter 5

Non-abelian symmetries and
anyons in tensor networks

In this chapter, we develop a mathematical framework that allows non-abelian sym-
metries to be exploited in tensor network simulations. We choose a quite general
approach using category theory. This is in contrast to approaches [52, 115, 162]
that focus on the particular properties of SU(2), the most common non-abelian
symmetry in condensed matter systems. As a result, the framework for symmet-
ric tensors extends seamlessly from expressing quantum states that are symmetric
under some symmetry group to states with fermionic or anyonic statistics. Enforc-
ing a group symmetry results in computational and memory benefits as a result
of Schur’s lemma. For group symmetries, there is a notion of “general” tensors in
an ambient space that has no symmetry constraints, and enforcing the symmetry
restricts the entries of this tensor, namely by the charge rule (2.70), and addition-
ally by restricting components between symmetry sectors to the identity, which only
has non-trivial consequences in the non-abelian case. In the general case, and in
particular for fermions or anyons, there is no notion of such an ambient space, and
symmetric tensors are the only tensors we can write down. We can think of the
generalized Schur’s lemma as a way to construct or parametrize the symmetric ten-
sors that makes operating on them convenient. Throughout this chapter, we slightly
abuse the term symmetry by generalizing it to the fermionic or anyonic case. We
understand “symmetry” here to mean the mathematical structure that constrains
the form of allowed (meaning symmetric) tensors, which is either the symmetry
group or the tensor category that the tensors live in. It is not to be confused with
the notion of a categorical symmetry [163], where the symmetry transformations
themselves live in a particular category – a related but distinct notion.

The mathematical foundation for this general framework is monoidal category the-
ory, which may be prohibitively involved to learn solely for the purpose of under-
standing, e.g. SU(2) symmetric tensors. Therefore, we attempt to o↵er two com-
plementary ways of reading this chapter. On the one hand, we aim for an intuitive
approach that focuses solely on the case of a symmetry group. This follows the
spirit of Steven Simon’s approach of “avoid[ing] the language of category theory

83



84 CHAPTER 5. NON-ABELIAN SYMMETRIES

like the plague” [164]. On the other hand, we aim to provide a su�ciently rigor-
ous approach to make all concepts unambiguously well-defined from a mathematical
perspective. For the most part, we attempt to balance these approaches so that
statements make sense within the limited scope of the first approach while still be-
ing correct in the general case. Wherever that is impractical, we split the text into
side-by-side columns and give concrete explanations or definitions separately from
the two separate perspectives. The text in the left columns avoids category theory
and defines the concepts purely in terms of group representations, while the right
columns introduce and use monoidal category theory.

In section 5.1, we introduce the basic definitions regarding symmetric maps. We
streamline the exposition to the concepts and structures needed for the purpose of
a tensor backend and establish a graphical language that allows the intuition from
the concrete case of a group symmetry to carry over to the general categorical case.
We define and identify the pieces of data that are required of a symmetry to be
used in this framework – its topological data – in section 5.2. In section 5.3, we
identify the free parameters of symmetric tensors, propose a storage format, and
develop in detail how to perform common operations on these tensors. We remark
on implementation details and upcoming plans to integrate the framework into the
TeNPy library in section 5.4 before showing benchmark results in section 5.5 and
concluding in section 5.6.

The developed framework is informed by the implementation and documentation of
TensorKit [165], a Julia library for symmetric tensors. The exposition of category
theory is largely based on Ref. [166], which we would like to recommend as literature
for an approach to category theory from a quantum information perspective, as well
as [164, 167]. We would also like to recommend Ref. [168] for a detailed review of
the graphical notation for monoidal categories, as well as point to introductions to
category theory from a perspective of topological excitations in Refs. [169, 170].

5.1 Definitions and graphical language

In the following section, we aim to introduce the basic concepts of symmetric tensors
in both an accessible and a general way. Whenever these approaches are incompat-
ible, we split into columns, focusing on the concrete case where we assume that the
symmetry is given by a group, acting on the Hilbert space via a representation in the
right columns and a general case where it is encoded in a category in the left column.
The former allows us to rely on only a minimal background of linear algebra and to
give concrete, constructive definitions or at least examples. The latter is generally
phrased axiomatically and allows us to be very general.

Concrete case: Group Representation

In the concrete case, we assume that the
context implies a symmetry, which is given
by a group G, the symmetry group. We as-
sume that G is either finite or a compact

General case: Tensor Category

In the general case, the “symmetry” is en-
coded in a category C.

The full list of properties required of the
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Lie group. This is the case for the sym-
metries that commonly arise in condensed
matter systems.

We assume that we are working with com-
plex, finite-dimensional Hilbert spaces. As-
suming an algebraically closed field is re-
quired for Schurs’s lemma part 2 to apply.
Assuming a finite dimension allows us to
work with finite sums instead of infinite se-
ries, where e.g. convergence and commuta-
tion of sums needs to be checked. This is
natural in tensor networks, where all bond
dimensions are finite. Finally, assuming
the existence of an inner product h�|�i is
natural in quantum mechanics and simpli-
fies the construction of matrix representa-
tions, etc.

category to be compatible with the frame-
work of symmetric tensors is quite the jar-
gon soup; We require C to be a braided
pivotal spherical rigid semisimple C-linear
monoidal dagger category. We refer to such
categories as tensor categories. Note that
the term is loaded and understood to mean
slightly di↵erent things in di↵erent contexts.
We introduce the defining structures of a
tensor category in the following sections.
See section 5.1.10 for an overview.

For concrete examples, we may think of the
category FdVectC of finite-dimensional vec-
tor spaces over the complex numbers, which
models the trivial symmetry or “no sym-
metry”. A symmetry group (the concrete
case discussed in the left columns) is mod-
eled by the category FdRepC(G) of finite-
dimensional representations of the symme-
try group G over the complex numbers. As
a notable non-group example, consider the
category Ferm, which results from equip-
ping the category FdSVectC of finite-di-
mensional complex super vector spaces with
a non-trivial twist. As the name suggests,
it models fermionic degrees of freedom.
Lastly, consider the category Fib, describ-
ing Fibonacci anyons. See appendix A for
details.

The following subsections each introduce a (group of related) concept(s). In the full-
width main text, we summarize its purpose and the intuition behind it, as well as its
graphical representation and state relevant properties. We give concrete definitions
in the two respective columns.

5.1.1 Spaces and Maps

As a first building block for tensors in a tensor network, we consider the physical or
virtual spaces that define the legs of a tensor. We understand them as structured
sets, e.g. having the structure of a vector space with a grading into sectors, induced
by the symmetry. We call these structured sets symmetry spaces, even if, in the
general anyonic case, they are not vector spaces in the usual sense. Secondly, we
need the concept of symmetry-preserving maps, which we call symmetric maps for
short. They are maps f : A! B between symmetry spaces A and B. At this point,
we can think of the maps as matrices, i.e. two-leg tensors. For multi-leg tensors, we
require the tensor product structure to be introduced in the next section.

There is a graphical calculus for maps. Symmetry spaces are represented by wires
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with arrows. In a later section on duality, we introduce downward arrows as well.
Normal arrows point upward in the reading direction. A map f : V ! W is drawn
as a box with the domain V as a wire going into the bottom and the codomain
coming out from the top.

f

V

W

:= (f : V ! W ) (5.1)

The box for the map f has a chamfered top left corner. This allows us to visually
distinguish mirroring and rotation, which we introduce later. Map composition is
drawn as vertical stacking; that is for f : V 0 ! W and g : V ! V 0, the composite
is drawn as

V

g

f

W

V 0 :=

V

f � g

W

. (5.2)

We draw the identity map as an empty wire

V

V

:= idV

V

V

, (5.3)

which makes its defining property (5.8) as the unit of composition visually apparent.
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Concrete case: Group Representation

A symmetry space in the above sense is a
finite-dimensional complex Hilbert space V
equipped with a unitary representation

UV : G! Hom (V, V )

of the symmetry group G, which assigns to
every group element g 2 G a unitary linear
map UV (g) : V ! V such that

UV (gh) = UV (g) � UV (h)

for all g, h 2 G. See section A.1 for a sum-
mary of results from group representation
theory.

A symmetric map in the above sense is a
linear map f : V ! W between symmetry
spaces V and W that is compatible with
the symmetry representations on the re-
spective spaces, meaning

f � UV (g) = UW (g) � f 8g 2 G. (5.4)

Linear maps f with this property are also
known as equivariant, as intertwiners be-
tween UV and UW , or as G-linear. The
identity map : V ! V, v 7! v has this
property and thus is a symmetric map, and
if f and g are symmetric maps, so is f � g.

We call two symmetry spaces V, W iso-
morphic if there is an invertible symmet-
ric map between them. Note that this is a
stronger requirement than an isomorphism
of vector spaces. The invertible isomor-

phism S : V
⇠=�! W , in addition to being

linear must also fulfill (5.4), i.e.

UV (g) = S�1 � UW (g) � S 8g 2 G. (5.5)

This, in turn, means that UV and UW are
equivalent as group representations.

It is a common pattern to define concrete
symmetric maps “by linear extension”. To
fully specify a linear map f : V ! W ,
it is enough to specify the images f(vi) of
a complete subset {vi} ✓ V , e.g. a basis.
Since the subset is complete, any v 2 V can

General case: Tensor Category

In the general case, the notions of maps
and spaces arise from the definition of a
category. This column summarizes basic
definitions of category theory. A category
C consists of the following data;

• A collection Ob(C) of objects.
These are the “symmetry spaces”.

• For every pair of objects A, B, a col-
lection C(A, B) of morphisms, which
are denoted f : A! B. These are the
“symmetric maps”.

• For every pair of morphisms f : A! B
and g : B ! C with common inter-
mediate object, a composite morphism
f � g : A! C.

• For every object A, an identity mor-
phism idA : A! A.

which fulfills the axioms of associativity

h � (g � f) = (h � g) � f (5.7)

and identity

idB � f = f = f � idA (5.8)

for all objects A, B, C, D 2 Ob(C) and mor-
phisms f : A! B, g : B ! C and
h : C ! D.

An isomorphism f : A! B is a morphism
that is invertible, which means that there
is an f�1 : B ! A such that f�1 � f =
idA and f � f�1 = idB. If an isomorphism
A ! B exists, we say that A ⇠= B are
isomorphic.

Given categories C and D, a (covariant)
functor F : C! D assigns to every object
A 2 Ob(C) an object F (A) 2 Ob(D) and
to every morphism f : A! B in C a mor-
phism F (f) : F (A)! F (B) in D. It must
preserve composition

F (g � f) = F (g) � F (f)

and identities F (idA) = idF (A).
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be written as v =
P

i ↵ivi and the function
is defined as

f : V !W,
X

i

↵ivi 7!
X

i

↵if(vi). (5.6)

For example, the raising operator of a har-
monic oscillator can be specified as the lin-
ear extension of

|ni 7!
p

n + 1 |n + 1i .

A contravariant functor F̃ is similar, but
reverses arrow directions, meaning

F̃ (f) : F̃ (B)! F̃ (A)

has the opposite direction and the order of
composition is reversed in

F̃ (g � f) = F̃ (f) � F̃ (g),

but is otherwise analogous. If unspecified,
we assume by default that functors are co-
variant.

Given functors F : C! D and G : C! D, a natural transformation

⇣ : F =) G

between them assigns to every object A 2 Ob(C) a morphism ⇣A : F (A) ! G(A) in D,
such that the following diagram commutes for all f : A! B in C;

F (A) G(A)

F (B) G(B)

F (f)

⇣A

G(f)

⇣B

(5.9)

We can also think of “naturality” as a property of a family ⇣A of morphisms.

A natural isomorphism is a natural transformation ⇣, for which every component ⇣A is an
isomorphism.

For categories C and D, the product category C⇥D has tuples (A, B) 2 Ob(C)⇥Ob(D)
as objects and tuples (f, g) : (A, B) ! (C, D) 2 C(A, C) ⇥D(B, D) as morphisms, such
that composition is elementwise and identities are tuples of identities.

5.1.2 Tensor Product

The tensor product arises naturally in quantum mechanics. If we have two sub-
systems, each described by a space, the whole system is described by their tensor
product. It is also the structure required to build the multi-leg tensors in tensor
networks.

Given two symmetry spaces V and V 0, the tensor product V ⌦V 0 is also a symmetry
space. Given two symmetric maps f : V ! W and g : V 0 ! W 0, their tensor product
is a symmetric map f ⌦g : (V ⌦V 0)! (W ⌦W 0). The tensor product is associative

up to an isomorphism ↵V,W,U : (V ⌦W ) ⌦ U
⇠=�! V ⌦ (W ⌦ U). We suppress this

isomorphism and will not write brackets for multiple tensor products, implying ↵
isomorphisms as needed. There is a special symmetry space called the monoidal
unit I, which can be added “for free”, i.e., such that V ⌦ I ⇠= V ⇠= I ⌦ V . In
tensor networks, this corresponds to adding (removing) trivial one-dimensional legs
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to (from) a tensor. The tensor product cooperates with map composition

(f2 ⌦ g2) � (f1 ⌦ g1) = (f2 � f1)⌦ (g2 ⌦ g1). (5.10)

In the graphical calculus, the tensor product of spaces is represented by drawing the
spaces next to each other horizontally. We do not need brackets; ↵ isomorphisms
between equivalent but unequal bracketings are implied.

V1 V2 V3

:=

V1 ⌦ V2 ⌦ V3

(5.11)

The tensor product of maps is drawn by drawing them next to each other.

V1

f

W1

V2

g

W2

:=

V1 ⌦ V2

f ⌦ g

W1 ⌦W2

(5.12)

Because of (5.10), there is no ambiguity in diagrams involving both composition and
tensor products of maps. The monoidal unit I is drawn as a dashed line if needed
for emphasis or typically omitted altogether.

f

W

:=

I

f

W

:=

I

f

W

(5.13)

Omitting I from the drawing may require implicit isomorphisms, such as for example
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�W : I ⌦W
⇠=�! W to be inserted.

V1

f

V2

g

W

:=

V1

f

V2

g

�W

W

I W (5.14)

There might be several ways to do this in larger diagrams. They are all equivalent,
meaning the resulting maps are equal, by coherence theorems, see e.g. [171] or [172,
chpt. 7], of the graphical calculus:

Two symmetric maps are equal if and only if their diagrams are equivalent up to
planar isotopy, that is up to moving the morphisms around in the plane, or deforming
the wires, up to hard-core constraints, i.e. such that morphisms or wires never touch.

We understand tensors as symmetric maps between (tensor products of) symmetric
spaces, e.g.

T : W1 ⌦W2 ! V1 ⌦ V2 ⌦ V3 (5.15)

is a tensor with five legs. Its five legs are partitioned into the domain W1 ⌦ W2

and codomain V1⌦ V2⌦ V3. In the case of group symmetries, a common alternative
notion is to understand the tensors as elements of tensor product space. This is
fully contained in the above picture, since e.g. t 2 V1 ⌦ V2 is equivalent to the map
T : C! V1 ⌦ V2,↵ 7! ↵t, since we can recover t = T (1).

Concrete case: Group Representation

The tensor product of symmetry spaces is
the tensor product of vector spaces, to-
gether with an inner product defined as the
bilinear extension of

hv1 ⌦ w1|v2 ⌦ w2i := hv1|v2i hw1|w2i

and with the group representation

UV⌦W : g 7! UV (g)⌦ UW (g).

The tensor product of symmetric maps is
the tensor product of linear maps. The
resulting linear maps are indeed equivari-
ant, i.e. qualify as symmetric maps, by con-

General case: Tensor Category

For a category C, a monoidal structure is
given by a functor ⌦ : C⇥C! C, which
provides the tensor product A ⌦ B of ob-
jects and f ⌦ g of morphisms. It requires
the following data

• For objects A, B, C, the associator

↵ABC : (A⌦B)⌦ C
⇠=�! A⌦ (B ⌦ C).

• The monoidal unit I 2 Ob(C).

• For each object A, the left unitor

�A : I ⌦A
⇠=�! A.
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struction of the group representation on
the product space.

Given orthonormal bases {|vni}n as well
as {|wmi}m of symmetry spaces V and W ,
an orthonormal basis for V ⌦W is given by
{|vni ⌦ |wmi}n,m. Thus, to define a sym-
metric map on a tensor product by linear
extension, it is enough to define the image
of factorized elements of the form |vi⌦ |wi.
This generalizes to nested tensor products.

The monoidal unit I is with the trivial rep-
resentation UI : g 7! on the one-dimen-
sional space C. The defining isomorphisms
I ⌦ A ⇠= A and A ⌦ I ⇠= A are the linear
extensions of (1⌦ a) 7! a and (a⌦ 1) 7! a,
respectively.

The tensor product is indeed associative up
to an isomorphism given by linear exten-
sion of (a ⌦ b) ⌦ c 7! a ⌦ (b ⌦ c), which is
typically suppressed by omitting the brack-
ets.

• For each object A, the right unitor

⇢A : A⌦ I
⇠=�! A.

such that ↵, � and ⇢ are natural isomor-
phisms and such that the triangle equation
(5.16) and the pentagon equation (5.17)
commute. The left unitor � is a natural
isomorphism between the functor (I ⌦ �)
that maps A to I ⌦A and f to idI ⌦ f and
the identity functor. Similarly, the right
unitor is a natural isomorphism between
the functor (�⌦ I) and the identity. Their
existence characterizes I as the monoidal
unit. The associator is a natural isomor-
phism between the two inequivalent double
tensor product functors ((�⌦�)⌦�) and
(�⌦ (�⌦�)), both C⇥C⇥C! C.

The consistency conditions for the monoidal structure are that the triangle equation

(A⌦ I)⌦B A⌦ (I ⌦B)

A⌦B

↵AIB

⇢A⌦idB

idA⌦�B

(5.16)

and the pentagon equation

(A⌦ (B ⌦ C))⌦D A⌦ ((B ⌦ C)⌦D)

((A⌦B)⌦ C)⌦D A⌦ (B ⌦ (C ⌦D))

(A⌦B)⌦ (C ⌦D)

↵A,B⌦C,D

idA⌦↵BCD↵ABC⌦idD

↵A⌦B,C,D ↵A,B,C⌦D

(5.17)

both commute.

5.1.3 Dagger

For a symmetric map f : V ! W , the dagger (or adjoint) is a symmetric map
f † : W ! V with opposite direction. Note that the dagger of a map is always
composable with the original map in either order.
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The dagger is the operation that allows us to form inner products on a tensor
network level. Expectation values h�|O|�i =: h�|�̃i are given in terms of the inner
product on the many-body Hilbert space. If |�i is a TNS with tensors {Bi}, the
inner product h�|�̃i is given as the contraction of a tensor network, where the “half”
representing h�| consists of the adjoint (daggered) tensors {B†

i }.

In the graphical calculus, the dagger of a map is drawn by vertically mirroring the
box.

W

f

V

:=

W

f †

V

=

0

BBBBBBBBBBB@
V

f

W

1

CCCCCCCCCCCA

†

(5.18)

Note that it has the same label f as the original map and is only identified as its
dagger because of the mirrored box. For readability, we do not mirror the label
itself but rather choose a chamfered box that makes the mirroring apparent. Since
the dagger reverses the order of composition but preserves the order of the tensor
product, the dagger of a composite diagram is obtained graphically by first mirroring
along a horizontal axis, then flipping back all arrows to their original direction.

The dagger preserves the order of tensor products (f⌦g)† = f †⌦g†, but reverses the
order of composition (f �g)† = g†�f †. This motivates the graphical representation as
a vertical mirroring and implies that a composite diagram is the dagger of another
diagram if and only if they are each others vertical mirror images, up to planar
isotopy.

A symmetric map is unitary, if its adjoint is its inverse, that is if f † � f = idV and
f � f † = idW .

Concrete case: Group Representation

The dagger is defined as usual, where the
dagger of a map f : A ! B is the unique
map f † : B ! A that fulfills

hw|f(v)i =
D
f †(w)

���v
E

for all v 2 A and w 2 B, or in braket
operator notation hw|f |vi = hv|f †|wi. We
can therefore read o↵ that its matrix repre-
sentation (f †)mn = hm|f †|ni = fnm is the
hermitian conjugate matrix. It remains to
check that the linear map f † is indeed a
symmetric map. Let g 2 G, then we have
UB(g�1) � f = f � UA(g�1) since f is sym-

General case: Tensor Category

For a category C, a dagger structure is
given by a contravariant functor † : C! C
that acts as the identity on objects and ful-
fills

• For f : A! B, the dagger f † : B ! A
has reversed direction (contravariant)

• For morphisms f, g, we have
(f � g)† = g† � f † (contravariant)

• For morphisms f , we have (f †)† = f

• The identities id†

A = idA are invariant
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metric. Taking the dagger and using that
the representations UA/B are unitary, we

find that f † is symmetric as well.

The dagger distributes over the tensor prod-
uct (f ⌦ g)† = f † ⌦ g†, by definition of the
scalar product on the product space. The
dagger reverses the order of map composi-
tion (f � g)† = g† � f †, which we obtain
by applying the defining property twice;
hw|f(g(v))i = hg†(f †(w))|vi.

The dagger structure is compatible with a
tensor product ⌦ if

• The action on morphisms cooperates;
that is for morphisms f, g, we have
(f ⌦ g)† = f † ⌦ g†

• The isomorphisms of the monoidal struc-
ture are unitary; ↵†

ABC = ↵�1

ABC and

�†A = ��1

A and ⇢†A = ⇢�1

A

5.1.4 Duality

A duality structure is very familiar to anyone working with quantum physics; A bra
vector is the dual of a ket vector. Duality introduces the concepts of dual spaces,
the transpose of a map, the trace, and the quantum dimension. Graphically, duality
is visualized as 180� in-plane rotation. A wire with a downward arrow represents
the dual space. Note that it is labeled by the original space that it is the dual of.

V

:=

V ?

(5.19)

There is a pair of special symmetric maps related to the duality of V and V ?, the
cap "V : V ⌦ V ? ! I and cup ⌘V : I ! V ? ⌦ V . Note the di↵erent orders of the
tensor product. They are drawn as bent lines.

V V
:=

V V

"V

;
V V

:=

V V

⌘V

(5.20)

Note that the wire has a consistent arrow direction through the bend, which is why
the cup and cap are precisely what characterizes A? as the dual of A. They fulfill
the snake equations

V

V

=

V

V

;

V

V

=

V

V

. (5.21)
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As an instructive example for reading these graphical representations, let us explictly
write out the first equality. Including all implied isomorphisms, it reads

�V � ("V ⌦ idV ) � ↵V V ?V � (idV ⌦ ⌘V ) � ⇢†V = idV . (5.22)

The dagger gives us the “opposite cap” ⌘†V : V ? ⌦ V ! I and “opposite cup”
"†V : I ! V ⌦ V ?.

V V
:=

0

B@
V V

1

CA

†

;
V V

:=

0

B@
V V

1

CA

†

(5.23)

Note the di↵erent arrow directions compared to the regular cup and cap.

Taking the dual of a tensor product results in the tensor product of individual duals

in reverse order, up to a unitary isomorphism ⇣�1

V,W : (V ⌦W )?
⇠=�! W ? ⌦ V ?, given

explicitly in (5.29). This isomorphism is implied in the graphical language; if we
rotate a tensor product V ⌦W , we graphically obtain W ?⌦ V ?. Thus, in graphical
equations, we may simply use W ? ⌦ V ? as a dual of V ⌦W .

Taking the dual twice gives the same space back; V ?? ⇠= V , again up to an isomor-
phism ⇡V : V ! V ??, given explicitly in (5.28). This isomorphism is also implied
by the graphical language, as rotating twice gives us back the same diagram, not a
double dual. Thus, we never need to use double duals in the graphical notation and
can always use V as a dual of V ?.

The monoidal unit I = I? is self-dual where the cups are given by the unitors
"I = ⌘†I = ⇢I = �I and the caps by their daggers. This allows us to omit the arrows
on the (dashed) wires for the monoidal unit.

Concrete case: Group Representation

For a symmetry space V with a group rep-
resentation UV , the dual space is the dual
vector space V ? = {h�| : V ! C|h�| linear}
with the contragradient representation UV ? ,
that is

UV ?(g) : h�| 7! h�| U †

V (g). (5.24)

Where the notation above means that the
image of the dual vector | i 7! h�| i under
the representation is the dual vector | i 7!
h�|U †

V (g)| i.

The cup is given by

⌘V : C! V ? ⌦ V,↵ 7! ↵
X

n

h'n|⌦ |'ni ,

(5.25)

General case: Tensor Category

In a category C with tensor product ⌦,
which has a dagger, we define a duality
structure1 as the following data;

• For every object A 2 Ob(C), a dual
object A?

• For every object A, two morphisms:
the cup ⌘A : I ! A? ⌦ A and the cap
"A : A⌦A? ! I

1We have taken quite the shortcut here,
compared to common literature, e.g. compared
to [166, chpt 3], by implicitly defining a piv-
otal structure given by ⇡ such that the duals
are dagger duals.
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where {|'ni} is an orthonormal basis of
V and {h'n|} the associated orthonormal
dual basis of V ?. The cap is given by

"V : V ⌦V ? ! C, | i⌦h�| 7! h�| i (5.26)

The isomorphism between a symmetry space
V and its double-dual V ?? is given by

⇡V : V ! V ??, | i 7! (h�| 7! h�| i) ,
(5.27)

where the expression in round brackets is
a double-dual vector, as it linearly maps a
dual (bra) vector to a complex number.

Given dual vectors hv| 2 V ? and hw| 2W ?,
their tensor product hv| ⌦ hw| 2 V ? ⌦W ?

is isomorphic to a dual vector in (W ⌦V )?

that takes the form | i 7! hw ⌦ v| i. The
reversed order in (W ⌦ V )? ⇠= V ? ⌦ W ?

is an arbitrary choice here, but is natural
in the graphical language, as bending lines
like in equation (5.29) reverses the order.

such that the snake equations (5.21) are
fulfilled.

Taking the dagger yields the opposite cup
"†A and opposite cap ⌘†A, which witness A?

as a left dual of A and inherit analogous
snake equations, given by the dagger of
(5.21). Since A? is both a left and a right
dual of A and is the canonical choice among
possibly multiple duals of A, it is simply
referred to as the dual of A.

It also makes the notion of duality reflex-
ive, that is, A is a dual object of A?. It
may, however, not agree with the choice
A?? for the dual of A?. They are isomor-
phic by an isomorphism ⇡A : A ! A??,
defined as the following composite.

A

⇡A

A??

:=

(⌘A)†

⌘A?

A

A??

A (5.28)

The dual (A⌦B)? of a tensor product is isomorphic to B?⌦A? by a unitary isomorphism

⇣A,B : B? ⌦A?
⇠=�! (A⌦B)?, defined as the following composite

⌘A⌦B

A⌦B

B A

A B
. (5.29)

Note the similarity to the construction of the ⇡ isomorphism. This generalizes; di↵erent
choices for the dual of a given object are isomorphic, where the isomorphism can be
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constructed as the “mixed snake” between a cup from one duality and a cap from the
other.

It turns out that taking duals is functorial if we understand the duals functor to act as
transposition (5.30) on morphisms.

Given a symmetric map f : V ! W , its transpose fT : W ? ! V ? is another
symmetric map. It is defined as the following composite of a cup, f itself, and a
cap.

W

f

V

:=

W

fT

V

:= f

V

W

W

V

= f

V

W

W

V

(5.30)

The alternative definition with opposite cap and cup is equal. Taking the transpose
inverts the order of composition (f � g)T = gT � fT, which follows from the snake
equation (5.21) and is visually intuitive in the graphical calculus, where the rotation
inverts the vertical order. Another consequence of the snake equation is that (fT)T =
f , as well as idT

V = idV ? .

The sliding properties

f

V W

=
f

WV

;
f

WV

=
f

V W

(5.31)

for all f : V ! W also follow from the snake rules and can be visualized as sliding
the box along the wire. The rotation induced by the bend means that the transpose
appears on the other side. Analogous properties for sliding along the opposite cup
and cap, not explicitly shown here, also hold.

The graphical calculus, including duality, also fulfills coherence theorems. Two
symmetric maps formed from the building blocks introduced so far are equal if and
only if their diagrams are equivalent up to oriented planar isotopy. Note the new
qualifier “oriented”, which means that arrow directions must remain consistent if
the lines are bent, as e.g. in the snake rules (5.21). Additionally, two morphisms
given as composite diagrams are each others transpose if and only if one diagram is
the rotated version of the other, up to oriented planar isotopy.
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As the notation suggests, the opposite cup (cap) is also equal to the transpose of
the regular cap (cup), up to suppressed isomorphisms, e.g. ("V )T : I? ! (V ? ⌦ V )?

is equal to the following composite

I? = I
"†V�! V ⌦ V ? ⇡V ⌦idV ?�! V ?? ⌦ V ? (⇣V ?,V )

�1

�! (V ? ⌦ V )?.

Another relevant composite object is the trace Tr (f) of a symmetric map f : V ! V ,
defined as

Tr (f) := fV = f V , (5.32)

where the alternative definition, which closes the loop to the right-hand side, is
equal. The trace is invariant under transposition Tr

�
fT
�

= Tr (f) by the sliding
property (5.31), and is cyclic

Tr (f � g) = Tr (g � f) . (5.33)

Note that the trace is a symmetric map I ! I. We identify a one-to-one correspon-
dence of such maps with complex numbers in subsection 5.1.8, which reconciles this
definition with the usual trace of linear maps, which is a number. Let us briefly
already assume that we can treat it as a number.

The quantum dimension of a space is defined as

dim V := Tr (idV ) = V (5.34)

and we find that dim V ? = dim V , i.e. a loop with opposite arrow direction agrees
with the loop above. For a group symmetry, the quantum dimension coincides with
the vector space dimension of the symmetry space and is, in particular, always an
integer. In general, we can observe that it is invariant under the dagger and thus
real. We find it is non-negative for all symmetries we use in practice.

Finally, the trace and dagger induce the Frobenius inner product hf |giF = Tr
�
f † � g

�

and Frobenius norm kfkF =
p
hf |fiF of symmetric maps.

5.1.5 Braids

We have already seen that the tensor product is associative, at least up to isomor-
phism. The next natural question to ask is if it is also commutative. This is related
to the question if (and how) legs on a tensor can be swapped/permuted.

We assume that an isomorphism

⌧V,W : V ⌦W
⇠=�! W ⌦ V (5.35)
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called the braid, exists for every pair V, W of symmetry spaces, such that the tensor
product is indeed commutative up to isomorphism. While that isomorphism is
straightforward in the case of group symmetries, it needs to be carefully kept track of
in the case of fermionic or anyonic grading, where it captures the exchange statistics.
Graphically, we draw the standard over-braid as the following crossing

⌧V,W =:

V W

W V

(5.36)

of wires. Viewed from a point of view from the bottom of the diagram, looking
upward, it is a clockwise rotation of the wires. The inverse braid, or “under-braid”,
has opposite chirality and is drawn as such.

(⌧V,W )�1 =:

W V

V W

(5.37)

As the graphical notation suggests, the braid is unitary and (⌧V,W )�1 = (⌧V,W )†. It
is visually intuitive that an under-braid undoes an over-braid.

V W

W V

V W

=

V W

V W

(5.38)

Note that the two ways of braiding V ⌦W ! W ⌦ V are ⌧V,W and (⌧W,V )†, with
opposite subscripts. They are di↵erent in general, but if they are equal, we call the
braid symmetric.
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The braid fulfills the following sliding property.

V1 V2

f g

W1 W2

W2 W1

=

V1 V2

V2

g

V1

f

W2 W1

(5.39)

Concrete case: Group Representation

For group symmetries, the braid ⌧V,W is
the linear extension of

|vi ⌦ |wi 7! |wi ⌦ |vi .

It is, in particular, always symmetric. The
properties stated above are straight-forward
to verify.

General case: Tensor Category

For a category C with tensor product ⌦,
a braiding structure is given by a unitary
natural isomorphism ⌧A,B : A⌦B ! B⌦A,
the braid, which fulfills the hexagon equa-
tions (5.40) and (5.41). It is a natural
isomorphism between the tensor product
functor ⌦ and a “reverse tensor product”
C⇥C! C that assigns to (A, B) the ob-
ject B⌦A and to (f, g) the morphism g⌦f .
Thus, naturality is equivalent to the sliding
property (5.39).

The braid fulfills the following consistency conditions, namely that the so called hexagon
equations commute;

A⌦ (B ⌦ C) (B ⌦ C)⌦A

(A⌦B)⌦ C B ⌦ (C ⌦A)

(B ⌦A)⌦ C B ⌦ (A⌦ C)

⌧A,B⌦C

↵�1
A,B,C

⌧A,B⌦idC

↵�1
B,C,A

↵B,A,C

idB⌦⌧A,C

(5.40)

(A⌦B)⌦ C C ⌦ (A⌦B)

A⌦ (B ⌦ C) (C ⌦A)⌦B

A⌦ (B ⌦ C) (A⌦ C)⌦B

⌧A⌦B,C

↵A,B,C

idA⌦⌧B,C

↵C,A,B

↵�1
A,C,B

⌧A,C⌦idB

(5.41)
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The braids introduce a third dimension to the graphical notation. With braids,
the coherence theorem is that two symmetric maps are equal if and only if their
diagrams are equivalent up to the spatial isotopy of ribbons. That means diagrams
may be deformed in a three-dimensional ambient space as long as the order of the
endpoints of the open wires remains fixed and wires and morphisms do not touch
each other. Additionally, we need to think of the wires as having some finite width,
i.e., as ribbons, where the endpoints are not only fixed in space but also need to
have fixed rotation around the wire axis, such that a twist in the ribbon can not be
resolved as a part of the isotopy.

Such a twist is captured by a map that is defined as the following composite

V

V

:=

V

✓V

V

:=

V

V

visualize as�! , (5.42)

where we can understand its graphical representation as a miniature of the definition.

It fulfills the following defining property

✓V⌦W = (✓V ⌦ ✓W ) � ⌧W,V � ⌧V,W . (5.43)

In the three-dimensional isotopy, we may think of the twist as literally a twist in a
ribbon, as depicted on the very right of equation (5.42). We found it instructive to
confirm this relation with a physical ribbon, e.g. a thin stripe of paper, by forming
the configuration on the LHS, then pulling the ends tight.

We can get three more twist-like maps V ! V by either taking the dagger or
by taking the transpose and substituting V ? for V , or both. They all appear in
equation (5.45). We assume

(✓A)T = ✓A? , (5.44)

which implies that they are related as follows

✓V =

V

V

=

V

V

= (✓V ?)T, (5.45)
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which we can visualize as a 3D rotation around a vertical axis or as “folding over”.

The twist is unitary, meaning it is undone by its dagger, which gives the following
relations

V

V

=

V

V

=

V

V

=

V

V

=

V

V

. (5.46)

Again, we find it instructive to confirm these relations, as well as (5.45) with physical
ribbons.

5.1.6 Linear structure

The symmetric maps have a linear structure, meaning the space Hom (V, W ) of
symmetric maps between symmetry spaces V, W is a complex vector space, such
that we can form linear combinations of symmetric maps. The following conditions
on the linear structure are natural if we think of linear maps between vector spaces
as the prototype for symmetric maps. The linear structure cooperates with map
composition, such that (f, g) 7! f � g is bilinear, meaning

f � (ag + bg0) = a(f � g) + b(f � g0)

(af + bf 0) � g = a(f � g) + b(f 0 � g)
(5.47)

for maps f, f 0 : V 0 ! W , g, g0 : V ! V 0 and scalars a, b 2 C.

The linear structure similarly cooperates with the tensor product, such that (f, g) 7!
f ⌦ g is bilinear,

f ⌦ (ag + bg0) = a(f ⌦ g) + b(f ⌦ g0)

(af + bf 0)⌦ g = a(f ⌦ g) + b(f 0 ⌦ g)
. (5.48)

The linear structure cooperates with the dagger if the dagger is antilinear

(af + bf 0)† = af † + b(f 0)†, (5.49)

where a denotes the complex conjugate of a.

Concrete case: Group Representation

For linear maps, the vector space structure
is straight-forward, where linear combina-

General case: Tensor Category

In category theory, the most straightfor-
ward way to define a linear structure is via
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tions of maps f, g : V ! W with coe�-
cients a, b 2 C are given by

(af + bg) : V !W, x 7! af(x) + bg(x).

It remains to check that the linear com-
bination is a symmetric map, which fol-
lows directly, as the group representation
is also linear. As a conclusion, the set
Hom (V, W ) of symmetric maps between
symmetry spaces V, W is indeed a complex
vector space.

the notion of a linear category. In partic-
ular, a C-linear category is a category C
where all collections of morphisms C(A, B)
are vector spaces over C, such that map
composition is bilinear (5.47). In particu-
lar, this means that there is a zero mor-
phism 0A,B : A ! B for every pair A, B
of objects, the zero vector of the vector
space. Since composition is bilinear, we
have 0B,C � f = 0A,C = g � 0A,B for all
f : A ! B and g : B ! C. The linear
structure cooperates with the monoidal or
dagger structures, respectively, if the com-
patibility axioms (5.48) or (5.49) are ful-
filled.

5.1.7 Direct sums

The next structure we want to introduce formalizes the idea that a symmetry parti-
tions Hilbert spaces into sectors according to quantum numbers. In this section, we
define the direct sum, which allows us to understand how to build up larger spaces
from smaller building blocks. We go in the opposite direction and ask if a given
space can be deconstructed and what the elementary building blocks are in the next
section.

We define the direct sum V = W1 � W2 � · · · � WN =
LN

n=1
Wn of symmetry

spaces W1, W2, . . . , WN in the columns below. If we think of elements of the spaces
as column vectors, the elements of the direct sum are vertically stacked column
vectors. It is characterized by symmetric projection maps pn : V ! Wn that tell us
how to pick the components that belong to Wn from the vertical stack. The related
symmetric injection maps in : Wn ! V tell us how to embed components from a
vector in Wn into the larger space and are related to the projections via the dagger
in = p†n. They are orthonormal pn � im = �m,nidWn and complete

P
n in � pn = idV .

Here, we employ a slight abuse of notation regarding the Kronecker delta since for
m 6= n, the orthonormality equation is (in general) ill-typed and has type Wm ! Wn

on the LHS but Wn ! Wn on the RHS. We understand the Kronecker delta to fulfill
laxly the following role for any map f

�m,nf :=

(
f m = n

0 (zero map of correct type in the given context) m 6= n
, (5.50)

where the “correct type in the given context” may not be the type of f . Note that
we even use this notation if the expression for f is ill-defined in the m 6= n case.
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We denote the injection and projection maps in the graphical calculus as kites

V

n

Wn

:=

V

pn

Wn

;

Wn

n

V

=

2

666666666664
V

n

Wn

3

777777777775

†

=

Wn

in

V

, (5.51)

where the kite “points” from the larger space V to the smaller space Wn/m. Or-
thonormality and completeness take the following form.

Wn

n

V

m

Wm

= �m,n

Wn

Wn

;
X

n

V

n

Wn

n

V

=

V

V

(5.52)

If we find some other space Ṽ with projections p̃n and inclusions ĩn that also ful-
fill (5.52), we can conclude that Ṽ ⇠=

L
n Wn is isomorphic to the direct sum, by a

unitary isomorphism
P

n in � p̃n.

Note that the graphical notation for inclusions and projections is horizontally sym-
metric, such that we can not distinguish dagger and transpose graphically. We
resolve this by using the transposed projections pT

n : W ?
n ! V ? as the inclusions of

V ? ⇠=
L

n W ?
n and similarly the transposed inclusions as projections.

The tensor product distributes over direct sums, up to isomorphism, that is

V ⌦ (W �W 0) ⇠= (V ⌦W )� (V ⌦W 0) (5.53)

(V � V 0)⌦W ⇠= (V ⌦W )� (V 0 ⌦W ) . (5.54)

We can see this directly since idV ⌦ pn is a projection and idV ⌦ in an inclusion for
the first direct sum, if pn (in) is a projection (inclusion) for W�W 0, and analogously
for the second case.
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Concrete case: Group Representation

The direct sum V =
L

n Wn of symmetry
spaces is defined as follows. It is the direct
sum of vector spaces, which is the set

M

n

Wn = {(w1, . . . , wN )|wn 2Wn}

together with elementwise addition and el-
ementwise scalar multiplication. The scalar
product is also defined elementwise, that is

h(w1, . . . , wN )|(v1, . . . , vN )i =
Y

n

hwn|vni ,

as is the group representation

UV (g) =
M

n

UWn(g).

Here, the direct sum of maps denotes ele-
mentwise application, e.g.

f � g : (v, w) 7! (f(v), g(w))

for a binary direct sum with straight-for-
ward generalization to N -ary sums.

The injection maps are given by

in : Wn ! V, vn 7! (0, . . . , vn, . . . , 0),

where vn sits at the n-th position in the
tuple. The projection maps are

pn : V !Wn(v1, . . . , vn, . . . , vN ) 7! vn.

Orthonormality and completeness are easy
to check.

General case: Tensor Category

The direct sum2 of objects A1, . . . , AN is
an object B :=

L
n An equipped with the

inclusions in : An ! B and projection
pn : B ! An morphisms for n = 1, . . . , N ,
which are orthonormal and complete (5.52).

We assume that our category C has a di-
rect sum

LN
n=1

An 2 Ob(C) for any finite
set {A1, . . . , AN} of objects.

The duality structure guarantees that ⌦
distributes over �, in the sense of equa-
tion (5.53), see e.g. [166, Sec. 3.3] for a
derivation of the isomorphisms.

The direct sums are compatible with a dag-
ger structure if in = p†n.

2This is also known as a biproduct in the
literature.

5.1.8 Sectors

In this section, we introduce the elementary building blocks – the simple spaces. In
the following, we characterize them as building blocks in the sense that all symmetry
spaces can be written as direct sums of them, meaning any symmetry space is
equal or at least isomorphic to a direct sum of simple spaces. Additionally, we
characterize them as elementary in the sense that they themselves admit no further
decomposition into non-trivial direct sums.

The most direct handle on whether a space V can be decomposed into a direct sum
is the dimension of its endomorphism space End (V ). Consider the following linear
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map between vector spaces

� : End

 
M

n

Wn

!
!

M̂

n

End (Wn) , f 7!
M̂

n

pn � f � in, (5.55)

where in (pn) are the injections (projections) of the direct sum
L

n Wn. Note that
we write a little hat on top to distinguish the direct sum �̂ of vector spaces from
the direct sum � of symmetry spaces. We can conclude that � is surjective, sinceL̂

n fn 7!
P

n in � fn � pn is a right inverse. Therefore, we get dim End (
L

n Wn) �P
n dim End (Wn), i.e. on taking direct sums, the dimension of the endomorphism

space increases at least additively1.

We count symmetry spaces with zero-dimensional endomorphism spaces as trivial.
Thus, we can identify a class of elementary spaces; A simple symmetry space V
is a symmetry space with a one-dimensional endomorphism space Hom (V, V ). It
remains to argue that the simple spaces are the building blocks for symmetry spaces,
i.e. that any symmetry space is (equivalent to) a direct sum of simple spaces. For
a group symmetry, this can be guaranteed if the group representations are unitary,
which we assume. For a general category, we include it as a requirement for being
a tensor category.

Towards a classification of the simple spaces, note2 that two isomorphic spaces
W ⇠= W̃ are interchangeable in direct sums, that is, V �W ⇠= V � W̃ , and straight-
forward generalizations to direct sums of many spaces. Thus, one representative per
isomorphism class of simple spaces is enough to build any symmetry space via direct
sum. These representatives are the sectors, which fulfill the following properties.

• There is a set S of symmetry spaces, the sectors, that is either finite or count-
ably infinite.

• The monoidal unit I 2 S is a sector. We call it the trivial sector.

• The space End (a) of symmetric maps from a sector a 2 S to itself is one-
dimensional.

• The space Hom (a, b) of symmetric maps between distinct sectors a, b 2 S
with a 6= b is zero-dimensional.

• Every symmetry space V is isomorphic to a finite direct sum of sectors, mean-
ing there is an integer NV

a 2 0 for every sector a such that (5.57) holds, whileP
a2S NV

a <1 is finite.

1If we already use the properties of sectors derived/assumed in the following, we can conclude
that the dimension is additive if the Wn do not share any sectors, meaning there is no sector a for
which more than one NWn

a is non-zero. If they do share sectors, it is strictly larger than additive.
For example, for a sector a we have dim End (a� a) = 4 and dim End (a) = 1.

2Let us sketch a proof. If the assumed isomorphism is � : W
⇠=�! W̃ , we find an isomorphism

iV �W̃
V � pV �W

V + iV �W̃
W̃

� � � pV �W
W that establishes the claim. Its inverse is built analogously,

exchanging W $ W̃ and �$ ��1.
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The properties imply for any pair V, W of simple spaces

dim Hom (V, W ) =

(
1 V ⇠= W

0 else
. (5.56)

To see this, let �V : V
⇠=�! a and �W : W

⇠=�! b be the isomorphisms to sectors
a, b 2 S. Then, f 7! �W � f � ��1

V is a vector space isomorphism, which establishes
dim Hom (V, W ) = dim Hom (a, b) = �a, b.

Writing out the last property in the list above gives us the sector decomposition

V ⇠=
M

a2S

NV
aM

µ=1

a (5.57)

for any symmetry space V .

We can conclude from the axioms of the linear structure that the identity map is
not zero. Thus, the one-dimensional space End (a) for a sector a is spanned by the
identity, and any symmetric map f : a! a from a sector a 2 S to itself must be a
multiple f = �(f)ida of the identity. This establishes a one-to-one correspondence
between sector endomorphisms f and scalars �(f). In particular, this allows us
to understand objects such as the trace Tr (g) : I ! I as a scalar. We are not
careful about the distinction and write e.g. Tr (g) even if we mean its corresponding
scalar �(Tr (g)). In fact, taking the trace allows us to identify the prefactor since
Tr (f) = �(f)Tr (ida) = �(f)da, where we adopt the shorthand notation da = dim a
for the quantum dimension of a sector.

Further, since Hom (a, b) is zero-dimensional for sectors a 6= b, any map in it must
be zero. Therefore, any map f : a! b between sectors a, b fulfills

(f : a! b) = �a,b
Tr (f)

da
ida. (5.58)

where we employ the notation abuse (5.50) for the Kronecker delta. We can under-
stand this as a generalization of Schur’s lemma. This relation is what eventually
allows us to store symmetric tensors using fewer free parameters than non-symmetric
tensors. The roadmap we follow in section 5.3 is to decompose a general symmetric
tensor into components c ! d that map between sectors. Then, because of (5.58),
we only need to store those components c ! c between matching sectors, and we
only need to store one scalar prefactor per component.
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Concrete case: Group Representation

In the group case, we note that irreducible
representations (irreps) are simple because
of Schur’s Lemma; see section A.1. If a
representation is reducible, it is equivalent
to a direct sum of multiple irreps.

General case: Tensor Category

For a category, we simply take the listed
properties as axioms; we assume there is a
countable set S ⇢ Ob(C) of objects, the
sectors that fulfill the properties enumer-
ated above.

Thus, the corresponding symmetry space is a direct sum of multiple simple symmetry
spaces, and in particular, not itself simple. As a result, the simple objects in the group
case correspond exactly to irreps.

Further, because of (5.5), an isomorphism of symmetry spaces implies an equivalence of
the respective group representations, such that the sectors are equivalence classes of group
irreps. For finite groups and compact Lie groups, the number of equivalence classes, and
thus the number of sectors, is indeed countable.

The monoidal unit is the one-dimensional space I = C with the trivial representation
UI(g) = 1, which is clearly irreducible. Choosing it as the representative of its equivalence
class makes it a sector.

By Schur’s lemma part 2, any equivariant linear map from an irrep to itself is a multiple
of the identity, such that the respective endomorphism space is indeed one-dimensional.

By Schur’s lemma part 1, any equivariant linear map between inequivalent irreps is zero,
such that the respective Homspace is indeed zero-dimensional. This result relies on the
underlying field, here C, being algebraically closed.

The decomposition (5.57) is derived in section A.1.

Let us now pay particular attention to the sector decomposition

a⌦ b ⇠=
M

c2S

Nab
cM

µ=1

c (5.59)

of the product of two sectors a, b 2 S. Here, the N symbol Nab
c := Na⌦b

c , i.e. the
number of times a sector c appears in the decomposition of a ⌦ b, gets a special
name and notation because it is used a lot. Similarly, the injections Y ab

c,µ : c! a⌦ b
of the direct sum (5.59) play an important role and are called the splitting tensors.
Here, we call µ = 1, . . . , Nab

c the multiplicity label. The corresponding projections
Xab

c,µ = (Y ab
c,µ)

† : a ⌦ b ! c are called fusion tensors. In the graphical notation, we
introduce the following shorthand

a b

µ

c

:=

a b

Y ab
c,µ

c

;

a b

µ

c

:=

a b

Xab
c,µ

c

, (5.60)
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where the sectors a, b, c are implied by the wires and only the multiplicity index µ is
explicitly decorated. Note that the leg arrangement of the injections Y ab

c,µ are visually
intuitive, as they match the letter Y. Recall that as projections and inclusions, they
fulfill orthonormality and completeness relations (5.52). In this case, they take the
following explicit form.

µ

⌫

a b

d

c

= �c,d �µ,⌫

c

c

;
X

c,µ

a b

µ

a b

µ

c =

a b

a b

, (5.61)

where the sum goes over all compatible fusion tensors, that is over c 2 S and
µ = 1, . . . , Nab

c .

For fixed sectors a, b, c, we can view the Xab
c,µ as an orthonormal basis for the space

Hom (a⌦ b, c), indexed by µ. There is a gauge freedom in choosing this basis, and
any unitary transformation

Xab
c,µ 7!

X

⌫

Uµ,⌫X
ab
c,⌫ (5.62)

yields another set of valid fusion tensors. We propose to fix this gauge in section 5.2.2
to make the R symbol diagonal.

For fusion with the trivial sector, we have a ⌦ I ⇠= a ⇠= I ⌦ a for any sector a,
i.e. the sector decomposition only has one component a, and as a consequence we
have NaI

b = �a,b = N Ia
b . The only fusion tensor for the respective decompositions

are given by the unitor isomorphisms of the monoidal structure, that is XaI
a,1 = ⇢a

and XIa
a,1 = �a. Graphically, this reads

a I

1

a

=

a

a

=

I a

1

a

. (5.63)
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Note that we may restrict the first direct sum in (5.59) to the fusion outcomes of
a and b that is to the set Fa,b := {c 2 S|Na,b

c > 0} of unique sectors that actually
appear.

Note that with the orthonormality relation (5.61), we have made a normalization
choice. This normalization is natural in the case of a group symmetry since the
fusion tensors are then given by the Clebsch-Gordan coe�cients of the group repre-
sentations. Another common choice is the isotopic normalization

(Xiso)
ab
c,µ :=

✓
dadb

dc

◆1/4

Xab
c,µ (5.64)

such that the analog of the orthonormality equation reads

(Xiso)
ab
c,µ � (Yiso)

ab
c,µ =

r
dadb

dc
idc . (5.65)

This choice simplifies the prefactors in (5.84), such that fusion tensors may consis-
tently be drawn as vertices of wires, with no box.

5.1.9 Fusion Trees

We have seen the fusion and splitting tensors arise as projections and inclusions of
the decomposition of the product of two sectors a⌦ b. The product a1⌦ · · ·⌦ aN of
an arbitrary number N of sectors also decomposes as the direct sum of sectors. It
turns out that we can construct projections (inclusions) of that direct sum from the
fusion (splitting) tensors by arranging them in a tree structure, which we call a fusion
(splitting) tree. In particular, consider the fusion tree Xa1,...,aN

c,↵ : a1 ⌦ · · ·⌦ aN ! c

a1 a2 a3
. . . aN

Xa1,...,aN
c,↵

c

:=

a1 a2 a3
. . . aN

µ1

µ2

. . .

µN�1

e1

e2

eN�2

c

(5.66)

which is labeled by a multi-index ↵ = (e1, . . . , eN�1, µ1, . . . , µN�2). We call the
ei 2 S the inner sectors and the µi 2 the inner multiplicities of a tree. Taking
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the dagger gives us a splitting tree Y a1,...,aN
c,↵ = (Xa1,...,aN

c,↵ )† : c! a1⌦ · · ·⌦aN , which
graphically is just a mirrored fusion tree. Note that we have chosen a convention
regarding the order of pairwise fusion; we always fuse the left-most pair of sectors
first. We call the a1, . . . , aN the uncoupled sectors of the tree and c the coupled
sector.

A tree index ↵ is valid, for fixed uncoupled and coupled sectors, if all of its inner
multiplicities are within the correct ranges, meaning 1  µ1  Na1a2

e1 , as well as
1  µn  N en�1,an+1

en for all n = 2, . . . , N � 2, and 1  µN�1  N eN�2,aN
c . There

is one condition of consistent fusion per vertex of the tree. Note that this implies
conditions on the inner sectors, namely that e1 2 Fa1,a2 , and en 2 Fen�1,an+1 , as well
as c 2 FeN�2,aN , since otherwise the respective N symbol is zero, such that no valid
µn is possible.

The trees inherit orthonormality and completeness relations from the fusion and
splitting tensors;

Y a1,...,aN
c,↵ �Xa1,...,aN

d,� = �c,d�↵,�idc (5.67)
X

c,↵

Xa1,...,aN
c,↵ � Y a1,...,aN

c,↵ = ida1 ⌦ · · ·⌦ idaN , (5.68)

where the sum goes over all valid trees ↵. We again understand the Kronecker delta
in the sense of (5.50). This can easily be checked graphically by applying (5.61)
N � 1 times.

5.1.10 Terminology and Jargon

We assume a tensor category for our backend, which has all of the structures listed
in the previous sections and all of the compatibility conditions between them. In
the following, we list keywords for all of these structures as they may appear in the
broader literature. For brevity, we do not list the various optional compatibility
conditions between the separate structures.

balanced A braided monoidal category is balanced if it has a natural isomor-
phism ✓A : A ! A, the twist which fulfills (5.43). We made the
specific choice (5.42) for the balanced structure, which fulfills that
property by construction.

biproducts A category has biproducts if for any finite set of objects A1, . . . , AN ,
the direct sum

L
n An exists as defined in section 5.1.7.

braided A monoidal category is braided if it has a braiding structure as
described in section 5.1.5.

dagger A dagger category is a category equipped with a dagger functor as
described in section 5.1.3.

duals A category “has duals” if it is rigid.
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enriched See linear. A linear category is also called enriched or Vect-enriched
since its Homspaces can be understood as objects in the category
Vect of vector spaces.

linear A category is (C-)linear, if its homsets Hom (A, B) form (C) vector
spaces, with compatibility constraints, see section 5.1.6. Weaker
assumptions exist, such as defining scalars to be morphisms I ! I,
which form only a commutative semiring, not a field, and only
requiring an addition rule, as e.g. done in reference [166, chpt. 2].

monoidal A category is monoidal if it has a tensor product as described in
section 5.1.2.

pivotal A monoidal category with (right) duals is pivotal, if it has a monoi-
dal natural transformation ⇡A : A ! A??, which can be shown to
be an isomorphism. We made the specific choice (5.28) for a pivotal
structure. Pivotality also guarantees the existence of left duals.

pre-fusion A pre-fusion category is a semisimple linear monoidal category.

ribbon (tortile) A ribbon category, a.k.a. a tortile category, is a balanced monoi-
dal category with duals for which either of the following equiva-
lent conditions hold; either the twist fulfills (✓A)T = ✓A? or equa-
tion (5.45) holds.

rigid A monoidal category is rigid if it has a (right) dual object A? for
every object A, with cup and cap maps ⌘A and "A, which fulfill
the snake equation (5.21). This is a special case of the stronger
structure we define in section 5.1.4, where we have directly used
the dagger and defined a suitable pivotal structure in such a way
that the chosen duals are both-sided dagger duals.

semisimple This notion is not as well established in the literature as the oth-
ers. In a linear category with direct sums (a.k.a. biproducts), an
object is simple if its endomorphism space is one-dimensional. It
is semisimple if it is isomorphic to a finite direct sum of simple ob-
jects. The category is semisimple if all of its objects are semisimple.
See section 5.1.8.

spherical A pivotal category is spherical if the left and right trace coincide,
that is if the last equality in (5.32) holds.

tensor A tensor category, as we define it here, is a category that has all
of the structures listed above, meaning it is a pivotal spherical pre-
fusion ribbon dagger category, such that all the compatibility con-
ditions hold. Note that slightly di↵erent – commonly weaker –
definitions for the same term exist in the literature.

The following properties are not necessarily fulfilled by a tensor category but are,
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in principle, compatible, and there are relevant examples of tensor categories with
these properties/structures.

symmetric A symmetric category is a braided category where the braid is sym-
metric in the sense that (⌧V,W )�1 = ⌧W,V . This holds, e.g. for, group
symmetries represented by the category FdRepG or fermionic grad-
ing, represented by the category Ferm.

fusion category A fusion category is a pre-fusion category that is rigid and has a
finite number of sectors. Thus, tensor categories are almost fusion
categories, except that we allow a countably infinite number of
sectors for tensor categories. As a non-example (a tensor category,
which is not a fusion category), consider the category FdRep

SU(2)

of representations of SU(2), which has an infinite number of sectors,
see section A.4.

modular A modular fusion category is a fusion category for which the mod-
ular S matrix (5.99) is invertible. They provide the mathematical
framework for the theory of anyons and topological excitations.
Note that for symmetric braiding, a fusion category can only be
modular if there is only a single sector, which makes it trivial. In
particular, this means that neither fermions nor the representa-
tions of a non-trivial group give rise to a modular fusion category.
However, some examples, such as Fib described in section A.6, are
modular and describe anyonic excitations.

5.1.11 Relation to graphical language of tensor networks

The graphical language for morphisms in a tensor category is closely related to, but
slightly at odds with, the usual graphical notation for tensor networks, as employed,
e.g., in chapter 2. Both approaches feature tensors as shapes in the plane and their
legs/spaces as lines or wires. The largest di↵erence is the additional meaning as-
signed to the positions of the endpoints of wires on a tensor at its bottom (top) for
legs in the domain (codomain). We can easily reconcile this by assigning the legs
of a tensor to either the domain or codomain and understand the tensor network
notation as a lax version of the categorical notation, that allows moving the end-
points around if convenient. As an example, consider the following (part of a larger)
MPO, expressed in the tensor network notation on the LHS and in the categorical
language on the right.

W [1] W [2] W [3] = W [1] W [2] W [3] (5.69)

In this fashion, the two pictures can seamlessly be identified for planar tensor net-
works. For non-planar diagrams, arising e.g. in the context of PEPS, see (2.59),



5.2. TOPOLOGICAL DATA OF A SYMMETRY 113

the chirality of the braid induced by wire crossings needs to be specified explicitly,
unless the symmetry has symmetric braiding. Note that arrows on the wires have
a meaning in the categorical language and should not be used for other purposes,
such that e.g. the arrow notation in [71], which describes isometric properties, is
incompatible.

5.2 Topological data of a symmetry

In this section, we introduce and define several pieces of data – commonly referred
to as the topological data of the symmetry – that are needed to do computations
in practice. Note that we use “symmetry” as a broad term here, not limited to
group symmetries, but referring to any tensor category, such as e.g. modular fusion
categories describing anyons. We give concrete values (or explicit formulae) for
some common symmetries in appendix A. We give a summary of the topological
data, which can be used as an implementation guide in subsection 5.2.6.

A recurring pattern in the following subsections is that we define a unitary symbol
implicitly. We are able to do this because the symbol relates two di↵erent ONBs
for a Homspace. For example, the F symbol is implicitly defined in equation (5.70).
The diagrams on both sides form orthonormal bases of Hom (a⌦ b⌦ c, d), indexed
by the respective indices e, µ, ⌫ (f,,�). Thus, they are related by a unitary basis
transformation3. This defines the F symbol as the matrix elements of that basis
transformation. For the F symbol only, we also give an explicit definition of these
matrix elements in equation (5.74). Similar explicit definitions can be written down
for all other symbols as well but are omitted as they are not particularly insightful,
and the form of a basis transformation is more useful.

5.2.1 Recoupling and F symbol

The F symbol is related to recoupling of fusion trees. We could have also chosen
a di↵erent order of pairwise fusion to build the fusion trees. Such non-standard or
non-canonical trees can always be written as linear combinations of standard trees
since those are complete. The coe�cients of these linear combinations give rise to

3Alternatively, unitarity can be proven explicitly. As a sketch: start from the orthonormality of
one of the ONBs. Apply the symbol in both halves, where it is conjugated in the daggered half.
Use the orthonormality of the other ONB to get back to an identity on the coupled sector. This
equates the symbol, contracted with its matrix dagger, to a Kronecker delta, establishing unitarity.
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the F symbol.

a b c

µ

⌫

e

d

| {z }
=: X̃abc

d,(eµ⌫)

=
X

f�

[F abc
d ]eµ⌫f�

a b c



�
f

d

| {z }
=: Xabc

d,(f�)

(5.70)

For fixed sectors a, b, c, d, the F symbol is unitary as a matrix of the outer indices,
that is

X

eµ⌫

[F abc
d ]eµ⌫f�[F

abc
d ]eµ⌫f 00�0 = �f,f 0�,0��,�0

X

f�

[F abc
d ]eµ⌫f�[F

abc
d ]e

0µ0⌫0

f� = �e,e0�µ,µ0�⌫,⌫0 .
(5.71)

Since F is unitary, the reverse transformation reads

Xabc
d,(f�)

=
X

eµ⌫

[F
abc
d ]eµ⌫f�X̃

abc
d,(eµ⌫), (5.72)

which would admit a nice graphical representation similar to (5.70), but is omitted
here for brevity. Taking the dagger gives us two more relations, describing the
recoupling of non-canonical splitting trees Ỹ := X̃† to canonical splitting trees
Y = X†.

Ỹ abc
d,(eµ⌫) =

X

f�

[F
abc
d ]eµ⌫f�Y

abc
d,(f�)

; Y abc
d,(f�)

=
X

eµ⌫

[F abc
d ]eµ⌫f�Ỹ

abc
d,(eµ⌫) (5.73)

In addition to the implicit definition above, let us include an explicit form of the F
symbol. To obtain it from equation (5.70), we right-compose with (Xabc

d,(f 00�0))
† and

use orthonormality (5.67) to collapse the sum and find
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[F abc
d ]eµ⌫f�

d

d

=

µ

⌫

e



�

f

a b c

d

d

. (5.74)

To get back to the implicit definition (5.70), use completeness (5.68) of the canonical
(red) trees. Alternatively, use analogous completeness relations of the non-canonical
(blue) trees, to obtain equation (5.72).

The F symbol fulfills its own pentagon consistency equation

X

h��✏

[F abc
i ]h�✏j�⇢[F

ahd
e ]g�i✏! [F bcd

g ]fµ⌫h�� =
X

�

[F jcd
e ]g⌫j��[F

jcd
e ]fµ�i⇢! , (5.75)

which we can view either as inherited from the pentagon equation (5.17) of the
associator4. Alternatively, we can equate the coe�cients that arise in the two in-
equivalent ways of recoupling a 4-to-1 fusion tree a⌦ (b⌦ (c⌦d))! e to a canonical
tree ((a⌦ b)⌦ c)⌦ d! e.

5.2.2 Braiding and R symbol

Next up, we introduce the topological data related to braids: the R symbol. We
can think of the R symbol as the matrix elements of the braid ⌧a,b in the basis given
by fusion / splitting tensors. Alternatively, think about braiding the legs below
a fusion tensor a ⌦ b ! c. Since the braid is unitary, this composite object still
gives an orthonormal and complete set, parametrized by the multiplicity index of
the fusion tensor above the braid. The R symbol is the unitary basis transformation

4We can view the F symbol as matrix elements of the associator ↵ in a basis given by the fusion
(splitting) tensors. The graphical notation in equation (5.74) implies an associator ↵a,b,c in the
middle of the diagram, to compose ida ⌦Xbc

e,µ with Y ab
f, ⌦ idc.
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that relates it to the standard fusion tensors b ⌦ a ! c. It is implicitly defined as
the following coe�cients.

b a

µ

a b

c

| {z }
= Xab

c,µ � ⌧b,a

=
X

⌫

[Rab
c ]µ⌫

b a

⌫

c

| {z }
= Xba

c,⌫

(5.76)

Note the convention for the order of upper indices. We find this order practical since
we use the R symbol when we have a fusion tensor with uncoupled sectors a, b and
apply a braid to it. We can use the gauge freedom (5.62) of the fusion tensors such
that the R symbol is diagonal [Rab

c ]µ⌫ / �µ,⌫ .

We obtain a relation for applying an under-braid below a fusion tensor from unitarity
of the R symbol

Xab
c,⌫ � ⌧

†

a,b =
X

µ

[R
ba
c ]µ⌫X

ba
c,µ . (5.77)

Taking the dagger gives us relations for braiding above splitting tensors

⌧ †b,a � Y ab
c,µ =

X

⌫

[R
ab
c ]µ⌫Y

ba
c,⌫ ; ⌧a,b � Y ab

c,⌫ =
X

µ

[Rba
c ]µ⌫Y

ba
c,µ . (5.78)

Note that we get a permutation a$ b on the upper indices for an underbraid on a
fusion tensor X and for an overbraid on a splitting tensor Y .

The twist (5.42) is directly related to braiding. By (5.58), the twist ✓a 2 End (a) of
a sector a must be a multiple of the identity, which implicitly defines the prefactor
⇥a 2 C such that

✓a = ⇥aida . (5.79)

Since the literature is inconsistent on whether ✓a or ⇥a is “the twist”, we will not
carefully distinguish them either. Since the twist is unitary, we have ⇥a⇥a = 1,
meaning ⇥a is a complex phase. The twist is contained5 in the R symbol as

⇥a =
X

b2S

Naa
bX

µ=1

db

da
[Raa

b ]µµ. (5.80)

5A sketch of the derivation; Insert a resolution (5.61) of identity above the braid in the defini-
tion (5.42). Then, use (5.58) and (5.33).
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5.2.3 Dual sectors and Z isomorphism

Let us now consider the dual space a? of a sector a. We know it is a simple space
since f 7! fT is a vector space isomorphism, establishing End (a) ⇠= End (a?) and
thus that End (a?) is one-dimensional. The dual space a? is, however (in general)
not a sector since it may not be the representative of its isomorphism class6. We
write a 2 S for the sector that is isomorphic to a? ⇠= a and call it the dual sector
(of a). Since a? ⇠= a?? ⇠= a, we have a = a, i.e. a is the dual sector of a.

We write Za : a?
⇠=�! a for the isomorphism. We may choose it to be unitary by

rescaling. Graphically, we represent it by an unlabelled smaller box with a rounded
(instead of chamfered) corner. The sector a is clear from the wire below.

a

a

:= Za

a

a

(5.81)

Let us state the graphical notation for the dagger and for the transpose at this point,
as they might not be entirely intuitive.

2

6666666664

a

a

3

7777777775

†

=

a

a

;

2

6666666664

a

a

3

7777777775

T

=

a

a

(5.82)

Recall that the dagger of a diagram is given by a mirror plus flipping arrow di-
rections back. We also observe that both (Za)T and Za are non-zero elements of
Hom (a?, a). Since that Homspace between simple objects is one-dimensional, they
must be proportional. This defines the Frobenius Schur indicator �a as the prefactor

6In some cases, but not in general, this can be gauged away by redefining the representatives.
Assume for every sector a we have either a? = a or a? � a. Then, we can redefine the sectors, that
is, redefine which simple object represents each isomorphism class. In the first case, a? already is a
sector, and in the second case, we may define a? as the representative for its class, i.e. as a sector.
However, if there is a sector a such that a ⇠= a? 6= a, i.e. such that a and a? are in the same sector
but not equal, the representative is already fixed to a and we can not have a? as a representative
at the same time.
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ZT

a = �aZa. Graphically, this reads

a

a

= �a

a

a

. (5.83)

The Frobenius Schur indicator is constrained7 by �a = �a = ±1.

Further, we can choose8 the phase of the Z isomorphism such that the splitting
tensor Y aa

I,1 is related to the cups by

a a

:=

a a

1

I

=
1p
da

a a

=
�ap
da

a a

. (5.84)

Taking the dagger relates the fusion tensor Xaa
I,1 to the caps.

We can plug these relations into the definition (5.74) of the F symbol to find that

[F aaa
a ]I11

I11
=
�a

da
. (5.85)

Since da > 0 and �a = ±1 we obtain the following relations

�a = sgn[F aaa
a ]I11

I11
(5.86)

da =
1

|[F aaa
a ]I11

I11
| (5.87)

which tells us that (and how) both the Frobenius Schur indicator and quantum
dimension are contained in the F symbol and are not independent data.

7Unitarity of Za implies |�a|2 = 1, i.e. �a is a complex phase. Taking the transpose of (5.83),
and then applying it again we find 1 = �a�a and therefore �a = �a. Now, if a 6= a, we can redefine
the representative for the sector a such that �a = 1. For a = a, we have 1 = �a�a = �2

a, that is
�a = ±1. In either case �a = �a = �a.

8Let us sketch the derivation: Consider applying first (Za)† and then a cap to the right wire
in (5.84). Both operations are reversible such that the resulting equation is equivalent. Note the
LHS is a map a! a and thus a multiple of the identity. To derive/confirm the magnitude of the
prefactor, compose (5.84) with its dagger. The phase of the prefactor can be chosen by redefining
Za 7! ei�Za, fixing the phase of the Z isomorphism relative to the phase of the fusion tensors.



5.2. TOPOLOGICAL DATA OF A SYMMETRY 119

5.2.4 Braiding fusion trees and C symbol

While the R symbol defined in section 5.2.2 contains all relevant data for braiding,
the following composite symbol is also useful in practice. It relates a (part of a
larger) fusion tree with a braid to canonical fusion trees. The C symbol is defined
as the coe�cients in the following equation.

a c b

µ

⌫

a b c

e

d

| {z }
Xabc

d,(eµ⌫) � (ida ⌦ ⌧c,b)

=
X

f�

[Cabc
d ]eµ⌫f�

a c b



�
f

d

| {z }
Xacb

d,(f�)

(5.88)

As for the R symbol, we choose the order of upper indices abc to match the fusion
tree Xabc

d,(eµ⌫) on the LHS before it is braided.

The analogous relation for an underbraid follows from unitarity

Xabc
d,(f�)

� (ida ⌦ ⌧ †b,c) =
X

eµ⌫

[C
acb
d ]eµ⌫f�X

acb
d,(eµ⌫). (5.89)

Taking the dagger gives us relations for braiding above splitting trees, namely

(ida ⌦ ⌧b,c) � Y abc
d,(f�)

=
X

eµ⌫

[Cacb
d ]eµ⌫f�Y

acb
d,(eµ⌫) (5.90)

(ida ⌦ ⌧ †c,b) � Y abc
d,(eµ⌫) =

X

f�

[C
abc
d ]eµ⌫f�Y

acb
d,(f�)

. (5.91)

Similar to the R move relations, we see a permutation b $ c in the upper indices
of the C symbol for the relations with an underbraid ⌧ † on a fusion tree X or an
overbraid ⌧ on a splitting tree Y .

We can naively derive an expression for the C symbol by acting on the LHS as
follows; First, we do an inverse F move to get a fusion tensor above the braid,
resolve the braid with an R move, and then get back to the canonical structure with
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a forward F move. As a result we find

[Cabc
d ]eµ⌫f� =

X

g↵��

[F
abc
d ]g↵�eµ⌫ [Rbc

g ]↵� [F
abc
d ]g��f�. (ine�cient, use (5.93) in practice!)

(5.92)
We can, however, obtain a more practical expression by using coherence to “lift”
the c wire over the bottom fusion tensor, resolving the resulting underbraid of a, c
with an inverse R move, recoupling to the canonical tree structure with a single F
move, and finally resolving the braid of e, c with another R move. We obtain

[Cabc
d ]eµ⌫f� =

X

↵�

[Rec
d ]⌫↵[F

cab
d ]eµ↵f��[R

ac
f ]� (5.93)

which is cheaper to use in practice since there is only one expensive F symbol and
there is no sum over sectors.

5.2.5 Bending lines and B symbol

Another operation that we need to do to fusion tensors in practice is “bending lines”,
that is e.g. applying a cup below a fusion tensor. It turns out that due to our choice
of fusion trees, we only ever need to bend the right leg of a fusion tensor.

We implicitly define the B symbol as the coe�cients in the following linear combi-
nation.

a

µ

b

c b

=
X

⌫

⇥
Bab

c

⇤µ
⌫

c b

⌫

b

a

(5.94)

Note that we need to include a Z isomorphism to get the correct arrow directions.
Note that while both sides are orthogonal complete sets, only the composites on
the RHS are normalized. Therefore, the B symbol is not unitary. It is instead
normalized9 such that

X

⌫

[Bab
c ]µ⌫ [B

ab
c ]µ

0

⌫ =
dc

da
�µ,µ0 ;

X

µ

[Bab
c ]µ⌫ [B

ab
c ]µ⌫0 =

dc

da
�⌫,⌫0 . (5.95)

9To derive the normalization, compose (5.94) with its dagger, use (5.58), cyclic property of the
trace and orthonormality of fusion tensors.
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If there was already a Z isomorphism present before bending the line, we can first
slide it over using (5.31), then after the regular B move use (5.83) to flip either one
of the Z isomorphisms, such that it cancels the other.

a

µ

b

c b

=
X

⌫

�b

⇥
Bab

c

⇤µ
⌫

c b

⌫

a

(5.96)

Again, relations for bending lines on a splitting tensor can be obtained by taking
the dagger.

The B symbol can be obtained from the F symbol as follows. Start with the LHS
of (5.94), use (5.84) on the cup, insert (⇢a)† = Y aI

a,1 below and recouple the splitting
tree with an F move to find

[Bab
c ]µ⌫ =

p
db[F

abb
a ]I11

cµ⌫ . (5.97)

5.2.6 Summary of topological data

In an implementation of a tensor backend, the following data/functions of a sym-
metry are strictly needed.

(i) A data format for sector labels. Preferably, this should be a simple and hash-
able data structure, such that fusion tree indices are hashable. We propose
(arrays of) integers, e.g. by storing 2S 2 , twice the half-integer quantum
numbers of SU(2) irreps.

(ii) The N symbol (5.59) and F symbols (5.70), which encode the fusion of sectors.

(iii) The R symbol (5.76), which encodes braiding.

(iv) If the number of sectors is infinite, a function to enumerate the possible fusion
outcomes Fa,b := {c 2 S|Na,b

c > 0} is required, to obtain finite loops. It is
convenient even if the number of sectors is finite.

The following data can be obtained from the data above. These relations can be
used as fallback (default) implementations. For a concrete symmetry, however, it is
often possible to simplify the expressions, allowing more e�cient implementations.
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(v) The C symbol, see (5.88) with fallback implementation (5.93).

(vi) The B symbol, see (5.94) with fallback implementation (5.97).

(vii) The quantum dimension da, see (5.34), with fallback implementation (5.87).

(viii) The Frobenius Schur indicator �a, see (5.83), with fallback (5.86).

(ix) The twist ⇥a, see (5.79), with fallback implementation (5.80).

For a group symmetry (but not in general!), symmetric maps are linear maps be-
tween vector spaces. We can thus convert symmetric tensors to (or from) their
explicit matrix elements, that is, to (from) a representation that does not enforce
the symmetry. In order to do this, explicit matrix representations of the following
maps are required

(x) The fusion and splitting tensors (5.60). They are given by the Clebsch-Gordan
coe�cients.

(xi) The Z isomorphism (5.81). They may be a bit tricky to work out in practice
and are rarely tabulated. Note that the prefactor is determined by unitarity
and by demanding that equation (5.84) holds. For one-dimensional sectors,
this fully determines Z isomorphism. This is enough for abelian groups, where
all sectors are one-dimensional. For Lie groups, the concrete derivation that
we give for SU(2) in section A.4.1 should readily generalize.

This concludes the necessary and optional data associated with a symmetry.

5.2.7 Anyon data

Now let us assume that the tensor category is a modular fusion category, meaning in
addition to the properties we require of a tensor category, it additionally has a finite
set of sectors, making it a fusion category and has an invertible S matrix (5.99),
making it modular. These modular fusion categories describe quantum states of
anyonic excitations, and in that context, the following quantities are common and
may serve as a sanity check to make sure that the category does indeed describe the
anyon theory it is supposed to describe.

The modular T matrix is the following composite

Ta,b := �a,b

a

= �a,bTr (✓a) = �a,b⇥ada. (5.98)
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The modular S matrix is the following composite

Sa,b :=
1

D b a =
1

D
X

c2S

Nab
cX

µ,⌫=1

dc

⇥
Rba

c

⇤µ
⌫

⇥
Rab

c

⇤µ
⌫
, (5.99)

where D :=
pP

a d2
a is the total quantum dimension of the theory. The expression

in terms of R symbols can be derived by inserting a resolution of identity (5.61) in
terms of fusion tensors above the braids and using two R moves (5.76), then using
that the trace is cyclic and finally orthonormality of fusion tensors.

5.3 Symmetric tensors

In this section, we establish the free parameters of symmetric tensors, as well as how
to do common operations, such as leg rearrangement, contraction, or decomposition
on them.

Let us first introduce some terminology. A symmetric tensor is a symmetric map

T : W1 ⌦ · · ·⌦WK ! V1 ⌦ · · ·⌦ VJ (5.100)

from the domain W := W1 ⌦ · · · ⌦ WK to the codomain V := V1 ⌦ · · · ⌦ VJ . If
there are no spaces in the (co-)domain, that is, if K = 0 (J = 0), we understand
the empty tensor product to mean the monoidal unit W = I (V = I). By bending
a bunch of lines, i.e. applying cups below, the tensor T is equivalent to a map

T̃ : I ! V1 ⌦ · · ·⌦ VJ ⌦ (WK)? ⌦ · · ·⌦ (W1)
?. (5.101)

Thus we define the legs of a tensor T to be V1, . . . , VJ , (WK)?, . . . , (W1)?, i.e. is the
spaces in the codomain, followed by the duals of the spaces in the domain in reverse
order, see figure 5.1. As a result, the legs do not change if we bend lines, which
allows a tensor backend to hide the bipartition of legs into codomain and domain
from high-level functionality as an implementation detail.

It is convenient in practice to keep track of duality explicitly, that is, to allow any
number of legs on the tensor to have an explicit duality star and to understand a
general tensor as, e.g. a map

T : W1 ⌦ (W2)
? ⌦ · · ·⌦WK ! (V1)

? ⌦ · · ·⌦ VJ , (5.102)

where we picked some example positions for the explicit duality stars, but any of
the spaces may or may not be explicitly dual.

The strategy is to identify components of a tensor that are maps between sectors,
such that (5.58) applies. That is, we want to systematically build the sector decom-
position of the entire domain (codomain). We want to do this in such a way that
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T

W1 W2
. . . WK

o
domain

V1
. . . VJ

o
codomain

leg order

Figure 5.1: We choose a canonical order of legs as the legs of the codomain,
followed by the duals of the legs in the domain in reverse order.

each leg of the tensor is treated on an equal footing so that we can readily permute
(braid) the legs or move them between codomain and domain. Therefore, we start
from the sector decomposition (5.57), of each individual leg, e.g.

Vk
⇠=
M

a

N
Vk
aM

n=1

a, (5.103)

with projections pVk
a,n and inclusions iVk

a,n = (pVk
a,n)

†. If we had an explicitly dual space
instead, we find

(Vk)
? ⇠=

M

a

N
Vk
aM

n=1

a? (5.104)

since we can construct projections p(Vk)
?

a?,n := (iVk
a,n)

T and inclusions as their daggers.
This allows us to extract components a1 ⌦ (a2)? ⌦ · · ·⌦ aK ! (b1)? ⌦ · · ·⌦ bJ that
map between tensor products of (duals of) sectors. Unlike the abelian case discussed
in section 2.5, we can not formulate a charge rule at this level. Instead, we need to
extract components that map from a single sector to another single sector.
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5.3.1 Generalized Fusion Trees

This basis change can be provided by the fusion trees (5.66), if we allow the following
modification. The fusion trees only allow sectors as inputs, not their duals. To also
capture duals, we can include Z isomorphisms where appropriate and define the
following composite as a (generalized) fusion tree.

a1 a2
a3 a4

a5

Xa1,a2,a3,a4,a5
c,↵

c

:=

a1 a2
a3 a4

aN

Xa1,a2,a3,a4,a5
c,↵

a2 a4

c

(5.105)

Note that we still label the generalized fusion tree with the sectors above the layer
of possible Z isomorphisms, not by its input sectors. This is chosen because these
sectors are relevant for the behavior of the fusion tree under manipulations, such
as braids. The presence of Z isomorphisms is unambiguously implied by the arrow
directions.

A (generalized) fusion tree is thus fully specified by the following data.

• The uncoupled sectors a1, . . . , aN .

• The coupled sector c.

• The inner sectors e1, . . . , eN�2.

• The multiplicity labels µ1, . . . , µN�1.

• A boolean flag for every uncoupled sector, indicating if there is a Z isomorphism
below or not.

5.3.2 Parametrization of symmetric tensors

Now, we can insert a bunch of resolutions of identity both above and below the
tensor T , first projecting each leg to a single sector via the projections of (5.103)
or (5.104), then mapping the uncoupled sectors to a single coupled sector with a
generalized fusion tree (5.105). The resulting components are maps c! d between
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sectors

T

W1

n1

W2

n2
. . .

WK

nK

Y b1...bK
c,�

b1 b2 bK

c

V1

m1 . . .

VJ

mJ

Xa1...aJ
d,↵

a1
aJ

d

(5.58)

=: �c,d
h⇥

Tc

⇤a1...aJ ,↵

b1...bK ,�

im1...mJ

n1...nk

c

c

(5.106)

and thus are multiples of the identity c ! c if c = d and zero otherwise. This
defines the free parameters [[Tc]

a1...aJ ,↵
b1...bK ,� ]

m1...mJ
n1...nk

of a symmetric tensor as the respective
prefactors.

Note that for the explicitly dual spaces – (W2)? and (V1)? in this example – we label
the components and fusion trees by the sectors b2 and a1 of the original spaces W2

and V1, even though b2 and a1 appear in the LHS diagram.

The composite projections

W1 W2
. . . WK

X b1...bK
c,�,n1...nK

c

:=

W1 W2
. . . WK

n1 n2 . . . nK

Xb1...bK
c,�

b1 b2
bK

c

(5.107)

and the related inclusions Y = X † inherit orthonormality

X b1...bK
c,�,n1...nK

� Ya1...aK
d,↵,m1...mK

= �a1,b1 . . . �aK ,bK �m1,n1 . . . �mK ,nK �c,d �↵,� idc (5.108)
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and completeness

X

b1...bK

X

m1...mK

X

c,�

Yb1...bK
c,�,m1...mK

� X b1...bK
c,�,m1...mK

= idW1 ⌦ idW ?
2
⌦ · · ·⌦ idWK (5.109)

relations.

Thus, we can compute the components as

h⇥
Tc

⇤a1...aJ ,↵

b1...bK ,�

im1...mJ

n1...nk

idc = X a1...aJ
c,↵,m1...mJ

� T � Yb1...bK
c,�,n1...nK

. (5.110)

As a consequence of completeness, the free parameters are enough to describe any
tensor since we can reconstruct the original tensor as

T

W1 W2
. . . WK

V1
. . . VJ

=
X

b1...bK
n1...nK

X

a1...aJ
m1...mJ

X

c,↵�

h⇥
Tc

⇤a1...aJ ,↵

b1...bK ,�

im1...mJ

n1...nk

W1 W2
. . . WK

X b1...bK
c,�,n1n2...nK

. . .V1 VJ

Ya1...aJ
c,↵,m1...mJ

c

(5.111)

5.3.3 Blocks

We can group those prefactors [[Tc]
a1...aJ ,↵
b1...bK ,� ]

m1...mJ
n1...nK

that belong to a given pair of fusion
and splitting tree into a tree block [Tc]

a1...aJ ,↵
b1...bK ,� . The tree block is a T V

a1...aJ
⇥ T W

b1...bK
,

matrix, where the tree block sizes are given by

T V

a1...aJ
:=

JY

j=1

NVj
aj . (tree block size) (5.112)

Note that the width (height) of a tree block [Tc]
a1...aJ ,↵
b1...bK ,� depends only on its upper

(lower) indices. We can thus stack the tree blocks to form larger matrices.

There is an intermediate level in the hierarchy that we call a forest block [Tc]
a1...aJ
b1...bK

which comprises all the tree blocks with the same coupled sector c and uncoupled
sectors a1 . . . aJ and b1 . . . bK . They are FV

a1...aJ ,c
⇥FW

b1...bK ,c matrices, where the size
is given by

FV

a1...aJ ,c
= T V

a1...aJ
Na1...aJ

c . (forest block size) (5.113)
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Here, Na1...aJ
c is the number of valid fusion trees a1 ⌦ · · · ⌦ aJ ! c, which we can

recursively define as
Na1...aJ

c =
X

f2S

N f,aJ
c Na1...aJ�1

f (5.114)

with the N symbol as the base case for J = 2, Na
c = �a,c for J = 1 and N I

c = �c,I for
J = 0.

Finally, we can stack all those forest blocks with the same coupled sector c (or
directly all the tree blocks) to a block Tc. It is a BV

c ⇥ BW

c matrix, where the block
sizes are given by

BV

c =
X

a1...aJ

FV

a1...aJ ,c
=

X

a1...aJ

T V

a1...aJ
Na1...aJ

c . (block size) (5.115)

This turns out to be the multiplicity of the sector c in the domain V , i.e.

V = V1 ⌦ · · ·⌦ VJ
⇠=
M

c

B
V
cM

µ=1

c . (5.116)

We visualize the structure of a block in figure 5.2.

The reason to organize the data in this particular way is that the blocks are the
largest collection of free parameters that allows the most expensive tensor operations
– contraction and decomposition – to directly go through to the block level, as we
discuss in the following subsections. However, permuting the legs (e.g. braiding
them or bending lines) requires breaking the blocks apart to either the forest or tree
level and recombining them according to coe�cients that arise from manipulating
the trees.

Since there might be an infinite number of sectors, we can not save the blocks Tc

“for all” c. Instead, we store only the nonzero blocks together with the coupled
sectors c to which they correspond.

5.3.4 Basic tensor operations

Let us first discuss some basic operations on tensors. As a pattern for this and
the following subsections, we consider some operation (e.g. addition) of symmetric
tensors and ask how we can build the blocks of the output tensor from the blocks
of the input tensor(s). Generally, they are derived explicitly from equations (5.110)
and (5.111).

Let us first consider linear combinations. For tensors F, G : V ! W and scalars
a, b 2 C, we find that linear combinations simply go through to the block level, that
is

(aF + bG)c = aFc + bGc. (5.117)

This is because the expression for the free parameters (5.110) is linear in the tensor.
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(b1, . . . , bK)

� � �

(a1, . . . , aJ)

↵

↵

forest block

tree block single entry

Figure 5.2: Illustration of a block Tc. Blocks are matrices that contain all
free parameters for a fixed coupled sector c. It consists of forest blocks (one
example in orange), which contain the entries for fixed uncoupled sectors
(a1, . . . , aJ) and (b1, . . . , bK). Those are further partitioned into the tree
blocks (one example in blue) [Tc]

a1...aJ ,↵
b1...bK ,� , which additionally fixes a fusion

tree ↵ and a splitting tree �. Those tree blocks contain the scalar entries
[[Tc]

a1...aJ ,↵
b1...bK ,� ]

m1...mJ
n1...nK

(one example in green).

The identity map idV as a tensor V ! V can be built using identity blocks

(idV)c = BV
c ⇥BV

c
. (5.118)

Taking the dagger of a tensor T : V !W yields a tensor T † : W ! V whose blocks

(T †)c = (Tc)
† (5.119)

are given by the blockwise matrix dagger.
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5.3.5 Combining and splitting legs

To combine legs, we want to derive the block structure of a tensor

T̃ : W1 ⌦ · · ·⌦WK ! V1 ⌦ · · ·⌦ Vi�1 ⌦ U ⌦ Vi+2 ⌦ · · ·⌦ VJ (5.120)

that arises from

T : W1 ⌦ · · ·⌦WK ! V1 ⌦ · · ·⌦ Vi ⌦ Vi+1 ⌦ · · ·⌦ VJ (5.121)

by combing the legs U := Vi ⌦ Vi+1. That is graphically

T̃

W1 WK

V1 U VJ

=
T

W1 WK

Vi Vi+1

UV1 VJ

. (5.122)

Note that even though the right-most upper leg has index J , the tensor T̃ only has
J � 1 upper legs. In the following, we derive how the blocks (free parameters) of T̃
are related to those of T , which facilitates combining or splitting legs.

As a first step, we can build the sector projections of the product space U = Vi⌦Vi+1

as

U

`i

gi

=

Vi Vi+1

mi mi+1



ai ai+1

gi

(5.123)

with the multi-index `i := (ai, mi, ai+1, mi+1,). We obtain for the free parameters
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of T̃

h⇥
T̃c

⇤g1...gJ�1,�

b1...bK ,�

i`1...`J�1

n1......nK

c

c

=

T

Yb1...bK
c,�,n1...nK

W1 WK

c

V1

`1

Vi�1

`i�1

Vi

mi

Vi+1

mi+1

Vi+2

`i+1

VJ

`J�1



ai ai+1

Xg1...gJ�1
c,�

a1

g1

ai�1

gi�1
gi

ai+2

gi+1

aJ

gJ�1

c

.

(5.124)
Now, we can use (5.70) to recouple the single fusion tensor into the fusion tree and
find

h⇥
T̃c

⇤g1...gJ�1,(e1...eJ�3,µ1...µJ�2)

b1...bK ,�

i`1...`J�1

n1......nK

=
X

f�⇡

⇥
F ei�2,ai,ai+1
ei�1

⇤gi,,µi�1

f�⇡

h⇥
Tc

⇤a1...aJ ,(e1...f ...,eJ�3,µ1...�⇡...µJ�2)

b1...bK ,�

im1...mJ

n1......nK

(5.125)

where on the RHS, (a1 . . . ai�1) := (g1 . . . gi�1), while ai, ai+1 are part of the multi-
index `i = (ai, mi, ai+1, mi+1,) and (ai+2 . . . aJ) := (gi+1 . . . gJ�1) have an in-
dex shift. The indices `j and mj behave analogously. On the RHS, the fusion
tree index is modified such that f and � are inserted at position i � 1 respec-
tively and ⇡ replaces µi�1, i.e. the fusion tree index in the RHS has inner sectors
(e1 . . . ei�2, f, ei�1, . . . eJ�3) and multiplicity labels (µ1 . . . µi�2,�, ⇡, µi, . . . µJ�2).

Strictly, the expression above is only valid for 2 < i < J � 1. For i = 2, we need to
swap ei�2 7! a1 in the upper indices of the F symbol, such that this sector always
refers to the sector to the bottom left of the node µi�1 in the fusion tree. For
i = J � 1, we need to substitute ei�1 7! c in the lower index, such that this sector
always refers to the sector above the node µi�1 in the fusion tree.

In the special case i = 1, that is, combing two legs at the very left, we do not need
to do an F move since we can directly understand the additional fusion tensor as
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the bottom-most node of a larger fusion tree and find

h⇥
T̃c

⇤g1...gJ�1,(e1...eJ�3,µ1...µJ�2)

b1...bK ,�

i`1...`J�1

n1......nK

=
h⇥

Tc

⇤a1...aJ ,(g1,e1...eJ�3,µ1...µJ�2)

b1...bK ,�

im1...mJ

n1......nK

.

(5.126)

Combining legs in the domain is analogous, except that the index modifications
happen in the subscripts instead of the superscripts and that the F symbol is complex
conjugated, as in equation (5.73).

In order to do the reverse operation and split a leg, invert equation (5.125), using
unitarity of the F symbol.

5.3.6 Braiding Legs

We discuss general rearrangement of legs in section 5.3.8. In preparation, let us first
consider a single braid between neighboring legs in the codomain, that is a tensor
T̃ that results from braiding the i-th leg over the (i + 1)-th leg of a tensor T .

T̃

W1 WK

V1 Vi Vi+1 VJ

=

T

W1 WK

Vi+1 Vi+1

Vi Vi+1V1 VJ

(5.127)

We employ a notation that, if parsed strictly, suggests 1 < i < J � 1, i.e. excludes
braids at the very left or very right, and we depict graphically the specific case of
i = 2 and J = 4. This allows us to simplify the notation. We understand this as a
sketch of a general derivation, which proves the same results for 1  i  J � 1 and
any J � 2.

Let us write ⇡(V1 . . . VJ) = (V1 . . . Vi+1Vi . . . VJ) for the permutation on the upper
legs. We can now plug the RHS into the definition (5.106) and use the sliding
property (5.39) to slide the projections below the braid.
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h⇥
T̃c

⇤a1...aJ ,↵

b1...bK ,�

im1...mJ

n1...nK

c

c

=

T

Yb1...bK
c,�,n1...nK

W1 WK

c

V1

m1

Vi+1

mi+1

Vi

mi

VJ

mJ

ai+1 ai

Xa1...aJ
c,↵

a1

ai ai+1

aJ

c

(5.128)

This sliding step induces the same permutation ⇡ to also act on the indices mj of the
projections. It remains to deal with the braid acting below a fusion tree. To relate
to the blocks of T , we need to write it as a linear combination of regular fusion trees

a1 ai+1 ai aJ

X
a1...aj
c,�

ai ai+1

c

=
X

↵

D�
↵({aj} , c)

a1 ai+1 ai aJ

X⇡(a1...aJ )

c,↵

c

,

(5.129)
such that

h⇥
T̃c

⇤a1...aJ ,�

b1...bK ,�

im1...mJ

n1...nK

=
X

↵

D�
↵({aj} , c)

h⇥
Tc

⇤⇡(a1...aJ ),↵

b1...bK ,�

i⇡(m1...mJ )

n1...nK

. (5.130)

We can derive the coe�cients D from an R move (5.76) if i = 1 or a C move (5.88)
otherwise. These coe�cients are highly sparse, i.e. they vanish for most ↵. Instead of
polluting notation with many Kronecker deltas, let us list only those contributions
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that are (in general) nonzero. To that end, let � = (e1 . . . eJ�2, µ1 . . . µJ�1) be a
general but fixed tree index.

For i = 1, assuming the gauge of fusion tensors is chosen such that the R symbols
are diagonal, we only get a nonzero contribution if ↵ = �. In that case, we have

D�
�({aj} , c) =

⇥
Ra1,a2

e1

⇤µ1

µ1
. (all other D�

↵ = 0) (5.131)

For braids at 2 < i < J�1, we find non-zero contribution only for those ↵ that arise
from � by modifying the inner sector ei�1 7! f and multiplicity labels (µi�1, µi) 7!
(,�). In that case, we have

D�
(e1...f ...eJ�2,µ1...�...µJ�1)

({aj} , c) =
⇥
Cei�2,ai,ai+1

ei

⇤eiµi�1µi

f�

(all other D�
↵ = 0) .

(5.132)

The expression above generalizes to i = 2 if we understand e0 := a1, such that ei�1

always refers to the sector to the bottom left of the vertex µi. Similarly it generalizes
to i = J � 1 if we understand eJ�1 := c, such that ei is the sector above µi.

To perform an underbraid in the domain instead, we simply need to take the com-
plex conjugate of the coe�cients and exchange the roles of upper and lower indices
in (5.130), that is let the permutation act on the {bk} and {nk} instead, and form
the linear combination on the index � of splitting trees instead of ↵, with coe�cients

D
�
�({bk}, c).

To swap the chirality of the braid, that is perform an underbraid in the codomain
or an overbraid in the domain, we need the following modifications in addition to
the above. Take the complex conjugate of the coe�cients and swap ai $ ai+1 in
the superscript of the R or C symbol, as discussed in section 5.2.4.

Braids can be composed such that an expression of the form of (5.130) can be derived
for composites of many braids, as long as they act on only the codomain. Figuring
out the coe�cients D for the composite braid and evaluating (5.130) only once
is more practical than evaluating the free parameters for all intermediate objects.
The composition is easily done by composing the permutations ⇡ and forming the
matrix product of the coe�cient matrices D. Note that since the D coe�cients
typically show a high level of sparsity, it is advantageous to collect only those fusion
trees for which there is a nonzero coe�cient, i.e. to build a mapping (e.g. a python
dictionary, or hashtable), assigning to each contributing fusion tree ↵ its coe�cient
D�
↵ in (5.130), similar to algorithm 5.1.

In practice, we can implement braiding in the codomain by acting row-wise on the
blocks – recall the structure summarized in figure 5.2. That is, for every block we
can perform the following steps to realize equation (5.130). First, within each “tree
row”, that is for fixed (c, a1 . . . aJ ,↵), permute the rows of single entries according
to ⇡. Second, within each “forest row”, that is for fixed (c, a1 . . . aJ), form linear
combination of the tree rows according to the coe�cients D�

↵({aj}, c). Lastly, for
the whole block, permute the resulting forest rows according to ⇡. Braiding in the
domain can be done similarly by acting on entire columns.
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5.3.7 Bending Lines

Next, let us consider bending a single line at the very right of the domain

T̃

W2W1 WK�1

V1 V2 VJ WK

= T

W1 W2 WK�1

V2V1 VJ WK

. (5.133)

To derive an expression for the blocks of T̃ in terms of the blocks of T , we plug
in the parametrization (5.111) of T , then use the sliding property (5.31) to slide
the projection across the bend. This cooperates with the structure (5.111) of free
parameters, since the transpose of the projection (pnk

: Wk ! bk)T : b?k ! W ?
k is

the inclusion ink
of the dual space. We then need to consider how the bend acts

on the pair of fusion and splitting tree. Let ↵ = (↵[1] . . .↵[J�2],↵(1) . . .↵(J�1)) and
similarly � = (�[1] . . . �[K�2], �(1) . . . �(K�1)) denote tree indices. Then, we find from
a B move (5.94) that

b1 b2 bK�1

Xb1...bK
c,�

Y a1...aJ
c,↵

c

a1 a2 a3

bK

bK

=
X

⌫

⇥
B
�[K�2]bK
c

⇤�(K�1)

⌫

Y a1...aJ ,bK
�[K�2],↵+(c,⌫)

b1 b2 bK�1

Xb1...bK�1

�[K�2],��1

�[K�2]

a1 a2 aJ bK

.

(5.134)
Here we write ↵ + (c, ⌫) = (↵[1] . . .↵[J�2], c,↵(1) . . .↵(J�1), ⌫) for an extended fusion
tree index and ��1 = (�[1] . . . �[K�3], �(1) . . . �(K�2)) for a shortened index, with the
last sector and last multiplicity label removed. Shifting around the sums in (5.111),
we can identify the free parameters of the transformed tensor as
h⇥

T̃d

⇤a1...aJ+1,↵+(c,⌫)

b1...bK�1,�0

im1...mJ+1

n1...nK�1

=
X

µ

⇥
Bd,aJ+1

c

⇤µ
⌫

h⇥
Tc

⇤a1...aJ ,↵

b1...bK�1aJ+1,�0+(d,µ)

im1...mJ

n1...nK�1mJ+1

,

(5.135)
where we relabelled the new coupled sector �[K�2] 7! d and a multiplicity index
�(K�1) 7! µ, as well as bK 7! aJ+1 and nK 7! mJ+1, since those indices now belong
to the codomain of T̃ .
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Bending a leg from the codomain can be derived analogously, with the result
h⇥

T̃d

⇤a1...aJ�1,↵0

b1...bK+1,�+(c,⌫)

im1...mJ�1

n1...nK+1

=
X

µ

⇥
B

d,bK+1

c

⇤µ
⌫

h⇥
Tc

⇤a1...aJ�1bK+1,↵0
+(d,µ)

b1...bK ,�

im1...mJ�1nK+1

n1...nK

.

(5.136)

If the bent line was an explicitly dual space before bending it, the above expression
obtains an additional factor �bK = �aJ+1 , since we need to use (5.95) instead, but is
otherwise analogous.

Bending lines involves communication between blocks; the new blocks T̃d have con-
tributions from (potentially) many blocks Tc of the old tensor, namely from all those
blocks whose coupled sector c is valid as the topmost inner sector of a fusion tree
a1 ⌦ · · · ⌦ aJ+1 ! d, i.e. such that N c,aJ+1

d > 0 and Na1...aJ
c > 0. Unlike for the

braiding which preserves entire rows, no units larger than tree blocks are preserved
by this rearrangement. Therefore, the implementation for the general case that we
propose in the following section may be used to realize the above results in practice.

5.3.8 Rearranging legs

We propose to support a broad but not fully general class of leg rearrangement that
is specified by the following data. We specify a permutation of the legs, indicating
for every leg in the domain and codomain of the original tensor, if it ends up in the
domain or codomain of the result, and at which position. Additionally, we assign a
unique height value to every leg, which specifies the chirality of the braid at every
crossing; the leg with the higher height values goes over the other one. By coherence,
every composite of braids, cups and caps that fulfills these constraints is equal, and
we may choose any particular realization that is practical, in the implementation.

As an example, consider rearranging the legs of T : W1⌦W2⌦W3 ! V1⌦V2⌦V3⌦V4

as follows.

T̃ :=
T

V3 V1

V2W3 V4 W1

W2

(5.137)
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We specify the target order of legs as a permutation ⇡, which is split in two com-
ponents ⇡i for the codomain (i = 1) and domain (i = 2) respectively. The above
example is described by the permutation

⇡1(V1 . . . V4, W
?
1

. . . W ?
3
) = (V3, V1, W

?
2
) (5.138)

⇡2(V
?
1

. . . V ?
4
, W1 . . . W3) = (W3, V

?
4
, W1, V

?
2
) (5.139)

and height levels (1, 4, 3, 7; 5, 6, 2), given in the leg order (figure 5.1), such that
e.g. the W3 leg has height value five. Thus, whenever they cross, it braids below W2

which has the higher height value of six.

We conceptually decompose this rearrangement as a sequence of single braids and
line bends, which are discussed in sections 5.3.6 and 5.3.7 respectively. We ar-
bitrarily choose to start in the codomain, the other way around would be just as
good.

1. Determine a permutation for the codomain, such that those legs that need to
be bent to the domain are on the very right and those that should stay in
the codomain are sorted according to their target positions. Apply a sequence
of braids that achieves this permutation and has braid chiralities that are
consistent with the height values.

2. Bend those legs from the codomain to the domain

3. Similar to step 1, apply braids to the domain such that those legs that should
remain there appear in the target order and those that should be bent to the
codomain are on the very right.

4. Bend those legs to the codomain

5. Perform a final permutation on the codomain, again similar to step 1, to bring
those legs to their target positions.

We propose to programmatically derive an expression for the blocks of the result-
ing tensor, following the steps listed above and then acting on the blocks only
once, instead of forming the blocks of the intermediate tensors after each step. The
following framework allows us to treat both braids and bends on an equal foot-
ing and to compose them programmatically. Let us write multi-indices, such as
e.g. ' = (a1 . . . aJ ,↵, c, �, b1 . . . bK) that fully specify a pair of fusion and splitting
tree ↵, � with matching coupled sector c, including their uncoupled sectors aj and
bk. This multi-index uniquely identifies a tree block

⇥
Tc

⇤a1...aJ ,↵

b1...bK ,�
=: T (') of a tensor

T . Now for both braiding and bending, the new tree blocks are linear combinations
of the old tree blocks, with their mj and nk indices permuted according to the overall
leg permutation ⇡, that is

⇥
T̃ (')

⇤m1...mJ

n1...nK
=
X

 

E'
 ·

⇥
T ( )

⇤⇡1(m1...mJ )

⇡2(n1...nK)
(5.140)

for some coe�cients E'
 .
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Similar to the braiding, expressions of this form can easily be composed, by com-
posing the permutations ⇡ and matrix multiplication of the coe�cients E, e.g. for
two operations we have

⇥ ˜̃T (')
⇤m1...mJ

n1...nK
=
X

⇣, 

Ẽ'
⇣ · Ê⇣

 ·
⇥
T ( )

⇤(⇡̃�⇡̂)1(m1...mJ )

(⇡̃�⇡̂)2(n1...nK)
, (5.141)

where the operation to be applied first has coe�cients Ê and permutation ⇡̂. In
practice, to exploit the sparsity, we propose the strategy transcribed in pseudocode
in algorithm 5.1.

Algorithm 5.1 Building coe�cients for leg rearrangement

Given a sequence of leg rearrangements with coe�cients (E1), (E2), . . . , (EN), and a
tree block index ' for the resulting tensor, compute the nonzero coe�cients of the
composite rearrangement. That is a mapping { : E'

 } from the tree block indices  
of the original tensor that have a non-zero contribution in (5.140) to the respective
non-zero coe�cients E'

 =
P

⇣�...⇠(EN)'⇣ (EN�1)⇣� . . . (E1)
⇠
 . The order of this matrix

product is such that we may think of the rearrangement with coe�cients E1 to be
applied “first”.

1. Initialize the mapping as C  {' : 1}.
2. For every rearrangement step n = N, . . . , 1 in reverse order:
3. Initialize an empty mapping D  {}.
4. For every key � in C and value c = C[�]:
5. For every ⇣ such that (En)

�
⇣ 6= 0 (see recipies below):

6. If ⇣ is in D, increment D[⇣] D[⇣]+ c · (En)
�
⇣ , else set D[⇣] c · (En)

�
⇣ .

7. Set C  D.
8. Return C

Let us summarize the results from the previous sections on braids and line bends in
this language of E coe�cients.

For braiding, e.g. in the codomain, we get nonzero contributions to a target tree
pair ' = (a1 . . . aJ , �, c, �, b1 . . . bK) of the form

E'
 = D�

↵(a1 . . . aJ , c) for  =
�
⇡(a1 . . . aJ),↵, c, �, b1 . . . bK

�
(5.142)

and vanishing E'
 = 0 for all other  . Note that the D coe�cients, as discussed

in section 5.3.6, have further sparsity and further constrain the trees ↵ that give
nonzero contributions.

For bending a single line from the domain to the codomain, we get nonzero contri-
butions to a target tree pair

' =
�
a1 . . . aJ , (e1 . . . eJ�2, µ1 . . . µJ�1), c, (f1 . . . fK�2, ⌫1 . . . ⌫K�1), b1 . . . bK

�

of the following form;
E'
 =

⇥
Bc,aJ

eJ�2

⇤
µJ�1

, where (5.143)
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 =(a1 . . . aJ�1, (e1 . . . eJ�3, µ1 . . . µJ�2), eJ�2, (f1 . . . fK�2c, ⌫1 . . . ⌫K�1), b1 . . . bKaJ)

contains only  = 1, . . . , N c,aJ
eJ�2

as a free parameter. The coe�cients E'
 = 0 vanish

for all other  not of this form.

Let us reiterate at this point that leg rearrangements which involve only braids and
no bends can be done by acting on entire rows / columns, which may be more
e�cient in practice.

5.3.9 Tensor contractions, inner product and norm

The most ubiquitous operation on tensors used in TNS methods is pairwise con-
traction of tensors. In our graphical notation, this means connecting any number of
legs between the two tensors and leaving the rest open. This may require line bends
(cups and caps) or braids to be introduced in the most general case.

Let us start with a simple case, the composition T = A�B of two tensors A : U !W
and B : V ! U . This is the special case of contractions where the tensors are already
given with a convenient leg arrangement. That is graphically

V1 V2 V3 VJ

T

W1 W2 W3 WK

=

V1 V2 V3 VJ

B

A

U1 UI

W1 W2 W3 WK

. (5.144)

We find that the blocks of the result

[Tc]

◆ idc

(5.110)

= XW

c, � A �B � YV

c,◆

(5.109)

=
X

d,�

XW

c, � A � YU

d,� � X U

d,� �B � YV

c,◆

(5.106)

=
X

�

[Ac]

�[Bc]

�
◆ idc = [Ac · Bc]


◆ idc

(5.145)

are given by the blockwise matrix-matrix products.

Another special case for pairwise contraction is the “inner product”, where we con-
tract all legs and the input tensors A, B : V ! W are given with the same leg
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arrangement. Then, consider the Frobenius inner product

Tr
�
A† �B

�
=

B

A†

W1 WK

V1 VJ

V1 VJ

. (5.146)

The result is the scalar

Tr
�
A† �B

� (5.109)

=
X

c,�

X

d,

Tr
�
YV

c,� � X V

c,� � A† � YW

d, � XW

d, �B
�

(5.33),(5.106)

=
X

c,�

[(A†)c]

�[Bc]

�
 Tr (idc)

(5.119)

=
X

c

dcTr
�
(Ac)

† · Bc

�
.

(5.147)

In words, the inner product of tensors is given by the weighted sum of blockwise ma-
trix inner products, with the quantum dimensions of the coupled sectors as weights.
As a corollary, we find that the Frobenius norm

kAk
F

=

sX

c

dc kAckF 2 (5.148)

is given by the weighted 2-norm of the blockwise Frobenius matrix norms.

Another special case that allows for an e�cient implementation is when only one
leg is contracted, which is the only leg in the codomain (domain) of the lower
(upper) tensor. Considering the first of these cases where we contract the `-th
leg in the domain of A :

N
j Vj !

N
k Wk with the single leg in the codomain of

B :
N

i Ui ! V`, that is graphically

T =

V1 V`�1 U1 U2 UI V`+1 VJ

B

A

V`

W1 W2 W3
. . . WK

. (5.149)
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This case allows for a special implementation, since B has a trivial splitting tree
in its decomposition (5.111), such that the fusion tree of B acts directly below the
fusion tree of A and may be absorbed into a larger fusion tree via F moves.

First, for I = 1, that is if B only has a single leg in its domain, we find

h⇥
Tc

⇤a1...aJ ,↵

b1...bK ,�

im1...mJ

n1...nK

=
X

p

h⇥
Ac

⇤a1...aJ ,↵

b1...bK ,�

im1...p...mJ

n1...nK

h⇥
Ba`

⇤a`,1
a`,1

im`

p
. (5.150)

Let us now assume I � 2. If ` = 1, i.e. if we apply B to the very left domain leg of
A, we do not even need to do F moves and directly find

h⇥
Tc

⇤a1...aL,[��d�↵]

b1...bK ,�

im1...mL

n1...nK

=
X

p

h⇥
Ac

⇤daI+1...aL,↵

b1...bK ,�

ipmI+1...mL

n1...nK

h⇥
Bd

⇤a1...aI ,�

d,1

im1...mI

p
,

(5.151)
where L = J +I�1 is the new number of legs in the domain and [��d�↵] denotes
a fusion tree index where d is inserted as an inner sector, that is with inner sectors
(f1 . . . fI�2, d, e1 . . . eJ�2) and multiplicity labels (⌫1 . . . ⌫I�1, µ1 . . . µJ�1) where � =
(f1 . . . fI�2, ⌫1 . . . ⌫I�1) and ↵ = (e1 . . . eJ�2, µ1 . . . µJ�1).

Finally, in the general case ` > 1 we find

h⇥
Tc

⇤a1...aL,�

b1...bK ,�

im1...mL

n1...nK

=
X

�d↵p

F �d↵
� (a1 . . . aL, c)⇥

⇥
h⇥

Ac

⇤a1...a`�1,d,a`+I ...aL,↵

b1...bK ,�

im1...m`�1,p,m`+I ...mL

n1...nK

h⇥
Bd

⇤a`...a`+I�1,�

d,1

im`...m`+I�1

p
,

(5.152)

where the coe�cients are generalized F symbols which arise as

a1 a`�1 a`+I aL

↵

c

�

d

a` a`+I�1

=
X

�

F �d↵
� (a1 . . . aL, c)

a1
. . . . . . aL

�

c

(5.153)
and can be written as a contraction of a sequence of I � 1 single F symbols (5.70).

More general tensor contractions can be performed by first permuting legs, according
to section 5.3.8, and subsequently contracting as one of the special cases listed here.
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5.3.10 Tensor decompositions

For a tensor T : V !W , we can obtain an SVD as follows. Define a new space

VS :=
M

c2S

min(NV
c ,NW

c )M

m=1

c (5.154)

and define tensors U : VS !W , S : VS ! VS and V † : V ! VS via blockwise SVD,
that is such that Tc =: Uc · Sc · (Vc)†. The defining properties of an SVD follow
directly from (5.145), (5.119) and (5.118). Namely, we have T = U � S � V †, as well
as U † � U = idVS = V † � V and S is diagonal with real positive entries.

Similarly, any other decomposition of symmetric tensors whose defining properties –
such as here composition, identities and the dagger – go through to the block level,
can be carried out simply by applying the respective matrix decomposition to each
block. In particular, this includes the (hermitian) eigendecomposition and the polar
decomposition. The QR and LQ decompositions work except for the caveat that
the upper (lower) triangular property of the R (L) factors only holds on the block
level, it is not a meaningful property of the resulting symmetric tensor.

Note that there are additional considerations for optimal truncation of an SVD,
that are not relevant in the abelian case of algorithm 2.8. Since the square norm
of the tensors is a weighted sum of blockwise square norms – see (5.148) – we need
to consider the weights when truncating. In particular, discarding a singular value
� = (Sc)ii and corresponding columns of the isometries Uc, Vc in the matrix SVD of
a block Tc, results in a truncation error kT � Ũ � S̃ � Ṽ †kF =

p
dc�. Thus, when

selecting which singular values in the entire S tensor to discard, they should be
prioritized such that those with the smallest value of

p
dc(Sc)ii are discarded first.

For an intuition, consider a SU(2) symmetry, where discarding a single singular
value from a block with coupled sector given by the spin S irrep is equivalent to
discarding a multiplet of dS = 2S + 1 degenerate singular values in a non-symmetry
conserving representation of the tensor.

5.4 Remarks on implementation

An implementation of the framework for symmetric tensors discussed in this chapter
is under active development, publicly on GitHub10, where the current prototype is
open-source and publicly available. This is part of a rework of the tensor backend
handling linear algebra routines of symmetric tensors, planned for the next major
release of the TeNPy library. In this section, we list a few additional considerations
regarding this implementation.

10See the repository https://github.com/tenpy/tenpy, and in particular the pull re-
quest https://github.com/tenpy/tenpy/pull/309, which will inevitably become outdated at
some point, but should remain a good starting point to track down up to date links. Alternatively,
see https://github.com/Jakob-Unfried/phd_thesis.

https://github.com/tenpy/tenpy
https://github.com/tenpy/tenpy/pull/309
https://github.com/Jakob-Unfried/phd_thesis


5.4. REMARKS ON IMPLEMENTATION 143

5.4.1 Diagonal Tensors

We propose to use a dedicated implementation for a special class of tensors, the
diagonal tensors. A diagonal tensor is a tensor D : V ! V from a single space (no
tensor product) to itself, such that its blocks are diagonal

[[Dc]
c,1
c,1]

m
n =: Dc,m�m,n. (5.155)

Here, we have already used in the notation that the uncoupled sectors must equal the
coupled sectors, and there is only a single trivial fusion tree for that mapping, which
is indexed by 1. The singular values from an SVD, as well as the eigenvalues from
a (hermitian) eigendecomposition, have this property and are the main motivation
for introducing diagonal tensors.

As a result, we may store only the diagonal entries Dc,m and allow cheaper imple-
mentations for contraction with other tensors. Additionally, we may unambiguously
and straightforwardly implement elementwise operations on these diagonal tensors,
such as taking powers, the square root, and so on.

5.4.2 Charged Tensors

It is convenient to introduce the concept of a charged tensor. This generalizes the
idea of charged tensors as formulated for the abelian group case in (2.69) to the
general categorical case. We proposed to think about the symmetric tensors as
symmetric maps T : I ! V :=

N
n Vn from the trivial sector to the tensor product

of the legs V1, . . . , VN . On the other hand, a charged tensor (with the same legs)
is a symmetric map T : C ! V where the symmetry space C describes its charge.
This contains the notion (2.69) of a charged tensor as a special case, namely if the
symmetry is an abelian group and C a one-dimensional irrep. For the general notion
of a charged tensor, however, we do not impose any requirements on C.

Thus, a charged tensor T̃ with legs given by the factors of V is described by a
symmetric tensor T : C ! V that has one additional leg C?. For group symmetries,
where C is a vector space, we may additionally specify a state |�i 2 C on that leg
and view the composite object given by T and |�i as the charged tensor. Such a
composite is not itself a symmetric map, but we can use the framework for symmetric
tensors to manipulate it by acting on its “symmetric part” T .

Let us consider as a concrete example a system with a U(1) group symmetry conserv-
ing the Sz magnetization of a spin-1

2
chain. The sectors S = {Va|a 2 } are labeled

by integers which represent the Sz magnetization of that sector in units of ~/2. The
two-dimensional local Hilbert space decomposes into sectors as H = V1 � V�1 in
the z basis. Now consider the raising and lowering operators �+ = | "ih# | and
�� = | #ih" |. As tensors in V = H ⌦ H?, or as maps H ! H, they are not
symmetric. As a consequence – or as the most intuitive way of seeing this – they
do not commute with the conserved charge Sz. They can, however, be written as
charged tensors, e.g. ⌃+ : V+2 ! H ⌦ H?, |�i 7! h* |�i�+, where we have written
| *i for the only state in an orthonormal basis of the charge-leg C. Now by choosing
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|�i = | *i, we can recover the original operator as ⌃+(| *i) = �+ 2 H ⌦ H?. The
lowering operator can be similarly written as a charged tensor with C = V�2.

For a slightly less trivial example, let us consider the same physical system and the
operator �x = (�+ +��)/2. As a tensor in H⌦H? it is clearly not symmetric either.
It can, however, be written as a charged tensor with symmetric part

X : C ! H ⌦H?, |�i 7! h*|�i �+ + h+|�i ��, (5.156)

where the charge leg is C = V+2 � V�2, and we can recover �x = X(|�i) with the
charged state |�i = (| *i + | +i)/2. Note that the charged state is not symmetric
under the U(1) symmetry, and in fact, C does not contain any symmetric states
other than 0.

This perspective on charged tensors allows us to use them also for quantum states
with fermionic or anyonic grading. See appendix A for the example categories we
use here. With the category Ferm, for example, a charged tensor whose charge leg
is the sector of odd fermionic parity can be used to describe a quantum state with
an odd number of fermions. Conversely, with the category Fib of Fibonacci anyons,
e.g., considering a golden chain [173] system, a charged tensor with the ⌧ sector
as its charged leg can describe a state of multiple sites that is in the ⌧ topological
sector. These are precisely the two-body states that are energetically favored by a
single local term in the golden chain Hamiltonian.

An alternative perspective is that we may use the concept of a charged tensor to
e↵ectively hide one leg of a tensor from outside algorithms. Note, for example, that
if we take the symmetric part X of the �x operator from the above U(1) symmetric
example and compose it with its dagger, we obtain a tensor X†�X that is equivalent
(by re-ordering the legs) to the two-body operator (�x ⌦ �x)/4. We can use this,
e.g., to evaluate a correlation function h |�x

i (t)�
x
j | i in a symmetric MPS | i, where

time dependence is w.r.t. the dynamics induced by a symmetric Hamiltonian, even
though the single operator �x

j is not symmetric. To do this, apply the symmetric
part of the charged tensor Xj to the MPS | i, leaving an extra charge leg C on
one of the tensors. We may then perform time evolution using one of the methods
discussed in section 2.3 to find an MPS representation of e�iHt�x

j | i and finally
contract the dangling leg with its partner on �x to evaluate the correlation function
at time t.

5.5 Benchmarks

Let us now study the benefits of using the symmetry backend in a benchmark of the
prototype implementations developed for a future version of TeNPy. We provide the
benchmark code, with a pinned version of the prototype implementation, publicly
on GitHub11.

We compare the following three tensor backends, that implement the storage format
of tensors and operations on them. First, the trivial backend simply stores all

11
https://github.com/Jakob-Unfried/phd_thesis

https://github.com/Jakob-Unfried/phd_thesis
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Q
n dim Vn entries of a tensor T 2

N
n Vn as a dense array and can not exploit/enforce

any symmetries. In the implementation, this is essentially a thin wrapper around
numpy. Secondly, an abelian backend that can exploit abelian symmetry groups,
as discussed in section 2.5. This is very similar to the implementation in tenpy
version 1 [4], though the prototype is less performant, since it is implemented in
pure python, without any compilation. Lastly, a fusion tree backend that uses the
storage format and manipulations as introduced in this chapter.

At the time of writing, the concrete implementations in the prototype are called
NoSymmetryBackend, AbelianBackend and FusionTreeBackend, respectively. Note
that the implementations are prototypes that have not yet been optimized for per-
formance.

5.5.1 Tensor contraction

Let us first benchmark tensor contraction. We generate SU(2) symmetric test tensors
with pre-determined legs and random free parameters as follows. We generate a leg
V as the N -fold tensor product of a spin-1

2
Hilbert space, that is V =

NN
n=1

H1/2.
This defines a somewhat realistic distribution of SU(2) sectors, as this is the virtual
leg that an MPS needs to have to represent any state on a chain of 2N spin-1

2
sites

exactly, meaning without truncation. In particular, the largest sector is spin N
2
. We

generate four-leg symmetric tensors A, B : V ⌦ V ! V ⌦ V by populating their
free parameters (5.106) with reproducible (pseudo-)random numbers, from a numpy
random generator with a fixed seed. Then, we perform a timing benchmark of the
contraction A �B, contracting two pairs of legs. For each of the three backends, we
either enforce the full SU(2) symmetry (if supported), the U(1) subgroup that only
conserves Sz (if supported), or do not enforce any symmetry. We run the benchmark
on a single core of an Intel Core i7-6700 CPU. The results are shown in figure 5.3.

We find that if no symmetry is enforced, all backends show nearly identical perfor-
mance, as the implementation eventually delegate to a single matrix-matrix multi-
plication of the respective single block of each tensor. We find the expected scaling
⇠ (dim V )6 of multiplying (dim V )2 ⇥ (dim V )2 matrices, as soon as the scaling
regime is reached at dim V & 16. At smaller sizes, overhead from the pure-python
bookkeeping of tensors and their legs contributes significantly.

For the abelian backend, we chose the “standard” form of a four-leg tensor that
stores separate blocks for every combination of four individual charges, one per leg.
Thus, when contracting multiple legs, the combinatorics of which pairings of smaller
blocks contribute, results in a sizeable overhead, even when the combinatorics is
trivial, in the case where nothing is conserved. We expect this overhead to be
reduced significantly in an optimized implementation using a compiled language. In
practice, if the same tensor is used in multiple contraction calls, as e.g. in a Lanczos
eigensolver, the combinatorics can be done once, ahead of time, by combining the
legs.

We expect the same scaling behavior O((dim V )6) when enforcing the U(1) symme-
try. Consider the following heuristic intuition. Assume, for simplicity, that after
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Figure 5.3: Runtime for contracting two common legs between two four-leg
tensors averaged over several RNG seeds. For each sample size (horizontal)
axis and RNG seed, we generate the same SU(2) symmetric data and then
benchmark the decomposition for the following di↵erent cases. We choose
to either enforce the full SU(2) symmetry (dotted lines), the abelian U(1)
subgroup (dashed lines), or no symmetry (solid lines). We compare the trivial
backend (green squares), an abelian backend (yellow triangles) as discussed
in section 2.5, and a fusion tree backend (red stars), as discussed in this
chapter, for the symmetry cases that they support.

reshaping the tensors to n⇥ n matrices with n = (dim V )2, they consist of k blocks
of equal size n/k. Then, the blockwise matrix product can be carried out at a cost
of kT (k/n) ⇠ n3/k2, where T (n) ⇠ n3 denotes the cost of forming matrix-matrix
products of n⇥ n matrices.

For the fusion tree backend, no additional combinatorics arises from the fact that
we contract multiple legs, and this particular contraction is implemented directly as
blockwise matrix-matrix products. This is less flexible, however, since the abelian
backend implementation can perform any other contraction of any two leg pairs
in the same way, with comparable overhead, while the fusion tree backend would
need to perform leg manipulations, such as braids or line bends first. These would
introduce a noticeable, but subdominant additional cost. Therefore, the chosen
scenario where the tensors are already given with a leg arrangement that allows
the contraction to be carried out directly as composition is favorable for the fusion
tree backend. It highlights only the algorithmic step where enforcing the full SU(2)
symmetry gives the most net benefit.

We find a substantial speedup when enforcing the full SU(2) symmetry, which mo-
tivates the development and use of the tensor backend.
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5.5.2 Singular value decomposition

Next, we perform a similar benchmark of the singular value decomposition (SVD).
We generate random test tensors A : V ! V that have the full SU(2) symmetry,
whether we enforce it explicitly or not, with two equal legs V , each with sectors as
described in the previous section. We perform a timing benchmark of computing
the SVD of A, with the same combinations of backend and enforced symmetry as
above. The results are shown in figure 5.4.
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Figure 5.4: Runtime of computing an SVD of a two leg tensor, averaged over
several RNG seeds. The setup is the same as for the contraction benchmark
of figure 5.3, except we generate only a single two leg tensor V ! V .

Similar to contraction, we find that overhead is dominant for small samples dimV .
128, crossing over to a scaling regime where we clearly see substantial speedups for
exploiting the U(1) subgroup and again for exploiting the full SU(2) symmetry. We
find the agreement with the expected scaling ⇠ (dim V )3 in all cases and see that
if the same symmetry is enforced, the performance of di↵erent backends matches as
soon as the scaling regime is reached.

5.6 Conclusion

In this chapter, we have provided a mathematical framework for symmetric tensors
that allows us to enforce abelian and non-abelian symmetries and covers tensors that
live in a more general tensor category, e.g. with the statistics of fermionic or anyonic
degrees of freedom. We have defined a graphical language for the basic concepts,
identified the free parameters of symmetric tensors, and developed in detail how
to perform operations on the tensors, such as contractions, leg manipulations, and
factorizations. This may serve as an implementation guide for a tensor backend
and is the basis of the prototype implementation, which is publicly available in the
TeNPy repository [4].
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For the group case, we have demonstrated the speedups that can be obtained by
exploiting non-abelian groups in basic tensor algebra operations, compared to only
enforcing the largest abelian subgroup, which is possible with an abelian tensor
backend. The general categorical case allows simulations of many-body quantum
states of degrees of freedom with non-trivial exchange statistics, such as fermions or
anyons, by enforcing the respective grading on the tensor level.

Future directions for the concrete implementation in TeNPy are performance opti-
mization and integration into the rest of the library. As a first step towards interop-
erability in the vast landscape of tensor algebra libraries, we propose to establish a
unified storage format of symmetric tensors. In the context of tensor network meth-
ods, this may eventually be extended to unified storage formats for the common
classes of tensor network states, such as e.g. MPS. An additional avenue for future
development in this framework is how to incorporate generalized, non-invertible
symmetries [174].



Chapter 6

Conclusion

In this thesis, we focused on tensor network methods for simulating quantum many-
body systems and discussed several algorithmic advancements. We started with a
pedagogical review of tensor networks, focusing on MPS methods such as the TEBD,
DMRG, and MPO evolution algorithms, as well as PEPS for two-dimensional sys-
tems. We reviewed how to enforce abelian symmetries on the tensor level, exploit the
resulting block sparse structure, and introduced the TeNPy library, implementing
symmetric linear algebra and the MPS algorithms.

We then discussed alternative approximate low-rank factorizations that can replace
the SVD as a truncation step in tensor network simulations, highlighting as an
example use case the application in the TEBD algorithm. We proposed a QR-
based truncation method and discussed its conceptual relation to randomized linear
algebra. We demonstrated an improved scaling with the dimension of the local
Hilbert space from cubic to quadratic in a benchmark. We found that as an SVD-
free algorithm, we can obtain significant speedups on GPU hardware that are not
possible for the SVD-based version. Future directions include incorporating these
faster and GPU-friendly truncation steps into broader algorithmic settings, as well as
developing (randomized versions of) the QRCP or QLP decomposition for symmetric
tensors.

Next, we proposed a gradient-based approach for optimizing finite PEPS for ground
state search or time evolution. We were, at this point, unable to produce an al-
gorithm that brings the success of gradient-based optimization in iPEPS to finite
systems. We were, however, able to shed some light on how well other PEPS ground
state searches exhaust the variational power of the ansatz class – by finding better
ground state approximations at the same bond dimension. Moreover, to our knowl-
edge, the resulting time evolution algorithm is the only method to simulate dynamics
using finite PEPS that produces results of useable accuracy. As such, technical im-
provements of the method, and in particular its stability and performance should
be pursued.

Finally, we compiled a mathematical framework that allows the enforcement of non-
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abelian symmetries on the tensor level in terms of parametrization of symmetric
tensors. The same framework – that of monoidal category theory – allows us to
also represent tensors with the statistics of fermions or anyons and can be used to
build tensor network states for systems with fermionic or anyonic degrees of freedom.
We proposed a storage format of symmetric tensors and derived in detail how to
implement common linear algebra operations in terms of the stored free parameters.
A functioning prototype – not yet optimized for performance – was developed by
the author and is publicly available. With a simple benchmark of the prototype we
demonstrated the speedups that motivate exploiting the full non-abelian symmetries
in models that have them. An implementation of this machinery is under active
development, with the aim of being incorporated in the TeNPy library at the next
major release. It will enable speedups from enforcing larger non-abelian symmetry
groups, charge pumping experiments for breaking of a non-abelian symmetry, and
simulation of anyonic systems.

A common theme throughout the independent topics in the separate chapters seems
to be that fixing gauge freedoms may be prohibitive and should not be done without
reason, and it may be worthwhile to consider relaxing to weaker requirements. In the
context of MPS, this means relaxing from the full canonical form to only an isometric
form with non-diagonal bond matrices, while in the context of approximate low-
rank factorizations, this means allowing deformed factorizations, where the central
matrix is not diagonal. This relaxation to a weaker, e.g. isometric form, is not new
algorithmically, as subspace expansion methods in DMRG typically result in non-
diagonal bond matrices. In either case, when we want to do truncation, we (mostly)
only care about identifying a particular subspace for truncation that admits a good
approximation of the tensor network state or of the matrix we want to factorize.
While this subspace is crucial, a particular choice of basis for this space – in which,
e.g., the MPS bond matrix becomes diagonal – is secondary. Moreover, enforcing
the very particular basis, e.g. of singular vectors in case of a (truncated) SVD, may
introduce divergent terms in automatic di↵erentiation (AD) which are not present for
the weaker deformed singular value decomposition (dSVD). Additionally, relaxing
such requirements admits the alternative factorization methods, such as the QR-
based truncation scheme, ultimately enabling hardware acceleration to be used.

Incremental technical advances of tensor network methods, as described in this thesis
and proposed for future development both in this conclusion and in more detail in
the per-chapter conclusions, push the capabilities of simulations. These simulations
allow direct access to the properties of model systems and, as such, are invaluable
tools in the quest for a better theory of superconductivity in the cuprates, in the
study of spin liquids, of topological order, and many more exotic phenomena in
condensed matter systems and beyond.



Appendix A

Topological data for common
symmetries

In this chapter we provide extra material for the discussions regarding symmetries,
in section 2.5 and chapter 5. In section A.1, we review the basics of group repre-
sentations, as well as prominent results such as Schur’s lemma. In the subsequent
sections, we discuss common symmetry groups, and give the topological data needed
to enforce these symmetries in the framework of chapter 5, using fusion trees and
their manipulations. We cover the abelian groups N and U(1) in section A.2 and
A.3, the nonabelian group SU(2) in section A.4, fermionic grading in A.5 and Fi-
bonnaci anyons in section A.6. We discuss combining symmetries in section A.7.

A.1 Review: Representation theory

Let us review some basics from the representation theory of groups.

A (faithful) representation U of a group G on a vector space V is a group homomor-
phism U : G ! Hom (V, V ). This means a group representation assigns to every
group element g 2 G a linear map U(g) : V ! V , such that the group structure
is preserved, i.e. for g, h 2 G we have U(gh) = U(g)U(h). We suggestively use the
symbol U for the representation, since we want to think of it as unitary.

A linear map f : V ! W is equivariant between representations U on V and U 0

on W if f � U(g) = U 0(g) � f for all g 2 G. Two representations U and Ũ of
the same group G on vector spaces V and Ṽ respectively, are equivalent if there is
an equivariant vector space isomorphism S : V ! Ṽ , i.e. an invertible linear map
such that Ũ(g) = S � U(g) � S�1 for all g 2 G. In that case, we write U ⇠= Ũ .
We can think of equivalence as the criterion for a basis change between vector
spaces V ! Ṽ with associated representations, such that equivariance is preserved,
meaning if f : V ! W is equivariant, so is f � S�1.

A representation U on a vectorspace V is reducible, if there is a non-trivial proper
subspace 0 6= W ⇢ V which is invariant under U , that is if U(g)(w) 2 W for all
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w 2 W and g 2 G. The trivial subspace W = 0 and the full space itself W = V are
always invariant and are therefore excluded. A representation is irreducible if there
is no such W . We refer to irreducible representations as irreps for short. While
reducibility is suggestively named, we are not in general guaranteed that they can
actually be reduced. Let us first characterize what it means to be “reduced”, namely
as a direct sum.

The direct sum V �W of vector spaces V, W is given by {(v, w)|v 2 V, w 2 W} with
componentwise addition and scalar multiplication. If V, W are inner product spaces,
we can equip V �W with the inner product h(v1, w1)|(v2, w2)i = hv1|v2iV +hw1|w2iW .
The direct sum f � g of linear maps f1 : V1 ! V2 and g : W1 ! W2 is given by
componentwise application f � g : V1 � W1 ! W1 � W2, (v, w) 7! (f(v), g(w))
and in an appropriate basis, its matrix representation is the block-diagonal matrix
formed from the matrix representations of f, g. Finally, the direct sum U � Ũ
of representations U and Ũ of a group G on vector spaces V and Ṽ respectively
is a representation on V � Ṽ given by (U � Ũ)(g) = U(g) � Ũ(g), i.e. by the
componentwise direct sum of linear maps. Generalizations of these definitions to
direct sums of multiple spaces / maps / representations are straight-forward.

Irrep decomposition: We can now reduce general representations, if we include
the additional assumption that they are unitary; Any unitary representation U of a
group G on a finite-dimensional vector space V is equivalent to a finite direct sum
U ⇠=

LN
n=1

Un of irreps Un of G.

Proof: If U is irreducible, the claim is trivially fulfilled. Let us now assume U is
reducible and let 0 6= W ⇢ V be an invariant subspace.

Consider the orthogonal complement W? = {v 2 V |hv|wi = 0 8w 2 W}. For
any g 2 G, U(g) is unitary and in particular injective. Thus the restriction U1(g) :
W ! W, w 7! U(g)(w) is (a) well-defined since W is invariant and (b) also injective.
Since it is a linear map between vector spaces of equal finite dimension, it is also
surjective. Now let x 2 W? and w 2 W . Because of surjectivity, there is a w0 2
W s.t. U(g)(w0) = w, which means that U(g)(x) is in W? since hU(g)(x)|wi =
hU(g)(x)|U(g)(w0)i = hx|w0i = 0. This shows invariance of W? and allows us to
define the restriction U2(g) : W? ! W?, x 7! U(g)(x). Both restrictions U1/2 are
unitary by construction.

Now consider the vector space isomorphism S : V ! W �W?, v 7! (PW (v), v �
PW (v)), where PW is the projector on the subspace W . The inverse is simply
S�1 : W �W? ! V, (w, w0) 7! w + w0. We can conclude equivariance for all g 2 G

(S � U(g) � S�1)(w, w0) = S � (U(g)(w) + U(g)(w0)) = S � (U1(g)(w) + U2(g)(w0))

= (U1(g)(w), U2(g)(w0) = (U1 � U2)(g)(w, w0) ,
(A.1)

where we used that U(g)(w) = U1(g)(w) for w 2 W and similarly for U(g)(w) =
U2(g)(w0) for w 2 W?. This establishes U ⇠= U1 � U2.

This procedure can now be iterated for U1 and/or U2, until all components are
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irreducible. This terminates after a finite number of steps, as the dimension of the
representation spaces starts at the finite dim V and strictly decreases at each step.
⇤

The irrep decomposition is in general not unique, as any irrep Un may be replaced by
an equivalent irrep Ũn

⇠= Un. It is therefore convenient to choose one representative
for each equivalence class of irreps. We write Ua for such a representative and
call it a sector. For any group, the trivial representation U0 : g 7! 1 on the one-
dimensional space C is irreducible, and can be chosen as the representative of the
trivial sector, also called the symmetric sector. Let us write SG for the set of sector
labels such that every irrep U of a group G has exactly one a 2 SG such that
U ⇠= Ua. Let us consider a few examples, which we derive and discuss in more
detail in the following sections. We find integer labels SU(1) = for U(1), and
S N = N for N . For multiple symmetries, i.e. for the product group G ⇥ H
we find SG⇥H = SG ⇥ SH = {(a,b)|a 2 SG,b 2 SH}, i.e. tuples of the respective
individual sector labels.

Now, unitarity is not a strong requirement. If G is a finite group, a compact Lie
group, or any other group that admits a right-invariant Haar measure, any of its
representations D on a space V is equivalent to a unitary representation U on the
same representation space V .

Proof: Let D be a representation of G on V and h�|�i the inner product on
V . First, we construct a di↵erent inner product h�|�iD on V w.r.t. which D is
unitary. Under the assumptions above, we have some integral measure

R
G dx on

the group G, which is e.g. given by
R
G dxf(x) = 1

|G|

P
x2G f(x) for finite groups

G and group functions f : G ! C. It is a (right-) invariant measure, meaningR
G dxf(xy) =

R
G dxf(x) for any y 2 G. Using this measure we define a di↵erent

inner product for v, w 2 V as

hv|wiD :=

Z
dx hD(x)(v)|D(x)(w)i . (A.2)

It is easy to check that it is indeed an inner product (i.e. hermitian, linear and
positive). Now for any g 2 G and v, w 2 V we have

hD(g)(v)|D(g)(w)iD =

Z
dx hD(xg)(v)|D(xg)(w)i = hv|wiD (A.3)

because of the invariance of the measure, meaning D is indeed unitary w.r.t. h�|�iD.

Now, there is an isomorphism S : V ! V of inner product spaces (V, h�|�iD) and
(V, h�|�i), meaning hS(v)|S(w)i = hv|wiD. It can e.g. be constructed by mapping
an orthonormal basis in (V, h�|�i) to an orthonormal basis in (V, h�|�iD) and
linearly extending. Define the representation U of G on V via U(g) := S�D(g)�S�1,
which is equivalent to D by construction. Now for g 2 G and v, w 2 V we have

hU(g)(v)|U(g)(w)i =
⌦
(D(g) � S�1)(v)

��(D(g) � S�1)(w)
↵
D =

⌦
S�1(v)

��S�1(w)
↵
D

= hv|wi ,
(A.4)



154 APPENDIX A. TOPOLOGICAL DATA FOR COMMON SYMMETRIES

where we used the defining property of S, that D is unitary w.r.t. h�|�iD and again
the defining property of S. Thus we find that U is unitary w.r.t. the inner product
h�|�i on V and equivalent to D. ⇤

Thus for finite groups or compact Lie groups, which covers virtually all cases for
symmetry groups in condensed matter physics, we may simply assume a represen-
tation is unitary, up to equivalence. As a corollary, any representation – unitary or
not – of a finite group or a compact Lie group is equivalent to a direct sum of irreps.

The main result from representation theory that allows an e�cient representation
of symmetric tensors is Schur’s Lemma, which comes in two parts.

Schur’s lemma part 1: Let U and Ũ inequivalent irreps of a group G on finite
dimensional vector spaces V and Ṽ respectively. Now if M : V ! Ṽ is equivariant,
meaning linear and Ũ(g) �M = M � U(g) for all g 2 G, then M = 0.

Proof: Distinguish three cases regarding dimensionality.

In case 1, assume dim V < dim Ṽ . Consider the subspace M(V ) := {M(v)|v 2
V } ✓ Ṽ and let x = M(v) 2 M(V ). Then Ũ(g)(x) = (M � U(g))(v) 2 M(V ) for
all g 2 G. Thus M(V ) is an invariant subspace of Ũ . Since Ũ is an irrep, we have
either M(V ) = Ṽ or M(V ) = 0. The former is impossible for dimensional reasons
and thus M(v) = 0 for all v 2 V , meaning M = 0.

In case 2, assume dim V > dim Ṽ . Here we can reason similarly that W :=
kernel(M) = {v 2 V |M(v) = 0} is an invariant subspace of U , and because it
is an irrep conclude that W = V and thus M = 0.

In case 3, if dim V = dim Ṽ , if either M(V ) = Ṽ or W = V , we find M = 0 by the
same logic as in the previous cases. Thus, the remaining case for which we have not
yet concluded M = 0 is M(V ) = Ṽ and kernel(M) = 0. This would however imply
that M is both surjective and injective and thus a vector space isomorphism. Since
it is also equivariant, it would witness an equivalence U ⇠= Ũ , which contradicts the
assumption. ⇤

In other words, there are no intertwiners (linear M with the above property) between
inequivalent irreps. Even between equivalent irreps, the intertwiners are constrained
as follows.

Schur’s lemma part 2: Let U an irrep of G on a vector space V over an
algebraically closed field (e.g. over C), and M : V ! V equivariant. Then M = � idV

for some scalar � 2 C.

Proof: Since the field is algebraically closed, M has at least one eigenvalue �. Let
0 6= v 2 V be a corresponding eigenvector. Now consider the eigenspace E� = {v 2
V |M(v) = �v}. It is an invariant subspace since for any v 2 E� and g 2 G we
have M(U(g)(v)) = U(g)(M(v)) = U(g)(�v) = �U(g)(v) and thus U(g)(v) 2 E�.
Since U is an irrep, we have either E� = 0 or E� = V . Since there is an eigenvector
v 6= 0, the former is ruled out and we find M(v) = �v for all v 2 V , or equivalently
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M = �idV . ⇤

We find as a corollary that irreps of an abelian group G are one dimensional, if the
underlying field is algebraically closed.

Proof: Let U be an irrep on a vector space V . Since G is abelian, we have
U(g)U(h) = U(gh) = U(hg) = U(h)U(g) for all g, h 2 G. Thus Schurs Lemma part
2 applies with M = U(h) and we find U(g) = �idV for some scalar �, which may
depend on g. This means that any subspace of V is invariant under U , which contra-
dicts irreducibility of U unless there are no non-trivial proper subspaces, i.e. unless
dim V = 1. ⇤

To exploit Schur’s Lemma, it is convenient to use a basis {ei} for every vector space
such that the group representation is not only equivalent but actually equal to a
direct sum of irreps. This is done by employing the equivariant isomorphism – a
basis change – guaranteed by the equivalence to a direct sum of irreps. For abelian
groups, where all irreps are one-dimensional, this e↵ectively assigns an irrep label
ai to every basis element ei.

This imposes a sparsity structure on the matrix representations of equivariant maps,
as follows. Let f : V ! Ṽ be equivariant between representations U =

LM
i=1

Ui on
V and Ũ =

LN
j=1

Ũj on Ṽ of an abelian symmetry group G, where Ui, Ũj are irreps

and M = dim V , as well as N = dim Ṽ . For the matrix elements fij = hẽi|f(ej)i in
the computational bases {ej} of V and {ẽi} of Ṽ , equivariance f = Ũ †(g) � f �U(g)
translates to

fij =
D
Ũ(g)(ẽi)

���f(U(g)(ej))
E

=
D
Ũi(g)ẽi

���f(Uj(g)ej)
E

= Ũ †

i (g)fijUj(g), (A.5)

where we used that Ũi(g) and Uj(g) are just numbers and that f is linear. Thus for
fixed indices i = 1, . . . N and j = 1, . . . , M the entry fij of the matrix representation
is an equivariant map C ! C between Ui and Ũj and by Schurs lemma part 1, we
have fij = 0 if Ui � Ũj are inequivalent. Thus, if we sort the basis elements by
sector, that is by equivalence class of the irreps, we find a block diagonal structure
for the matrix representation of f , and the allowed blocks are between basis elements
ei 2 V and ej 2 W such that the irreps Ui

⇠= Ũj are in the same sector.

To apply the same idea to tensors, we need to define the product representation on
the tensor product of vector spaces. The tensor product U1 ⌦ U2 of representations
Ui on vector spaces Vi is a representation on the tensor product V1 ⌦ V2 which is
given by (U1 ⌦ U2)(g) = U1(g) ⌦ U2(g). Note that for abelian groups, the product
of irreps, which are one-dimensional, is also one-dimensional and thus equivalent to
a single irrep. This defines fusion rules of sectors, which we write as a + b = c if
Ua ⌦ Ub

⇠= Uc. For the group G = U(1), for example, the sector labels are integers
a 2 and the fusion rules are regular addition of labels. For a G = N group, the
sector labels are from a 2 N and the fusion rules are addition modulo N , as the
notation suggests. For products of groups, the fusion rules are componentwise.

The final ingredient is the natural representation on the dual space V ? – the space
of bra vectors – given a representation on a “ket space” V . Given a representation
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U of a group G on a space V with components | i 7! U(g)| i, the contragradient
representation Ū is a representation on the dual space V ? given by Ū(g) = U(g�1)T,
which is the map h�| 7! h�|U †(g). As a result, acting on both a bra and a ket vector
with the respective representation leaves the inner products (h�|U †(g))(U(g)| i) =
h�| i invariant.

For abelian groups, the contragradient representation of an irrep, and in particular
of a sector a is again one-dimensional, thus irreducible and equivalent to a single
sector. This gives rise to the notion of the “opposite” sector and we write �a for that
sector label such that Ūa

⇠= U�a. We have an equivalence Ūa⌦Ua
⇠= U0 to the trivial

sector, where the isomorphism is given by linear extension of S : h�|⌦ | i 7! h�| i.
In particular, this establishes a + (�a) = 0, justifying the notation for the opposite
sector. For our examples U(1) ( N), �a is actually the negative integer of a (modulo
N), and for product groups it is componentwise.

A.2 Cyclic Groups ZN

In the following section, here for G = N , we give relevant properties, and in
particular the topological data for a number of symmetries relevant in condensed
matter physics.

The group N for an integer N > 1 is given by the numbers N = {0, 1, . . . , N � 1}
with addition modulo N . Since it is an abelian group, all of its irreps are one-
dimensional and there are N equivalence classes of irreps. For each a = 0, . . . , N�1,
we choose the following representative irrep for the sector a; Ua(g) : C ! C, z 7!
e2⇡i

a
N gz, where g 2 N . Thus, sectors are labeled by non-negative integers a 2 S =

{0, 1, . . . , N � 1}. The dual sector is a = (�a mod N). The fusion rules are

a⌦ b ⇠= (a + b mod N), (A.6)

where in the following we will drop explicitly writing mod N and all arithmetic is
implicitly mod N .

The N symbol is given by Nab
c = �a+b,c. For abelian groups, a fusion tree is fully

determined by the uncoupled sectors and in the following we only give the values of
the symbols for valid fusion channels.

The F symbol is trivial ⇥
F abc
a+b+c

⇤b+c,1,1

a+b,1,1
= 1 (A.7)

where we directly plugged in the only valid sectors, e.g. d = a+b+c and multiplicity
labels µ = ⌫ =  = � = 1. The R symbol is similarly trivial

⇥
Rab

a+b

⇤1
1

= 1. (A.8)

The set of valid fusion outcomes consists of only a single sector Fa,b = {(a + b
mod N)}. The C symbol, like the F symbol, is one for the only valid fusion channel

⇥
Cabc

a+b+c

⇤a+b,1,1

a+c,1,1
= 1 . (A.9)
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The B symbol is similarly

⇥
Bab

a+b

⇤1
1

= 1 . (A.10)

As for any abelian symmetry, all sectors are one-dimensional da = 1. As for any
group symmetry, the twists ⇥a = 1 are trivial. The Frobenius Schur indicators
�a = +1 are all positive.

The fusion tensors are trivial, given by linear extension of

Xab
c,1 : 1⌦ 1 7! 1 (A.11)

and the Z isomorphisms are also just one, meaning Za : C? 3 z 7! z 2 C.

A.3 The abelian group U(1)

The abelian group U(1) is the unit circle {z 2 C||z| = 1} in the complex plane with
multiplication as group operation. It has a countably infinite number of sectors,
indexed by a 2 , where the representative irrep is given by

Ua(e
i�) : C! C, z 7! eia�z, (A.12)

where ei� 2 U(1) is a general group element. All results for N groups listed above
also hold for U(1), if we replace the addition modulo N with regular addition.

A.4 The non-abelian group SU(2)

The compact Lie group SU(2) is given by complex 2⇥ 2 matrices which are unitary
and are special (have determinant one). It has a countably infinite number of sectors,
labeled by a half-integer “total spin” j 2 1

2
.

For derivations and for concrete expressions of the representation, it is useful to
go to the associated Lie algebra su(2), and later to its complexification. A general
element g 2 SU(2) can always be written as e` for some ` 2 su(2). For the spin
j irrep Uj : SU(2) 7! Hom (Rj, Rj) of SU(2), there is a compatible representation
⇡j : su(2)! Hom (Rj, Rj) on the same representation space Rj = C2j+1, such that
Uj(g) = exp(⇡j(`)). This allows us to build the group irreps from the Lie algebra
representations, which are easier to deal with due to the vector space structure. The
standard C-basis for the complexified Lie algebra su(2)C consists of three elements
j3, j+, j�. Their representations Jk = ⇡j(jk) are the following operators, given as
(2j + 1)⇥ (2j + 1) matrices
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J3 =

0

BBBBB@

j
j � 1

. . .
1� j

�j

1

CCCCCA

J+ =

0

BBBBBB@

0
1 0

1
. . .
. . . 0

1 0

1

CCCCCCA
J+ =

0

BBBBB@

0 1
0 1

. . .
. . .
0 1

0

1

CCCCCA
.

(A.13)

They are related to the standard -basis of the real Lie algebra su(2) as J3 = iL3 and
J± = iL1⌥L2. Or conversely L1 = � i

2
(J+ +J�), L2 = �1

2
(J+�J�) and L3 = �iJ3.

Note that the “real” qualifier of the real Lie algebra refers to the fact that su(2) is
a real vectorspace, and that linear combinations of its basis elements need to have
real coe�cients. The representation matrices Li, however, have complex entries and
the representation space Rj is a complex vector space.

The j = 0 case gives us the trivial representation Uj=0(g) : z 7! z. The j = 1/2 case
gives us the faithful representation U(g) = g.

The fusion rules are j1 ⌦ j2 =
Lj1+j2

J=|j1�j2|
J , such that

Nab
c =

(
1 c 2 {|a� b|, . . . , a + b}
0 else

. (A.14)

We can directly read o↵ the set of fusion outcomes Fa,b = {|a� b|, . . . , a + b}. Note
that if a, b are either both integer or both fractional, the fusion outcomes are all
integer. Conversely if either a or b, but not both, are fractional, all fusion outcomes
are fractional. Since the N symbol can not take values greater than one, the only
possible multiplicity label on a valid fusion tensor is µ = 1.

For the fusion tensors, we choose the usual Clebsch-Gordan coe�cients, commonly
denoted as hj1m1j2m2|JMi. In the standard z-basis {|mi|m = �j, . . . , j} for the
representation space Rj of the spin-j irrep, that means

Xj1,j2
J,1 = |m1i ⌦ |m2i 7!

JX

M=�J

hJM |j1m1j2m2i |Mi . (A.15)

The F symbol, as we define it in (5.70), is related to the Wigner 6j symbol or the
Racah W symbol W (j1j2Jj3; J12J23) as follows

⇥
F abc
d

⇤e,1,1
f,1,1

=
p

2e + 1
p

2f + 1W (abdc; fe)

=
p

2e + 1
p

2f + 1(�1)a+b+c+d

⇢
a b f
c d e

�
.

(A.16)
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For computation and storage schemes for the 6j symbols which give the F symbols
and the Wigner 3j symbols, which give the fusion tensors refer e.g. to reference [175].

The R symbol is given by ⇥
Rab

c

⇤1
1

= (�1)a+b�c . (A.17)

Note that the exponent is integer for valid fusion channels Nab
c > 0.

The quantum dimensions are da = 2a + 1. The Frobenius Schur indicator is given
by�a = (�1)(2a). It is positive for integer spins and negative for half integers, while
the twist, like for all group symmetries, is ⇥a = +1.

The Z isomorphism takes the following explicit form in the standard z-basis {|mi}.

Zj : R?
j ! Rj, hm| 7!

X

n

Aj
m,n |ni , (A.18)

where

Aj =

0

BBBBBBB@

��j

�j

. .
.

�1
1

�1

1

CCCCCCCA

(A.19)

is a (2j +1)⇥ (2j +1) anti-diagonal matrix with alternating signs, such that its top
right entry is ��j = (�1)2j+1. We have chosen the phase of the Z ismorphism, such
that (5.84) holds with the usual phase choice of the Clebsch Gordan coe�cients.

A.4.1 Derivation of the Z isomorphism

For completeness, and to facilitate similar treatment of other Lie groups, we give
the full derivation of the above result for the Z isomorphism in the following. First,
as a small warning, note that Zj is a linear map from bra vectors to ket vectors.
This is rather unusual in physics, where we may have a strong expectation that such
maps, such as e.g. the dagger, are anti-linear.

We show that the map defined above has the necessary properties to be a Z isomor-
phism. First, it is by definition linear and inherits unitarity from the matrix A. It
remains to check that Zj is equivariant.

It is straight-forward to check that (Aj)†JiAj = �Ji for the basis J3, J± of the
complexified Lie algebra. This implies (Aj)†LiAj = L̄i for the basis of the real Lie
algebra, where L̄ denotes the elementwise complex conjugate matrix of L.

The representation
P

i ↵iLi = L = ⇡j(l) of a general element su(2) 3 l =
P

i ↵ili
is a real (↵i 2 ) linear combination of the Li and thus also fulfills (Aj)†LAj = L̄.
Therefore the respective representation U(g) of a general element SU(2) 3 g = el

fulfills
(Aj)†U(g)Aj = (Aj)†eLAj = e(Aj

)
†LAj

= eL̄ = Ū(g) . (A.20)
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This is su�cient to show that Zj is symmetry-preserving, meaning Zj � U(Rj)
?(g) =

URj(g) �Zj for all g 2 SU(2). It is enough to compare the action on a generic basis
element;

LHS: hm| 7! hm| U †(g) =
X

m0

Um0m hm0| 7!
X

m0n

Um0mAj
nm0 |ni

=
X

n

⇥
Aj · U(g)

⇤
nm

|ni
(A.21)

RHS: hm| 7!
X

m0

Aj
m0m |m0i 7!

X

m0

Aj
m0mU(g) |m0i =

X

m0n

Aj
m0mUnm0(g) |ni

=
X

n

⇥
U(g)Aj

⇤
nm

|ni =
X

n

⇥
Aj(Aj)†U(g)Aj

⇤
nm

|ni

=
X

n

⇥
AjU(g)

⇤
nm

|ni ,

(A.22)

where we write U(g) := URj(g) for the representation on the ket space Rj for read-
ability and Unm := hn|U(g)|mi.

To derive the concrete form of the matrix in general, note that we used above that
the irreps of SU(2) are self-dual, meaning j = j. In general, we need to solve
the set of matrix equations (Aj)†⇡j(`i)Aj = ⇡̄j(`i) for all generators `i of the real
Lie algebra, as the remaining derivations generalizes to any Lie group. Note that
depending in the chosen bases, this may or may not translate to an equation like
(Aj)†⇡j(ji)Aj = �⇡j(ji) with the generators ji of the complexified algebra.

A.5 Fermions

Next, we consider the tensor category Ferm. We can understand it as a description
of fermions since the fusion rules and the exchange statistics encoded in the braid
give the correct behavior.

We start from the category FdSHilbC of finite dimensional complex super Hilbert
spaces. Its objects are pairs (H, H 0) of finite dimensional complex Hilbert spaces,
where we can think of H as the “bosonic” part with even fermionic parity and H 0

as the “fermionic” part with odd parity. Its morphisms are pairs (f, f 0) : (H, H 0)!
(K, K 0) of linear maps f : H ! K and f 0 : H 0 ! K 0 and composition is compo-
nentwise, as is addition of morphisms and multiplication with scalars. The identity
morphism is id(H,H0) = (idH , idH0). Direct sums are componentwise direct sums of
vector spaces. We obtain the tensor category Ferm by equipping the super Hilbert
spaces with the following monoidal and braiding structures.

For explicit constructions in the following, it is convenient to use the matrix notation
in a category with linear structure and direct sums. Let A = �M

m=1
Am be witnessed

by inclusions im : Am ! A and projections pm : A! Am and similarly B = �N
n=1

Bn

by inclusions ĩn : Bn ! B and projections p̃n : B ! Bm. Now for morphisms
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fm,n : Am ! Bn we define their matrix as

0

BBB@

f1,1 f2,1 . . . fM,1

f1,2 f2,2 . . . fM,2

...
...

. . .
...

f1,N f2,N . . . fM,N

1

CCCA
:=

X

m,n

ĩn � fm,n � pm (A.23)

and conversely, every morphism g : A! B is equal to the matrix of gm,n := p̃n�g�im.
If the morphisms are linear maps between vector spaces, we can think of this matrix
notation as forming the block matrix of the respective matrix representations of the
fm,n. Composition of matrix morphisms can be carried out similar to matrix-matrix
multiplication, i.e. in short (f � g)m,n =

P
k fm,k � gk,n.

The tensor product is defined on objects as

(H, H 0)⌦ (K, K 0) := ((H ⌦K)� (H 0 ⌦K 0), (H ⌦K 0)� (H 0 ⌦K)) (A.24)

and encodes the fermionic statistics; a composite system of two fermionic degrees of
freedom (0, H 0) and (0, K 0) behaves as a boson (H 0 ⌦K 0, 0). The tensor product of
morphisms (f, f 0) : (H, H 0)! (K, K 0) and (g, g0) : (L, L0)! (M, M 0) is defined as

(f, f 0)⌦ (g, g0) :=

✓✓
f ⌦ g 0

0 f 0 ⌦ g0

◆
,

✓
f ⌦ g0 0

0 f 0 ⌦ g

◆◆
, (A.25)

structurally very similar to the tensor product of objects, except diagonal matrices
of morphisms take the place of direct sums of spaces. To read explicit forms of
morphisms like above, first expand the domain and codomain of (f, f 0) ⌦ (g, g0) :
(H, H 0)⌦ (L, L0)! (K, K 0)⌦ (M, M 0) using (A.24). Now, each component of such
a morphism is a map between the direct sums, resulting from expanding the tensor
product, and can be given as a matrix.

The monoidal unit is I = (C, 0). The associator is given by

↵(A,A0)(B,B0)(C,C0) =

0

BB@

0

BB@

↵ABC 0 0 0
0 0 ↵AB0C0 0
0 0 0 ↵A0BC0

0 ↵A0B0C 0 0

1

CCA ,

0

BB@

↵ABC0 0 0 0
0 0 ↵AB0C 0
0 0 0 ↵A0BC

0 ↵A0B0C0 0 0

1

CCA

1

CCA ,

(A.26)

where ↵ABC : (A ⌦ B) ⌦ C
⇠=�! A ⌦ (B ⌦ C) are the associators of FdHilbC. The

definition in terms of matrices suppresses some isomorphisms of the form (H�K)⌦
L

⇠=�! (H ⌦L)� (K ⌦L) to map the domain ((A, A0)⌦ (B, B0))⌦ (C, C 0) such that
each component is a flat direct sum and we can apply the matrix notation.

The unitors are

�(A,A0) =
��
�A 0

�
,
�
�A0 0

��
⇢(A,A0) =

��
⇢A 0

�
,
�
0 ⇢A0

��
. (A.27)

The dagger of morphisms is componentwise (f, g)† = (f †, g†).
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The dual is also componentwise, (H, K)? = (H?, K?), where the cup and cap are
given by

⌘(H,H0) =

✓✓
⌘H
⌘H0

◆
, 0

◆
✏(H,H0) =

��
✏H ✏H0

�
, 0
�

. (A.28)

The braid is given by

⌧(A,A0),(B,B0) =

✓✓
⌧A,B 0
0 �⌧A0,B0

◆
,

✓
⌧A,B0 0

0 ⌧A0,B

◆◆
, (A.29)

where ⌧A,B : A ⌦ B ! B ⌦ A, |ai ⌦ |bi 7! |bi ⌦ |ai is the braid of FdHilbC. We
see the fermionic exchange statistics; braiding a fermionic state around a fermionic
state gives a minus sign, while all other braidings have a plus sign. The braid is
symmetric.

This fully defines the category and we now turn to the topological data. Checking the
compatibility axioms to verify that the definitions above do indeed yield a tensor
category is cumbersome, but straight-forward, as is deriving the topological data
below.

There are two sectors, the trivial sector, or boson I = (C, 0) and the fermion  =
(0,C), such that S = {I, } = 2, where we identify I = 0 2 2 and  = 1 2 2

for explicit numerical values below. Both sectors are self-dual; a = a. The fusion
rules resulting from the tensor product defined above are I ⌦ I ⇠= I ⇠=  ⌦  and
I ⌦ ⇠=  ⇠=  ⌦ I. This category shares a property with representations of abelian
groups, which we call unique fusion, namely that the tensor product of two sectors
a, b decomposes as only a single sector, such that Nab

c is non-zero for only a single
sector c, where it is one. We write a+b for that single sector such that a⌦b ⇠= a+b.
We find

Nab
c = �c,a+b. (A.30)

Since we have unique fusion, the entire fusion channel is determined by the input
sectors, i.e. the upper indices of the F, R, C, B symbols. We therefore only give the
values of the symbols with the unique indices that give a consistent fusion channel.

The fusion tensors are

XII
I =

✓✓
X
0

◆
, 0

◆
XI 
 =

✓
0,

✓
X
0

◆◆

X I
 =

✓
0,

✓
0
X

◆◆
X  

I =

✓✓
0
X

◆
, 0

◆
,

(A.31)

where X : C⌦ C! C, x⌦ y ! xy is the fusion tensor of FdHilbC.

The Z isomorphism are simply ZI = (Z, 0) and Z = (0, Z), where Z : C? ! C, z 7!
z is the Z isomorphism of FdHilbC.

As for all categories with unique fusion, we find that the F symbol for valid fusion
channels is ⇥

F abc
a+b+c

⇤b+c,1,1

a+b,1,1
= 1. (A.32)
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The R symbol is given by

⇥
Rab

a+b

⇤1
1

= 1� 2ab =

(
�1 a = b =  

1 else
(A.33)

as expected; if we braid two fermions, we get a minus sign, and a plus sign otherwise.

The resulting expression for the C symbol is

⇥
Cabc

a+b+c

⇤a+b,1,1

a+c,1,1
= 1� 2bc =

(
�1 b = c =  

1 else
(A.34)

and the B symbol is again trivial

⇥
Bab

a+b

⇤1
1

= 1. (A.35)

Both sectors are one-dimensional da = 1 and have a positive Frobenius indicators
�a = +1. The twist is ⇥a = (�1)a = 1 � 2a. In that sense, we have equipped
FdSHilbC with a non-trivial twist.

A.6 Fibonacci Anyons

Next, we consider the tensor category Fib. We can understand it as a description
of Fibonacci anyon excitations since the fusion rules and the exchange statistics
encoded in the braid give the correct behavior.

The construction is similar to the category Ferm of fermions and comments there
apply. We start from the same underlying objects, tuples (H, H 0) of finite dimen-
sional Hilbert spaces, and morphisms, tuples (f, f 0) : (H, H 0) ! (K, K 0) of linear
maps f : H ! K and f 0 : H 0 ! K 0. Again, composition, addition, scalar multipli-
cation, identities, direct sums and the dagger are all componentwise.

We choose a di↵erent tensor product for Fib, however, namely

(H, H 0)⌦ (K, K 0) := ((H ⌦K)� (H 0 ⌦K 0), (H ⌦K 0)� (H 0 ⌦K)� (H 0 ⌦K 0)) .
(A.36)

Note the additional term in the second component compared to (A.24). The mo-
noidal unit is I = (C, 0). The associator

↵(A,A0)(B,B0)(C,C0) =
�
↵I

(A,A0)(B,B0)(C,C0),↵
⌧
(A,A0)(B,B0)(C,C0)

�

is a tuple of the following two components
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↵I
(A,A0)(B,B0)(C,C0) =

0

BBBB@

↵ABC 0 0 0 0
0 0 ↵AB0C0 0 0
0 0 0 ↵A0BC0 0
0 ↵A0B0C 0 0 0
0 0 0 0 ↵A0B0C0

1

CCCCA

↵⌧
(A,A0)(B,B0)(C,C0) =

0

BBBBBBBBBB@

↵ABC0 0 0 0 0 0 0 0
0 0 ↵AB0C 0 0 0 0 0
0 0 0 0 0 ↵AB0C0 0 0
0 0 0 ↵A0BC 0 0 0 0
0 1

�↵A0B0C0 0 0 0 0 0 1
p
�
↵A0B0C0

0 0 0 0 0 0 ↵A0BC0 0
0 0 0 0 ↵A0B0C 0 0 0
0 1

p
�
↵A0B0C0 0 0 0 0 0 � 1

�↵A0B0C0

1

CCCCCCCCCCA

,

(A.37)

where � = (1 +
p

5)/2 is the golden ratio and we suppress isomorphisms similar
to (A.26).

The unitors are

�(A,A0) =
��
�A 0

�
,
�
�A0 0 0

��
⇢(A,A0) =

��
⇢A 0

�
,
�
0 ⇢A0 0

��
. (A.38)

The dual object is componentwise (H, K)? = (H?, K?), where the cup and cap are
given by

⌘(H,H0) =

✓✓
⌘H
⌘H0

◆
, 0

◆
✏(H,H0) =

��
✏H ✏H0

�
, 0
�

(A.39)

which is structurally very similar to fermions, but note that the zero maps in the
second components have a di↵erent type.

The braid is given by

⌧(A,A0),(B,B0) =

0

B@

 
⌧A,B 0

0 e�
4

5
⇡i⌧A0,B0

!
,

0

B@
⌧A,B0 0 0

0 ⌧A0,B 0

0 0 e
3

5
⇡i⌧A0,B0

1

CA

1

CA (A.40)

Here, we can already heuristically interpret the exchange statistics. Braiding two ⌧ ’s

results in a phase that depends on the joint state or “fusion channel”, it is e�
4

5
⇡i⌧A0,B0

if they fuse to I and e
3

5
⇡i if they fuse to ⌧ . In particular, the braid is not symmetric.

Now for the topological data; The sectors are the trivial sector or vacuum I = (C, 0)
and the tau anyon ⌧ = (0,C), such that S = {I, ⌧}. They are both self-dual a = a
and the fusion rules

I ⌦ I ⇠= I I ⌦ ⌧ ⇠= ⌧ ⌧ ⌦ I ⇠= ⌧ ⌧ ⌦ ⌧ ⇠= I � ⌧ (A.41)
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are indeed the correct fusion rules for Fibonacci anyons and give rise to the N symbol

N Ib
c = �b,c NaI

c = �a,c N ⌧⌧
c = 1. (A.42)

Note that the N symbol only takes on values Nab
c 2 {0, 1}, such that all multiplicity

labels for valid fusion channels are µ = 1.

The fusion tensors are

XII
I =

✓✓
X
0

◆
, 0

◆
XI⌧
⌧ =

0

@0,

0

@
X
0
0

1

A

1

A X⌧I
⌧ =

0

@0,

0

@
0
X
0

1

A

1

A

X⌧⌧
I =

✓✓
0
X

◆
, 0

◆
X⌧⌧
⌧ =

0

@0,

0

@
0
0
X

1

A

1

A .

(A.43)

The Z isomorphism are simply ZI = (Z, 0) and Z⌧ = (0, Z).

The only non-trivial F symbol is

⇥
F ⌧⌧⌧
⌧

⇤e,1,1
f,1,1

=

8
><

>:

��1 e = f = I

���1 e = f = ⌧

��1/2 (e, f) 2 {(I, ⌧), (⌧, I)}
(A.44)

and for all other (a, b, c, d) 6= (⌧, ⌧, ⌧, ⌧) we have [F abc
d ]e,1,1f,1,1 = 1 where there is only

one valid choice for e, f in each case.

The only non-trivial R symbol is

⇥
R⌧⌧

c

⇤1
1

=

8
<

:
e�

4

5
⇡i c = I

e
3

5
⇡i c = ⌧

(A.45)

and for all other (a, b) 6= (⌧, ⌧) we have [Rab
c ]1

1
= 1 and there is only one valid choice

for c in each case.

The non-trivial B symbols are [B⌧⌧
I ]1

1
= ��1/2 and [BI⌧

⌧ ]1
1

= �1/2 and all others are
[B⌧⌧

⌧ ]1
1

= [B⌧I
⌧ ]1

1
= [BII

I ]1
1

= 1.

The quantum dimensions are dI = 1 and d⌧ = �, the Frobenius Schur indicators are

all positive �a = +1 and the twists are ✓I = 1 and ✓⌧ = ��1e�
4

5
⇡i + e

3

5
⇡i.

A.7 Combining symmetries

Combining multiple symmetries is formalized by Deligne’s tensor product. For ten-
sor categories A and B, a Deligne tensor product is a category A⇥B with a functor
⇥ : A ⇥ B ! A ⇥ B that has the following defining property. Firstly, ⇥ is right-
exact in both arguments and, secondly, for any other tensor category C and functor
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F : A⇥B! C that is right exact in both arguments there is a unique right exact
functor F̃ : A ⇥ B! C such that F = F̃ �⇥. Under our assumptions for a tensor
category, such a product is guaranteed to exist and is unique up to a unique equiv-
alence [167, Prop 1.11.2] and can be equipped with all the structures of a tensor
category in a canonical way [167, Prop 4.6.1]. Dealing with it explicitly and deriving
the following statements rigorously is beyond the scope of this thesis. We expect
that the explicit construction in [166, Def. 8.45] may prove useful. The following
statements in this section are thus to be taken as conjecture.

We expect that the Deligne tensor product of tensor categories that describe individ-
ual symmetries describes the composite symmetry in the following senses; For sym-
metry groups G and H the Deligne product can be chosen as FdRepG⇥FdRepH =
FdRepG⇥H and thus describes the symmetry group G⇥H. For a symmetry group
G, we conjecture that the Deligne product FermG := Ferm⇥FdRepG is a category
that can be explicitly defined by generalizing the definition of Ferm from tuples of
Hilbert spaces (objects in FdHilbC) to tuples of representations of G, that is ob-
jects of FdRepG. It thus represents fermionic degrees of freedom with a symmetry
group. Similarly for Fib, we expect FibG := Fib⇥FdRepG to describe Fibonacci
anyon excitations with a symmetry group, with an analogous generalization of the
definition of Fib. We expect that similar constructions apply to other modular
anyon categories, other than Fib.

Let us now conjecture the topological data. The sectors are given by Deligne tensor
products of sectors, that is

SA⇥B = {a ⇥ b|a 2 SA, b 2 SB} (A.46)

which we can just understand as tuples (a, b) of respective sectors in the practical
implementation. The topological data mostly just factorizes; The N symbol is given
by

Na1⇥a2,b1⇥b2
c1⇥c2

= Na1,b1
c1 Na2,b2

c2 (A.47)

such that multiplicity labels µ = 1, . . . , Na1⇥a2,b1⇥b2
c1⇥c2

can be recast as tuples (µ1, µ2)
of separate multiplicity labels µi = 1, . . . Nai,bi

ci , i.e. by using strides. The fusion
tensors are

Xa1⇥a2,b1⇥b2
c1⇥c2,(µ1,µ2)

= Xa1,b1
c1,µ1

⇥ Xa2,b2
c2,µ2

(A.48)

and the Z isomorphisms are

Za1⇥a2 = Za1 ⇥ Za2 . (A.49)

The remaining topological data all factorizes, such as e.g. for the R symbol
⇥
Ra1⇥a2,b1⇥b2

c1⇥c2

⇤(µ1,µ2)

(⌫1,⌫2)
=
⇥
Ra1,b1

c1

⇤µ1

⌫1

⇥
Ra2,b2

c2

⇤µ2

⌫2
(A.50)

i.e. as a matrix of multiplicity indices, it is the Kronecker matrix product of the
respective symbols from the separate categories. Similar expressions hold for the F,
C and B symbols. The quantum dimensions, Frobenius Schur indicator and twist
all factorize too, e.g. da1⇥a2 = da1da2 .

Generalizations to combinations of more than two symmetries is straight-forward.



Appendix B

Derivation of automatic
di↵erentiation formulae

In this chapter, we give derivations for the results of AD formulae for the truncated
SVD stated in section 4.2.2, and give similar formulae for a truncated hermitian
eigendecomposition. This is inspired by the work in Ref. [39], where the authors
analyze the AD formula for a truncated hermitian eigendecomposition and derive
an additional term that arises from the truncated spectrum, as well as demonstrate
how the AD formula simplifies for the particular cost function(s) they consider in
the context of iPEPS optimization, because of an enlarged gauge invariance. The
results that we present here for the general case are thus just a reiteration of what
they found. The point we want to emphasize here is the simplification that arises
in the presence of larger gauge freedoms of the decomposition. For the hermitian
eigendecomposition, this is a reframing of the results of Francuz et al to a general
context that does not rely on the specific usecase of the CTMRG step for which
they derive it. For the SVD, this is – to our knowledge – a new result.

Let us first state some preliminary properties, used in the following derivations. The
Hadamard product A�B is defined as elementwise multiplication (A�B)ij := AijBij.
We can use two special matrices, the identity matrix with entries ij = �i,j and
the fully o↵-diagonal matrix O with entries Oij = 1� �i,j, to decompose any matrix
A into its diagonal and o↵-diagonal parts

A = � A + O � A. (B.1)

For a diagonal matrix S we have

� S = S , O � S = 0. (B.2)

and for diagonal S and a general matrix A we find commutative behavior on the
diagonal

� (AS) = ( � A)S = S( � A) = � (SA). (B.3)

Conversely, the anticommutator

AS � SA = O � (AS � SA) (B.4)

167
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is purely o↵-diagonal.

We also need the following properties of the Hadamard product for matrices A, B, C
and diagonal S

(A �B)T = AT �BT ; (A �B)† = A† �B† (B.5)

Tr (S( � A)) = Tr (SA) (B.6)

Tr (A(C �B)) = Tr
�
(CT � A)B

�
. (B.7)

And note that the trace fulfills

Tr (A + c.c.) = Tr
�
A† + c.c.

�
(B.8)

B.1 Derivations for hermitian eigendecomposition

The setup for the truncated hermitian eigendecompositition is a decomposition

A = USU † + XY X† (B.9)

of a hermitian n ⇥ n matrix A, such that U 2 Cn⇥k and X 2 Cn⇥(n�k) are (left)
isometries

U †U = k ; X†X = n�k (B.10)

and X is the orthogonal complement of U

U †X = 0 = X†U (B.11)

UU † + XX† = n. (B.12)

The matrix S of kept eigenvalues is real and diagonal

� S = S = S†. (B.13)

We understand the decomposition as a function A 7! (U, S) that achieves A ⇡
USU †.

B.1.1 Result

The result for the backward formula for the function A 7! (U, S) is the following

�A = �S

A + �Uo

A + �tr

A = U�SU † + U
�
�F �

�
U †�U

��
U † + XX†�U †, (B.14)

where

Fij :=

(
0 i = j

1/(Si � Sj) i 6= j
(B.15)

and � denotes elementwise multiplication of matrices, and where � is the solution
of the Sylvester equation

�U = �S � A†XX†�. (B.16)
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This Sylvester equation has a unique solution if and only if S and Y have disjoint
spectra, such that splitting multiplets of degenerate eigenvalues should be avoided.
In practice, the Sylvester equation should be solved numerically. Note that X is
typically not computed and thus its projector should be applied to a matrix M via
XX†M = M � UU †M . Francuz et al report encountering bad conditioning of the
Sylvester equation and recommend a right pre-conditioner S�1 for the biconjugate
gradient method they use to solve it.

The result (B.14) simplifies in the following special cases

• If there is no truncation, i.e. if k = n we have �tr

A
= 0.

• If the loss function is invariant under the enlarged1 gauge transformation

U 7! UQ , S 7! Q†SQ (B.17)

for arbitrary unitary Q, we find that �Uo

A
= 0. This drastically simplifies the

formula and removes divergences in F in the presence of degenerate eigenval-
ues.

B.1.2 Decomposing Di↵erentials

Let us split the di↵erential dU into components in the space spanned by U and X
respectively.

dU
(B.12)

= UU †dU + XX†dU =: UdC1 + dC2 (B.18)

Now by di↵erentiating the isometry condition (B.10) we find

dC†

1
= �dC1 (B.19)

and from the orthogonality constraint (B.11) we get

dX†U = �X†dU = �X†dC2. (B.20)

Now we define the transformed di↵erential

dP := U †dAU
(B.19)

= dC1S + dS � SdC1. (B.21)

From this di↵erential we can extract

� dP
(B.3)

= � dS
(B.13)

= dS, (B.22)

as well as with Fij = 1/(Si � Sj) for i 6= j and Fii = 0.

F � dP = �O � dC1. (B.23)

1A smaller gauge freedom, where Q is restricted to be diagonal and transforms only the phase of
the eigenvectors is inherent to any eigendecomposition. In that sense, the gauge freedom discussed
here is “enlarged” to arbitrary unitary Q.
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Finally, consider

XX†dAU
(B.20)

= dC2S �XX†AdC2. (B.24)

We have found expressions for dS and the o↵-diagonal parts of dC1, as well as an
equation that determines dC2. We are missing an equation for the diagonal parts
of dC1. This is a feature unique to the complex case, since in the real case (B.19)
implies that this diagonal part vanishes.

B.1.3 Gauge Invariance

The diagonal parts can be dealt with by exploiting the gauge invariance of any
eigendecompostion. The phase of the eigenvalues is arbitrary, such that the trans-
formation U 7! U⇤ for a diagonal unitary ⇤ preserves the defining properties of the
decomposition. As such, any well defined cost function that uses an eigendecompo-
sition as an intermediate step must be invariant under that transformation. Note
that we are free to choose the gauge ⇤, and independently its variations d⇤, this is
because we can choose a function ⇤(A) of gauge choices, which has an independent
value and derivative at the point of interest.

Since ⇤ is diagonal O � ⇤ = 0 and unitary ⇤⇤† = , its variations are constrained
by

O � d⇤ = 0 ; d⇤† ⇤ = �⇤d⇤† (B.25)

but otherwise arbitrary. On the di↵erential dC1, the gauge transformation has the
following e↵ect

dC1 = U †dU 7! ⇤†dC1⇤ + ⇤†d⇤. (B.26)

It is therefore convenient to choose ⇤ = , such that this reduces to dC1 7! dC1+d⇤.
We may now choose the gauge variations as d⇤ = � � ˜dC1, where the tilde denotes
the di↵erential in an arbitrary reference gauge. Therefore, in the chosen gauge we
have

� dC1 = 0. (B.27)

B.1.4 Contributions to the adjoint

The starting point for the autodi↵ formula is equating the following di↵erentials

Tr
�
�AdA† + c.c.

�
= dL = Tr

�
�UdU † + �SdS† + c.c.

�
. (B.28)

First, consider the contribution via dS. We obtain

Tr
�
�SdS† + c.c.

� (B.22)

= Tr
�
�S

�
� dP †

�
+ c.c.

� (B.7)

= Tr
�
( � �S) U †dA†U + c.c.

�

= Tr
�
�S

AdA† + c.c.
�
, where �S

A := U�SU †

(B.29)

and where we used in the last step that �S is diagonal, because S is diagonal.
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We consider separately the two contributions via dU = UdC1 +dC2. For the contri-
bution from dC1, recall that it is purely o↵-diagonal because of (B.27) and we know
the value of these o↵-diagonal entries from (B.23). We find

Tr
�
�U(UdC1)

† + c.c.
�

= Tr
�
U †�U(F � dP †) + c.c.

�

(B.7)

= Tr
��
�F � (U †�U)

�
U †dA†U + c.c.

�

= Tr
�
�Uo

A dA† + c.c.
�
,

where �Uo

A := U
�
�F � (U †�U)

�
U † .

(B.30)

For the final contribution, let � be a solution to the Sylvester equation �S �
A†XX†� = �U . Then, we find

Tr
⇣
�UdC†

2
+ c.c.

⌘
= Tr

⇣
�
⇣
SdC†

2
� dC†

2
A†XX†

⌘
+ c.c.

⌘

(B.24)

= Tr
�
�U †dA†XX† + c.c.

�

= Tr
�
�tr

AdA† + c.c.
�
, where �tr

A := XX†�U † .

(B.31)

In summary, we have dealt with all contributions to the RHS of (B.28) and conclude
�A = �S

A
+ �Uo

A
+ �tr

A
.

B.1.5 Special cases

The first special case, namely if there is no truncation and k = n, implies X = 0
and �tr

A
= 0 follows directly.

Second, consider the case where the cost function is invariant under the enlarged
gauge transformation U 7! UQ and S 7! Q†SQ with unitary Q. Note that S is
now (in general) no longer diagonal. Similar to the arguments of subsection B.1.3,
the gauge transformation are unitary QQ† = k but otherwise arbitrary, such that
the variations are constrained by dQQ† + QdQ† = 0 but otherwise arbitrary. If
we now choose Q = , that is choose the gauge that makes S diagonal, we find
that the variations dQ = �dQ† are anti-hermitian. The e↵ect on the di↵erentials
is dC1 7! dC1 + dQ. Since this di↵erential is anti-hermitian by (B.19), we may
choose dQ such that dC1 = 0. Therefore, we find no contribution from dC1, that is
�Uo

A
= 0.

There is one caveat; In this gauge, the variations dS are (in general) no longer
diagonal and acquires an o↵-diagonal part SdQ�dQS, such that (B.22) and (B.23)
do not hold anymore. The result is still valid, however, since (B.21) now directly
implies dS = dP such that Tr

�
�SdS† + c.c.

�
= Tr

�
U�SU †dA† + c.c.

�
holds anyway

and the expression for �S

A
remains unchanged.

B.2 Derivations for SVD

The derivations for the SVD are in large parts similar to the derivations for the
eigendecomposition above, but also di↵er substantially. For completeness and read-
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ability, we nevertheless give a full derivation again, which has overlap with the
previous section.

Let us first reiterate the setup. The truncated SVD of an m⇥ n matrix A is given
by

A = USV † + XY Z†, (B.32)

where S is a k⇥ k real, positive diagonal matrix – the kept singular values. On the
other hand Y is (m � k) ⇥ (n � k) real, non-negative and all entries o↵ the main
diagonal vanish – the discarded singular values. Note that we demand that S is
strictly positive, i.e. that all vanishing singular values are in Y . This allows for a
stable inverse of S, even for rank-deficient A. The matrices U , V , X, Y are (left)
isometries

U †U = k = V †V

X†X = m�k ; Z†Z = n�k

(B.33)

and X (Z) is the orthogonal complement of U (V ) such that

U †X = 0 ; V †Z = 0 (B.34)

UU † + XX† = m ; V V † + ZZ† = n . (B.35)

The result for the AD formula is given in section 4.2.2.

As a standard recipe for deriving AD formulae, we start by equating the expressions
for the total derivative of the loss function L, once expressed in terms of the input
A and once in terms of the outputs U, S, V .

Tr
�
�AdA† + c.c.

�
= dL = Tr

�
�UdU † + �SdS† + �V dV † + c.c.

�
(B.36)

Our goal is then to solve for an expression of �A in terms of �U , �S, �V and U, S, V, A.

B.2.1 Decomposing Di↵erentials

We start with the di↵erential of (B.32)

dA = dUSV † + UdSV † + USdV † + dXY Z† + XdY Z† + XY dZ†. (B.37)

We note that since S is real and diagonal, so is dS, i.e.

� dS = dS = dS†. (B.38)

It is convenient to decompose the di↵erentials of the isometries into two parts, using
(B.35)

dU = UU †dU + XX†dU =: UdC1 + dC2 (B.39)

dV = V V †dV + ZZ†dV =: V dD1 + dD2 . (B.40)

By di↵erentiating the isometry constraints (B.33) we find that the first parts are
anti-hermitian

dC†

1
= �dC1 ; dD†

1
= �dD1. (B.41)
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The orthogonality constraints (B.34) on the other hand yield

dX†U = �X†dU ; dZ†V = �Z†dV. (B.42)

Finally, we transform/project dA using (B.33), (B.34) and (B.41)

dP := U †dAV = dC1S + dS � SdD1. (B.43)

B.2.2 Intermediate Results

Using (B.43), (B.41) and (B.3) we find

dS = � dP + dP †

2
(B.44)

� (dC1 � dD1) =


� dP � dP †

2

�
S�1 . (B.45)

Using (B.43), (B.2) and (B.4) we find

O �
�
dPS + SdP †

�
= dC1S

2 � S2dC1, (B.46)

which we can solve for

O � dC1 = F �
�
dPS + SdP †

�
. (B.47)

Recall that Fij = 1/(S2

i � S2

j ) for i 6= j and Fii = 0. Similarly, we obtain

O �
�
SdP + dP †S

�
= dD1S

2 � S2dD1 (B.48)

O � dD1 = F �
�
SdP + dP †S

�
. (B.49)

Next use (B.42) to obtain

XX†dAV = dC2S �XX†AdD2 (B.50)

ZZ†dA†U = dD2S � ZZ†A†dC2 (B.51)

We have found expressions for dS, as well as for the o↵-diagonal parts of dC1 and
dD1, a set of coupled equations that determine dC2 and dD2, but only one equation
for the diagonal parts of both dC1 and dD1. We are missing a second equation to
determine these diagonal parts. This is a unique feature of the complex case, since
in the real case equation (B.41) implies that the diagonals vanish. The missing
equation can be obtained from the gauge invariance inherent to a complex SVD.

B.2.3 Gauge Invariance

The SVD has an inherent gauge freedom of k complex phases, since for a diagonal
unitary ⇤ we have

A = USV † = U⇤⇤†S⇤⇤†V † = (U⇤)S(V ⇤)†, (B.52)
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such that
U 7! Ũ := U⇤ , S 7! S , V 7! Ṽ := V ⇤ (B.53)

yields another SVD of A that is just as valid. Therefore, a well-defined loss function
that uses an SVD as an intermediate step must be invariant under this gauge free-
dom; E(U, S, V ) = E(U⇤, S, V ⇤). Note that we are free to choose the gauge ⇤, and
independently its variations d⇤. We can think of a function ⇤(M) of gauge choices
for every possible input M and we may independently choose its value ⇤(A) at the
given input A, and its variations d⇤ =

P
ij(@⇤/@Mij)(A) dM ij.

Since ⇤ is diagonal O � ⇤ = 0 and unitary ⇤⇤† = , the variations fulfill

O � d⇤ = 0 , d⇤⇤† = �⇤d⇤†. (B.54)

On the di↵erential dC1, the gauge transformation has the following e↵ect

dC1 = U †dU 7! ⇤†U † (dU⇤ + Ud⇤) = ⇤†dC1⇤ + ⇤†d⇤ (B.55)

It is thus convenient to choose ⇤ = , such that dC1 7! dC1 +d⇤ simply obtains an
additive contribution. In this choice, d⇤ is constrained to be diagonal and purely
imaginary, but otherwise arbitrary. We can thus choose the gauge variations as
d⇤ = � � dC1 which is diagonal by construction and purely imaginary by (B.41),
such that in the new gauge

� dC1 = 0. (B.56)

B.2.4 Contributions to the Adjoint

We now decompose the di↵erentials in (B.36) as

dU = U ( � dC1) + U (O � dC1) + dC2 (B.57)

dV = V ( � dD1) + V (O � dD1) + dD2, (B.58)

which gives us several contributions to �A, which we treat separately in the following.
First, for the contribution via dS we use equations (B.44), (B.7), (B.8) to obtain

Tr
�
�SdS† + c.c.

�
= Tr

�
�S

AdA† + c.c.
�
, (B.59)

where �S

A := U

 
�

�S + �†

S

2

!
V †. (B.60)

Second, for the o↵-diagonal contribution via dC1 use (B.47), (B.7) and (B.8) to
obtain

Tr
�
�U [U (O � dC1)]

† + c.c.
�

= Tr
�
�Uo

A dA† + c.c.
�
, (B.61)

where �Uo

A := U
�
J + J†

�
SV † ; J := F �

�
U †�U

�
. (B.62)

Third, we get analogously from (B.49)

Tr
�
�V [V (O � dD1)]

† + c.c.
�

= Tr
�
�Vo

A dA† + c.c.
�
, (B.63)

where �Vo

A := US
�
K + K†

�
V † ; K := F �

�
V †�V

�
. (B.64)
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Fourth, for the diagonal contributions via dC1 and dD1 we use (B.45) and (B.56)
and obtain

Tr
�
�U [U ( � dC1)]

† + �V [V ( � dD1)]
† + c.c.

�
= Tr

⇣
�diag

A
dA† + c.c.

⌘
, (B.65)

where �diag

A
:=

1

2
US�1

�
L† � L

�
V † ; L := �

�
V †�V

�
. (B.66)

Finally, the contribution via dC2 and dD2, i.e. via the truncated spectrum, is given
by

Tr
⇣
�UdC†

2
+ �V dD†

2
+ c.c.

⌘
= Tr

�
�tr

AdA† + c.c.
�
, (B.67)

with �tr

A := XX†�V † + U'†ZZ†. (B.68)

where �,' are the solutions of the coupled Sylvester equations

�Ū = �S � AZZ†'

�V̄ = 'S � A†XX†�.
(B.69)

This can be shown by plugging (B.69) into the LHS of (B.67) and using equations
(B.50) and (B.51).

In summary, we have treated all contribution to the RHS of (B.36) such that we
have �A = �S

A
+ �Uo

A
+ �Vo

A
+ �diag

A
+ �tr

A
.

B.2.5 Special cases

Let us now consider the special cases listed in section 4.2.

Firstly, for a real SVD, the diagonal contribution �diag

A
= 0 vanishes, since (B.41)

implies that the diagonals � dC1 = 0 = � dD1 vanish.

Secondly, if there is no truncation, that is if k = min(m, n), we have X = 0 (if
k = m) and/or Z = 0 (if k = n). In either case AZZ† = 0 = A†XX†, such that the
Sylvester equations (B.69) simplify and admit closed-form solutions � = �US�1 and
' = �V S�1. We obtain the known AD term for rectangular matrices.

Thirdly, if A is square (m = n) and there is no truncation (m = n = k), we have
that both X = 0 = Z such that �tr

A
= 0.

Lastly, if the loss function is invariant under the enlarged gauge transformation

U 7! UQ ; S 7! Q†SR ; V 7! V R, (B.70)

we may proceed similar to the arguments of subsection B.2.3. The gauge trans-
formations Q, V are unitary QQ† = = RR† but otherwise arbitrary, such that
the variations are constrained by dQQ† + QdQ† = 0 but otherwise arbitrary. If we
now choose Q = we find that dQ is anti-hermitian dQ† = �dQ, and similarly
for dR. In the gauge choice Q = = R, the e↵ect of the gauge variations on the
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di↵erentials is dC1 7! dC1 + dQ and dD1 7! dD1 + dR. Since those di↵erentials
are indeed anti-hermitian by (B.41), we may choose the gauge variations such that
in the new gauge dC1 = 0 = dD1. Therefore, we find �Uo

A
= �Vo

A
= �diag

A
= 0.

Similar to the eigendecomposition case, the di↵erential dS acquires o↵-diagonal
contribution from the gauge variations, even if the gauge is chosen such that S
is diagonal. Equation (B.44) no longer holds and only yields the diagonal part of
dS. On the other hand, we directly get dS = dP from (B.43) such that we find
Tr

�
�SdS† + c.c.

�
= Tr

�
U�SV †dA† + c.c.

�
and therefore �S

A
= U�SV † instead.
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Acronyms

AD automatic di↵erentiation. 39, 48, 50, 65, 67–71, 82, 150, 167, 172, 175

ALS alternating least squares. 52

bMPO bulk matrix product operator. 36, 37

bMPS boundary matrix product state. 35–37, 39, 70–72, 75, 77, 78, 82

CPU central processing unit. 4, 48, 55, 63, 81

CTMRG corner transfer renormalization group. 38, 39, 70, 167

DMRG density matrix renormalization group. 4, 5, 7, 8, 12, 19, 23, 24, 26–28, 30,
32, 38, 45, 47, 52, 63, 65, 71, 77, 81, 149, 150

DSF dynamical spin structure factor. 78–80

dSVD deformed singular value decomposition. 15, 18, 21, 22, 31, 37, 49–54, 56,
57, 59, 63, 68–70, 150

ED exact diagonalization. 3

FCS finitely correlated state. 7

FFT fast Fourier transform. 57, 58

FFU fast full update. 39

FLOP floating point operation. 35, 40

FU full update. 7, 38, 39, 77, 81, 82

GPU graphics processing unit. 4, 45, 48, 49, 55, 59, 63, 82, 149

iMPS infinite matrix product state. 7, 32

iPEPS infinite projected entangled pair state. 34, 80, 149, 167
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iTEBD infinite time evolving block decimation. 54, 60
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[118] L. Wang, I. Pižorn, and F. Verstraete, Monte Carlo simulation with tensor
network states, Physical Review B, vol. 83, no. 13, p. 134 421, Apr. 2011. doi:
10.1103/PhysRevB.83.134421.

[119] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Simulation of Quan-
tum Many-Body Systems with Strings of Operators and Monte Carlo Tensor
Contractions, Physical Review Letters, vol. 100, no. 4, p. 040 501, Jan. 2008.
doi: 10.1103/PhysRevLett.100.040501.

[120] M. Lubasch, J. I. Cirac, and M.-C. Bañuls, Unifying projected entangled pair
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