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Abstract

Modern physics simulations are often complex and computationally expensive. A common approach
to tackle this problem involves the division of the simulation domain into smaller subdomains, which
are solved separately. This domain partitioning also involves a process to recombine the partial so-
lutions to a global one, named coupling. Different numerical methods are then available to solve the
subproblems. Promising methods for this are parallel-in-time (PinT) methods, which aim to parallelize
the time stepping over the temporal domain, with a promising candidate being the spectral deferred
correction (SDC)-based PFASST algorithm. A combination of domain partitioning and PinT methods
seems to be a promising candidate for efficient simulation parallelization. However, for the successful
combination of these methods, it is desired that the interaction of both methods does not alter their error
behavior significantly.

This thesis focuses on the analysis of error and convergence of an SDC-based time integrator in
the context of domain partitioning. In this context, we implement a solver using SDC and carry out
simulations to investigate its error behavior with different settings. For the implementation of the solver,
we use the open-source libraries FEniCS and pySDC, of which FEniCS provides spatial discretization
using the finite element method (FEM), and pySDC serves as a framework for SDC. For coupled
simulations, we use the open-source library preCICE. As scenarios for the simulations, we use multiple
adapted versions of the forced heat equation in a two-dimensional domain. We apply the method
of manufactured solutions (MMS) to create analytical reference solutions we then use to verify the
implementation and measure the conducted simulations’ errors. We analyze the error behavior in the
generated data and suggest further research.
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1 Introduction

Many problems in Science and Engineering require the solution of initial or boundary value problems
to simulate the evolution of a system through time.[5, 13] Such problems can generally be described
by ordinary differential equations (ODEs) or partial differential equations (PDEs), where an analytical
solution often only exists for specialized scenarios. An example of this would be the famous three-
body problem [25]. This leads to the necessity of simulations using numerical methods for generalized
scenarios.

When simulations consider multiple physical phenomena, one can speak of the conduction of a multi-
physics simulation. Depending on the problem, e.g. the domain size and the simulated time interval,
these can become very complex and computationally expensive. Additionally, there often are separate
software tools available for the simulation of each specific physical phenomenon, but not necessarily
for multiple of them at once.

The method of choice is then often a divide-and-conquer approach, where the calculations are sep-
arated by physical phenomena, the simulation domain is partitioned into smaller subdomains or even
both. In this thesis, we will focus on the latter, domain partitioning, which is a common approach to
parallelize simulations by solving the subproblems on different processors or even different machines.
As simple as the partitioning may seem, the dependence between the subproblems requires a method
to recombine their solutions. This process is called coupling, and transfers necessary information from
one solver to another. From here on, we will refer to a solver who participates in a coupled simulation
as a participant. In the case of domain partitioning, the coupling can exchange values at the surface
between subdomains (surface coupling). The coupling process generally introduces new possibilities
for errors, depending on the data exchange method, different time step sizes or spatial resolutions of
the participants and the coupling frequency.

Regarding the solving of the subproblems themselves, there are different numerical methods avail-
able. Probably the most simple of those methods is classical time-stepping with the explicit Euler
method, which is easy to implement and understand, but has severe limitations in terms of stability and
accuracy. Both can be improved by using higher-order and implicit methods respectively. The major
drawback of implicit schemes of higher order is, that the time steps become computationally expensive.
This increases simulation times for high temporal resolution dramatically, as conventional time stepping
is inherently serial. PinT methods try to counteract this, as they aim to parallelize the time stepping over
the temporal domain. Some prominent examples of PinT algorithms are Parareal [19], Parallel Full Ap-
proximation Scheme in Space and Time (PFASST) [10], and Multigrid Reduction in Time (MGRIT) [11].
PFASST is interesting for its use of SDC to create a higher-order method by using low-order time
integrators.

Both domain partitioning and PinT methods provide a way to speed up simulations by parallelizing
calculations. Therefore the combination of both seems to be a promising candidate for research. In this
thesis, we conduct simulations of several scenarios of the forced heat equation in a two-dimensional
domain using the SDC method, the basis of the PinT algorithm PFASST. For the implementation of
the SDC method, we use the open-source library pySDC. To solve a PDE, also spatial discretization
is required, which is done using the FEM with the library FEniCS. The conducted simulations include
monolithic and partitioned cases, to search for potential defects or a lowered convergence rate in-
troduced by the coupling process. The coupling process is implemented using the open-source library
preCICE. For the verification of the implementation and to create an error measure, we create predeter-
mined analytical solutions to the heat equation using the method of manufactured solutions (MMS). We
then analyze the conducted simulations regarding error and convergence and suggest further research
possibilities.
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We first provide a summarized introduction to the used algorithms and methods, including SDC,
FEM and domain partitioning in Chapter 2. In Chapter 3, the software tools used in this thesis are
described. We proceed with the details of the implementation in Chapter 4. The conducted simulations
and their results are presented in Chapter 5, with the conclusion and the suggestion of further research
possibilities in Chapter 6.
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2 Foundations

The major schemes and methods used in this thesis are SDC for time integration and the FEM to solve
the spatial part of the problem. To create a coupled simulation, we use domain partitioning and Dirichlet-
Neumann coupling as coupling scheme. This chapter aims to give an overview of those methods and
an introduction to their mathematical backgrounds.

2.1 Spectral Deferred Correction

The SDC methods were introduced in 2000 by Dutt et al. [9]. The basic idea behind SDC is to construct
methods equivalent to high-order implicit schemes by the use of cheaper low-order time integration
schemes. This section is aimed to summarize the basic concepts of SDC.

2.1.1 The Picard Integral Equation

Assuming we want to solve an initial value problem of the form

∂u

∂t
= F (u(t), t)

The original problem is replaced with the corresponding Picard integral equation, by integration w.r.t.
the time t:

u(t) = u(t0) +
∫ t

t0
F (s, u(s))ds (2.1)

Given some approximation uapprox(t) of the solution, the residual and error functions can be formu-
lated as

ϵ(t) = u(t0) +
∫ t

t0
F (s, uapprox(s))ds− uapprox(t) (2.2)

δ(t) = u(t) − uapprox(t) (2.3)

By combining the Functions 2.1, 2.2 and 2.3 we can reformulate the equations to form

δ(t) =
∫ t

t0
[F (s, uapprox(s) + δ(s)) − F (s, uapprox(s))]ds+ ϵ(t)

Summarizing the integrand in the above equation to

G(t, δ(t)) = F (s, uapprox(s) + δ(s)) − F (s, uapprox(s))

all these reformulations yield another Picard-like integral equation

δ(t) −
∫ t

t0
G(s, δ(s))ds = ϵ(t) (2.4)
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2.1.2 Picard Iteration

The method with which integral equations, such as 2.1 are solved is called Picard-iteration. It is a
fixed-point iteration method, where the constructed series of functions converges to the solution of the
integral equation for sufficiently small values of h.

u[0](t) = u0 where u0 = u(t0)

u[i+1](t) = u0 +
∫ t

t0
F (s, u[i](s))ds, t ∈ [t0, t0 + h]

In our case, we never know the function over the full time interval, but at discrete points in time. Those
are then used, to replace the exact computation of the integral by a low-order numerical time integration
method. For the following example we use the implicit or explicit Euler method. Assume we are given
some set of points in time t0 < t1 < · · · < tN on a time interval [a, b] and an initial value u0 = u(t0),
for which we want to compute the solution for the integral equation 2.1. Starting from t0 we iteratively
apply explicit or implicit Euler steps given by the following formulas. Note that the use of implicit Euler
steps also requires an initial value for the solution at time t1.

un+1 = un + hiF (un, tn), hi = ti+1 − ti (Explicit Euler Step)

un+1 = un + hiF (un+1, tn+1), hi = ti+1 − ti (Implicit Euler Step)

Similarly, the Euler steps can be defined for the Picard-like equation 2.4.

δi+1 = δi + hiG(ti, δ(ti)) + (ϵ(ti+1) − ϵ(ti)) (Explicit Euler Step)

δi+1 = δi + hiG(ti+1, δ(ti+1)) + (ϵ(ti+1) − ϵ(ti)) (Implicit Euler Step)

The application of such time-stepping yields approximated values for the solution and the error func-
tion at all used discrete points in time. These are the discretized solution and error function in the
first iteration of the Picard iteration. The error function values can then be used to correct the solution
approximation, to produce the next, better approximation. This process is repeated iteratively such that
the approximations converge towards the true solution of the integral equation.

2.1.3 Spectral Integration

In the previous subsection, we have seen that Euler steps can be used to approximate the integrals in
the Picard iteration. However, the computation of the residual function ϵ(t), which is also required for
the mentioned Euler steps, requires integrals of the right-hand side function F (u, t). Since one of those
is required for every discrete time point we will now introduce the concept of spectral integration as an
efficient way to calculate those integrals.

Assume we have a function ϕ(t) for which we want to calculate the integral over some interval [a, b].∫ b

a
ϕ(t)dt

For this purpose we assume to be given function values ϕ = {ϕ1, ϕ2, . . . , ϕN } on a set of points in
time t1 < · · · < tN within the interval [a, b].

We then construct the Lagrange interpolation polynomial LN (ϕ, t) for ϕ using the given function
values and support points.

LN (ϕ, t) =
m∑

i=1
ϕ(ti)li(t)
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li(t) =
∏
j ̸=i

t− tj
ti − tj

The original integral can then be approximated by integration of the Lagrange interpolant of ϕ.∫ b

a
ϕ(t)dt ≈

∫ b

a
LN (ϕ, t)dt =

∫ b

a

m∑
i=0

ϕ(ti)li(t)dt =
m∑

i=1
ϕ(ti)

∫ b

a
li(t)dt

Thus we can represent the original integral as a weighted sum of the integrated basis functions li(t),
where the weights are the function values ϕ(ti).

Since the computations of the residual at our discrete time points require one integral each, from
the same starting time a to different end times t1, . . . , tN , we perform those calculations as a single
matrix-vector product.

SNϕ = ψ

ϕ = {ϕ(t1), . . . , ϕ(tN )} ∈ RN

(SN )j,i =
∫ tj

a
li(t)dt for i, j = 1, . . . , N

This multiplication of ϕ with the so-called spectral integration matrix SN yields a vector ψ. This vector
contains the approximated integrals of the function ϕ(t) from a to t1, . . . , tN . respectively.

By using constant support points, we can use the fact that the Lagrange basis functions only depend
on those points, which allows the precomputation and storage of those integrals. Additionally, any
definite integral over some arbitrary interval can be written as a ‘scaled’ version over the interval [−1, 1],
by simple variable transformation. This further simplifies the process, such that for fixed distributions of
support points within an interval, the corresponding integrals of the basis functions li(t) on the interval
[−1, 1] can be stored in a lookup table and scaled on demand for our calculations.

It remains the question of what distribution of support points to choose, as it can be expected, that
they have a significant influence on the accuracy of the interpolation and integral approximation. The
use of equidistant points for example, can lead to numerical instabilities like the Runge phenomenon.
To prevent this, Gauss-Legendre or Gauss-Lobatto quadrature nodes are usually a good choice for the
support points. For this reason, we will call the support points nodes in the following chapters.

2.1.4 The Algorithm

After the introduction of the main components, we can now outline the SDC algorithm using the following
definitions.

∂u

∂t
= F (u, t) Problem definition

s1, . . . , sN Gauss-Legendre quadrature nodes on the interval [a, b]
ua = (ua, ua, . . . , ua) N element vector of the initial value of the solution

uj = (uj(s1), . . . , uj(sN )) Vector of j-th approximation solution values

F (uj) = (F (s1, u
j(s1)), . . . , F (sN , u

j(sN ))) Vector of j-th approximation right hand side evaluations

Recall the residual function 2.2. We now replace the exact integral with spectral integration as de-
scribed in the previous subsection to obtain
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σ(uj) = SNF (uj) − uj + ūa

where σ(uj) is the vector containing the residual function values for all nodes with the j-th approxi-
mation of the solution. The full procedure can be summarized by the following outline:

Algorithm 1 Spectral Deferred Correction

▷ Initialization ◁
Compute initial approximation u0 for all nodes s1, . . . , sN on the interval [a, b] using a low-order time
integration method (in our case explicit/implicit Euler, depending on the stiffness of the problem)
▷ Iterative Corrections ◁
for j = 0, . . . , J do

(1) Compute the current approximate residual function σ(uj)
(2) Compute the error function δj by solving the Picard-like equation 2.4 with a low-order method
(explicit/implicit Euler for us). The initial value for the error function δj(a) is set to zero.
(3) Update the approximation uj+1 = uj + δj

Some remarks on the algorithm:

• One full iteration of the algorithm, where the approximation is updated at all nodes is called a
sweep. The number of sweeps, J , can be chosen arbitrarily large, where more sweeps produce
a more accurate approximation of the true solution. If the true solution is of a temporal degree
smaller or equal than the number of nodes N , the interpolation polynomial and the spectral
integration is exact, yielding the best possible approximation after a single iteration. Even if this
is not the case, it is generally recommended to set an upper limit for the number of iterations, and
potentially stop early if the residual function is small enough.

• The choice between explicit or implicit time stepping methods depends on the stiffness of the
problem. For non-stiff problems, the explicit Euler method is used, while for stiff problems, the
implicit Euler method is used. Note that for implicit Euler steps, the initial value for the solution and
the error function at time t1 is required. Since the error is estimated to be small, 0 can generally
be used as an initial value. The initial value for the solution at time t1 could be estimated using a
single explicit Euler step.

• Throughout the algorithm, the initial condition at time a for a time interval is known and the solution
value for the end time b is required. Since Gauss-Legendre nodes do not cover the boundaries of
the interval, no result for the solution at time b is available. This is no problem, as the interpolating
Lagrange polynomial can be evaluated at that point to generate a value. Another solution would
be the use of Gauss-Lobatto nodes, which ensure support on the interval boundaries, but provide
accurate results up to a lower degree than Gauss-Legendre nodes. This is also the solution our
implementation uses.

One of the biggest advantages of this algorithm is its black-box nature. Once implemented, it can
be applied to any problem of the form ∂u

∂t = F (u, t) without further modifications. The only thing that
needs to be supplied is the evaluation of the right-hand side function F (u, t) for some given solution
approximation at arbitrary points in time. Of course, boundary conditions and initial conditions also
have to be provided to ensure a unique solution to the problem.

2.1.5 Multi-Level SDC

Several variants and improvements of this original SDC method have been developed over the years.
One of the more significant ones is the extension to Multi-Level Spectral Deferred Correction (MLSDC) [31].
The idea behind this variant is to perform the SDC sweeps on multiple levels of spatial discretizations.
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Those levels are then coupled using a FAS (Full Approximation Scheme) correction term, which en-
hances the accuracy of the coarser levels. This way, some sweeps on the finer levels can be replaced
by cheaper sweeps on the coarser levels (due to the coarser spatial grid), which can lead to a signif-
icant speedup of the overall algorithm. This approach is very similar to the V-cycles used in multigrid
methods.

2.1.6 PFASST

PFASST (Parallel Full Approximation Scheme in Space and Time) [10] is another variant of the SDC
method, which aims to parallelize the SDC algorithm in the time dimension. The approach is very
similar to the MLSDC method, in the sense that it uses coarsened temporal grids (on the coarser of
which spatial coarsening can be performed as well). The main difference is that the PFASST algorithm
is designed to run successive corrections on separate time intervals in parallel. Therefore it is also
denoted as a parallel-in-time method.

2.2 Finite Element Method

In comparison to ordinary differential equations, partial differential equations require not only temporal
but also spatial discretization. This fact has to be acknowledged in our method to calculate the tem-
poral derivative for SDC. There exist several methods for spatial discretization, like Finite Differences,
Finite Volumes, and Finite Elements. Especially for problems in physics and engineering, the FEM
is a widely used method with applications including heat transfer [1], fluid dynamics [34], structural
engineering [27], and many more.

The FEM is based on the idea of discretizing the domain of the PDE into a finite amount of smaller,
simpler subdomains, called elements, the namesake of the method. Depending on the dimensions
of the problem, these elements can take many different forms, be it lines, triangles, quadrilaterals,
tetrahedra and more1. The elements themselves are described by a set of nodes, which are used as
support points for the solution within one element. In one dimension, these could be the endpoints
of a line segment. Depending on the number of nodes, the interpolation can be linear, quadratic, or
even higher order. The resulting systems of equations for the solution in the different elements are then
combined to form a global system, which can be solved for the global solution of the problem.

2.2.1 The Forced Heat Equation

The results of this thesis are based on tests around the forced heat equation, a PDE that describes the
heat distribution in a domain over time, with an additional forcing term f that characterizes its behavior.
Therefore this chapter will take said equation as an example to explain the applied concepts.

u̇− ∇2u = f (Forced Heat Equation)

∇2u = ∂2u

∂x2
1

+ ∂2u

∂x2
2

+ · · · + ∂2u

∂x2
n

(Laplacian of u(x⃗, t))

In this equation u(x⃗, t) is the unknown temperature distribution function in the domain, u̇ is the deriva-
tive w.r.t time t of that function, and f is the forcing term. Additionally, boundary conditions on the
domain boundary ∂Ω are required. For simplicity, we will for now assume homogeneous Dirichlet
boundary conditions (BCs), i.e. u = 0 on the complete boundary ∂Ω.

1A comprehensive list of commonly used elements can be found at [4].
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2.2.2 Variational Formulation

After the definition of the PDE and the boundary conditions, the first step is the creation of the variational
formulation of the problem. This formulation is derived by multiplying the PDE with a test function and
integrating it over the spatial domain. Such a test function is an element of some function space V
taylored to the chosen mesh of elements. In a one-dimensional case, an example for this could be a
space of hat-functions over the domain.

If we apply this to the forced heat equation, we get the following variational formulation.∫
Ω
u̇v dx−

∫
Ω

(∇2u)v dx =
∫

Ω
fv dx ∀v ∈ V

By applying integration by parts we have∫
Ω
u̇v dx+

∫
Ω

∇u∇v dx−
∫

∂Ω

∂u

∂n
v ds =

∫
Ω
fv dx ∀v ∈ V (2.5)

where n is the outwards normal vector on the domain boundary ∂Ω. In this variational formulation,
it is necessary for the test function v to be zero on the parts of the boundary where the solution is
known.[17]

Using our assumptions about the boundary, i.e. u = 0 on ∂Ω, and the fact that v is zero on all parts
of the boundary with known values, we can simplify the equation to∫

Ω
u̇v dx+

∫
Ω

∇u∇v dx =
∫

Ω
fv dx ∀v ∈ V

2.2.3 Spatial Discretization

We discretize this variational formulation by finding a function uh in some trial function space W that
satisfies the equation. ∫

Ω
u̇hv dx+

∫
Ω

∇uh∇v dx =
∫

Ω
fv dx ∀v ∈ V

Generally, the trial function space W and the test function space V can be different, but for our
purposes we set W = V . Since each function in V can be described as a linear combination of its
basis functions, it suffices to show the variational equation holds for those basis functions of V . We
denote them as ϕi, i = 0, . . . , n.∫

Ω
u̇hϕi dx+

∫
Ω

∇uh∇ϕi dx =
∫

Ω
fϕi dx i = 0, . . . , n

The solution approximation uh is also an element of V and can therefore as well be described as
a linear combination of the basis functions ϕj(x) and the corresponding time-dependent coefficients
ξj(t) with j = 0, . . . , n.

uh(x, t) =
n∑

j=0
ξj(t)ϕj(x)

Inserting this ansatz into the variational formulation, we get∫
Ω
fϕi dx =

n∑
j=0

ξ̇j(t)
∫

Ω
ϕjϕi dx

+
n∑

j=0
ξj(t)

∫
Ω

∇ϕj∇ϕi dx i = 0, . . . , n

We then use the following notation
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Mij =
∫

Ω
ϕjϕi dx

Kij =
∫

Ω
∇ϕj∇ϕi dx

bi(t) =
∫

Ω
f(t)ϕi dx

to rewrite the equation as matrix formulation

Mξ̇(t) +Kξ(t) = b(t) (2.6)

where M is called the mass matrix, K the stiffness matrix.
Normally, the FEM would now use time discretization to create a system of equations that makes use

of known coefficients ξ(ti) to solve for the coefficients (i.e. the solution) at time ti+1. However, in the
context of this thesis, we are interested in calculating the temporal derivative of the coefficients, ξ̇, out
of the known coefficients ξ at time t. By simple reformulation of Equation 2.6 we get a rather short and
elegant equation to do so.

ξ̇(t) = M−1(b(t) −Kξ(t))

Keep in mind, that both, the mass matrix M and the stiffness matrix K are time-independent and can
be precomputed, once the domain mesh and used trial and test function spaces are determined.

2.2.4 Dirichlet and Neumann Boundaries

In the previous sections, we assumed homogeneous Dirichlet BCs, i.e. u = 0 on the complete boundary
∂Ω. However, in many cases, this assumption is not valid and we need to consider non-zero Dirichlet
or Neumann BCs.

For non-zero Dirichlet BCs, we can use the same approach as for homogeneous Dirichlet BCs, by
simply letting the test function v be zero on the parts of the boundary where the solution is known.

Different from Dirichlet BCs, Neumann BCs do not specify a known value for the solution, but rather
a known rate of change of the solution in the outwards normal direction on the boundary (also called
flux). To incorporate this into our method, we cannot use the same approach as for Dirichlet BCs but
rather have to return to our variational formulation.

Recall Equation 2.5∫
Ω
u̇v dx+

∫
Ω

∇u∇v dx−
∫

∂Ω

∂u

∂n
v ds =

∫
Ω
fv dx ∀v ∈ V

This time we assume a Neumann boundary condition ∂u
∂n = g on the boundary ∂Ω, which can be

inserted into the equation.∫
Ω
u̇v dx+

∫
Ω

∇u∇v dx =
∫

Ω
fv dx+

∫
∂Ω
gv ds ∀v ∈ V

Following the same steps as before, we discretize this equation and get a matrix formulation including
Neumann BCs. Note that only the right-hand side vector b(t) is affected.

Mij =
∫

Ω
ϕjϕi dx

Kij =
∫

Ω
∇ϕj∇ϕi dx

bi(t) =
∫

Ω
f(t)ϕi dx+

∫
∂Ω
g(t)ϕi ds

Mξ̇(t) +Kξ(t) = b(t)
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2.3 Domain Partitioning

The first step when applying domain partitioning to divide a PDE, is to define the subdomains.
In the further context of this thesis, we will use Ω = [0, 2] × [0, 1] as the full simulation domain for the

forced heat equation. Additionally, we assume Dirichlet BCs on the boundary ∂Ω.
We will divide this domain into two subdomains, ΩD and ΩN along the line x = 1, yielding the left

and right half of Ω respectively, as seen in Figure 2.1.

Figure 2.1 The domain Ω partitioned into the subdomains ΩD and ΩN along the line x = 1. The dividing
boundary is labeled ΓD and ΓN respectively. This figure was taken from [29].

The surface given by the splitting line segment is part of the boundary for both subdomains and
therefore affects and is affected by the computations on both subdomains. For this reason, this surface
is called coupling boundary and named ΓD and ΓN depending on the current subdomain. The data
exchange at this boundary is then part of the coupling process.

2.3.1 Coupling

Since coupling involves the transfer of necessary data between two participants, there exist multiple
coupling schemes that can be used, which can be classified in several regards. One can speak of
uni-directional or bi-directional (depending on the direction of the data exchange), explicit or implicit
(single or multiple executions of participants per time step), parallel or serial (regarding executions of
participants) and surface or volume coupling (whether the exchanged data stems from the surface or
a part volume of a domain).[7] All of these classes provide a plethora of possible schemes. The one
best suited to a problem has to be determined depending on the definition of the subdomains and the
imposed boundary conditions at the coupling boundaries. In our case, we split the full domain into
non-overlapping subdomains, which makes surface coupling the most natural choice. We also impose
Dirichlet boundary conditions on ΓD and Neumann boundary conditions on ΓN . These choices lead to
the application of Dirichlet-Neumann coupling.

2.3.2 Dirichlet-Neumann Coupling

The Dirichlet-Neumann coupling scheme is an iterative coupling scheme generally outlined by Algo-
rithm 2.

By this definition, Dirichlet-Neumann coupling can be classified as bi-directional and implicit as data
is exchanged in both directions between the Dirichlet and the Neumann participant and both have to
be executed possibly multiple times until the tolerance ϵ is reached. It is also inherently serial, as the
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Algorithm 2 Dirichlet-Neumann Coupling

1: Set initial Dirichlet boundary condition on ΓD as some f0
2: Set k = 0
3: repeat
4: Compute solution u[k]

D on ΩD using fk as Dirichlet boundary condition

5: Calculate the flux gk = ∂u
[k]
D

∂n on ΓD (n is the outwards normal vector on ΓD)

6: Compute solution u[k]
N on ΩN using gk as Neumann boundary condition

7: Calculate new values for fk+1. In this step, relaxation factors can be used to accelerate the
convergence of the scheme. E.g. [24] uses fk+1 = θku

[k]
N |ΓN

+ (1 − θk)fk

8: Set k = k + 1
9: until ||gk+1 − gk|| < ϵ for some tolerance ϵ

computations of the Neumann participant have to be delayed until the Dirichlet participant provides the
necessary boundary conditions and vice versa.

One thing to note is that the outline provided by Algorithm 2 as is, is not well suited for time-dependent
problems as the boundary conditions are synchronized only at the start and end time of the participants’
computations. If the conditions changed a lot within that simulation time, this simple scheme would not
contain such information. Additionally, multi-step schemes requiring intermediate values of the bound-
ary conditions would not be able to use this scheme. This thought leads to the Dirichlet-Neumann
waveform relaxation [12], that is also offered in the preCICE library through its time interpolation fea-
ture [29]. The waveform relaxation acts as a time-dependent extension of the simple Dirichlet-Neumann
iteration and introduces some major changes to the algorithm. Assume [0, T ] be the full time interval
of the coupled simulation. This interval can be split into N ∈ N subintervals [ti, ti+1] with size ∆t = T

N ,
we will call time windows. By applying the iterative algorithm on each of the time windows, we can
control the synchronization frequency of the boundary conditions by specifying N with a desired value.
We also allow each participant to perform timesteps of sizes δt ≤ ∆t within a time window, with the
restriction, that the last timestep has to yield the solution at the end of the current time window, which
ensures non-interpolated results at those points. The data points provided by this subcycling allow for
the construction of an interpolant, the waveform, of the boundary condition, which is now exchanged
between the participants instead of the constant boundary condition. This enables each participant to
sample the waveform at arbitrary points within the current time window, which can be used for solvers
that rely on intermediate values in their computations.
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3 Software

This thesis mostly revolves around the convergence behavior of SDC methods, when used in coupled
simulations with preCICE. Therefore, in addition to the preCICE coupling library, libraries with existing
implementations of the SDC and FEM methods are used. This section will give a brief overview of the
software used in this thesis.

3.1 preCICE

preCICE [7] (Precise Code Interaction Coupling Environment) is an open-source coupling library for
partitioned multi-physics simulations, developed in the groups around Benjamin Uekermann and Miriam
Schulte at the University of Stuttgart and the group of Hans-Joachim Bungartz at the Chair for Scientific
Computing at the Technical University of Munich.

preCICE couples existing codes/solvers, capable of simulating a subpart of the complete physics
involved in a simulation. These subparts could be programs working on different subdomains of a
simulation, solvers for different physical forces acting on the same domain, or even different solvers
on separate domains. This allows for high flexibility and the ability to keep a decent time-to-solution
for complex scenarios, consisting of large domains and/or many physical phenomena. Its use cases
include fluid-structure interaction, conjugate heat transfer (see Figure 3.1), and many more. To achieve
this, preCICE offers convenient methods for transient equation coupling, communication, and data
mapping.

Figure 3.1 Illustration of a conjugate heat transport simulation, taken from a tutorial on the preCICE homepage1.
The coupling of the fluid and solid solver is done with preCICE.

The core library is written in C++ but offers additional bindings for C, Fortran, Python, and Matlab. It is
designed to be as minimally invasive as possible and therefore requires only a few function calls to set
up a coupling between two solvers. As an entry point for new users, preCICE offers a comprehensive
set of tutorials, covering several use cases and providing a step-by-step guide. For this thesis we use
the official release version 3.1.2 of preCICE with the python bindings version 3.1.1.

1See https://precice.org/

https://precice.org/
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3.1.1 Configuration

Since preCICE is designed to be as minimally invasive as possible, it is not directly part of the code
that solves the subproblems. Therefore, necessary information about the data and the solvers has to
be provided in the form of a configuration file in XML format. This file contains information about

• The form of data to be exchanged (e.g. scalars, vectors, or tensors)

• The meshes used to exchange the data (e.g. name, dimensions, data fields)

• The coupling participants and mapping scheme (e.g. name, provide and receive mesh, data fields
to exchange, mapping between the meshes)

• The communication channel between the different processes (e.g. TCP/IP on the loopback net-
work of OS)

• The coupling scheme (e.g. serial/parallel, explicit/implicit, used participants, maximum time, time-
window size, data exchange directions, relative convergence measure)

3.1.2 Adapters

The preCICE ecosystem also includes an extensive list of officially maintained high-level adapters
for well-known open-source solvers like OpenFOAM [8], FEniCS [28] and several more [32]. These
adapters provide additional abstraction from the lower-level calls to the preCICE library, making the
work with such solvers more comfortable. Apart from the officially maintained adapters, community
members have also contributed adapters for other codes, which are hosted via the official preCICE
Github repository2. In this thesis, the FEniCS-preCICE adapter is used, as FEniCS provides the spatial
discretization and representation of the data.

3.1.3 FEniCS-preCICE Coupling

This subsection briefly introduces the main calls necessary to work with the FEniCS-preCICE adapter.3

The first step is to create an adapter instance, using its own configuration file.

precice = Adapter(adapter_config_filename="precice-adapter-config.xml")

This file contains a reference to the original preCICE configuration file, as the adapter handles the
initialization of preCICE as well.

The next step is initialization, which requires information about the coupling subdomain, the function
space of the read data, and a function object representing the function space of outgoing coupling data.

precice.initialize(coupling_boundary,
read_function_space=V,
write_object=flux_function)

Note that each participant has to be initialized according to its corresponding domain and coupling
data constraints.

The data a participant receives can be requested and used via a coupling expression, which is
created using

2A more detailed list of available adapters can be found on https://precice.org/adapters-overview.html
3We use the FEniCS-preCICE adapter version 2.1.0 in this thesis.

https://precice.org/adapters-overview.html
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coupling_expression = precice.create_coupling_expression()

This expression can then be updated to retrieve the coupling data at a requested time.

read_data = precice.read_data(dt)
precice.update_coupling_expression(coupling_expression, read_data)

Similarly, coupling data is provided to preCICE in the form of a function object, which can then be
read by other participants.

precice.write_data(function_object)

With these calls, simple data exchange between the solvers is possible. To create a complete simu-
lation loop, several other calls are necessary.

• precice.is_coupling_ongoing() checks if max-time, as specified in the preCICE configuration
file, has been reached. This is used to signal the end of the coupling process.

• precice.requires_writing_checkpoint() and precice.requires_reading_checkpoint() each re-
turn a boolean, indicating that preCICE requires to read or write a checkpoint of the current state
to proceed with the coupling.

• precice.store_checkpoint(data, t, time_window) and precice.retrieve_checkpoint() are used
to store and retrieve the checkpoint data. Such a checkpoint consists of the data provided to
preCICE at a specific time for a specific time window. Time and time window are part of the
checkpoint data.

• precice.advance(dt) is used to advance preCICE after the solver has computed one timestep.
The argument dt is the length of the timestep the solver has performed.

• precice.get_max_time_step_size() returns the maximum time step size a solver is allowed to
compute with. It is given by the term min{t0 +n ·∆t− t, δt}, where t0 +n ·∆t− t is the difference
between the current simulation time and the end time of the current time window (characterized
by the integer n) and δt the default time step size of a participant’s solver. This time has to be
used in subcycling to ensure that the last timestep of a solver’s computation finishes at the end
of the time window.

3.2 FEniCS

FEniCS [2, 20]4 is a popular open-source computing platform for solving partial differential equations
(PDEs) with the finite element method (FEM)5. More specifically, FEniCS is an umbrella project, to
provide efficient interoperability of multiple software libraries, tools, and other components.

One of the core components of FEniCS is UFL (Unified Form Language) [3]. It is a domain-specific
language embedded in Python, designed to express variational forms for PDEs in a concise and read-
able way.

For example, the integral describing the mass matrix entries in our heat equation example

4Due to the fact, that currently, no finished adapter for FEniCSx (the latest iteration of FEniCS) is available, the legacy version
of FEniCS is used in this thesis.

5More on FEniCS can be found on https://fenicsproject.org/

https://fenicsproject.org/
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Figure 3.2 Structure of the FEniCS project. Source: https://commons.wikimedia.org/wiki/File:
Fenics-map.png

∫
Ω
ϕjϕi dx

can be easily expressed in UFL as

u * v * dx

where u = ϕj and v = ϕi are the trial and test functions, respectively. UFL also provides easy-to-use
methods to define meshes of different shapes and sizes,

mesh1 = UnitSquareMesh(8, 8)
mesh2 = UnitCubeMesh(8, 8, 8)
mesh3 = RectangleMesh(Point(0, 0), Point(1, 1), 8, 8)

as well as function spaces suited to those meshes, for which the element family6 and degree can be
specified.

Other components of FEniCS such as FIAT (Finite Element Automated Tabulator) [14, 15], FFC
(FEniCS Form Compiler) [16, 21, 26], and UFC (Unified Form-Assembly Code) are used to generate
finite element basis functions, compile UFL code to UFC representation, and evaluate and assemble
the variational forms efficiently.

The main interface for the user is the DOLFIN library [22, 23], which provides a C++ or a high-level
Python interface to the algorithms and data structures used in FEM and Numerical Algebra. It also
acts as a wrapper around the other components of FEniCS and handles communication with external
libraries.

6There exists a plethora of different element families with different attributes. A nice overview of elements in FEM can be
found in [4]

https://commons.wikimedia.org/wiki/File:Fenics-map.png
https://commons.wikimedia.org/wiki/File:Fenics-map.png
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3.3 pySDC

The pySDC project [30] is a Python implementation of the spectral deferred correction (SDC) approach
and its flavors, the multilevel extension MLSDC and PFASST. The simple Python interface is designed
for prototyping and educational purposes, which makes it an ideal candidate to use in a thesis project.7

The library includes several variants of the SDC method (explicit, implicit, IMEX, multi-level, . . . ),
some variants of the PFASST algorithm (virtual parallel for debugging, MPI-based parallel, . . . ) and a
variety of collocation types (Gauss-Legendre, Gauss-Lobatto, . . . ), ready to use. All of this is delivered
to the user in a heavily object-oriented fashion, which allows for easy extension and modification of the
provided classes, by inheritance.

When performing a simulation, pySDC provides a high level of abstraction from the actual numerical
methods used. For many use cases, it is sufficient for the user to implement only a custom problem
class, choose one of the provided sweeper class and controller and provide a suitable configuration.
A short introduction to those classes and the configuration and setup of a simulation is given in the
following subsections.

3.3.1 pySDC Classes

As pySDC is a library designed for fast prototyping and educational purposes, there are only few com-
ponents involved in the setup of a simulation. Due to the object-oriented design, they are encapsulated
in classes. In this subsection we provide a short description of the classes that are the main interaction
point for a user when using pySDC to setup a simulation.

The sweeper class: This class inherits from pySDC’s abstract base class sweeper and is respon-
sible for performing the iterative updates, the core of the SDC method. It generally contains data like
solution approximations from previous steps, the time values of the integration nodes, and integration
matrices. Using this information and calls to the problem class, the sweeper calculates the updated
solution values for the next iteration. Like most of the classes in pySDC, the sweeper can be com-
pletely customized by the user, as long as the constraints of the base class are fulfilled. For many basic
simulations, the library already provides more than ten sweepers of different types (implicit/explicit,
Runge-Kutta, FEM-based, . . . ) and orders, which can be used out of the box.

The problem class: A problem class in pySDC should inherit from the prototype class ptype and is
used to encapsulate problem-specific information and functionality. This includes certain parameters
like physical constants and methods that are required by the sweeper. Examples of the latter are
the calculation of the time derivative (eval_f), a method to apply the mass matrix to a given solution
approximation (apply_mass_matrix), or a residual correction method. Which methods a user has to
provide an implementation for depends on the chosen sweeper class, thus it should be selected first.
By design, the problem class is the main interaction point for a user, when using pySDC to simulate a
specific problem.

The controller: The heavy lifting in pySDC is done by the controller. It acts as a frontend endpoint
for pySDC that handles the initialization of the problem and the sweeper, as well as the generation of
the more involved objects pySDC uses internally, such as levels and steps. pySDC at least provides
a non-MPI (runs serialized versions of the algorithms) and an MPI controller (implements parallelism;
requires MPI installation). Since we are interested in convergence and error analysis, the non-MPI
controller is sufficient for our purposes and allows for debugging in a serialized, deterministic fashion.
These controllers can be used to execute SDC, MLSDC, and PFASST algorithms, depending on their
configuration. The initialization routine for the non-MPI controller looks as follows:

7For the implementation in this thesis, we use a fork of the original pySDC project. The specific commit we forked from can
be found at https://github.com/Parallel-in-Time/pySDC/tree/e372a43.

https://github.com/Parallel-in-Time/pySDC/tree/e372a43
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controller = controller_nonMPI(
num_procs=1,
controller_params=controller_params,
description=description

)

Regarding the arguments, we neglect the number of processes, as the non-MPI controller serializes
the algorithms anyway. The more interesting parts are the dictionaries containing the controller pa-
rameters and the problem description. Such dictionaries define the behavior of the controller, the used
algorithm, and the problem to solve. Therefore we will give a brief overview of the configuration.

3.3.2 Configuration Dictionaries

As mentioned in the previous subsection, the user has to provide two dictionaries as configuration for
the controller, the controller_params and the description dictionary. An example of a full configuration
is given below.

controller_params = {
'logger_level': logger_level

}

description = {
'problem_class': fenics_heat_2d,

# constructor arguments for the problem class
'problem_params': {

'function_space': function_space,
'coupling_boundary': coupling_boundary,
'remaining_boundary': remaining_boundary,
'solution_expr': u_D,
'forcing_term_expr': forcing_expr,
'precice': precice,
'coupling_expr': coupling_expression

},
'sweeper_class': imex_1st_order_mass,

# constructor arguments for the sweeper class
'sweeper_params': {

'quad_type': quad_type,
'num_nodes': num_nodes,

},
'level_params': {

'restol': restol,
'dt': dt

},
'step_params': {

'maxiter': maxiter,
}

}

The controller_params dictionary specifies for example controller output and logging to file capa-
bilities. The description dictionary is much more interesting and defines parameters regarding the
simulation, the used SDC sweeper, problem parameters, and so on.

Problem and sweeper class have to be specified as entries in the description dictionary with the
keys 'problem_class' and 'sweeper_class' respectively. The initialization routine of the controller then
handles the instantiation of those classes. Necessary input parameters for the constructors also need
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to be provided via the dictionary entries 'problem_params' and 'sweeper_params', which themselves
are dictionaries.

Two other major entries are 'level_params' and 'step_params'. A level in pySDC is a class that
contains all data and functionality to perform sweeps on that particular level, including the solution,
right-hand side vectors, and problem instances. The level parameters contain information, that gets
forwarded to every level created in the controller. Here we can specify 'dt' as the size of a time
interval and 'restol' as the stopping criterion when the residual after an iteration is smaller than the
specified value. A collection of levels with potentially differing amounts of integration nodes or spatial
grids are grouped in a hierarchy, within the step class. As the name suggests, the step class contains
functionality to perform one full timestep using the contained levels. In the step_params dictionary we
can then specify a maximum iteration limit as 'maxiters', to stop early in cases of slow convergence.

Since SDC without multiple levels already acts as a high-order time integration method, MLSDC is
not further explored in this thesis, which leaves only few entries for our level_params and step_params.
If MLSDC were to be used, one could specify different amounts of nodes and spatial subdivisions for
the levels as well as transfer operators for interpolation and restriction of data between the levels. For
this, pySDC allows the insertion of sweeper and problem parameters in the form of lists, where each
entry serves as input for a different level. 8

8For more information on how to use MLSDC with pySDC, a look at the tutorial series on https://parallel-in-time.
org/pySDC/ is suggested.

https://parallel-in-time.org/pySDC/
https://parallel-in-time.org/pySDC/
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4 Implementation

This chapter describes the two implementation parts of the SDC-based solver we use for simulations,
namely the problem class and the simulation/coupling loop. It has to be noted, that the current im-
plementation only supports the use case as Dirichlet participant. For this reason, simulations in this
thesis use an already existing solver from the preCICE tutorials as Neumann participant. Nevertheless,
a future implementation for the Neumann case is kept in mind, by keeping the implementation easily
extensible.

4.1 Problem Class

As mentioned in Subsection 3.3.1, the problem class is the central interface for the user to define the
problem to be solved. Also as mentioned in the same subsection, we first decide on a sweeper class
that we want to use, as it determines mandatory methods we need to implemented in the problem
class. In our case, we choose the imex_1st_order_mass sweeper, already provided by pySDC. As
the name suggests, this sweeper uses first-order time stepping as the underlying time integrator and
solves one part of the problem implicitly and the other one explicitly. The ending of the name, mass,
stems from the fact that this sweeper works with FEniCS as FEM solver and includes the mass matrix
in the calculations. It has to be noted, that the SDC algorithm as described in Subsection 2.1 is a basic
formulation. There are different formulations of the SDC algorithm, achieving the same goal, therefore
we limited the introduction of SDC to the basic formulation. Similarly, the imex_1st_order_mass sweeper
we use, internally uses one of those different formulations. Since we use pySDC as a tool that hides
such implementation details behind a layer of abstraction, we do not need to worry about the exact
formulation used. Due to the same reason, the calculation of the derivative in our implementation is
split into an explicit and an implicit part, in contrast to the to the description in Section 2.2. The FEniCS
example of the one-dimensional forced heat equation in the pySDC tutorials serves as a baseline for
the implementation and is adapted to our needs.

With the selection of the sweeper class out of the way, we determine the methods we are required to
provide. For convenience, we provide aliases for the pySDC classes, that encapsulate FEniCS meshes
with additional convenience methods. By inheriting from the ptype class, we also get additional help
through the provided abstract declarations.

Reduced to its method signatures, the final problem class looks as follows:

class fenics_heat_2d(ptype):
# Aliases for the data types used for computations with FEniCS
dtype_u = fenics_mesh # contains a single FEniCS mesh
dtype_f = rhs_fenics_mesh # contains two FEniCS meshes (explicit and implicit part)

def __init__( self, function_space, forcing_term_expr, solution_expr,
coupling_boundary, remaining_boundary, coupling_expr, precice ):

. . .

def solve_system(self, rhs, factor, u0, t):
. . .

def eval_f(self, u, t):
. . .
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def fix_residual(self, res):
. . .

def apply_mass_matrix(self, u):
. . .

The usage and bodies of these methods are explained in more detail in the following subsections.

4.1.1 Constructor

The constructor is called when the controller instantiates the problem class as part of the initialization
process. The constructor of the problem class used in the pySDC-FEniCS tutorial1 handles the creation
of FEniCS Mesh, FunctionSpace and Expression objects by itself. Its constructor arguments directly
influence the properties of those objects. In our simulation, which uses many of those objects in the
solver program (see Section 4.2), we create them externally and pass them into the class as constructor
arguments. This way, the customization of the manufactured solution, the wanted FEniCS meshes and
function space, and many more is dealt with outside of the problem class in a central location.

The constructor signature then looks as follows:

def __init__( self,
function_space,
forcing_term_expr,
solution_expr,
coupling_boundary,
remaining_boundary,
coupling_expr,
precice):

The arguments are named as self-explanatory as possible.

• function_space is the FEniCS function space object used for the FEM discretization.

• forcing_term_expr and solution_expr are FEniCS Expression objects for the forcing term and
the manufactured solution, respectively.

• coupling_boundary and remaining_boundary are objects, defining the coupling boundary and the
rest of the subdomain boundary in terms of the used FEM mesh. This is achieved by inheri-
tance from the FEniCS class SubDomain. The implementation of the SubDomain member function
inside(self, x, on_boundary) then returns a boolean, indicating if a point x is part of the subdo-
main we want to define. The argument on_boundary is a boolean provided by FEniCS, indicating
whether the point lies on the boundary of the complete domain.

• coupling_expr is a FEniCS expression that is used to define the coupling boundary condition.
This expression is updated each time, coupling data is requested from preCICE. It is created in
the solver program using the preCICE-FEniCS adapter as mentioned in Subsection 3.1.3.

• precice is a reference to the preCICE-FEniCS adapter object that is used to communicate with
the preCICE library. This way calls to the adapter can be performed within the problem class to
update the coupling_expr object (see Subsection 3.1.3).

The body of the constructor can be roughly divided into three parts. The first part simply saves some
of the provided arguments as class attributes for later use and invokes __init__ on the parent class.
Additionally the attribute t_start is defined. This attribute is used to keep track of the start time of the
current time window during coupling and is updated by the simulation loop.

1See https://parallel-in-time.org/pySDC/tutorial/step_7.html

https://parallel-in-time.org/pySDC/tutorial/step_7.html
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# Set precice reference and coupling expression reference to update coupling boundary
# at every step within pySDC
self.precice = precice
self.coupling_expression = coupling_expr
self.t_start = 0.0

# save function space for future reference
self.V = function_space

# Forcing term
self.forcing_term_expr = forcing_term_expr

# Solution expression for error comparison and as boundary condition
# on the non-coupling boundary
self.solution_expr = solution_expr

# invoke super init
super(fenics_heat_2d, self).__init__(self.V)

In the second part we create a trial and a test function from the specified function space which are
then used to construct the mass and stiffness matrices. All of this is done via the corresponding FEniCS
functions TrialFunction(...), TestFunction(...) and assemble(...).

# Define Trial and Test function
u = TrialFunction(self.V)
v = TestFunction(self.V)

# Mass term
a_M = u * v * dx
self.M = assemble(a_M)

# Stiffness term (Laplace)
a_K = -1.0 * inner(nabla_grad(u), nabla_grad(v)) * dx
self.K = assemble(a_K)

The last part handles boundary conditions. Here we set up FEniCS objects representing Dirichlet
boundary conditions, by specifying the FunctionSpace, Expression, and SubDomain objects that de-
fine a boundary. In the case of the Dirichlet participant, the coupling boundary itself is defined as a
DirichletBC object with the coupling expression providing the boundary values. Regardless of the
type of the participant, the non-coupling boundary is always defined as a DirichletBC object holding
the manufactured solution values. Time-dependent boundary conditions may introduce defects in the
residual computation of the sweeper, thus we allow it to use a homogeneous boundary condition to fix
this. For this, we create an additional DirichletBC object with the constant value zero on the complete
domain boundary.

if self.precice.get_participant_name() == ProblemType.DIRICHLET.value:
self.couplingBC = DirichletBC(self.V, coupling_expr, coupling_boundary)

self.remainingBC = DirichletBC(self.V, solution_expr, remaining_boundary)

# Allow for fixing the boundary conditions for the residual computation
# Necessary if imex-1st-order-mass sweeper is used
self.fix_bc_for_residual = True

# define the homogeneous Dirichlet boundary for residual correction
def FullBoundary(x, on_boundary):
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return on_boundary
self.homogenousBC = DirichletBC(self.V, Constant(0), FullBoundary)

4.1.2 Other Methods

solve_system(self, rhs, factor, u0, t): This method solves the system of equations

(M − factor ·K)u = rhs

where M and K are the problem-specific mass and stiffness matrix respectively and factor is some
scalar value.

def solve_system(self, rhs, factor, u0, t):
u = self.dtype_u(u0) # Create u as a copy of u0
T = self.M - factor * self.K # Create matrix T as the result of (M − factor · K)
b = self.dtype_u(rhs) # Create b as a copy of rhs

# Update the solution expression to the current time and apply it as
# Dirichlet boundary condition on the non-coupling boundary
self.solution_expr.t = t
self.remainingBC.apply(T, b.values.vector())

# If the current instance is a Dirichlet participant, update the coupling expression
# and apply it as Dirichlet boundary condition on the coupling boundary
if self.precice.get_participant_name() == ProblemType.DIRICHLET.value:

dt = t - self.t_start
read_data = self.precice.read_data(dt)
self.precice.update_coupling_expression(self.coupling_expression, read_data)
self.couplingBC.apply(T, b.values.vector())

# Solve the system
solve(T, u.values.vector(), b.values.vector())

return u

In this method we first create the objects u, T and b we use for the calculations later. We then update
the expression for the manufactured solution to the current time t an apply it to the equation system as
Dirichlet boundary condition on the non-coupling boundary.

The body of the if-statement is executed if the given instance of the problem class is used by a
Dirichlet participant. In that case, the coupling boundary condition is given by a DirichletBC object as
well, which is applied to the same system as before. Before application, the boundary data is requested
from preCICE with the read_data method of the adapter object, and then used to update the coupling
expression via update_coupling_expression. We have to keep in mind, that read_data(dt) expects the
time difference from the start of the current time window to the time point of the requested data as an
argument. For this reason, the class attribute t_start is necessary. It provides the class with the start
time of the current time window and is kept updated by the simulation loop.

Finally, the system is solved using the FEniCS solve method and the solution is returned.

eval_f(self, u, t): The calculation of the time derivative of the solution. Since we use an IMEX
scheme, this method returns the right-hand side split up into an explicit (forcing term) and an implicit
part (other terms). For this, the pySDC data type rhs_fenics_mesh (or better, the alias dtype_f) is used,
which contains two FEniCS meshes, one for the explicit and one for the implicit part.

def eval_f(self, u, t):
f = self.dtype_f(self.V)
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# Implicit part: Ku
self.K.mult(u.values.vector(), f.impl.values.vector())

# Explicit part: Mg (g = discretized forcing term values)
self.forcing_term_expr.t = t
f.expl = self.dtype_u(interpolate(self.forcing_term_expr, self.V))
f.expl = self.apply_mass_matrix(f.expl)

return f

fix_residual(self, res): Time-dependent boundary conditions are applied when updated solution
values are computed by the sweeper. The residual computation though, is decoupled from this process
and carried out without regard for the changing boundary conditions, resulting in erroneous residual
values. The sweeper uses the fact, that the solution is exact at the boundary (due to the Dirichlet
boundary conditions), which in turn means the residual at the boundary has to be zero. For that reason
this method (fix_residual) is implemented to apply homogeneous Dirichlet boundary conditions (i.e.
zero values at the boundary) to the residual.

def fix_residual(self, res):
self.homogenousBC.apply(res.values.vector())

apply_mass_matrix(self, u): This method is called to return the product of the mass matrix M and
the input vector u. It is used by the sweeper and as a convenience method in the eval_f method.

def apply_mass_matrix(self, u):
me = self.dtype_u(self.V)
self.M.mult(u.values.vector(), me.values.vector())

return me

4.2 Solver Program

The central piece of the simulation is the solver program. It is responsible for the setup, time-stepping,
and the coupling with other solvers through the use of calls to preCICE. Here we also reuse already
existing code, this time from the preCICE tutorial to the partitioned heat equation2 and modify it to use
pySDC and our previously created problem class as an underlying solver, instead of FEniCS alone.
Large parts of the code remain unchanged as they are responsible for the setup of the participant with
preCICE and the storage and logging of simulation results. Therefore, only the parts that required major
changes, and the essential building blocks of the coupling process will be discussed in this section.

4.2.1 Setup

Before the solver program can start the simulation loop, there are several setup steps to be performed
beforehand.

2See https://github.com/precice/tutorials/tree/develop/partitioned-heat-conduction for the full
tutorial code. The distinct file, which was used as a baseline for this implementation was https://github.com/
precice/tutorials/blob/develop/partitioned-heat-conduction/solver-fenics/heat.py

https://github.com/precice/tutorials/tree/develop/partitioned-heat-conduction
https://github.com/precice/tutorials/blob/develop/partitioned-heat-conduction/solver-fenics/heat.py
https://github.com/precice/tutorials/blob/develop/partitioned-heat-conduction/solver-fenics/heat.py
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We begin with the initialization of the domain, the used function spaces and the creation of Expression
objects for the manufactured solution (which is used as Dirichlet BC) and the forcing term. Depend-
ing on the participant type (Dirichlet or Neumann) we determine the subdomain, coupling boundary
(boundary line at x = 1) and remaining boundary. We note again, that with the current implementation,
the Neumann case is not supported, as the problem class is missing necessary modifications3.

The creation of the Expression objects is done using sympy. We specify the formula for our manufac-
tured solution and use the sympy function diff to create the forcing term.

# Define used function variables as sympy symbols
x_sp, y_sp, t_sp = sp.symbols(['x[0]', 'x[1]', 't'])

# Define manufactured solution as sympy formula and create Expression object
u_D_sp = 1 + x_sp * x_sp + alpha * y_sp * y_sp + beta * (t_sp ** temporal_degree)
u_D = Expression(sp.ccode(u_D_sp), degree=2, alpha=alpha, beta=beta, t=0)

# Define forcing term via derivatives of manufactured solution and create Expression object
f_sp = u_D_sp.diff(t_sp) - u_D_sp.diff(x_sp).diff(x_sp) - u_D_sp.diff(y_sp).diff(y_sp)
forcing_expr = Expression(sp.ccode(f_sp), degree=2, alpha=alpha, beta=beta, t=0)

After the definition of sympy symbols for the spatial coordinates and time, we define the manufactured
solution as a formula and create a FEniCS Expression object from it. The variables alpha, beta and
temporal_degree are used to control characteristics of the solution and are specified beforehand. Note
that the formula used here is just one example and can be changed to any desired solution, depending
on the use case.

The next interesting part is the initialization of the preCICE-FEniCS adapter and the coupling expres-
sion, which follows the steps described in Section 3.1.3.

# Create preCICE-FEniCS adapter object
precice = Adapter(adapter_config_filename="precice-adapter-config.json")

# Initialize preCICE adapter with coupling boundary and read function space and write object
precice.initialize(coupling_boundary, read_function_space=V, write_object=f_N_function)

# Create coupling expression object
coupling_expression = precice.create_coupling_expression()

coupling_boundary is an object inheriting from FEniCS’ SubDomain class and specifies points on the
boundary where coupling is performed. read_function_space in the case of the Dirichlet participant is
just the function space for the given FEM mesh on the domain. The write_object is a FEniCS Function
object on the vector function space for the flux in the direction of the Neumann participants subdomain.
For the Neumann participant, the roles of the two function spaces are reversed.

The next major code part is the setup of the configuration dictionaries and the pySDC controller. This
is done very similarly as described in Subsection 3.3.2.

# initialize controller parameters
controller_params = {

'logger_level': logger_level
}

# fill description dictionary for easy instantiation
description = {

3Even though the Neumann case is not supported within the problem class, steps like the construction of the subdomain
and the reading and writing of data to preCICE for the Neumann participant are already part of the code.
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'problem_class': fenics_heat_2d,
'problem_params': {

'function_space': function_space,
'coupling_boundary': coupling_boundary,
'remaining_boundary': remaining_boundary,
'solution_expr': u_D,
'forcing_term_expr': forcing_expr,
'precice': precice,
'coupling_expr': coupling_expression

},
'sweeper_class': imex_1st_order_mass,
'sweeper_params': {

'quad_type': quad_type,
'num_nodes': num_nodes,

},
'level_params': {

'restol': restol,
'dt': dt

},
'step_params': {

'maxiter': maxiter,
}

}

# Controller for time stepping
controller = controller_nonMPI( num_procs=1,

controller_params=controller_params,
description=description )

# Reference to problem class for easy access to exact solution
P = controller.MS[0].levels[0].prob

Here we set level_params[dt] to some fixed value we require for our testing purposes. The same
is true for the residual tolerance, and the type and number of nodes for the quadrature rule. Since the
SDC time step size is fixed once the controller is initialized, we have to set it to some integer fraction of
the time window size. Otherwise, the last step within a time window could potentially exceed the time
window, which can lead to errors when requesting coupling data.

The problem parameters are set to contain all the objects the problem class requires (see Sec-
tion 4.1).

The problem description dictionary is then populated with the problem class, the problem parameters,
the sweeper class and parameters, as well as level and step parameters.

Finally, we initialize the controller with our configuration and create a reference to the problem class
to update the variable t_start to the starting value of the current time window during the coupling loop.

This setup procedure is abstracted into a method, which is provided with the required parameters for
function_space, coupling_boundary dt and so on. The method then returns the initialized controller
object and the problem class reference.

4.2.2 Simulation Loop

After the setup is done, the program enters the main simulation loop, where the time-stepping and
coupling with preCICE is performed by using the methods described in Section 3.1.3. An outline of the
most important steps of a simulation/coupling loop is shown in Algorithm 3.

Despite the simplicity, there is quite a lot happening behind the scenes. Therefore, we will provide
short explanations and code snippets for each step.

The loop itself follows the intuitive structure of repeatedly advancing the simulation until the end time
is reached. Since the end time is specified in the preCICE configuration file, a call to the adapter
method precice.is_coupling_ongoing() is used as the loop condition. After the loop is finished, a
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Algorithm 3 Simulation Loop

while End time not reached do
if Writing checkpoint required then

Write checkpoint
(1) Calculate maximum time step size
(2) Read boundary data from preCICE
(3) Perform a time step with the calculated length
(4) Write resulting boundary data to preCICE
(5) Tell preCICE to advance coupling
if Loading checkpoint required then

Load checkpoint
else

Update solution at the end of the time window
Update time and iteration counter

Finalize the simulation

call to precice.finalize() closes communication channels and frees the other resources used by
preCICE.

The two conditionals in the loop are used to handle the checkpointing mechanism of preCICE. This is
necessary when using implicit coupling schemes, as their central mechanism is to move backwards in
time. For this the first iteration of each time window stores a checkpoint, which can be loaded in every
iteration the coupling does not converge.

if precice.requires_writing_checkpoint():
precice.store_checkpoint(u_n, t, n)

. . .

if precice.requires_reading_checkpoint():
u_cp, t_cp, n_cp = precice.retrieve_checkpoint()
u_n.assign(u_cp)
t = t_cp
n = n_cp

As seen in the code snippet, the checkpointing mechanism is mostly handled by preCICE, as the
function calls requires_writing_checkpoint() and requires_reading_checkpoint() signal the neces-
sary action. Similarly, the function calls retrieve_checkpoint() and store_checkpoint() are then used
to effectively read and write checkpoint data, consisting of the current solution u_n, time t and time win-
dow (iteration number) n.

The major part of the loop happens in the steps (1) to (5).

Step (1): preCICE demands that the final time step performed within a time window ends exactly at
the time window end time. Therefore, the maximum step size is limited by the difference between the
current simulation time and the end time of the current time window. This value can be requested by
calling precice.get_max_time_step_size() and should be used to limit the time step size before per-
forming the step. As mentioned in the previous subsection, we initialize the pySDC time step as some
integer fraction of the time window size. Since we use pySDC to perform high-order time-stepping, it is
generally desirable to step through a full time window with a single step, as due to the high order we still
expect accurate results. In that case, the pySDC time step size is set equal to the time window size. If
higher-order waveforms are used for coupling, subcycling is required to fully use the higher waveform
degree. With the current implementation, one would then simply set the pySDC time step size to an
integer fraction of the time window size.
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Step (2): The boundary data is read and written to the coupling expression via the adapter methods
precice.read_data(dt) and precice.update_coupling_expression(). In our case, this sampling of
the coupling waveform is done within the problem class, as pySDC requires the coupling data to be
available at several time points, depending on the type and number of quadrature nodes.

Step (3): In this step we simply perform the time stepping by calling controller.run(...)

P.t_start = t
uend, _ = controller.run(u_n, t0=t, Tend=t + float(dt))
u_np1 = uend.values

The argument u_n is the current solution, t is the current time, and dt is the size of the time step.
As mentioned in Section 4.1 we provide the problem class with the start time of the time window using
P.t_start = t, so that boundary data can be requested correctly. We then update the current solution
u_np1 with the result of the time step.

Step (4): After the time step is performed, the new boundary data for the other participant has to
be calculated and written to preCICE. If the current participant is a Neumann participant, the current
solution can be directly written as Dirichlet boundary data. In the case of a Dirichlet participant, the
transfered data has to be the flux in the direction of the Neumann subdomain.

if problem is ProblemType.DIRICHLET:
# Dirichlet problem reads temperature and writes flux on boundary to Neumann problem
determine_gradient(V_g, u_np1, flux)
flux_x = interpolate(flux.sub(0), W)
precice.write_data(flux_x)

elif problem is ProblemType.NEUMANN:
# Neumann problem reads flux and writes temperature on boundary to Dirichlet problem
precice.write_data(u_np1)

Step (5): After performing a timestep we need to tell preCICE, how far we proceeded such that the
coupling can be advanced correctly. As many things with the preCICE-FEniCS adapter, this results in
a single function call precice.advance(dt), where dt is the size of the time step we just performed.
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5 Methodology and Results

5.1 Method of Manufactured Solutions

The method of manufactured solutions (MMS) provides a convenient way to create a PDE with a known
analytical solution. At its core, the method consists of the selection of a suitable, non-trivial, analytical
solution to a given problem and the following derivation of an additional forcing term that is added to
the original problem.

We can then supply the modified problem we created using the MMS to our numerical solver and
compare the computed solution to the known manufactured solution. This way we can verify the cor-
rectness of the implementation and the convergence behavior of our numerical method. The verification
process is carried out by systematically monitoring the convergence of some error measure with de-
creasing time step size (δt; used for the monolithic solvers without coupling) or time window size (∆t;
used for all coupled examples). While there are various error measurements, they all depend on the
difference between the approximated and the manufactured analytical solution.

For our testing purposes, we apply the MMS to our test problem, the forced heat equation. Since the
heat equation is a somewhat common showcase problem in the context of the used software tools 1,
we will use a modified version of the MMS example used in the FEniCS tutorial book [18], where the
time term is raised to some power n.

u = 1 + x2 + αy2 + βtn

α = 3.0
β = 1.2
n . . .Exponent of the time term

By adjusting this exponent, we can investigate the convergence behavior for cases with non-linear
behavior in time.

Starting with the original heat equation, we can now insert the manufactured solution to derive the
forcing term f , that characterizes the development of the system over time.

∂u

∂t
− ∂2u

∂x2 − ∂2u

∂y2 = f

∂u

∂t
= βntn−1 ∂2u

∂x2 = 2 ∂2u

∂y2 = 2α

f = βntn−1 − 2 − 2α

Observing the solution term above, one can find several issues that can influence coupling results.
For one, the flux in the direction of the Neumann participant (in our case increasing x direction) is
constant over time. Also, for small n, the participants should perform exact time integration if the order
of the time stepping scheme is higher than that of the time term in the solution. We use an additional
manufactured solution to test cases where these issues are absent.

u = 1 + (1 + sin (t)) · x2 + αy2 + βt

We derive the forcing term for this solution in the same way as before.

1FEniCS, pySDC, and preCICE provide a tutorial using the heat equation as an example
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The addition of the time-dependent factor also makes the flux in x-direction time-dependent. Also, the
sine-function is not a polynomial function. For this reason, the time-dependent behavior of the solution
can only be approximated, regardless of the time stepping scheme.

Another critical aspect of both manufactured solutions is that the spatial degree in each dimension
is quadratic. This way, we can choose the degree of the elements in the FEM mesh to be the same,
which should result in no additional error due to spatial discretization.

5.2 Results

With the manufactured solutions and the corresponding forcing terms, we test the pySDC implemen-
tation with a monolithic simulation. This way, we can check if the method reproduces the analytical
solution up to the expected order of convergence. Afterward, we investigate the results of simulations
in a coupled setting with preCICE.

As used in previous chapters, we conduct simulations on a complete domain of [0, 2] × [0, 1] on a
time interval of [0, 1] and a domain decomposition along the line x = 1 for coupled simulations (as seen
in Figure 2.1). Regarding the pySDC configuration, we use the quadrature type 'LOBATTO', such that
the integration bounds are part of the nodes and the corresponding function values don’t have to be
interpolated.

5.2.1 Monolithic Simulations

First, we investigate the convergence behavior of the pySDC implementation in a monolithic setting.
This way, we can verify the correctness of the implementation and the expected order of convergence.
The L2 error at the end of the simulation is used as error measurement. From [6], we know that the
maximum achievable convergence order with Gauss-Lobatto quadrature nodes is O(δt2M−2), where
M is the number of nodes, though this convergence is only expected for sufficiently small time steps
and sufficient iterations. If that is the case, each iteration increases the formal order of the method by
one (for implicit/explicit Euler as a low-order scheme) up to the convergence order of the underlying
quadrature rule. To allow pySDC to achieve good convergence for the given time step sizes, we set the
residual tolerance to 10−13, and allow for a maximum of 40 iterations during monolithic simulations.

Time step sizes are decreased from δt = 1 by a factor of 2 for each simulation, yielding the test sizes

δt ∈ {2−i | i = 0, . . . , 6}

For the first series of simulations, we use the manufactured solution

u = 1 + x2 + 3.0y2 + 1.2t64

and several settings for the number of quadrature nodes M . The temporal exponent 64 allows us to
investigate the convergence behavior for a higher number of nodes. If it were too small, the simulation
would be already very accurate for large time step sizes and thus provide no meaningful information
about the convergence behavior.

Table 5.1 shows the resulting data with two columns for every M . The first one contains the L2 error
for the given M with different values for δt. The second one contains the order of the error decrease
compared to the previous δt. This error decrease can achieve a theoretical maximal convergence order
of 2M − 2 for M nodes. From the second column, it is easy to see that the error reduction does
not show this maximal order but instead approaches it with decreasing δt. Additionally, for M = 16,
the error is reduced to machine precision for δt ≤ 0.125. The convergence behavior is visualized in
Figure 5.1, with additional lines for the maximal theoretical convergence order. The improvement in
convergence rate with decreasing δt is visible as a curvature in the plotted graphs. Even though the
order 2M − 2 is not reached for our smallest values of δt, it follows the expected behavior and shows
adequate convergence for the high temporal exponent of 64 in the manufactured solution.
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δt
M = 2 M = 4 M = 8 M = 16

L2 error Order L2 error Order L2 error Order L2 error Order

1 1.56e+00 9.95e-01 1.56e-01 6.98e-04
0.5 1.32e+00 0.23 5.70e-01 0.80 1.78e-02 3.13 6.20e-06 6.82
0.25 9.97e-01 0.41 2.01e-01 1.50 1.01e-03 4.14 4.87e-09 10.31
0.125 6.19e-01 0.69 3.17e-02 2.67 1.96e-05 5.69 9.62e-14 15.63
0.0625 2.83e-01 1.13 2.39e-03 3.73 1.35e-07 7.18 8.54e-14 *
0.03125 9.24e-02 1.61 1.18e-04 4.35 4.35e-10 8.28 7.38e-14 *
0.015625 2.51e-02 1.88 4.34e-06 4.76 1.83e-13 11.21 3.17e-14 *

Table 5.1 L2 error for monolithic simulations with the manufactured solution u = 1 + x2 + 3.0y2 + 1.2t64 and a
varying number of quadrature nodes M . The second column for each node count shows the order of the error
reduction compared to the previous δt. For 16 nodes, the error is approximately reduced to machine precision for
δt ≤ 0.125, therefore, the error reduction after that point provides no meaningful information (marked with *).

Figure 5.1 L2 error plot for monolithic simulations with the manufactured solution u = 1+x2 +3.0y2 +1.2t64 and
varying number of quadrature nodes M . The additional lines show the maximal theoretical convergence order of
2M − 2 for the given number of nodes. The data for this plot is given in Table 5.1.

For the following example, we lower the temporal exponent to n = 16.

The results (see Table 5.2 and Figure 5.2) show, a faster overall convergence rate, and a faster
approach to the maximal theoretical convergence order of 2M −2. Additionally, we see that for solution
polynomials with temporal order n ≤ M (in this case, n = M = 16), the computed solution is already
accurate up to machine precision with a single large timestep.
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δt
M = 2 M = 4 M = 8 M = 16

L2 error Order L2 error Order L2 error Order L2 error Order

1 3.51e-01 1.45e-01 8.99e-04 8.63e-14
0.5 2.65e-01 0.41 3.37e-02 2.10 1.03e-05 6.45 9.64e-14 *
0.25 1.47e-01 0.85 2.70e-03 3.64 4.40e-08 7.87 9.72e-14 *
0.125 5.30e-02 1.47 1.13e-04 4.58 1.08e-10 8.67 9.54e-14 *
0.0625 1.48e-02 1.84 3.92e-06 4.85 1.11e-13 9.92 9.51e-14 *
0.03125 3.81e-03 1.96 1.19e-07 5.04 9.57e-14 * 9.47e-14 *
0.015625 9.61e-04 1.99 3.35e-09 5.15 9.42e-14 * 9.40e-14 *

Table 5.2 L2 error and error reductions for monolithic simulations with the manufactured solution u = 1 + x2 +
3.0y2 + 1.2t16 and a varying number of quadrature nodes M . Cells marked with an asterisk (*) indicate that
the error is reduced to machine precision, and a the order of the error reduction would provide no meaningful
information.

Figure 5.2 L2 error plot for monolithic simulations with the manufactured solution u = 1 + x2 + 3.0y2 + 1.2t16

and a varying number of quadrature nodes M . The additional lines show the maximal theoretical convergence
order of 2M − 2 where applicable. The data for this plot is given in Table 5.2.

Simulations with our second manufactured solution u = 1 + (1 + sin (t)) · x2 + 3.0y2 + 1.2t show
similar behavior for the smaller number of nodes as the previous polynomial examples. For M = 8 and
M = 16 though, the convergence rate reaches only a order of around ≈ 2.5 in both cases. It also does
not seem to approach the theoretical maximum order of 2M − 2 as in the polynomial example. This
can be seen in Table 5.3 and Figure 5.3.

An interesting observation is that the error for M = 8 is lower than for M = 16 for δt ≥ 0.0625.
Another major difference to the polynomial solution is a gradual reduction in convergence order when

approaching errors comparable to machine precision. This poses a stark contrast to the clean cut,
present in the data for the polynomial solution. An explanation for this could be the accumulation of the
high-order error terms over the course of the simulation.
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δt
M = 2 M = 4 M = 8 M = 16

L2 error Order L2 error Order L2 error Order L2 error Order

1 2.60e-03 1.27e-05 3.11e-09 1.90e-08
0.5 1.65e-04 3.97 3.15e-07 5.34 1.23e-10 4.66 2.04e-09 3.22
0.25 6.69e-05 1.31 7.42e-09 5.41 2.45e-11 2.33 3.24e-10 2.65
0.125 1.67e-05 2.00 1.74e-10 5.41 5.00e-12 2.29 5.57e-11 2.54
0.0625 4.17e-06 2.00 4.51e-12 5.27 7.91e-13 2.66 6.73e-12 3.05
0.03125 1.04e-06 2.00 6.09e-13 2.89 1.40e-12 * 5.36e-13 3.65
0.015625 2.60e-07 2.00 3.01e-13 1.02 1.63e-12 * 3.06e-13 0.81

Table 5.3 L2 error and error reductions for monolithic simulations with the manufactured solution u = 1 + (1 +
sin (t)) ·x2 +3.0y2 +1.2t and a varying number of quadrature nodesM . Cells marked with an asterisk (*) indicate
that the error is reduced to some lower bound, and the order of the error reduction would provide no meaningful
information.

Figure 5.3 L2 error plot for monolithic simulations with the manufactured solution u = 1 + (1 + sin (t)) · x2 +
3.0y2 + 1.2t for a varying number of nodes M . For M = 2 and M = 4 the reference lines show the theoretical
maximum convergence order of 2M−2. Since M = 8 and M = 16 deviate strongly from this expected behavior,
the reference line has not the same meaning and is only used to provide a visual reference of the actual behavior.

5.2.2 Coupled Simulations

After the simulations in a monolithic setting, we investigate our SDC solver’s behavior in a coupled
setting. For this, we partition the domain along the line x = 1, as mentioned at the beginning of this
chapter. We only use our SDC-based solver for the Dirichlet participant, while the Neumann partici-
pant uses the Gauss-Legendre method, a family of higher-order implicit Runge-Kutta schemes. The
implementation for the latter is part of the preCICE tutorials and was developed and analyzed as part
of Niklas Vinnitchenko’s bachelor thesis [33].
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Regarding the configuration file for preCICE, the existing configuration for the partitioned heat con-
duction tutorial is used.2 It is mainly left unchanged, and only values regarding the maximum iterations,
time window size, waveform degree, relaxation constant, and relative convergence limit are adjusted.
Some tests showed that the maximum iterations can be left at 100 as the coupling converged within 40
or fewer iterations. For similar reasons, the relaxation constant is set to 0.5. The relative convergence
limit is fixed to 10−11 as Niklas Vinnitchenko also provided simulations showing that lower settings than
this only offer marginal improvements.

The waveforms preCICE uses for coupling are of a predefined degree. With the current version of
preCICE3, the maximum waveform degree is 3, with the developer version already allowing for higher
degrees. Since we use the official release, we limit the number of nodes to 4 for the SDC participant
and use a Gauss-Legendre method with 3 stages for the Neumann participant. This way, both solvers
are of maximum order 6, which should make the coupling scheme with its waveform degrees lower than
4 the limiting factor for accuracy.

In the coupled simulations, the error is observed for decreasing time window size ∆t. The time step
sizes of the solvers are then adjusted to provide the least amount of data points within a time window
for the used waveform degree.

From here on, we use the domain partitioning specified at the beginning of this subsection and the
following settings if not mentioned otherwise.

Settings: preCICE and solvers

• Simulation time: t ∈ [0, 1]

• Time window sizes: ∆t ∈ {2−i | i = 0, . . . , 6}

• pySDC used for Dirichlet participant, FEniCS-based Gauss-Legendre method used for Neumann
participant

• Solver time step sizes: δtD = δtN = ∆t
p with p as the waveform degree

Settings: pySDC

• num_nodes = 4

• res_tol = 1e-11

• max_iters = 40

We conduct the first coupled simulations with the manufactured solution

u = 1 + x2 + 3.0y2 + 1.2t2

and the waveform degrees p ∈ {1, 2, 3}.
The error in both participants’ domains is measured at the end of the simulation, but by comparing the

behavior of the errors, one can see very high similarity, both in convergence order and error magnitude,
as depicted in Figure 5.4. The same is true for all conducted simulations, so from here on, we only refer
to the error of the Dirichlet participant.

2We used the preCICE tutorials v202404.0. The configuration file can be found at https://github.com/precice/
tutorials/tree/v202404.0/partitioned-heat-conduction

3We used the preCICE release 3.1.2, together with the python bindings pyprecice 3.1.1

https://github.com/precice/tutorials/tree/v202404.0/partitioned-heat-conduction
https://github.com/precice/tutorials/tree/v202404.0/partitioned-heat-conduction
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Figure 5.4 L2 error on each domain of the coupled simulation with manufactured solution u = 1 + x2 + 3.0y2 +
1.2t2 and waveform degree p = 1. The errors behave very similarly for both participants and are not too different
in magnitude. Similar behavior is observed for all conducted simulations, thus only the error of the Dirichlet
participant is considered for other plots and observations.

When comparing the errors between the coupled simulation with different waveform degrees and the
monolithic simulation (depicted in Table 5.4 and Figure 5.5), it becomes clear that the limiting factor
for the accuracy of the simulation is the coupling scheme. The first observation we make is that the
monolithic simulation, as well as the coupled simulations with waveform degree p = 2 and p = 3
yield almost no error for all time step sizes. The remaining error is unavoidable due to limited machine
precision. From Subsection 5.2.1, these results are expected for the monolithic simulation since the
temporal degree of the solution is lower than the number of nodes used in pySDC. The behavior for the
coupled cases stems from the fact that a used waveform degree p allows for exact boundary conditions
up to the same degree, with introduced errors of order O(∆tp+1). Since for this manufactured solution,
p = 2 and p = 3 provide exact boundary conditions to both participants, the corresponding simulations
also perform exact time integration. Another interesting fact is that the unavoidable error for those
simulations slightly increases with decreasing time window size. This can be attributed to machine
precision errors accumulating for each time window.

For p = 1, the coupling scheme provides only linear interpolation of the boundary conditions within
a time window. Therefore, we would expect the introduction of an error of order O(∆t2). Instead, we
observe a convergence order of around O(∆t1.5).
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∆t Monolithic Coupled p = 1 Coupled p = 2 Coupled p = 3
L2 error Order L2 error Order L2 error Order L2 error Order

1 8.58e-14 0.00276 6.39e-14 7.59e-14
0.5 1.02e-13 * 0.00155 0.83 7.89e-14 * 5.78e-14 *
0.25 1.22e-13 * 0.000808 0.94 6.02e-14 * 7.12e-14 *
0.125 9.62e-14 * 0.000324 1.32 7.40e-14 * 7.87e-14 *
0.0625 1.07e-13 * 0.000119 1.45 8.40e-14 * 9.41e-14 *
0.03125 1.08e-13 * 4.22e-05 1.50 1.07e-13 * 1.31e-13 *
0.015625 1.07e-13 * 1.48e-05 1.51 1.55e-13 * 2.08e-13 *

Table 5.4 L2 error for the manufactured solution u = 1 + x2 + 3.0y2 + 1.2t2. The error is given for the full
domain in a monolithic simulation and the Dirichlet participant’s domain in coupled simulations with waveform
degrees p ∈ {1, 2, 3}. The convergence from one time window size to the next is given in the second column for
each simulation. Cells marked with an asterisk (*) indicate that the error is reduced to machine precision, and a
reduction factor would provide no meaningful information. An interesting fact is that the error for p = 1 converges
with a rate of at most O(∆t1.5) instead of the expected O(∆t2).

Figure 5.5 L2 error plot for different simulations with the manufactured solution u = 1 + x2 + 3.0y2 + 1.2t2. p
denotes the waveform degree used in the coupled simulations. The data for this plot is given in Table 5.4. For
the coupled simulations only the error of the Dirichlet participant is considered.

We conduct another series of simulations with the manufactured solution u = 1+x2 +3.0y2 +1.2t4 to
investigate the convergence behavior for the higher waveform degrees. In this case, due to the temporal
degree of the solution being higher than the waveform degrees, each coupled simulation should show
some converging error term. For the monolithic case, we still expect exact integration. The results are
depicted in Table 5.5 and Figure 5.6.
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∆t Monolithic Coupled p = 1 Coupled p = 2 Coupled p = 3
L2 error Order L2 error Order L2 error Order L2 error Order

1 8.75e-14 0.0129 0.00486 0.000713
0.5 9.93e-14 * 0.00763 0.76 0.00112 2.12 5.55e-05 3.68
0.25 1.19e-13 * 0.00395 0.95 0.000167 2.75 3.48e-06 4.00
0.125 9.31e-14 * 0.00165 1.26 1.94e-05 3.11 2.26e-07 3.94
0.0625 1.04e-13 * 0.000614 1.43 1.92e-06 3.34 1.60e-08 3.82
0.03125 1.04e-13 * 0.00022 1.48 1.73e-07 3.47 1.11e-09 3.85
0.015625 1.04e-13 * 7.70e-05 1.51 2.12e-08 3.03 8.61e-11 3.69

Table 5.5 L2 error for the manufactured solution u = 1 +x2 + 3.0y2 + 1.2t4. The error is given for the full domain
in a monolithic simulation and the Dirichlet participant’s domain in coupled simulations with waveform degrees
p ∈ {1, 2, 3}. The error convergence from one time window size to the next is given in the second column for
each simulation. Cells marked with an asterisk (*) indicate that the error is reduced to machine precision, and a
reduction factor would provide no meaningful information.

Figure 5.6 L2 error plot for different simulations with the manufactured solution u = 1 + x2 + 3.0y2 + 1.2t4. p
denotes the waveform degree used in the coupled simulations. p = 2 and p = 3 show the expected convergence
rates of O(∆t3) and O(∆t4) respectively. The error for p = 1 converges with a rate around O(∆t1.5) slower than
the expected O(∆t2). The monolithic solver shows no error, as the temporal order of the solution is equal to the
number of nodes used in pySDC.

Again, the monolithic solution performs as expected. For the coupled simulations, this time, the
convergence for each waveform degree is visible. As for the previous simulation series, the error for
p = 1 converges with a rate of around O(∆t1.5), while the errors for p = 2 and p = 3 converge with
approximately the expected rate of O(∆t3) and O(∆t4) respectively.

Another series of simulations is conducted with our second manufactured solution u = 1 + (1 +
sin (t)) · x2 + 3.0y2 + 1.2t. Here, we want to look for the same behavior as in the previous simulations.
This time, the flux in x-direction is time-dependent, and high-order errors are introduced due to the
sine term. Those high-order errors are the reason we conduct these simulations with a higher residual
tolerance for pySDC of 10−13, to eliminate instabilities due to high residuals.



40

∆t Monolithic Coupled p = 1 Coupled p = 2 Coupled p = 3 Coupled p = 6
L2 error Order L2 error Order L2 error Order L2 error Order L2 error Order

1 1.27e-05 0.00068 0.000151 1.03e-05 4.59e-09
0.5 3.15e-07 5.34 0.000355 0.94 2.48e-05 2.61 1.06e-06 3.28 2.90e-10 3.98
0.25 7.42e-09 5.41 0.000187 0.92 3.07e-06 3.01 7.33e-08 3.85 1.24e-11 4.55
0.125 1.74e-10 5.41 7.73e-05 1.27 3.21e-07 3.26 4.84e-09 3.92 6.25e-13 4.31
0.0625 4.51e-12 5.27 2.92e-05 1.40 3.04e-08 3.40 3.61e-10 3.74 1.95e-12 *
0.03125 6.09e-13 2.89 1.07e-05 1.45 2.68e-09 3.50 3.21e-11 3.49 4.30e-12 *
0.015625 3.01e-13 1.02 3.85e-06 1.47 3.64e-10 2.88 2.94e-12 3.45 3.75e-12 *

Table 5.6 L2 error and convergence orders for different simulations with the manufactured solution u = 1 + (1 +
sin (t)) ·x2 +3.0y2 +1.2t. p denotes the waveform degree used in the coupled simulations. To prevent instabilities
due to high residuals, the residual tolerance for pySDC is set to 10−13 during these simulations.

Figure 5.7 L2 error plot for different simulations with the manufactured solution u = 1 + (1 + sin (t)) · x2 +
3.0y2 + 1.2t. p denotes the waveform degree used in the coupled simulations. In these simulations, the residual
tolerance for pySDC is set to 10−13, compared to 10−11 in previous simulations. p = 1 and p = 3 show lower
convergence rates than the expected ones with O(∆t1.5) and O(∆t3.5) respectively. The monolithic simulation
with no coupling is again only limited in convergence by the time integrator. The resulting convergence is as
expected slightly lower than the theoretical maximum of O(∆t6).

The results are shown in Table 5.6 and Figure 5.7. As in Subsection 5.2.1, the monolithic simulation
converges for high-order solutions with slightly lower rates than the theoretical maximum. The coupled
simulations show a behaviour similar to the previous simulations with the polynomial solution. The only
bigger deviation is the lower convergence rate for p = 3 with ≈ O(∆t3.5) instead of O(∆t4). A similar
result was already observed in [29] with waveform degree p = 3, an SDC-based time integrator (3
Gauss-Lobatto nodes) and a polynomial term in the manufactured solution instead of a trigonometric
one. The similar behavior even for different manufactured solutions could hint towards some general
issue, lowering the the convergence rate slightly when coupling an SDC-based solver.

For completion, we also conducted an additional simulation with a waveform degree of p = 6. For
this we used the current developer version of preCICE, which allows for higher waveform degrees4.

4The specific commit we used can be found at https://github.com/precice/precice/commit/4eb1dee

https://github.com/precice/precice/commit/4eb1dee
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Even though the solvers provide a maximal order of 6, it seems that for high waveform degrees in the
coupling schemes now the time integration is the limiting factor. If all parts were of the same order,
the error would show improvements of order O(∆t6). Instead we only observe a convergence rate of
≈ O(∆t4.5), until unavoidable errors provide a lower bound. An explanation for this behavior could be
the lowered order of the SDC solver for large time step sizes, as observed in the monolithic simulations.
Though the waveform degree of 6 leads to the time step sizes of ∆t/6, which should somewhat mitigate
this effect. Also curious is the fact that the convergence rate stays very constant during the part of
decreasing error.

Even though it is not directly part of the thesis topic we also want to point out a substantially longer
runtime for the simulations with the trigonometric solution in comparison to the polynomial one. This is
partially explained by the higher residual tolerance, used in the simulations with the trigonometric term.
However, many of the polynomial simulations used far fewer SDC iterations than the trigonometric
ones, even for a lower residual tolerance. This especially applies to small time step sizes, where some
steps for the polynomial solution stopped after single-digit amounts of iterations, while the trigonometric
solution required still more than 30 iterations. This behavior once more hints towards the high-order
error terms in the trigonometric case causing slower convergence in the SDC solver.
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6 Conclusion

6.1 Summary

In this thesis, we developed an SDC-based solver, which we used to simulate the forced heat equation
in monolithic and partitioned scenarios. The obtained results provide insights into the convergence
behavior of the solver and the coupling process.

The monolithic simulations with different amounts of SDC nodes showed a significant difference in
convergence between solutions with polynomial and trigonometric time-dependent behavior. We also
showed that using the waveform relaxation for coupling with waveform degrees lower than the solver’s
order leads to a lowered convergence rate. While waveform degrees equal to the solver’s order still
only provide a lower convergence rate than a purely monolithic simulation, the initial error is of a lower
magnitude than expected.

Even if there are reductions in the convergence order for coupled simulations, the obtained con-
vergence results show that the SDC-based time integrator is still a viable option for coupling. The
created implementation gives a reasonable basis for future investigation and can be expanded upon
to potentially leverage the SDC-based PinT algorithm PFASST for better computation speeds. We
also contributed the code used for the simulations and results presented in this thesis to the preCICE
tutorials as a pull request1.

6.2 Future Work

For future work, the problem class and solver program used in this thesis can be expanded to support
the use case as a Neumann participant. This would allow testing with only SDC-driven participants.

Another thing to investigate is the expansion of the solver to PFASST and the behavior in a highly
parallelized environment. The error analysis with a single time window and high waveform degrees
could be interesting in this context.

As mentioned in the last point in Chapter 5, the trigonometric term in the solution causes an increased
runtime of the SDC method due to the increased number of iterations necessary for convergence. An
interesting point for future work in these regards would be to adaptively change the maximum iterations
or the residual tolerance of the SDC method based on the convergence state of the coupling scheme.
An idea would be to increase the maximal number of SDC iterations as the coupling scheme converges.
This way, the runtime could be reduced by not wasting iterations on the somewhat inaccurate boundary
conditions at the start of the coupling process.

1The pull request can be found at https://github.com/precice/tutorials/pull/557

https://github.com/precice/tutorials/pull/557
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Abbreviations

ODE ordinary differential equation

PDE partial differential equation

SDC spectral deferred correction

PinT parallel-in-time

PFASST Parallel Full Approximation Scheme in Space and Time

MGRIT Multigrid Reduction in Time

FEM finite element method

MMS method of manufactured solutions

MLSDC Multi-Level Spectral Deferred Correction

BC boundary condition
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