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Executive Summary
Increasing urbanization and the resulting demand for mobility in urban areas provide challenges
for the transportation sector to cope with space scarcity, congestion, pollution, and greenhouse
gas emissions. New modes of transportation are needed to reduce the dependency on private
cars and bridge the gap to high-capacity public transportation. Technological advancements
in connectivity, automation, and electrification have, and will continue to, enable new mobility
services and business models. Especially shared mobility services have the potential to reduce
the number of parking cars if private car ownership can be substituted, increase traffic efficiency
if trips can be shared, and reduce emissions if electric vehicles are used. Without the cost of
a driver, automated vehicles can provide these services at a low price, enabling frequent usage
to achieve the desired benefits.

This thesis deals with autonomous ride-pooling, a shared mobility service that combines
the described technologies. In autonomous ride-pooling, a service provider operates a fleet
of autonomous vehicles that offers rides for customers on-demand. Customers share rides
with other customers if they travel in a similar direction to increase the occupancy of the
vehicles. In terms of service availability and travel time, autonomous ride-pooling can provide
convenience similar to private cars. At the same time, a higher vehicle occupancy allows for a
more efficient use of the road infrastructure.

This thesis focuses on the operations of autonomous ride-pooling services. To provide the
service, potentially thousands of autonomous vehicles need to be dispatched to pick up and
drop off customers. A central control system must compute vehicle routes and schedules in
real-time to serve dynamically incoming ride requests while ensuring availability of vehicles in
the operating area. Three key research questions are addressed in this thesis: 1) Assignment:
How can the operator efficiently assign customers and schedules to fleet vehicles? 2) Reposi-
tioning: How can the operator reposition idle vehicles to ensure availability and efficiency? 3)
Reservation: How can the operator offer customers the option to reserve a ride in advance?

Solving the assignment problem requires finding the solution to a large-scale Vehicle Routing
Problem in real-time. As this problem is notoriously hard to solve, a tailored algorithm for the
ride-pooling setting is developed. As customers of this service expect a convenient service,
tight time windows for pick-up and drop-off can be exploited to reduce the search space for
feasible vehicle schedules. An efficient search strategy exploits the problem’s structure, while
a dynamically updated database of computed vehicle schedules allows the reuse of solutions
from previous assignments.

To maintain the availability of vehicles in the operating area, idle vehicles have to be repo-
sitioned dynamically to balance demand and supply. A key question is estimating the required
supply in specific areas based on a prediction of future demand. In a ride-pooling service, this
estimation must incorporate that future rides can be shared and accommodated by currently
non-idle vehicles en-route. A repositioning algorithm is developed in this thesis that samples
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future requests from a forecast and simulates future fleet states to detect supply shortages. An
optimization problem is formulated to find repositioning actions to prevent these shortages.

When customers are allowed to reserve trips in advance, the operator can benefit, on the one
hand, from additional information about future demand to plan vehicle schedules accordingly.
On the other hand, the operator must commit to serving these reservations without knowing
the future state of the system. A multi-rolling horizon approach is developed in this thesis
that allows scheduling pre-booked rides while also serving dynamically incoming on-demand
requests. The algorithm can guarantee the fulfillment of reservations while re-optimizing short-
term schedules to provide an efficient mixed service for on-demand and pre-booking customers.

To evaluate the developed algorithms, an agent-based simulation framework tailored to as-
sess ride-pooling services is developed. Next to the proposed algorithms for assignment, repo-
sitioning, and reservation, state-of-the-art benchmark algorithms are implemented to compare
the performance. Case studies for the cities of Chicago, Munich, and Manhattan are conducted
to evaluate the algorithms in different urban environments.

General results show a huge potential for the autonomous ride-pooling service: Approxi-
mately 1,000 fewer vehicles are needed to serve the ride-hailing demand in Chicago when trips
are shared. In Munich, 1,250 vehicles can replace 10% of private vehicle trips in the city, while
only 11% of the taxi fleet size is needed in Manhattan to serve the taxi rides. The compar-
ison with benchmark algorithms shows that the developed assignment algorithm can reduce
average termination times by 76% in the Chicago case study compared to a state-of-the-art
benchmark algorithm with similar performance. The evaluation of repositioning shows the
general importance of distributing vehicles in the operating area to ensure availability. In the
Chicago and Manhattan case studies, the fraction of served requests could be increased by up
to 40%. At the same time, vehicles generated revenue for the service for up to 6 additional
hours per day if repositioning is applied. Compared to benchmark algorithms, the developed
repositioning algorithm can increase the number of served requests by up to 3%. At least
the same service rate can be achieved in all scenarios tested. Nevertheless, in scenarios where
the proposed algorithm does not improve the service rate, the amount of empty repositioning
vehicle kilometers can be reduced significantly, proving the efficiency of the developed algo-
rithm. Concerning reservations, the developed multi-rolling horizon approach can successfully
incorporate pre-booked rides into the service while guaranteeing the fulfillment of these reser-
vations. Especially the ability to re-optimize short-term schedules to serve pre-booking and
on-demand customers simultaneously can improve the service rate by up 7%. Nevertheless,
the general impact of reservations on system performance is mixed: Slightly positive effects
can be observed when the fraction of pre-booked rides is either low or very high, and the
distribution of these rides is correlated with the distribution of on-demand requests. In the
other scenarios, the performance of the service can slightly deteriorate due to the commitment
to serve reservations.
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Chapter 1

Introduction

1.1 Motivation
By 2050, the UN projects that 68% of the world’s population will live in urban areas, up
from 55% in 2018 [United Nations, 2018]. A rise in travel demand increasing traffic
congestion, greenhouse gas emissions, air pollution and noise accompany this trend. In the
United States (US), the times of congestion increased by 48% between 2007 and 2017, resulting
in a total cost of 179$ billion annually [Schrank et al., 2019]. While during Covid-19
congestion reduced in 2019, pre-pandemic levels are reached again in many US and European
cities [TomTom, 2022]. Besides the problem of congestion, the transportation sector is
additionally responsible for a large share of greenhouse gas emissions, 28% in the US [US
EPA, 2021] and 20% in Germany [Umweltbundesamt, 2022]. It is therefore imperative
to enhance traffic efficiency: On the one hand, to combat climate change and comply with more
and more stringed regulations, such as the “European Green Deal” [European Commission,
2023] seeking to reduce greenhouse gas emissions of cars by 55% by 2030 compared to 1990
levels, and on the other hand, to tackle resource scarcity induced by rising mobility demand.
These problems have to be solved while still sufficient mobility solutions are provided to the
people. Technology can have the potential to restructure the current status quo of mobility
and meet these criteria. In fact Sperling [2018] describes three – currently happening –
revolutions of the transportation sector: Automation, Electrification and Shared Mobility.

Driven by policies and subsidies aiming to reduce greenhouse gases, electrification in the
transportation sector, i.e., the transition from fossil fuels to electric powertrains, is currently
rapidly evolving. While the penetration of fully electric vehicles was below 1% in the European
Union (EU) and the US before 2017, in 2022 it already reached 12% and 6.2% in EU and US,
respectively [Joel Jaeger, 2023]. Also in China, electric vehicle sales have risen drastically
in recent years. While in 2023, 95% of all electric vehicles were sold in China, Europe, and
the US, just under 60% of all electric cars were sold in China in this time frame [IEA, 2024].
Especially considering the planned phase-out of combustion engines in many countries (e.g.,
effectively by 2035 in the EU [European Commission, 2023] and the United States [The
White House, 2021]), the future domination of electric vehicles seems inevitable.

Nevertheless, just electrifying the current fleet of vehicles will not be sufficient to solve the
problems of the transportation sector. Still, the same inefficient usage of private vehicles will
lead to wasted space in cities and traffic congestion. If usage does not change, private vehicles
remain idle for around 23 hours per day [Shoup and American Planning Association,
2005] blocking valuable space in cities, while a low average occupancy (e.g.,1.1 persons per ve-
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hicle for commuting trips [Umweltbundesamt, 2024]) still results in inefficient road usage
and congestion. While public transportation provides a sustainable alternative, a mode shift
from private vehicles to public transit is often hindered by the lack of availability, flexibility,
reliability, and comfort of public transportation services (e.g. [Göransson and Andersson,
2023]). Shared mobility can provide a solution to these problems. Instead of restricting ve-
hicles to private use, the goal is to maximize the utilization of mobility resources by sharing
them among multiple users while still providing a convenient and reliable service. Although the
coordination of shared mobility (i.e., the matching of users and resources) provided technical
challenges in the past, the rise of digitalization with GPS-enhanced smartphone applications
enabled a rapid growth of shared mobility services in the last decade. For example in Ger-
many, the number of registered users for carsharing services – in which customers can rent a
vehicle for a short period of time – has increased from 0.45 million in 2013 to 4.47 million in
2023 [Bundesverband CarSharing e.V., 2023]. Alternatively, the goal of ride-sharing
is to share a trip among multiple users. With the original intention to connect private drivers
and passengers to share parts of their trips, Transportation Network Companies (TNCs) like
Uber, Lyft, or Didi have emerged in the last decade. Uber, for example, was founded in
2009 and reported an increase in the number of trips from 3.0 billion in 2017 to 7.6 billion in
2022 [WallStreetZen, 2023].

Despite the increasing availability and popularity of shared mobility services, costs for using
the service remain too high to replace most private vehicle trips. The largest cost component
of these services is the driver, which is required to operate the vehicle. Vehicle automation has
the potential to remove this cost component and therefore reduce the cost of shared mobility
services significantly. Becker et al. [2020], for example, estimated the costs for these mobility
services could be reduced by 29% to 84% mainly depending on the local level of labor costs.
While the deployment of automated vehicles is still in early the stages of development, first
test services are already in operation, waiting for large-scale rollouts. The best known test
services are Waymo [Waymo, 2024], an automated taxi service currently operating in Phoenix,
Arizona, and the automated services by Cruise [Cruise, 2024] and Waymo in San Francisco,
California. But also in China, automated taxi services are in operation in multiple cities, for
example by Baidu [Magramo et al., 2024] or AutoX [AutoX, 2024].

All these three revolutions combined – electrification, shared mobility, and automation – have
the potential to disrupt the current status quo of mobility as we know it. If all revolutions
converge into a socially beneficial system of Shared Autonomous Electric Vehicles (SAEVs),
citizens may rely on low-cost, clean, convenient, and efficient mobility services for either door-
to-door transport, or acting to bridge the gap to long-haul public transport [Narayanan
et al., 2020].
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(a) Waymo [Waymo, 2024]

(b) Cruise [Cruise, 2024]

Figure 1.1: Examples of automated vehicles of the test services by Waymo and Cruise in San
Francisco.

1.2 Autonomous Ride-Pooling
This thesis deals with Autonomous Ride-Pooling (ARP) services, which can be interpreted
as such a convergence. In an ARP service, customers can request a trip via a smartphone
application from an origin location to a destination location. This trip can either be requested
on-demand, which indicates a service as fast as possible, or it can be pre-booked to a specific
time in advance. An operator (or service provider) offers the service and operates a fleet of
Autonomous Vehicles (AVs). The operator’s task is to coordinate its fleet and assign vehicles
to serve incoming requests. The operator aims to pool multiple customers with similar origin-
destination relations to share parts of their trip, thereby increasing vehicle utilization and
reducing costs.

When designing such a service, the objectives of multiple stakeholders have to be considered
to achieve a mobility service that is beneficial for all. From the operator’s perspective, the
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service has to be profitable. From the customer’s perspective, the service must be attractive.
From a regulatory perspective, the service has to benefit the society as a whole. The detailed
specifications of these stakeholder objectives depend on the local context of the service.

This thesis focuses on the urban operation of an ARP service. Due to high population
density, high demand for a city-scale service can be expected, requiring a large fleet (possibly
hundreds to thousands or even tens of thousands) of AVs operating in the city to meet the
demand. With good access to other mobility services, customers likely expect a high level of
service, i.e., short waiting and travel times, and high service reliability. A service of this scale
issues also challenges for municipal authorities, which have to ensure that the service provides
social benefits. For approving the service, authorities may require the service to minimize
traffic impacts or generally embed the service into the local public transportation system. The
service provider, on the other hand, has to design and operate its service to meet the demands
of customers and satisfy municipal requirements while still ensuring a profitable operation.

The focus of this thesis is on the operational perspective. Multiple questions have to be
answered when designing and operating an ARP service, for example:

• How much demand can be expected?

• How many vehicles are required to meet the demand, and how many seats should they
provide?

• How should vehicles be operated and controlled to serve the demand?

• In which operating area should the service be offered?

• Which services should be offered to customers (e.g., express vs. standard or on-demand
vs. pre-booking)?

• What pricing scheme should be used?

• How should different stakeholder objectives be incorporated?

This list is not exhaustive, and additionally, answers to one question might influence the answer
to another question (e.g., the pricing scheme will influence the demand that can be expected).

These questions can be summarized in the general question:

How should the ARP service provider operate and control its vehicles to serve
the demand?

Therefore, the thesis will focus on the backbone of the ARP service: The assignment of routing
tasks to its fleet vehicles to serve customers of the service efficiently. The following section
defines the problem statement and research questions in more detail.

1.3 Problem Statement and Research Questions
The goal of this thesis is to develop and evaluate methods to operate an ARP service in an
urban environment. The underlying control problem can be formulated as follows: Given a
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fleet of vehicles with certain attributes (e.g., number of seats), assign tasks to the vehicle fleet
that serves incoming requests while optimizing a specific objective, such as the profit of the
service. Tasks, thereby, involve directing a vehicle to a specific location at a designated time,
following a particular route within a predefined operating area, to perform a specific action
(such as picking up or dropping off a customer). An ordered set of tasks for a vehicle is called
a schedule.

This problem, i.e., assigning the optimal set of schedules to vehicles, will be discussed in
detail in this thesis. Unfortunately, it is notoriously hard to solve, resulting from the exploding
number of possible schedules to choose from and assign to vehicles. Additionally, the problem
is highly dynamic and stochastic. The primary source of dynamism and stochasticity stems
from customers requesting trips on demand. These requests are usually not known in advance
– at best, a distribution of requests from historical data is known – and the operator has to
react to these requests in real-time.

This thesis aims to develop methods to solve this problem efficiently that could be applied
in a real-world ARP service. Further, these methods are evaluated based on the impact on Key
Performance Indicators (KPIs) of all stakeholders. The general control problem sketched above
is split into three key subproblems, which are the focus of this thesis, namely “Assignment”,
“Repositioning”, and “Reservation”. These subproblems and their associated research
questions are defined in the following subsections.

Since a real-world ARP service is currently unavailable and testing these methods would not
be economically viable, the evaluation is performed in a simulation environment. An agent-
based simulation tool is developed that allows the evaluation of the proposed methods in a
realistic setting. Case studies for Munich, Germany, Chicago, US and Manhattan, US are
conducted to evaluate the methods in diverse settings and prove their general applicability.

1.3.1 Impacts of Ride-Pooling
The first set of research questions deals with the general impact of the Autonomous Ride-
Pooling (ARP) and its choice of design parameters on the performance of the service. As
sharing of rides is the key component of a ride-pooling service, on a higher level, the goal is
to answer the research question

RQ I: What are the benefits of pooling rides?
Compared to a ride-hailing service, where each customer is served individually, a pooled service
is expected to have a higher fleet utilization and, therefore, a higher efficiency. This higher fleet
efficiency can lead to a reduction in the number of vehicles required to serve the same demand,
resulting in the research questions “How many vehicles are required to serve the demand when
rides are pooled?”, and “How many seats should these vehicles provide to facilitate pooling?”.

Demand for the service is a central parameter for its success. Therefore, the question arises
“How does the demand for the service impact the performance of an ARP service?”. Especially
in ride-pooling services, a sufficiently high demand seems critical to ensure that shareable trips
can be found.

To answer these research questions, solving the control problem of the ARP service is nec-
essary, which in turn involves additional research questions that are discussed in the following
sections.
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1.3.2 Assignment
Solving the assignment problem is the core of the ARP service. The solution to this problem
defines which customer is served by which vehicle and creates the corresponding schedules and
routes for fleet vehicles to serve these customers. The goal of the assignment problem is to
accommodate new requests by finding vehicle schedules that optimize some objective while
considering the current fleet state is considered and certain constraints are fulfilled.

Besides external factors, the algorithm for solving the assignment problem might be the
most decisive factor for the performance of the ARP service and its impact on customers and
traffic, motivating the main research question of this section:

RQ II: How can the operator of an ARP service assign customers and schedules to fleet
vehicles efficiently?

Mathematically, the underlying control problem is a Vehicle Routing Problem (VRP) defined
by its objective and a set of constraints.

The objective is a control function that is used to rate possible vehicle schedules to enable
a comparison between them and, therefore, a decision on which schedule to choose. The
first example in Figure 1.2a shows the impact of two different (conflicting) objectives on the
selection of schedules. To serve two requests with two vehicles, a schedule where customers
share part of their trip would be the best option if the goal is to minimize the overall vehicle
distance traveled. If, on the other hand, the objective is to offer a more convenient service
for customers by, for example, minimizing their waiting time for pick-up, an assignment where
the customers are served by different vehicles is preferred. Nevertheless, this solution will lead
to additional vehicle kilometers traveled by the vehicle fleet.

Constraints, on the other hand, describe hard limits that have to be satisfied for schedules
to be considered feasible. The vehicle capacity (i.e., number of passenger seats), for exam-
ple, describes a hard limit on the number of customers allowed to be onboard the vehicle
simultaneously. Time constraints can be applied to ensure a specific service level guarantee.
For an ARP service, time constraints often limit the customer waiting time for pick-up or the
maximum in-vehicle travel time which might get prolonged in case of pooling.

In a dynamic environment, an additional constraint is a fast computational time of the
assignment algorithm to enable real-time decision-making and short response times to incoming
requests. As the number of possible schedules grows exponentially with the number of vehicles
and requests, and brute-force methods that search the whole solution space are computationally
infeasible, the question arises “How can the dynamic assignment problem be solved efficiently
with short response times?”. Typically, heuristic methods can be used to limit the search space
and find good solutions in a reasonable time, resulting in a trade-off between solution quality
and computational time that has to be quantified.

In the dynamic context, also the continuity of the assignment must be ensured. As new
customers dynamically request new trips, decisions made in the past have to be taken into
account when assigning new schedules to vehicles. It has to be ensured that customers who
have already booked the trip are still scheduled to be served. Nevertheless, reconsideration
of previous decisions should be taken into account after new customers have made their
request. Depending on the incoming requests, it might be beneficial to re-assign already
scheduled customers to different vehicles to accommodate new requests. The second example
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in Figure 1.2b shows a possible impact of re-assignment. In a previous decision, the first
vehicle was scheduled to serve request 1 and request 2 in a shared route. Once customer 3
requested a trip, it is beneficial (at least with the objective of minimizing vehicle distance) to
re-assign request 2 to the other vehicle and serve requests 1 and 3 together. Nevertheless,
from a customer standpoint, re-assignments also have disadvantages: Re-assignment will lead
to varying scheduled pick-up times, reducing the predictability of the actual pick-up time and
reliability of communicated scheduled pick-up times for the customer. It is therefore natural
to ask “Next operational benefits of re-assignments in an ARP service, what are the impacts
on customers?”, and consequently “Which methods can be applied to reduce the drawbacks
of re-assignments for customers while operational benefits are maintained?”

Example 1: Objec�ve: Min. Vehicle Distance Example 1: Objec�ve: Min. Wai�ng Time

(a) Example 1: Impact of assignment objective.

Example 2: No Re-Assignment Example 2: With Re-Assignment

(b) Example 2: Impact of re-assignment.
New Request i Previously Assigned Request i

ARP Vehicle with Travel Direction
Previously Assigned 

Travel Direction

Figure 1.2: Two examples sketching the possible impact of assignment objective and re-
assignment.

1.3.3 Repositioning
Once vehicles finish their assignment, they might end up idle in the area of their last scheduled
customer drop-off. These locations are usually different from areas where new customer
requests emerge, driving the system into a spatio-temporal imbalance of demand and supply.
As vehicles would tend to have a long approach trip to a new request, this imbalance would
lead to high customer waiting times and/or customer cancellations. To reduce this imbalance,
idle vehicles can be pro-actively redistributed to areas where future demand is expected. This
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procedure is sketched in Figure 1.3 and referred to as “Repositioning” or “Rebalancing”. This
leads to the next research question:

RQ III: How does an ARP service benefit from repositioning?
Determining these trips usually requires three steps: 1) A prediction for future demand. 2)

A methodology to determine the imbalance of demand and supply. 3) A formulation to define
which vehicles should be rebalanced. This thesis focuses on the second and third steps. A
special focus is put on the estimation of imbalance, when rides can be shared. In contrast
to ride-hailing services that do not allow sharing, the imbalance is not only determined by
the number of requests but also by the possibility of sharing rides of these requests, and the
potential accommodation of en-route vehicles to serve these requests has to be considered.
This observation leads to the questions “How can the imbalance of demand and supply for
an ARP service be determined?”, and consequently “Based on the imbalance of demand and
supply, how can repositioning trips be assigned to vehicles?”.

Figure 1.3: Sketch showing the repositioning problem. After serving requests, vehicles might
end up in areas of low demand. Repositioning describes the pro-active dispatching
of idle vehicles in areas with high expected demand.

1.3.4 Reservation
The final topic of this thesis deals with trip reservations (or pre-bookings) in the ARP service.
Some trips – for example scheduled appointments – are known to travelers long time in
advance. Instead of risking potential long waiting times or even no service at all, it can be
beneficial for customers to book these trips in advance. Pre-bookings might also be beneficial
for the operator: As pre-bookings are known in advance, the operator can plan its fleet
accordingly, reducing the uncertainty of the system. On the contrary, pre-bookings might also
deteriorate the performance of the service. As the operator commits to serve a pre-booked trip,
once it was accepted, it might hinder the operator from serving more profitable on-demand
requests.

Figure 1.4 illustrates two examples where pre-bookings can improve or worsen the state of
the ride-pooling service. The sketches show situations with a single vehicle in blue and multiple
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requests i and their corresponding origin oi and destination di indicated by a circle and a star,
respectively. Different colors indicate different states of the request: Black corresponds to an
on-demand customer that already requested a trip. Grey depicts a customer that is about to
request a trip (still unknown to the operator at time t) and green corresponds to a pre-booked
trip. In the first example (Figure 1.4a), only request 1 is known to the operator initially. The
vehicle is assigned to pick up the customer. Later, customer 2 requests a trip, but the vehicle
is no longer able to serve this customer without violating possible time constraints on pick-up
and drop-off of customer 1. Therefore, customer 2 is rejected (indicated by the red cross). If
customer 2 on the other hand booked the trip in advance, a feasible schedule for the vehicle
could have been found to serve both customers. In contrast, example 2 (Figure 1.4b) shows
a situation where booking in advance deteriorates the number of served customers. Without
pre-booking a situation is sketched where three customers request a trip at the same time.
A feasible schedule can be found that serves customers 1 and 3, but customer 2 has to be
rejected. On the other hand, if customer 2 already booked the trip in advance, the operator
guaranteed its service and can no longer serve the customers 1 and 3.

The underlying research question therefore is:

RQ IV: Does an operator of an ARP service benefit from offering pre-bookings?

Allowing pre-bookings to the service also raises operational questions, that need to be
solved to answer RQ IV. The assignment algorithm has to deal with short term on-demand
requests and long term pre-bookings at the same time and find feasible assignments for on-
demand requests while ensuring the service of confirmed pre-bookings. From the assignment
perspective, therefore the questions arise “How to incorporate pre-bookings into the assignment
problem of an ARP service?”, and “How can the service for pre-booked trips be guaranteed
while still serving on-demand requests?”. Additionally, the repositioning algorithm has to
consider the long-term pre-bookings when determining available vehicles for repositioning,
leading to the question “How can long-term pre-bookings be incorporated into the repositioning
algorithm?”.
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Example 1: No Reserva�on

Example 1: With Reserva�on

(a) Example 1: Reservation can improve the number of served customers.
Example 2: No Reserva�on

Example 2: With Reserva�on

(b) Example 2: Reservation can deteriorate the number of served customers.
Revealed Request i Unrevealed Request i Reservation Request i

ARP Vehicle with Travel Direction Rejection

Figure 1.4: Two Examples sketching the possible impact of reservations on the ARP-Systems.
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1.4 Outline of the Thesis
The outline of the thesis is shown in Figure 1.5 highlighting the affiliation of the content to
the research questions formulated in this chapter.

In the next chapter, a detailed literature review is provided to give an overview of the
state of the art in the field of ARP services. The focus of the chapter lies on modeling ARP
services and solution algorithms for solving the assignment and repositioning problems, and
dealing with pre-bookings. Chapter 3 is the core of the thesis and describes the algorithms
developed in this work. The chapter is split into four parts. First, the general problem
formulation is provided, followed by the three subproblems assignment, repositioning, and pre-
booking. Chapter 4 describes the simulation environment developed for this thesis, which
is used to evaluate the developed algorithms. The chapter provides the description of the
three case studies conducted for Chicago, Munich, and Manhattan, which are used to answer
the research questions formulated in this chapter. Chapter 5 provides the results of the case
studies. Finally, Chapter 6 concludes the thesis, answers the research questions, formulates
limitations, and provides an outlook on future research directions.
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Figure 1.5: Structure of this thesis. Colors indicate affiliation of content to specific research
questions.
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Chapter 2

Literature Review
This chapter provides an overview of the current state of research in the field of autonomous
ride-pooling services. It starts with a brief overview of the current state of shared mobility
services and autonomous vehicles. Literature on the potential of autonomous ride-pooling
services is then reviewed, focusing on simulation studies that evaluate the potential of these
services and their implications for future transportation systems. It then discusses modeling
approaches to evaluate these services. The final section reviews fleet control algorithms, focus-
ing on the assignment, repositioning, and reservation problems in the context of autonomous
ride-pooling services. Within these sections, the contribution of this thesis is also highlighted.

2.1 Status Quo

2.1.1 Ecosystem of Shared Mobility Services
Machado et al. [2018] define shared mobility as trip alternatives aiming to maximize the
utilization of the mobility resources that society can pragmatically afford, disconnecting their
usage from ownership. Shared mobility is an old concept that has been around for centuries,
but only with the rise of digitalization, the concept has become popular as online platforms
allow the connection of customers and assets, making it easier to use, more convenient, and
more efficient [Shaheen, 2018]. While unorganized carpooling (i.e. private sharing of trips
with, for example, family or friends) has been established for a long time, organized carpooling
initially emerged in the 1940s after the Second World War in the US as the access to private
vehicles was limited. Starting in the 1960s, carpooling was promoted by US and European
governments, which was enhanced in the 1970s to reduce fuel consumption caused by the oil
crisis [Shaheen, 2018; Lukasiewicz et al., 2022]. Nevertheless, with the ease of the oil
market and growing accessibility to private vehicles, carpooling started to decline again in the
1980s [Shaheen, 2018].

With upcoming digitalization and social connectivity through the internet, the “sharing
economy” has been on the rise, which is best known for facilitating peer-to-peer exchanges
through digital platforms and mobile communication [Miguel et al., 2022]. Business models
for the sharing economy include sharing of accommodation (e.g., Airbnb), reselling of goods
(e.g., eBay) or open-source-software (e.g., Linux).

Shared mobility is one of the segments of the sharing economy with great disruptive poten-
tial, especially in urban transportation systems, due to the increased rates of motorization and
the number of private vehicles. Many different shared mobility business models have emerged
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in recent years with the intention of increasing the utilization of vehicles. Figure 2.1 shows an
overview of the ecosystem of shared mobility services today, which can be classified into two
main categories: Services to share a vehicle or services to share a trip. The closest category
to the topic of this thesis is ride-pooling services, which are featured by sharing of rides by
multiple users of an on-demand ride service. To put a focus on this category, the key cate-
gories (bold frames in Figure 2.1) of shared mobility services are discussed in more detail in
the following.

Figure 2.1: Ecosystem of car-based shared mobility services. Based on [Machado et al.,
2018; Shaheen and Cohen, 2019]. Bold boxes indicate categories that are
discussed in more detail in the text.
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Sharing a Vehicle

The first category includes carsharing services, where vehicles are provided by companies for
short-term rental. The vehicles can usually either be parked and picked up at predefined
stations (station-based carsharing) or anywhere in a predefined operating area (free-floating
carsharing). Well known examples for these services are ShareNow, MILES, or Zipcar, but
distinct local players emerge in many cities. In Germany alone, the number of registered
carsharing users increased from 200k in 2010 to 4.5 million in 2023, with an increase in fleet
size from 5 thousand to 34 thousand vehicles, respectively [bcs, 2023]. Nevertheless, compared
to an estimated market volume of 70 billion euros for all shared mobility services in Europe
in 2022, carsharing only accounts for 3 billion euros [McKinsey, 2022]. Additionally, also
shared mobility options emerged where private vehicles are shared. This includes platforms like
SnappCar or Getaround, where private cars can be offered and used like a carsharing service.
These services are also referred to as Peer-to-Peer (P2P) carsharing. Lastly, when multiple
users share the ownership of a vehicle, this is referred to as fractional ownership.1

Ridesharing

Ridesharing is one category within the branch of sharing a trip. The critical feature of rideshar-
ing is that not only passenger trips but also the trips of the driver are shared, i.e., the driver
also wants to share costs or possibly drive duties for a personal trip. Historically, this includes
unorganized ridesharing, where different parties are related through personal networks (e.g.,
family, friends, colleagues) and make ad hoc arrangements to share a trip. With smartphones
and the internet, organized ridesharing services emerged, where trips between strangers can
be matched through a digital platform. A well-known example of this is BlaBlaCar, which is
mainly used for long-distance trips. Depending on the vehicle size, ridesharing can be further
classified into carpooling and vanpooling, with the latter being more common for commuting
trips that a company might organize.

Ride-Hailing

Ride-hailing is a subgroup within the on-demand ride services category. In contrast to rideshar-
ing, a dedicated driver provides the service for a trip on-demand. This driver has no inherent
interest in the trip but provides the service for a fee to transport passengers/customers. One
usually distinguishes between services where trips between multiple customers can be shared
or not, which is, in this thesis, referred to as ride-pooling and ride-hailing, respectively.

Taxi Classical taxi services are available in most cities and are an example of ride-hailing
services. Traditionally, taxis can be hailed on the street or dispatched via phone call, but they
are now increasingly accessible through mobile apps, too. The process of hailing a taxi through
a mobile app is also referred to as e-hailing, which can also allow payment processing. Taxis,
as in some countries viewed as part of public transport, are often subject to regulation by the
government, including licensing requirements, fare regulation, or vehicle requirements.

1Also, classical car rental services are part of the sharing economy, but as they are typically not used for a
single trip or short-term rentals, they have been excluded from this discussion of shared mobility.
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Ridesourcing In contrast, Transportation Network Companies (TNCs) like Uber, Lyft, or
Didi Chuxing emerged in the recent years. Originally, Lyft intended to provide a ridesharing
app to connect drivers and passengers with an included payment option to share the costs
of the driver. Nevertheless, the convenient payment method established a business model for
drivers to provide passenger rides. Instead of only taking passengers for a lift on the route
of a personal trip, platform drivers started to offer on-demand ride services for passengers in
their private cars. While these companies are still often referred to as ridesharing companies,
the term ridesourcing is more appropriate because most drivers no longer have an inherent
travel demand. This platform-based matching of private drivers and passengers provided some
advantages compared to traditional taxi services, leading to a rapid growth of these companies,
particularly in relatively unregulated markets like US or China. Smartphone-based bookings
allow a convenient process for drivers and passengers concerning route guidance and pay-
ment [Shaheen, 2018]. Additionally, the platform features dynamic pricing of the service to
balance supply and demand. Due to operational efficiency and flexible driver arrangements,
ridesourcing services can often offer cheaper fares than traditional taxi services, These advan-
tages led to a vast growth in ridesourcing usage. Uber, for example, was founded in 2009 and
reported an increase in trips from 3.0 billion in 2017 to 7.6 billion in 2022 [WallStreetZen,
2023]. Compared to estimated user penetrations of 34.8% and 26.2% in China and the US in
2023, respectively, a varying user penetration of, for example, 11.9% in Germany 26.7% in the
United Kingdom was reported [Statista, 2024]. These differences in European countries are
mainly due to regulatory restrictions aiming to protect the traditional taxi market as well as
environmental concerns, and high quality public transport services [Fageda, 2021; Gomez
et al., 2021].

Impacts of Ride-Hailing Besides its success and easy access to mobility, critique started
to grow on ridesourcing services. On the one hand, the working status of drivers is debated,
as they are often classified as independent contractors and therefore do not have the same
rights as regular employees [Chen et al., 2017]. On the other hand, traffic efficiency is a
major concern. As ride-hailing does not opt for sharing trips, a higher traffic efficiency than
private vehicle trips is hardly achievable. On top, additional vehicle kilometers are produced
by deadheading of idle drivers between trips and approaches to customer pick-up. In fact,
Wenzel et al. [2019] evaluated ridesourcing trip data for Austin, Texas, and found 26% of
Vehicle Kilometers Traveled (VKT) are associated with idling and pick-up trips, while another
19% of the overall VKT is caused by driver commuting trips. In a study for the Denver region,
Henao and Marshall [2019] even estimated a deadheading ratio of 41%. Erhardt et
al. [2019] found that ridesourcing services are the main contributors to traffic congestion in
San Francisco by comparing traffic data of 2016 with a reference base case in 2010 without
ridesourcing. The study by Hall et al. [2018] evaluated the impact of ridesourcing services
on public transport ridership in the US. They found an increase in public transport ridership
in larger, densely populated cities, while a decrease in ridership was observed in smaller cities.
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Ride-Pooling

Ride-pooling services are a special kind of Mobility-on-Demand (MoD) services where multiple
passengers are transported in one vehicle and share part of the ride. The goal of these services
is to increase the occupancy and utilization of vehicles for a more sustainable way of transport
compared to ride-hailing services, while passengers can split the cost of a ride. Usually,
these services require app-based bookings, which allow an algorithm to compute and update
routes for drivers and vehicles in real-time. Depending on the originating service platform,
ride-pooling can be distinguished into three main categories: 1) Ridesplitting, where trips of
ridesourcing services are shared. 2) Taxi sharing services, where trips of taxi rides are shared.
3) Microtransit, a distinct service often embedded into the public transport system.

Ridesplitting Ridesplitting is the shared ride option of ridesourcing services. Uber, for
example, offered the variant UberPool while similarly Lyft offered LyftLine. Within the same
app, customers could select this cheaper option for a trip, but users who opted for this option
could be matched to share part of the ride. Launched in 2014, UberPool was available in
36 cities in 2017 (mainly US, Latin America, Toronto, London and Paris) and reported that
twenty percent of the trips were pooled [Shaheen and Cohen, 2019]. For Toronto, Young
et al. [2020] reported that only 15% of all trips had been made with UberPool. Abkarian
et al. [2022a] evaluated TNC data for Chicago, which includes trips from Uber, Lyft, and Via
between 2018 and 2019. They found that 20%-30% of all trips were selected under the shared
ride option, but they also observed a drop in choosing the shared ride option from 30% to
18% between November 2018 and January 2020. Nevertheless, UberPool as well as LyftLine
have been shut down during the pandemic in 2020, but Uber relaunched the service in 2022
under the name UberX Share [New York Post, 2022].

Microtransit Alternatively, microtransit services emerged, focusing solely on the sharing of
trips. These services are sometimes referred to as Demand Responsive Transit (DRT) or ride-
pooling services. Companies that offer these services usually operate their own fleet of vehicles
and employ dedicated drivers. Some of these services operate on a stop-based level, where
customers are picked up or dropped off at either physical or virtual predefined stops instead
of door-to-door services. Often, these services are integrated into the public transport system
and are either operated by the public transport operator itself or by a private company in
cooperation with the public transport operator. In the latter case, usually, private companies
provide the software for routing and dispatching of vehicles, while the public transport operator
provides the vehicles and drivers. Well-known examples of these services are ViaVan, MOIA,
and IOKI. Except for a slight decline during the pandemic, Foljanty [2022] reported a
steady increase in new service launches from 2015 to 2021. Nevertheless, as most of these
launches were government-funded projects, these services usually operate a quite small fleet
with less than ten vehicles.

Impacts of Ride-Pooling A central requirement for the success of ride-pooling services
is to find sharable trips, thereby increasing overall vehicle occupancy. Nevertheless, for the
ridesplitting UberPool service for Toronto, Young et al. [2020] found that only 52% of the
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trips were actually shared. For Denver, Henao and Marshall [2019] evaluated a distance-
weighted average occupancy of 1.3 for UberPool and LyftLine trips. When they also accounted
for deadheading and idling trips, the average occupancy decreased to 0.8. For the microtransit
services MOIA, Kagerbauer et al. [2021] evaluated the impact of the service in Hamburg.
Based on a simulation study calibrated on the status quo of the service, they found an average
vehicle occupancy of 1.33, including idle vehicle trips. Nevertheless, with an estimated model
split of 0.11% in Hamburg, the traffic impact is yet negligible.

2.1.2 Autonomous Vehicles

Seen as science fiction a few years ago, autonomous vehicles are on the verge of becoming
reality. SAE [2021] defines six vehicle automation levels (from 0 to 5). The first three levels
describe driver assistance systems, where the driver must constantly supervise the vehicle.
Currently, most vehicles on the road are equipped with systems up to level 2. These driver
assistance systems include lane-centering systems or adaptive cruise control. From level 3 on,
the vehicle takes control over the driving tasks. As this represents a shift in liability from
the driver to the vehicle, most Original Equipment Manufacturers (OEMs) yet hesitate to
offer cars with these systems. Nevertheless, many OEMs claim that their vehicles are already
capable of performing level 3 driving tasks, but instead of shifting liability to the vehicle, they
refer to these systems as level 2+ systems. An example of a level 3 system is a traffic jam
chauffeur, where the vehicle can handle the driving task in traffic jams on highways, but the
driver still has to step in when requested by the car. In 2022, Mercedes became the first
manufacturer to get approved by the German transport authorities to operate their level 3
system in Germany [Auto Motor und Sport, 2023] and is the first OEM selling level 3
vehicles in California and Nevada in 2024 [Fortune, 2024].

With level 4 and 5 systems, the vehicle is capable of driving without any intervention of
the driver. While level 4 systems are limited to a specific operational design domain, level
5 systems are capable of driving in any situation. On the contrary to previously mentioned
developments, some tech companies emerged that focus on the automated driving stack to
directly develop level 4 and 5 systems. Well-known examples are Waymo, Cruise, or Mobil-
eye. To test their technology in a confined environment, Waymo and Cruise started offering
automated ride-hailing services (robotaxis). Waymo One, the robotaxi service of Waymo, has
been available in the Phoenix metropolitan area since 2018 and expanded to San Francisco
in 2021 [Waymo, 2024]. Cruise Origin, the robotaxi service of Cruise, is available in San
Francisco since 2021 [Cruise, 2024]. After periods of testing with safety drivers and limited
access, both services are now available to the public, while Cruise became the first service for
commercial use [Kolodny, 2022]. A similar trend is observed in China, where services by
Baidu or AutoX have begun offering robotaxi services in multiple cities for commercial use
in 2022 [Magramo et al., 2024; AutoX, 2024]. In the meantime, also Mobileye received
approval to test their robotaxis on German roads in 2023 [TÜV Süd, 2023].
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2.2 Potential of Autonomous Ride-Pooling Services
In theory, autonomous vehicles have the potential to disrupt the transportation system. Mainly
three reasons contribute to that: 1) Increased safety, 2) increased traffic efficiency, and 3)
reduced costs.

Human error is the main cause of traffic accidents, which might be the cause of around
90% of all road accidents [Treat et al., 1979; Winkle, 2016]. Removing these human
errors by automation can, therefore, greatly impact traffic safety.. Wang et al. [2020] studied
traffic accidents of currently publicly operating AVs and found that only 6% of reported
accidents were directly caused by the AV. In the long run, for example Shetty et al. [2021]
and Ye and Yamamoto [2019] argue that not only human errors (i.e., impaired, reckless, or
distracted driving) might be removed, but also errors caused, for example, by occluded vision
or limited perception if vehicles are not only automated but also connected to other vehicles
or infrastructure to enhance their field of view.

Next to increased safety, automation also has the potential to improve traffic efficiency,
leading to higher throughput on roads and networks but also to a decrease in energy consump-
tion. AVs can reduce the gap between the following vehicles drastically by minimizing reaction
times to near zero. Even further gain can be expected if AVs are connected to each other
and to local infrastructure. Coordinated and predictive driving can increase road capacity by
stabilizing traffic, reducing the need for braking and accelerating and thereby reducing en-
ergy consumption (e.g., Kesting et al. [2010], Talebpour and Mahmassani [2016], and
Motamedidehkordi et al. [2016]), and allow more efficient intersection control strategies
(e.g., Friedrich [2016] and Niels et al. [2020]). Nevertheless, Talebpour and Mah-
massani [2016] and Calvert et al. [2017], for example, showed that unfolding the full
potential strongly depends on the penetration and connectivity rate of AVs. An automated
vehicle is supposed to be more cautious and obedient to traffic rules compared to an average
human driver, which might lead to a more defensive driving style and thereby to reduced traffic
efficiency. Only a high penetration rate and connectivity of AVs can circumvent this issue.

2.2.1 Costs for Autonomous Ride-Pooling Services
From the viewpoint of ride-pooling operators, cost reduction by automation resulting from
replacing human drivers is the most essential aspect. Human drivers are the main cost factor
for on-demand ride services. Ridesourcing services usually withhold 15% to 30% of the fare
as commission, resulting in a net driver cost of 70% to 85% of the fare [Wang and Yang,
2019]. If this cost factor can be removed, the service can be offered at a substantially lower
fare, potentially skyrocketing their future use2.

Nevertheless, when automation comes into play, not just the drivers’ costs are removed,
but other cost structures might change as well. Automated vehicles are expected to be more
expensive than conventional vehicles, requiring additional sensors. Additionally, personnel
are needed for maintenance, cleaning, and monitoring of vehicles during operation might be
necessary. But automation might also allow a more efficient utilization of vehicles due to

2In ridesourcing services, drivers stem the operational costs (i.e., fuel and vehicle maintenance). Therefore,
a direct transfer to fare reduction is not possible.
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Study Method Cost Components Pooling Location Estimated
Passenger Cost

Friedrich and Hartl [2016] S vehicle purchase, operation cost,
maintenance cost ✓

Stuttgart,
Germany 0.15 €/km

Chen et al. [2016] LR + S vehicle purchase, operation cost,
pricing methods, profit margin ✗ USA 75-100 ct/mile

(0.44 - 0.58 €/km*)

Fagnant and Kockelman [2018] S vehicle purchase, operation cost,
19% profit margin ✓

Austin,
Texas

100 ct/mile
(0.58 €/km*)

Lim and Tawfik [2018] LR

vehicle purchase, operation cost,
finance, insurance,

maintenance, license,
advertisement revenue,

short and long term horizon

✓ USA ≤20 ct/mile
(≤0.12 €/km*)

Bösch et al. [2018] LR
vehicle purchase, operation cost,

finance, insurance,
parking and toll, maintenance,

cleaning
✗

Zurich,
Switzerland

0.41 CHF/km
(0.42 €/km*)

Loeb and Kockelman [2019] LR + S

vehicle purchase, operation cost,
maintenance, batteries,

charger construction/maintenance,
insurance and registration,

administration

✓
Austin,
Texas

29-89 ct/mile
(0.17-0.52 €/km*)

Dandl and Bogenberger [2019] S same cost structure
as car sharing service ✓

Munich,
Germany 0.25-0.27€/km

Compostella et al. [2020] LR
vehicle purchase, operation cost,

insurance, charger,
batteries

✓ USA 0.18 - 0.21 $/mile
(0.10-0.30 €/km*)

Becker et al. [2020] LR
vehicle purchase, operation cost,

finance, insurance,
parking and toll,

maintenance, cleaning
✓

Multiple
Cities

Worldwide
0.08 - 0.41 $/km

(0.05-0.24 €/km*)

Tirachini and Antoniou [2020] LR + AM
vehicle purchase, operation cost,

finance, insurance,
parking and toll,

maintenance, cleaning
✓

Munich,
Germany;
Santiago,

Chile
0.22 - 0.67 €/km**

Negro et al. [2021] LR + S relative changes in fixed and marginal costs,
cost for personnel ✓

Munich,
Germany 0.42 €/km

Table 2.1: Comparison of studies determining potential cost per passenger distance. Abbrevi-
ations: LR: Literature Review; S: Simulation-based; AM: Analytical Model. *Based
on a conversion factor of 1.07$/€ and 0.97CHF/€, **Values refer to operating
costs.

central control of the fleet further reducing cost.
Table 2.1 gives an overview of studies that estimated the potential cost per passenger-

distance traveled for automated ride services. The studies differ in their approach and the cost
components they include. Generally, as many components are not yet known, these studies
show a large range of possible costs. Nevertheless, all the studies agree that fares for these
automated services can be drastically decreased compared to today’s fares for comparable ser-
vices. For comparison, the current km fare for a taxi trip in Munich, Germany is at 2.50 €/km,
which is 3.7 times higher than the highest estimated value in table 2.1 [Taxi-München eG,
2024].

2.2.2 Simulation Studies for Autonomous Mobility-on-Demand
With this potential drastic reduction of fares, the question arises as to how these Autonomous
Mobility-on-Demand (AMoD) services might impact future transportation systems. As these
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services are not available yet, and therefore, no empirical data exists, simulation studies are
a common approach to evaluate their potential to deal with complex interactions arising in
transportation systems. Here, highlights of the results of these studies are presented. Technical
details regarding modeling approaches will be discussed in the following sections.

These simulation studies are data intensive and, therefore, often focus on a single city or
region with available data. Besides the choice of the study area, studies mainly differ in
modeling the AMoD service and its assumed demand for the service. Table 2.2 gives an
overview of studies that evaluated the potential of AMoD services. The main differences
between are

1. whether they allow the pooling of trips,

2. the assumptions on the demand for the service. As this is the main source of uncertainty,
many studies apply “what-if” scenarios where a specific set of current trips is replaced
by the AMoD service. More sophisticated models include a mode choice model, i.e.,
travelers can choose between different modes of transport for their trips.

3. the number of trips that are finally assigned to the AMoD service.

The studies in table 2.2 that only consider ride-hailing services mainly evaluated the higher
utilization of vehicles when operated in a fleet and dispatched by a central controller. When
private vehicle trips are replaced, the studies agree that a single AV in the ride-hailing fleet
can substitute up to 13 private vehicles while the service is available within a few minutes of
customer waiting time. Inner-city operation, therefore, has a great potential to reduce space
consumption for parking. While this potential mainly stems from higher temporal utilization
of the vehicles, the aspect of central control of the fleet is also essential. Zhan et al. [2016]
showed in their case study for New York City that by central coordination of a taxi fleet, around
2/3 of the taxis could be removed while still serving the same number of trips. This effect
mainly stems from removing idling trips of taxis when looking for customers. They evaluated
that 90% of empty pick-up trips could be avoided by central coordination. Nevertheless, as
trips are not shared, a fraction of 10-20% of VKT is still attributed to deadheading. Stress to
the road network can additionally be expected if the AMoD service replaces not only private
vehicle trips but also trips that are currently performed by public transport or if the AMoD
service even induces new trips due to its low fare and high availability.

Ride-pooling aims to reduce this additional induced VKT from empty vehicle trips. Studies
that consider ride-pooling services, therefore, emphasize on the reduction of VKT. Some studies
evaluate the replacement of a large proportion of private vehicles’ trips by the ARP service and
find a huge potential to reduce VKT. For example, Fiedler et al. [2018] and Zwick et al.
[2021b] estimated a reduction of 60% and 54% in VKT if all private vehicle trips are replaced
in their case study for Prague, Czech Republic, and Munich, Germany, respectively. Compared
to Zhan et al. [2016], Alonso-Mora et al. [2017b] evaluated the substitution of taxi trips
with a ride-pooling service. They found that only 2,000 vehicles are required to serve the same
number of trips as 12,000 taxis in Manhattan, US. Nevertheless, the mentioned studies focused
on scenarios with a very high demand for the service, facilitating many shared trips. Fagnant
and Kockelman [2018] and Engelhardt et al. [2019] evaluated a lower penetration rate
of private vehicle trips that are shifted to the ARP service. They found that the potential to
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reduce VKT is much lower in this case, and the ARP service might even increase VKT. This
effect occurs because not enough shareable trips can be found to overcome the additional
VKT caused by empty pick-up trips.

As these results highly differ depending on which demand is assumed for the service, it is
crucial to evaluate scenarios that include potential shifts from public transport users to the
ARP service. The early studies ITF [2015] and Friedrich and Hartl [2016] evaluated the
replacement of public transport trips by the ARP service in Lisbon and Stuttgart, respectively.
Their results state clearly that it is not sustainable to substitute high-capacity public transport
with the automated service even if the service is operated with a high volume of shared trips. In
a study for Munich by Zwick et al. [2021b], travelers could decide on their mode of transport
based on a mode choice model. After introducing the ARP, they evaluated a slight increase
in system VKT because of a shift from public transport to the service. Kagerbauer et al.
[2021] concluded in their study for Hamburg, Germany, that an improvement of the traffic
system can only be achieved if regulatory measures are taken, like removing parking spots and
reducing private vehicle ownership in the long run. The ARP service can then bridge the gap
from the decreased availability of private vehicles in the city. Oke et al. [2020] simulated
the introduction of an ARP service in artificial city archetypes. These city archetypes were
based on typical population structure and public transport supply in cities worldwide. They
evaluated “auto-sprawl” and “auto-innovative” cities, both relying heavily on private vehicles
while the latter is characterized by a slightly higher mode share of public transport. These city
types, therefore, differ from the previously mentioned studies, which are based on cities with
a strong public transport system. They concluded that replacing public transport trips by the
ARP service is only sustainable in the “auto-sprawl” archetype.
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Services
Study Location Demand Number of AMoD Trips Pooling Main Findings

Fagnant and Kockelman [2014] Austin, USA RP of PV trips 60k ✗
• Each AV can replace conventional 12 PVs

• Increase in VKT by 10%

Bischoff and Maciejewski [2016] Berlin, Germany RP of PV trips 1.1 million per day
(All PV trips) ✗

• 100k vehicles needed
• Each AV can replace up to 10 conventional PVs

Zhan et al. [2016] New York City, USA RP of Taxi Trips 400k to 500k per day ✗
• 2/3 of all taxis could be removed

• 90% of empty VKT can be avoided

Dandl and Bogenberger [2019] Munich, Germany RP of Carsharing Trips N/A ✗
• AV can replace 2.8 to 3.7 Carsharing vehicles

• Fares can be reduced by 29-35%

Hörl et al. [2019] Zurich, Switzerland MC Up to 360k per day ✗

• 7k to 14k vehicles needed
• Resulting fare of 0.5CHF/km

• Compared to 0.26 CHF/km variable PV cost and 0.7 CHF/km full costs

Liu et al. [2017] County of Austin, USA MC Up to 4.5 million per day ✗
• Modal split for AMoD of 50.9% and 9.2%

for fares of 0.5$ per mile and 1.25$ per mile, respectively

ITF [2015] Lisbon, Portugal MA N/A ✓
• Each AV can replace around 10 PVs

• ARP service not sustainable to replace high capacity PT

Friedrich and Hartl [2016] Region of Stuttgart, Germany MA Up to 5.1 million per day ✓

• ARP vehicle can replace 12-13 PVs
• Traffic only improves if most trips are shared
• Increase in traffic volume if PT is removed

Alonso-Mora et al. [2017a] New York City, USA RP of Taxi Trips Up to 460k per day ✓
• 2,000 10-seater ARP vehicles can serve demand
of 12,300 taxis with mean waiting time below 3 min.

Fiedler et al. [2018] Prague, Czech Republic RP of PV Trips 130k within 1.5h
(All PV trips) ✓

• Average vehicle occupancy of 2.7
• VKT decreased by 60%

• Number of heavily loaded road segments reduced from 208 to 35

Fagnant and Kockelman [2018] Austin, USA RP of PV Trips 56k per day ✓
• VKM increases if 10% of trips served with ARP service
• Without trip sharing, further increase by 8% of VKT

Engelhardt et al. [2019] Munich, Germany RP of PV trips Up to 180k per day
(15% of PV trips) ✓

• 3,000 vehicles can serve 15% PV demand
within average waiting time of 4 min

• 3-5% PV trip penetration rate needed to achieve VKT savings
• VKT savings mainly on major roads

Vosooghi et al. [2019] Rouen, France MC Up to 84k per day ✓

• Best result for ride-pooling fleet with 4 seats
• Modal split of ARP service below 7.6%,

but modal split for PV remains at around 58%
• Overall VKT increases

Oke et al. [2020] City Archetypes MC N/A ✓

• ARP RP of PT sustainable in cities with weak PT
• not sustainable in cities with modest PT

• PT integration beneficial for both city types

Zwick et al. [2021b] Munich, Germany RP of PV trips vs. MC Up to 1.9 million per day ✓

• 18k 6-seater vehicles needed to replace all PV trips
• VKT reduced by up to 54% for RP

• Slight increase in VKT in MC
• Traffic noise can be reduced if public transport stops are used for boarding

Kagerbauer et al. [2021] Hamburg, Germany MC Up to 1.2 million per week ✓

• ARP does not cannibalize PT
• ARP does not improve traffic state on its own

• push measures for PV needed

Table 2.2: Collection of simulation studies evaluating the potential impact of AMoD services. Abbreviations: RP: Replacement; MA:
Mode Allocation (rule-based pre-assignment of trips to modes); MC: Mode Choice Model; PT: Public Transport; PV:
Private Vehicle23
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2.2.3 Characteristics of Sharing Rides

Figure 2.2: Two of four possible shared routes between two trips. The other two options are
obtained by starting the route at the second (orange) trip.

As the case studies reveal, the potential to share rides is critical for the success of ARP
services. Therefore, researchers tried to quantify characteristics that determine under which
circumstances the sharing of rides can be successful. A quantity often used to describe the
potential of sharing rides in a given system is referred to as “Shareability”. To evaluate this
quantity, it is necessary to first define under which circumstances trips are shareable. Given a
trip i, specified by its origin oi, destination di, and time of trip ti, a common approach is to
define that two trips are shareable if a route can be formed that serves both trips, while the
total travel time and the pick-up time deviation from the original time of the trip is below a
specific threshold. The pick-up time deviation is hereby defined as the difference between the
trip’s original time and when the passenger is picked up. Depending on the order of pick-ups
and drop-offs, there are four possible options to share two trips as sketched in Figure 2.2. If
one of these options fulfills the constraints, the trips are considered shareable.

Santi et al. [2014] defined shareability networks by connecting trips in a given dataset
that are shareable. They calculated shareability by matching two trips in this network and
computed the ratio of trips that were assigned to a partner trip. In their case study for taxi
trips in New York City, they found that at approximately 100k daily trips (around 25% of the
daily average) the shareability reaches close to 100% while an increase in travel time is limited
to 5 minutes for these trips.

Tachet et al. [2017] evaluated the shareability 3 of taxi trips in four cities worldwide. Based
on data from New York, San Francisco, Singapore, and Vienna they found that the Shareability
curve (Shareability versus trips per hour) can be collapsed to a single curve by some rescaling
factor, which they argue is a universal law. By proposing an analytical model, they could
show that this scaling factor only depends on measurable quantities, like average velocity,
allowed detour, and size of the operating area. In theory, this model could be used by planners
to estimate the potential of a ARP service for a given city. Bilali et al. [2019b] further
extended the model by Tachet et al. [2017] to include ride-pooling service parameters like
maximum customer waiting time and boarding time, allowing a provider to estimate the design
parameters of its service. Additionally, Bilali et al. [2019a] extended the model to include
short-term reservations. Bilali et al. [2020] evaluated the possible real-world application

3Tachet et al. [2017] had a slightly different definition of shareability compared to Santi et al. [2014]:
Instead of performing a trip matching step, all trips with a shareable partner are included in the calculation,
resulting in a higher shareability.
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of this model by comparing the model results to a simulation study for the city of Munich,
Germany. They found that the simulation reproduces the analytical model well as long as the
same assumptions are made in both models. Nevertheless, as modeling details increase, the
simulation results deviate from the analytical model. Especially when evaluating the fraction
of actual shared rides instead of the shareability, deviations are prominent because many trips
are not beneficial to be shared (especially concerning required detours) even though sharing
would be possible within given constraints.

To overcome this issue, Kucharski and Cats [2020] proposed a different approach to
calculate shareability networks. Instead of relying on waiting and detour constraints, they
propose trip matching based on traveler utilities, which they refer to as “attractive” shared
rides. Their idea is to compare the utility of a shared ride, computed from waiting and travel
time together with the fare of a ride, with the utility of a solo trip. If the utility of a shared
ride is higher for all customers, the trip is considered attractive. In their case study for trips in
Amsterdam, Netherlands, they found that from 3,000 customers, 1,900 form attractive rides
if a 30% discount on the fare is offered for shared trips. In another study evaluating the
impact of demand patterns, the authors found that more trips become attractive if trip origins
and/or destinations are clustered in a few areas, for example, city centers, and trips tend to
be longer [Soza-Parra et al., 2022]. The discount parameter as a control parameter in this
formulation is critical. For a case study of New York City, they evaluated that this parameter
has to be set to at least 10% to achieve attractive shared rides [Bujak and Kucharski,
2023]. Instead of matching actual trips, Sarma and Hyland [2024] proposed a method to
calculate the shareability of traveler flows by defining the Maximum Network Flow Overlap
Problem.

2.3 Modeling and Operating Autonomous Ride-Pooling
Services

As described in the previous section, simulation studies have proven indispensable to studying
AMoD services. These simulations can not only be used to evaluate large-scale impacts of
the service, but also to evaluate fleet control algorithms and other strategies for operation.
Agent-based simulations are a common approach to simulate AMoD services. In agent-based
modeling, the goal is to model the behavior of individual agents and their interactions in a
given environment to understand the system’s behavior as a whole. In the case of AMoD
services, typical agents are the travelers, the operators offering the service, and their fleet
vehicles. As simulations can only provide a simplified representation of the real world, it is
crucial to carefully select the level of detail of the models to manage the complexity of the
simulation.

These aspects are not only relevant for modeling itself but are also central for the real-world
design of AMoD services. For example, before deploying the service, it has to be defined within
which area the service is offered, how many and which kind of vehicles are employed and how
the service is operated. As pointed out by, for example, Dandl [2022], one can generally
distinguish between strategic (long-term) and operational (short-term) decisions. Operating
area and fleet composition are examples of strategic decisions, as changes in these decisions
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are usually made on monthly to yearly time scales because high costs might be associated. On
the other hand, the fleet control algorithm is an operational decision, as dispatching tasks are
updated on a minute to second scale.

The different aspects that have to be considered when modeling AMoD services are depicted
in a (not exhaustive) sketch in Figure 2.3. The following subsections give an overview of these
aspects and the different approaches for modeling and determining that have been proposed
in the literature. The core of the simulation – the fleet control algorithm – is discussed in
detail in the next section, as this is a central aspect of this thesis.

Street Network

Infrastructure

Fleet Specifications

Service Attributes

Fleet Control 
Strategies

Travel Times / 
Travel Distances

Static vs. Dynamic

Deterministic vs. Stochastic

Fleet Size

Fleet Composition
(Vehicle Types)

Dynamic vs. Static
Active Fleet Size

Depots

Charging Locations

Boarding Locations

Time Constraints

Pricing

Hailing/Pooling

Full vs. Limited 
Knowledge

Walking Distances

Repositioning

Charging

Routing

Operating Area

Demand

Endogenous/exogenous

Mode Choice

Decision Process

Multi-/Intermodality

Reservation

Competition

Figure 2.3: Essential categories for simulating ARP services.

2.3.1 Street Network and Traffic State
The representation of the street network is a central aspect of the simulation, but also for
operation. The street network is the environment in which the service operates and, therefore,
determines the possible vehicle routes. Additionally, travel time estimations between locations
in the network are central to evaluating feasible matches between vehicles and customers.
Due to the complex interactions between vehicles, the street network, and traffic control
infrastructure, traffic state estimation, which estimates the utilization of the street network
given a set of measurements is a research field on its own and can be highly complex. From
a simulation standpoint, it is, therefore, essential to carefully choose the level of detail of the
street network representation for the research question at hand. From an operation standpoint,
choosing a feasible representation to be implemented in real-time operation is necessary. As
will be discussed in detail later in this thesis, finding suitable vehicle routes involves many
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travel time queries. Therefore, the street network’s representation should be chosen so that
travel time queries can be performed efficiently.

Early studies, therefore, represented vehicle movements in a purely geometrical plane. Fag-
nant and Kockelman [2014], Hyland and Mahmassani [2018], and Dandl et al.
[2019] used a grid-based representation of the street network. As they investigated case stud-
ies for the US cities Austin and New York City, a regular grid with a Manhattan metric was
used as an approximation of the real street network, allowing very fast computation of travel
time. Alternatively, representing the street network as a graph allows a more realistic repre-
sentation of the street network. In these graphs, nodes usually represent intersections, and
edges represent street segments. Travel time attributes are assigned to the edges, which can
be used to encode varying traffic states. The studies Alonso-Mora et al. [2017b] and
Erdmann et al. [2021] used a graph representation of the street network for their case study
of Manhattan, New York City. They estimated daily mean edge travel times based on historical
taxi data. As the representation of the Manhattan street network is small enough and edge
travel times are deterministic, they could precompute all travel times and, therefore, perform
travel time queries very efficiently. To include also temporal varying traffic states, Dandl
et al. [2020b] and Markov et al. [2021] used network-wide travel time scaling factors based
on historical taxi data. As they employed the model for the larger case study of Chicago,
they had to remove minor roads to still be able to preprocess all node-to-node travel times.
Engelhardt et al. [2019] and Ghandeharioun and Kouvelas [2023] regularly update
edge-specific travel times during the simulation. Syed et al. [2023] proposed a method to
estimate edge travel times based on historical taxi data for AMoD simulations.

Nevertheless, the described studies assume that network travel times are deterministic,
known to the operator, and not influenced by the service itself, which is not the case in reality.
Dandl et al. [2017], Gueriau et al. [2020], and Wolf et al. [2023] used a microscopic traffic
simulation model to overcome these limitations. While microscopic models can capture all the
mentioned aspects, they are computationally costly and complex to calibrate for large-scale
models. Therefore, Dandl et al. [2021b] used a dynamic model based on the Macroscopic
Fundamental Diagram (MFD) to capture the traffic dynamics computationally efficiently.

To represent the influence of fleet vehicles on the traffic system, Zhang and Pavone
[2016] used a queuing model to represent the network while Levin et al. [2017] proposed
a link transmission model. Levin et al. [2017], Salazar et al. [2019], and Huang et al.
[2022] thereby proposed optimization models for congestion-aware routing: Instead of routing
vehicles on the shortest or fastest path, they aim to distribute vehicles on the network to
reduce overall congestion. Nevertheless, as routing queries are a crucial component of the
assignment process, these models are computationally expensive.

2.3.2 Demand and Travelers
Also, the representation of demand and travelers can be chosen from different levels of detail.
The most straightforward representation assumes a fixed or static demand, i.e., a fixed set
of customers for the service. Alternatively, demand can be created endogenously. In this
case, travelers are generated by a demand model that often represents general trips across
multiple modes of transport. Trips for the AMoD service are calculated by determining a user
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equilibrium, given the interaction of demand and supply. Further differentiation can be made
by the time customers wait for the operator to confirm a trip. Customers are often referred
to as “patient” or “impatient” depending on their modeled willingness to wait. Additional
categorization can be made whether customers and/or operators can decline or reject a trip
offer, respectively.

Hyland and Mahmassani [2020] and Riley et al. [2019], for example, used a static
demand with patient customers in their model. In case of a supply shortage at the time of
a request, i.e., no vehicle is available to serve the request, customers would wait indefinitely
for a vehicle to become available. While this might not be a reasonable assumption for a
real-world service, this model allows to study the relation between the level of service (e.g.,
by measuring mean waiting times) and the deployed fleet size. On the contrary, all studies
marked as “Replacement” or “Mode Allocation” in the Demand column of Table 2.2 assumed
impatient customers. In this case, customers would cancel their request if no vehicle is available
within a specific time after the request is made. All travelers are assumed to use the service
if a vehicle is available within this time. This suggests that the operator is aware of this
behavior and consequently dispatches vehicles in a manner that ensures no customer waits
longer than the maximum allowable waiting time. Engelhardt et al. [2019] refined this
model by introducing a multistep approach: Within the first dispatching step, the goal was
to serve customers within a short waiting time, which they always accepted. If this was not
possible, customers were served within a longer waiting time, which was assumed they would
accept only with a specific waiting-time-dependent probability.

If the goal of the study is to evaluate the potential demand attraction of the service in a
given study area, a more detailed demand model is required. A common approach is using
agent-based demand models like MATSim [Horni et al., 2016], SimMobility [Yang et al.,
2015], POLARIS [Auld et al., 2016] or mobiTopp [Mallig et al., 2013]. To include the
ARP service into these models, two steps are necessary: 1) A mode choice model is required
that includes the ARP service as a mode of transport. As the ARP service is not available
yet, the mode choice model has to be based on stated preference surveys, which have been
conducted, for example, by Frei et al. [2017] in the Chicago region, Morsche et al. [2019]
and Alonso-González et al. [2020] in the Netherlands, König and Grippenkoven
[2020] in Germany or Kagerbauer et al. [2021] in Hamburg, Germany. 2) A model of the
ARP service has to be integrated into the agent-based demand model. This has been done
by Ruch et al. [2018], Marczuk et al. [2015], Gurumurthy et al. [2020] and Wilkes
et al. [2021] for MATSim, SimMobility, POLARIS, and mobiTopp, respectively. Nevertheless,
the big disadvantages of these models are that they are data-intensive, difficult to calibrate,
and computationally expensive.

2.3.3 Fleet Size and Composition
The fleet size and composition is a strategic decision for the operator. The fleet size determines
the number of vehicles available for the service and, therefore, the number of customers that
can be served simultaneously. The fleet composition determines the types of vehicles deployed
in the service, e.g., the number of available seats.

A typical approach to determine the fleet size is to assume a fixed number of vehicles and
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evaluate the performance of the service for this fleet size. Given static demand, the fleet size
can be determined by the number of vehicles needed to serve a specific percentage of demand
in case of impatient customers (e.g., Boesch et al. [2016], Dandl and Bogenberger
[2019], and Engelhardt et al. [2022c]) or a specific mean waiting time in case of patient
customers (e.g., Hyland and Mahmassani [2020] and Riley et al. [2019]). The same
approach can also be used to determine vehicle capacity. For example, Alonso-Mora et al.
[2017b] evaluated that a fleet of 4-seater vehicles showed the best performance for their case
study of Manhattan, New York City. An increase in vehicle capacity would not lead to a
significant increase in served customers.

Nevertheless, determining fleet size and composition by simulation requires numerous simu-
lation runs, which can be computationally expensive. Vazifeh et al. [2018] provides a method
based on shareability networks to estimate the fleet size for a given demand. Wallar et al.
[2021] used a similar approach to estimate the required number of vehicles for an inhomoge-
neous fleet composition (a mix of 2- and 4-seater in their case study). Narayan et al. [2021]
developed a method to estimate the required fleet size of a service offering both ride-hailing
and ride-pooling. Dandl et al. [2021b] proposed Bayesian optimization to reduce the search
space for simulation-based estimations.

2.3.4 Infrastructure
AMoD services require infrastructure, reflecting an additional strategic decision for the oper-
ator. AMoD vehicles are expected to be electric, likely because of financial motives [Arbib
and Seba, 2017] or cities might even enforce the use of Electric Vehicles (EVs) to reduce
emissions. Therefore, the operator has to provide charging infrastructure for the vehicles.
Different studies developed methods to determine charging stations’ locations and required
capacities. Methods differ between simulation-based approaches (e.g. Chen et al. [2016]),
clustering algorithms (e.g. Zalesak and Samaranayake [2021]), or optimization-based
models (e.g. Vosooghi et al. [2020]). Zhang et al. [2022] evaluated the feasibility of using
public charging infrastructure in the operation of an AMoD service. On an operational level,
charging tasks must be integrated into the fleet control algorithm. Many studies (that consider
the charging problem in their formulation) apply threshold-based charging strategies, i.e., ve-
hicles are charged if their battery level falls below a specific threshold (e.g. Chen et al. [2016],
Dandl and Bogenberger [2019], and Zhang et al. [2022]). Others propose mid-term
planning strategies to schedule charging processes during low demand periods (e.g. Zalesak
and Samaranayake [2021] and Dandl et al. [2020a]), integrate charging into repositioning
decisions (e.g. Dean et al. [2022]), evaluate dynamic electricity prices (e.g. Estandia et al.
[2021]), or use reinforcement learning to learn optimal charging strategies (e.g. Ahadi et al.
[2022]).

Stops, i.e., locations where boarding processes occur, are another infrastructure element
that must be considered. While many studies assume door-to-door services or even curbside
pick-up, studies suggest that this operation can increase congestion, VKT, and customer in-
vehicle travel times [Atasoy et al., 2015; Engelhardt et al., 2019; Zwick et al., 2021a].
Zwick et al. [2021a] suggested using existing bus stops as stops for the AMoD service to
reduce these negative effects, while Goel et al. [2017] developed a maximum coverage model
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to select optimal stop locations. Harmann et al. [2022] evaluated possible virtual stops
based on the surrounding built environment, while Stueger et al. [2023] simulated different
boarding strategies at urban intersections. A set of further studies evaluated the impact of the
density of stop locations on the performance of the service. They developed algorithms for
online selection of the optimal boarding location serving a set of customers [Engelhardt
and Bogenberger, 2021; Fielbaum et al., 2021; Zuo et al., 2021].

2.3.5 Pricing
Pricing is a central aspect of the real-world operation of AMoD services. From a modeling
perspective, the choice of the pricing model depends on the demand model applied. Many
studies that use a static demand model do not consider pricing as they implicitly assume a
fare cheap enough to attract the given set of customers (e.g., studies marked with MA or RP
in Table 2.2). Other studies that use a mode choice model employed static pricing models
based on cost estimations for the operation of autonomous vehicles (e.g. Chen et al. [2016],
Liu et al. [2017], Hörl et al. [2019], and Vosooghi et al. [2019]). More refined models
include surge pricing mechanisms (e.g. Zhang and Nie [2021] and Dandl et al. [2021b]),
a dynamic pricing model based on the current demand and supply situation (e.g. Castillo
et al. [2017]). When rides are shared, the advantage from a customer viewpoint is that the
fare can also be split. Ruijter et al. [2023] evaluated different pricing strategies under the
aspect that the reduced fare has to compensate for disutilities like additional detours from
sharing the trip. Karaenke et al. [2023] suggested an ex-post pricing model, that charges
customers based on the actual service provided, i.e., a cheaper fare is charged if a trip has
been shared, which they argue can increase the willingness of customers to share trips.

2.3.6 Integration into the Mobility System
Due to the potentially disruptive nature of AMoD services, it is essential to evaluate the
impact of these services on the existing mobility system and develop operational constraints
to achieve societal benefits. The studies in Table 2.2 revealed that a potential displacement
of high-capacity public transport should be avoided.

If the AMoD service is operated by a private company, regulation by the public authority
might be necessary to ensure socially beneficial operation. Typical measures evaluated in the
literature are fleet size constraints or congestion pricing to improve social welfare [Li et al.,
2019b; Zhang and Nie, 2021; Dandl et al., 2021b]. Conversely, if the public authority
operates the AMoD service, the service can be integrated into the public transport system.
Therefore, studies developed methods to integrate the AMoD service into the existing public
transport system either by complementing the existing public transport system (e.g. Sieber
et al. [2020], Mo et al. [2021], and Cortina et al. [2023]) or developing frameworks to
re-designing public transport networks with complementary AMoD services as feeders to high
capacity public transport or replacement of currently underutilized and not economically viable
bus lines (e.g. Pinto et al. [2020], Salazar et al. [2020], Auad-Perez and van Hen-
tenryck [2022], Kumar and Khani [2022], Fielbaum and Alonso-Mora [2024], and
Ng et al. [2024]).
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Besides competition and cooperation with public transport, multiple operators could offer
their services. As demand penetration is a critical factor for success, especially in ride-pooling
services, competition between operators can lead to a decrease in service quality. Séjournè
et al. [2018] and Kondor et al. [2022] studied this market fragmentation with theoretical
and simulation-based models, while Pandey et al. [2019] and Engelhardt et al. [2022c]
developed models for regulated platforms to foster cooperation and mitigate the effects of
market fragmentation.

2.4 Algorithms for Fleet Control
Controlling the fleet of vehicles is the core of the AMoD and ARP service. The primary purpose
of the fleet control algorithm is to assign vehicles to customers and determine the routes of
the vehicles. As new customers request trips dynamically, the fleet control algorithm has to
adopt and update its decisions on short time scales. The goal of these decisions is to optimize
specific objectives in the long term, e.g., maximizing the service profit. These decisions are
subject to constraints that might include, for example, vehicle capacities, time constraints
for customer pick-up and drop-offs, or consistency constraints with previous decisions, e.g., a
promised customer pick-up has to be fulfilled.

This section reviews the approaches proposed in the literature to solve the fleet control prob-
lem. First, classical approaches to solving the vehicle routing problem are discussed, followed
by approaches to tackle large-scale assignment problems as required for ARP services. Finally,
methods to incorporate information about future demand and the integration of reservations
are discussed.

2.4.1 Vehicle Routing Problem
The VRP is a combinatorial optimization problem which asks “What is the optimal set of routes
for fleet vehicles to serve a given set of customers?”. It is a generalization of the traveling
salesman problem and was first formulated by Dantzig and Ramser [1959]. VRPs are known
to be Non-deterministic Polynomial-Time (NP) hard, which means that no efficient algorithm
is known to solve the problem in polynomial time and, therefore, problems of arbitrary size
cannot be solved optimally in a reasonable timeframe. For VRPs, this stems from the number
of possible solutions (permutations of pick-ups and drop-offs) growing exponentially with the
number of customers. Thus, exact solution algorithms are only feasible for small problem
sizes. For larger problems, heuristics and meta-heuristics are applied to find good solutions in
a reasonable time.

As solution algorithms are usually designed for specific settings, VRPs are often classified
by their characteristics (e.g., the formulation of constraints). The closest variant to the VRP
for ARP services is the Dial-a-Ride Problem (DARP), which is defined by a set of customers
with pick-up and drop-off locations and time windows. Another variant is the Pickup and
Delivery Problem with Time Windows (PDPTW) that specifies a similar setting but usually
defines depots where vehicles have to start and end their route.

The DARP has been studied for decades [Psaraftis, 1980; Psaraftis et al., 2016],
and a variety of solution algorithms have been proposed. Molenbruch et al. [2017] and
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Hyland and Mahmassani [2017] provide classifications and taxonomy of these algorithms
and their underlying problem settings. The most common classification, which is followed
here, is based on the assumed dynamism and stochasticity of the problem.

The static and deterministic DARP is the simplest variant of the problem. It assumes that
all information (i.e., customer requests) is known in advance and no randomness is involved.
Cordeau and Laporte [2003] formulated this problem as a mixed integer linear program
and proposed a tabu search heuristic to solve the problem. They later proposed a branch-
and-cut algorithm to solve the problem optimally [Cordeau, 2006]. Nevertheless, due to the
NP-hardness of the problem, the size was limited to four vehicles, with up to 30 customers
to be transported in the latter. Following studies focused either on (meta-)heuristics to small
scale benchmark instances as close to optimality as possible (e.g., [Parragh et al., 2010;
Parragh and Schmid, 2013; Massobrio et al., 2016]), or develop heuristics to solve
large-scale instances (e.g., [Muelas et al., 2013; Muelas et al., 2015]). As the use case
of the static variant is to plan vehicle routes in advance, computational time is not a strongly
limiting factor. For example, the variable neighborhood search algorithm by Muelas et al.
[2015] could solve instances of up to 16k requests a day. While an initial solution could be
found within a few minutes, the search algorithm did not converge in a (local) optimum within
3 hours for these instances.

In the dynamic and deterministic DARP, customer requests are not known in advance but
are revealed over time. Therefore, solutions to the DARP have to be updated over time. A
common approach is to solve the problem in a rolling horizon fashion, i.e., the static variant
of the problem is solved for currently revealed information and the solution is updated. The
computational time is, therefore, limited to the update period. A fast heuristic for this problem
was proposed by Jaw et al. [1986]: Once new requests are revealed, they are inserted into the
current solution, resulting in a fast (but not necessarily optimal) solution to the DARP. This
approach is often referred to as “Insertion Heuristic”. Other approaches utilized the developed
meta-heuristics for the static DARP and terminate the search after a specific time limit (e.g.
Parragh and Schmid [2013], Massobrio et al. [2016], and Jain and van Hentenryck
[2011]). Nevertheless, the scale remained relatively small as, for example, an instance with a
maximum of 45 passengers was solved by Massobrio et al. [2016].

In the dynamic and stochastic DARP, customer requests are revealed over time. Additionally,
stochastic information about the future is available. This can include information about the
probability of future requests, the probability of a customer accepting a trip offer, or stochastic
travel times. Hyytiä et al. [2012] proposed a method based on queuing theory to include
information about future requests in the assignment process. Bent and van Hentenryck
[2004] proposed a stochastic programming method by including stochastic requests drawn from
a probability distribution in the assignment algorithm and solved it on benchmark scenarios
with 100 requests and up to 17 vehicles. van Engelen et al. [2018] adopted the insertion
heuristic by Jaw et al. [1986] for demand-anticipatory assignments. Due to the efficient
insertion heuristic, the authors could solve instances with up to 2000 requests and 100 vehicles
in a few seconds.

For a more detailed overview of the DARP and its solution algorithms, the reader is referred
to Molenbruch et al. [2017]. Most of the studies presented so far focused on solving rather
small-scale instances of the DARP. The fleet control problem of the ARP can be interpreted
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as a dynamic and stochastic DARP, but in contrast to the studies presented here, the scale
of the problem is much larger. As these large-scale problems are the core of this thesis,
the following section focuses on studies that have been proposed to solve these large-scale
assignment problems for ARP.

2.4.2 Assignment
The development of large-scale assignment algorithms for ARP services is a rather recent re-
search field and evolved in several directions. Firstly, the already mentioned DARP studies
focused on small to mid-scale instances of the problem, with an emphasis on achieving opti-
mality. Secondly, large-scale assignment algorithms for ride-hailing services, where trips are not
shared, received significant attention from the scientific community. This progress was driven
by the recent rise of ride-hailing services like Uber and Lyft. Finally, large-scale assignment
algorithms for ridesharing services have been developed, driven by the recent interest in shared
mobility and the need for applications with real-time matching of drivers and riders.

Assignment for Ride-Hailing

The computational advantage of the ride-hailing assignment problem is that the number of
permutations to create vehicle schedules is much smaller compared to a ride-pooling service.
This led to the application of simple rules to assign vehicles to customers, like First-Come-
First-Served (FCFS) assignment strategies to assign incoming requests to the nearest idle
vehicle [Zhang et al., 2015] or identifying the nearest idle vehicles in a given subregion of
the network [Fagnant and Kockelman, 2014]. Bischoff and Maciejewski [2016]
changed the assignment strategy based on the current utilization of the fleet: If there is
an oversupply of idle vehicles, incoming requests are assigned to the nearest vehicles, while in
case of an undersupply, vehicles are assigned to the nearest unserved customers. Hyland and
Mahmassani [2018] compared multiple heuristic strategies to assign customers to vehicles
immediately. If multiple requests are assigned at once in a batch, the assignment for ride-hailing
can be formulated as a bipartite matching problem, which can be solved efficiently [Ruch
et al., 2018]. The efficiency of assigning requests in batches was shown by Hörl et al. [2019]
for a case study of Zurich, Switzerland. Syed et al. [2019] further introduced a neural network
based meta-heuristic to solve the assignment problem in batches. Erdmann et al. [2021]
proposed a mixed framework that allows assigning requests immediately while assignments
are re-optimized in batches. Tobias Enders et al. [2023] developed a deep reinforcement
learning algorithm to make informed acceptance and rejection decisions for incoming requests.

Matching for Coordinated Ride-Sharing

The matching problem for coordinated ridesharing services is similar to the ride-pooling prob-
lem, as trips are shared between multiple customers. Nevertheless, the difference is that drivers
of the ridesharing services are private drivers with a specific planned trip they are willing to
share. Therefore, driver detours and trip delays also have to be considered in the matching
process. Agatz et al. [2011] proposed a greedy heuristic to match driver-rider pairs for a
large-scale case study of Atlanta, US. Other approaches included kinetic tree search Huang
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et al. [2013] and non-myopic graph search heuristics [Guo et al., 2021]. Stiglic et al. [2016]
showed the importance of driver and rider flexibility (i.e., the willingness to shift trips) for the
success of a match. Huang et al. [2022] additionally proposed a congestion-aware routing
model for the ridesharing service. For a more detailed overview of the matching problem for
ridesharing services, the reader is referred to Agatz et al. [2012] and Furuhata et al. [2013].

Assignment for Ride-Pooling

Computational time is the main limiting factor for the assignment problem of ARP services.
A potential huge solution space has to be searched efficiently to find a good solution within a
short time frame to allow fast reaction times to new requests. Therefore, early studies focused
on the development of efficient search heuristics. Ma et al. [2013] were among the first
to develop a large-scale solution algorithm for a ride-pooling service. Multiple heuristics are
applied to deal with the complexity of the problem. The insertion heuristic is used to create
the schedules, while a spatial local search is applied to decide on a candidate vehicle in the
vicinity of a request. Additionally, a grid-based travel time matrix is used to decrease the need
for computationally expensive travel time calculations.

Because of its efficiency, the insertion heuristic has been used in many studies that evalu-
ated the impact of city-wide ARP services. Fagnant and Kockelman [2018] sequentially
checked the nearest vehicles for a new request and assigned it to the first vehicle that could ful-
fill a set of constraints (e.g., waiting and detour constraints). Other studies (e.g., Bischoff
et al. [2017], Vosooghi et al. [2019], Fiedler et al. [2018], and Dandl [2022]) inserted
new requests into a preselected set of candidate vehicles and assigned the schedule with the
best objective value. This preselection is usually based on all vehicles that can reach the request
within a specific maximum waiting time constraint [Bischoff et al., 2017; Vosooghi et al.,
2019; Fiedler et al., 2018] or further heuristics that decrease the search space [Dandl,
2022].

Even though the insertion heuristic is computationally efficient and, therefore, practical for
many applications, it is not guaranteed to find the optimal solution. On the one hand, new
requests are treated sequentially, resulting in suboptimal solutions compared to requests treated
in batches. On the other hand, the insertion heuristic does not allow for adapting previously
made decisions based on new information as assignments remain fixed. It might be beneficial
to update the stop order of already assigned schedules to accommodate new requests or even
shift the assignment of customers who have not been picked up yet to another vehicle. This
process is usually referred to as "re-assignment".

To allow re-assignments and improve the initial solution often created by an insertion heuris-
tic, a series of other studies focused on the development of meta-heuristics. Santos and
Xavier [2013] proposed an adaptive search procedure which they improved later on [Santos
and Xavier, 2015]. Jung et al. [2016] applied a hybrid-simulated annealing meta-heuristic,
while Zhan et al. [2021] developed a modified bee colony algorithm.

One of the most influential algorithms for large-scale assignment problems for ARP services
has been proposed by Alonso-Mora et al. [2017a]. This algorithm elaborates on the concept
of shareability graphs introduced by Santi et al. [2014] and extends it by introducing request-
vehicles graphs to not only find possible request-request but also request-vehicle matches. If
pick-up and drop-off time constraints (e.g., maximum waiting time or maximum trip detour
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time) are tight enough, an efficient search algorithm can be formulated that allows finding
a large subset (under some circumstances, even all) feasible vehicle schedules. Even if the
algorithm would not terminate in time for real-time operation, time-outs can be used to return
solutions anytime. As re-assignments are possible, the authors argue that the solution can be
improved over time if a suboptimal solution is returned in a previous optimization epoch due
to time-outs. The possibility for large-scale application is demonstrated in a case study for
Manhattan, NYC, with up to 2,000 simultaneously active requests and vehicles with a capacity
of up to ten passengers.

Multiple studies elaborated on this approach to improve computational efficiency. Liu and
Samaranayake [2022] developed speed-up techniques for the algorithm by Alonso-Mora
et al. [2017a]. Firstly, only schedules for the closest vehicle to a request are created, while
it is checked later whether other vehicles can fulfill this schedule in time, too. Secondly, an
efficient distribution of computational load to different processors is proposed. They report a
speed-up of up to 98% compared to the original algorithm. Engelhardt et al. [2020] and
Li et al. [2021] suggested further improvements by keeping already computed schedules and
graphs in memory. As the time between consecutive optimization epochs is short (usually in
the range of seconds to a minute), the authors argue that most of the previously computed
schedules remain feasible. Engelhardt et al. [2020] additionally proposed vehicle search
heuristics that decrease the connectivity in the shareability graph and thereby decrease the
computational load.

Riley et al. [2019] proposed a column generation approach to iteratively improve the
current assignment until the best solution is found. Within a rolling horizon, the goal is to
minimize waiting time, while a maximum trip time constraint guarantees short travel times. No
maximum waiting time constraint is considered. Instead, customers queue up until a feasible
solution is found. They report that instances of up to 30,000 requests per hour could be solved
for a Manhattan case study. Simonetto et al. [2019] further proposed a method to deal with
large-scale ride-pooling assignment problems. If no re-assignments are allowed and each new
request is assigned to a different vehicle, the schedule to vehicle assignment can be cast into
a linear assignment problem, providing computational efficiency. By comparing the algorithm
with the one proposed by Alonso-Mora et al. [2017a], the authors found that a speed-up
of 4x could be achieved while they argue that the loss in solution quality is minor. Wang
et al. [2023] allows re-assignment by solving multiple linear assignment problems iteratively
until the solution converges.

Notable further extensions of the assignment problem for ARP services include the dynamic
selection of boarding locations [Engelhardt and Bogenberger, 2021; Fielbaum et
al., 2021; Zuo et al., 2021], the integration of transfers between vehicles [Masoud and
Jayakrishnan, 2017; Namdarpour et al., 2024], or spatially dependent rejection penalties
to foster service fairness in the operating area [Schuller et al., 2021].
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Study Objective Time Constraints Re-Assignment Demand Fleet Size
(Vehicle Capacity) Method

Ma et al. [2013] 1. Served Requests
2. VKT Pick-up TW (5min) ✗ Up to 60k/hour 3k(?) Multiple Search Heuristics

Santos and Xavier [2013]
Santos and Xavier [2015]

1. Served Requests
2. Traveler Fares

LAT (30min)
MTF (private ride) (✓) 78k/day 1333(4) Greedy Randomized

Adaptive Search Procedure
Hosni et al. [2014] Profit MDT (20min) ✗ 200 per instance 50(4) Lagrangian Decomposition

Jung et al. [2016]
1. Served Requests

2. Ride Time & Wait Time
Compare to Profit

MWT (15min)
MDT (2.0 rel) ✓ Up to 18k/4h 600(4) Hybrid Simulated Annealing

Alonso-Mora et al. [2017a] 1. Served Request
2. Travel Delay

MWT (7min)
MDT (twice MWT) ✓ Up to 460k/day 3k(10) Graph-based Trip Search

+ Assignment

Riley et al. [2019] 1. Served Request
2. Wait Time MDT(max(1.5 rel, 2min max)) ✓ Up to 33k/hour 2k(5) Column Generation

Simonetto et al. [2019] 1. Served Requests
2. System Time

MWT (7 min)
MDT (7 min) ✗ Up to 460k/day 3k(10) Linear Assignment

Engelhardt et al. [2020] 1. Served Requests
2. VKT

MWT(8 min)
MDT (1.4 rel) ✓ 180k/day 3k (4) Trip Search + Assignment

vs Insertion Heuristic

Hyland and Mahmassani [2020] Served Requests +
Delay + VKT MDT (Up to 1.8 rel) ✗ 18k/7h Up to 1,000(2) Bi-partite Matching

Li et al. [2021] 1. Served Requests
2. Travel Delay

MWT(5 min)
MTD (twice MWT) ✓ Up to 800k 3200(10) Graph-based Trip Search

+ Assignment

Zhan et al. [2021]
Served Requests +
Travel Cost Ratio +
Travel Time Ratio

MWT (5min)
MDT (1.3 rel) ✓ 3,661/h 2400(4) Modified Bee Colony Algorithm

Liu and Samaranayake [2022] 1. Served Requests
2. Travel Delay

MWT(5min)
MTD (twice MWT) ✓ 116k/6h 3k(10) Graph-based Trip Search

+ Assignment

Fiedler et al. [2022] 1. Served Requests
2. Travel Delay MTD (3 to 7 min) ✓/ ✗ Up to 120k/h Up to 16k (5) Trip Search + Assignment

vs Insertion Heuristic

Wang et al. [2023] 1. Served Requests
2. System Time

MWT(10min)
MDT(1.5 rel) ✓ 316/20min 394(4) Iterative Graph-based Matching

Ruijter et al. [2023] Net Sharing Benefit Sharing Benefit Improvement ✓ 1210/h 150(3) Graph-based Trip Search
+ Assignment

Table 2.3: Collection of studies presenting solutions to the ride-pooling assignment problem. Abbreviations: MWT: Maximum Wait
Time, MDT: Maximum Delay Time, TW: Time Window, LAT: Latest Arrival Time, MTF: Maximum Travel Fare, VKT:
Vehicle Kilometers Traveled.
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Refined Contribution Statement

Table 2.3 provides an overview of the studies discussed in this section. Most studies utilize
hierarchical objectives with the primary goal of maximizing the number of served requests, while
the secondary goal includes minimizing traveler delay, VKT or costs. The primary objective
is needed for those algorithms that employ hard time constraints, especially on customer
waiting times, as generally a service for all customers cannot be guaranteed. Most studies
apply maximum waiting time constraints for five to ten minutes, with a maximum travel
delay of a similar order of magnitude, either in absolute measures or relative to the customer
direct trip travel time. The trend is that these time constraints are tighter for large-scale
instances. From a computational standpoint, this reduces the solution space and, therefore,
computational time. From the service standpoint, it is assumed that the larger fleet size can
provide this customer service level.

This thesis builds upon the work of Engelhardt et al. [2020] and contributes with the
following aspects to the literature:

Contributions
• Improving the computational efficiency of the algorithm by Alonso-Mora et al.

[2017a], especially by keeping computed schedules in memory. (Section 3.2.4)

• Development and Evaluation of re-assignment strategies from operator and cus-
tomer perspective. (Section 3.2.5)

• A benchmark comparison with the variants proposed by Alonso-Mora et al.
[2017a], Simonetto et al. [2019] and the Insertion Heuristic by Jaw et al.
[1986]. (Section 3.2.6)

• A detailed evaluation of three different case studies for Chicago, Munich, and
Manhattan. (Section 4.2)
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2.4.3 Repositioning
The repositioning (or rebalancing) problem arises predominantly in systems characterized by
high dynamism and stochasticity. Just reacting myopically to incoming demand will lead to
an imbalanced system when the spatio-temporal demand patterns are not symmetric. These
imbalances can lead to long user waiting times or even unfulfilled service requests if supply is
locally not available when requested. These features are particularly common in MoD services
but also have applications in other domains like disaster response [Gao, 2022] or repositioning
of ambulances [Brotcorne et al., 2003].

Within MoD services, the repositioning problem originates from vehicle sharing services,
like carsharing services (e.g. Weikl and Bogenberger [2013] and Illgen and Höck
[2019]), bikesharing services (e.g. Dell’Amico et al. [2014] and Reiss and Bogenberger
[2017]) or, after their advent, scootersharing services (e.g. Osorio et al. [2021] and Lee
et al. [2024]). In these services, vehicles have to be repositioned to ensure they are available
where needed. As staff is needed to relocate the vehicles manually, repositioning is costly and
has to be scheduled carefully, limiting the frequency of repositioning to a maximum of a few
times a day. In ridesourcing services, drivers are available for each vehicle who can frequently
reposition their vehicle when they are not serving a customer. Nevertheless, as drivers are paid
by the number of served customers, they tend to reposition their vehicles greedily to maximize
their own revenue resulting in the high fraction of empty VKT discussed earlier [Castillo
et al., 2017].

When services become autonomous4, the constraints for repositioning problem changes: In
contrast to Car- and Bike-Sharing services, the cost of repositioning decreases drastically as
no service provider employee has to be transported to the vehicles and/or move the vehicles
manually. This allows for the repositioning of idle vehicles on a much higher frequency. In
contrast to TNC services, where drivers tend to rebalance themselves greedily to maximize
their revenue, the operator of an AMoD service can centrally plan the repositioning of vehicles
to optimize a global objective.

Ride-Hailing Algorithms

For the ride-hailing use case, which does not allow for shared trips, a common approach is to
aggregate the expected future demand into zones. Since each anticipated future trip requires
exactly one vehicle as supply to be available, analytical formulations for zonal demand-supply
imbalances are derived that can be used to solve a matching problem to rebalance idle vehicles.
For example, Zhang and Pavone [2016] used a queuing theoretical approach to formulate
imbalances of the AMoD service as a Jackson Network and solve the repositioning problem to
stabilize it. This approach has been further extended by Iglesias et al. [2018] and Tavor
and Raviv [2023]. Valadkhani and Ramezani [2023] proposed a macroscopic model to
predict future fleet states and rebalance vehicles accordingly to optimize profit.

The aforementioned models rely on the spatial and temporal aggregation of anticipated
future demand. Therefore, Dandl et al. [2019] evaluated the impact of spatio-temporal
demand forecast aggregation and found that less aggregated demand profits the ride-hailing

4Or at least vehicles are operated by drivers that receive centrally planned routes and are paid by working
hours and not by the number of served customers.
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service. However, it is crucial to find an appropriate balance. Zones that are too small may
cause the approximated spatial coverage of vehicles to extend beyond the zone boundaries.
To reduce the impact of the spatial aggregation method for repositioning, Syed et al. [2021],
therefore, introduced spatial correlations based on Gaussian Kernels between zones. Zhu
et al. [2022] approximates the spatial supply density by dynamically adjusting Voronoi cells
originating from each vehicle. Ackermann and Rieck [2023], too, developed a method to
reposition vehicles based on dynamically created zones that are partially overlapping. Besides
interzonal rebalancing, Yeo et al. [2023] also integrated intrazonal repositioning into their
model. Hörl et al. [2019] evaluated the impact of the rebalancing algorithm in a Multi-Agent
Transport Simulation (MATSim) simulation. They compared a service without rebalancing
to a service with repositioning using the algorithm by Zhang and Pavone [2016] with a
perfect forecast and a forecast extrapolating the current demand (myopic forecast). They
found that the choice of the repositioning algorithm has more impact on the overall system
performance than the choice of the assignment algorithm. Additionally, applying myopic
forecast drastically increases empty VKT and customer waiting times. Brar and Su [2021]
proposed a learning-based method to dynamically adjust hyperparameters like repositioning
frequency and temporal forecast horizon to optimize the service performance. Their evaluation
showed a trade-off between served requests and VKT, especially in repositioning frequency:
The higher the frequency, the more requests can be served, but the higher the VKT due to
a higher number of unnecessary repositioning trips. Finally, Guo et al. [2022] used a Long
Short-Term Memory (LSTM) based learning approach to directly learn valuable repositioning
actions from historical data.

Most of these studies focused on maximizing served requests or minimizing customer waiting
times while minimizing repositioning costs. Winter et al. [2021] and Schuller et al. [2021]
also considered fairness aspects (e.g., equal service availability in the whole operating area) in
their repositioning algorithm. Additionally, Dean et al. [2022] considered the combination of
charging and repositioning, while Winter et al. [2021] also considered parking constraints in
their approach.

Ride-Pooling Algorithms

The repositioning problem is more complex for the ride-pooling use case, as multiple customers
can share a trip. As a result, the relationship between expected demand and the necessary
supply becomes intricate. Idle vehicles can serve multiple future requests. Additionally, en-
route vehicles can accommodate future requests, too. Some studies have suggested methods
to address this challenge: Wallar et al. [2018] as well as Bischoff and Maciejewski
[2020] introduced a linear scaling factor of predicted demand to convert expected demand
to supply, allowing the use of a computationally efficient macroscopic model. Alternatively,
Schlenther et al. [2023] extended the approach by Bischoff and Maciejewski [2020]
and proposed aligning relative demand and supply distributions instead of rebalancing vehicles
to absolute measures of demand. Ma and Koutsopoulos [2022] formulated the problem
by repositioning vehicles to zones that maximize the likelihood of finding at least one match-
ing request within the forecast horizon but did not include sharing of trips explicitly in their
formulation. In contrast, Wen et al. [2017] introduced load factors for currently en-route
vehicles based on their current occupancy for non-idle vehicles to contribute to fractional
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zonal supply. Alonso-Mora et al. [2017a], with additional refinements proposed by Liu
and Samaranayake [2022], suggested a purely reactive approach to rebalance idle vehicles
to locations with unserved demand. In a follow-up paper, Alonso-Mora et al. [2017b]
additionally developed a large-scale predictive repositioning method: Samples from future re-
quests are directly included in the assignment algorithm. While this method showed promise
in large-scale simulations for Manhattan, the inclusion of future request samples drastically
increased computational time, necessitating the addition of multiple time-outs in the assign-
ment process to manage computational demands effectively. Lowalekar et al. [2018], too,
developed a sampling-based demand anticipatory matching algorithm based on a multi-stage
stochastic optimization model, which they solved by applying Bender’s decomposition. Never-
theless, only request trips starting and ending in the same zone can be shared in their model.
Tuncel et al. [2023] proposed an integrated matching and rebalancing problem. Within the
predictive rebalancing problem, sharing of trips is considered weighting available vehicle seats
within their supply estimation.

While these approaches are computationally efficient and allow application in large-scale
instances, other studies have proposed more sophisticated methods. Sayarshad and Chow
[2017] formulated a rebalancing problem based on Markov Decision Processes, but the problem
size is restricted to six zones in their case study. Li et al. [2019a] proposed a solution method
for the stochastic DARP using sampling of predicted future requests, but the problem size was
restricted to four vehicles. Tsao et al. [2019] proposed a Model Predictive Control (MPC)
approach to steer vehicles towards future expected demand, but this method is limited to a
maximum of two requests sharing a trip. Adopting the insertion heuristic, van Engelen
et al. [2018] proposed a demand-anticipatory assignment algorithm that steers en-route vehi-
cles towards expected demand. While the algorithm can reduce customer waiting time, they
evaluated that a simple idle vehicle rebalancing strategy outperforms the demand-anticipatory
assignment in terms of customer rejections. Tafreshian et al. [2021] formulated the ride-
pooling control problem as a time-expanded network. They suggested a two-stage model to
anticipate future demand: In the first (offline) stage, a set of candidate vehicle routes is gen-
erated to serve future demand. In the second (online) stage, on-demand requests are assigned
to these routes.

As analytical formulations are hard to find, multiple studies proposed deep learning ap-
proaches that show promising results. Wen et al. [2017] and Chouaki et al. [2022] applied
a Q-learning approach that shows similar performance to their optimization-based approach
but with a much lower computational burden. Gueriau et al. [2020] showed that deep learn-
ing can also be applied to incorporate stochastic travel times in the repositioning problem.
Cheng Li et al. [2022] proposed a value-based learning approach with an offline policy eval-
uation and an online update procedure and showed that their approach outperforms a myopic
strategy.

Refined Contribution Statement

Table 2.4 provides an overview of the studies developing repositioning strategies for ride-pooling
services that have been discussed in this section.

Checkmarks in the table indicate whether pooling is explicitly considered in the formulation.
A pure checkmark refers to studies that explicitly consider pooling in their supply estimation.
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This is especially true for sampling-based methods that create possible future vehicle routes
from sampled future requests. Brackets indicate that a ride-hailing-based algorithm has been
adapted slightly to the ride-pooling use case. These methods usually rely on the calibration
of parameters to account for the pooling service. Due to the computational burden, it can
be observed that only rather small-scale studies fully consider pooling in their formulation.
Forecast of demand is usually based on a simple method of averaging historical demand. Some
studies not only forecast demand on a trip-origin level but also the destination of trips, which
is especially relevant for algorithms that explicitly consider ride-pooling in their formulation.

Three further features are considered in the table: Spatial and temporal aggregation of
demand, and whether repositioning trips have to be completed once assigned (the trip is
“locked”), or whether a repositioning trip can be aborted to serve incoming demand. Spatially,
demand is usually aggregated on a zonal or station-based level, while temporally, demand is
aggregated within a single horizon. In contrast to single-horizon approaches, multi-horizon
approaches, like the MPC approach by Tsao et al. [2019], allow the incorporation of multiple
repositioning epochs leading to a better estimation of the available supply. The locking of
repositioning trips varies among the studies, giving no clear indication about the best strategy.
The study by Tafreshian et al. [2021] is marked in brackets, as their repositioning approach
by following candidate routes deviates from other approaches of assigning single repositioning
trips.

With that in mind, this thesis builds upon the work of Engelhardt et al. [2023] and
contributes with the following aspects to the literature:

Contributions
• Development of an efficient multi-horizon repositioning algorithm that explicitly

considers ride-pooling in the supply estimation. (Section 3.3)

• Evaluation of forecast accuracy and aggregation on the repositioning performance.
(Section 5.3.3)

• Assessment of allowing re-assignments of repositioning trips. (Section 5.3.4)

• Benchmark to other state-of-the-art repositioning algorithms. (Section 3.3.5)

• Evaluation in the three large-scale case studies Chicago, Munich, and Manhattan.
(Section 5.3)
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Literature

Review

Study Spatial
Aggregation

Temporal
Aggregation Supply Estimation Lock

Repo. Demand Forecast Explicit Pooling
Formulation

Tested
System Size

Lowalekar et al. [2018] Zonal Single Horizon
Schedules by

Request Sampling
(Only requests with same

OD relation can share trips)
✓

Historic Data-based
(O+D) (✓) 8000 Vehicles

53k Rq. per 2.5h

Alonso-Mora et al. [2017a]
Liu and Samaranayake [2022] None None Autocorrelation with

Unserved Demand ✗ None ✗
3000 Vehicles

460k Rq. per Day

Wallar et al. [2018] Zonal Single Horizon Linear Factor of
Demand Estimation ✗

Adaptive real-time estimation
(O) (✓) 3000 Vehicles

460k Rq. per Day

Alonso-Mora et al. [2017b] Zonal Single Horizon Schedules by
Request Sampling ✗

Historic Data-based
(O+D) ✓

3000 Vehicles
460k Rq. per Day

Ma and Koutsopoulos [2022] Zonal Single Horizon Equal Prob.
of Unmatched Demand ✗

Historic Data-based
(O) (✗) 3000 Vehicles

125k Rq. per Day

Schlenther et al. [2023] Zonal Single Horizon Equal Vehicle-
To-Population-Ratio ✓

Simulation-based
(O) (✓) 2000 Vehicles

27.5k Rq. per Day

Tuncel et al. [2023] Zonal Single Horizon Load Factors based on
Vehicle Occupancy ✗

Historic Data-based
(O) (✓) 1500k Vehicles

120k Rq. per 16h

Tsao et al. [2019] Station-based Multi Horizon
MPC with

Max. 2 Customers
Sharing a Trip

✓
Historic Data-based

(O+D) (✓) 400 Vehicles
465k Rq. per Month

Sayarshad and Chow [2017] Station-based Single Horizon Queue Length Estimation ✓
Historic Data-based

(O) ✓
150 vehicles

8640 Rq. per Day

Bischoff and Maciejewski [2020] Zonal Single Horizon Linear Factor of
Demand Estimation ✓

Simulation-based
(O) (✓) 100 Vehicles

11.1k Rq. per Day

Tafreshian et al. [2021] Station-based Multi Horizon
Preprocess Daily Routes

Based on
Network Flow Problem

(✓) Historic Data-based
(O+D) ✓

100 Vehicles
250k Rq. Per Day

Wen et al. [2017] Zonal Single Horizon Load Factors based on
Vehicle Occupancy N/A Perfect

(O) (✓) 20 Vehicles
100 Rqs. per Hour

Li et al. [2019b] None Single Horizon Schedules by
Request Sampling ✗

Historic Data-based
(O+D) ✓

4 Vehicles
164 Rq. per Day

Table 2.4: Collection of studies proposing repositioning strategies of ride-pooling services sorted by reported system size of the case
study. Abbreviations: (O): Only Origin; (O+D): Origin and Destination
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2.4.4 Reservation
The incorporation of reservations into the ARP service promises benefits on the operational
and customer side. On the operational side, reservations could allow for better fleet planning,
leading to a more efficient service. On the customer side, pre-booking rides can increase
service reliability, which might be a convenient option for trip purposes that are time-critical
and involve a fixed appointment.

Full Reservation-Based Services

From the operational side, Santi et al. [2014] evaluated the matching efficiency on the
shareability graph. When all requests are known ahead, saved travel time can be improved by
up to 8% compared to when revealed online. Bilali et al. [2019a] developed an analytical
model to compare the shareability of trips when all requests are known a short time ahead
compared to purely on-demand requests. They evaluated that a reservation time of only 2
minutes can increase the chances of finding sharable trips by up to 30%. Ouyang et al. [2021]
developed an analytical model to calculate the optimal reservation time for a many-to-many
ride-sharing service.

The advantage of pre-booking rides originates from the absence of stochasticity in the
assignment problem5. If all requests are known ahead, the assignment problem can be solved
once by solving the static DARP. Agatz et al. [2011] proposed a rolling horizon approach
to solve the many-to-many ride-sharing problem for different reservation horizons. Within the
rolling horizon approach, the static DARP is solved only for customers requesting a ride within
a specific time horizon to reduce the overall problem size. Lu et al. [2023] tested the impact
of different reservation horizons for a purely reservation-based ride-pooling service. Using a
heuristic VRP solver, they found a maximum in service efficiency for a reservation horizon
of around 30 minutes. Yang et al. [2022] evaluated a purely reservation-based ride-pooling
service, where customers continuously request rides for at least two hours in advance. They
proposed a network flow optimization approach with a rolling horizon and found a steady
increase in system performance with increased horizon length.

Other studies focused on finding good solutions for the large-scale static DARP directly using
heuristics and meta-heuristics. Su et al. [2022] proposed a clustered tabu search algorithm to
solve instances with up to 4,000 requests within three hours based on the NYC taxi data set.
Solutions could be found within 300s, but this study did not consider ride-pooling. Muelas et
al. [2015] developed a variable neighborhood search algorithm to solve the problem with ride-
pooling. Solutions to the problem of up to 16k requests and 1,700 vehicles for case studies of
San Francisco could be found within an execution time of three hours. Wallar et al. [2021]
formulated a heuristic based on a batch scheduling algorithm initially intended to estimate fleet
sizes for an on-demand ride-pooling service. Nevertheless, the approach solves a DARP with
shared rides for the NCY taxi data of up to 450k requests a day within a computational time
of up to 7.6 hours. While previous studies mainly focused on minimizing operational costs,
Kucharski and Cats [2020] developed a model to solve the static ride-pooling problem
by assigning customers to schedules based on their utility of a shared ride. Only routes that

5Ignoring other sources of stochasticity like network travel times.
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improve customer utility are assigned compared to a private ride, which they refer to as an
attractive ride.

Mixed - On-Demand and Pre-Booking - AMoD Services

When mixed services are considered, where trips can be requested both on-demand and pre-
booked, the scheduling problem becomes more complex as the assignment algorithm has to
consider requirements for both types of requests. This complexity arises from the unknown
state of the fleet at the time of the pre-booking request, which is mainly influenced by on-
demand requests that are revealed over time. When pre-booking is considered in an AMoD
service, the main question is: “How can a service be guaranteed for a pre-booked trip once it
is confirmed?” According to Yu et al. [2023], real-world operators rely on simplified methods
yet: They report that Lyft, for example, treats pre-booked requests similar to on-demand
requests when the pre-booked time approaches, while Didi treats pre-booked rides separately
with increased spatial search radius for drivers.

Different studies proposed more sophisticated methods to evaluate the impact of reservations
on service performance. The first block of studies focused on integrating short- to mid-term
reservations in the order of 30 minutes to one hour pre-booking times [Wen et al., 2019;
Ma and Koutsopoulos, 2022; Dandl, 2022]. In this case, long-term fleet planning is not
necessary. Therefore, pre-booked requests can be treated similarly to on-demand requests and
directly assigned to vehicle schedules, ensuring available capacity after booking confirmation.
To cope with the increased solution space when incorporating pre-booked requests, all three
studies rely on insertion heuristics to assign pre-booked rides. While Wen et al. [2019] and
Ma and Koutsopoulos [2022] also applied insertion heuristics for on-demand requests,
Dandl [2022] considered a rolling horizon-based re-optimization approach for on-demand
requests and pre-booked requests that fall within the time horizon of the current optimization
epoch. Concerning the impact of reservation requests, Wen et al. [2019] evaluated an increase
in service performance when 5% of customers pre-booked their rides but a decrease in service
performance when 10% of the rides have been pre-booked. They argued that the reduction
in service performance results from the additional commitment to serve pre-booked rides,
resulting in additional rejections for on-demand customers. A similar observation is made
by Dandl [2022]. In this study, pre-booking consistently reduced service performance. The
service performance could be improved only if all requests reserved their rides. On the contrary,
Ma and Koutsopoulos [2022] found a steady performance increase with increasing pre-
booking fractions and pre-booking time.

The second block of studies focused on integrating long-term reservations, where customers
can pre-book rides for more than two hours in advance. Yu et al. [2023] developed a rolling
horizon approach to solve the mixed service problem with long-term reservations. Nevertheless,
the confirmation of a pre-booked ride is only guaranteed when the pick-up time falls within
the rolling horizon. Duan et al. [2020] developed a two-stage model to confirm long-term
reservations upon request for a ride-hailing service. They split vehicle schedules into short-
term and long-term assignments, where long-term assignments treated pre-booked rides. The
short-term assignment included on-demand and upcoming pre-booked rides while maintaining
the feasibility of long-term assignments. For a ride-pooling service, the studies by Cui et al.
[2023] and Duan et al. [2023] developed similar approaches to the one presented in this
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thesis, which is based on Engelhardt et al. [2022a]: Similar to Duan et al. [2020], short
and long-term assignments are considered to guarantee service for long-term reservations.
Yu et al. [2023] developed an ant colony meta-heuristic to solve the mixed service problem
on a small network of Delft with up to 1,112 requests in 15h. Duan et al. [2023] deploys
several heuristics to cope with the large-scale problem, which they test for Manhattan with
up to 365k requests per day. The long-term assignment is based on the insertion heuristic
to create a long-term solution for pre-booked rides, while the short-term assignment includes
a re-assignment procedure to improve the long-term solution within a rolling horizon when
on-demand customers are revealed.

For long-term reservations, too, the results of the studies are diverging: Duan et al. [2020]
observed an increase in operator profit until a pre-booking fraction of around 80% followed by
a slight decrease. Nevertheless, the service always profits from pre-booked rides when trips are
not shared. Similarly, Cui et al. [2023] found that the operator profit increases with increasing
pre-booking fractions and book-ahead time. Duan et al. [2023] found that the operational
efficiency maintains a relatively constant level with varying pre-booking fractions and average
pre-booking time.

Finally, the study by Abkarian et al. [2022b] should also be mentioned here. Contrary to
the other studies, they proposed a service with two options for customers: They could reserve
a vehicle for a specific period of private use or book a ride on demand. A simulation study for
taxi trips in Chicago showed that a mixed-service operation can provide a better service than
two separate operations.
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Literature

Review

Study Ride-Pooling Mixed Service Long-Term
Reservations Reservation Acceptance Method Main Result

Efficiency is: Case Study

Su et al. [2022] ✗ ✗ ✓
After solving

routing problem
Solve Offline Problem

for Reservation Requests N/A (Algorithm Comparison) Manhattan
3968 Rqs/3h

Lu et al. [2023] ✓ ✗ ✗ At Request Time Heuristic VRP Solver • optimal at 30 min RH Town in Poland
1637 Rqs/day, 20 vehs

Yang et al. [2022] ✓ ✗ ✓
At Short Term Horizon

(2h)
Network Flow Model

Within Rolling Horizon • increasing with RH Delft
1112 Rqs/15h

Wen et al. [2019] ✓ ✓ ✗ At Request Time Insertion Heuristic
for both request types

• increased at 5% RR
• decreased at 10% RR

Major European City
700 Rqs/h

Ma and Koutsopoulos [2022] ✓ ✓ ✗ At Request Time Insertion Heuristic
for both request types

• increasing with RR
• increasing with RH

Chengdu
125k Rqs, 3k vehs

Dandl [2022] ✓ ✓ ✗ At Request Time Insertion for Long-Term,
Re-Opt in Short Term

• decreased with RR
• improved only at 100% RR Munich

Duan et al. [2020] ✗ ✓ ✓ At Request Time Short term and long term
planning with offline solution

• increasing with RR
• decreasing from 80% RR

• decreasing with RH

Manhattan
700 vehs

Yu et al. [2023] ✗ ✓ ✓
At Short Term Horizon

(30 min)
Network Flow Model

Within Rolling Horizon • increasing with RR Manhattan
200 vehs, 250 Rqs/h

Cui et al. [2023] ✓ ✓ ✓ At Request Time Short term and long term
planning with offline solution

• increasing with RR
• increasing with RH

Delft
1112 Rqs/15h

Duan et al. [2023] ✓ ✓ ✓ Immediate Short term and long term
planning with offline solution

• rather constant with RR
• rather constant with RH

Manhattan
364k Rqs/day

Table 2.5: Collection of studies proposing reservation strategies of ride-pooling services. Abbreviations: (RR): Reservation Rate;
(RH): Reservation Horizon
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Refined Contribution Statement

Table 2.5 provides an overview of the studies that have been discussed in this section and deal
with the mixed service for AMoD services with on-demand and pre-booking requests. This
thesis deals with the mixed service problem for ride-pooling services, focusing on long-term
reservations and service guarantees for pre-booked rides. As the table shows, only the studies
by Cui et al. [2023] and Duan et al. [2023] dealt with this problem. Both studies have been
published slightly after the publication referring to this chapter in this thesis [Engelhardt
et al., 2022a] and show some similar approaches to this work. Similarly to Cui et al. [2023]
and Duan et al. [2023], a two-stage approach is developed that first creates long-term ve-
hicle schedules for pre-booked requests. In the second stage, the schedules are re-optimized
within two rolling horizons to schedule on-demand requests together with upcoming reserva-
tion requests while maintaining the feasibility of long-term vehicle schedules. In contrast to
the method by Cui et al. [2023], the method in this thesis allows the evaluation of large-scale
instances. This is also the case for the approach proposed by Duan et al. [2023]. Never-
theless, a disadvantage of the method is that the algorithms are based on many heuristics,
and the treatment of assignment, rebalancing, and reservation tasks is strongly interrelated.
The approach in this thesis is highly modular and allows for a more detailed analysis of the
impact of different components on the overall service performance. This is especially relevant
considering the different observed impacts of reservation as shown in Table 2.5.

Building upon the work of Engelhardt et al. [2022a], the contributions of this thesis are
therefore summarized as follows:

Contributions
• Developing a method to solve the mixed service problem for ride-pooling services

with long-term reservations with service guarantees. (Section 3.4)

• Modular integration of reservations into assignment and repositioning algorithms.
(Section 3.4.2 + 3.4.4)

• Assessment of reservations for different spatio-temporal demand patterns. (Sec-
tion 5.4.1)

• Evaluation for the three case studies Chicago, Munich, and Manhattan. (Sec-
tion 5.4)
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Chapter 3

Methodology
This chapter presents the proposed methodology to solve the ARP problem. First, a general
description of the ARP problem is given in section 3.1. The discussion then shifts to the
assignment problem in section 3.2, where the solution approach for assigning schedules to
vehicles in the ARP service, addressing dynamically incoming on-demand requests is presented.
A sampling-based approach for repositioning idle vehicles to meet future demand is presented
in section 3.3. Finally, the treatment of pre-booking customers is discussed in section 3.4.

3.1 The Ride-Pooling Problem

3.1.1 General Problem Description
In the ARP service, a service provider operates a fleet of autonomous vehicles. During op-
eration, customers continuously request trips from the fleet operator. The operator centrally
controls its vehicles, i.e., the operator performs actions At at specific time steps t. These
actions consist of assigning tasks to its vehicles, for example, assigning schedules to serve
customer requests in a particular order, repositioning vehicles to a different location or sending
vehicles to a charging station. In addition to these operational actions, the action space also
includes strategical actions, which refer to operator decisions made on longer time scales. The
operator can, for example, decide to change its fleet by acquiring or selling vehicles, or it can
adapt the service area. Overall, the goal is to perform actions that optimize the operator’s
long-term objective O. Usually, this long-term objective corresponds to the operator’s profit if
a purely profit-oriented company conducts the operation. Nevertheless, also other objectives
can be considered, e.g., societal aspects or environmental impacts, which may be particularly
relevant for public transport operators. Actions are generally performed in a dynamic envi-
ronment, which can be described by a system state St at time t. The system state consists
of endogenous variables that are directly influenced by the operator’s actions, like the vehicle
positions, previously assigned tasks, or strategic decisions that have been made in the past. In
contrast, exogenous variables are not directly influenced by the operator’s actions, e.g., new
customer requests or the traffic state.

The control problem to find suitable actions At can be mathematically formulated as

max
A

O O =
∑
t

Ot(At, St) (3.1a)

s.t.: St+1 = Ω(St, At, st+1) ∀t (3.1b)
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In Equation 3.1a the goal is to maximize the overall objective O, while Ot evaluates the
incremental objective generated at time-step t. Equation 3.1b defines the state transition
function Ω, which describes the system evolution based on the performed action At, the current
system state St and the exogenous variables st+1, that refer to state changes independent of
operator actions, e.g., new customers requesting trips1.

If an operator could formulate the system dynamics Ω sufficiently accurately, finding the
optimal actions A∗

t would solve the ARP problem. Nevertheless, this formulation requires eval-
uating future system states to determine the optimal action A∗

t at the current time t. Bellman
provided a theoretical solution to this problem by introducing the Bellman equation [Bell-
man, 1957], which can be applied to evaluate optimal actions A∗

t if stochastic information
about future exogenous state changes is available:

A∗
t = arg max

At

(Ot(At, St) + E[
∑
t

γtOt+1(At+1, St+1)]) (3.2)

s.t.: St+1 = Ω(St, At, s̃t+1) ∀t (3.3)

The second term in Equation 3.2 evaluates the expected incremental objective generated
in future time steps. The operator needs to predict future exogenous state changes s̃t+1 to
evaluate future states. As the prediction becomes less reliable the further it is in the future,
weights on future rewards are dampened exponentially, described by the parameter γ ∈ [0, 1].

In theory, approaches like Monte Carlo simulations can be used to sample future system
states and thereby estimate future rewards, while dynamic programming approaches can be
applied to determine the optimal actions A∗

t . Nevertheless, the number of possible decisions to
make, i.e., variables to determine increases exponentially with the number of look-ahead time
steps, which is generally known as “Course of Dimensionality” [Bellman, 1957]. For an ARP
system, this approach would require solving a wide variety of DARPs, which is computationally
intractable for large-scale ARP systems.

A general approach to overcome this problem is to decompose the decision-making pro-
cess into smaller sub-problems, which can be solved sequentially and is often referred to as
“Hierarchical Decision-Making”. One possibility for this decomposition is to split the problem
based on typical timescales of the system. One clear distinction between strategic (long-term)
and operational (short-term) decisions can be made: For an ARP service, strategic decisions
are usually made on a timescale of multiple weeks, months, or even years. Decisions include
the operated fleet size, the fleet composition, the service area, service designs, or the general
pricing strategy. They are characterized by high investment costs, e.g., adaptions to the in-
frastructure, or negotiating contracts with municipalities or other stakeholders. Too frequent
changes in other strategic decisions like pricing schemes might also lead to negative customer
perception. Typically, strategic decisions are grounded in a long-term projection of future
demand, frequently relying on historical data and expert insights. Using this forecast, the op-
erator can, for instance, employ simulations to ascertain the optimal fleet size, it’s composition
and service area to optimize the long-term objective O.

This thesis focuses on the operational decisions, which are made on a timescale of seconds,
minutes, or hours. Operational decisions include the assignment of driving tasks to vehicles to
serve incoming demand and provide service offers to these customers, the repositioning of idle

1Changes in endogenous variables are covered by the performed actions At based on the current state St.
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vehicles to undersupplied areas, dispatching of vehicles to charging stations, and determining
surge pricing factors to balance demand and supply.

As the literature review revealed, solving all these problems simultaneously is computationally
intractable for large-scale ARP systems. A common approach is, therefore, to split operational
decisions into further sub-problems. These sub-problems can be divided according to the
timescale of the decisions, too. This thesis focuses on the following three sub-problems:

1. Assignment: The fleet operator reacts to the new customer requests in this sub-
problem. The operator decides whether to accept or reject a customer request, commu-
nicates the decision to the customer and assigns schedules to its vehicles to serve these
requests. As on-demand customers expect fast feedback regarding service availability,
this decision-making process typically operates on a timescale of seconds or, at most, a
few minutes

2. Repositioning: Repositioning aims to redistribute idle vehicles to undersupplied areas
to increase service availability and vehicle utilization. This problem is usually solved on
a timescale of multiple minutes to a few hours, reflecting timescales in which supply-
demand imbalances occur typically.

3. Reservation: When customers can pre-book trips, multiple timescales come into play.
On the one hand, the fleet operator needs to decide whether to accept a pre-booking
request. On the other hand, the operator needs to assign schedules to vehicles to serve
these pre-booked requests. While the former decision should be made on a timescale
of seconds or minutes to provide fast feedback, the latter decision can be made on a
timescale of hours or even days, depending on the pre-booking horizon. Even though
time scales between assignment and reservation overlap, a separation in the decision-
making process is reasonable as the acceptance decision can be decoupled from the
current fleet state if the pre-booking horizon is sufficiently long.

These three sub-problems will be discussed in detail in the sections 3.2, 3.3, and 3.4.
There are further operational sub-problems that can be considered in the context of ARP

services, but are not in the focus of this thesis. Firstly, the charging and fuelling of vehicles
is an important operational task as it limits the range of vehicles and thus their potential
availability. The decision-making process to determine when and where to charge or fuel vehi-
cles can be considered as another sub-problem. However, it is argued that with technological
advancement, the range of electric vehicles will further increase allowing a full day of operation
without the explicit need for frequent charging. In such cases, charging processes could be
scheduled during periods of low demand. Therefore, conflicts between charging and serving
customers can be minimized, allowing for the separate handling of these tasks. Secondly,
maintenance and cleaning of vehicles are other operational tasks that can be considered. Like
charging and fuelling, this task can be shifted to off-peak times to avoid interfering with the
assignment process. Thirdly, dynamic pricing, i.e., an increase in fare if most vehicles are uti-
lized, can be considered as an operational task to balance supply and demand. Nevertheless,
the development of dynamic pricing strategies is out of scope of this thesis and is therefore
not considered in the following.
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3.1.2 General Terminology
Before going into detail of the applied methodology, some general definitions and assumptions
are introduced in this subsection that are valid for the remainder of this thesis.

Street Network The fleet operator provides a service in a specific operating area. Within
this area, the operator needs a representation of the street network to determine routes, travel
times, and distances between locations. This representation is provided by a directed graph
G = (N,E), where N is the set of nodes and E is the set of edges connecting these nodes.
Each node n ∈ N represents a location in the street network, which can be either a street
intersection or a location on a street segment. Each edge e ∈ E represents a street segment
defined by its start and end node ns, ne ∈ N . An edge e is associated with a length le as a
physical attribute. Additionally, each edge e is associated with a travel time τe(t) as a dynamic
attribute, which reflects an estimate of the average vehicle travel time to pass this edge. This
travel time depends on the time t to represent varying traffic states and congestion. The
operator can use this graph to determine routes (a sequence of connected nodes), travel times
τ(a, b), and distances d(a, b) between two nodes a, b ∈ N . In this thesis, these attributes are
determined by the fastest path (i.e., the path with minimal travel time) between two nodes.
Well-known algorithms like Dijkstra’s algorithm can be used to calculate these fastest paths.

Customers and Requests If customers intend to travel with the ARP service, they need to
request a trip from the fleet operator, e.g., via a smartphone application. In case a customer
requests a trip on-demand (i.e., expects a service as fast as possible), a request r is defined by
its origin or ∈ N , destination dr ∈ N , and a request time tr. If a customer pre-books a trip, the
request is additionally associated with an earliest pick-up time tpr. After a customer requests a
trip, the operator provides feedback on whether it is possible to serve the customer. If a vehicle
is available for service, the customer receives a service offer from the operator. Otherwise, a
rejection is communicated to the customer. This service offer consists of attributes describing
the expected characteristics of the trip. In this thesis, the offer consists of the expected pick-up
time teptr and the expected drop-off time tedtr .2 The customer can then accept or decline this
service offer and communicate the decision to the operator.

Vehicles and Schedules The operator controls a fleet of vehicles V , where |V | is the
overall fleet size available to the operator. Each vehicle v ∈ V is associated with a capacity
cv representing the number of available passenger seats. The current state of a vehicle can
be described by its current location, which can be either a node n ∈ N or a general position
on an edge e ∈ E. Additionally, each vehicle is associated with a set of customers currently
on board the vehicle Rob

v and a currently assigned schedule ψv. A schedule ψv is an ordered
sequence of stops with tasks to be performed at these stops by the vehicle v ∈ V in a given

2Generally, a charged fare will also be communicated to the customer. Nevertheless, as the impact of pricing
is out of the scope of this thesis, it is dropped here for the sake of clarity. Depending on the service design,
additional attributes might be suitable for communicating with customers, too. If the service performs
pick-ups and drop-offs only at virtual stops, for example, the corresponding pick-up and drop-off location
should also be communicated
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order. A stop is defined by a location in the network (usually a specific node n ∈ N) and the
task to be performed there. A task can, for example, refer to a boarding process, which is
characterized by a set of customers boarding and/or alighting the vehicle and a duration tB for
the boarding process. If a repositioning trip is scheduled, the corresponding task only refers to
driving to a particular location in the network. Between stops, vehicles move along a network
route as specified above. The operator communicates new schedules, i.e., assignments, to the
vehicles, while vehicles regularly report their current state to the operator.

Figure 3.1 illustrates the information flow between customers, the fleet operator, and the
vehicles as considered in this thesis. The fleet operator acts as an intermediary between
customers and vehicles, providing feedback to customers and assigning schedules to vehicles
to serve these customers. To provide the best possible service, the operator tracts the current
system state to make informed decisions to centrally control its fleet. The methodology for the
assignment, repositioning, and reservation problem used in this control problem is discussed
in the following sections.

Fleet Operator

Assignment
• Assign schedules to serve upcoming 

customers
• Provide offers to on-demand customers

Reposi�oning
• Dispatch vehicles to undersupplied areas

Reserva�on
• Schedule reserva�on requests
• Provide offers for reserva�on requests
• Ensure reserva�on requests are served

Customer
Request 

Offer 

Accept/
Decline

Current State Vehicle

New Schedule 

Current State 
(

Figure 3.1: Information flow between customers, fleet operator and vehicles.
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3.2 Assignment
This section deals with the assignment problem. For now, only the assignment of on-demand
requests is considered. The incorporation of pre-booked requests is discussed in a following
section. First, the general problem is described, and the corresponding optimization problem
is formulated and discussed. Then, the solution approach of this thesis is presented, followed
by a formulation of strategies to increase assignment reliability. Finally, benchmark algorithms
are provided.

3.2.1 Operator Policy and Service Design
During operation, customers request trips continuously. The operator needs to react to these
requests by providing feedback to the customer and assigning schedules to its vehicles. Typi-
cally, there are two different approaches to react to customer requests:

• Immediate Response: The operator provides offers immediately (or at least before
the next customer is treated) after a customer requests a trip.

• Batch Response: The operator collects customer requests for a certain time period
∆E and provides offers in batches.

There are advantages and disadvantages to both approaches. Immediate assignment allows the
operator to react to new requests as fast as possible and provide quick feedback. Nevertheless,
this approach requires the operator to solve the assignment problem for each new request,
which can be computationally expensive. Alternatively, applying simple heuristics may be
necessary. But this can lead to suboptimal fleet states.

Therefore, the batch response approach is applied in this thesis. Batch response allows
the operator to solve the assignment problem only once for a batch of requests. The batch
period (usually ranging from multiple seconds to a minute) defines the maximum run-time of
the assignment algorithm, which can be used to apply more sophisticated but computationally
heavier algorithms compared to the immediate response procedure. Additionally, responding in
batches allows for making more informed decisions, as the operator can consider all requests in
the batch to find the best possible assignment. Nevertheless, this approach leads to a delay in
responding to the customer, which the customer might perceive negatively if the batch period
is chosen too high.

Assignment Objective

Once the flow of information is established, the operator must define a policy to assign sched-
ules to its vehicles, i.e., define criteria to evaluate the quality of a schedule and determine the
best schedule. This policy is usually based on the operator’s long-term objective, as stated in
Equation 3.1a. Nevertheless, this long-term objective is not directly applicable to the assign-
ment problem, as the operator can hardly estimate the long-term effects of current decisions.
For example, choosing to assign a schedule to serve a customer purely based on generated
profit might lead to high customer waiting and travel times if the schedule with the lowest cost
is to pool as many customers as possible in one vehicle. Customers might even get rejected
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if no profitable schedule can be found. This deterioration in service quality might lead to
negative customer perception and, therefore, decrease demand and, consequently, profit in the
future.

Therefore, the usual approach is to define a short-term objective ρ that can be evaluated
based on the current system state St with the goal to approximately optimize the long-term
objective O. Let ρ(ψ) be a function that evaluates the short-term objective of a schedule ψ
that is to be minimized (i.e., a measure of cost). Some typical components are (for reference
see Table 2.3):

1. Maximize Served Customers:

ρs(ψ) = −
∑
r∈Rψ

pr , (3.4)

with the goal to serve as many customers as possible in the current time step. Thereby,
Rψ refers to the set of customers served by the schedule and pr > 0 refers a reward for
serving customer r. The minus sign converts the maximization of served customers to
a minimization to align with the definition of ρ.

2. Minimize Customer Delay:

ρdel(ψ) =
∑
r∈Rψ

tdo,ψr − tr , (3.5)

with the scheduled drop-off time tdo,ψr of customer r based on this schedule.

3. Minimize Vehicle Driving Time:

ρt(ψ) = tψend − t , (3.6)

with the scheduled time tψend this schedule is completed and t being the current time.

4. Minimize Vehicle Driving Distance:

ρdis(ψ) = dψ , (3.7)

with dψ the distance the vehicle needs to drive to complete the schedule.

The idea of ρs(ψ) and ρdel(ψ) is to assign schedules that ensure high service quality for
customers, aiming to provide a high service rate and rapid service. On the contrary, ρt(ψ) and
ρdis(ψ) are used to assign schedules that are efficient for the operator. Minimizing ρdis(ψ)
for example reduces fuel costs and vehicle wear, while minimizing ρt(ψ) allows vehicles to
be available to serve future customers as fast as possible, reducing the required fleet size.
These different objectives are partially conflicting, e.g., minimizing ρdis(ψ) might lead to high
customer waiting times and thereby high ρdel(ψ). Therefore the operator needs to find a
trade-off between these objectives. Additionally, solutions that are optimal for one objective
might not be unique. For example, there might be multiple sets of schedules that serve the
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same number of customers, Therefore, a weighted sum of these objectives as the short-term
objective ρ(ψ) can be used to define trade-offs and distinguishable solutions:

ρ(ψ) = ρs(ψ) + ωdelρdel(ψ) + ωtρt(ψ) + ωdisρdis(ψ) , (3.8)

with ωdel, ωt, ωdis ≥ 0 being the weights of the different objectives. Note that the weight for
serving customers is implicitly set to 1 as it is absorbed by the reward pr.

In fact, Hyytiä et al. [2012] showed that a minimization of vehicle travel time and delay
time is the optimal choice from a queuing theoretical perspective3. Nevertheless, as empirical
estimates for the values of ωdel and ωdis are available, and there is a strong correlation between
ρdis(ψ) and ρt(ψ) (via the average network speed), ωt is set to 0 in this thesis, resulting in
the assignment objective:

ρ(ψ) = ρs(ψ) + ωdelρdel(ψ) + ωdisρdis(ψ) , (3.9)

Time Constraints and Feasible Schedules

It is not reasonable to assume that customers would wait for a very long time to be served
by the service or that they accept very long travel times inside the vehicle. Therefore, hard
time constraints are applied to guarantee a particular service quality. The time constraints (for
on-demand customers) considered in this thesis are:

1. Maximum Waiting Time: The customer is only willing to use the service if the pick-up
is scheduled no longer than twaitmax after the request time tr.

2. Maximum Travel Time: The customer is only willing to use the service if the in-vehicle
travel time does not exceed ttravelr,max = (1 + ∆det)τ directr . ∆det is a factor to account for
the additional travel time compared to the direct travel time τ directr .

The operator could set these time constraints within the real service, defining the service
quality it wants to provide. Alternatively, the customer could also set these constraints to
define the maximum waiting and travel time they are willing to accept. Independent of the
interpretation, this thesis assumes that the same time constraints are applied to all customers.

By combining physical constraints and time constraints, a schedule is called feasible if

1. all on-board customers are scheduled to be dropped off,

2. customer pick-ups are scheduled before their corresponding drop-offs,

3. the vehicle capacity is never exceeded when en-route,

4. the maximum waiting time of no customers is exceeded,

5. the maximum travel time of no customers is exceeded.
3They also added a quadratic term for vehicle travel time but evaluated only a minor impact of this term.
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The first two constraints must be ensured for any routing problem to create meaningful sched-
ules. The third constraint limits the feasible schedules based on deployed vehicles, while the
last two constraints are mainly based on customer preferences.

From an operational standpoint, time constraints have the advantage that the solution
space for feasible schedules is reduced. Nevertheless, it is possible that no feasible schedule
can be found for a customer request, e.g., if the customer requests a trip to a location that is
not reachable within the maximum travel time. In this case, the operator needs to reject the
customer request or retry the assignment with relaxed constraints4.

3.2.2 Standard Formulation of the Assignment Problem
In each batch epoch, the goal of the operator is to assign new schedules to vehicles to
incorporate yet unassigned requests and possibly re-consider already assigned schedules to
improve the overall objective based on new information. The question the operator seeks
to answer is: “Which are the optimal schedules to be assigned to fleet vehicles to serve
yet unassigned and already assigned customer requests given the current system state and
previously defined objective and constraints?” Finding an answer to this question is classically
referred to as Dial-a-Ride Problem (DARP). In the following, the traditional DARP formulation
based on Riley et al. [2019] is presented, which is used as a basis for further discussion and
the presentation of solution approaches.

For clearer notation, the current vehicle state (xv, Rv
ob, ψv) and its capacity cv can be

extended by the parameters tv0,qv0 and uPi . tv0 refers to the time, the vehicle can start its
next trip. This is either the current time or the expected end time of an ongoing boarding
process. qv0 = |Rv

ob| is the number of customers currently on board. uPi describes the recorded
pick-up time of customers who are already on board.

The goal is to decide on a (new) schedule for each vehicle. Stops in a newly assigned schedule
are encoded by the decision variables xvij, which are 1 if the vehicle v travels from node i ∈ N
to node j ∈ N and 0 otherwise. Let the set of all nodes N be defined as N = V ∪ P ∪D ∪
Dob∪{s}. V = 1, ..., |V | refers to the set of vehicle nodes. P = {|V |+1, ..., |V |+|Ru|+|Ra|}
is the set of pick-up nodes for yet unassigned requests Ru and already assigned but not yet
picked-up requests Ra. Consequently, D = {|V |+ |Ru|+ |Ra|+ 1, ..., 2(|V |+ |Ru|+ |Ra|)}
is the set of drop-off nodes. The set of drop-off nodes for on-board requests is defined by
Dob = ∪v∈VR

v
ob. Finally, the sink node is defined by s. This artificial node is reachable at zero

cost and is used to formulate the flow continuity constraints.
Each pick-up node i ∈ P is associated with a request ri ∈ Ru ∪ Ra which also refers to

corresponding request attributes (oi, di, tri , qi, t
ept
i , tlpti , τ

max
i ), the pick-up location oi and the

drop-off location di, the request time tri , the group size qi, the earliest pick-up time tepti , the
latest pick-up time tlpti , and the maximum travel time τmaxi . Each node is associated with the
number of people to pick up (q̃i = qi) or to drop off (q̃i = −qi) at this node. tBi refers to the
boarding time at node i.

4Dandl et al. [2021a] showed that a retry with the same constraints will never result in a later assignment
if the assignment problem is solved optimally and network travel times do not change.
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The corresponding Mixed-Integer Programming (MIP) can be formulated as follows:

min
∑
i∈P

pizi + ωdel
∑
v∈V

∑
i∈P

(uvi − t
ept
i ) + ωdis

∑
v∈V

∑
i∈P

dvi (3.10a)

s.t. (
∑
v∈V

∑
j∈N

xvij) + zi = 1 ∀i ∈ P (3.10b)
∑
j∈N

xvij −
∑
j∈N

xvji = 0 ∀i ∈ N\V ∪ {s},∀v ∈ V (3.10c)
∑
j∈N

xvvj = 1 ∀v ∈ V (3.10d)
∑
j∈N

xvjs = 1 ∀v ∈ V (3.10e)
∑
j∈N

xvij −
∑
j∈N

xvn+i,j = 0 ∀i ∈ P, ∀v ∈ V (3.10f)
∑
v∈V

∑
i∈N

xvij = 1 ∀j ∈ Ra (3.10g)∑
i∈N

xvij = 1 ∀v ∈ V, ∀j ∈ Rv
ob (3.10h)

uvj ≥ (uvi + tBi + τij)xvij ∀i, j ∈ N,∀v ∈ V (3.10i)
dvj ≥ (dvi + dij)xvij ∀i, j ∈ N,∀v ∈ V (3.10j)
uv0 ≥ tv0 ∀v ∈ V (3.10k)
dv0 ≥ 0 ∀v ∈ V (3.10l)
uvi ≥ tpi ∀i ∈ P, ∀v ∈ V

(3.10m)
uvi ≤ ti + twaitmax ∀i ∈ P, ∀v ∈ V (3.10n)
τ directi ≤ uvn+i − (uvi + tBi ) ≤ (1 + ∆det)τ directi ∀i ∈ P, ∀v ∈ V (3.10o)
τ directi ≤ uvi − (uPi + tBi ) ≤ (1 + ∆det)τ directi ∀i ∈ Rv

ob,∀v ∈ V (3.10p)
wvj ≥ (wvi + q̃j)xvij ∀i, j ∈ N,∀v ∈ V (3.10q)
0 ≤ wvj ≤ cv ∀j ∈ N,∀v ∈ V (3.10r)
xvij, zi ∈ {0, 1} ∀i, j ∈ N,∀v ∈ V (3.10s)

Objective 3.10a is a reformulation of Equation 3.9 with the goal to minimize unserved
requests, traveled distance, and customer delay for all vehicle schedules. The real-valued
decision variables uvi and dvs refer to the arrival time and the driven distance at node i for
vehicle v, respectively. The first term penalizes unassigned requests by a factor pi indicated
by the integer decision variable zi5. Constraints 3.10b ensure that customers are registered
as unassigned if they are not part of a schedule. Constraints 3.10c is the flow conservation,
while constraints 3.10d and 3.10e ensure that the vehicle starts at their corresponding source
node and ends at the sink node. With n = |Ru| + |Ra|, constraints 3.10f ensure that each

5In this formulation, unserved customers are penalized instead of giving a reward for served customers in
Equation 3.4, which is equivalent in terms of the resulting optimal solution.
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request that is picked up is also dropped off. Constraints 3.10g and 3.10h ensure that each
assigned and on-board request is assigned again. Constraints 3.10i to 3.10l set the decision
variables uvi and dvs , while τij and dij refer to the travel time and distance between node i and
j. Constraints 3.10m and 3.10n ensure that no customer is picked up before the earliest and
latest pick-up times, respectively. Constraints 3.10o and 3.10p ensure that the vehicle arrives at
the drop-off location of a request before the maximum travel time elapsed. Constraints 3.10q
and 3.10r ensure that the vehicle capacity is not exceeded. Finally, constraints 3.10s define
the binary decision variables.

In theory, standard solvers like Gurobi6 or CPLEX7 can be used to solve this problem and
obtain new assignments for the given batch epoch. Given the linear objective function ρ,
this MIP can be reformulated as a Mixed-Integer Linear Programming (MILP) by using big-M
formulation for the non-linear constraints 3.10i, 3.10j and 3.10q. Nevertheless, as MILPs are
still NP-hard, standard methods fail to find optimal solutions for large-scale problems in a
reasonable time. Therefore, in section 3.2.4, methods are presented that can be used to find
good solutions for large-scale problems and even optimal solutions for medium-scale problems.

3.2.3 Dynamism and Re-Assignment
Solving the assignment problem as outlined in the previous section would yield the optimal
solution within the current epoch. Nevertheless, it is essential to discuss dynamic aspects that
occur from the operator’s and customer’s point of view when solving the assignment problem
epoch by epoch. In the current formulation, the following changes for assigned customers can
occur between epochs:

1. If a previously assigned request is not added to the set of assigned requests Ra, a
consecutive assignment is not guaranteed.

2. A different vehicle might be assigned to a customer request, leading to a re-assignment.

3. The stop sequence of a vehicle might change due to new requests, resulting in a change
in scheduled pick-up and drop-off times for other assigned customers.

From an operator’s point of view (or rather from the perspective of the assignment optimality)
keeping as much flexibility for optimization as possible is desirable. Nevertheless, computa-
tional time constraints might become a limiting factor as the explorable search space becomes
larger with increased flexibility. From the customer’s point of view, however, it is rather in-
stead that the operator provides a reliable service. This reliability can be categorized into the
following aspects:

1. Service Reliability: Once the accepted trip is communicated to the customer, the
customer expects to be served. This rather obvious aspect can be integrated into the
mathematical model by shifting a new request r ∈ Ru to Ra once assigned to a vehicle.
As this is a central aspect of providing a reliable service, it will be implemented in all
scenarios tested and is not further discussed in this thesis.

6https://www.gurobi.com/
7https://www.ibm.com/de-de/products/ilog-cplex-optimization-studio
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2. Service Vehicle Reliability: This aspect, often referred to as re-assignment, describes
the possibility that the vehicle scheduled to pick up the customer may not be the same
vehicle that ultimately carries out the pickup. Re-assignment occurs if the vehicle is re-
scheduled to serve another request if the overall assignment objective can be improved.
From a customer’s point of view, this might be unfavorable as the customer cannot track
the vehicle on the smartphone application, making the service less comprehensible.

3. Pick-up Time Reliability: This aspect describes the reliability and stability of the
communicated expected pick-up time to the customer. While the pick-up time variation
is constraint by the maximum waiting time constraint twaitmax, the expected pick-up might
be updated within each optimization epoch if vehicles are rescheduled to accommodate
new requests. This can happen if a new customer is scheduled to be picked up before
another customer is assigned to another vehicle, or the customer itself is assigned to
another vehicle. Other sources of variations that are not considered in detail in this
thesis are delays in traffic, late cancellations or no-shows of customers.

4. Travel Time Reliability: Lastly, this aspect describes the reliability and stability of
the communicated expected travel time to the customer. Similar to the pick-up time
reliability, the overall travel time of the request r is constrained by the maximum travel
time ttravelr,max. As new customers are assigned to the vehicle, the expected travel time may
increase due to additional pickups along the route.

As a ride-pooling service is, per design, inherently dynamic and stochastic by offering ser-
vice on-demand, complete reliability concerning the aspects mentioned above is not possible.
Nevertheless, it is important to quantify the trade-off between the operator’s and customer’s
point of view and to develop a solution approach that can balance these aspects.

First, the following section deals with a solution approach for the assignment problem defined
in the previous section 3.2.2. Then, in section 3.2.5, the discussed aspects of re-assignment
and reliability are reiterated and strategies for re-assignment are discussed.

3.2.4 Solving the Assignment Problem
The algorithm to solve the assignment problem extends the method proposed by Alonso-
Mora et al. [2017b]. The idea is to decompose the DARP problem (Equations 3.10a to
3.10s) into two main steps. First, feasible candidate schedules for each vehicle are created
that could serve a specific set of requests. Second, the best candidate schedules are assigned
to vehicles by solving an assignment problem.

In the following, the assignment problem is reformulated first before the creation of candidate
schedules is discussed.

Reformulation of the Assignment Problem

Let ψi(Rγ, v) be a feasible schedule for vehicle v that serves precisely the set of requests Rγ.
As there are generally multiple feasible schedules (permutations of stops) for a vehicle and
a set of requests, the index j refers to the j-th feasible schedule. The candidate schedule
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ψ∗(Rγ, v) for vehicle v to serve the set of requests Rγ can then be defined as that schedule
that minimizes the assignment objective:

ψ∗(Rγ, v) = arg min
j

ρ(ψj(Rγ, v)) . (3.11)

For shorter writing, let further ρ(v,Rγ) = ρ(ψ∗(Rγ, v)) be the objective value of the candidate
schedule.

The assignment problem can then be formulated as an Integer Linear Programming (ILP)
as follows:

minimize
∑
v∈V

∑
γ∈Ωv

ρ(v,Rγ) · zv,γ (3.12a)

s.t.
∑
γ∈Ωv

zv,γ ≤ 1 ∀v ∈ V (3.12b)
∑
v∈V

∑
γ∈Ωi,v

zv,γ = 1 ∀i ∈ Ra (3.12c)
∑
v∈V

∑
γ∈Ωi,v

zv,γ ≤ 1 ∀i ∈ Ru (3.12d)

zv,γ ∈ {0, 1} ∀v ∈ V, γ ∈ Ωv (3.12e)

The objective of the assignment problem is to minimize the sum of the objective values
of the candidate schedules for each vehicle. zv,γ is a binary decision variable that is 1 if the
candidate schedule ψ∗(Rγ, v) is assigned to vehicle v and 0 otherwise. Ωv refers to the set of
all feasible schedules for vehicle v, while Ωi,v refers to the set of all feasible schedules for vehicle
v that serve request i. Constraints 3.12b ensure that each vehicle is assigned at most one
candidate schedule. Constraints 3.12c ensure that each assigned request is served by exactly
one vehicle. The equality ensures that customers assigned in a previous optimization epoch
(Ra) will remain to be served. Constraints 3.12d ensure that at most one vehicle serves each
unassigned request (Ru). These requests might, therefore, remain unassigned if no feasible
schedule can be found that improves the objective The binary decision variables zv,γ are defined
in constraints 3.12e.

The advantage of this formulation is that it effectively decouples the assignment problem
from the creation of candidate schedules. It turns out that the major computational effort
is required to create the candidate schedules while solving the problem above can be done
efficiently by standard solvers. Additionally, a subset of all feasible schedules can be considered
in this assignment problem while still feasible assignments can be obtained8. This enables
heuristics or timeouts in the search procedure to compute only a subset of candidate schedules
to ensure real-time performance.

Candidate Schedule Creation

The creation of candidate schedules is the central component of the presented algorithm.
The goal is to create a set of (if possible all) feasible schedules for each vehicle that could

8To guarantee a feasible solution of the assignment problem a minimum set of feasible schedules has to be
provided. However, a trivial feasible solution to the problem can always be obtained by using the currently
assigned schedules as input to the problem.
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(a) Constructing the RV Graph (Circle in-
dicates travel distance within maximum
waiting time constraint).

(b) Resulting RV Graph.

Figure 3.2: Sketch for the RV Graph.

serve a given set of requests. A straightforward approach would be to exhaustively search
for all vehicles and all combinations of requests, and solve a single vehicle DARP to obtain
all feasible candidate schedules. Nevertheless, the number of possible combinations to check
increases exponentially with the number of requests9. Consequently, this approach is not
computationally tractable for large-scale problems.

The main idea first proposed by Alonso-Mora et al. [2017b] is to exploit the fact that
in a typical setting for a ARP service, the majority of all possible combinations to check will
not yield a feasible schedule for assignment. This is either due to time constraint violations or
because the vehicle capacity is exceeded. The idea of the algorithm therefore is to develop an
efficient search strategy to only compute vehicle schedules for a subset of all possible request
combinations that fulfill some necessary requirements that need to hold for a feasible schedule
to exist.

The search strategy consists of a graph-based representation of mutual feasibility of request-
vehicle and request-request combinations. An iterative schedule-building procedure exploits
these graphs to prune the search space for feasible schedules. In the following, first, the
request-vehicle and request-request graphs are described, followed by the iterative schedule-
building procedure.

Request-Vehicle (RV) Graph The RV graph (Figure 3.2) encodes the subset of all avail-
able vehicles that are able to serve a given request, because the maximum waiting time con-
straint twaitmax limits the eligible vehicles to those in the vicinity of the request’s origin position.
Consequently, vehicles and requests are represented as nodes in the graph. An edge between a

9On the one hand, the number of request combinations increases exponentially (O(|V |2|R|) with the number
of requests |R|). On the other hand, the number of possible stop permutations to solve the single vehicle
DARP increases exponentially with the number of requests, too.
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(a) Constructing RR Graph (feasible shared
routes are shown in color).

(b) Resulting RR Graph.

Figure 3.3: Sketch for the RR Graph.

vehicle and a request is created if the vehicle can reach the origin position of the request before
the maximum waiting time constraint is violated. As a direct approach of a given vehicle v
to the request is the fastest possible way to serve the request r, any other schedule of this
vehicle to serve a subset of requests Rγ with r ∈ Rγ cannot be feasible if there is no edge
between the vehicle v and the request r in the RV graph. These schedules can, therefore,
be excluded from the search procedure. From an implementation standpoint, the RV graph
can be computed efficiently by, for example, using Dijkstra’s algorithm backward search for
each request to be computed with the request origin node as the source node and the current
vehicle locations as the target nodes. The algorithm can be stopped as soon as the travel time
of the explored nodes exceeds the maximum waiting time.

Request-Request (RR) Graph The RR graph (Figure 3.3) encodes a necessary condition
for the existence of a feasible schedule that serves at least two requests at once. Based on the
idea of shareability networks proposed by Santi et al. [2014], graph is created with requests
represented as nodes. An edge between two requests is added if any feasible schedule exists
that serves both requests at once (either by a shared or scheduled trip) by any hypothetical
vehicle available at the origin of one of both requests. This requires checking six different
combinations of schedules for each request pair (for each request being picked up first, there
is one sequential schedule and two shared schedules, which have been indicated in Fig. 2.2 in
the previous chapter). If no edge between two requests exists, there cannot be any feasible
schedule by any vehicle that serves both requests simultaneously, as the vehicle’s approach will
further delay a schedule. Additionally, suppose no edge between two requests exists. In that
case, there also cannot be any feasible schedule by any vehicle that simultaneously serves a
subset of requests that includes both requests.
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Iterative Schedule Building To create the candidate schedules for each vehicle, a guided
search procedure can be applied that utilizes the RV and RR graph and terminates once the
reduced search space for feasible schedules is exhausted. Let |Rγ| be the grade, i.e. the
number of requests served by the candidate schedule ψ∗(Rγ, v). The following conditions
need to hold for the feasible schedule to exist:

1. There has to be an edge in the RV graph between the vehicle v and each request in Rγ.

2. There has to be an edge in the RR graph between each pair of requests in Rγ.

3. For any feasible schedule with grade |Rγ| > 1 to exist, the corresponding schedules with
grade |Rγ| − 1 resulting from removing one of its request ({ψ∗(Rγ \ {rk}, v)∀rk ∈ γ})
have to exist, too. For example, for the existence of a feasible schedule ψ∗({r1, r2, r3}, v)
it is necessary (but not sufficient) that the feasible schedules ψ∗({r1, r2}, v), ψ∗({r1, r3}, v)
and ψ∗({r2, r3}, v) exist, too.

The resulting tree-based requirements are sketched in Fig. 3.4. These conditions can guide
the search procedure by creating feasible schedules with grade |Rγ| = 1 and iteratively building
schedules with higher grades. For schedules of grade 1, the existence of an edge in the RV
graph between the vehicle and the request is sufficient to create a feasible schedule. Because
of the third condition, only combinations of Rγ that add upon already computed and existing
schedules of grade |Rγ| − 1 need to be considered. Before a new schedule is computed, it is
checked whether all necessary conditions above are fulfilled.

requires

requires

requires

sufficient

Grade

4

3

2

1

Figure 3.4: Tree-based sketch of requirements for the existence of ψ∗({r1, r2, r3, r4}, v). The
lower branches of the tree are only shown for colored boxes.

Running this algorithm to termination and feeding the candidate schedules into the assign-
ment problem (Eq. 3.12a to 3.12e) will yield the optimal assignment of schedules to vehicles
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for the given batch epoch and therefore corresponds to the exact solution of the DARP from
Eq. 3.10a to 3.10s. In theory, the NP-hardness of the DARP is not reduced by this approach,
and termination of large-scale problems in reasonable computational time is not guaranteed.
Nevertheless, as long as time constraints are tight (which is a reasonable assumption for
most ARP services) and therefore the RR and RV graphs are sparse, this algorithm can solve
large-scale problems in reasonable time.

In the following, details of the original implementation from Alonso-Mora et al. [2017b]
are presented before the adaption of the implementation of the algorithm in this thesis is
discussed.

Original Implementation In the original implementation of Alonso-Mora et al. [2017b],
RV and RR graphs are computed from scratch in each optimization epoch. When constructing
the actual schedules (i.e., once all three above-mentioned conditions hold for a vehicle with
a set of requests) in the iterative schedule-building process, the authors use two options to
create the schedules:

1. If the grade of the schedule is smaller than 5, an exhaustive search is applied to solve
the single vehicle DARP for the given set of requests.

2. If the grade of the schedule is at least 5, a schedule is constructed by inserting the new
request into the corresponding lower-grade candidate schedule to reduce the computa-
tional time (see Algorithm 1).

Algorithm 1 Insertion Heuristic
ψbest = None
vbest = None
for all v ∈ V ca do

ψk̃(v;Rψ, Pψ ∪ {rpi }) = insert(ψk(v;Rψ, Pψ), rpi )
if d(ψk̃(v;Rψ, Pψ ∪ {rpi }))− d(ψk(v;Rψ, Pψ)) < (1− τth)d(opi , d

p
i ) then

if ϕ(ψk̃(v;Rψ, Pψ ∪ {rpi })) < ϕ(ψbest) then
ψbest ← ψk̃(v;Rψ, Pψ ∪ {rpi })
vbest ← v

end if
end if

end for
if vbest ̸= None then

assignSchedule(vbest, ψbest)
Pu ← Pu \ {rpi }

end if

Improving the Algorithm: Database for Feasible Schedules

The idea of this thesis, first presented in Engelhardt et al. [2019], is that most computations
made in a given optimization epoch can be reused in the next optimization epoch. As the
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time between two consecutive optimization epochs is usually short, this approach conjectures
that many computed schedules maintain their feasibility. Consequently, instead of rebuilding
feasible candidate schedules from scratch again, the idea is to store the computed schedules
in a database and only check if the schedules are still feasible in the following optimization
epoch.

Instead of computing only one candidate schedule for each vehicle and set of requests,
(possibly) all feasible schedules (i.e., stop permutations) are stored in an object referred to as
Vehicle-to-Request-Bundle (V2RB). The V2RB Ψ(v,Rγ) = {ψi(Rγ, v)∀i} collects all feasible
permutations i of stops for vehicle v to serve the set of requests Rγ. The V2RB Ψ(v,Rγ)
can be created by inserting the request r ∈ Rγ into all feasible schedules collected in the
V2RB Ψ(v,Rγ \ {r}) of the corresponding lower grade. The objective value of the V2RB
is the objective value of the representing schedule ψ∗(Rγ, v) that minimizes the assignment
objective.

In between optimization epochs, two things can change that influence the feasibility of
schedules:

1. Customers can board or alight a vehicle, s a previously feasible schedule might not
feasible anymore if this boarding process was not scheduled.

2. Vehicles can move. If a vehicle does not move toward the next planned stop in a
given schedule, it might no longer arrive at any stop in the schedule in time, and time
constraints may be violated.

3. Network travel times can change. If travel times change, previously feasible schedules
might become feasible, and new schedules that were tested unfeasible before might
become feasible.

Therefore, given the V2RBs from the previous assignment epoch, an iterative search procedure
can be applied to remove all schedules from the V2RBs that are not feasible anymore and the
V2RB itself if no feasible schedule remains. First, boarding processes are considered: Once
a customer rx enters vehicle vy, all schedules of all V2RBs of vehicle vy are deleted that did
not schedule the boarding process of rx. Similarly, all V2RBs of all other vehicles that do
contain the customer rx can be removed, too. In the second step, the movement of vehicles
is considered: Starting V2RBs of grade 1, the feasibility with updated vehicle locations is
checked, and the objective values (and therefore the representing candidate schedule) are
recomputed. If a schedule is not feasible anymore, it is removed from the V2RB, and similarly,
the V2RB is removed from the database if no feasible schedule remains. For higher grade
V2RBs, it is first checked if corresponding lower grade V2RBs are still feasible, and only if
this is the case the feasibility of the V2RB is checked. Otherwise, the requirements for the
existence of a feasible schedule are not fulfilled, and the V2RB can be removed directly from
the database.

Once the updated V2RBs and the corresponding database is computed, the above-mentioned
algorithm is applied to build new V2RBs for new requests only.

If the whole tree is entirely built in each time step and network travel times remain the
same, the solution space is completely explored, and the optimal solution for the DARP can
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be found by solving the assignment problem10.
If travel times change, new schedules might become feasible that were tested not feasible

before and are therefore not part of the V2RB database. In this case, the V2RB database has
to be rebuilt from scratch. Additionally, it can occur that even currently assigned schedules
are not feasible anymore. In this case it has to be ensured that a feasible assignment is still
available in order to find a solution to the assignment problem. Therefore, currently assigned
schedules are included in the V2RB database even if they became infeasible due to travel
time updates. Nevertheless, building new schedules based on these infeasible schedules is
prohibited.

Heuristics

Although the described algorithm is a very efficient procedure to compute feasible candi-
date schedules, the curse of dimensionality still limits the computational tractability of large
problems. In this case, heuristics can be applied to prune the search space, reducing the com-
putational effort in the schedule-building process. In this thesis, the following heuristics are
applied and tested for their impact on the solution quality and computational time:

Limited Number of Feasible Schedules Per V2RB (LS) Because the number of feasible
schedules to serve a given set of requests can increase exponentially with the number of
requests, it can be computationally infeasible to compute all feasible schedules of an V2RB
of high grade. Nevertheless, as only the best schedule is assigned to a vehicle, keeping all
feasible schedules stored in the V2RB might not be necessary. The idea is therefore to limit
the number of feasible schedules stored in the V2RB to a certain number Nmax

V 2RB. After a
new V2RB is created, only the Nmax

V 2RB best schedules are stored. The best possible schedule
is still found for the first V2RB that triggers this heuristic. This is not the case if further
higher grade V2RBs are created based on the corresponding V2RB. The optimal solution of
the corresponding single vehicle DARP might not be accessible anymore by simply inserting a
new request into the reduced set of schedules. A similar heuristic is applied in the algorithm
of Alonso-Mora et al. [2017a]. As the suggested algorithm does not store all feasible
schedules, they limit the search procedure by only solving the insertion of a new request into
the best lower-grade schedule instead of solving the single vehicle DARP to optimality once
the number of associated requests exceeds a specific number. Therefore, the proposed method
can be seen as a generalization of this heuristic.

Candidate Vehicle Reduction Per Request (RV) Depending on the number of vehicles
available, the number of candidate vehicles to serve a request in the RV graph can be high,
resulting in numerous insertions that need to be checked. Nevertheless, only one vehicle can
serve the request. The idea is, therefore, to limit the number of candidate vehicles that are
used for building V2RBs for a request to a certain number Nmax

RV and therefore prune the RV
graph. Alonso-Mora et al. [2017a], for example, chose the Nmax

RV vehicles that are closest
to the request’s origin position. More refined methods are tested by Engelhardt et al.
[2020] and Dandl [2022], where vehicle selection heuristics were based on currently assigned
10see Dandl et al. [2021a] for a proof of this statement.
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schedules and an equal distribution of requests across vehicles. The similarity of these methods
is that the set of candidate vehicles is first determined, and afterward, the V2RBs are created.
Nevertheless, this approach ignores possible re-assignments of requests to other vehicles that
might be necessary to improve the overall assignment objective. Therefore, the idea described
here is to prune the RV graph after making the first assignment. For an incoming request,
all vehicles within the complete RV graph are first considered, and corresponding V2RBs are
created. Once the assignment problem is solved, candidate vehicles are sorted based on the
objective values of the best V2RBs that includes the new request. The Nmax

RV vehicles with the
best objective values are kept in the RV graph, and the remaining vehicles are removed. To
ensure feasibility, it is enforced that the assigned vehicle is added to this set if it is not already
included. Vehicles are removed by deleting V2RBs from the database that includes the vehicle
and the corresponding request. The reduced computational effort comes from fewer V2RBs
eligible for insertion in upcoming batch epochs.

Search Timeout per Vehicle (TO) For real-time applications, it might still be necessary
to limit the computational time of the schedule-building process even further. A brute-force
approach to limit the computational time is to set a timeout νTO,v for the schedule-building
process for each vehicle. If the timeout is reached, the schedule-building process is stopped,
and the V2RBs found so far are eligible for assignment for each vehicle. The assumption is that
this time-out is mainly triggered for vehicles with many requests in the vicinity. Consequently,
a high number of feasible schedules need to be computed. Nevertheless, as a request can
only be assigned to one vehicle and the number of requests to be served by a single vehicle
is limited, many of the computed schedules might not be needed for the assignment problem.
When a timeout is applied, the order of inserting new requests into the V2RBs becomes
relevant. Therefore, new requests are first inserted into the V2RBs that include only currently
assigned requests to the vehicle. These insertions likely lead to good and feasible assignments
if an insertion is possible. Afterward, the new requests are inserted in random order into
the remaining V2RBs. While this heuristic can ensure in-time termination of the algorithm,
the significant disadvantage in simulation studies is the dependence of the solution quality on
available computational resources and efficiency in the implementation, reducing comparability
of the results.

3.2.5 Strategies for Increased Reliability
As discussed in section 3.2.3, solving the formulated assignment problem epoch by epoch might
lead to reliability issues from a customer’s point of view because re-assignments of vehicles
to serve requests can result in deviations from the initially communicated trip characteristics.
Nevertheless, from an operator point of view, re-assignments can lead to a more efficient
assignment of requests to vehicles and therefore an overall more efficient operation.

To explore the trade-off between the operator’s and customer’s point of view, the following
scenarios are tested in this thesis:

1. Full Re-Assignment: In this scenario, the assignment problem is solved epoch by
epoch, and the optimal solution is assigned. Therefore, this scenario allows uncon-
strained customer-vehicle re-assignment in each epoch until the customer is picked up.
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2. No Re-Assignment: After the initial assignment of a customer to a vehicle, further
re-assignments are not allowed. Technically, this can be achieved by deleting all feasible
V2RBs that contain the customer but do not belong to the vehicle the customer is
currently assigned to.

3. Temporally Limited Re-Assignment: In this scenario, full re-assignment is allowed
until a threshold time treassignth before the scheduled customer pick-up. After this thresh-
old time, the assignment is fixed, and no re-assignment is allowed. This scenario con-
verges to the no re-assignment scenario if treassignth = 0 and to the full re-assignment
scenario if treassignth = twaitmax. From a customer point of view, it is possible in this scenario
to display the assigned vehicle on the smartphone application once the threshold time
is reached, leading to an increased service vehicle reliability. At the same time, the
operator can still exploit optimization potential.

4. Re-Assignment Penalty: In this scenario, a penalty preassign > 0 is introduced directly
in the objective function for re-assigning a customer to another vehicle by setting

ρ(ψ)→ ρreassign(ψ) = ρ(ψ) +
∑
r∈Rψ

(1− δvψ ,vr)preassign . (3.13)

Here, δvψ ,vr is the Kronecker delta that is 1 if the vehicle vψ scheduled for plan ψ is
the same as vehicle vr, which is currently assigned to serve request r, and 0 otherwise.
This formulation still allows full re-assignment, but depending on the choice of preassign,
re-assignments with limited optimization potential are discouraged.

5. Pick-up Time Window Tightening: In this scenario, the goal is to increase the pick-
up time reliability. Once an initial assignment of a customer to a vehicle is made, the
pick-up time window for future (re-)assignments is tightened to a time interval ∆TW .
The expected pick-up time tpur is determined from the first assigned schedule. For all
upcoming re-assignments, the pick-up time window is then set to [tpur −∆TW/2, tpur +
∆TW/2]. If the bounds are above (below) the current latest pick-up time (earliest pick-up
time) of the request, the corresponding upper (lower) bound is set to the latest (earliest)
pick-up time, while the other bound is set to maintain the interval of ∆TW . This scenario
allows for full re-assignment but increases the pick-up time reliability by reducing other
possible allowed tours. All infeasible schedules will be removed automatically within the
presented algorithm when the feasibility of previous candidate schedules is checked.

Finally, the flowchart in Fig. 3.5 summarizes the main actions within an epoch and state
changes in between epochs described in this chapter.

3.2.6 Benchmark Algorithms
To evaluate the efficiency, the proposed algorithm is compared to the following algorithms:

Insertion Heuristic The insertion heuristic based on Jaw et al. [1986] is a popular assign-
ment algorithm because of its simplicity and computational efficiency. Incoming requests are
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inserted one by one into currently assigned schedules of vehicles that can reach the request
within the maximum waiting time constraint. The insertion (Algorithm 1) selects the feasible
schedule that reduces the objective value the most. Compared to the proposed algorithm,
optimality losses emerge because the insertion heuristic does not allow for re-assignment of
requests in a later epoch. Secondly, requests are assigned sequentially instead of finding a col-
lective solution in batch. And thirdly, permutations of assigned stops are not possible, which
could lead to a better schedule when a new request is added.

Linear Assignment The idea of this algorithm proposed by Simonetto et al. [2019] is to
reduce the number of candidate schedules created to obtain a linear assignment problem when
assigning the schedules to vehicles. On the one hand, this drastically reduced the number
of schedules to be created. On the other hand, linear assignment problems can be solved
efficiently by specialized algorithms like the Hungarian algorithm. This can be achieved by
providing each pair of new requests and vehicles with only one feasible candidate schedule for
assignment. The assignment problem of Eq. 3.12a to 3.12e can then be reduced to

minimize
∑
v∈V

∑
r∈Ru

∆ρr,v · zr,v (3.14a)

s.t.
∑
r∈Ru

zr,v ≤ 1 ∀v ∈ V (3.14b)
∑
v∈V

∑
v∈V

zv,γ ≤ 1 ∀r ∈ Ru (3.14c)

where ∆ρr,v is the change in the objective value of the candidate schedule for vehicle v to
serve request r, and zr,v ∈ {0, 1} is the decision variable of assigning request r to vehicle v.
Candidate schedules are created by solving the single vehicle DARP for each pair of requests
and vehicles, while currently assigned requests have to be preserved in the schedule. Similar
to Alonso-Mora et al. [2017a], an exhaustive search is only applied for vehicles with less
than five assigned requests, while the insertion heuristic is used for vehicles with more than
five assigned requests to create the candidate schedules. Compared to the insertion heuristic,
the linear assignment algorithm allows the processing of multiple requests simultaneously in
batch, while the same number of request-vehicle combinations are explored. Nevertheless, this
algorithm still does not allow requests re-assignment in later epochs. Additionally, requests in
the same batch cannot be assigned to the same vehicle, which might lead to further losses.

Full Re-Build In this variant of the proposed algorithm, the V2RBs are not stored in between
optimization epochs, and the schedule-building process is started from scratch in each opti-
mization epoch. The goal is to evaluate the benefit of storing the V2RBs between optimization
epochs.
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Figure 3.5: Flowchart for the solving the assignment problem.

71



3 Methodology

3.3 Repositioning
The algorithms described in the last section can only assign schedules to vehicles if a trip
request is made in the vicinity of the vehicle, which is constrained by the driving time corre-
sponding to the maximum waiting time twaitmax of a request. Therefore, vehicles can get stuck
in regions of the operating area where demand is low, while further vehicle supply is needed
in regions of high demand. Even if the maximum waiting time constraint would be relaxed
and an assignment is possible, customers might have to wait a long time for service because
of long approaching times of vehicles. To avoid being stuck in low-demand areas, vehicles
can be actively repositioned (or rebalanced) to regions with under-supply to increase service
availability and vehicle utilization.

Main features within the context of this section have been previously published in En-
gelhardt et al. [2023]. In the following, terms and definitions to model repositioning are
described first. A sampling-based repositioning algorithm for ARP services is presented in the
next step. Lastly, benchmark algorithms are described and used in the case study to evaluate
the efficiency of the proposed algorithm.

3.3.1 Terms and Definitions
Determining repositioning trips usually requires three main steps:

1. A forecast of future demand. This demand is often aggregated on a zonal level within
certain time intervals to estimate the future need for vehicles in specific zones.

2. A methodology to estimate the expected benefit of sending vehicles to a specific zone.
This benefit can be measured in terms of expected profit, demand-supply imbalance, or
similar metrics.

3. An algorithm to assign repositioning trips to idle vehicles for repositioning to specific
zones.

In this thesis, the last two steps are mainly treated, while developing a model to forecast future
demand is out of the scope of this thesis. Nevertheless, sensitivity analysis on the forecasted
demand is conducted in the case study to evaluate the robustness of the proposed algorithm.

The ARP service is assumed to operate in a partitioned operating area with zones ZR. Each
node n ∈ N in the network graph G = (N,E) is assigned to precisely one zone z ∈ ZR.
Each zone z ∈ ZR is characterized by a centroid cz ∈ N that is used as a reference target
for repositioning. In a real service, this centroid could be an operational hub or a place for
parking where vehicles can wait for new assignments. It is assumed that there are no capacity
limits for idle vehicles at these centroids. As the reference point for a zone, travel times and
distances between zones are measured from the centroid of one zone to the centroid of the
other zone.

Additionally, it is assumed that there is a forecast of future demand available that estimates
the expected number of customers λTi,j requesting trips from zone zi ∈ ZFC to zone zj ∈
ZFC within a time window between [T, T + δFCT ]. The demand forecast is therefore not
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only aggregated spatially by zones ZFC (that generally do not have to be the same as the
repositioning zones ZR), but also temporally by time intervals T with length δFCT .

As discussed in section 3.1.1, the rebalancing algorithm is applied less frequently than the
assignment algorithm in steps of ∆R.

3.3.2 Sampling-based Repositioning

The proposed algorithm follows a sampling approach to address future vehicle imbalances and
make informed decisions. By sampling artificial requests from the forecast distribution, the
algorithm generates actual routes that accurately consider service design parameters (e.g.,
time constraints, objective function, or vehicle capacity). The goal is to mimic the behavior of
the assignment algorithm under the assumption that the sampled requests will be realized in
the future. The sampling approach can convert the demand forecast into a supply forecast by
creating actual vehicle routes. On the one hand, it can estimate the number of customers that
can be served by the same idle vehicle considering pooling and scheduling of customers. On
the other hand, it also incorporates the capacity of currently en-route vehicles to accommodate
future requests. As an output, the idle vehicles are sent towards the locations of the expected
first pick-ups. The en-route vehicles remain following their original schedules.

The algorithm incorporates two additional features: 1) The algorithm can handle stochastic
variation in the sampling by sampling multiple times from the forecast distribution. Reposi-
tioning trips are assigned to be beneficial in all sampled scenarios. 2) To overcome long-term
supply-demand imbalances, the algorithm implements a multi-horizon approach, also consid-
ering possible repositioning trips in future epochs.

Figure 3.6 presents an overview of the rebalancing algorithm. Vehicles are separated into
en-route vehicles currently serving customers and idle vehicles available for repositioning.

In the first step (a), the algorithm takes as input only all currently en-route vehicles and
their assigned schedule. These vehicles are used to estimate their ability to accommodate
future requests, while currently idle vehicles are assigned in a later step to serve remaining
future requests. In the sampling process (b), future requests are drawn from the forecast
distribution defined by λTi,j within a forecast horizon H, covering all temporal forecast bins
T ∈ {t, t + δFCT , ..., t + H}. For each sample, future vehicle states are simulated to identify
supply shortages. If en-route vehicles cannot accommodate a request, a new hypothetical
vehicle is created at the zone centroid of the request’s origin. The request is then assigned
to this hypothetical vehicle, forming a new schedule for upcoming requests to be assigned
to. Future supply shortages are therefore identified by these hypothetical vehicles. Each
hypothetical vehicle represents the future demand for an actual idle vehicle that needs to
be repositioned to the corresponding zone to serve future requests. To decrease the impact
of stochastic variance, this step is repeated for NS samples, indicated by different layers in
Figure 3.6. Lastly, a zone-based assignment problem is formulated (c) that assigns idle vehicles
to reposition to the zone of hypothetical vehicles (d).

The sampling process and the assignment problem are described in detail in the following
paragraphs.
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Figure 3.6: Sketch for solving the sampling-based repositioning problem for ride-pooling. a)
Problem input. b) Assignment of sampled requests (NS samples). c) Solving
assignment problem. d) Assigning repositioning trips.
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3.3.3 Sampling Future Fleet States
The algorithm to compute future vehicle states is sketched in Algorithm 2. Input to the
algorithm are currently en-route vehicles with their assigned schedules as well as the forecast
distribution parameterized by λTi,j with forecast horizon H. A Poisson process with rate λTi,j
determines the number of trips requested from zone zi to zone zj within the temporal bin T .
A random node from zone zi and zone zj is drawn as the origin and destination of the request,
respectively. The request time is randomly chosen from the interval [T, T +δFCT ]. NS different
request samples are created to reduce stochastic variance.

Fleet states are progressed into the future in time steps of ∆E (the same time step as
the duration between consecutive assignment epochs). In each time step, the assignment of
new requests is treated at first. As the rebalancing time step ∆R is generally smaller than
the forecast horizon H, it is crucial that the request assignment is computationally efficient to
maintain real-time applicability. Performing the previously described assignment algorithm can
be computationally too costly to be applied in the rebalancing step. Therefore, the insertion
heuristic formulated in Algorithm 1 is used to find feasible schedules for the request: The
request is only inserted into the currently assigned schedule of each vehicle that can reach the
origin of the request within twaitmax. The resulting vehicle schedule that minimizes the objective
of Equation 3.9 is assigned to the vehicle. If no solution is found, a new hypothetical vehicle
is created at the zone centroid of the request origin and assigned to serve the request. After
all sampled requests of the time step are assigned, vehicles move according to their assigned
schedule.

Once all sampled requests are addressed, input parameters for the rebalancing formulation
are constructed. For each hypothetical vehicle, the recorded schedule is concatenated with the
remaining planned schedule of the vehicle to incorporate all sampled future requests. The start
zone os,t of each hypothetical vehicle marks a possible future supply shortage. The objective
value ρs,t of the created schedule is computed with Equation 3.9 and estimates the operator
profit for providing an idle vehicle at this location. The starting time τs,t of the schedule
estimates the latest arrival time of a vehicle in this zone to serve this schedule. Finding
idle vehicles to reach the zone in time might not always be possible. In this case, none of
the associated sampled requests would be served by a rebalancing vehicle. Instead, it might
be beneficial to skip those sampled requests scheduled at the beginning of the hypothetical
vehicle’s schedule and serve at least those requests later in the schedule when more idle vehicles
are available. Therefore, sub-schedules are defined for each hypothetical vehicle’s schedule: At
each stop, the algorithm checks whether the vehicle occupancy of the schedule would be zero.
If this is the case, a new sub-schedule is created. Similarly, for each sub-schedule the parameters
os,t, τs,t and ρs,t are computed. An example of the sub-schedule of a hypothetical vehicle is
sketched in Figure 3.6c). The dashed blue line indicates the sub-schedule of the superordinate
schedule of the hypothetical vehicle. The vehicle in zone 1 can serve the superordinate schedule
either by repositioning to zone 11 or zone 13. The decision to reposition to zone 13 would
only serve a subset of the requests of the superordinate schedule.
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Algorithm 2 Creating Future Schedules From Sampled Requests
Input: Assigned vehicles with current schedules, forecast distribution λTi,j
Output: List of start_zone, start_time, objective, sub_tour_index, tour_index, sample
VA ← Assigned vehicles with current schedules
VR ← Initialize list of new rebalancing vehicles with schedules
T ← Initialize list of (start_zone, start_time, objective, sub_tour_index, tour_index, sam-
ple)
s← 0 # Index of sample set
for NS samples do

request_sample← Sample requests from λTi,j
for all time steps do

for all sampled_requests in time step do
best_schedule← None
for all vehicles with schedule in VA + VR do

new_schedule ← insert(sampled_request, schedule)
if objective(best_schedule) < objective(new_schedule) then

best_schedule← new_schedule
end if

end for
if best_schedule is not None then

update schedule of corresponding vehicles
else

create new artificial vehicle at origin of request and add to VR
end if

end for
move vehicles in VA + VR according to assigned schedules

end for
u← 0 # Index of tour set
for all vehicles with schedule in VR do

t← 0 # Index of sub-tour set
for all stop in schedule with zero vehicle occupancy do

sub_schedule← remove preceding stops from schedule
os,t ← start_zone(sub_schedule)
τs,t ← start_time(sub_schedule)
ρs,t ← objective(sub_schedule)
add (os,t, τs,t, ρs,t, t, u, s) to T
t← t+ 1

end for
u← u+ 1

end for
s← s+ 1

end for
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3.3.4 Repositioning Trip Assignment
An ILP is formulated to assign rebalancing trips to idle vehicles to serve the sampled schedules.
Idle vehicles are aggregated on a zonal level to decide for rebalancing trips between zone o ∈ Z
and d ∈ ZR. As the forecast horizon H is considered larger than the reposition period δFCT ,
future rebalancing trips are also considered. The decision variable θ0

o,d refers to immediate
rebalancing actions that are performed after the problem is solved. θ̃T,so,d on the other hand
refers to potential future rebalancing trips in time step T ∈ {0, 1, 2, ..., Tmax = H

δFCT
} in

sample s. Depending on how the real system evolves, they might or might not be realized in a
later epoch. Note that the immediate rebalancing decision variable θ0

o,d is independent of the
sample s as only one decision can be made, which should lead to a good performance across
all possible realizations sampled. ϕTs,t is the decision variable to assign sampled trips: It takes
the value 1 if a rebalancing trip in time step T is assigned to trip t from sample s.

Before describing the optimization problem, the following sets are introduced, which are used
to associate rebalancing decision variables (θ0

o,d, θ̃T,so,d ) with feasible assignments of sampled
schedules (ϕTs,t):

• Ts: Set of all sub-tours from sample s

• As,t: Set of all rebalancing decision periods eligible for assigning tour t in sample s.

• Uκ,s: Set of all sub-tours referring to the same superordinate tour κ in sample s.

• Bs,o,T : Set of all sub-tours in sample s that are reachable by rebalancing a vehicle from
zone o in decision period T .

• Ds,o,T : Set of sub-tours in sample s that terminate in zone o in decision period T . This
set contains tuples of tour index and decision period for assignment of the corresponding
decision variable (ϕTs,t).
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The optimization problem is defined as follows:

Minimize:
∑

o,d∈ZR

co,dθ0
o,d + 1

NS

NS∑
s=0

Tmax∑
T=1

γT co,dθ̃
T,s
o,d

 +

+ 1
NS

NS∑
s=0

∑
t∈Ts

∑
T∈As,t

γTρs,tϕ
T
s,t (3.15a)

s.t.:
∑
d∈ZR

θ0
o,d ≤ V idle

o ∀o ∈ ZR

(3.15b)
∑
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θ0
o,d =

NS∑
s=0

∑
t∈Bs,o,0

ϕ0
s,t ∀o, d ∈ ZR,∀s

(3.15d)
θ̃T,so,d =

∑
t∈Bs,o,T

ϕTs,t ∀o, d ∈ ZR,∀s,∀T ∈ [1, ..., Tmax]

(3.15e)∑
t∈Uκ,s

∑
T∈As,t

ϕTs,t ≤ 1 ∀s ∈ NS,∀κ

(3.15f)
θ0
o,d, θ̃

T,s
o,d ∈ N+

0 ∀o, d ∈ ZR,∀T ∈ [1, ..., Tmax], ∀s ∈ NS

(3.15g)
ϕTs,t ∈ {0, 1} ∀T ∈ [1, ..., Tmax],∀s ∈ NS,∀t

(3.15h)

The first line of the objective in Equation 3.15a reflects the trade-off between costs and
expected profit for repositioning. co,d ≥ 0 are the costs (the travel time between the cor-
responding zone centroids). The factor γ ∈ [0, 1] weights the costs for assigning future
rebalancing trips in line with the Bellmann Equations (Equation 3.2). The first term in the
first line considers immediate rebalancing decisions, while the second term considers future
ones. The second line in the objective function reflects the expected profit from rebalancing
trips. ρs,t ≤ 0 is the objective value calculated in the sampling process for assigning trip t
from sample s. Constraints 3.15b and constraints 3.15c limit the number of vehicles that can
be rebalanced per zone o ∈ ZR. While for immediate rebalancing trips in constraints 3.15b,
only the number of currently idle vehicles per zone V idle

o need to be considered, future rebal-
ancing trips in constraints 3.15c also consider that vehicles already have been rebalanced out
of the zone in a previous decision time steps, new vehicles with current assignments become
idle (∆V idle

τ,s,o), or vehicles become idle after they finish their assigned tour after the rebal-
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ancing trip. The constraints 3.15d and 3.15e relate rebalancing trips and the assignment of
corresponding sampled sub-tours. Note that in constraint 3.15d the decision variable is not
indexed by the sample s, i.e., immediate rebalancing trips can be assigned to multiple sub-
tours, one per sample. With this constraint, efficient decisions for immediate rebalancing trips
across all samples are made. In contrast, future rebalancing trips in constraint 3.15e differ
for each sample. Constraint 3.15f ensures that each superordinate tour is assigned only once.
Finally, constraints 3.15g and 3.15h define rebalancing trips and sub-tour assignment variables
as integer and binary variables, respectively.

3.3.5 Benchmark Algorithms
Benchmark algorithms from the literature are introduced in this section to evaluate the per-
formance of the proposed rebalancing algorithm.

No Repositioning

No rebalancing is applied.

Reactive Repositioning (React)

This algorithm is described in [Alonso-Mora et al., 2017a] and is based on an expected
autocorrelation of demand. After each assignment step, the locations of unserved requests are
tracked. Anticipating future demand at these locations, available idle vehicles are rebalanced to
these locations by solving an assignment problem, minimizing the overall travel time. Alongside
its simplicity, the advantage of this algorithm is that no forecast for future demand is necessary.

Queuing Theoretical Repositioning (QT)

This problem formulation uses queuing theoretical considerations to stabilize a Jackson network
[Zhang and Pavone, 2016]. The assignment problem to be solved can be formulated as

Minimize:
∑

o,d∈ZR
τo,dβo,d (3.16a)

s.t.:
∑
d ̸=o

(βo,d − βd,o) = −µQT
∑
d̸=o

(λo,d − λd,o)− (
∑
d

Id
|ZR|

− Io) ∀d ∈ ZR

(3.16b)
βo,d ≥ 0 ∀o, d ∈ ZR

(3.16c)

βo,d is the (non-integer) decision variable to rebalance vehicles from o to d while τo,d is the
interzonal travel time. The constraint of Equation 3.16b balances the expected in and out-flow
of each zone. λo,d are the expected number of trip requests between zones o and d within a
forecast horizon HQT . Id are the number of idle vehicles in zone d. The last two terms try
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to distribute the remaining idle vehicles evenly across zones. µQT is a demand scaling factor
introduced in this study to consider sharing of trips.

To assign vehicles, the value βo,d is rounded to the next integer after solving the problem.
Additionally, this formulation does not constrain the number of assigned vehicles to be smaller
or equal to the number of idle vehicles. Therefore, for each origin zone idle vehicles are
assigned randomly. The assignment terminates if no idle vehicle remains in a zone.

Horizon-based Repositioning (Hor)

This algorithm is proposed in [Wallar et al., 2018] and considers the time when rebalancing
vehicles arrive in their target zone. It is formulated as

Maximize:
∑

o,d∈ZR
(HHor − τo,d)λdβo,d (3.17a)

s.t.:
∑
d∈ZR

βo,d ≤ Io ∀o ∈ ZR (3.17b)

βo,d(HHor − τo,d) ≥ 0 ∀o, d ∈ ZR (3.17c)∑
o∈ZR

βo,d(1−
τo,d
HHor

) ≤ λdµHor ∀d ∈ ZR (3.17d)

The objective (Equation 3.17a) is to maximize the number of requests each vehicle observes
in its target zone given an expected request arrival rate λd in zone d within the forecast
horizon HHor. With the interzonal travel time τo,d, the objective incorporates the fraction of
the forecast horizon that the vehicle is available in the target zone. Equation 3.17b constrains
the number of vehicles that can be rebalanced, Equation 3.17c ensures that vehicles reach
the rebalancing destination within the horizon. Finally, Equation 3.17d constrains the supply
in target zones. The left-hand side computes the number of vehicles rebalancing to the zone
weighted by the time they are available in this zone. The right-hand side estimates the expected
demand for vehicles. µHor is a scaling factor to specify an acceptable level of oversaturation.

3.3.6 Integration of Assignment and Repositioning
As both the assignment and repositioning algorithms adapt and assign new schedules to ve-
hicles, it is crucial to define their interaction and how one of the algorithms can change
assignments made by the other. As the repositioning algorithm only assigns trips to idle ve-
hicles, no conflict arises in the trip assignment of the repositioning algorithm. However, the
assignment algorithm might need to utilize the repositioning vehicles to serve new requests.
As the hierarchy between assignment and repositioning (i.e., the trade-off between immediate
and possible future reward) is not trivial, the following two approaches are evaluated:

1. Assignment Priority (No Lock): In this approach, the assignment algorithm has the
highest priority. In this case, repositioning vehicles are eligible to serve new requests.
Therefore, assigned repositioning tasks are referred to as not locked. Technically, reposi-
tioning tasks are removed from the vehicles’ schedules before the assignment algorithm is
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executed. If the vehicle receives a new assignment to serve customers, the repositioning
task will consequently not be executed. If no new assignment is made, the repositioning
task will be added to the schedule again.

2. Repositioning Priority (Lock): In this approach, the repositioning algorithm has the
highest priority. Therefore, the repositioning task is locked in the vehicle’s schedule and
cannot be removed by the assignment algorithm. New request assignments can only be
scheduled after arriving at the repositioning destination.
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3.4 Reservation
While the first three sections of this chapter focused on the assignment and repositioning of
vehicles, i.e., controlling the ARP vehicle fleet for a purely on-demand service, this chapter,
which is based on the publication Engelhardt et al. [2022a], incorporates customers who
reserve their trip in advance.

3.4.1 Terms and Definitions
With pre-bookings allowed, the customers requesting trips from the ride-pooling provider can
be divided into two groups:

1. On-demand customers who request a service as soon as possible.

2. Pre-booking customers who request a trip at a specific pick-up time in the future.

Similar to the treatment of on-demand customers, pre-booking customers also expect a re-
sponse to whether they can be served shortly after sending their request. If the operator
accepts the trip request, the operator is bound to serve the customer. This is especially rele-
vant for pre-booked trips, as the fleet control algorithm must ensure that these customers are
scheduled despite the uncertainty regarding the fleet’s status and the demand for on-demand
trips at the time of the pre-booked service.

Pre-booking customers are characterized by an earliest pick-up time tpr, which does not
coincide with the request time tr. Compared to on-demand customers, similar time constraints
apply also to pre-booking customers: 1) The pick-up time must be no earlier than the earliest
pick-up time tpr. 2) The pick-up time must not exceed the latest pick-up time tlr = tpr + twaitmax,
with a maximum waiting time twaitmax. 3) The maximum in-vehicle travel time ttmaxr must not
exceed ttdirectr (1 + ∆det); with the shortest possible travel time ttdirectr for customer r to drive
from origin to destination and ∆det a detour factor. While generally the parameters twaitmax and
∆det could be selected differently for pre-booking customers and on-demand customers, in
this thesis, the same parameters are used for both customer types to improve comparability of
pre-booking and on-demand operation.

Problem Statement and Solution Approach

Depending on the reservation horizon, different solution approaches can be applied. For
short- and mid-term reservations, the current state of the fleet is highly relevant for the
decision of whether a pre-booking customer can be served or not. On the contrary, for long-
term reservations, the current state of the fleet can hardly give an estimate of the available
capacity to serve pre-booking customers. This thesis, therefore, elaborates on a multi-rolling
horizon approach to classify reservation requests as well as the planning horizon of the online
optimization (i.e., the assignment algorithm).

A central focus of this thesis is the evaluation of long-term reservations. Two main problems
need to be addressed: 1) How can the operator decide whether a pre-booking customer can
be served? 2) How can the operator ensure that pre-booking customers are served while
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maintaining the service for on-demand customers? The solution approach is to create long-
term schedules that are assigned to fleet vehicles. When new long-term requests are made, the
operator can use these schedules to estimate the available capacity to serve the new requests.
By defining waypoints, these long-term schedules are then used in the online optimization to
ensure the service for pre-booking customers.

The remainder of this section is structured as follows: First, the multi-rolling horizon ap-
proach (i.e., the integration of assignment and reservation) is introduced to classify reserva-
tion requests and integrate the long-term schedules into the online optimization. Then, the
methodology to create long-term schedules is described. In a next step, necessary adoptions
to the repositioning algorithm are described to incorporate pre-booking customers. Finally, a
benchmark method to treat reservation requests is described.

3.4.2 Integration of Assignment and Reservation
This section deals with the multi-horizon approach to integrate long-term schedules into the
online optimization and to classify reservation requests.

In this thesis, two rolling horizons are introduced: 1) The “short-term horizon” T shorth , and
2) the “revelation horizon” T revh , with T shorth ≤ T revh . An incoming reservation request r is
classified as

1. Short-term reservation request if tpr ≤ ts + T shorth ,

2. Mid-term reservation request if tpr ≤ ts + T revh and tpr > ts + T shorth , and

3. Long-term reservation request if tpr > ts + T revh .

As the requested pick-up of short-term requests is shortly after the request time, no different
treatment to on-demand requests is necessary. Therefore, short-term requests will be treated
as on-demand requests and directly assigned (if possible) by the online assignment algorithm.
On the contrary, the current fleet state hardly influences the assignment of long-term requests.
Consequently, long-term requests are assigned by updating the long-term schedules, which will
be described in the following section. The reservation horizon of mid-term requests, however,
is short enough to be influenced by the current fleet state, i.e., many currently assigned
schedules to serve on-demand requests are not terminated until the mid-term request pick-up
time. Nevertheless, directly inserting mid-term requests into the current schedules would be
computationally too costly11. Therefore, a simple insertion heuristic (Algorithm 1) is used to
assign mid-term requests to vehicles. After a successful assignment, mid-term requests are
marked as “revealed” requests. Revealed requests are considered in the online optimization
but not eligible for re-assignment to other vehicles to reduce computational load. Only when
their pick-up time is within the short-term horizon are they considered for re-assignment. More
details are provided in the following when the incorporation of long-term schedules into the
online optimization is described.
11As the latest pick-up time is high, a majority of vehicles would be able to serve the request, rendering the

search strategy of the described algorithm inefficient.
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Passing Long-Term Schedules to the Assignment Algorithm

The long-term module, which will be described in section 3.4.3, creates long-term schedules
to serve all accepted long-term reservation requests. The online optimization (the algorithm
presented in chapter 3.2.4 with adaptions that will be described in the following section)
uses these schedules to assign vehicle schedules to serve pre-booked and incoming on-demand
requests. This section discusses how the long-term solution is integrated into the online
optimization process to ensure all accepted reservation requests are fulfilled within their time
constraints while keeping computational time within acceptable limits.

A naive approach to solve this problem would be to assign the long-term schedules at the
beginning of the simulation and insert on-demand requests into this solution when requested.
This approach has been used in other studies (e.g., [Ma and Koutsopoulos, 2022; Wen
et al., 2019; Dandl, 2022]), but does not allow for dynamic global optimization of the current
fleet state (i.e., no reassignments of pre-booked requests would be possible). However, this
approach would limit the solution space significantly, especially when the fraction of on-demand
requests is much higher than pre-booked requests. In this setting, it can no longer be assumed
that the long-term solution for pre-booked requests is good enough compared to the optimal
solution for all revealed requests.

The approach in this study is to elaborate on the short-term horizon T shorth and the revelation
horizon T revh that are sketched in Fig. 3.7. Fig. 3.7(a) shows the long-term schedule assigned
to a given vehicle. The long-term solution dominates the length of the schedule and might
cover scheduled stops for the whole book-ahead time (up to one day in the conducted case
study). Nevertheless, to adapt the schedules for incoming on-demand requests, only scheduled
stops in the foreseeable future are of relevance. Therefore, The idea is to use the two horizons
T shorth and T revh . These horizons serve the purpose of revealing only relevant information to
the online optimizer to reduce computational complexity and will be described in the following.

Let ψ̃offk (v,Rγ) be the currently assigned plan of vehicle v (depicted in Fig. 3.7(a)), which
schedules all stops, including far-ahead reservation requests. The revealed online schedule
ψ̃onk (v,Rβ) includes only upcoming stops. Stops from ψ̃offk (v,Rγ) are included in ψ̃onk (v,Rβ)
until reaching the stop κ. κ refers to the first stop with planned arrival time after ts + T revh

while no passengers are on board the vehicle before this particular stop is executed. The
latter condition ensures that the schedule ψ̃onk (v,Rβ) is a feasible schedule that delivers all
scheduled customers. If it is ensured that the vehicle is still able to reach κ in time, all upcoming
reservation requests can still be served punctually. Therefore, a quasi-stop (waypoint) is added
to the schedule of ψ̃onk (v,Rβ): The vehicle is scheduled to arrive at the node of κ with the
latest arrival constraint corresponding to the scheduled start time of κ. Additionally, no stop
is allowed to be scheduled after this waypoint. A waypoint can, therefore, be interpreted as an
end-constraint for the online optimization, which must be fulfilled if the decision is made to
alter the online schedule to accommodate new on-demand requests. Fig. 3.7(b) sketches the
revealed online schedule. The stops to pick up and drop off for r1 and r2 are revealed. Because
the pick-up stop of r3 is later than ts +T revh (gray rectangle), it is added as a waypoint to the
schedule.

The second horizon is the short-term horizon T shorth with T shorth ≤ T revh . All upcoming
reservation requests r ∈ Rβ in the online schedule ψ̃onk (v,Rβ) are added to the set of online
requests and will now be considered in the online optimization for possible re-assignment to
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another vehicle. In Fig. 3.7(b), the pick-up time of request r1 (orange) is scheduled before
ts +T revh and is therefore considered in the online optimization. In the example of Fig. 3.7(c),
r1 has been re-assigned to another vehicle v2, while v received two new requests to serve that
fit better into the schedule. Note that request r2 cannot be re-assigned as its pick-up is not
within the short-term horizon T shorth . Nevertheless, the inserted waypoint is still served in time.

Lastly, as sketched in Fig. 3.7(d), the whole schedule can be rebuilt to apply the formulation
again in the following optimization time step.

Figure 3.7: Sketch showing the effect of the two defined rolling horizons. (a) The complete as-
signed schedule including reservation requests for vehicle v at time ts. (b) Schedule
considered for online optimization: The schedule is revealed to the online optimizer
until the first stop after ts + T revh where no request is scheduled to be on-board
of the vehicle. This stop (gray rectangle) is added to the online schedule as end-
constraint (i.e. waypoint) of the schedule. The pick-up of r1 (orange) at o1
is scheduled before ts + T shorth . Therefore, it can be re-assigned within the on-
line optimization. (c) After the online optimization, requests r5 and r6 (green)
are assigned to vehicle v while request r1 has been re-assigned. (d) As the end
constraint ensures feasibility for the upcoming reservation schedule, the updated
overall schedule can be recreated.

Adaptions to the Assignment Algorithm

Concerning incorporating reservation schedules, two minor adjustments are made to the as-
signment algorithm described in section 3.2.4.
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Revisiting the formulation of the assignment algorithm, the first step involves creating fea-
sible candidate vehicle schedules within the framework of V2RBs12 for all vehicles and all
currently active requests while the second step assigns the best schedules to the vehicles.
Let Rshort be reservation requests with an earliest pick-up time within T shorth (orange circle
and star in Fig. 3.7) and Rrev (the set of revealed requests) (the dark gray circle and star
in Fig. 3.7) with an earliest pick-up time between T shorth and T revh . In the creation phase of
V2RBs, requests in Rshort are treated like incoming on-demand requests and all feasible V2RBs
are actively created. This also includes V2RBs with vehicles other than the assigned one. For
requests in Rrev, on the other hand, no re-assignment is allowed yet, and therefore they are
not actively included in the creation phase. Similar to on-board requests, the order of their
currently assigned pick-up and drop-off stops form the schedule of the V2RB with the lowest
possible grade of the vehicle. New V2RBs can only be created by building upon this V2RB.

The second adaption is an additional feasibility constraint when constructing new schedules:
If a waypoint for reservation requests is assigned, a schedule is only considered to be feasible if
the corresponding waypoint (end-constraint), i.e. the start of a connected long-term schedule,
is reachable in time (the light gray rectangle in Fig. 3.7).

When solving the assignment problem (Equations 3.12a-3.12e), all reservation requests are
considered already assigned ensuring that their assignment is kept.

Adaption to Assignment Objective and Waypoint Re-Assignment

Revisiting the objective function of the assignment algorithm (Equation 3.9), a term is included
in this function that evaluates the distance to travel for a given vehicle schedule. This may
seem beneficial at first glance, but many waypoints are scheduled for far in the future, making
the assignment of on-demand requests to guide the vehicle toward these waypoints unnecessary
at the present moment and lead to suboptimal assignments of on-demand requests. Therefore,
the objective function is adapted to not evaluate the distance to travel to waypoints.

Nevertheless, to reduce potential empty vehicle movements to reach the waypoints, a re-
assignment of waypoints (and their corresponding long-term schedule) is conducted after the
assignment of on-demand requests. Let cv,w be the cost of the vehicle v to reach the waypoint
w, and Vw the set of vehicles that can reach the waypoint w in time after finishing their
currently assigned schedule. If |Vw| < |V |, not all vehicles can reach the waypoint w in time.
Therefore, the waypoint w is considered urgent, and its corresponding assignment cost are set
to cv,w = d(x̃v, xw), with x̃v the position of vehicle v after finishing the currently assigned
schedule and xw the location of the waypoint. If |Vw| = |V |, all vehicles are able to reach the
waypoint w in time. Therefore, the assignment cost is set to cv,w = 0.1 ·d(x̃v, xw), prioritizing
the assignment of short trips to urgent waypoints, when the overall assignment cost is to be

12Or their schedules are updated from memory because they have been computed in previous epochs.
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minimized:

Minimize:
∑
w∈W

∑
v∈Vw

cv,wϕv,w (3.18a)

s.t.:
∑
w∈W

ϕv,w ≤ 1 ∀v ∈ V (3.18b)∑
v∈Vw

ϕv,w = 1 ∀w ∈ W (3.18c)

ϕv,w ∈ {0, 1} ∀v ∈ V, ∀w ∈ W (3.18d)

The decision variable ϕv,w is binary and indicates whether vehicle v is assigned to waypoint
w. Constraints 3.18b ensure that each vehicle is assigned to at most one waypoint, while
constraints 3.18c ensure that each waypoint remains assigned.

Vehicle Movement

If a new schedule is assigned to a vehicle, a vehicle should usually begin to fulfill this schedule
immediately. However, in the presence of reservations, the planned arrival at a waypoint or a
pick-up of a reservation request might be far in the future. In this case, an immediate approach
might not be necessary and even lead to additional empty VKT if new assignments are made
in the meantime. Therefore, before a vehicle starts its approach, the difference between the
latest arrival time at a stop and the earliest possible arrival time. Only if this value falls below
the parameter Tapproach the approach is started. Otherwise, the vehicle remains at its current
location. Tapproach can be interpreted as a safety buffer for the vehicle to arrive at the stop in
time.

Benchmark Algorithm

The main benefit of the presented approach in contrast to studies like [Ma and Koutsopou-
los, 2022; Wen et al., 2019; Dandl, 2022] is that it allows for re-assignment of pre-booking
customers to adapt the pre-computed schedules when on-demand customers emerge. To quan-
tify the benefits achieved by re-assignment of pre-booking customers, the proposed approach
is benchmarked against the Insertion Heuristic already defined in Algorithm 1. Applying this
assignment algorithm, incoming on-demand requests are inserted into the currently assigned
vehicle schedules. The order of stops (also of the long-term schedules) and the corresponding
assigned pre-booking requests remain the same.

3.4.3 Creation of Long-Term Schedules
The key assumption for planning long-term schedules is that the planning horizon is so far in
the future that the current state of the fleet (i.e., the current short-term assignments to serve
on-demand customers) is nearly irrelevant. It is assumed that the current vehicle location, if
idle, or the final stop of the current assignment, if en-route, is sufficient information to plan
the long-term schedule.

Given a set of long-term reservation requests, the task is to assign vehicle schedules to serve
these requests in the future. As all requests are known due to reservation, this problem can
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be formulated as a static DARP. In theory, solution algorithms like those presented in the
literature review (section 2.4.1) could be applied to solve this problem. However, as a solution
has to be found for potentially thousands of reservation requests, the computational effort to
solve the problem optimally is intractable, even with state-of-the-art algorithms. It is argued
that the termination of the algorithm is not as time-critical as for the online optimization, but
a runtime of several hours is not acceptable. Nevertheless, finding optimal solutions might
not be necessary, as the final performed schedules likely differ from the long-term schedules
because the online optimization will adapt these schedules to serve on-demand customers.

Therefore, heuristic methods suffice to create long-term schedules. These methods should
be able to terminate within a maximum of a few minutes runtime, allowing for a fast response
to new reservation requests while still providing good, feasible schedules for efficient long-term
operation.

In the following, two heuristic methods are described to create long-term schedules for
vehicles. The first method allows for continuously incorporating new reservation requests into
long-term schedules. The second method can be used if long-term schedules have to be created
only once (i.e., for day-ahead reservations) and will be used to evaluate long-term reservations
in detail.

Consecutive Batch Optimization (CBO) Method

The goal of this method is to dynamically create and adapt long-term schedules for incoming
long-term reservation requests. The basic idea is to batch unassigned long-term requests
based on their earliest pick-up time and solve an assignment problem at the corresponding
time, considering current long-term schedules and already assigned requests.

Let Ru
long be the set of unassigned long-term reservation requests. The requests are sorted

by their earliest pick-up time to batch these requests. The first request r0 is added to an
empty batch, and the following requests are added until request ri with tpri > tpr0 + T shorth . In
this case, ri opens a new batch. Further, let rl,b be the last request in batch b. The associated
batch time tb is set to tprl,b − Tshort to give the assignment algorithm temporal flexibility in
assigning the requests in the next step.

After batching the requests, the long-term schedules are adapted to accommodate reserva-
tion requests in the batches. Given the currently assigned long-term schedules of each vehicle,
the state of each vehicle is progressed (i.e., planned movements and boarding processes are
executed) until the batch time tb. The resulting state of the vehicle is then used to solve the
previously described assignment problem at the batch time, while all requests in the batch
are considered on-demand requests. If a request cannot be assigned, vehicles are searched
that could have repositioned (according to their long-term schedule) to serve the request in
time. If no vehicle is found, the reservation request is rejected. Otherwise, the vehicle with
the smallest repositioning distance is assigned to serve the request. The previously assigned
long-term schedules are then updated to include the new assignment, and the next batch is
processed.
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Non-Causal Rolling Horizon (NCRH) Method

This method assumes that all reservation requests are known at the beginning of the planning
horizon (i.e., reservations are made the day ahead). The method is based on a rolling horizon
approach and uses the same procedure as simulating an ARP service for on-demand requests.
Each reservation request is treated as an on-demand request, and the simulation is run to
create feasible vehicle schedules. Within the simulation, for each request r, the request time
is set to tpr−T shorth , i.e., it is revealed at the short-term horizon. At the end of the simulation,
the vehicle schedules performed over the whole rolling horizon simulation period are used as
long-term schedules.

For repositioning, a different methodology is applied compared to the algorithm described
in section 3.3. As the goal is to produce feasible vehicle schedules, the repositioning strategy
does not have to be causal. Therefore, the time when vehicles became idle is tracked. Each
time no schedule is found to serve an on-demand customer, a post-processing step scans idle
vehicles that would have been able to serve the customers if they started their approach in
time. The vehicle with minimal travel time is assigned to serve the customer. In contrast
to causal repositioning, this method does not rely on inherently unreliable forecasts, reducing
unnecessary empty vehicle trips.

Due to its similarity to the simulation of a purely on-demand service, this method allows
the evaluation of the impact of the solution quality of the long-term schedules on the overall
system performance. In contrast to the CBO method, one can expect that the NCRH method
always produces overall better schedules than the simulation of an on-demand-only service
because the rolling horizon allows a look-ahead of upcoming requests. For the CBO method,
an improvement in the overall system performance compared to an on-demand-only service
cannot be guaranteed.

3.4.4 Integration of Repositioning and Reservation
When considering repositioning within the proposed framework for treating reservations, some
adaptions have to be made. As most vehicles might have an assigned long-term stop at some
point in the future, the definition of idle vehicles must be adapted. Additionally, the location
of scheduled reservation stops has to be considered when repositioning vehicles, because in
the extreme case, it might not be reasonable to send a vehicle to one side of the city while
the next reservation stop is on the other side.

The following adaptions are made to include the reservation in the sampling-based reposi-
tioning algorithm described in section 3.3:

Definition of Idle Vehicles A vehicle is considered idle (and therefore available for reposi-
tioning) if it has no assigned stops in the future or the next stop is a waypoint with a planned
start time outside the forecast horizon H of the repositioning algorithm.

Reservation Schedules for Sampling Future Fleet States If a long-term schedule is
assigned to a vehicle, its plan is revealed to the repositioning algorithm until the first stop
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after t+H+T revh
13 when no passengers are on board the vehicle, given the current time t. The

same methodology is applied here as when revealing the long-term schedule to the assignment
algorithm. If the corresponding vehicle is not idle, sampled future requests can be inserted
into its schedule, similar to how a currently on-route vehicle is handled in the repositioning
algorithm without reservations. If the vehicle is considered idle (the scheduled reservation
waypoint is far in the future), the long-term schedule is detached from its currently assigned
vehicle in the sampling process. During the process of simulating future fleet states, these
schedules become also available for assignment. Once the progressed time in the sampling
process approaches τ satk − T repoh , the long-term schedule k with scheduled arrival time τ satk

is assigned to the nearest available hypothetical vehicle (vehicles that are created during the
sampling process to indicate supply shortages). If no vehicle is available, a new hypothetical
vehicle is created. The idea behind this approach is that long-term schedules can be re-assigned
to other vehicles based on potential repositioning trips if future sampled requests can be served
before the next reservation waypoint is due.

Adaption to Repositioning Assignment Problem To maintain a feasible solution to
the long-term schedules, the repositioning assignment algorithm (i.e., the ILP formulated in
Equations 3.15) has to ensure that each long-term schedule is assigned to a vehicle. Let Kodm

s

and Kres
s be the sets of hypothetical vehicle schedules that do not and do include long-term

schedules for reservation requests, respectively. The constraint to assign maximally one long-
term schedule to a vehicle for repositioning (Constraint 3.15f) can be replaced by the following
two constraints: ∑

t∈Uκ,s

∑
T∈As,t

ϕTs,t ≤ 1 ∀s,∀Kodm
s (3.19a)

∑
t∈Uκ,s

∑
T∈As,t

ϕTs,t = 1 ∀s,∀Kres
s (3.19b)

Constraint 3.19b ensures that all long-term schedules are assigned to a vehicle.

Assigning Repositioning Trips and Long-Term Schedules The solution of ILP 3.15 with
constraints 3.19 not only defines repositioning trips but also (re-)assigns long-term schedules
to vehicles. By evaluating the solution, each assignment of rebalancing trips and hypothetical
vehicle sub-schedules can be retraced to an idle vehicle within a specific zone for each sample
s. Three possible outcomes change the assignments of vehicles:

1. Only a repositioning trip is assigned to a vehicle: Similar to the on-demand-only case,
the vehicle receives a repositioning assignment to the corresponding zone.

2. A sub-schedule from Kres
s is assigned, that only contains stops from the long-term

schedule. In this case, the corresponding waypoint (i.e., long-term schedule) is assigned
to the vehicle.

13As the repositioning algorithm progresses the state of the vehicle by H, the waypoint has to be at least
H + T rev

h ahead to mimic the behavior of the assignment algorithm.
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3. A sub-schedule from Kres
s is assigned that serves sampled requests before serving stops

from the long-term schedule. Therefore, a vehicle is assigned a repositioning trip and a
long-term schedule. In this case, the vehicle’s schedule is extended by two stops: First,
the repositioning trip, and second, the waypoint of the assigned long-term schedule.
This situation can occur when the waypoint is scheduled far in the future, allowing the
vehicle to be repositioned to a zone where it can serve other on-demand requests in the
interim.

It should be noted that the assignment of reservation waypoints can differ for each sample
s if, for example, a waypoint fits a repositioning trip in one sample but not the other. This
issue usually occurs for waypoints that are scheduled far in the future, leaving time for re-
assignment in the following repositioning epochs before they become urgent. To maintain a
feasible assignment, waypoints from the first sample are assigned.

Benchmark Method

The repositioning method with reservations is compared to the Reactive Repositioning React
described in section 3.3.5. In this method, when an on-demand request cannot be served,
its origin is marked as a repositioning target. Without reservations, idle vehicles are assigned
to reposition to these targets by minimizing the overall travel time. Similar to the method
described above, vehicles with reservation waypoints are considered idle if the waypoint is at
least T repoh ahead. In this case, the cost for a repositioning trip is updated to tteff (xv, xr) =
tt(xv, xr) + tt(xr, xb)− tt(xv, xb), with xv the position of the vehicle, xr the position of the
repositioning target and xb the position of the waypoint. This formulation also considers the
needed trip to the waypoint after repositioning. A repositioning trip is only allowed if the
vehicle can reach the waypoint in time.

3.4.5 Alternative Treatment of Pre-Booking Requests
An alternative, more straightforward approach to treat pre-booking requests is to handle them
similarly to on-demand requests but prioritize their assignment. In this approach, no long-
term schedule is created. Consequently, since no estimation of free capacity to accommodate
reservation requests is available, all requests are initially accepted when requesting a pre-booked
trip. The assignment and repositioning algorithm is adapted to prioritize the assignment of
pre-booking requests to commit to the initial acceptance. Nevertheless, an assignment when
the planned pick-up is approaching might still not be feasible within this approach. In this
case, a late rejection is communicated by the operator14.

Assignment

When the current time reaches ter−T shorth , i.e., the short term horizon T shorth before the earliest
pick-up time, the pre-booked request is revealed to the assignment algorithm. The request is
14Another approach could involve updating time constraints for pick-up and at least offering a delayed service

in real-time operations. However, to compare this method with the presented approach that uses long-term
scheduling to ensure feasibility, the KPI of late rejections is used as a measure of the approach’s success.
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added to the set Ru to find a feasible assignment in the next optimization epoch. To prioritize
the assignment of pre-booking requests, the objective function of the assignment algorithm
(Equation 3.4 and 3.9) is adapted to

ρserved(ψ) = −
∑

r∈Rodm
ψ

podmr −
∑

r∈Rres
ψ

presr , (3.20)

with an assignment reward podmr for on-demand requests Rodm
ψ and a higher reward presr > podmr

for pre-booking requests Rres
ψ .

Repositioning

To further increase the chance of serving pre-booked requests, the repositioning algorithm can
also be updated to proactively send vehicles to areas where pre-booking requests are scheduled.
When using the sampling-based repositioning approach, unassigned pre-booking requests are
added to the set of sampled requests. By the updated objective function (Equation 3.20),
also the repositioning algorithm prioritizes rebalancing trips that bring vehicles closer to the
pre-booking requests.
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Chapter 4

Simulation Framework
This chapter describes the simulation framework used to evaluate the proposed methods. First,
the simulation environment and details of the implementation are described. Then, the three
case studies (Chicago, Munich, and Manhattan) are introduced, including the data sets used
for the simulations. Finally, the KPIs used to evaluate the methods are defined.

4.1 Simulation and Implementation
As part of this thesis, the simulation framework FleetPy [Engelhardt et al., 2022b] has
been developed in cooperation with colleagues, which is tailored to study MoD services and,
therefore, answer the research questions of this thesis. FleetPy is an open-source agent-based
simulation framework [TUM-VT, 2022]. The framework is written modularly to allow the
user to enable modules of interest for specific studies. Most modules are implemented in
Python and can be extended by the user. Additionally, input data formats are pre-defined to
allow users to easily integrate their data and compare different case studies. The following
section provides a high-level description of FleetPy, and relevant modules for this study are
described in more detail.

4.1.1 Modules
The main modules of FleetPy and their interrelation are shown in Fig. 4.1. The heart of the
framework is the FleetSimulation-Class. It has two main tasks: 1) It is responsible for loading
input data, e.g., configuration files and input data paths, initializing all modules, and specifying
file paths for simulation outputs. 2) The FleetSimulation-Class defines the simulation flow and
thereby controls the central simulation time and the interaction of all other modules via time-
based and event-based triggers.

Demand Modules

Green blocks in Figure 4.1 refer to demand-related modules. The Traveler -Class represents
a single traveler trip. It is mainly characterized by its origin, destination, and the request
time attributes. For the reservation use case, an earliest trip time attribute can be defined.
Additionally, mode choice and dynamic behavior can be implemented. Travelers are initialized
and collected in the Demand-Class. This class is responsible for loading demand data from
input files and creating Traveler -Objects. Additionally, this class manages temporal behavior,
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Figure 4.1: Sketch showing on a high level the main classes, their tasks in the simulation and
their connection. Colors indicate simulation flow (black), infrastructure (orange),
demand (green), vehicles (yellow), and fleet control classes (blue). Shaded blocks
refer to modules implemented in FleetPy but are not treated in this thesis.

i.e., travelers request trips from available modes (mainly, but not necessarily only the MoD-
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operator(s)), forwarding the corresponding trip offers, and triggering interface functions like
mode choice evaluations. This class tracks the experience of each traveler during the simulation
and writes them to an output file.

Implemented Traveler Model In the context of this thesis, the Traveler -Class implements
impatient travelers. Impatient travelers are travelers who are not willing to wait for a trip offer
for an indefinite amount of time. They request a trip from the ARP-operator and expect a
trip offer as soon as possible, which is implemented as the time the next optimization epoch
calculation finishes. Travelers only accept trip offers fulfilling their maximum waiting time and
maximum travel time constraint. At the same time, they are modeled insensitive to the fare1.
This thesis assumes that the operator is aware of each traveler’s behavior and can optimize
the trip offers accordingly, i.e., the operator can apply these time constraints when creating
feasible schedules for vehicle assignments. If a traveler does not receive an offer fulfilling
the mentioned attributes, the traveler cancels the request and leaves the system, assuming
the traveler uses an alternative mode of transport. While the above-mentioned behavior is
similar for travelers requesting on-demand and pre-booking trips, the latter also communicates
a desired earliest trip time (pre-booking time) to the operator.

Infrastructure Modules

Orange blocks refer to infrastructure-related modules. For this thesis, mainly the Network-
Class and the ZoneSystem-Class are relevant. The Network-Class is responsible for loading
and storing the road network and its attributes. The class provides routing functionalities and
is responsible for vehicle movement. Depending on the implementation, dynamic or stochastic
behavior can also be included to model congestion by updating attributes of the corresponding
edges. The ZoneSystem-Class defines the aggregation of the network into zones to allow a
coarser spatial network analysis, e.g., for aggregation of demand forecast, which cannot be
provided accurately on a node level.

Network Implementation This thesis implements the Network-Class as a directed graph
G = (N,E), with nodes n ∈ N and edges e ∈ E. Edges are associated with a distance
and travel time attribute. The travel time attribute is used to calculate the fastest routes for
vehicles and travelers. Travel times are assumed to be deterministic, i.e., each vehicle takes
the same time to travel along an edge. The travel time attributes can be updated at specific
simulation time steps to account for congestion but remain constant and deterministic during
the resulting time slices. As the ride-pooling assignment problem requires evaluating a vast
number of routing queries, efficient routing algorithms are crucial for the performance of the
simulation. The following implementations are available to provide fast routing queries:

• If the network is sufficiently small (up to around 5k nodes depending on available RAM),
a lookup table can store the travel times and distances between all nodes.

1This assumes that travelers already have an experience of fares charged and request a trip merely to check
for service availability.
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• If the network is too large for a complete lookup table, a lookup table is still provided for
a subset of nodes that are frequently used in routing queries (e.g., access nodes where
customers can board or alight a vehicle).

• For remaining routing queries, the bidirectional Dijkstra algorithm is used to calculate
the fastest route between two nodes.

• For one-to-many or many-to-one routing queries (i.e., finding available vehicles in the
vicinity of a customer), the classic Dijkstra algorithm is used.

• Already computed routes are stored in a cache to avoid redundant routing queries.

• Dijkstra’s algorithms are implemented in C++, which provides an additional speed-up
of roughly 30x compared to a Python implementation [Engelhardt et al., 2022b].

Vehicle

The SimulationVehicle-Class (yellow) represents a vehicle in the simulation. It is mainly char-
acterized by the operator it is associated with, its capacity, and its range (if charging or fueling
processes are considered). Dynamic attributes include its current position, remaining range,
onboard travelers, and currently assigned schedule. The assigned schedule defines a list of legs
to be performed. These legs include routing tasks, where the vehicle is routed from its current
position to the next destination on the fastest route in the network. For evaluation purposes,
routing legs are subdivided into the states „route“, „repositioning“, and „to_reservation“. The
„route“-state reflects the approach to the next boarding task. The „repositioning“-state is
used when the vehicle repositions to a new location, while the „to_reservation“-state is used
when the vehicle drives to a location where a traveler reserved a trip further in the future.
Static legs refer to tasks where the vehicle remains at its location. These states of these legs
include „boarding“(i.e., waiting for a boarding process to finish) and „waiting“(i.e., waiting
for a traveler to arrive at the vehicle). If no task is scheduled, the vehicle is in the „idle“state
(i.e., waiting for a new assignment).

The leg specifies the tasks to be performed (e.g., a list of boarding and alighting travelers)
as well as the temporal information of the task, like its duration or earliest start time. If the
vehicle state is triggered to be updated for a certain time step by the FleetSimulation-Class, the
vehicle updates its state according to the current leg and starts the following one if applicable.
The progress along the route is calculated in the Network-Class. The Network-Class calculates
the new position of the vehicle after moving it in the corresponding time step. Within the
implementation of this thesis, the vehicle progresses along the fastest route with currently set
deterministic travel times.

Fleet Control

Finally, different shades of blue in Figure 4.1 indicate fleet control classes, the framework’s core.
The FleetControl-Class models a fleet operator in the simulation. It replicates the decision-
making process of the operator and its interaction with the environment, e.g., the demand, the
vehicles, and the infrastructure. The FleetControl-Class is responsible for the assignment of
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schedules to its fleet vehicles to serve incoming demand, i.e., solve the underlying ride-pooling
problem. It has access to multiple submodules (colored in bright blue) that subdivide the
problem into smaller sub-problems.

The BatchAssignmentAlgorithm-module globally optimizes the current customer-to-vehicles
assignments and their respective schedules. It implements the modules described in chap-
ter 3.2.

The task of the RepositioningStrategy -module is to redistribute idle vehicles in the oper-
ating area to meet future demand. It has access to a ForecastStrategy -module that provides
estimates for future demand. Implementation yields the modules described in chapter 3.3.

The ReservationStrategy -module treats pre-booking customers. The corresponding imple-
mentation is described in chapter 3.4.

FleetPy also implements modules for pricing (dynamically setting the fares), charging (man-
aging charging processes), and fleet-sizing (adopting the active fleet size, e.g., due to driver
shifts). However, as those modules are irrelevant to this thesis, further description is omitted.

Problem Representation

Darker blue objects in Fig. 4.1 refer to classes representing the ride-pooling problem. The
PlanRequest-Class represents the operator’s information about a traveler request. It collects
request attributes like origin, destination, request time, and earliest trip time. Additionally, it
stores service design parameters related to the request, like associated time constraints. In
contrast to the Traveler -Class (although not applicable in this thesis), the PlanRequest may
not have all information about the traveler, e.g., internal preferences or mode choice behavior.
The PlanStop- and VehiclePlan-Class represent a possible planned schedule for a vehicle. The
PlanStop-Class represents a single stop of a vehicle schedule. It is characterized by its location,
task at the location (e.g. boarding and alighting of customers), and related time constraints
(e.g., earliest and latest arrival time or duration at the stop).

The VehiclePlan-Class consists of an ordered list of PlanStop-Objects, which can be as-
signed to fleet vehicles to perform the planned tasks. By assigning a VehiclePlan, a list of
route legs for the SimulationVehicle is created. Note that the VehiclePlan-Class only refers
to the planning state of a schedule. The actual performed schedule might still differ due to
incomplete operator knowledge, e.g., traffic congestion. VehiclePlan-Class additionally imple-
ments feasibility checks (i.e. whether constraints are fulfilled) and calculation of the objective
function value of a schedule.

4.1.2 Simulation Flow
The simulation begins by initializing the FleetSimulation-Class. The FleetSimulation-Class
loads input data, initializes all modules, and specifies file paths for simulation outputs. Network
and zones are loaded from input files. The Demand-Class initializes travelers by reading
corresponding start and end nodes and request times from a Comma-Separated Values (CSV)-
file. Next, vehicles are initialized. In this thesis, the initial position of vehicles is chosen
randomly from the set of access nodes.

The simulation flow is depicted in Fig. 4.2. The simulation time is divided into time steps
∆S. The high-level interaction between the modules in each time step is shown in Fig. 4.2a.
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First, vehicles move in the network according to their assigned schedules, and customers board
or alight them. Then, the network travel times are updated if new travel times are available.
The Demand-Class reveals new traveler requests and sends them to the FleetControl-Class,
which decides if the request is treated as an on-demand or pre-booking request.

The next step triggers the FleetControl-Class for a new optimization epoch. The single
steps of the optimization epoch are shown in Fig. 4.2b and trigger computations described in
the methodology chapter 3. It is checked if upcoming reservations are due, and if so, these
requests are revealed to the online optimization algorithm and treated as on-demand requests.
Then, the BatchAssignmentAlgorithm-module is triggered to solve the ride-pooling assignment
problem for all revealed requests and assign new schedules to the vehicles. Next, it is decided
whether reservation plans are re-optimized and whether new pre-booking customers must be
considered. Finally, the RepositioningStrategy -module is triggered to reposition idle vehicles
to meet future demand.

After all travelers in this time step have been treated in batch by the FleetControl-Class,
currently assigned schedules are evaluated to create trip offers to each traveler that has not
been assigned yet, if available. Travelers decide if they book or cancel the trip and forward
their decision to the operator.

4.1.3 Input Data
The input for the simulation consists of the following parts:

1. Scenario Configuration: The scenario configuration file(s) specify the simulation set-
tings, which includes constant parameters (e.g., see Table 4.2), the modules to be used,
and the path for input data files.

2. Network: Network data consists of CSV-files for nodes, specifying IDs and coordinates,
and edges, specifying the start and end node of an edge, the distance, and the travel
time. For dynamic network behavior, additional files provide either travel times for each
edge or travel time scaling factors for each given simulation time interval. Additionally,
preprocessed look-up tables can be provided to speed up routing queries.

3. Demand: Demand data consists of CSV-files for traveler requests, specifying the origin
node, destination node, request time, and earliest trip time.

4. Zone: Zone data consists of CSV-files for zones, specifying the assigned zone ID for
each network node.

4.1.4 Output Data
The output of each simulation consists mainly of the following CSV-files:

1. Travelers: This file contains each traveler’s experience during the simulation. Besides
the request attributes, the file contains the assigned vehicle, boarding and alighting times
(if served), and the initial offer created by the ARP-operator.

98



4.1 Simulation and Implementation
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Figure 4.2: Flow functionality of two main components in FleetPy and their high-level inter-
action with involved modules.
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2. Operator: This file contains each completed leg of each vehicle during the simulation.
Besides the vehicle ID, the leg state (e.g., boarding, repositioning, or route), the start
and end node, the start and end time, the driven distance, and boarding, alighting, and
on-board travelers are stored.

3. Dynamics: This file contains indicators tracked within each simulation time step.
Mainly, computational time for relevant tasks is stored for later evaluation.

This data allows for a detailed spatio-temporal analysis of each simulated scenario. The main
KPIs used to evaluate the simulation results are defined in section 4.3.2.

4.2 Case Studies
Three case studies are considered to evaluate the proposed methods in different settings:
Chicago, Munich, and Manhattan. In the following, the data sets and resulting input data for
the simulations are described for the three case studies and compared.

4.2.1 Chicago, Illinois
The street network for Chicago is extracted from OpenStreetMap (OSM) using the Python
OSMnx package [Boeing, 2017]. To reduce the size of the network, edges labeled as “res-
idential” or “living_street” are removed from the network, resulting in 12, 585 nodes with
27, 446 edges. Customers can only start and end their trip at specific access nodes. Similar
to [Dandl et al., 2020b], boarding is prohibited on major roads like highways. Therefore,
all nodes with adjacent edges not labeled as “primary”, “secondary”, “tertiary”, or unlabeled
edges are not considered access nodes. Due to the size of the network, the set of access
nodes is further reduced by randomly removing access nodes if another access node can be
found within a distance of 300m. This procedure is repeated until 4, 000 access nodes are
left, resulting in a number small enough to preprocess travel time lookup tables between those
nodes to reduce the computational time needed for routing queries. Figure 4.3a shows the
resulting network with all access nodes.

Demand for the ARP service is created using the publicly available TNC data set for Chicago,
Illinois [Chicago Department of Business Affairs & Consumer Protection,
2022]. This thesis uses TNC trips for the randomly chosen Tuesday 06/07/2022. Trips that
start or end outside the Chicago city boundary are removed. Additionally, presumably, faulty
data entries and round trips are removed, characterized by a trip distance larger than 100km
or lower than 0.1km, a trip time larger than 5hours or lower than 60seconds, and an average
speed higher than 130km/h or lower than 5km/h. After the filtering process, 12, 7528 trips
remain. Requests are created by choosing a random access node for origin and destination
within the reported pick-up and drop-off area. As request time, a random value in second
steps is drawn from the reported 15min start time interval of the trip.

To calibrate network travel times, the reported trip duration in the data set is compared
to the travel time of the fastest path when considering the maximum allowed speed from the
OSM data on each edge. For each hour of the day, a scaling factor is calculated for the fastest
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path travel times to resemble the reported travel times of all trips in the data set in the same
hour on average.

Subsamples of the trip data are prepared to reduce computational load and evaluate the
effects for different demand densities (demand penetration of the ARP service). The sub-
samples are created by randomly selecting a fraction of the trips from the original data set.
Subsamples of 10%, 25%, 50%, and 100% demand penetration of the original data set are
created. Except for the 100% case, five different random seeds are used to create five different
subsamples for each demand penetration level.

4.2.2 Manhattan, NYC
A similar data set is used for Manhattan, New York City, which is a popular case study to
evaluate MoD services (e.g., Alonso-Mora et al. [2017b], Dandl et al. [2019], and Zhang
and Pavone [2016]). The network is also extracted from OpenStreetMap. As the Manhattan
network is smaller than the Chicago network, all edges are kept. The network consists of 4, 410
nodes and 9, 574 edges. This relatively small number of nodes allows a complete lookup table
to store the travel times and distances between all nodes. Similarly to the Chicago case study,
all nodes with adjacent edges not labeled as „primary“, „secondary“, „tertiary“or unlabeled
edges are not considered access nodes. Edges and access nodes are shown in Fig. 4.3b.

The publicly available taxi data set is used to create demand for the ARP service [City of
New York, 2024]. TNC trips for 2018/11/12 (a randomly chosen Monday) are extracted,
which were also used in the studies by Dandl et al. [2020b], Engelhardt et al. [2022a],
Engelhardt et al. [2022c], and Syed et al. [2021]. A similar trip filtering process as for
the Chicago data set is applied, but values have been slightly adapted to account for the
smaller network and possibly more congested traffic states: In contrast to the Chicago data
set, trip distances larger than 50km and trip times larger than 3hours are removed. The
minimum average speed is reduced to 3km/h. Other filtering criteria remain the same. After
the filtering process, 213, 996 trips remain.

Similarly, travel time scaling factors are computed for each hour of the day.
Subsamples of 10%, 25%, 50%, and 100% demand penetration of the original data set are

created.

4.2.3 Munich, Germany
The final case study is Munich, Germany. In contrast to Manhattan and Chicago, no publicly
available TNC data set is available for Munich. Although Uber or taxi services generally
operate in Munich, the mode share of TNC and taxi services is significantly lower than in the
US. Therefore, this data would be of limited use for evaluating large-scale ARP services.

Instead, a synthetic demand data set is created based on private vehicle trips in Munich,
resembling a what-if scenario for the case private vehicle trips are replaced by ARP trips.
Network and demand data is based on a microscopic traffic simulation model of Munich,
described in [Bracher, 2019; Dandl et al., 2017]. The network has been constructed
manually in large parts to provide correct lane numbers, capacities, and speed limits. It includes
all roads within the inner ring road B2R, while a major arterial network is provided until the
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outer highway ring A99. Major roads reach even further outside the city boundary to include
commuter traffic. After exporting the network from the microscopic traffic simulation model,
the input network includes 35, 474 and 64, 888 edges. The relevant part for the simulation in
this network is shown in Fig. 4.3c. The figure also shows the assumed operating area in this
thesis, which spans around Munich’s city center and a major part of the city area.

The calibrated microscopic traffic simulation model includes private vehicle trip Origin-
Destination (OD) matrices for a typical weekday in Munich from 2016 for each hour of the
day. These matrices are used to create trip requests for the ARP service. Entries in the OD
matrices are used as Poisson rates for the number of requests between each OD zone pair. If
zones do not fully overlap with the operating area, the Poisson rates are decreased by the areal
fraction of the zone outside the operating area. Up to 15% of the private vehicle trips are
converted to requests for the ARP service, which results in a total of around 104, 000 requests
depending on the random seed for the Poisson process.

Similarly to the other case studies, access nodes are defined where customers can board or
alight a vehicle. Access nodes are defined as all intersections within the operating area not
connected to road sections with a speed limit higher than 50km/h to prevent boarding on
major roads. The resulting 5113 access nodes are shown in Fig. 4.3c. During the demand
generation process, request origin and destination are chosen randomly from the set of access
nodes within the corresponding OD zones.

Network travel times are extracted from the microscopic traffic simulation model as well.
After running the traffic simulation model, the average travel time for vehicles to pass each
edge is extracted for each hour of the day. These are used as the deterministic travel times
for the ARP simulations.

Subsamples of 1%, 2%, 5%, 10%, and 15% demand penetration of the original data set
are created. Five random seeds are used to sample from the OD matrices for each demand
penetration level.

4.2.4 Comparison of the Case Studies
Table 4.1 compares the main characteristics of the input data for the three case studies.
The operating area is the largest for Chicago, followed by Munich and Manhattan. Thereby,
Chicago’s operating area is around 10 times larger than Manhattan’s and over 3 times larger
than Munich’s. The number of trips in the data set is the largest for Manhattan, followed
by Chicago and Munich. Due to the high number of trips and the small operating area, the
Manhattan data set has by far the highest trip density, with 151 trips per square kilometer per
hour, followed by Munich and Chicago. The average trip length directly correlates with the
operating area, with the longest trips in Chicago and the shortest in Manhattan. Due to heavy
traffic conditions throughout Manhattan, the average speed2 in Manhattan is only around half
the speed of Munich and Chicago. Comparing average trip lengths and travel speed in Munich
and Manhattan, the average trip travel time results in a similar value of around 10 minutes.
Due to long trips, the average travel time in Chicago is around 17 minutes.

Figure 4.3 shows the street networks, access nodes, and spatial demand distribution of
2Average speed is defined as the average travel speed of all trips in the data sets on the fastest path during

the corresponding travel time slice.
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Case Study Operating
Area

No.
Trips*

Trip
Density

Avg.
Trip Length

Avg.
Speed**

Munich 175 km2 ∼104,000 ∼24.8 1
km2h 6.0 km 34.6 km

h
Manhattan 59 km2 213,996 151 1

km2h 2.9 km 16.1 km
h

Chicago 627 km2 127,528 8.47 1
km2h 9.2 km 31.7 km

h

Table 4.1: Comparison of main characteristics of the input data for the three case studies.
*Number of Trips refers to all trips in the Manhattan and Chicago data set and
10% of private vehicle trips in the Munich case study. **Average speed is the
average travel speed of all trips in the data sets on the fastest path during the
corresponding travel time slice.

request origins for the different case studies. The map of Chicago in Fig. 4.3a shows the large
spatial spread of the operating area. A clear demand hot spot around the city center can be
observed at the density of trip origins, with a lower demand density in the surrounding areas.
Taking a closer look at the data, two further hot spots can be observed that are masked in
the presentation of Fig. 4.3a by the large size of the respective census tract zones: One hot
spot is located around O’Hare International Airport in the northwest of the city, and the other
is around Midway International Airport in the southwest. Especially the former attracts a
considerable portion of the TNC trips in the data set, aggregating to around 12% of all trips
starting or ending at O’Hare. Midway Airport attracts around 3% or all trips starting or ending
there, a smaller but significant portion of the trips.

Fig. 4.3b shows the elongated island of Manhattan with its corresponding network and
demand distribution. In contrast to Chicago, the Manhattan case study does not show multiple
prominent hot spots but rather a demand centering around Manhattan midtown and the area
around the southern part of Central Park. The highest demand density is observed around
Penn Station and Grand Central Terminal, two major transportation hubs in Manhattan. These
areas show extreme demand density, with over 1, 000 requests per square kilometer and hour
originating there. The demand density decreases towards the northern and southern parts of
the island.

Finally, Fig. 4.3c shows the street network, access nodes, and spatial demand distribution
of request origins for the Munich case study. The street network does not show a clear grid
structure as in the US cities, but rather a more organic structure with a higher density of
roads in the city center and a lower density in the outskirts. The demand distribution shows
an apparent demand centering around the city center, with a lower demand density in the
surrounding areas. In contrast to the case studies of the US cities, the incline of the demand
density towards the outskirts is less steep, and the demand density is generally lower.

Fig. 4.4 compares the temporal request distribution, trip distance distribution, and average
network speed for the three case studies. The temporal request distribution in Fig. 4.4a shows,
at first glance, the overall highest demand in Manhattan, compared to Munich and Chicago.
In Manhattan, the demand is spread more evenly during day times from 7 a.m. to 10 p.m.,
with a peak around 6 p.m. Munich and Chicago, on the other hand, show a clear peak in
demand in the morning and the evening, with a lower demand during the day. Both peaks
show similar demand levels in the morning and the evening, with a slightly broader evening
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(a) Chicago.

(b) Manhattan.
(c) Munich (10% PV Demand).

Figure 4.3: Street networks, access nodes and spatial demand distribution of request origins
for the different vase studies. Zonal aggregation refers to census tracts, taxi zones
and municipalities for Chicago, Manhattan and Munich, respectively.

104



4.2 Case Studies

peak. The main differences in the distributions between Munich and Chicago are, on the one
hand, a slightly delayed morning and evening peak, with the maxima appearing 1-2 hours later
in Chicago. On the other hand, there is a higher demand during late evening and nighttimes
in Chicago. Considering the data sources, this might be due to the fact the Chicago data set
includes TNC trips, while the Munich data set includes private vehicle trips, which are less
likely to be conducted during late nighttimes.

Observing the trip distance distribution in Fig. 4.4b, the number of short trips under 6km in
Manhattan is striking. On a relative scale, also for the Chicago case study, a more significant
portion of very short trips below 4km can be observed compared to Munich, which might
result from short trips being more convenient to be conducted with a TNC service compared
to a private vehicle as parking is more difficult in the city center. Due to the large operating
area, the Chicago trip length distribution shows a long tail of long trips above 20km, which
are rarely observed in Munich and Manhattan. Especially prominent in the Chicago data set
are trips with a length of around 30km, likely to be trips to or from the airports.

Finally, the average network speed in Fig. 4.4c shows as lower average speed in Manhattan
compared to Munich and Chicago. Due to high congestion levels and only a few highways,
the average speed falls below 14km/h in the morning and does not recover until the evening.
In contrast, Munich and Chicago show typical traffic patterns of congestion during morning
and evening peak hours. During the morning peak, the average speed drops below 30km/h in
both cities, while the evening congestion appears more severe in Chicago. As the operating
area includes a larger part of the highway network in Chicago, compared to the excluded
outer highways ring in Munich, the average speed in Chicago is higher than in Munich late
at night. Another reason might be that the travel times of TNC trips are used to calibrate
the network travel times in Chicago, which might be biased towards long trips using (not
congested) highways at nighttimes.

Overall, this comparison shows that the three case studies represent different urban mobility
scenarios, which allows for a comprehensive evaluation of the proposed methods in various
settings. The Munich case study represents a typical European city with a moderate demand
density centered around the city center and a minor decline of demand towards the outskirts.
The Manhattan case study represents a highly dense urban area with a high demand density
and many short trips. The Chicago case study represents a large urban area with a lower
demand density but distinct hot spots, especially within the city center and its airports.

4.2.5 Zone System
When defining zone systems for repositioning, the service design should be taken into account.
For the studied ARP service, the maximum waiting time constraint is crucial for the zone
system design as it defines the maximum distance a vehicle can cover to serve requests when
repositioned to a particular zone. If zones are chosen too big, gaps in the service might occur,
while too small zones might lead to unnecessary repositioning.

Therefore, this thesis implements a zone system that incorporates the underlying network
structure and the operational constraints of the ARP service. Zones and corresponding cen-
troids are created solving a maximum coverage problem defined in the Appendix I. The min-
imum set of zone centroid nodes is determined that guarantees that each access node is
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(a) Temporal request distribution.

(b) Trip distance distribution. Bars refer to the number of trips in each
distance bin. Dashed lines refer to the cumulative distribution.

(c) Average network speed.

Figure 4.4: Comparing temporal request distribution, trip distance distribution and average
network speed for the three case studies.
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reachable by at least one centroid node within a maximum driving time of tZmax. Zones are
created by assigning each access node to the closest centroid node in terms of network travel
time. In the base case, the goal is to set tZmax = twaitmax = 8min to receive the minimal number
of zones while guaranteeing that each access node is reachable from at least one centroid
node within the maximum waiting time. As travel times in the network change each hour of
simulation time, the zone system is created based on the time bin with the lowest network
travel times.

Figure 4.5 shows the resulting centroids for the Chicago, Manhattan, and Munich case study
with different values for tZmax. The depicted zones are convex hulls of nodes associated with
the same centroid for the base case of tZmax = twaitmax = 8min. The convex overlap, because of
the directionality of the network and the different travel times in the network. Nevertheless,
each node is assigned to exactly one centroid node, which is the closest in terms of network
travel time. For tZmax = 8min, 60, 17, and 14 zones are created for the Chicago, Munich, and
Manhattan case studies, respectively. The high value for the Chicago case study shows the
large operating area covered. For tZmax = 4min these values increase to 208, 87, and 58 zones,
while for tZmax = 12min these values decrease to 28, 14, and 8 zones, respectively.

4.3 Input Parameters and Key Performance Indicators

4.3.1 Standard Input Parameters
Table 4.2 summarizes all parameters introduced and shows the standard values used for the
simulations in the three case studies. These values are used in all simulations performed if not
explicitly stated otherwise.

Values for fleet size (|V |), forecast horizons (H,HQT ,HHor) and demand scaling factors
(µQT , µHor) were chosen based on the results, which will be presented in the following section.
Cost parameters for the objective function ωdis and ωdel are set based on Tirachini and
Antoniou [2020] and Frei et al. [2017], respectively.

For the assignment algorithm, the method described in section 3.2.4 is used, while the
sampling-based repositioning algorithm described in section 3.3 is applied for repositioning.
When evaluating the assignment and the repositioning algorithm, only on-demand requests
are considered, while pre-booking of trips is only considered in the last section of the results
chapter.

As described above, zones with centroids that are reachable from each access node within
tZmax = twaitmax = 8min are used in the base case. The corresponding forecast is assumed to be
perfect in terms of average values within the spatio-temporal aggregation.

A simulation runs for a whole day in time steps of 30 seconds. Vehicles are randomly
initiated at the beginning of the simulation at access nodes. At least 3 random seeds are
simulated for each scenario using different initial vehicle distributions and demand samples.
Results show average values over all seeds, with error bars indicating minimum and maximum
values3.

3The source of randomness comes from the initial vehicle distribution and the demand sample. The results
show that stochastic variation is very low (i.e., error bars might not even be visible) in most evaluations.
This is likely due to the large number of requests and the stability of the vehicle distribution due to the
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(a) Chicago. (b) Manhattan.

(c) Munich.

Figure 4.5: Centroids for the zone systems in the Chicago, Manhattan, and Munich case study
with different vales for tZmax. Depicted zones are convex hulls of nodes associated
to the same centroid with tZmax=8min.
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The simulation is implemented in Python 3.7, while optimization problems are solved using
Gurobi 10 4. Except for the reservation results chapter, all simulations are conducted on a
working station with an Intel Xeon Silver 4216 CPU with 32 cores and 192GB of RAM. The
reservation results are computed on a Linux Cluster with 28 Cores with 2.6 GHz frequency
per Node with 64GB RAM per node5. All simulations are conducted in a single-threaded
environment.

4.3.2 Key Performance Indicators
Based on the output data of the simulation described in section 4.1.3, the following KPIs are
calculated to evaluate the performance of the ARP service:

Served Customers This KPI refers to the fraction of customers served by the ARP service.

Served Customers = |Rserved|
|R|

, (4.21)

with |Rserved| being the number of requests that have been served and |R| being the total
number of requests.

Vehicle Kilometers Traveled (VKT) This KPI refers to the total distance traveled by all
vehicles in the simulation.

Vehicle Kilometers Traveled =
∑
v∈V

∑
l∈Lv

distance(l) , (4.22)

with Lv being the set of legs of vehicle v and distance(l) being the distance of leg l.

Average Vehicle Occupancy The average vehicle occupancy measures the average number
of travelers on board a vehicle weighted by the distance they spent on-board the vehicle:

Average Vehicle Occupancy =
∑
v∈V

∑
l∈Lv occupancy(l) · distance(l)∑
v∈V

∑
l∈Lv distance(l) , (4.23)

with occupancy(l) being the occupancy of leg l.

Saved Distance While the average vehicle occupancy already measures the efficiency of
pooling, and is a metric that is easy to comprehend, this KPI benefits from customers driving
a long distance inside the vehicle, potentially with long detours. Therefore, the quantity „saved
distance“is introduced to measure the pooling efficiency:

Saved Distance =
∑
r∈Rserved direct distance(r)− Vehicle Kilometers Traveled∑

r∈Rserved direct distance(r) . (4.24)

repositioning strategy.
4https://www.gurobi.com/
5The Cluster was provided by the Leibniz Supercomputing Center (LRZ) in Garching, Germany.
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Category Parameter Symbol Description Standard Value

General

Start Time - Simulation start time 0s
End Time - Simulation end time 86400s
Time Step ∆S Simulation time step 30s
Max. Waiting Time twaitmax Maximum request waiting time 8min
Max. Detour Time ∆det

Maximum request detour time
relative to direct trip 40%

Boarding Time tB
Time duration,
a vehicle stops to board/alight customers 30s

Vehicle Capacity cv Number of passenger seats per vehicle 4

Fleet Size |V | Number of vehicles operated
Chicago: 340
Munich: 240
Manhattan: 320

Demand Penetration - Fraction of subsampled trips for ARP demand
Chicago: 20%
Munich: 2%
Manhattan: 20%

Assignment

Optimization Epoch ∆E
Time duration between
consecutive batch optimizations 30s

Obj. Assignment Reward pr Reward for assignment of customer in objective 100 $
Obj. Distance Cost ωdis Cost weight on driven distance in objective 0.694$/km
Obj. Value of Time ωdel Cost weight on customer travel time 16.5$/h

RV vehicles Nmax
RV

Max. number of vehicles per request
in RV heuristic 20

Max. Tour per V2RB Nmax
V 2RB Max. number of schedules per V2RB 4

Vehicle Search Time Out νTO,v
Max. computational time
per vehicle to create V2RBs 1s

Lock Assignment treassignth

Time before pick-up
to lock current assignment -

Re-Assignment Penalty preassign Penalty for customer-vehicle re-assignment -
Re-Assignment Time Window ∆TW

Pick-up time window size
after first assignment -

Repositioning

Repo. Epoch ∆R Time between consecutive repositioning epochs 900s
Repo. Zone System ZR Zones for repositioning Centroids within

tZmax = 8min
Forecast. Zone System ZFC Spatial aggregation of demand forecast Same as ZR

Forecast Horizon H
Horizon to forecast future requests
for repositioning

Chicago: 3600s
Munich: 2700s
Manhattan: 2700s

Forecast Bin Size δFCT Temporal bin sizes for demand prediction 900s
Forecast Method - Method to create request forecast Perfect Distribution
Forecast Samples NS

Number of forecast samples
considered in sampling repo algorithm 1

Future Weight γ Weight on future rewards in repo objective 0.5
Forecast Horizon (QT ) HQT Forecast horizon for QT -algorithm 2700s
Demand Scaling (QT ) µQT Demand scaling factor for QT -algorithm 0.3
Forecast Horizon (Hor) HHor Forecast horizon for Hor -algorithm 2700s
Demand Scaling (Hor) µHor Demand scaling factor for Hor -algorithm 0.05

Reservation

Reservation Requests - Distribution of reservation requests None
Short Term Horizon T shorth

Horizon to consider upcoming reservation
requests in online optimization 540s

Revelation Horizon T revh

Horizon to reveal upcoming reservation
requests in online schedule 1080s

Repos. Buffer T repoh

Buffer time for vehicles
considered available for repo. 900s

ODM Assignment Reward podmr

Obj. reward for assigning
on-demand customers 100 $

Res. Assignment Reward presr
Obj. reward for assigning
reservation customers 1000 $

Table 4.2: Collection of parameters and their standard values used in the case studies.
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The direct distance is the distance between the origin and destination of a request, i.e., the
distance of the trip if made by private vehicle. This KPI therefore measures the fraction of
the direct distance saved by pooling. If the KPI is negative, the pooling service increases the
VKT. (e.g., by a large fraction of empty vehicle trips) compared to private vehicle trips. If it
is positive, sharing of rides exceeds introduced empty vehicle trips, and the pooling service is
more efficient than private vehicle trips, thus „saves“ VKT in the system.

Vehicle Revenue Hours Vehicle Revenue Hours (VRH) measures the time a vehicle spends
in operation actively serving customers and therefore producing revenue for the operator.

Vehicle Revenue Hours = 1
|V |

∑
v∈V

∑
l∈Lrevv

duration(l) , (4.25)

with Lrevv being the set of legs of vehicle v that are revenue generating (not idle and not
repositioning) and duration(l) being the duration of leg l. Because one day of simulation is
conducted in this thesis, this quantity can take values between 0h and 24h.

Average Waiting Time Waiting time measures the difference between the earliest pick-up
time and the actual pick-up time of a request.

Average Waiting Time =
∑
r∈Rserved t

pu
r − ter

|Rserved|
. (4.26)

Note that the earliest pick-up time is chosen as a reference time to measure waiting time, also
for pre-booking requests. For on-demand requests, the earliest pick-up time coincides with the
request time.

Average Travel Time The average travel time measures the time a traveler spends on
board a vehicle.

Average Travel Time =
∑
r∈Rserved t

do
r − tpur

|Rserved|
. (4.27)

Average Relative Detour Time The average detour time measures the difference between
the direct travel time of a request and the actual travel time. It, therefore, measures the
additional time a traveler spends in the vehicle due to detours by sharing rides.

Average Relative Detour Time =
∑
r∈Rserved t

do
r − tpur − tB − direct time(r)

|Rserved|
. (4.28)

As the pick-up and drop-off time is set at the beginning of the corresponding boarding leg,
the boarding time tB is subtracted from the actual travel time to obtain 0 detour on a direct
trip. direct time(r) is the direct travel time of request r, which is set according to network
travel times at the earliest pick-up time of the request.
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Average Delay Time The average delay accounts for the waiting and detour time of a
traveler compared to a direct trip:

Average Delay Time =
∑
r∈Rserved t

do
r − ter − direct time(r)
|Rserved|

. (4.29)

Further KPIs that are used in specific sections of the results chapter are introduced in the
respective sections.
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Results
This chapter presents the results of the simulation study conducted in this thesis. The chapter
is structured as follows: First, the general impacts of the ARP service in the three different
case studies are presented and discussed in Section 5.1. Second, the assignment process is
evaluated in more detail, focusing on the efficiency and impact of re-assignment in Section 5.2.
The proposed repositioning approach is assessed in Section 5.3. Finally, the implications of
reservations on the ARP service are analyzed in Section 5.4.

5.1 Impacts of Ride-Pooling
This section evaluates the impact of an on-demand-only ride-pooling service in the three case
studies presented. The goal is to evaluate the potential of the ARP service to serve a given
demand and to analyze the implications of different fleet sizes and vehicle capacities on the
service quality. Analyzing the three case studies allows the evaluation of varying demand and
network structures.

5.1.1 Scenarios and Parameters
With respect to the base parameters defined in Table 4.2, the following parameters are varied
in the scenarios analyzed in this section: Firstly, the fleet composition is varied by evaluating
different fleet sizes and vehicle capacities. By assessing a vehicle capacity of cv=1, pooling can
be compared to a hailing service, where trips are not shared (the capacity constraint would
not allow a shared ride with cv=1). In the second part, the demand penetration, i.e., the
fraction of the overall number of trips converted to ride-pooling requests, is varied to evaluate
the impact of the service at different demand levels.

5.1.2 Fleet Size and Vehicle Capacity
Figure 5.1 shows variations in fleet sizes and vehicle capacities for the different case studies
with varying demand penetrations.

Served requests are the main KPI quantifying sufficient supply to serve the given demand.
The figure shows a steady increase in served requests with a saturating behavior for large
fleet sizes close to 100% served requests. This relation can be explained by vehicles added in
the under-supply regime (low number of served requests) can serve unsatisfied demand during
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the whole operational time, while in the over-supply regime, additional vehicles only serve the
remaining unsatisfied demand during peak times.

In this thesis, 90% served requests are used as a benchmark for choosing the vehicle fleet
to balance demand and supply. The Figures 5.1a, 5.1c, and 5.1e show a detailed analysis of
varying fleet sizes. For the Munich case study, 240 vehicles of capacity four are required to
serve 90% of demand, corresponding to 18.7k customers at 2% of the private vehicle demand.
For Chicago and Manhattan, 340 and 320 vehicles of capacity four serve 22.3k and 38.5k
customers at 20% TNC trip demand, respectively. On average, an ARP vehicle serves 120
trips in Manhattan, while only 66 and 78 customers are served by each vehicle in Chicago
and Munich, respectively. This results from shorter customer trips in Manhattan compared
to Munich and Chicago, reducing the time for vehicles to serve customers. Additionally, the
compact operating area in Manhattan allows short vehicle trips between serving customers
(see Table 4.1).

Different colors in Figure 5.1 indicate varying vehicle capacities used for the service. It is
evident that, with the same fleet size, the number of served customers increases with higher
vehicle capacity because en-route vehicles gain greater flexibility to pick up other customers
on the way to share trips of customers, increasing the effective service rate per vehicle. A
huge increase in service rate is observable when changing the vehicle passenger capacity from
one to two. As a vehicle capacity of one prevents pooling, this scenario effectively represents
a ride-hailing service. Even allowing the sharing of trips between only two customers increases
the effective supply of the vehicle fleet massively. For the Chicago case study, for example,
the fraction of served requests increases by around 15% for a fleet size of 350 vehicles at 20%
demand penetration (Figure 5.1c). A further, although less prominent, increase in service rate
is observable when increasing the vehicle capacity from two to four as the potential of pooling
further evolves. Nevertheless, another increase to a vehicle capacity of six rarely brings any
benefits. In this case, vehicle capacity is no longer the limiting factor for assigning shared
schedules to vehicles. Instead, time constraints of pick-up and travel time do not allow finding
many shared routes between more than four passengers simultaneously. Small deviations can
be observed between the case studies: While rarely any benefit can be observed for introducing
capacity six vehicles in Munich, slight benefits can be observed in the high-demand scenario
for Manhattan (Fig 5.1f) and for the Chicago scenarios (Figure 5.1c and 5.1c). Two trends
come into play: On the one hand, the extreme demand density in Manhattan increases the
chance of finding customers traveling in the same direction simultaneously. On the other hand,
especially the Chicago data set consists of many trips between the airport and the city. These
trips are especially suitable for pooling as almost no detour is needed for a shared trip1.

Figures 5.1b, 5.1d and 5.1f show large scale scenarios for the respective case studies. Due
to computational time, only three fleet sizes are computed for each case study. For Chicago
(Figure 5.1d), 1,250 vehicles of capacity six can serve approximately 90% of the TNC Demand,
while 1,700 vehicles can serve nearly all the 128k trips. On the contrary, over 2,200 vehicles
would be needed to serve 90% demand if sharing of rides is not allowed (capacity one), again
showing the efficiency of pooling. Similarly, 1,500 vehicles of capacity four or higher can serve
almost all taxi trips in Manhattan. This fleet size corresponds to only 11% of the currently

1An occupancy-based spatial analysis is presented in Figure II.1 in the Appendix.

114



5.1 Impacts of Ride-Pooling

13578 licensed yellow taxi cabs New York2. In Munich, 1,250 vehicles of capacity four or
higher serve around 102k private vehicle trips. Assuming on average three private vehicle trips
per day, the ARP service would potentially replace roughly 34k private vehicles, corresponding
to a replacement rate of 97%.

Figure 5.2 compares the effect of different vehicle capacities in more detail. The figure
shows scenarios from Figure 5.1d with a similar service level of approximately 90% for the
corresponding vehicle capacities as indicated in Figure 5.2a. Thereby, Figure 5.2b shows a
considerable reduction in required fleet size from 2,250 vehicles when a ride-hailing service is
applied (capacity one) compared to 1,250 vehicles when the service is operated in a ride-pooling
mode, and more than three customers can be pooled into the same vehicle.

Figure 5.2c shows the effect of pooling from an operational perspective in more detail by
evaluating the VKT. While the fleet travels over 1.2 million km to serve around 90% customers
when no sharing is possible, less than half of VKT is required in pooling mode. The reduction
in VKT when pooling is applied results from two effects: On the one hand, at least two
customers share the highest fraction of VKT. On the other hand, empty vehicle kilometers
decrease as en-route vehicles are available for service instead of only idle vehicles in the hailing
case. Looking at the fraction of occupancy states for a vehicle capacity of six reveals that a
further increase in capacity would not improve the pooling service further. While occupancy
states of up to four are observed relatively frequently, only a tiny fraction of VKT is driven
with five passengers on board. An occupancy of six is nearly not visible. This effect results
from time constraints in customer pick-up and travel time, which limits the accommodation
of further customers, if many customers are already scheduled.

Finally, Figure 5.2d shows the trade-off of pooling from the customer perspective. The aver-
age customer delay, i.e., the increase in travel time compared to a direct trip, is differentiated
by waiting and detour time. In a ride-hailing service, the customer only has to wait for the
vehicle for a pick-up. When pooling is considered, detours are added to pick up and drop off
other customers. The more pooling is possible; in this case, the higher the vehicle capacity,
the more detours are driven by customers. Compared to a ride-hailing service, therefore the
overall travel delay approximately doubles compared to vehicle capacities of four and six. Nev-
ertheless, it is also observable that the customer waiting time slightly decreases as additional
en-route vehicles can pick up a customer leading to a shorter approach on average.

As the analysis showed, pooling with a vehicle capacity of four appeared to be the best
choice for the given service design for all case studies: A lower vehicle capacity constrains
pooling, while larger vehicles do not benefit the operation. For the remainder of this thesis
therefore vehicles of capacity four are considered.

2https://www.nyc.gov/site/tlc/businesses/yellow-cab.page; This value refers to the whole of New York City.
It can be assumed that most of the taxis serve trips in Manhattan as 84% of the taxi trips start and end
within Manhattan on the day used for the Manhattan case study.
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(a) Munich - 2% Demand Penetration.
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(b) Munich - 10% Demand Penetration.
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(c) Chicago - 20% Demand Penetration.
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(d) Chicago - 100% Demand Penetration.
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(e) Manhattan - 20% Demand Penetration.
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(f) Manhattan - 100% Demand Penetration.

Figure 5.1: Served Requests for Different Fleet Sizes and Vehicle Capacities.
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Figure 5.2: Comparing KPIs for different applied vehicle types with similar service level for the
Chicago case study with 100% demand penetration.
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5.1.3 Service Scaling
While the previous section focused on evaluating the applied vehicle capacity for an ARP
service, this section emphasizes the demand for the service and its implication on operation.

Figure 5.3 therefore shows different ride-pooling KPIs for varying demand penetrations
(D.P.). For Chicago and Manhattan, demand penetrations of 10%, 20%, 50%, and 100% of
the overall TNC and taxi demand are evaluated, respectively. For Munich, demand varies in
steps of 1%, 2%, 5%, 10%, and 15% of all private vehicle trips within the operating area.
In each case study, the operated fleet size is scaled linearly with demand to vaguely maintain
a balance between demand and supply. As two properties change between the case studies
in Figure 5.3, two x-axes are given: One for fleet size and one for demand penetration. As
different scaling factors are applied for each case study to evaluate the fleet size, the upper
x-axis varies between the case studies. Colored ticks and dotted horizontal lines indicate the
matching between both x-axes and data points.

Figure 5.3a and 5.3b show served requests and served requests per vehicle, respectively.
While for low-demand penetrations, only up to 85% of all requests can be served, a simul-
taneous linear increase in demand and fleet size also increases the fraction of overall served
requests, indicating higher fleet efficiency. As the probability of finding shareable trips in-
creases with overall demand, also the number of served requests per vehicle can increase when
more trips are shared. Comparing the different case studies, substantial absolute differences
in served requests per vehicle are notable. Because of the high trip densities of short trips in
a compact operational area, vehicles in Manhattan can serve over 120 requests per day on
average. In comparison, requests in Chicago hardly reach 80 requests per vehicle.

The increase in pooling efficiency can be explained by Figures 5.3c and 5.3d showing the
KPIs saved distance and empty VKT, respectively. In all case studies, saved distance increases
with demand and fleet size, resulting from more efficient schedules that can be assigned to
vehicles by sharing more trips with fewer detours. Saved distance is positive for nearly all
scenarios tested, indicating that sharing of trips trespasses empty VKT from pick-up and
repositioning trips. With a saved distance of around 42% in Chicago at 100% demand, the
VKT can be reduced by 42% compared to if all customers would use the private vehicle on their
trip. As the applied data stems from TNC trips, the replacement rate would be even higher,
as this KPI does not account for additional empty idling trips of TNC drivers. Nevertheless, in
Munich, the lowest saved distance is observed and is even negative when only 1% of private
vehicle trips can be replaced. This observation indicates a more dispersed demand than the
other case studies, making it harder to find shareable trips. This can be due to two reasons: 1)
While Chicago and Manhattan have directional demand patterns (e.g., the airport in Chicago
and the longitudinal shape of Manhattan), Munich has demand patterns directed from and to
the city center. 2) In contrast to the other case studies, the request data set for Munich is
generated for OD-matrices where demand is distributed homogeneously over zones and time
slices, which might average out hot spot demand patterns, which are beneficial for finding
shareable trips. Focusing on empty VKT, the scaling effect is also observable. While for
low demand penetrations, empty VKT can be as high as 22% of the total VKT, this fraction
decreases to less than 14% for high demand penetrations. Interestingly, even if Chicago showed
the highest saved distance (which includes empty VKT), the fraction of empty VKT is the
highest among the case studies. This observation can be explained by the directed demand
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patterns in Chicago, which lead to many empty repositioning trips between the city center and
the airport.

Finally, Figures 5.3e and 5.3f show average customer and waiting time, respectively. Two
trends can be observed: On the one hand, there is a decrease in waiting time with higher
demand penetration and fleet size, and on the other hand, there is an increase in detour time
(except for Manhattan). The former observation mainly results from a higher vehicle density,
resulting in an, on average, faster approach to pick-up customers. The latter results from
finding more shareable trips that inevitably induce customer detours in a pooling service. The
contrary observation for Manhattan likely results from the combination of short trips and a
maximum detour constraint relative to a direct trip. For these trips, it seems more beneficial
to assign more efficient scheduled (not necessarily) shared trips that can be found with higher
demand density, increasing saved distance while decreasing customer detours.

Spatial Analysis

Figure 5.4 shows a spatial analysis of the impact of an ARP on the network of the corresponding
case studies. On each link l in the network, the flow reduction is calculated by

flow reduction(l) = countsdirect(l)− countsarp(l)
countsdirect(l)

. (5.30)

countsarp(l) evaluates the overall number of ARP vehicles that passed a link during the simu-
lation, while countsdirect(l) refers to the count of vehicles passing the corresponding link l if all
served customers would have taken a private vehicle on their fastest path. To reduce the visual
focus on sections with large changes in relative flow (low nominators or denominators resulting
from a very low number of vehicles passing the link in the simulation), the thickness of the
shown links in Figure 5.4 is scaled by countsdirect(l). Each case study shows a low-demand
and a high-demand scenario.

Figure 5.4a and 5.4b show the Munich case study. A prominent flow reduction and, therefore,
shift in traffic can be observed for B2R („Mittlerer Ring“), a major ring road encircling the
city center of Munich, indicating high occupancy of ARP vehicles traveling these links and/or
ride pooling routes getting shifted to alternative paths compared to customer direct paths.
Nevertheless, while the flow reduction is positive on most links in the high-demand scenarios,
indicating an efficient ride-pooling service, additional traffic is induced in the low-demand
scenario. This increase in flow is evident on minor roads in the outer areas of Munich, which
results from additional vehicle detours to pick up and drop off customers.

A similar observation can be made for Chicago (Figure 5.4c and 5.4d): For small demand
penetrations, additional trips are induced on the secondary road network because of additional
pick-up and drop-off trips that are only canceled out within the high-demand scenario, which
enables the finding of shareable trips also in these low-demand areas. Flow reduction can be
observed on primary roads and highways in small and high-demand scenarios. The high flow
reduction and trip counts on the highway connecting O’Hare airport with Chicago’s city center
are very prominent. This OD-relation is especially suitable for assigning pooled rides in the
Chicago case study.

For Manhattan (Figure 5.4e and 5.4f) links with high flow reduction focus around Manhattan
midtown south of Central Park, the area with the highest demand for the simulated ARP service
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(b) Served Requests per Vehicle
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(c) Saved Distance.
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(e) Avg. Waiting Time.
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Figure 5.3: Scaling Effects of Ride-Pooling. Demand penetration (D.P.) and fleet size are
varied by a linear factor (Chicago: 170 veh per 10% D.P., Manhattan: 160 veh per
10% D.P., Munich: 120 veh per 1% D.P.). The lower x-axis is the same for all case
studies. The color of the labels in the upper x-axis indicates the corresponding case
study. Matching of the axes with data points for a given case study is indicated
by vertical lines with corresponding colors.
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(see Figure 4.3b). Again, additional trips are induced on non-primary roads far from hot spots
in demand for low-demand scenarios. This is also the case for the northern part of Manhattan,
which is hardly visible in the Figure due to the very low demand compared to the center of
Manhattan.
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(a) Munich - 240 veh - 2% D.P. (b) Munich - 1200 veh - 10% D.P.

(c) Chicago - 340 veh - 20% D.P. (d) Chicago - 1700 veh - 100% D.P.

(e) Manhattan - 320 veh - 20% D.P. (f) Manhattan - 1600 veh - 100% D.P.

Figure 5.4: Flow Reduction of ARP service compared to direct trips (see Equation 5.30) for
different case studies and demand penetrations (D.P.). Line width proportional to
direct trip flows (countsdirect(l)).
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5.2 Assignment
This section deals with the evaluation of assignment algorithms, the effects of re-assignment,
and the assessment of the proposed strategies for increased reliability.

5.2.1 Scenarios and Parameters
The algorithms that are compared in this section are summarized in Table 5.1. As the OPT -
algorithm is the algorithm proposed in this study, it is always used if not explicitly mentioned.

Next to variants of the assignment algorithm, different heuristics are applied to the OPT -
algorithm. These heuristics have been described at the end of Section 3.2.4 and are summarized
as follows:

• Limited Number of Feasible Schedules Per V2RB (LS): The maximum number
of schedules per V2RB is constraint by Nmax

V 2RB.

• Candidate Vehicle Reduction Per Request (RV): The number of candidate vehicles
per request is reduced to Nmax

RV after the first assignment.

• Search Timeout per Vehicle (TO): The maximum time to compute V2RBs per
vehicle is limited to νTO,v.

Thereby, the abbreviations OPT:TO+RV20, for example, means that the OPT -algorithm is
used with the TO and RV heuristic applied. For the RV heuristic, the number of candidate
vehicles is reduced to 20 after the first assignment.

As a base case, demand penetrations of 20%, 2%, and 20% are evaluated for Chicago,
Munich, and Manhattan, respectively. To also evaluate the impact of high-demand scenarios,
demand penetrations of 50%, 5%, and 50% are evaluated for Chicago, Munich, and Man-
hattan, respectively. Higher demand penetrations are not evaluated in this section due to
the excessive computational time required to assess these scenarios without the application of
heuristics.

Algorithm Short Description Reference Section

OPT
The algorithm proposed in this thesis:
If run to termination, the optimal solution to the DARP is found.
Schedules are stored for later evaluation in V2RB Database.

3.2

OPT(Full) Similar to OPT, but no V2RB Database is used.
Instead, all feasible vehicle schedules are computed from scratch.

3.2.6
(Full Re-Build)

LA
Linear Assignment: Request-Vehicle pairs are created
by solving a single vehicle DARP with the currently assigned schedule
to assign new requests in batches.

3.2.6
(Linear Assignment)

LA(IH) Similar to LA: Instead of solving a single vehicle DARP,
candidate schedules are created by applying the insertion heuristic (IH).

3.2.6
(Linear Assignment)

IH Insertion Heuristic: New requests are inserted iteratively
into currently assigned vehicle schedules.

3.2.6
(Insertion Heuristic)

Table 5.1: Summary of assignment algorithms for this section.
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5.2.2 Impacts of Assignment Optimality

Figure 5.5 compares the impact of different assignment algorithms on the performance of the
ARP-service for a low demand scenario (Figure 5.5a) and a high demand scenario (Figure 5.5b)
in an example for the Chicago case study. The figure shows different fleet KPIs for different
algorithms on the y-axis. The algorithms are sorted by their available solution space for the
assignment, with the largest solution space on the left and the smallest on the right.

While OPT refers to building the whole solution space (all feasible V2RBs) but keeping
previously computed V2RBs in memory, OPT(Full) refers to building every feasible V2RB from
scratch in each optimization epoch. Due to computational complexity, the OPT(Full) scenario
has been only computed in the low demand scenario of Figure 5.5a. The benefits of keeping
already computed V2RBs in memory are very concise when comparing the computational time
of the OPT(Full) and OPT method: By keeping V2RBs in memory, the average computational
time per assignment epoch can be reduced by 76% from 13.5s to 3.2s, providing a considerable
advantage for real-time applications. The trade-off is minimal, as the number of served
requests, saved distance, and average customer delay only deteriorate slightly and remain
within the error bars. Even though OPT and OPT(Full) should produce exactly the same
results in theory, a slight difference can be observed nevertheless. This is because of a slightly
different procedure when travel times are updated: The OPT variant does not recompute all
feasible schedules of current assigned V2RBs but reuses only schedules within the currently
assigned V2RB. In case all schedules become infeasible, it keeps the currently assigned one
still in memory to ensure a feasible assignment. Nevertheless, in the case the network travel
times decrease and new schedules of this V2RB become feasible that were deemed infeasible
before, slightly fewer schedules are accessible compared to the OPT(Full) method that always
solves the single vehicle DARP.

Next, the number of computed candidate schedules for assignment is reduced by limiting
the number of feasible schedules per V2RB to maximally four (LS) and introducing a timeout
of maximally 3s to compute V2RBs per vehicle (TO). In the small-scale scenario, these two
measures hardly have an impact on the service quality and the computational time as the
number of V2RBs per vehicle and the number of feasible schedules per V2RB is low, such that
these constraints are not binding. In the high-demand scenario, however, these constraints are
activated, resulting in a decrease in average computational time per epoch of 35%, with only
a minor deterioration in served requests while saved distance and average customer delay are
not affected.

Orange scenarios in Figure 5.5 refer to scenarios with activated RV -heuristics that reduce
the number of candidate vehicles after a first assignment is made, limiting the potential for re-
assignment and, therefore, computational complexity. Similar to the LS and TO heuristics, the
RV heuristics are merely influencing the low-demand scenario. In the high-demand scenario,
on the other hand, the computational time can be reduced further by 46% due to the limited
solution space. As a trade-off, slight service deterioration is observable: Served requests
further decrease, while also saved distance decreases and customer delay increases, resulting
from reduced options for re-assignment.

Green scenarios do not allow for re-assignment. OPT:LS+TO+RV1 effectively fixes the
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assigned vehicle per customer after an initial assignment3. The Linear Assignment LA algo-
rithm inherently excludes re-assignments. Comparing OPT and LA therefore shows the value
of re-assignment in the ARP service: In the high-demand scenario, 1.4% more customers can
be served on average when re-assignment is allowed, while saved distance increases by 2.56%
and average customer delay decreases by 35s. In the low-demand scenario, the differences are
less pronounced but still better with re-assignment, indicating the importance of re-assignment
from an operational perspective, especially for large-scale ARP services.

Finally, the IH algorithm is introduced, a simple insertion heuristic that assigns customers to
vehicles iteratively in a greedy manner. In this case, the most significant service deterioration
is observable. By comparing IH with LA(IH), the Linear Assignment algorithm that only uses
insertions to create candidate schedules, the deterioration can be traced back to assigning
customers iteratively or in batch. Compared to the batch assignment in the high-demand
scenario, 1.5% fewer customers can be served, while saved distance decreases by 3.1% and
average customer delay increases by 38s. Therefore, the value of assigning customers in batch
is on a similar scale as the value of re-assignment discussed in the previous paragraph. With
respect to computational time, the IH algorithm is the fastest algorithm but also the one with
the lowest service quality. Nevertheless, the LA(IH) algorithm is only slightly slower (0.78s
per epoch on average) than the IH algorithm but provides a much better service quality.
The LA(IH) algorithm might, therefore, be especially suitable for simulation studies where
computational time might be even more crucial than in real-time applications to evaluate a
large number of scenarios. The originally proposed LA is significantly slower as it exhaustively
solves the DARP. Nevertheless, as the results show, the benefits are limited.

The goal of Figure 5.6 is to provide a deeper understanding of the proposed algorithm on the
example of OPT:LS+TO. It shows the temporal analysis of a simulation for the Chicago case
study with 850 vehicles. First, a stacked plot of the computational time subdivided into the
computational phases in each assignment epoch is shown. It is striking that the computational
time is dominated by building new V2RBs. Building V2RBs makes up 87.1% of computational
time, while updating previously computed V2RBs only makes up 8.7%. Solving the assignment
problem and pre-processing the RV -graph4 only contributes to 3.7% and 1.2%, respectively.
Another observation is the strong fluctuation in computational time, regularly exceeding the
limit for real-time application of 30s in this thesis. Real-world operators must include stronger
time-outs in the assignment algorithm to enforce real-time application. Nevertheless, the issue
of computational time is less pronounced than it appears: On the one hand, all computations
for a simulation are made on a single core. Especially building V2RBs can be parallelized
easily by distributing computational tasks for each vehicle. On the other hand, algorithms are
implemented in Python, which is known to be significantly slower than other programming
languages like C++ (by a factor of 10-100 [vercel, 2024]), which would rather be used in
professional applications.

Figure 5.6 shows that the computational time is strongly correlated to number of V2RBs
found. The fluctuations likely result from cliques of requests and vehicles in the RV and

3In this version, some re-assignments are still possible when network travel times changes as then the V2RB
database is rebuilt from scratch

4Building the RR-graph is not directly reported, as computations are made on-demand in the building step
of V2RBs.
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Figure 5.5: Comparison of Assignment Algorithms. Available solution space reduces from left
to right. Blue indicates full re-assignment, orange constraint re-assignment; green,
no re-assignment and purple, no batch assignment. See Section 5.2.1 for abbrevi-
ations.
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RR-graph that enable a magnitude of feasible schedules. Out of all V2RBs available in an
optimization epoch, on average, 34.5% are still available after updating previously computed
V2RBs. This shows the computational benefit of keeping them in memory: A significant
amount of V2RBs remain feasible while the computational time needed to check for their
feasibility only consumes a small amount (8.7% of computational time) compared to building
new V2RBs.

Finally, the number of active requests is shown for each optimization epoch. Interestingly,
this quantity does not always correlate with the number of feasible V2RBs or the computational
effort. This observation is especially notable in the early evening between 5 and 7 p.m. when
most requests are active, but computational time is comparatively low. This effect can be
explained by two reasons: 1) During this period, the vehicle speed in the network is lowest,
which reduces the number of feasible schedules with respect to customer time constraints,
and 2) a significant fraction of fleet vehicles are occupied with customers, which reduces the
number of options for incoming requests.
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Number of Vehicle Re-Assignments
0 1 2 ≤3

Chicago 50% - Fleet Size 850 85.0% 12.7% 2.0% 0.3%
20% - Fleet Size 340 85.4% 12.6% 1.8% 0.2%

Munich 5% - Fleet Size 600 79.7% 16.4% 3.3% 0.6%
2% - Fleet Size 240 79.5% 17.2% 2.9% 0.3%

Manhattan 50% - Fleet Size 800 85.2% 12.4% 2.1% 0.3%
20% - Fleet Size 320 78.6% 17.7% 3.3% 0.4%

Table 5.2: Number of Vehicle Re-Assignments per Customer for different Case Studies and
Demand Scenarios.

5.2.3 Assignment Reliability

The previous evaluation mainly focused on the operational aspects of the assignment algorithm
and the value of allowing re-assignments. This section aims to evaluate the impacts of re-
assignment from a customer point of view. As discussed in section 3.2.3, re-assignment might
not only have positive implications as evaluated in the previous section but might also lead
to unreliability in pick-up for customers as the assigned vehicle and the expected pick-up time
can change after each optimization epoch.

Table 5.2 therefore evaluates the abundance of re-assignments for a customer if full re-
assignment is possible for the assignment algorithm. Depending on the case study and demand
penetration, 78.6 to 85.4% of customers do not experience re-assignment, i.e., the vehicle
assigned initially also picked up the customer. Most of the remaining customers experience
only a single re-assignment, while more than two re-assignments rarely happen, indicating a
relatively stable matching process. In the Munich case study, re-assignments tend to be more
probable. This might result from inhomogeneous travel times in the network that can vary
on each network edge when new travel times are introduced, compared to the other two case
studies where the same factor scales each edge travel time. This can lead to new shortest
paths between stops, and therefore, new candidate schedules in a V2RB can emerge.

Further evaluation of the impact of re-assignment for customers is shown in Figure 5.7.
Figure 5.7a shows the distribution of the difference in actual and initially communicated pick-
up time. The distribution shows a dominant peak at zero, depicting customers who are picked
up at the time that was initially communicated. This bar is dominated by customers who have
not experienced any re-assignment. The average shift in pick-up time is only 4.1s, indicating
that re-assignment does not tend to delay pick-ups. However, with a standard deviation of
61.0 seconds, re-assignment tends to distribute pick-ups fairly evenly between earlier and later
times. Even in the scenario, which immediately locks a customer to its initially assigned vehicle
(indicated by the bar with the black edge in Figure 5.7a), shifts in pick-up times compared to
the initially communicated pick-up time can occur. These shifts may happen due to changes
in travel times or the insertion of another customer before the scheduled pick-up. However,
with a mean shift of 4.3 seconds and a standard deviation of 25.3 seconds, these effects are
less significant than the variations caused by re-assignment.

From a customer point of view, not only the general shift in pick-up time from the initial
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Figure 5.7: Customer Effects of Re-Assignment. Chicago - 50% Demand Penetration - Fleet
Size: 850.

assignment but also the timing of re-assignments relative to the actual pick-up time is relevant
for the perceived reliability of the service. Short notice updates might be perceived as unfavor-
able or lead to customers missing their vehicles or showing up late, which could result in further
operational deficits. Figure 5.7b therefore evaluates the timing of the last re-assignment before
the actual pick-up of a customer. Of the 15% of customers who experience a re-assignment
(compare Table 5.2), more than half of these re-assignments occur on a relatively short notice,
which is here defined as a re-assignment earlier than 3 min before the pick-up. For almost
2.5% of the customers, the re-assignment even occurs less than a minute before the pick-up.

Evaluation of Reliability Strategies

As the results suggest, re-assignments can have significantly favorable effects on the opera-
tional level of the ARP service as an increased solution space allows assigning more efficient
vehicle-customer assignments and schedules, but also brings the trade-off of reduced reliability
and uncertainty for customer pick-ups. Based on the discussion of section 3.2.3, the impact
of different methods is depicted in Figure 5.8 that are designed to reduce uncertainty for cus-
tomers but still enable operational benefits from re-assignment for the operator. The three
proposed methods are depicted in different colors. The corresponding control parameters are
ordered to attach to the scenario with unconstrained re-assignment and the scenario without
re-assignment. This is particularly evident in the primary operational objective of serving as
many customers as possible, as there is a continuous increase in served requests with less
constrained re-assignment (from left to right). Nevertheless, differences in other KPIs are
observable when comparing different methods.

For the Re-Assignment Time Window method, after the initial assignment, customer pick-
up time constraints are adjusted to a time window of ∆TW around the communicated pick-up
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Figure 5.8: Comparison of methods to limit re-assignment for improved customer convenience.
Chicago - 50% Demand Penetration - Fleet Size: 850.

time to prevent significant shifts in communicated and actual pick-up time. Re-assignments
are still possible as long as the adjusted time constraints are not violated. In this scenario,
the standard deviation in the difference in actual and communicated pick-up time tends to be
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the smallest across all methods. For a time window of ∆TW = 30s, the standard deviation is
even smaller than in the scenario that does not allow re-assignment at all because not only re-
assignments are influenced but also the potential insertion of other customers into the schedule.
Interestingly, there is only a limited trade-off with respect to operational efficiency: Served
requests remain similar to the unconstrained re-assignment scenario, while saved distance is
the highest across all methods. As a trade-off, this methodology shows the highest amount of
re-assignments, and consequently also the highest amount of re-assignments on short notice.

In the Re-Assignment Lock Time method, the customer-vehicle assignment is locked once
the scheduled pick-up time falls below the time horizon treassignth , which would allow customers
to track the vehicle on the map and anticipate pick-up. Consequently, this method shows lower
amounts of re-assignments the higher the time horizon is set and a significantly lower amount of
late re-assignments. For values of treassignth larger than 3 min, this method completely avoids
re-assignments on short notice per design. From an operational perspective, this method
shows a decrease in saved distance compared to the Re-Assignment Time Window (except
for treassignth = 120s), but still a higher saved distance compared to the scenario without
re-assignment.

Finally, the goal of the Re-Assignment Penalty method is to avoid using hard constraints
to limit re-assignments but rather let the optimization algorithm decide on the necessity of
re-assignments. A penalty is introduced, representing a threshold in an improvement of the
objective function that must be achieved by a re-assignment to be considered. The following
four penalty values are tested:

1. preassign = 1.9pr: In this case, re-assigning is penalized higher than serving an additional
customer. In this case, a re-assignment is only considered if two additional customers
can be served due to the re-assignment.

2. preassign = 0.9pr: In this case, the penalty for re-assignment is still high compared to
the secondary objective (minimizing driving distance and customer delay) but not as
high as the assignment reward. Therefore, a re-assignment is considered if at least one
additional customer can be served due to the re-assignment.

3. preassign = 8min ·ωdel: Re-assignment is only possible if the (overall) objective improves
by at least a value of 8 minutes worth of customer delay.

4. preassign = 4min ·ωdel: Re-assignment is only possible if the (overall) objective improves
by at least a value of 4 minutes worth of customer delay.

Results show that in the first two scenarios, where re-assignment requires serving at least one
additional customer, the number of re-assignments nearly vanishes, and the operational KPIs,
served requests and saved distance significantly degrade. This observation indicates that the
value of re-assignment does merely originate from serving additional customers in the current
optimization epoch but rather from finding more efficient schedules that enable serving more
customers in the future. When preassign is in the order of magnitude of customer delay, oper-
ational KPIs are on a similar level compared to the full re-assignment scenario. Nevertheless,
the number of re-assignments and late re-assignments remains fairly low compared to the
other methods. Even with a fairly small penalty of preassign = 4min ·ωdel, the average number
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of re-assignment per customer is reduced from 17.7% in the scenario with full re-assignment
to 9.8%. This indicates that many re-assignments are not necessary to improve the opera-
tional KPIs significantly. Rather, a few well-placed re-assignments can significantly impact
the service quality. The penalty method is beneficial in identifying these re-assignments and
stabilizing vehicle-customer assignments.

Similar conclusions can be drawn from the Munich case study, which is shown in the appendix
in Figure II.2.
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5.3 Repositioning
This section presents the results of the presented repositioning method in chapter 3.3. First,
scenarios and parameters specific to this section are described, followed by the presentation of
simulation results.

5.3.1 Scenarios and Parameters

Algorithm Short Description Reference Section

Sampling
The algorithm proposed in this thesis:
By sampling requests, fleet state is progressed into the future.
Assignment of repositioning trips to fill supply shortages.

3.3

Hor Supply estimation proportional to expected demand in zone.
Single horizon; Scaling factor to account for pooling.

3.3.5
(Horizon-based
Repositioning)

QT Repositioning of idle vehicles to stabilize queues in zones.
Single horizon; Scaling factor to account for pooling.

3.3.5
(Queuing Theoretical
Repositioning)

React Reactive repositioning algorithm.
Vehicles are sent to locations of unserved requests.

3.3.5
(Reactive Repositioning)

No Repo No Repositioning is applied.

Table 5.3: Summary of rebalancing algorithms for this section.

The parameters for this section are summarized in Table 4.2 while their base values are still
valid as long as they are not explicitly mentioned otherwise.

In the following, the impact of repositioning is first evaluated and discussed in detail. In
the next step, the proposed algorithm is compared to the benchmark algorithms. A summary
of these algorithms is provided in Table 5.3. Additionally, the impact of forecast accuracy is
evaluated. Two different methods are tested to forecast future trips:

1. Perfect Forecast: From the input request, set the number of requests between zone i
and j in forecast interval T is used as the Poisson rate λTi,j.

2. Myopic Forecast: The number of trip requests in the simulation during the past interval
{t− δT , t} between zone i and j is used as Poisson rate λTi,j at time t for each T .

It can be assumed that more sophisticated forecast algorithms based on historic trip data should
perform at least as well as the myopic forecast. In contrast, the perfect forecast acts as an
upper bound. An evaluation of operational parameters is conducted, including an assessment
of different repositioning frequencies, various repositioning zone sizes (see Figure 4.5), and
whether repositioning trips should be locked. Finally, the influence of the hyperparameters,
such as forecast horizon H, number of forecast samples NS, and the weight of assigning future
repositioning trips γ, is evaluated.
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5.3.2 Impact of Repositioning

Figure 5.9 shows different evaluations comparing a service that applies the proposed rebalanc-
ing algorithm and a service without any rebalancing. Figure 5.9a shows the number of served
requests for three different fleet sizes for each case studies. When repositioning is applied, the
fleet sizes of 340, 240, and 320 serve close to 90% of the demand in the Chicago, Munich,
and Manhattan case studies, respectively. When the fleet size increases to 400, 300, and 275
vehicles, the service rate accordingly increases to roughly 95% for all case studies. Without
repositioning, vastly different results are observable: An enormous drop in service rate is no-
table in the Chicago and Manhattan case study. The 340 and 320 vehicles that serve 90% of
the demand with repositioning only serve 52% and 55% of the demand without repositioning
for Chicago and Manhattan, respectively. This drop results from vehicles ending up in network
regions with low demand. Vehicles in these regions remain idle until a new customer requests
a trip. In the Munich case study, the drop is significantly less pronounced. Even without repo-
sitioning, 85% of the customers can still be served when deploying 240 vehicles, compared
to 90% with repositioning. This result can be explained by the more homogeneous demand
distribution in the Munich case study compared to the other two case studies, which reduces
the evolution of demand-supply imbalances.

Figure 5.9b shows the average vehicle revenue hours, i.e., the absolute time interval during
the day fleet vehicles carry customers and produce revenue for the operator. Vehicles ending
up in regions with low demand remain idle and do not produce revenue. For scenarios with
rebalancing vehicles, revenue is produced for 14.8 and 16.8 hours of the day in the Chicago
and Manhattan case studies with 340 and 320 vehicles, respectively. Similar to the fraction of
served requests, this quantity drops significantly to 9.3 hours and 11.1 hours without rebalanc-
ing, indicating that a significant fraction of vehicles remain idle, although demand is not fully
served. Again, this effect is less pronounced in the Munich case study but still observable.

To get a deeper understanding of the observations, Figure 5.9c and Figure 5.9d show the
temporal evolution of fleet states during the day for a service with 340 vehicles for the Chicago
case study without and with rebalancing, respectively. Without repositioning, a significant
fraction of the fleet remains idle the whole day, resulting in low vehicle revenue hours. By
repositioning, vehicles’ idle time can be reduced significantly, leading to almost full utilization
except for times with low demand at night and noon. Figure 5.9e and Figure 5.9f show the
spatial distribution of unserved requests on a logarithmic scale for the same scenarios. In
both scenarios, most requests are rejected close to the city center. Nevertheless, the absolute
number is much lower when rebalancing is applied. Black circles indicate the time vehicles
spend idle in the corresponding zone. Without rebalancing, many vehicles end up idle at the
O’Hare airport in the northwest corner of the operating area. They are therefore not available
to serve customers in the city center. With rebalancing, on the other hand, idle times are
reduced overall, and vehicles tend to be located in areas with high demand, where they are
needed to serve demand.

Similar spatial and temporal evaluations for the Munich and Manhattan case study can be
found in the appendix in Figures III.4 and III.3, respectively.
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Figure 5.9: Comparison of results with and without rebalancing. Sub-figures 5.9c- 5.9f show
the Chicago case study with 340 vehicles.
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5.3.3 Comparison of Rebalancing Algorithms
Figure 5.10 compares different rebalancing algorithms and forecast methods for the Chicago,
Munich, and Manhattan case studies.

The first row (Figure 5.10a, Figure 5.10b, and Figure 5.10c) shows the difference in served
requests compared to the scenario that applies the React-method (compare Figure 5.9a for
absolute values). Regardless of the repositioning method or forecast method applied, the
comparison to Figure 5.9a reveals that the ARP service always benefits from repositioning.
With respect to Sampling-method proposed in this thesis, benefits are especially notable in
the Chicago case study, where served requests can be increased by up to 2% compared to
all other repositioning algorithms. Next closest is the Hor -method, which performs especially
well in the Manhattan case study in terms of overall served requests, where even slightly
more customers are served compared to the Sampling-method. For the Munich case study,
the Hor -method and Sampling-method show a similar service rate. The QT -method shows
the lowest service rate compared to the Sampling- and Hor -method. Nevertheless, except
for small fleet sizes, the QT -method still outperforms the React-method in terms of served
requests, indicating the benefits of predictive repositioning in contrast to reacting to unserved
demand. Comparing the forecast methods, the Perfect forecast shows — as expected — the
best results regarding served requests, at least for the Sampling-method. Nevertheless, the
gain in performance from different forecast methods is significantly less pronounced compared
to the applied repositioning algorithm.

The second row (Figure 5.10d, Figure 5.10e, and Figure 5.10f) shows the saved distance
for the different algorithms. Although serving most customers in most scenarios, the Sam-
pling-method shows a significantly higher saved distance compared to the other predictive
repositioning methods Hor and QT. Only for the Manhattan case study does the QT -method
show a slightly higher saved distance when a large fleet size is applied. While performing well
in serving customers, the Hor -method shows the lowest saved distance across all scenarios.
This indicates an aggressive repositioning strategy resulting in numerous empty vehicle trips
degrading this KPI. The difference in saved distance to other methods is especially notable
in the Chicago case study, where long distances must be covered by repositioning due to the
large operating area. As repositioning trips are only assigned when requests remain unserved
in the React-method, this method can be interpreted as relatively conservative, assigning only
necessary repositioning trips. Therefore, the React-method shows the highest saved distance
across all scenarios but with the trade-off of serving the least number of requests.

Finally, the third row (Figure 5.10g, Figure 5.10h, and Figure 5.10i) shows the average
waiting time for customers evaluating the placement of vehicles after repositioning. In this
KPI, too, the Sampling-method demonstrates strong performance across all scenarios. Only
the Hor -method shows slightly lower average customer waiting times, which comes with the
discussed trade-off of extensive repositioning. The benefits of predictive repositioning are
especially notable when compared to the React-method, which shows the highest average
waiting times across all scenarios. In contrast to the React-method, the predictive algorithms
can anticipate future demand and place vehicles in areas with expected demand before the
trips are requested. In this case, the chances increase that vehicles are already close to the
customer when the request is made, reducing the waiting time for the customer. This effect is
especially notable in scenarios with large fleet sizes, where the chance of finding repositioned
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idle vehicles in close vicinity to the customer is higher.
The previous analysis showed that the proposed Sampling-algorithm shows excellent results

regarding served requests, saved distance, and average waiting time. Only the Hor -algorithm
can compete in terms of served requests (in the Munich and Manhattan case study) and
average waiting time, but at the cost of an increased number of repositioning trips. To better
understand the difference between both algorithms, Figure 5.11 shows the difference in the
spatial distribution of unserved requests and vehicle idle times for the Chicago, Munich, and
Manhattan case studies. The color scale indicates the difference in unserved requests between
both algorithms. High values reflect areas where the ARP-service with applied Sampling-
algorithm rejects more requests compared when the Hor -algorithm is used. It is striking that
the Hor -algorithm serves more customers in the high-demand areas in all case studies (see
Figure 4.3 for spatial demand distribution). Nevertheless, in most other areas of the operating
area, the Sampling-algorithm shows higher service rates. Additionally, the evaluation of vehicle
idle times indicated by the markers shows that the Hor -algorithm strongly prioritizes sending
vehicles to high-demand areas, while the Sampling-algorithm tends to distribute vehicles more
evenly across the operating area. This results from the formulation of the Hor -algorithm, which
assigns repositioning trips proportional to the number of requests in a zone. The introduced
scaling factor reduces this overestimation of the required supply in high-demand areas but tends
to underestimate the necessary supply in low-demand areas. The Sampling-algorithm on the
other hand assigns repositioning trips based on sampled trips, that includes the possibility of
multiple customers being transported by the same vehicle. As the probability of finding shared
trips is higher in areas with high demand, the Sampling-algorithm does not overestimate the
required supply in those areas, enabling sending excess vehicles to less profitable areas.

5.3.4 Operational Parameters
The evaluation of this section focuses on the impact of operational parameters on the perfor-
mance of the ARP service, namely the applied zone size, the repositioning interval ∆R, and
whether repositioning trips should be locked or can be aborted if a nearby request is to be
served. The results are shown in Figure 5.12.

The Figures 5.12a to 5.12d show the impact for different KPIs for the Chicago case study
with a fleet size of 340 vehicles. The evaluation of served requests in Figure 5.12a shows that
the impact of all parameters is minor compared to stochastic variations within the scenarios.
Nevertheless, some trends can be observed: The number of served requests increases if the
repositioning interval ∆R is decreased. Thereby, vehicles that end up in areas with low demand
can be sent faster to areas where they are needed. If the repositioning trips are not locked,
the impact of the zone size is negligible. In general, when repositioning trips are made more
frequently, such as with ∆R = 5min and ∆R = 15min, allowing vehicles to interrupt their
repositioning trips to serve an incoming request tends to be a more effective strategy in terms
of the number of requests served. In this case, flexibility in the assignment is more beneficial
than the long-term planning of repositioning trips. If repositioning is made frequently enough,
new repositioning trips in the upcoming epoch can replace potentially aborted trips. For a
repositioning interval of ∆R = 5min and locked trips, the impact of the zone size is more
pronounced. The smallest zone size of tZmax = 4min shows the best performance in terms of
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Figure 5.10: Comparison of algorithms and forecast methods. Columns show different Case
Studies. Left Column: Chicago, Mid Column: Munich, Right Column: Manhat-
tan. As the React algorithm does not use a forecast, only one line is shown in
each plot.
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(a) Chicago.
(b) Manhattan.

(c) Munich.

Figure 5.11: Spatial differences in unserved requests and vehicle idle times for the sampling
and Hor algorithm.
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served requests, as vehicles can be positioned more accurately to the demand (perfect demand
forecast within the zones and temporal intervals is assumed). As repositioning trips are locked,
vehicles always end up in the centroid of the corresponding zone, resulting in potentially longer
approach times to the actual demand. If trips are not locked, repositioning vehicles passing
near incoming demand become a valuable alternative for serving requests.

Figure 5.12b and Figure 5.12c show the saved distance and repositioning VKT for the
Chicago case study. It can be observed that the change in saved distance is directly related
to the change in repositioning VKT. Unsurprisingly, the shorter the repositioning interval ∆R,
the higher the repositioning VKT and the lower the saved distance. While repositioning VKT
is slightly higher for smaller zone sizes, the impact is nearly negligible. The effect of the
locking of repositioning trips is more pronounced. Locking of repositioning trips leads to
higher repositioning VKT of up to 4% and lower saved distance.

With respect to the average waiting time, Figure 5.12d shows that zone sizes have a stronger
influence on this KPI as vehicles can be positioned closer to the customer. As the options for
vehicles for new requests increase, the average waiting time decreases if vehicles are allowed
to abort their repositioning trips. In this case, a more frequent repositioning interval also
shortens the average waiting time. Interestingly, this is not the case if repositioning trips are
locked. This might result from too many vehicles being repositioned and unavailable to serve
incoming requests.

Finally, Figures 5.12e and 5.12f show the impact of the operational parameters on the served
requests for the Munich and Manhattan case studies, respectively. The results are similar to the
Chicago case study. Nevertheless, for the Manhattan case study, locking of repositioning trips
seems more beneficial in terms of served requests. Due to the high trip density, vehicles might
be too frequently unassigned from their initially planned repositioning trip, leading to higher
undersupply in profitable regions (midtown). Additionally, as the operating area is relatively
small, locking of repositioning trips does not decrease the effectively available vehicle supply
too much.

Hyperparameters

Figure 5.13 shows the impact of the hyperparameters forecast horizon H, number of forecast
samples NS, and the weight of future repositioning trips γ on the performance of the ARP
service.

Figures 5.13a to 5.13c compare the effects of different forecast horizons H on the served
requests, repositioning VKT, and computational time, respectively. It can be observed that
the forecast horizon has a significant impact on the performance of the ARP service. For
the served requests, the performance increases with the forecast horizon up to H = 45min,
followed by a saturation effect. For Munich, the saturation is already observable for H =
30min. Due to time constraints in the formulation, the repositioning algorithm can only assign
repositioning trips that can be completed within the forecast horizon. Consequently, if the
forecast horizon is too short, the algorithm cannot cover the whole operating area, leading
to decreased performance. This is especially notable in the Chicago case study, where the
operating area is large. For Munich, the operating area is smaller, which shortens the required
forecast horizon. Additionally, previous analysis has shown that the impact of repositioning is
less significant in the Munich case study, resulting in a less pronounced saturation effect. A
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Figure 5.12: Impact of repositioning frequency ∆R, repositioning zone size and locking of
repositioning trips.
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similar trend can be observed for the repositioning VKT. Nevertheless, the saturation effect
appears at higher forecast horizons. With longer forecast horizons, longer repositioning trips
can be assigned, leading to a higher repositioning VKT. This trend seems to prevail, even
if the served requests saturate. Resulting from the large operating area and inhomogeneous
demand, the highest fraction of repositioning VKT is observable in the Chicago case study.
The computational time increases linearly with the forecast horizon. A more detailed analysis
of the computational time reveals that the sampling process is by far the most time-consuming
part of the algorithm. Only a small fraction of the computational time is spent on solving
the optimization problem of assigning repositioning trips. Therefore, a nearly linear increase
in computational time with the forecast horizon is observable because the number of sampled
trips increases approximately linearly with the forecast horizon. As the request density is
highest for Manhattan, the computational time is also highest for this case study.

Figures 5.13d to 5.13f show the impact of the number of forecast samples NS on the
performance of the ARP service. The impact of NS on served requests and repositioning
VKT is considerably smaller than the forecast horizon. No significant trend can be observed
within the error bars for Chicago and Munich. Manhattan shows a slight increase in served
requests. Although still small, an increase in the repositioning VKT is observable for the
Chicago and Munich case studies. This shows an overall stable performance with respect to
stochastic variations in the forecast samples, likely due to the large number of requests sampled
(compare Figure 5.14d: In a forecast bin of 15min, up to 3,200 requests are sampled for the
Manhattan case study with 20% demand penetration). Similar to the forecast horizon, the
computational time increases linearly with the number of forecast samples because the number
of sampled trips increases linearly, too. The average computational time varies between around
40s, if only one sample is used, and 220s on average if five samples are used for the Manhattan
case study. However, the computational time is still within the 900s repositioning interval,
yielding real-time applicability. For further speed-up, the sampling process could easily be
parallelized if different samples are calculated in parallel. Additionally, a C++ implementation
of the sampling process could significantly reduce computational time further.

Finally, Figures 5.13g and 5.13h show the impact of the weight of future repositioning trips
γ. Again, only minor impacts of this hyperparameter can be observed. No significant trend can
be observed for the requests served. For the repositioning VKT, a slight decrease is observable
when the parameter approaches γ = 1. In this case, assigning repositioning trips for future
epochs is weighted equally to the current epoch. Nevertheless, as future repositioning trips
are not assigned in the current epoch, a decrease in repositioning trips can be observed.
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(h) γ - Repo. VKT. (i) γ - Legend.

Figure 5.13: Impact of Hyperparameters.
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5.4 Reservation
This section presents the results of the impact of reservations on the ARP service. First,
scenarios and parameters specific to the reservation case study are presented, followed by
simulation results.

5.4.1 Scenarios and Parameters

Module Algorithm Short Description Reference Section

Creation of
Long-Term Schedules

NCRH
Non-Causal Rolling Horizon:
This method is used to evaluate
long-term-only reservation scenarios.

3.4.3

CBO
Consecutive Batch Optimization:
This method is used to evaluate
continuously incoming reservations.

3.4.3

Assignment OPT
Proposed in this thesis.
Full re-assignment of reservation and
on-demand customers within short-term horizon.

3.2 +
3.4.2

IH Insertion Heuristic for on-demand customers.
No re-assignment of reservation customers.

3.2.6 +
3.4.2

Repositioning Sampling Sampling method with adoptions for
reservations proposed in this thesis.

3.3 +
3.4.4

React Repositioning to locations of unserved
requests with adoptions for reservations.

3.3.5 +
3.4.4

Table 5.4: Summary of algorithms to evaluate reservations that are used in this section. Bold
algorithms are used as base case.

The same parameters and input data as described in section 4.3 are used in this section.
The different algorithms, that have been described in section 3.4 and are evaluated in this
section are summarized in Table 5.4.

In contrast to previous simulations, reservation requests have to be defined. Therefore,
the set of requests is split into on-demand and pre-booking customers. Different shares S of
0%, 10%, 25%, 50%, 75% and 100% pre-booking customers are tested in the simulations.
To evaluate the impact of spatio-temporal variability on the effect of pre-booking customers,
pre-booking requests are drawn from three different distributions of the overall set of requests:

• Uniform: Each request is added to the set of pre-booking customers with a probability
of S.

• Low / High Shareability: Using this distribution, those customers pre-book the service
that have a low / high probability of finding shareable rides. Therefore, the shareability
graph from [Santi et al., 2014] of the whole data set is created first: Two requests
are connected if any hypothetical feasible schedule can be found where both requests
share the ride for a fraction of the trip. Let Rs be the list of requests selected by the
sub-sampling procedure, sorted by the number of connections found in the shareability
graph in ascending order. Then, the first / last S requests are added to the set of
pre-booking customers.
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(a) Uniform Distribution: Reser-
vation Request Density.

(b) High Shareability Distribu-
tion. Increase in Reserva-
tion Request Density com-
pared to Uniform Distribu-
tion.

(c) Low Shareability Distribu-
tion. Increase in Reservation
Request Density compared to
Uniform Distribution.

(d) Temporal distribution of reservation times of pre-booking requests for the
different generating distributions in 15 min bins.

Figure 5.14: Spatial and temporal distributions of pre-booking customers when applying uni-
form, low shareability, and high shareability on the overall request set for the
Chicago Case Study. A share S = 25% reservation requests is used for all cases.

Figure 5.14 shows spatial and temporal differences for the Chicago case study between these
distributions and the idea behind selecting these distributions to create pre-booking customers.
Figure 5.14a shows the spatial distribution of pre-booking request origins of the uniform distri-
bution revealing high request densities in the city center and the airport as discussed in previous
sections. Figure 5.14b shows the spatial increase (and decrease) in pre-booking requests when
they are drawn from the high shareability distribution. In this scenario, more customers are
pre-booking the service in areas with high request densities due to the correlation between
shareability and request density. This is especially visible in the city center and the airport
for the Chicago case study. In this scenario, customers tend to pre-book their rides in areas
with high competition for vehicles with other customers. On the contrary, Figure 5.14b shows
the change in pre-booking request density when the low shareability distribution is used. In
this case, pre-booking customers are distributed across the operating area. In this scenario,
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customers pre-book rides in areas of low request densities to ensure their trip is in case vehicle
supply is concentrated in high-demand areas. Figure 5.14d shows the temporal distribution of
pre-booking requests for the different generating distributions. While the uniform pre-booking
distribution resembles a scaled version of the overall request distribution, a higher fraction of
customers pre-books the services in times of low demand for the low shareability distribution,
which is especially visible during nighttimes from 0 to 6 a.m. Contrarily, during high demand,
i.e., between 6 and 11 p.m., the fraction of pre-booking customers is higher for the high
shareability distribution.

Similar spatial and temporal evaluations for the Manhattan and Munich case study can be
found in the appendix in IV.2 and Figures IV.1, respectively.

Next to the spatial distribution, the temporal distribution of pre-booking customers is also
of interest. Therefore, two different temporal distributions are tested:

• Long-term only: It is assumed that all pre-booking customers are known from the be-
ginning of the simulation (e.g., by making a reservation the day ahead). Consequently,
given an on-demand request from the original data set, that is converted to a pre-
booking request, the request time of the pre-booking customer is set to 0s while its
earliest pick-up time is set to the original request time.

• Dynamically incoming reservations: In this scenario, pre-booking customers continuously
arrive during the simulation. Again, the earliest pick-up time is set to the original
request time of the on-demand request to be converted. The pre-booking time, i.e.,
the difference between the earliest pick-up time and request time, is drawn from an
exponential distribution with mean τres = {900s, 3600s, 7200s}.

Three input files with different random seeds of the sub-sampling process are created and used
for each simulation presented. A uniform spatial and long-term only temporal distribution is
used in the baseline scenario.

This section aims to evaluate the impact of reservations on the ARP service. Therefore, the
KPI “Value of Reservation” V oR is defined similarly to the concept of “Value Of Information”
introduced by [Wen et al., 2019]. It represents the relative improvement in the overall
objective value when reservations are applied compared to an on-demand-only service. The
V oR is defined as

V oR = Opre −Opre

Opre

, (5.31)

with Opre and Opre as the overall objective value with and without reservation, respectively.
The overall objective O(sc) of scenario sc is defined accordingly to the objective of a schedule
(Equation 3.9):

O(sc) = −
∑
r∈Rsc

pr + ωdel
∑
r∈Rsc

tdor − tr + ωdis
∑
v∈V

dv(sc) , (5.32)

with Rsc the set of served requests, and dv(sc) the distance driven by vehicle v in this scenario.
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5.4.2 Impact of Long-Term Reservations
Figure 5.15 shows the impact of long-term reservations on the ARP service for the Chicago,
Munich, and Manhattan case studies for different pre-booking fractions and fleet sizes. The
different distributions of pre-booking customers are also shown for the medium fleet sizes.

The first row (Figure 5.15a, Figure 5.15b, and Figure 5.15c) shows the overall number of
served requests. As a general trend, the number of served requests slightly decreases with the
share of pre-booking customers until a fraction of around 50%. This effect is likely due to
the increasing number of constraints that must be fulfilled to ensure service for pre-booking
customers. For the Chicago and Manhattan case study, even a slight increase in the over-
all number of served requests can be observed until a pre-booking fraction of 10%. In this
regime, the number of constraints for pre-booking customers is relatively low, and the sys-
tem can benefit from the additional information about future demand. For high pre-booking
fractions, the number of served requests recovers and exceeds the number of served requests
in the case of an on-demand-only service. In this regime, the service performance becomes
dominated by the solution of the long-term schedules, which can exploit all information about
pre-booking demand to optimize the vehicle schedules. With respect to different pre-booking
distributions, the uniform distribution (i.e., the distribution with the highest correlation be-
tween pre-booking and on-demand requests) shows the highest number of served requests for
all pre-booking fractions in most cases for pre-booking fractions below 50%. In this scenario,
vehicle schedules to serve pre-booking customers also benefit on-demand customers, as those
vehicles get distributed proportionally to the on-demand requests. On the contrary, the low
shareability distribution leads to a substantial decrease of up to 4% in the overall number of
served requests for the Chicago case study. In this huge operating area, the low shareability
distribution leads to a concentration of vehicles in areas of low demand, hindering them from
efficient service in high-demand areas like the city center or trips from/to the airport.

The second row (Figure 5.15d, Figure 5.15e, and Figure 5.15f) shows the value of reservation
V oR. As the overall objective is dominated by the number of served requests, the value of
reservation shows a similar trend. In most cases, the value of reservation is negative for
low pre-booking fractions, indicating a degraded service performance. Positive values can be
observed for either low or high pre-booking fractions. The highest positive values of around
1% can be observed for smaller fleet sizes. Nevertheless, especially for the Chicago case study
with the low shareability distribution (i.e., trips made to/from the city’s outer areas), too many
pre-booked trips can degrade the service by up to 5%.

The third row (Figure 5.15g, Figure 5.15h, and Figure 5.15i) shows the saved distance
for the different scenarios. This KPI shows different trends across the case studies. For the
Manhattan and Munich case study, the saved distance tends to decrease with the share of
pre-booking customers. Compared to an on-demand-only service, the assignment algorithm
can be less selective in rejecting those requests that tend to be less efficient to serve. On
the contrary, the saved distance increases for the Chicago case study. The main reason is
a decrease in empty vehicle kilometers, as vehicle positioning is more accurate in the large
operating area compared to repositioning in an on-demand-only service. Unsurprisingly, the
highest values for saved distance can be observed for the high shareability distribution as
efficient shared routes can be directly planned in the long-term optimization.

Figure 5.16 shows different KPIs for the Chicago case study with a homogeneous reservation
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(a) Chicago:
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(b) Munich:
Served Requests.
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(c) Manhattan:
Served Requests.
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(d) Chicago:
Value of Reservation.
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(e) Munich:
Value of Reservation.
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(f) Manhattan:
Value of Reservation.
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(g) Chicago: Saved Distance.
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(h) Munich: Saved Distance.
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(i) Manhattan: Saved Distance.

(j) Chicago: Legend. (k) Munich: Legend. (l) Manhattan: Legend.

Figure 5.15: Effects of Long-Term Reservations and their Distribution. Columns show different
Case Studies. Left Column: Chicago, Mid Column: Munich, Right Column:
Manhattan.
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(b) Avg. Waiting Time.
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Figure 5.16: Different KPIs for the Chicago Case Study with Homogeneous Reservation Re-
quest Distribution.

request distribution for on-demand and pre-booking customers separately (the other case stud-
ies can be found in the Appendix IV). Figure 5.16a shows the fractions of served on-demand
and pre-booking customers. As pre-booking customers are strongly prioritized by creating the
long-term schedule independent of (expected) on-demand requests, all reservations are served
for small fractions of pre-booking customers as available vehicle supply does not constrain
the service. From fractions above 50%, pre-booking customers are rejected, as the long-term
algorithm does not find feasible schedules for all requests. On the other hand, the fraction of
served on-demand customers decreases steadily with the share of pre-booking customers, i.e.,
it becomes less likely for on-demand customers to access the service when many customers
are pre-booking their rides (and the fleet size remains the same).

For the average waiting time (Figure 5.16b) and the average detour (Figure 5.16c), two
opposite trends can be observed for on-demand and pre-booking customers. While both
quantities remain relatively constant with the share of pre-booking customers, the average
waiting time for pre-booking customers is considerably lower than for on-demand customers.
For the average detour, the opposite trend can be observed. Lower waiting times (the time
from the earliest pick-up time to the actual pick-up time) for pre-booking customers result from
early planning of their pick-up, and vehicles can also arrive early. In contrast, a vehicle must
be dispatched first in almost all cases for on-demand customers. On the contrary, pre-booking
allows efficient planning and shared routes, which tends to increase the average detour.

5.4.3 Impact of Repositioning
In the previous sections, the base case to compare reservations with (a pure on-demand service)
was rather favored because the repositioning algorithm with perfect forecast was applied,
reducing stochasticity present in a real service.

Figure 5.17 therefore shows the impact when other, less accurate, repositioning algorithms
are applied. Four different repositioning algorithms, which have been discussed in detail in
the last chapter, are compared: The Sampling-algorithm with perfect (base case) and myopic
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forecast, the React-algorithm, and no repositioning.
Similar to the previous section, the first row (Figure 5.17a, Figure 5.17b, and Figure 5.17c)

shows the share of overall served requests with an increasing fraction of pre-booking customers
for the different case studies. Most prominent is the scenario without repositioning. In this
case, it is evident that the service performance strongly increases with the share of pre-booking
customers as idle vehicles are actively repositioned to serve pre-booking customers, while in
the on-demand-only service, they can only serve customers in their vicinity. Nevertheless, the
system still benefits from repositioning until around 75% of customers pre-book their rides (if
the pre-booking distribution is uniform).

The difference between the repositioning algorithms can be best observed in the Figures of
the second row (Figure 5.17d, Figure 5.17e, and Figure 5.17f) showing the value of reservation,
omitting the scenarios with repositioning. As the React-algorithm serves significantly fewer
customers than the Sampling-algorithm, in an on-demand-only service, the values of reserva-
tion change accordingly. For the Chicago case study, reservations even improve the service
when customers pre-book their rides. Nevertheless, for the other case studies, the value of
reservation remains negative when pre-booking and on-demand customers have a similar ratio.
The same holds for the Sampling-algorithm with myopic forecast. While showing a slightly
worse performance compared to a perfect forecast, the additional information about future
demand from pre-booking does not compensate for the loss from incomplete knowledge in
repositioning.

Overall, this evaluation shows the general importance of information about future demand
for service performance. Regardless of whether information is available in aggregated form
(as in the case of repositioning) or in exact form (as in the case of reservations), the system
always benefits from additional information about future demand.

5.4.4 Impact of Re-Assignment
Next to the repositioning algorithm, the assignment algorithm can also significantly impact
the service performance. The evaluation in chapter 5.2 showed the benefits of re-assignments
in an on-demand-only service. Figure 5.18 shows the importance of re-assignments for the
ARP service with reservations. It compares the OPT -algorithm that allows re-assignments
and batch processing with the insertion heuristic IH that does not allow re-assignments for the
different case studies and pre-booking penetrations. While the difference in served requests
(Figure 5.18a) is in the order of 2% for all case studies for an on-demand-only service (as
evaluated in previous sections), the difference increases drastically until a share of 50% pre-
booking customers. In this case, a drop of around 7% is observed for the Munich case
study, which accounts for unserved on-demand customers. This shows the importance of
re-assignments in a service with reservations. The insertion heuristic mainly relies on the long-
term schedules, where on-demand customers are inserted. Nevertheless, as long-term schedules
are created independently of on-demand requests, no good solutions for serving additional
on-demand customers can be expected. With the OPT -algorithm, on the other hand, the
system can react to dynamically incoming demand and reconfigure short-term schedules to
accommodate on-demand customers.

Figure 5.18b shows the value of reservation for the different assignment algorithms. Conse-
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(b) Munich:
Served Requests.
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(c) Manhattan:
Served Requests.
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(d) Chicago:
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(e) Munich:
Value of Reservation.
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(f) Manhattan:
Value of Reservation.

Figure 5.17: Impact of Repositioning Algorithms with Reservation. Columns show different
Case Studies. Left Column: Chicago, Mid Column: Munich, Right Column:
Manhattan.
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(a) Served Customers.
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(b) Value of Reservation.
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(c) Saved Distance.

Figure 5.18: Impact of Online Assignment Algorithm for Different Case Studies with Homoge-
neous Reservation Request Distribution. Fleet Sizes: Chicago: 340, Manhattan:
320, Munich: 240.

quently, the value of reservation drastically decreases with the share of pre-booking customers
when the insertion heuristic is applied. For 50% pre-booking, an additional service degrad-
ing between 2% and 6% can be observed. For high values, on the other hand, the value of
reservation is higher for the insertion heuristic, as the service becomes dominated by the long-
term schedules applied in both algorithms. A lower reference value (i.e., the on-demand-only
service) leads to a higher relative improvement in the overall objective value for the insertion
heuristic.

Unsurprisingly, the saved distance (Figure 5.18c) is also higher for the OPT -algorithm.
Especially for the Chicago and Munich case study, saved distance is decreased by up to 5%
for the insertion heuristic resulting from less efficient vehicle schedules and additional empty
vehicle kilometers.
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5.4.5 Cost of Service Guarantee
In this section, the alternative treatment of reservation requests is evaluated. Within this
methodology, no long-term schedules for reservation requests are created. Instead, reservation
requests are revealed to the assignment algorithm within a rolling horizon fashion defined by
the short-term horizon Tshort. In the online assignment algorithm, the assignment of reservation
requests is prioritized over on-demand customers by increasing the assignment reward ten-fold
compared to on-demand customers in the objective function. Therefore, the assignment al-
gorithm can react more flexibly to incoming demand but cannot ensure that all reservation
requests can be served. This can be interpreted either by a service that communicates late re-
jections to customers (which it tries to minimize) or confirms reservations only at the beginning
of the short-term horizon.

Figure 5.19 shows the impact of binding and non-binding reservations on the different request
types for the case studies. The first row (Figure 5.19a, Figure 5.19b, and Figure 5.19c) shows
the overall fractions of served requests. Compared to binding long-term reservations, the
overall number of served requests can generally be increased if reservation requests are treated
as non-binding, especially if the share of pre-booking and on-demand customers is similar. In
most cases, the number of served requests can even be increased compared to an on-demand-
only service. This is not the case only for low fractions of pre-bookings in the Manhattan
or Chicago case study with the low shareability distribution. When short-term rejections are
possible, the system can react much more flexibly in the presence of incoming on-demand
requests. If long-term reservations are binding, the decision to serve a reservation request
is purely based on finding a feasible long-term schedule, merely considering any on-demand
requests. On the contrary, if this decision is made in the short term, already revealed and
assigned on-demand requests constrain the service’s availability and allow identifying costly
reservation requests that tend to be rejected if no vehicle is available within the pick-up
time constraint. Nevertheless, as pre-booking customers are still prioritized, vehicles can still
get pulled away from areas of high demand for on-demand trips, possibly reducing the overall
number of served requests. This can be observed in the Chicago case study with low shareability
distribution.

The second row (Figure 5.19d, Figure 5.19e, and Figure 5.19f) shows the service rate of
reservation requests only. As expected, the service rate of reservation requests is higher for
binding reservations, although the overall service rate tends to be lower. While creating long-
term schedules allows a full-service rate for binding reservations in most scenarios, the service
rate for non-binding reservations tends to decrease steadily, with the share of pre-booking
customers starting notably at a share of 25%. Nevertheless, until a fraction of 25% pre-
booking customers, late rejections of reservation requests happen in less than 0.5% of all
cases. Considering the overall increased service rate, an operator might be willing to accept
this trade-off. In practice, alternative trip offers (e.g., by offering a later pick-up) to further
decrease unserved reservation requests.

For completeness, the third row (Figure 5.19g, Figure 5.19h, and Figure 5.19i) shows the
fraction of served on-demand requests. Of course, based on the previous discussion, the
fraction of served on-demand requests is higher for non-binding reservations, especially for
high fractions of pre-booking customers, when most vehicles are constrained in the service by
already assigned reservation requests.
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(a) Chicago - Served Requests.
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(b) Munich - Served Requests.
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(c) Manhattan - Served Re-
quests.
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(d) Chicago - Served Reserva-
tion Requests.
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(e) Munich - Served Reservation
Requests.
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(f) Manhattan - Served Reser-
vation Requests.
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(g) Chicago - Served On-
Demand Requests.
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(h) Munich - Served On-
Demand Requests.
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(i) Manhattan - Served On-
Demand Requests.

Figure 5.19: Impact of Binding and Non-Binding Reservations on Served Requests. Columns
show different Case Studies. Left Column: Chicago (340 vehicles), Mid Column:
Munich (240 vehicles), Right Column: Manhattan (320 vehicles).
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(a) Chicago - Value of Reserva-
tion.
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(b) Munich - Value of Reserva-
tion.
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(c) Manhattan - Value of Reser-
vation.

Figure 5.20: Impact of Binding and Non-Binding Reservations on Service Level. Columns
show different Case Studies. Left Column: Chicago (340 vehicles), Mid Column:
Munich (240 vehicles), Right Column: Manhattan (320 vehicles).

Similarly, Figure 5.20 evaluates the Value of Reservation (first row) for the different case
studies. In contrast to binding reservations, the value of reservation is generally higher for
non-binding reservations and even positive in most cases, as information on future demand
can be used more efficiently when constraints are less binding. The difference in V oR between
binding and non-binding reservations can be interpreted as a “cost of service guarantee” of up
to about 4%. An operator might, for example, increase fares by this factor to compensate for
the additional service quality.
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5.4.6 Impact of Reservation Horizon
This section evaluates the reservation horizon, i.e., the time between the reservation and
the requested pick-up time. Customers continuously make reservations for the service, and
long-term schedules must be updated online to assign new reservations. Therefore, the CBO-
method is used in this section to treat reservations.

Figure 5.21 shows the impact of the reservation horizon on the service level for the different
case studies and compares it with the case of long-term-only reservations. The first row
(Figure 5.21a, Figure 5.21b, and Figure 5.21c) shows the fractions of served requests for the
different case studies. As a general trend, the minimum at 50% pre-booking customers for
long-term-only reservations can not be observed when reservations are continuously made. This
is likely because reservation requests start to get rejected at a lower penetration of pre-booking
customers. (see Figures 5.21g, 5.21h, and 5.21i). In favor of serving on-demand customers,
more information about the current system state can be incorporated into the decision to
assign reservation requests when the reservation time decreases on average. Nevertheless, the
impact of the reservation horizon on the service level differs between the case studies. For
Chicago, especially short reservation horizons tend to decrease the service level. In this case,
vehicles get pulled away from high-demand areas for on-demand trips to serve reservations. A
short planning horizon for short-term reservations can increase this effect. On the contrary,
for Munich, the service level is highest for a reservation of 15 minutes on average, keeping the
service level relatively constant. For longer reservation horizons, the service level decreases,
indicating reduced availability for on-demand customers when long-term commitments are
made.

Generally it can be observed (e.g., in Figure 5.21d, Figure 5.21e, and Figure 5.21f) that for
very high fractions of pre-booking customers, the value of reservation is lower if no long-term-
only pre-bookings are made. In this case, the CBO-method provides worse solutions for the
long-term schedules than the NCRH-method used for long-term-only reservations. In contrast
to the NCRH-method, the CBO-method has to continuously update its long-term schedules
while making commitments to incoming reservations, while for long-term-only reservations, all
pre-booking customers are known from the beginning.
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(a) Chicago - Served Requests.
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(b) Munich - Served Requests.
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(c) Manhattan - Served Re-
quests.
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(d) Chicago - Value of Reserva-
tion.
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(e) Munich - Value of Reserva-
tion.
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(f) Manhattan - Value of Reser-
vation.
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(g) Chicago - Served Res. Re-
quests.
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(h) Munich - Served Res. Re-
quests.
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(i) Manhattan - Served Res. Re-
quests.

Figure 5.21: Impact of Reservation Horizon on Service Level. Columns show different Case
Studies. Left Column: Chicago (340 vehicles), Mid Column: Munich (240 vehi-
cles), Right Column: Manhattan (320 vehicles). Legend in Figure 5.21h valid for
all subfigures.
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(b) Overall Computational Time.

Figure 5.22: Impact of Horizons for Chicago Case Study with 25% Reservation Requests from
the Homogeneous Distribution and 340 vehicles.

5.4.7 Evaluation of Rolling Horizons
This section evaluates the impact of the applied rolling horizons.

Therefore, the sensitivity of the horizon parameters T revh and T shorth for inserting the long-
term solution for pre-booked trips into the online algorithm are assessed. Figure 5.22 compares
the impact of various combinations for T revh and T shorth on the overall computational time and
the improvement in the Value Of Information V oR for the Chicago case study.

Generally, it can be observed that with higher T shorth , the V oR improves while computational
time increases. With longer T shorth , pre-booked requests can be reassigned by the online
optimization earlier. Therefore, the online optimization can adapt the vehicle routes of pre-
booked customers earlier for incoming on-demand requests. As a trade-off, computational
time increases due to a growing solution space.

Similarly to T shorth , with higher T relh the computational time increases, too. Nevertheless,
concerning the V oR, an improvement is observable until T relh = 1080s, followed by a degrading
in solution quality. With longer T relh , additional pre-booked stops are revealed to the online
optimization, which cannot be assigned to other vehicles, but new on-demand requests can
be inserted into less constrained schedules. Therefore, the V oR increases with higher T relh ,
but, again, computational time increases because longer schedules have to be checked for
feasibility. While this seems beneficial for the system as long as T relh ≤ 1080s, early revelations
also have disadvantages: First, revealed requests that are not yet within T shorth cannot be
reassigned, but waypoints after T relh can. At T relh = 1080s, the advantage of re-assigning
upcoming waypoints seems to outweigh the advantage of more information for inserting on-
demand requests into currently assigned schedules. Second, network travel times are varied
every hour. If T relh is high, a larger part of the long-term schedule is revealed that has been
planned based on different travel times, leading to potentially infeasible schedules forbidding
the insertion of on-demand requests.
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Chapter 6

Conclusion
The goal of this thesis was to investigate the operational challenges of Autonomous Ride-
Pooling (ARP) services in urban environments and to develop methods to address these chal-
lenges. Three main aspects of ARP services have been assessed: assignment, repositioning,
and reservation. The algorithms to address these aspects of operation in an ARP service were
evaluated in agent-based simulations for three distinct urban case studies: Chicago, Munich,
and Manhattan.

This chapter concludes the thesis by summarizing the main contributions and answering
the research questions. The chapter also discusses the limitations of the work and provides
suggestions for future research.

6.1 Answer to Research Questions and Limitations
Based on the results provided in the previous chapter, the research questions of this thesis
defined in section 1.3 are answered in the following.

6.1.1 Impacts of Ride-Pooling
Simulation-based evaluation of autonomous ride-pooling services was one of the main contri-
butions of this thesis. Therefore, a detailed agent-based simulation framework was developed
with the ability to simulate various aspects of ARP services. Three distinct urban case studies
— Chicago, Munich, and Manhattan — were conducted to explore various general questions
about ARP services.

The simulation results provided in Section 5.1 allow to answer the research question

RQ I: What are the benefits of pooling rides?

By varying the fleet size in the case studies, it was found that approximately 1,250 of
passenger capacity four or higher are enough to serve 90% of the approx. 130,000 TNC trips
in Chicago. Comparing a pooling service to a hailing service, that does not allow for shared
rides, this translates to approx. 1,000 fewer vehicles that are required to serve the demand.
Additionally, the fleet of pooling vehicles produces only half of the VKT compared to the
hailing service, proving the high societal, operational, and environmental benefits of pooling
rides. Due to the high demand density and rather short taxi trips in Manhattan, a fleet of just
1,500 vehicles with a capacity of four or more is sufficient to serve nearly all of the 210,000
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trips. This fleet size corresponds to only around 11% of the current taxi fleet in New York.
The case study for Munich involved the replacement of private vehicle trips with the ARP
service. Substituting 10% (approx. 102,000) of Munich’s inner-city private vehicle trips with
an ARP service by 1,250 vehicles could result in an estimated vehicle replacement rate of 97%
if those private vehicles would not be in use anymore.

With respect to required vehicle capacity, the simulations of all case studies showed similar
results: A huge operational gain is achieved when increasing vehicle capacity from one to two
seats, therefore allowing for shared rides between two passengers. This gain can be further
increased up to a capacity of four seats. A larger capacity, however, does not provide many
additional benefits.

A variation of different demand levels showed that ride-pooling demand is one of the key
factors for a successful ARP service. The case studies for Chicago, Munich and Manhattan
all showed the same trend: With higher demand, a single vehicle can serve more customers,
the pooling rate increases, therefore reducing the VKT per customer and also empty VKT.
The reason is clear: With more demand, the probability of finding a matching customer for
a vehicle increases, allowing for more efficient vehicle routes. Customers profit from shorter
waiting times as also the vehicle density in the city increases, when more customers are to be
served. Only the in-vehicle travel time of customers increases with higher demand, as high
sharing also leads to higher detour to pick other customer up.

Overall, the results in this thesis agree with general findings in the literature (Table 2.2).
Huge benefits in terms of vehicle replacement and VKT reduction can be achieved by pooling
rides if the demand is high enough and low occupancy modes, like private cars, taxis, or TNC
services, can be substituted. Nevertheless, a maximum saved distance of 42% found in the
case studies, indicates that cities should not rely solely on ARP services to solve all traffic
problems. If too many travelers switch from public transportation or active modes to ARP
services, the benefits of pooling rides can be quickly offset by induced demand. By closing gaps
in availability and convenience of the public transport network, ARP services should therefore
be seen as a complement to public transportation and active modes.

Limitations

A major limitation of the simulation results is the rather simplistic demand model used in
the case studies. By merely replacing trips from private cars, taxis, or TNC services, the
simulation allows for a structured evaluation of a multitude of scenarios, but does not capture
the full complexity of urban mobility. To evaluate the global impacts of ARP services, a more
sophisticated demand model is needed, for giving travelers the possibility to choose between
different modes of transportation. Additionally, the simulation framework should be extended
to include also other modes of transportation to evaluate trip alternatives. If mode choice is
included, the simulation framework also needs to be extended to include a pricing model for
the ARP service, which has not been considered in this thesis. Lastly, also the traffic impacts
of ARP services are not fully evaluated in this thesis. While the saved distance is a good
indicator for the efficiency of the service, the actual traffic impacts can only be evaluated by
a more detailed traffic simulation.

160



6.1 Answer to Research Questions and Limitations

6.1.2 Assignment
One key contribution of this thesis is the development of an assignment algorithm that allows
for dynamic assignment of customers to vehicles in an ARP service, and therefore answers
research question

RQ II: How can the operator of an ARP service assign customers and schedules to fleet
vehicles efficiently?

The algorithm developed in this thesis elaborates on a sophisticated search strategy developed
by Alonso-Mora et al. [2017a]. By exploiting tight time constraints on customer pick-
up and delivery times, that ensure an attractive service to customers, a set of necessary
requirements can be formulated to efficiently find a large set of feasible schedules. The
algorithm then assigns these schedules to vehicles solving an ILP.

A special contribution of this thesis, is keeping already computed schedules in a database
to reuse them in later assignment steps. As creating feasible schedules is the most computa-
tionally challenging part of the algorithm, reducing the number of schedules that have to be
computed can significantly reduce the computational time of the assignment algorithm, ensur-
ing short response times and real time applicability. The case study confirmed, for example,
76% reduction in computational time for a simulation of the Chicago case study.

Several heuristics and benchmark algorithms were compared to the developed assignment
algorithm. While the developed assignment algorithm was able to solve the assignment problem
for most instances close to optimality (i.e., by finding all feasible schedules), the heuristics
and benchmark algorithms could be sorted by their constraint in explorable solution space to
evaluate the trade-off between computational time and solution quality. Based on the order of
the algorithms, compared to the optimal solution of the assignment problem, two steps stand
out: First, prohibiting re-assignments, and second, treating customer requests sequentially
instead of in batch. In the presented Chicago case study, allowing re-assignments resulted
in 1.4% more customers being served, a 2.56% increase in saved distance, and a reduction
in average customer delay by 35 seconds, compared to a batch assignment that restricts re-
assignment. Additionally, when customer requests were treated sequentially, the number of
served customers further decreased by 1.5%, the saved distance decreased by 3.1%, and the
average customer delay increased by 38s. Therefore, allowing re-assignments tends to have
a similar benefit for the service as treating customer requests in batch, compared to treating
them sequentially (at least for the parameters chosen in this case study). On the contrary, the
computational effort to solve the assignment problem increases with available solution space.
In the example mentioned above, an average computational time of 45s computational time
was consumed for the optimal solution, while 15s were needed when no re-assignments were
allowed, and below 2s when customer requests were treated sequentially. With a batch epoch of
30s, an optimal solution cannot be provided in real-time within this implementation. However,
the developed vehicle selection heuristics and time outs allow for a real-time application of the
algorithm, while still providing close to optimal solution quality.

Next to the operational benefits of re-assignment, also the impact of re-assignments on
customers was investigated. The evaluation of the case studies showed, that 78 to 86% of
customers did not experience any re-assignment at all, indicating a rather stable system, where
the gain in operational benefits come from the re-assignment of a minority of the requests.
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Nevertheless, approximately half of the customer re-assignments occur on a rather short notice,
defined as less than 3 minutes before scheduled pick-up. Especially for these customers, re-
assignment can be particularly inconvenient, as they may already be waiting for the vehicle
when they receive a notification of a delay.

Therefore, different strategies have been proposed to reduce the drawbacks of re-assignments
and therefore increase service reliability for customers. These strategies include a guaranteed
time-window for pick-up, locking of assigned vehicles shortly before pick-up, or penalizing re-
assignments in the objective function of the assignment algorithm. Especially guaranteeing a
fixed time-window of one minute around the initial pick-up time, showed to be a promising
strategy to increase service reliability for customers, while still maintaining the operational
benefits of re-assignments.

Limitations

While the proposed assignment algorithm is able to solve the formulated static DARP even
to optimality in many cases, an optimal assignment for the general (long-term) ride-pooling
can likely not be found by this approach. The main reason is that this algorithm is myopic,
i.e., it does not consider future demand when creating the current assignment. Even though
repositioning covers the imbalance of demand and supply in the long-term, better assignments
can likely be found if forecasts of future system states are considered. In this case, more
informed decisions can be made, e.g., by assigning schedules to guide vehicles towards future
demand, or make better choices in which customers should be rejected. Next to schedules, i.e.,
orders of customers to be served, also the routes that vehicles should take can be optimized.
While always taking the fastest path in this study, coordinated routing of vehicles might become
necessary especially when large fleet sizes are applied.

The evaluation of re-assignment showed the general benefits of re-assignment for the oper-
ator of an ARP service. However, allowing re-assignments might provide technical difficulties
not considered in the simulation. In real-world applications, the computational time, even
though only in the range of seconds, can result in time lags, possibly leading to conflicts in
the assignment if the system state changes unexpectedly. This could be especially problematic
with re-assignments, as changes in assigned vehicle routes happens more often than without
re-assignments. From a customer perspective, the acceptance of re-assignments is an open
research question. If perceived too inconvenient, customers might not use the service anymore,
leading to a loss in revenue for the operator, although the service is more efficient.

6.1.3 Repositioning
The second aspect of operation of an ARP service that was investigated in this thesis is
repositioning with the goal to answer the research question

RQ III: How does an ARP service benefit from repositioning?

A central contribution of this thesis was the development of a repositioning algorithm that
directly incorporates the possibility of sharing rides into its formulation. The algorithm samples
trip from a predicted demand distribution. By creating actual vehicle routes from the sampled
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trips, an estimation of required vehicles can be made, thereby providing a measure of the
imbalance of demand and supply.

An optimization problem was formulated to assign idle vehicles to zones, where they can
serve the schedules created from future sampled requests. The objective value of the schedules
is used to determine the value of the repositioning to the corresponding zone. The formulation
also incorporates a multi-horizon approach, which considers potential future repositioning steps
to accurately estimate the imbalance between demand and supply for future time periods. To
reduce the impact of stochastic variation within the sampling process, the optimization problem
can incorporate multiple samples to provide a more robust solution. Thereby, repositioning
trips are assigned that provide good solutions across all samples.

A comparison of the repositioning algorithm to a no-repositioning scenario showed the huge
benefits of repositioning for an ARP service. In the Chicago and Manhattan case studies, the
fraction of served requests could be increased by up to 40%, while time that vehicles generated
revenue for the service for up to 6 additional hours per day. The spatial evaluation showed
the repositioning algorithm successfully repositions idle vehicles from zones with low demand
to zones with high demand. If no repositioning is conducted, the spatial evaluation reveals
that vehicles tend to accumulate in areas of low demand. With not customer requests in the
vicinity, these vehicles remain idle even during peak demand times. Even though also the
simulated ARP service in the Munich case study benefits from repositioning, the benefits are
less pronounced compared to the other case studies, likely due to a more balanced demand
distribution.

In the case studies for Chicago, Munich, and Manhattan, the repositioning algorithm was
compared to other state-of-the-art repositioning algorithms, that, however, do not consider
the possibility of shared rides explicitly. The simulation results showed that the repositioning
algorithm developed in this thesis outperforms the other repositioning algorithms. Especially in
the case of Chicago, the repositioning algorithm was able to serve by far the most customers,
while achieving nearly the highest savings in distance and the lowest average customer waiting
times. The same effect is observed when different forecasting methods (perfect and myopic) are
used to predict future demand, showing a generally stable performance of the repositioning
algorithm. Only for the Manhattan case study, an aggressive hailing-based approach was
able to serve more customers, though at the cost of higher empty vehicle kilometers. A
spatial evaluation showed, that tends to balance vehicles across the city, while the comparison
algorithm tends to concentrate vehicles in the city center, a strategy that seems to be beneficial
in the Manhattan case study.

Limitations

While the repositioning algorithm developed in this thesis is able to provide a good solution
to the repositioning problem, the applied demand model of serving a fixed set of customer
requests is rather simplistic. On the one hand, the simulation model does not take long-
term effects of repositioning into account. Depending on service availability, largely influenced
by repositioning decisions, customers might change their travel behavior. This might, for
example, lead to a lower demand in areas with low service availability, because fewer vehicles
are repositioned there. Additionally, full knowledge of future traffic states is assumed in the
repositioning algorithm, when evaluating future fleet states.
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Also in the formulation of the repositioning algorithm, improvements can be made. If a
general undersupply of vehicles is detected, i.e., the number of possible repositioning trips
does not suffice to serve sampled requests, the algorithm tends to greedily assign repositioning
trips to minimize cost. With respect to stochastic variation, an approach to distribute vehicles
proportional to supply shortages might be more beneficial in this case to enable a more balanced
system.

6.1.4 Reservation
The last aspect of operation of an ARP service that was investigated in this thesis is reservation
with the goal to answer the research question

RQ IV: Does an operator of an ARP service benefit from offering pre-bookings?

A multi rolling horizon approach was developed to incorporate reservation requests into the
assignment algorithm. In the multi rolling horizon approach, incoming customer requests are
divided into short-term and long-term requests. Because of their upcoming pick-up time,
short-term requests are directly assigned to vehicles, by treating them as on-demand requests.
For long-term requests, however, the concept of a long-term schedule is introduced. The
long-term schedule covers the entire planning horizon of requested long-term pre-bookings. It
is used to estimate available capacity for accommodating long-term requests, far in advance of
the current planning horizon of the assignment algorithm. The long-term schedule is assigned
to a specific fleet vehicle and is used to feed waypoints into the assignment algorithm. The
waypoints are used to ensure that the vehicle is available at the right location at the right
time to serve the long-term request. The assignment algorithm then assigns the vehicle to
on-demand requests, while still ensuring that the long-term requests are served.

As long-term schedules and repositioning act on similar horizon time scales, the repositioning
algorithm was extended to also consider long-term schedules and not yet assigned long-term
requests. Long-term schedules without immediately upcoming pick-up are detached from the
vehicle and used as seed when creating schedules in the sampling process of the reposition-
ing algorithm. Enforcing the assignment of repositioning trips to the respective zones, the
repositioning algorithm can assign repositioning trips and re-assign waypoints in the same
formulation.

Extensive simulations for the three case studies revealed, that the operator of an ARP service
only benefits from pre-bookings under specific conditions. One option is, that the fraction of
pre-bookings is high. In this case the operator can benefit from additional knowledge and can
assign efficient vehicle schedules. Another option, at least in the case of the Chicago and
Manhattan case study, is that a rather small fraction (up to 10%) of pre-bookings is present,
and their spatial distribution is highly correlated with the spatial distribution of on-demand
customers. In this case, only few long-term schedules of reservation requests constrain the
assignment of on-demand requests and the waypoints of long-term schedules guide vehicles
to areas of on-demand requests, too. The last option is to provide a non-binding (prioritized)
reservation system, that allows cancelling the reservation of a customer a few minutes before
a pick-up. Non-binding reservations tend to be beneficial for the operator in most cases,
while the number of (late) cancellations of reservations is rather low until a fraction of 50%
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pre-bookings. The highest deterioration of service quality due to reservation was observed in
the Chicago case study, when 10-50% of the requests were pre-bookings and those customers
tend to reserve a trip that are less shareable. As these trips are usually in low demand areas,
vehicles are positioned to these areas to commit to the reservation, while profitable on-demand
requests in high demand areas remain unserved.

The results for the impact of reservations on the service quality are mixed, especially when
service guarantees are assumed. However, this observation is in line with previous findings in
the literature (Table 2.5). From an operator perspective, it is therefore essential to evaluate
if reservations can attract more customers to the service, and if those additional revenues can
compensate for the potential loss in service quality. If these revenues are not sufficient, the
operator could consider a pricing strategy for reservations, to ensure that the service quality
is not deteriorated by reservations. As the simulation showed, that non-binding reservations
can be beneficial for the operator in most cases, another strategy could be to offer non-
binding reservations to customers, and compensate unserved reservation by offering discounts.
Nevertheless, besides potential negative impacts on the service, reservations can also provide
a chance for fair access to the service, especially in low demand areas, where the service might
not be available otherwise.

Limitations

Also for reservations, long-term effects of reservations on the usage of the service were not
modeled in the simulation. Behavioral data on how customers react to the possibility to reserve
a trip is needed for evaluation, either by evaluating data of a real service offering reservations, or
surveying potential customers. From an operational perspective, simplified assumptions were
made concerning knowledge about traffic states. Perfect knowledge about future traffic states
were assumed to plan long-term schedules and therefore ensure the fulfillment of reservations.
In reality, traffic always remains a source of uncertainty. Therefore, it can occur that a vehicle
is not able to serve a reservation, even though the operator planned for it. Methods have to
be developed to handle such cases.

6.2 Future Research Directions
Starting from this thesis, several future research directions can be identified. In general,
extended behavioral models are required to evaluate the impact of ARP services on the overall
transportation system. But also for the key aspects of re-assignment, repositioning, and
reservation, behavioral models need to be developed to estimate their long-term effects on the
demand of an ARP services. Additionally, the coupling of the proposed simulation framework
with traffic simulation models would allow for a more detailed evaluation of the traffic impacts
of ARP services.

To fully exploit the potential of autonomous vehicles, different service designs should be
evaluated. This includes the integration into public transportation, e.g., by providing feeder
services or provisions for undersupplied origin-destination relations in the public transportation
network. Additionally, mixed fleets can be studied to evaluate services with different service
levels, e.g., high-capacity and premium services. As the utilization of vehicles is dependent on
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the demand, the integration of delivery services can be beneficial to increase the utilization of
vehicles in off-peak times. Finally, it should be evaluated if the findings of this thesis can be
transferred to rural areas, where the demand is less dense, but traffic efficiency might be less
crucial.

For the assignment problem, the developed algorithm can be extended to consider future
demand. Identified supply shortages by the proposed repositioning algorithm could be used in
the assignment objective function to guide vehicles towards future demand. The impact of re-
assignment should be evaluated in a more dynamic and stochastic setting, e.g., by considering
stochastic traffic states or customer behavior like late cancellations. It can be assumed that
the system can adapt better to unexpected changes in the system state, if re-assignments are
allowed. These changes could also include demand surges by, for example, public transport
disruptions or special events. A possible solution could be to dynamically relax time constraints
for the service to increase the effective capacity of the fleet, and thereby contribute to the
general resilience of the transportation system.

With respect to repositioning, forecasting demand for the use-case of an ride-pooling service
remains an open questions. To evaluate the shareability of future demand and, therefore, to
estimate required vehicle supply forecasts have to be on high quality on spatial as well as
on temporal level. Repositioning decisions could also be improved by incorporating long-term
effects on demand and fairness considerations. This adaption would implicitly require additional
research on customer behavior in case of a regularly unavailable service. Finally, the developed
repositioning method requires a forecast of traffic state. In this thesis, a perfect knowledge of
this state is assumed leaving further room for evaluating the impact of incomplete knowledge.

Some improvements are also possible for the applied methodology for reservations. Similar to
repositioning, incomplete knowledge of future traffic states is a pressing question that needs to
be tackled as unexpected traffic delay will result in infeasibilities with respect to commitments
for reservations. Methods must be developed to deal with these conflicts. One option could be
a multi-step approach for the communication with the customer: Commit to a general service
first, but communicate exact pick-up times only on a shorter notice, when more knowledge
about the system state is available. This way, more flexibility would remain for the online
optimization. As the results showed, that reservation generally do not improve the service,
methods could be developed to detect unpleasant reservations that might be harmful for the
service. By either rejecting those requests for reservation early, or adjust fares accordingly,
could improve the overall service quality. Finally, a general pricing strategy for reservations
should be developed with respect to the results of this thesis.

In general, artificial intelligence is a promising candidate for solving operational problems
for ARP services. The highly dynamic and stochastic setting makes especially supervised and
unsupervised learning a suitable method. This includes the assignment process by reducing
the number of required solutions to the vehicle routing problem. Either the vehicle routing
problem could be solved directly by a trained model, or a model could pre-select promising
candidate vehicles for incoming requests before a vehicle routing problem is solved. The
same applies for providing feedback to customer requests, when vehicle availability has to be
estimated. Also repositioning is a suitable candidate for the application of artificial intelligence.
Instead of providing a demand forecast, a model could be trained to directly predict required
supply, rendering the computational expensive methodology developed of progressing fleet
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states into the future unnecessary. Unsupervised learning could even be used to directly learn
to reposition decisions. For reservations, machine learning could be used to evaluate if a pre-
booking should be accepted or not. Overall, machine learning provides a lot of applicability
by being able to learn complex environments. Suitable models can especially reduce required
computational time significantly, because fewer solutions to a vehicle routing problem are
required. Nevertheless, future research must provide solutions on how to train these models,
as usually a lot of training data is needed, which can only be required by extensive and
computationally costly simulations.
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Appendix

I Simulation Framework

Creation of Zone System
For creating zones and corresponding centroids, a maximum coverage problem based on Wal-
lar et al. [2018] is solved. Let Kn be the set of access nodes reachable from node n within a
maximum driving time of tZmax. The minimum set of zone centroid nodes that guarantee that
each access node is reachable by at least one centroid node within a maximum driving time
of tZmax is determined by solving the following ILP:

Minimize:
∑
n∈N

xn (33a)

s.t.:
∑
n̂∈Kn

xn ≥ 1 ∀n ∈ N (33b)

xn ∈ {0, 1} ∀n ∈ N (33c)

Constraints 33b ensure that each access node is reachable by at least one centroid node.
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Appendix

II Further Results - Assignment

Impacts of Ride-Pooling
Figure II.1 shows the vehicle occupancy counts on different network sections for different
scenarios. High occupancy trips (5-6 passengers) are especially notable in the Chicago case
study on highways between the city center and the airports. While high occupancy levels are
also observed in central Manhattan, occupancy counts of 5-6 are hardly observed in Munich.
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II Further Results - Assignment

(a) Chicago. 100% Demand Penetration.
1700 vehicles with capacity 6.

(b) Manhattan. 100% Demand Pene-
tration. 1600 vehicles with capac-
ity 6.

(c) Munich. 10% Demand Penetration.
1200 vehicles with capacity 6.

Figure II.1: Vehicle occupancy counts on different network sections. Thickness indicates the
number of vehicles passing through the section with a given occupancy. Higher
occupancy are plotted on top of lower occupancy levels.

211



Appendix

Assignment Reliability
In extension to Figure 5.8, Figure II.2 shows the impact of different assignment reliability
strategies for the Munich case study. Overall, similar behavior is observable in the Munich
case study compared to the discussion of the Chicago case study in section 5.2.3.
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III Further Results - Repositioning

III Further Results - Repositioning

Calibration of Parameters
Figures III.1 and III.2 show the calibration of the demand scaling factor and repositioning
forecast horizon parameters for the Hor -Method and the QT -Method, respectively.

Figure III.1 shows the calibration of the demand scaling factor µHor and the forecast horizon
HHor for the Hor -Method. A strong dependency on the service performance is notable, espe-
cially with respect to µHor. As this method repositions idle vehicles proportional to expected
demand scaled by µHor, a sharp drop in served requests is observed for low values of µHor.
On the contrary, if µHor is chosen too high, the number of served requests settles, but VKT
increases as too many repositioning trips are assigned. Concerning the forecast horizon HHor,
a sharp increase in served requests is observed in the Chicago case study when increasing the
forecast horizon from 1800s to 2700s (and a low value for µHor). In this regime, a forecast
horizon of 1800s is insufficient for repositioning to cover the large operating area of Chicago.

As a trade-off between served requests and VKT, the values µHor = 0.05 and HHor = 2700s
are chosen for the calibration of the Hor -Method.

Similarly, Figure III.2 shows the calibration of the demand scaling factor µQT and the forecast
horizon HQT for the QT -Method. As this method tries to balance idle vehicles on a relative
measure of expected demand, this method is less sensitive to the demand scaling factor µQT . It
is also less sensitive to the forecast horizon HQT , as the method does not constrain repositioning
trips with trip durations exceeding the forecast horizon.

The values µQT = 0.3 and HQT = 2700s are chosen for the calibration of the QT -Method
as they show a good trade-off between served requests and VKT in all case studies.
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Figure III.1: Calibrating Factors for Hor -Method.
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Figure III.2: Calibrating Factors for QT -Method.
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Impacts of Repositioning
As extension to the evaluation of the impact of repositioning on the Chicago case study in
section 5.3.2, Figures III.3 and III.4 show the spatial and temporal impact of repositioning for
Munich and Manhattan, respectively.

For Munich (Figure III.3), it has been evaluated that repositioning is less vital. Nevertheless,
repositioning improves the service rate, especially in the outskirts of the city. The temporal
distribution of vehicle occupancy shows the typical morning and evening peaks from the un-
derlying private vehicle trip demand pattern. Also without repositioning, the fleet is highly
utilized during these times resulting in high vehicle revenue hours. Nevertheless, idle vehicles
still remain during these times and are utilized once repositioning is applied.

(a) No Repo. (b) With Repo.

(c) No Repo. (d) With Repo.

Figure III.3: Spatial and Temporal Impact of Repositioning for Munich with 240 Vehicles.
(Extension of Figure 5.9)

For Manhattan (Figure III.4), the impact of repositioning is more significant. Without
repositioning, the number of unserved requests is high, especially in the center of Manhattan.
At the same time, idle vehicles (indicated by the size of black circles) are observed in the north
of Manhattan. The temporal distribution shows that only up to 240 of 320 vehicles are utilized
during peak times without repositioning. If repositioning is applied, vehicle utilization increases
to close to 100%, allowing to serve more requests, especially in the center of Manhattan.
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III Further Results - Repositioning

(a) No Repo. (b) With Repo.

(c) No Repo. (d) With Repo.

Figure III.4: Spatial and Temporal Impact of Repositioning for Manhattan with 320 Vehicles.
(Extension of Figure 5.9)
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IV Further Results - Reservation

Scenarios and Parameters
In extension to the discussion in section 5.4.1, Figure IV.1 and IV.2 show the spatial and
temporal distributions of pre-booking customers when applying uniform, low shareability, and
high shareability distributions to create reservation requests for the Munich and Manhattan
case studies, respectively. Similar to the discussion provided in section 5.4.1, the number of
reservation requests tends to be higher in high-demand areas and peak times when applying the
high shareability distribution. In Munich, this is temporally notable in the morning and evening,
while spatially more pre-booking customers are created in the city center. In Manhattan, the
high shareability distribution creates more reservation requests in the late evening and in the
center of Manhattan.
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IV Further Results - Reservation

(a) Uniform Distribution: Reser-
vation Request Density.

(b) High Shareability Distribu-
tion. Increase in Reserva-
tion Request Density com-
pared to Uniform Distribu-
tion.

(c) Low Shareability Distribu-
tion. Increase in Reservation
Request Density compared to
Uniform Distribution.

(d) Temporal distribution of reservation times of pre-booking requests
for the different generating distributions in 15 min bins.

Figure IV.1: Spatial and temporal distributions of pre-booking customers when applying uni-
form, low shareability and high shareability on the overall request set for the
Munich Case Study. A share S = 25% reservation requests is used for all cases.
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(a) Uniform Distribution:
Reservation Request
Density.

(b) High Shareability Distri-
bution. Increase in Reser-
vation Request Density
compared to Uniform Dis-
tribution.

(c) Low Shareability Distribu-
tion. Increase in Reserva-
tion Request Density com-
pared to Uniform Distribu-
tion.

(d) Temporal distribution of reservation times of pre-booking requests
for the different generating distributions in 15 min bins.

Figure IV.2: Spatial and temporal distributions of pre-booking customers when applying uni-
form, low shareability and high shareability on the overall request set for the
Manhattan Case Study. A share S = 25% reservation requests is used for all
cases.
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IV Further Results - Reservation

Impact of Long-Term Reservations
In extension to the results in section 5.4.2 and Figure 5.16 for the Chicago case study, Fig-
ures IV.3 and IV.4 show the impact of long-term reservations for on-demand and reservation
requests for the Munich and Manhattan case studies, respectively.

Similar to the Chicago case study, the number of served reservation requests drops if the
fraction of reservation requests exceeds 50%. The service rate for on-demand requests is not
significantly impacted by the share of reservation requests and can drop to below 30% for the
Manhattan case study with 280 vehicles operated. As the approach of a vehicle is planned
early on, the waiting times tend to be lower for reservation requests. Nevertheless, the average
detour increases for reservation requests as the chances of finding shared schedules increase.
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Figure IV.3: Different KPIs for the Munich Case Study with Homogeneous Reservation Request
Distribution.
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Figure IV.4: Different KPIs for the Manhattan Case Study with Homogeneous Reservation
Request Distribution.
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Evaluation of Rolling Horizons
In addition to Figure 5.22 in section 5.4.7, Figure IV.5 and IV.6 show the impact of the rolling
horizon parameters on the Munich and Manhattan case studies, respectively.

Similar observations to the Chicago case study can be made: The value of reservation
increases with the short-term horizon T shorth . Another increase is observed with the revelation
horizon T relh until 720s in the case studies for Munich and Manhattan. For the Chicago
case study, a value of T relh = 1080s has been observed, likely due to longer trips that are
beneficial to be revealed earlier to the online optimization. With increasing horizons, the overall
computational time also increases. Especially for the Manhattan case study, a substantial
increase can be observed. As the Manhattan case study consists of a high density of short
trips, the rise in the number of active requests in the optimization problem is higher, resulting
in a non-linear increase in computational time.
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Figure IV.5: Impact of Horizons for Munich Case Study with 25% Reservation Requests from
the Homogeneous Distribution and 240 vehicles.
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IV Further Results - Reservation
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Figure IV.6: Impact of Horizons for Manhattan Case Study with 25% Reservation Requests
from the Homogeneous Distribution and 320 vehicles.
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