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ABSTRACT

We present a search for galaxy-scale strong gravitational lenses in the initial 2500 square degrees of the Canada-France Imaging
Survey (CFIS). We designed a convolutional neural network (CNN) committee that we applied to a selection of 2 344 002 exquisite-
seeing r-band images of color-selected luminous red galaxies. Our classification uses a realistic training set where the lensing galaxies
and the lensed sources are both taken from real data, namely the CFIS r-band images themselves and the Hubble Space Telescope
(HST). A total of 9460 candidates obtain a score above 0.5 with the CNN committee. After a visual inspection of the candidates, we
find a total of 133 lens candidates, of which 104 are completely new. The set of false positives mainly contains ring, spiral, and merger
galaxies, and to a lesser extent galaxies with nearby companions. We classify 32 of the lens candidates as secure lenses and 101 as
maybe lenses. For the 32 highest quality lenses, we also fit a singular isothermal ellipsoid mass profile with external shear along with
an elliptical Sersic profile for the lens and source light. This automated modeling step provides distributions of properties for both
sources and lenses that have Einstein radii in the range 0.5′′ < θE < 2.5′′. Finally, we introduce a new lens and/or source single-band
deblending algorithm based on auto-encoder representation of our candidates. This is the first time an end-to-end lens-finding and
modeling pipeline is assembled together, in view of future lens searches in a single band, as will be possible with Euclid.

Key words. gravitational lensing: strong – surveys – techniques: image processing

1. Introduction

Strong gravitational lensing provides a unique astrophysical tool,
via the formation of several distinct images of a high-redshift
source. Depending on the source light profile and lensing mass
distribution, multiple images of the source can appear as partial
arcs or even complete arcs called Einstein rings. Such strongly
lensed systems offer a vast range of astrophysical and cos-
mological applications, from the determination of cosmologi-
cal parameters (Suyu et al. 2017; Bonvin et al. 2017; Wong et al.
2020) to the study of galaxy mass profiles (Koopmans & Treu
? The catalog of the 133 candidates and the modeling results are only

available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr
(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/
cat/J/A+A/666/A1

2003; Sonnenfeld et al. 2015; Bellagamba et al. 2017) and halo
substructure (Mao & Schneider 1998; Dalal & Kochanek 2002;
Koopmans 2005; Vegetti & Koopmans 2009; Vegetti et al. 2010,
2012, 2014, 2018; Nierenberg et al. 2013; Hezaveh et al. 2016;
Despali et al. 2016; Gilman et al. 2017; Chatterjee & Koopmans
2018; Ritondale et al. 2019). Observations of such lenses pro-
vide important calibrations for N-body cosmological simula-
tions (e.g., Peirani et al. 2019; Mukherjee et al. 2021) and allow
deeper higher resolution views of faint distant galaxies otherwise
too faint to be studied (e.g., Paraficz et al. 2018). However, due
to the rarity of lens systems, many of these studies are limited
by small sample sizes, prompting targeted lens searches by the
community.

Lens searches can be divided into two broad classes: source-
selected and lens-selected. The first requires follow-up of a
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known high-redshift source, in the hope of observing signs of
strong lensing. Examples include early lens searches, such as
the Cosmic Lens All-Sky Survey (CLASS, Myers et al. 2003;
Browne et al. 2003) and the SDSS Quasar Lens Search (SQLS,
Oguri et al. 2006). In contrast, lens-selected searches look for
signs of a lensed high-redshift source in imaging or spec-
troscopy in known samples of massive galaxies. Some of the
most well-studied lens systems come from the Sloan Lens
ACS survey (SLACS; Bolton et al. 2006, 2008), the BOSS
Emission Line Lens Survey (BELLS, Brownstein et al. 2012),
and the SLACS for The Masses Survey (S4TM, Shu et al.
2015), which pre-selected high velocity-dispersion galaxies
from SDSS, with signs of emission lines of a higher redshift
source blended in the spectra. High-resolution HST imaging
subsequently confirmed many of these systems as lenses. Lens
searches are not limited to the visible domain. Similar efforts
are done at longer wavelengths, particularly in the submillime-
ter regimes, even if the search methods are then very differ-
ent and mostly done by taking advantage of the magnifica-
tion bias at the catalog level. Typical examples are searches
in the Herschel Astrophysical Terahertz Large Area Sur-
vey (Bussmann et al. 2013; Wardlow et al. 2013; Nayyeri et al.
2016; Negrello et al. 2017), the South Pole Telescope Survey
Data (SPT; Vieira et al. 2010, 2013), and the Planck all-sky
survey (Cañameras et al. 2015). With numerous ongoing and
upcoming wide-field imaging surveys, such as Euclid (e.g.,
Laureijs et al. 2011; Amiaux et al. 2012), Roman (Spergel et al.
2015), and the Rubin Observatory Legacy Survey of Space and
Time (LSST; e.g., Ivezić et al. 2019), lens samples can be built
directly from imaging data. Previous imaging-only samples have
come from visual inspection of HST images (Faure et al. 2008;
Pawase et al. 2014) or ground-based imaging with the help of
citizen science (e.g., Sonnenfeld et al. 2020). With increasing
depth and survey areas, visual searches alone become unsus-
tainable and require automated techniques to condense the sam-
ple size. Early work included ring-finding algorithms, as was
done with the SL2S sample (Cabanac et al. 2007; Gavazzi et al.
2012) or model-aided search in HST (Marshall et al. 2009)
and HSC (Chan et al. 2015). More recently, machine-learning
methods have been applied to ground-based surveys, includ-
ing the Kilo Degree Survey (KiDS, e.g., Petrillo et al. 2017,
2019; Kuijken et al. 2019); the Dark Energy Survey (DES,
e.g., The Dark Energy Survey Collaboration 2005; Jacobs et al.
2019a,b), and the Hyper Suprime-Cam SSP Survey (HSC,
e.g., Aihara et al. 2018; Sonnenfeld et al. 2018, 2019, 2020;
Wong et al. 2018; Chan et al. 2020; Cañameras et al. 2020;
Jaelani et al. 2020, 2021).

The application of machine-learning techniques to lens
searches encompasses a wide range of methods, from support
vector machines to deep neural networks. However, in recent
years convolutional neural networks (CNNs) have emerged out
thanks to their well-tested reliability for image classification
(He et al. 2015). In particular, the top five algorithms of the first
strong gravitational lens finding challenge (Metcalf et al. 2019)
were mainly CNN-based. In this challenge CNNs were able to
recover 50% of the lenses. However, false positives, such as ring
galaxies, spirals, mergers, or galaxies with companions, were a
severe problem for CNNs trained with overly simplistic sim-
ulations. Using a training set that is as realistic and exhaus-
tive as possible is thus crucial. The current number of known
lenses in the CFIS footprint is very small, which complicates the
composition of a training set for machine-learning algorithms.
For this reason, we still use simulations in this paper. How-
ever, recent lens searches conducted in the Dark Energy Spec-

troscopic Instrument Legacy Imaging Surveys’ Data Release 8
have proven the possibility to train neural networks with a small
number of lenses (Huang et al. 2020, 2021). We therefore hope
to reuse our lens candidates to train the next versions of classi-
fiers with real lenses only or a mix of simulations and real lenses.
A typical approach to producing training sets for CNNs is to use
entirely synthetic images, as in Jacobs et al. (2019b), where the
lens light, the lens mass, and the light profile of the source are
analytical. Random images are then taken from real data and
added to the simulated “clean” lenses to introduce instrumental
effects and more realistic features, such as companions around
the central galaxy. The main advantage of this approach is the
ability to control the distribution of the lensing parameters. How-
ever, it may be difficult to reproduce all the complexity of real
lenses with this method.

One approach to mitigating this consists in creating training
sets that combine images of real foreground galaxies with sim-
ulated sources, as in Petrillo et al. (2017) and Pourrahmani et al.
(2018). In this case the training set contains deflectors with more
realistic light profiles. In the present work we go one step fur-
ther toward more realistic simulations by also using a real image
for the background source, as in Cañameras et al. (2020). The
main difference with Petrillo et al. (2017) and Pourrahmani et al.
(2018) is that in our case only the lensing effect is simulated; the
shape and the light profile of both the deflector and the source
are taken from real data. In general, any classification performed
by the CNNs is imperfect and candidates must be confirmed
by follow-up observations. For efficient use of telescope time,
the candidates are first visually inspected in order to remove
the most obvious false positives. The timescale for this visual
inspection must remain reasonable, in particular for future large-
scale surveys. Therefore, it is crucial to keep a very low false
positive rate. A common way to reduce the occurrence of false
positives is to increase the proportion of the most common mis-
leading objects in the negative training set (e.g., Cañameras et al.
2020). However, these must be taken as often as possible from
real data. Simulating negative examples is not reliable enough,
and using modified images from other surveys involves re-
sampling and PSF mismatch, not to mention K-corrections and
evolution effects due to redshift mismatch between surveys.
We thus believe it is important to provide a catalog of false
positives taken from our specific data. These false positives
can be used to improve the training sets of future searches in
CFIS.

In this paper we use CNNs to look for lensed galaxies in
2500 deg2 of the excellent-seeing r-band imaging of CFIS. This
complements past and ongoing searches mostly carried out in
the south. We first describe the data in Sect. 2, along with our
machine-learning method and simulation pipeline in Sect. 3,
and then carry out a visual inspection of the machine-classified
objects in Sect. 4 to remove false positives. In Sect. 5 we present
a single-band method based on auto-encoders that separates the
lens and source light and enhances the contrast of each com-
ponent. We additionally carry out automated mass modeling of
the best candidates in Sect. 6, and derive basic properties of the
lens and source populations. Finally, in addition to our best can-
didates, we provide a catalog of false positives, which will be
useful for future lens searches based on neural networks. To
our knowledge, it is the first time a full lens-finding and mod-
eling pipeline has been presented for single-band data. Although
it specifically targets galaxies lensed by luminous red galax-
ies (LRG), we expect to make it more general when looking
for lenses in the full CFIS footprint and for all types of lens
galaxies.
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Fig. 1. Illustration of the planned and current CFIS footprint. The contours of the final CFIS-r footprint and the CFIS-u footprint are shown in red
and blue, respectively. Shown are the current areas covered in the r band for DR2 (in red), in the u band (in blue), and where r-band and u-band
data are available simultaneously (in violet). In this work the u band is used, when available, for visual inspection purpose only. Also indicated
is the position of the 32 highest quality candidates (stars) and the 101 maybe lenses (crosses) obtained after the joint visual inspection of the
CNN-committee candidates. Of these candidates 104 are new.

2. Data

The Canada France Imaging Survey (CFIS) is an ongoing legacy
survey using the Canada-France-Hawaii Telescope (CFHT), a
3.6 m telescope at the summit of Mauna Kea in Hawaii. CFIS is
a component of the multi-band Ultraviolet Near Infrared Opti-
cal Northern Survey (UNIONS). This effort will the provide
the necessary ground-based optical counterparts of the forth-
coming Euclid space mission, along with stand-alone immedi-
ate scientific applications (Ibata et al. 2017; Fantin et al. 2019;
Guinot et al., in prep.). When completed, the survey will have
imaged 8000 deg2 of the northern sky in the u band (CFIS-u) and
4800 deg2 in the r band (CFIS-r). The imaging data used in this
work are from the CFIS Data Release 2 (DR2; see Fig. 1), cov-
ering around 2500 deg2. CFIS-r has exquisite image quality with
a median seeing of 0.6′′, down to a depth of 24.1 (point source,
10σ rms). CFIS-u has a median seeing of 0.8′′ to a depth of 23.6
(point source, 10σ rms). Here we use the CFIS-r footprint to
search for lenses with CNNs based purely on high-resolution
morphological information. Since not all r-rand images have
u-band counterparts, the CNNs use only r-band information.
However, CFIS-u is used, when available, to refine the sam-
ple of candidates found through the CNNs by visual inspec-
tion. For each target, we have also produced models of the point
spread function (PSF) and its spatial variations across co-added
images which were reduced, processed, and calibrated at the
Canadian Astronomical Data Centre using an improved version
of the MegaPipe pipeline (Gwyn 2008). For each lens candi-
date we exploited the model PSF obtained with PSFEx (Bertin
2011) to produce an image of the local PSF oversampled by a
factor of 2. Weight images along with other data quality diagnos-
tics are also produced for each candidate in each of the available
bands. Details of the spatial variations of the PSF may not always
be well accounted for in such a model performed on stacked
data, involving largely dithered exposures. This is, however, not

a major issue for the strong lens modeling applications in this
work.

Our goal is to provide an automated pipeline to find, deblend,
and model high-quality galaxy-scale lenses. Our sample is by
construction lens-selected, meaning that we look for lensed sys-
tems among a large sample of pre-selected LRG. These objects
are bright and massive, and are therefore expected to have the
largest possible lensing cross section (Turner et al. 1984).

2.1. Data selection for the lens search

A reliable color selection of LRGs is not possible with CFIS data
alone. Even with color information, it is necessary to account
for the fact that LRGs acting as lenses have colors biased toward
the blue with respect to LRGs without lensing features: lens-
ing LRGs are blended with the lensed image of a background
galaxy (which is often blue). Fortunately, the CFIS footprint is
entirely included in the first part of Pan-STARRS1 (PS1), hence
we used PS1 to carry out our color selection, thus account-
ing for the blue bias. This has already been implemented by
Cañameras et al. (2020) and consists of a color cut in the PS1 3π
catalog, broadly matching the aperture magnitudes and colors of
90 000 Pan-STARRS simulations of lensing systems. This pho-
tometric selection is very large, since it was designed to include
96% of the mock lens, and thus hopefully all LRG lens galaxies.
In return, however, it may contain a large number of interlop-
ers such as spirals and rings due to the Pan-STARRS data qual-
ity. After a cross-match with this catalog, we obtained 2 344 002
images to carry out our lens search.

2.2. Data selection for the simulated training set

Our simulation set is constructed from real data (i.e., a deflector
from CFIS imaging data and a background source from HST
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Fig. 2. Statistics of the deflectors and sources used in the lens simula-
tions. Upper panel: redshift distribution of the sources and deflectors
used for the lens simulations. Lower panel: measured velocity disper-
sion distribution for the deflectors.

images), as described in Sect. 3.2. The image stamp size in this
work is 8.17′′ per side corresponding to 44 pixels.

The selection of deflectors is taken directly from
Cañameras et al. (2020). This corresponds to a subsample
of the LRG spectroscopic sample (Eisenstein et al. 2001),
which uses color-magnitude cuts to select intrinsically red and
luminous galaxies. They have SDSS spectra, and thus also
velocity dispersion (σ?) and redshift (z) estimates. In Fig. 2
we summarize the spectral properties of our selection, which
spans the ranges 200 < σ? < 500 km s−1 and 0.1 < z < 0.7.
After a cross-match with the whole CFIS-r catalog from DR2,
we obtained 624 170 LRG images, which form the basis of our
training set.

The background galaxies were taken from the sample of
Cañameras et al. (2020). We used galaxy morphologies from
HST/ACS F814W images and converted to r band using HSC
ultra-deep stacked images. The original stamps have a size of
10′′ per side and the same pixel size as the HST/ACS F814W
image (i.e., 0.03′′). Since the PSF of the HST images is much
sharper than the CFIS PSF, we neglected its effect during the
simulation process and we did not attempt to deconvolve the
HST images from their PSF. All sources are included in the
COSMOS2015 photometric catalog (Laigle et al. 2016) and in
the Galaxy Zoo catalog (Willett et al. 2017). The redshift infor-
mation for our sources, when available, was obtained from
public spectroscopic catalogs (Lilly et al. 2007; Comparat et al.
2015; Silverman et al. 2015; Le Fèvre et al. 2015; Tasca et al.
2017; Hasinger et al. 2018). When no spectroscopic redshift
was available, the best photometric redshift estimate from
Laigle et al. (2016) was used. Then with all this informa-
tion combined we obtained high-resolution r-band images of
unlensed sources with known redshift. These selected fore-

ground LRGs and background HST sources provided the basis
for building our training set for the CNN search, as described in
Sect. 3.2.

3. Method

One way to address the problem of lens detection is to consider
it as a binary image classification task where the positive class
members are the lenses and the negative class members are the
galaxies without lensing features. CNNs are especially suited
to this task as they are able to detect local correlations of two-
dimensional features in images (Lecun et al. 2015). The convo-
lutional layers of CNNs can be understood as a set of kernels
that act as specific feature detectors.

3.1. Classifier

In this work we use a recent class of CNNs called Efficient-
Nets (Tan & Le 2019). They outperform the most common CNN
architectures on the classification of images from different stan-
dard data sets while using a smaller number of parameters (see
Fig. 1 of Tan & Le 2019). This is achieved by scaling uniformly
the depth, width, and resolution as a function of the available
computing resources.

In our case we did not scale the models ourselves, but used
the models already implemented in the Keras application pro-
gramming interface (API; Chollet et al. 2015). It includes eight
versions of EfficientNet, named B0 to B7, depending on the
number of free parameters involved. The dimensions of our
images, 44 pixels per side, are much smaller than the dimen-
sions of the images of the standard machine-learning data sets
used in Tan & Le (2019). Therefore, we used the B0 architecture,
which contains the smallest number of parameters of the eight
models. The B0 architecture, from the Keras API is pre-trained
on ImageNet data (Deng et al. 2009). We took advantage of
this pre-training by reusing the parameters of the trained model
instead of initializing them randomly, which allowed us to speed
up the training. However, since the dimensions of our images
are different, we adapted the size of the first layer and the last
fully connected layers and randomly initialized the parameters
of these layers. The classification was performed using the so-
called ensemble-averaging method. This consists of separately
training models with the same architecture but different subsets
of the training set and combining their results in order to reduce
the variance of the predictions. In the following we call the set
of models a “committee” and each individual model a “mem-
ber” of the committee. Here, we use three separate instances of
EfficientNet B0 as our committee members. We also tested ver-
sions of the committee with more instances. This did not lead to
a significant improvement in the quality of the classification.

3.2. Design of the training set

Since we performed a binary classification we needed to build
a training set containing images with either positive or negative
labels. The negative examples were drawn randomly from the
lens search sample described in Sect. 2.1. The negative examples
may contain a few real lenses, but we expected that this would
have only a marginal effect on the performance of the network
since the prevalence of gravitational lenses is very low. Creat-
ing a set of positives examples required more preparation. Not
enough lenses have been confirmed in the CFIS footprint to build
a training set that spans the full diversity of lens systems. We
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Fig. 3. Examples of simulated galaxy-scale systems of the CFIS survey.
Each stamp is the sum of a real CFIS r-band image of a galaxy, to which
a lensed HST galaxy convolved with the CFIS PSF is added. Each stamp
is 8.17′′ per side, and the pixel size is 0.18′′.

therefore generated a set of simulated lenses using the pipeline
described in Schuldt et al. (2021). We present below the most
important steps of this process.

We first selected an LRG image from the deflector cat-
alog constructed in Sect. 2.2 and assigned a mass profile to
the selected galaxy assuming a simple parametric model, the
singular isothermal ellipsoid (SIE; Kassiola & Kovner 1993;
Kormann et al. 1994). This mass model has five free parameters:
the Einstein radius, the coordinates of the lens center, the ellip-
ticity (or axis ratio), and the position angle (PA). The lens cen-
ter coordinates were fixed to the center of the deflector image,
whereas the values of the axis ratio and the position angle were
derived from the second moment of the lens light profile. In this
model we note that the ellipticity and PA are assumed to be the
same for the light and mass distribution.

A source was then randomly selected from the source cat-
alog. Knowing both the deflector redshift and velocity disper-
sion, we computed the Einstein radius and checked, given the
redshift of the source, that it fell in the range 0.8′′ < RE < 3.0′′.
The lower limit was chosen to prevent lensing features becoming
blended with the deflector light. If the Einstein radius was out-
side the given range, we randomly selected another source from
the catalog. We repeated this until a matching source was found,
otherwise after 100 iterations we increased the velocity disper-
sion (and hence the Einstein radius) of the deflector by 50% and
repeated the process. The goal was to obtain a sufficient num-
ber of simulations. If no match was found after increasing the
velocity dispersion, we discarded this deflector from our catalog.
Since this boost involved only a few objects with small velocity
dispersion at the lower end of the distribution shown in Fig. 2,
we did not expect this to introduce a morphological bias in our
training set.

In the next step the position of the source was chosen ran-
domly in the source plane. However, we imposed a total magni-
fication constraint, µ ≥ 2. This limit corresponds to the minimum

magnification threshold to produce multiple images. Choosing a
higher limit gives more striking lensing features, but also artifi-
cially increases the proportion of Einstein rings among the sim-
ulations. This may bias the classifier toward this class of objects
or even lead to more false positives, such as ring galaxies. Only
the positions resulting in a magnification µ ≥ 2 were considered,
hence constraining the source to be within or close to the caus-
tics and resulting in multiple images. Once the source position
was chosen, we computed a high-resolution image of the lensed
source using the GLEE software package (Suyu & Halkola 2010;
Suyu et al. 2012).

As a final step, the CFIS PSF was re-sampled to the HST
pixel size and the image of the lensed source was convolved
with this re-sampled PSF. The result of the convolution was then
down-sampled back to the pixel size of CFIS and added to the
deflector image. Our simulations are therefore a hybrid between
simulations and real data (i.e., built from the CFIS data them-
selves for the lens and from deep HST images for the source).

For some of the simulations produced with this method the
lensing features are too faint or too heavily blended with the
deflector light. Including images with indistinguishable lensing
features may increase the false positive rate. Therefore, we used
only the simulations for which the sum of the brightness of all
pixels of the lensed source was at least 20 times the mean rms
value of the sky noise measured in the four corners of the deflec-
tor image. We then proceeded to a rough visual inspection of all
simulations above this threshold to remove images with lensing
features blended in the deflector light. This resulted in 10 600
accepted lens simulations, of which we show a few examples in
Fig. 3. This number is relatively small. However, since the pre-
cision and recall on the validation set are close to perfect, we do
not expect that increasing the size of the training set would have
a significant impact on the performance measured on validation
data.

3.3. Pre-processing and training

Before being passed to the CNNs, all images were normalized
so that the full dynamical range lies between 0 and 1. We also
applied a logarithmic stretch in order to enhance the contrast of
the lensing features. After this pre-processing, the data were sep-
arated into three different sets: (1) the training set (80% of the
training data); (2) the test set (10%), and (3) the validation set
(10%). The validation set is used both to monitor the training
process and to define the conditions to end the training, whereas
the test set is used only at the end of the training to evaluate the
performance of the committee.

Our images were only available in the r band, but the Effi-
cientNet architectures from the Keras API are built to han-
dle three-band images. Hence, we transformed our single-band
images into a three-band data cube by duplicating three times
the images before passing them to the network. In doing so, we
were able to use the pre-trained version of the network, allowing
us to shorten the training time. We trained the three members of
the committee independently (each member being an instance of
the EfficientNet B0 architecture), each with a different subset of
the training set. The subsets were constructed using a different
fraction of lenses; the fraction was drawn randomly in the range
0.2−0.5 to mitigate the tendency of the network to learn the frac-
tion of positive examples seen in the training set. The instance
trained with the lower fraction will be less optimistic and find
fewer lenses, but will reach a lower false positive rate. How-
ever, the fraction of lenses is set to 0.5 in the validation and test
sets.
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Fig. 4. Probability density distribution of the score assigned by the com-
mittee for the test set (red), containing 50% of lens simulations, and
50% of galaxies without lensing features taken from the lens search
sample. In blue are shown the scores predicted by the network on the
data set containing real images described in Sect. 2.1. In the lens search
sample the proportion of lenses is by definition unknown.

To train the CNNs we performed a mini-batch stochastic gra-
dient descent using binary cross-entropy as a loss function and
an Adam optimization (Kingma & Ba 2014). The batches con-
tained 128 images picked from the data set and flipped randomly
along the x- and y-axes using the Data Augmentation method
from Keras. Overfitting is one common pitfall encountered dur-
ing the training of machine-learning algorithms. It occurs when
the algorithm learns the specifics of the training data, and thus
is not able to generalize on new data. When overfitting occurs,
the classification error on the training data becomes very small,
while the error on previously unseen data starts to grow. Since
the batches contain different images each time, the data augmen-
tation procedure allows us to artificially increase the size of the
training set and limit the risk of overfitting. Since our network
was previously trained on ImageNet data, we only needed to
fine-tune the parameters. Therefore we started directly with a
relatively low learning rate of 10−4.

The maximum number of epochs, which is the number of
times the machine-learning algorithm is allowed to see the entire
training data set, was fixed at 200. However, in order to optimize
the training time, we used the early stopping procedure from
the Keras API, which interrupts the training before reaching the
maximum number of epochs if the validation loss is no longer
improving. More precisely, the training stops if the validation
loss reaches a plateau, or if it increases during ten consecutive
epochs, or if neither of the other two conditions is met after 200
epochs. Using early stopping with a validation set allows us to
interrupt the training if the classifiers start to overfit the train-
ing data. At the end of the training, the weights and biases are
restored to the epoch achieving the smallest validation loss. The
three members of the committee are combined such that the final
output corresponds to the mean of all the outputs assigned by the
three independent networks.

3.4. Candidate detection and performance of the classifier

Convolutional neural networks are generally not invariant under
rotation and the final output of the committee, hereafter referred
to as the score, can change significantly for the same image if
this image is rotated in different ways. In some extreme cases,
an image with a high score can even fall under the selection

threshold after a rotation due to statistical fluctuations. In order
to mitigate this effect, we rotated and flipped all images in seven
different ways: three rotations of 90, 180, and 270◦, and flips
along the x-axis of all rotations including the flip of the origi-
nal unrotated image. We then considered the mean of the scores
given by the committee in all directions as the final score. The
final scores of the committee range from 0 to 1. If the classifier
were ideal, we would expect the scores of galaxies without lens-
ing features to be 0 and the scores of the lenses to be 1. Figure 4
shows the distribution of scores assigned by the committee on
all images from the lens search sample and for the test set. The
test set distribution is not bi-modal, indicating that our classifier
is not perfect. In the case of the lens search sample the distribu-
tion has only one peak centered on zero, and decreases exponen-
tially afterward. This can be explained partially with the very
low prevalence of lenses in the lens search sample and by the
fact that the committee may less easily identify lenses than sim-
ulations, as explained below. The performance of the network
is evaluated using two metrics on the test set: Precision (P) and
recall (R). The precision or purity indicates the fraction of true
lenses among all images labeled as lenses, whereas the recall,
also called “true positive rate” or “completeness”, gives the frac-
tion of true lenses recovered by the committee among all the true
lenses of the training set. They are defined as:

P =
T P

T P + FP
, (1)

R =
T P

T P + FN
, (2)

where T P, FP, and FN are the number of true positives, false
positives, and false negatives, respectively.

The number of true positives, true negatives, false positives,
and false negatives from Eqs. (1) and (2) depend on the score
we chose as a cutoff threshold (i.e., the score above which the
images are considered to be lens candidates). We show in Fig. 5
the precision and recall values for all cutoff thresholds between
0 and 1. Choosing a high cutoff threshold increases the precision
as the number of false positives decreases, but lowers the recall
since fewer true positives are included. In Fig. 5 we observe that
the precision and recall on the test set stay fairly high, inde-
pendently of the cutoff threshold. Since a large part of the con-
taminants in CNN-based lens searches are spiral galaxies, we
estimated the proportion of spiral false positives for each cutoff
threshold. Therefore, we evaluated 8200 CFIS images of spiral
galaxies with our trained CNNs. All of these spirals were taken
from the Galaxy Zoo catalog (Willett et al. 2017). The fraction
of spirals mislabeled as lenses as a function of the cutoff thresh-
old is presented in Fig. 6 and shows that the contamination rate
falls below 0.001 for any CNN score above 0.5. For scores higher
than 0.8 there are no spiral false positives.

Taking into account both the precision and recall curves, we
chose a cutoff threshold of 0.5 for our lens search in the real
CFIS data. This results in a precision of 1 and a recall of 0.96
on the test set. However, these results must be interpreted with
caution, since the committee may have learned to recognize the
simulations, and the performance may decrease on real data. In
addition, it should be kept in mind that the real occurrence rate of
strong lensing events is very low. The probability for an image
classified as a candidate to be a real lens (P(L|C)) can then be
deduced from the Bayes rule to take into account the occurrence
rate (P(L)) of lenses in the data set as:

P(L|C) =
P(L)P(C|L)

P(L)P(C|L) + (1 − P(L))P(C|NL)
, (3)
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Fig. 5. Precision and recall as functions of the cutoff threshold in CNN
scores applied to a test set composed of 1060 galaxies without lensing
features taken from our selection for the lens search and 1060 lenses
taken from our simulation set.
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Fig. 6. Fraction of CFIS r-band images of 8200 Galaxy Zoo spiral
(Willett et al. 2017) galaxies mislabeled as lenses as a function of the
cutoff threshold on the CNN-committee score.

where P(C|L) and P(C|NL) are the precision and false discovery
rate obtained on the testing set, respectively. If P(L) is very low,
P(L|C) will stay low even when the precision is very high. This
effect, called the base rate fallacy, is known to limit the perfor-
mance of intrusion detection algorithms (e.g., Axelsson 2000)
and may be non-negligible for lens detection.

4. Visual inspection of the candidates

Of the 2 344 000 images selected for our lens search, 9460
obtained a CNN score higher or equal to 0.5. All these candidates
were visually inspected independently by the six authors of this
paper (E.S., B.C., K.R., F.C., J.C., and G.V.). We separated the
candidates following the score attributed by the committee into
five CNN-score bins of 0.1 in size and inspected them separately.
This separation may introduce some biases in the visual inspec-
tion, meaning that the users may give more optimistic grades
for objects in the bins corresponding to the highest score. In
order have a consistent visual inspection between the users and
the bins, we defined common guidelines and designed a quick

and flexible python tool1 to display the images in two differ-
ent ways: a mosaic tool to display a large number of images
simultaneously and a single-object display tool to review
each object in detail. Both tools can handle single-band and color
images.

For each score bin, we first performed a crude pre-selection
of potential lenses using the mosaic tool. This tool displays a
grid of 10 × 10 cutouts so that users can quickly flag any of the
systems. The images are arranged randomly in the mosaic for
each user, hence minimizing any biases depending on the order
and positions in which the images are shown, for example due to
varying attention levels of users through the inspection process.
We also flagged misclassified ring galaxies in this pre-selection
in order to improve our set of negative examples for future lens
searches.

At the end of this pre-selection, we obtained a list of possible
lens candidates and ring galaxies. This sample unavoidably con-
tained other objects, such as spirals and interacting galaxies that
resemble lenses, which were inspected in more detail in a second
step (see below). In other words, this first step rejects any object
that can be immediately demoted to a false positive and keeps
the rest. We then considered the union of all objects selected by
at least one of the six users (4626 images).

For all images selected during the mosaic inspection,
we proceeded with a more detailed inspection using our
single-object tool. This tool displays one single stamp at a
time, but offers a dynamic contrast control, more classification
options, and a direct link to the Legacy Survey (LS; Dey et al.
2019) cutouts, when available. The LS data are shallower than
the CFIS data, but have color information. We note that the LS
color images are not displayed systematically during the classi-
fication process to avoid the users’ decisions being driven by the
color information. They are rather used to support the r-band
CFIS classification when a candidate requires further data to
make a decision. In this step we classify the images into four
categories: secure lenses (SLs), maybe lenses (MLs), single arcs
(SAs), and non-lenses (NLs).

Our single-object classification follows the same guidelines
as in Rojas et al. (2021), where the SL category includes images
displaying obvious signatures of strong-lensing features, such
as multiple images or arcs with counter images. The second
category, ML, corresponds to images that exhibit structures
compatible with lensing, but that would require further inves-
tigation with lens models or follow-up with higher resolution
data, higher signal-to-noise data, or spectroscopy. When single
arcs with small distortions and no counter-images are seen, we
use the category SA. Naturally, the SA category contains for-
tuitous object alignments or galaxies with a curved shape that
may not be due to lensing. All the images that do not belong to
the first three categories are labeled NLs. The NL objects can be
subclassified into three subcategories: rings, spirals, and merg-
ers. However, these subcategories are used by the users only if
they are very confident about their classifications. This allows
us to obtain a catalog of the most common false positives as a
by-product of this search. These samples are valuable for future
searches with CNNs being trained against false positives that can
be reliably identified. At this stage, however, the size of this false
positive sample remains too small to retrain the CNNs used in
this work.

We obtained a total of 1423 images selected as MLs or
SLs by at least one user (out of the six users). However, the
agreement between the potential lens candidates selected by the

1 https://github.com/esavary/Visualisation-tool
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different users remained low after the two-step visual inspection.
More details about the classification are given in Appendix A. In
order to obtain an agreement, we reinspected all images selected
by at least one user in a joint visual inspection session. In doing
so, we considered all 1423 objects that were identified as SL or
ML by at least one person and chose one unique grade for each
object after a discussion among all the users. In this last part,
we also showed the image of the candidates in the u band when
available, and used only the categories SL, ML, and NL to fur-
ther clean the sample. It should be noted that this process is very
selective as we require the agreement of all users to grade an
image as SL or ML.

After the joint inspection we obtained 32 objects classified
as SLs and 101 MLs, which are shown in Figs. 7 and C.1,
respectively. These represent 1.4% of all the candidates selected
by the committee of CNNs. After a cross-match with Vizier
(Ochsenbein et al. 2000), Simbad (Wenger et al. 2000), the Mas-
ter Lens database, and the catalogs of various lens-finding papers
with candidates or confirmed lenses included in the CFIS foot-
print (e.g., Cañameras et al. 2020; Chan et al. 2020; Jaelani et al.
2020; Huang et al. 2021; Talbot et al. 2021), we obtained 15 new
SL and 89 new ML candidates. The Table of results of the cross-
match and the coordinates of the candidates is available at the
CDS. With our visual inspection, we also obtained three cata-
logs with 238 mergers, 361 ring galaxies, and 950 spiral galax-
ies identified by at least one user, which can be used to expand
our negative sample for future searches. Examples of each cate-
gory are shown in Fig. E.1. Because we consider the unions of
all votes to include a candidate in our false positive list, there is
a small an overlap between the three catalogs. Among all images
labeled as ring or spiral by any user, 11 were finally classified as
ML or SL after the joint inspection step. We therefore removed
them from the final spiral and ring catalog. The relatively small
number of ML and L candidates in our final catalog in compari-
son with the number of rings, spirals, and mergers can partially
be explained by the visual inspection method: we require a unan-
imous decision of all users during the joint inspection to include
objects in the ML or L, whereas only one vote is sufficient for an
image to be included in the false positive catalogs.

5. Lens–source deblending with auto-encoders

Independently of the lens search itself, it is desirable to provide
reliable deblending of the lens and source light of the candidates
without relying on a lens model. First, deblending reduces the
dynamical range of the data and allows faint structures to be seen
more clearly either in the lens or in the source. Second, it allows
the remeasurement of clean photometry of the lens and source
for future photometric redshifts estimates when color informa-
tion become available (e.g., from public release of other sur-
veys). Finally, it can be used to initialize lens model parameters
when implementing composite profiles with both stellar and dark
mass.

Rojas et al. (2021) propose a method for deblending lens
candidates based on the scarlet2 (Melchior et al. 2018)
and MuSCADeT (Joseph et al. 2016) algorithms. However, this
method is not directly applicable to our case since it requires
color images. Therefore, we present here a fully data-driven
alternative approach based on a class of neural networks called
auto-encoders, with the goal of deblending our 32 SL candidates.
In general, neural networks find a mapping, Y = f (X), between
the inputs X and the labels Y . In the case of auto-encoders the

2 https://github.com/pmelchior/scarlet

labels are the inputs themselves. In other words, the mapping
made by the auto-encoder rather writes as X = f (X). Auto-
encoders can be decomposed into two symmetrical parts: the
encoder and the decoder. If the dimensions of the layers decrease
from the two ends of the auto-encoder to the central layer, the
network is able to learn a simplified representation of the original
input. Thus, auto-encoders may be used for data compression,
feature learning, dimensionality reduction, and denoising. The
architectures derived from auto-encoders, like variational auto-
encoders, can also be used as generative models, to then generate
realistic images of galaxies (Lanusse et al. 2021).

The scheme of the auto-encoder we used for the deblending
is presented in Fig. B.1. The input of the network is the image of
the lensed system. Unlike traditional auto-encoders, the decoder
is split into two parallel parts. The first part extracts the lensed
source, whereas the second extracts the deflector image. The
dimension of the inner dense layers correspond to the flattened
dimension of the last convolutional layer of the encoder and the
first of the decoder part. In the end, we obtained three differ-
ent outputs: the lensed source, the deflector and the lens system
reconstructed by the auto-encoder. The reconstructed lens sys-
tem was obtained by summing the lensed source and deflector
images derived with the two different parts of the decoder.

5.1. Training process

We trained the auto-encoder using 10 000 simulations of lenses
taken from the sample described in Sect. 3.2 and 5000 images of
LRGs from the spectroscopic LRG selection detailed in Sect. 2.
Before the training all images were normalized between 0 and
1. We also set aside 20% of them to constitute the validation
set, with the rest as the training set. For each image, we used
the following for the ground truth: the image of the lens system
itself, and the lensed source and deflector images obtained in the
final step of the simulation pipeline before the two images were
combined. In the case of LRG-only images, we define the lensed
source image as an array of zeros and the deflector image as the
image of the LRG. The loss function takes into account the three
different outputs and gives more weight to the part containing
the lensed source and deflector terms in order to put emphasis
on the accurate deblending of the images. It is defined as:

L = 0.4 × Ldeflector + 0.4 × Lsource + 0.2 × Lcombined, (4)

where Ldeflector, Lsource, and Lcombined are respectively the binary
cross-entropy losses computed between the true deflector image
and the deblended deflector, between the lensed source image
and the deblended lensed source, and between the lens system
image and the combination of the deblended deflector and the
lensed source. We also tested a combination of mean squared
error losses instead of binary cross-entropy losses. However,
the version trained with mean squared error failed to correctly
restore the shape of the lensed source. In most of the case
the lensing features appeared incomplete or distorted, or were
absent.

We set the maximum number of epochs to 200 and use early
stopping to avoid overfitting.

5.2. Secure lens deblending

We present in Fig. 7 the result of the auto-encoder deblending for
the 32 SL systems. The auto-encoder correctly captures the gen-
eral shape of the lensed source features and the deflector. The
main advantage of this method is that it does not rely on any
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assumptions about the light profile of the lens and the source,
and is therefore also able to deblend complex lenses. This is
true in particular for UNIONS J155923+314712 in which the
deflector is an edge-on spiral. However, as is seen in the resid-
ual column of Fig. 7, it tends not to correctly deblend some of
the high-frequency features from the original images. The auto-
encoder clearly distinguishes companion galaxies from lensing
features since in general, if companions are reconstructed by the
auto-encoder, they appear in the deblended LRG image but not
in the deblended lens source image (see Fig. 7). One exception
is UNIONS J113952+303204, where one of the companions is
very close to the arc of the lensed source and is then mistaken
for a lensing feature.

In its current implementation, our method provides reliable
photometry of the deflectors, according to tests performed on
simulations, but performs less well on the photometry of the
lensed source because auto-encoders do not capture all high-
frequency features, especially the fainter ones. This results in a
loss of flux in some of the deblended lensed sources, and indeed
the residuals displayed in Fig. 7 show signal at the locations
of small features of the lensed sources. However, we can still
obtain reliable photometry of the lensed sources by subtracting
the deblended deflectors from the original images and then by
carrying out the photometric measurements on the subtracted
images. Future work with auto-encoders will focus on better rep-
resentation of the high-frequency signals contained in the data.

In conclusion, inspecting the auto-encoders results allows us
to confirm the presence of promising potential lensing features
in our SL sample. The deblended images support our classifica-
tion for all our SL candidates. In some cases they enhance the
visibility of features that are hardly visible in the original low-
contrast images, and thus can provide significant help during the
visual inspection step of future lens searches.

6. Automated modeling of best lens candidates

Future lens surveys will discover tens of thousands or hundreds
of thousands of galaxy-scale strong lenses. From these lenses
it will be necessary to define subsamples of objects suited to
specific science goals. For example, not all lenses are useful for
constraining dark matter substructures and not all lenses are use-
ful for studying galaxy evolution, constraining the initial mass
function, or inferring the lens mass-to-light ratio. It is therefore
crucial to obtain a basic characterization of the lens and sources
properties of the candidates already at the level of the discovery
catalog. In the absence of redshift information this boils down
to the Einstein radius of the system, its external shear, and the
light properties of the lens and of the source. In this section we
use our 32 best objects in the SL category as a test bench for a
simple automated lens characterization pipeline.

6.1. Modeling pipeline

We model the lens mass, lens light, and source light pro-
files using simple analytical profiles. We use a SIE profile to
model the lens mass distribution to which we add external shear
(SIE + γext model). The light distributions of both the lens and
the source are represented as single elliptical Sersic profiles. As
we show below, these simple models are sufficient to fit most of
our lens candidates.

The pipeline is based on the Lenstronomy3 Python pack-
age (Birrer et al. 2015; Birrer & Amara 2018) and has two

3 https://github.com/sibirrer/lenstronomy

main steps, a pre-sampling optimization, followed by a full
Markov chain Monte Carlo (MCMC) sampling. The pre-
sampling step uses the particle swarm optimization (PSO)
method (Kennedy & Eberhart 1995), which ensures that we ini-
tialize the MCMC with model parameter values close to the
maxima of the posterior probability distribution. We then per-
form the MCMC sampling using the emcee4 package, which
is a Python implementation of the affine-invariant Markov
chain Monte Carlo ensemble sampler (Goodman & Weare 2010;
Foreman-Mackey et al. 2013). While lens modeling is a fairly
easy task for isolated lenses, it is complicated by the presence
of intervening objects unrelated to the lens, which introduce
spurious light contamination. Such objects should be masked
to avoid being mistakenly identified as lensed images of the
source. This masking procedure is addressed in different ways
by different authors. Shajib et al. (2020) modeled 23 lenses
from the SLACS sample (Auger et al. 2009), and specifically
chose systems that do not contain any contaminating sources of
light. Nightingale et al. (2018) did not restrict their sample, but
adopted a circular mask with a fixed radius of 3.9′′, which selects
only the regions of the data dominated by the lensed source light.

In our case the masking algorithm is designed to adapt to
systems with very different angular sizes. Figure 8 depicts the
steps of the following algorithm:

1. A Laplacian of Gaussian (LoG) filter is applied to the
image to highlight areas of the image with a strong flux gradient.

2. All pixels whose flux is below a threshold of 6σsky, where
σsky is the rms background noise, are set to zero.

3. All of the nonzero pixels in the filtered image are located,
and the locations of the peaks are identified. Peaks are defined as
local maxima in the image detected using the peak_local_max
function of the skimage Python package. We require that
detected maxima be separated by more than one pixel from each
other in order to be considered a peak.

4. The detected objects near the center of the image are
assumed to be the lensing galaxy and lensed images and/or arcs
from the source light. These objects are used to estimate the
angular size of the lens–source system. This is done by sort-
ing the list of detected peaks by their distance from the image
center: the first peak corresponds to the lens galaxy–LRG, and
the second detected object is one of the images of the lensed
source. In order to not mask part of the light from the lensed
source image, the lens size is estimated to be eight pixels larger
than the distance from the center to the second detected object.
All of the brightest pixels farther from the center are treated as
contaminant light to be masked. The mask itself is created by
using the subset of all nonzero valued pixels from step 3 whose
location is farther from the center than the lens system size (red
cross-hatched areas outside the black circle in Fig. 8).

5. The final mask is a Boolean array of the same shape as
the original image, containing zeros for all pixels that are to be
ignored in the modeling and a value of one elsewhere. At each
pixel marked with a red plus sign (+) in Fig. 8, the surrounding
pixels within a circular area with a radius of two pixels are set to
zero. The final mask is shown in the last frame of Fig. 8. For the
majority of the 32 SLs we modeled, a visual inspection of the
robustness of the automated masked convinced us that it always
masked out all the spurious neighboring light that would have
been deleted by hand on an object-by-object basis. Only very
minor corrections would have been applied (see discussion in
Sect. 6.2).

4 https://github.com/dfm/emcee
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Fig. 7. Results of the auto-encoder deblending for our 32 SL candidates. Two objects are displayed in each row. For each object, we show the
original image displayed using a asinh grayscale, and the lensed source and lens light deblended using the auto-encoder and the scaled residuals.

Before applying lenstronomy to our 32 SLs, we adopt real-
istic priors on the different parameters. First, for the mass and
light profiles of the lens, we constrain the axis ratios between
the semi-minor and semi-major axes, q = b/a, using Gaussian
priors centered on a value of q = 0.8, with a standard deviation
of σ = 0.1. This choice was motivated by the results presented in
Kelvin et al. (2012), where over 100 000 galaxies of the Galaxy
And Mass Assembly(GAMA) survey were modeled, finding dis-
tributions in eccentricities peaking at (1 − q) ' 0.2. In addition,
we expect some similarity between the ellipticity of the deflec-

tor mass and deflector light profiles; however, small deviations
are allowed. We therefore apply Gaussian priors, with σ = 0.01,
on both of the ellipticity parameters of the lens mass (em

1 , em
2 )

that are centered on the corresponding values of the light profile
(el

1, el
2).

In addition to the priors on the ellipticity parameters, we
also constrain the effective radius Reff and Sersic index ns of
the source light through the use of prior probability distributions
obtained from a catalog of 56 062 galaxies from the COSMOS
survey that were modeled using a single Sersic profile to serve
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Fig. 7. continued.

as a training set for the GALSIM5 galaxy image simulation soft-
ware (Rowe et al. 2015). We show these prior distributions in
Reff and ns in Fig. 9. For simplicity, we do not assume any covari-
ance in the prior distribution of these two parameters nor do we
assume any covariance with the deflector’s flux or magnitude.

6.2. Modeling results

We apply our lenstronomy-based pipeline with the priors
described above to the best 32 lenses found with the CNN

5 https://github.com/GalSim-developers/GalSim

search. Figure 10 shows histograms for the model parameters
describing the deflector mass, the source light, and the deflec-
tor light profile. The Einstein radii of the lenses are in the range
1.2′′ < RE < 2.5′′ and the external shear strengths are all 0.3
or less. The CNN is biased to find lenses with Einstein radius
matching the range of the training set, but the Einstein radius
range 1.2′′ < RE < 2.5′′ in the SL sample also highlights the fact
that the visual inspection predominantly selects obvious wide-
separation lenses with deblended counter images. Seven lenses
have models with a shear compatible with zero, but since no
account for the strong correlation of external shear and inter-
nal ellipticity is made, this must be interpreted carefully. For
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Image LoG filtered image Final filtered image

Detected objects
r = 3.352"

Mask locations Mask

Fig. 8. Illustration of our masking procedure. Upper row: original CFIS
image in the r band, followed by the image after applying the LoG filter
in the top middle panel. This image is then thresholded and all pixels
below 6σsky are set to zero, as shown in the top right panel. Bottom
row: detected peaks, whose centroids are marked with black crosses.
Bottom middle panel: estimated lens size as a black circle and the red
areas indicate what we consider as contaminants. These are masked as
the red area on the bottom right image.

0 1 2
Reff (arcsec)

0

500

1000

1500

Co
un

t

0 2 4 6
ns

0

500

1000

1500

2000

Co
un

t

Fig. 9. Priors used for the effective radius Reff and Sersic index ns of
the source light. The priors are derived from 56 062 galaxies from the
COSMOS survey.

the lens light the effective radius and Sersic index distributions
peak at 2.5′′ and 5.0, respectively, which is not surprising as our
lenses are selected among a sample of LRGs. The source galax-
ies are generally much smaller than the deflector LRGs, with the
distribution in effective radius peaking at Reff ∼ 0.2′′ and with
Sersic index peaking at ns ∼ 1.0, also unsurprising given that
source galaxies are often low mass and/or star-forming disks.
In Figs. D.1–D.7 we show mosaics of the modeling results for
the 32 lenses. The Table with the lists the best-fit parameters
obtained from these fits is available ate the CDS. In spite of the
simplicity of our models the residuals are acceptable for most
systems (i.e., with a mean reduced χ2 close to 1.0). However,
setting a limit of 3 on the reduced χ2 allows us to spot outliers.
These objects are indicated with a red rectangle in Figs. D.1–D.7
and show that the bad fits are due to complex lens light profiles
beyond Sersic, inaccurate masking, or objects in the source plane
being modeled as if they were in the lens plane or vice versa.
A notable example is UNIONS J155923+314712 (first row of
Fig. D.3) which has a bright elongated deflector that is not well
described by a single Sersic profile. This specific example also
shows the limitation of our pre-selection of LRG deflectors as
obviously this system has a lens with an edge-on disk and a
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Fig. 10. Parameter distributions from our lens modeling results using
the SIE+γext model. Top row: gives the Einstein radii and external shear
values of the mass model. Middle and bottom rows: effective radius and
Sersic index, for the lens and source light, respectively. The models
with an acceptable reduced χ2 (≤3.0) are shown in green and those with
a reduced χ2 > 3.0 are shown in red (see text). After a manual fix of the
masking procedure, the bad fits improved to χ2 < 3.0.

bulge component. In all cases with χ2 > 3.0, we were able to
immediately identify the problem and correct it in a simple way,
bringing the new χ2 value close to 1.0.

Four additional objects have χ2 > 3 (UNIONS J113952 +
303204, UNIONS J165710+315052, UNION J075346+341633,
UNIONS J112053+342146). For three of these the mask
produced by our automated procedure is simply not large
enough to cover all of the light contaminants. In the case of
UNIONS J165710+315052, part of the lensed source light in the
bottom right corner of the image is mistaken for a companion,
while the contaminant directly to the right of the deflector is
treated as a lensed source image. This is a very specific con-
figuration that would be extremely difficult to accommodate in
an automated masking procedure for thousands of objects, as
will be the case with future wide-field surveys. Nonetheless,
since we only have 32 objects, we can afford to create new
customized masks, and we show in Figs. D.1–D.4 the results
with new masks directly beneath the results with the automated
masks. In each subpanel the two modeling results are enclosed
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in the red dashed rectangles, and the manual masks significantly
improve the residuals.

We have a total of six modeling failures. Of these six, one
fails due to the deflector light being more complex than for the
rest of the sample, while three are due to imperfect masking that
can certainly be improved in future versions of the pipeline. One
of the failures, UNIONS J081959+535624, is in fact known as
a lensed quasar (Inada et al. 2009) and therefore fails because
our modeling procedure does not allow for point sources (see
Fig. D.8). This point will be addressed in future work. For the
25 successful automated models, the average modeling time is
2 h for a 44 pixel× 44 pixel stamp, which is well achievable in
the context of future surveys like Euclid, which is expected to
find 20−30 SLs per day.

7. Discussion and conclusions

In this paper we presented the design of an automated pipeline
to find galaxy-scale strong lenses using convolutional neural net-
works and applied it to the CFIS wide-field optical imaging sur-
vey being carried out with the 3.6 m CFHT in Hawaii. We used
only the deep and sharp r-band images for which the median see-
ing is 0.6′′ down to a 10σ depth of r = 24.6. We used 2500 deg2

of CFIS in the present work since the survey is still ongoing; it
is expected to reach a total area of 5000 deg2 of the northern sky,
when completed.

In training our CNNs, we used data-driven simulations
where the light distribution of the lens plane is taken directly
from the data. This naturally includes the PSF, companions, and
noise properties of the actual data and any companion galaxies.
The lens mass, modeled as a SIE profile, was derived from the
measured velocity dispersion of our sample of LRGs, which we
further adapted to ensure that the lensing features were system-
atically visible in the training set. Our background sources are
from the HST images of the COSMOS survey, and are convolved
by the local CFIS PSF after lensing.

Starting from a sample of CFIS r-band images of LRGs
selected both from spectroscopy and color-cuts, we used a com-
mittee of three neural networks, leading to a CNN-based sample
of 9460 objects passing a CNN score of 0.5, averaged over the
three members of our committee. The adopted threshold of 0.5
on the CNN identification is based on experiments with our val-
idation set and on the CNN score obtained for real CFIS images
of spiral galaxies identified in GalaxyZoo.

Even though the precision of the CNN committee is
extremely high using a score threshold of 0.5, the large sam-
ple of two million galaxies to classify implies a large number
of false positives among the 9460 objects passing our threshold
due to the low prevalence of lenses in real data, as explained
in Sect. 3.4. Fortunately, visually inspecting 9460 objects by
eye is still doable and this task was done by six independent
authors of this paper. Even though strict and homogeneous rules
were set for the visual classification, we note that the six human
classifiers still had very different opinions on what a lens is
and what it is not, meaning that any automated CNN may
still require a time consuming human check, for example with
citizen-science projects for future wide-field space surveys like
Euclid, Rubin-LSST, or Roman. More effort should be devoted
to visual inspection methods to reach better consensus between
classifiers.

Following the visual inspection, we found 32 objects with
striking lensing features and 101 objects that show strong signs
of lensing but that need further data to confirm (i.e., higher reso-
lution, and deeper imaging and/or spectroscopy). This represents
around 0.05 candidates per square degree, which is much lower
than the 1.95 and 11.95 lenses per square degree estimated in
Collett (2015) for LSST and Euclid, respectively. This number is
however comparable with that found by Cañameras et al. (2020),
from which we take our lens search sample, who obtain 0.0117
lenses per square degree. The slightly larger number of lenses
per square degree in our case can be explained by the higher res-
olution of CFIS r-band images and the different lower limit on
the Einstein radii of the simulations from the training set.

A by-product of our simulations set is that we were able
to train auto-encoders to learn the lens light and lensed-source
light separately and we then deblended the lens plane from the
source plane for all 133 objects. We see this process, or future
evolutions of it, as a way to infer photometric redshifts for the
lens and source if many bands are available, which will be the
case in future wide-field imaging surveys. With the CFIS r-band
data alone, we still find our application of auto-encoders use-
ful to evaluate the quality of the lens candidates, especially for
the smallest Einstein radii and/or for objects with strong contrast
between the lens and source light.

Finally we developed a simple lens modeling pipeline based
on the lenstronomy software in which we adopt an SIE mass
profile with external shear. We also developed an automated
masking procedure to enforce only relevant objects to be mod-
eled and avoid objects unrelated to either the lensed source
or the lensing galaxy. The optimization process using particle
swarm optimization followed with Markov chain Monte Carlo
sampling takes on the order of two hours per object for our
44 pixel× 44 pixel stamps. With the present ground-based data,
even with deep high-resolution ground-based imaging, we find
that the SIE plus shear model is sufficient to fit most of the
data. The main sources of failure are the following: (1) the lens
light was too complex to be described by a single Sersic profile
(1 object out of 32); (2) the masking procedure failed to capture
the entire extent of the objects to be masked (2 objects out of
32); and (3) the misidentification of source images that should
not have been masked (1 object out of 32). We consider only the
last case to be a real limitation to a fully automated procedure.

We also produced a catalog of contaminants that mimic lens-
ing geometry (i.e., 238 mergers, 369 ring galaxies, and 961 spi-
ral galaxies). All these contaminants are provided in electronic
form as they can be useful for future lens searches in order to
train CNNs against false positives.

We demonstrated the possibility to build an automated
pipeline to find, deblend, and model lenses in future large-scale
surveys, even though there are still challenges to overcome. In
particular, human intervention was required at two steps of the
pipeline: in the verification of the lens candidates and, to a lesser
extent, in the modeling. The importance of the visual inspec-
tion step may be decreased in future versions of the pipeline
by retraining the CNNs with our catalog of false positives and
by combining the information obtained with the deblending and
modeling with the classification score provided by the commit-
tee. Since the CFIS imaging data are among the best available
so far in terms of depth and seeing, our results, although sub-
ject to improvements, can be seen as an illustration of what
can be achieved with in a single Rubin-LSST band built by
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stacking some of the best seeing epochs after about a month
of data acquisition. With a spatial resolution three times better
than the best CFIS images, Euclid (and then Roman) will give
us access to a larger number of small separation systems, espe-
cially with Einstein radii smaller than 1′′. These data will also
help us to decide on our less secure candidates, since space-
based imaging will provide high signal-to-noise ratios for the
lensing features of the lenses presented here, allowing us to test
more complex mass models, and thus probe astrophysical ques-
tions like galaxy evolution and the structure of their dark matter
halos.
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Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111
Jacobs, C., Collett, T., Glazebrook, K., et al. 2019a, ApJS, 243, 17
Jacobs, C., Collett, T., Glazebrook, K., et al. 2019b, MNRAS, 484, 5330
Jaelani, A. T., More, A., Sonnenfeld, A., et al. 2020, MNRAS, 494, 3156
Jaelani, A. T., Rusu, C. E., Kayo, I., et al. 2021, MNRAS, 502, 1487
Joseph, R., Courbin, F., & Starck, J. L. 2016, A&A, 589, A2
Kassiola, A., & Kovner, I. 1993, ApJ, 417, 450
Kelvin, L. S., Driver, S. P., Robotham, A. S. G., et al. 2012, MNRAS, 421,

1007
Kennedy, J., & Eberhart, R. 1995, Proceedings of ICNN’95 – International

Conference on Neural Networks, 4, 1942
Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980]
Koopmans, L. V. E. 2005, MNRAS, 363, 1136
Koopmans, L. V. E., & Treu, T. 2003, ApJ, 583, 606
Kormann, R., Schneider, P., & Bartelmann, M. 1994, A&A, 284, 285
Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2
Laigle, C., McCracken, H. J., Ilbert, O., et al. 2016, ApJS, 224, 24
Lanusse, F., Mandelbaum, R., Ravanbakhsh, S., et al. 2021, MNRAS, 504, 5543
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints

[arXiv:1110.3193]
Le Fèvre, O., Tasca, L. A. M., Cassata, P., et al. 2015, A&A, 576, A79
Lecun, Y., Bengio, Y., & Hinton, G. 2015, Nature, 521, 436
Lilly, S. J., Le Fèvre, O., Renzini, A., et al. 2007, ApJS, 172, 70
Mao, S., & Schneider, P. 1998, MNRAS, 295, 587
Marshall, P. J., Hogg, D. W., Moustakas, L. A., et al. 2009, ApJ, 694, 924
Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018, Astron. Comput., 24, 129
Metcalf, R. B., Meneghetti, M., Avestruz, C., et al. 2019, A&A, 625, A119
Mukherjee, S., Koopmans, L. V. E., Metcalf, R. B., et al. 2021, MNRAS, 504,

3455
Myers, S. T., Jackson, N. J., Browne, I. W. A., et al. 2003, MNRAS, 341, 1
Nayyeri, H., Keele, M., Cooray, A., et al. 2016, ApJ, 823, 17
Negrello, M., Amber, S., Amvrosiadis, A., et al. 2017, MNRAS, 465, 3558
Nierenberg, A. M., Oldenburg, D., & Treu, T. 2013, MNRAS, 436, 2120
Nightingale, J. W., Dye, S., & Massey, R. J. 2018, MNRAS, 478, 4738
Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23
Oguri, M., Inada, N., Pindor, B., et al. 2006, AJ, 132, 999
Paraficz, D., Rybak, M., McKean, J. P., et al. 2018, A&A, 613, A34
Pawase, R. S., Courbin, F., Faure, C., Kokotanekova, R., & Meylan, G. 2014,

MNRAS, 439, 3392
Peirani, S., Sonnenfeld, A., Gavazzi, R., et al. 2019, MNRAS, 483, 4615
Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129
Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2019, MNRAS, 482, 807
Pourrahmani, M., Nayyeri, H., & Cooray, A. 2018, ApJ, 856, 68
Ritondale, E., Vegetti, S., Despali, G., et al. 2019, MNRAS, 485, 2179
Rojas, K., Savary, E., Clément, B., et al. 2021, ArXiv e-prints

[arXiv:2109.00014]
Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, Astron. Comput., 10,

121
Schuldt, S., Suyu, S. H., Meinhardt, T., et al. 2021, A&A, 646, A126
Shajib, A. J., Treu, T., Birrer, S., & Sonnenfeld, A. 2020, MNRAS, 503, 2380
Shu, Y., Bolton, A. S., Brownstein, J. R., et al. 2015, ApJ, 803, 71
Silverman, J. D., Kashino, D., Sanders, D., et al. 2015, ApJS, 220, 12
Sonnenfeld, A., Treu, T., Marshall, P. J., et al. 2015, ApJ, 800, 94
Sonnenfeld, A., Chan, J. H. H., Shu, Y., et al. 2018, PASJ, 70, S29
Sonnenfeld, A., Jaelani, A. T., Chan, J., et al. 2019, A&A, 630, A71
Sonnenfeld, A., Verma, A., More, A., et al. 2020, A&A, 642, A148
Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints

[arXiv:1503.03757]
Suyu, S. H., & Halkola, A. 2010, A&A, 524, A94

A1, page 14 of 27

https://doi.org/10.26093/cds/vizier
http://linker.aanda.org/10.1051/0004-6361/202142505/1
http://linker.aanda.org/10.1051/0004-6361/202142505/2
http://linker.aanda.org/10.1051/0004-6361/202142505/2
http://linker.aanda.org/10.1051/0004-6361/202142505/3
http://linker.aanda.org/10.1051/0004-6361/202142505/4
http://linker.aanda.org/10.1051/0004-6361/202142505/5
http://linker.aanda.org/10.1051/0004-6361/202142505/6
http://linker.aanda.org/10.1051/0004-6361/202142505/6
http://linker.aanda.org/10.1051/0004-6361/202142505/7
http://linker.aanda.org/10.1051/0004-6361/202142505/8
http://linker.aanda.org/10.1051/0004-6361/202142505/9
http://linker.aanda.org/10.1051/0004-6361/202142505/10
http://linker.aanda.org/10.1051/0004-6361/202142505/11
http://linker.aanda.org/10.1051/0004-6361/202142505/12
http://linker.aanda.org/10.1051/0004-6361/202142505/12
http://linker.aanda.org/10.1051/0004-6361/202142505/13
http://linker.aanda.org/10.1051/0004-6361/202142505/14
http://linker.aanda.org/10.1051/0004-6361/202142505/15
http://linker.aanda.org/10.1051/0004-6361/202142505/16
http://linker.aanda.org/10.1051/0004-6361/202142505/17
http://linker.aanda.org/10.1051/0004-6361/202142505/18
http://linker.aanda.org/10.1051/0004-6361/202142505/19
http://linker.aanda.org/10.1051/0004-6361/202142505/20
http://linker.aanda.org/10.1051/0004-6361/202142505/21
https://keras.io
http://linker.aanda.org/10.1051/0004-6361/202142505/22
http://linker.aanda.org/10.1051/0004-6361/202142505/23
http://linker.aanda.org/10.1051/0004-6361/202142505/24
http://linker.aanda.org/10.1051/0004-6361/202142505/25
http://linker.aanda.org/10.1051/0004-6361/202142505/25
http://linker.aanda.org/10.1051/0004-6361/202142505/26
http://linker.aanda.org/10.1051/0004-6361/202142505/27
http://linker.aanda.org/10.1051/0004-6361/202142505/28
http://linker.aanda.org/10.1051/0004-6361/202142505/29
http://linker.aanda.org/10.1051/0004-6361/202142505/30
http://linker.aanda.org/10.1051/0004-6361/202142505/31
http://linker.aanda.org/10.1051/0004-6361/202142505/31
http://linker.aanda.org/10.1051/0004-6361/202142505/32
http://linker.aanda.org/10.1051/0004-6361/202142505/33
http://linker.aanda.org/10.1051/0004-6361/202142505/34
http://linker.aanda.org/10.1051/0004-6361/202142505/35
http://linker.aanda.org/10.1051/0004-6361/202142505/36
https://arxiv.org/abs/1502.01852
http://linker.aanda.org/10.1051/0004-6361/202142505/38
http://linker.aanda.org/10.1051/0004-6361/202142505/39
http://linker.aanda.org/10.1051/0004-6361/202142505/40
http://linker.aanda.org/10.1051/0004-6361/202142505/41
http://linker.aanda.org/10.1051/0004-6361/202142505/42
http://linker.aanda.org/10.1051/0004-6361/202142505/43
http://linker.aanda.org/10.1051/0004-6361/202142505/44
http://linker.aanda.org/10.1051/0004-6361/202142505/45
http://linker.aanda.org/10.1051/0004-6361/202142505/46
http://linker.aanda.org/10.1051/0004-6361/202142505/47
http://linker.aanda.org/10.1051/0004-6361/202142505/48
http://linker.aanda.org/10.1051/0004-6361/202142505/49
http://linker.aanda.org/10.1051/0004-6361/202142505/50
http://linker.aanda.org/10.1051/0004-6361/202142505/50
http://linker.aanda.org/10.1051/0004-6361/202142505/51
http://linker.aanda.org/10.1051/0004-6361/202142505/51
https://arxiv.org/abs/1412.6980
http://linker.aanda.org/10.1051/0004-6361/202142505/53
http://linker.aanda.org/10.1051/0004-6361/202142505/54
http://linker.aanda.org/10.1051/0004-6361/202142505/55
http://linker.aanda.org/10.1051/0004-6361/202142505/56
http://linker.aanda.org/10.1051/0004-6361/202142505/57
http://linker.aanda.org/10.1051/0004-6361/202142505/58
https://arxiv.org/abs/1110.3193
http://linker.aanda.org/10.1051/0004-6361/202142505/60
http://linker.aanda.org/10.1051/0004-6361/202142505/61
http://linker.aanda.org/10.1051/0004-6361/202142505/62
http://linker.aanda.org/10.1051/0004-6361/202142505/63
http://linker.aanda.org/10.1051/0004-6361/202142505/64
http://linker.aanda.org/10.1051/0004-6361/202142505/65
http://linker.aanda.org/10.1051/0004-6361/202142505/66
http://linker.aanda.org/10.1051/0004-6361/202142505/67
http://linker.aanda.org/10.1051/0004-6361/202142505/67
http://linker.aanda.org/10.1051/0004-6361/202142505/68
http://linker.aanda.org/10.1051/0004-6361/202142505/69
http://linker.aanda.org/10.1051/0004-6361/202142505/70
http://linker.aanda.org/10.1051/0004-6361/202142505/71
http://linker.aanda.org/10.1051/0004-6361/202142505/72
http://linker.aanda.org/10.1051/0004-6361/202142505/73
http://linker.aanda.org/10.1051/0004-6361/202142505/74
http://linker.aanda.org/10.1051/0004-6361/202142505/75
http://linker.aanda.org/10.1051/0004-6361/202142505/76
http://linker.aanda.org/10.1051/0004-6361/202142505/77
http://linker.aanda.org/10.1051/0004-6361/202142505/78
http://linker.aanda.org/10.1051/0004-6361/202142505/79
http://linker.aanda.org/10.1051/0004-6361/202142505/80
http://linker.aanda.org/10.1051/0004-6361/202142505/81
https://arxiv.org/abs/2109.00014
http://linker.aanda.org/10.1051/0004-6361/202142505/83
http://linker.aanda.org/10.1051/0004-6361/202142505/83
http://linker.aanda.org/10.1051/0004-6361/202142505/84
http://linker.aanda.org/10.1051/0004-6361/202142505/85
http://linker.aanda.org/10.1051/0004-6361/202142505/86
http://linker.aanda.org/10.1051/0004-6361/202142505/87
http://linker.aanda.org/10.1051/0004-6361/202142505/88
http://linker.aanda.org/10.1051/0004-6361/202142505/89
http://linker.aanda.org/10.1051/0004-6361/202142505/90
http://linker.aanda.org/10.1051/0004-6361/202142505/91
https://arxiv.org/abs/1503.03757
http://linker.aanda.org/10.1051/0004-6361/202142505/93


E. Savary et al.: Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

Suyu, S. H., Hensel, S. W., McKean, J. P., et al. 2012, ApJ, 750, 10
Suyu, S. H., Bonvin, V., Courbin, F., et al. 2017, MNRAS, 468, 2590
Talbot, M. S., Brownstein, J. R., Dawson, K. S., Kneib, J.-P., & Bautista, J. 2021,

MNRAS, 502, 4617
Tan, M., & Le, Q. V. 2019, ArXiv e-prints [arXiv:1905.11946]
Tasca, L. A. M., Le Fèvre, O., Ribeiro, B., et al. 2017, A&A, 600, A110
The Dark Energy Survey Collaboration 2005, ArXiv e-prints

[arXiv:astro-ph/0510346]
Turner, E. L., Ostriker, J. P., & Gott, J. R., III 1984, ApJ, 284, 1
Vegetti, S., & Koopmans, L. V. E. 2009, MNRAS, 392, 945
Vegetti, S., Koopmans, L. V. E., Bolton, A., Treu, T., & Gavazzi, R. 2010,

MNRAS, 408, 1969

Vegetti, S., Lagattuta, D. J., McKean, J. P., et al. 2012, Nature, 481, 341
Vegetti, S., Koopmans, L. V. E., Auger, M. W., Treu, T., & Bolton, A. S. 2014,

MNRAS, 442, 2017
Vegetti, S., Despali, G., Lovell, M. R., & Enzi, W. 2018, MNRAS, 481, 3661
Vieira, J. D., Crawford, T. M., Switzer, E. R., et al. 2010, ApJ, 719, 763
Vieira, J. D., Marrone, D. P., Chapman, S. C., et al. 2013, Nature, 495, 344
Wardlow, J. L., Cooray, A., De Bernardis, F., et al. 2013, ApJ, 762, 59
Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9
Willett, K. W., Galloway, M. A., Bamford, S. P., et al. 2017, MNRAS, 464,

4176
Wong, K. C., Sonnenfeld, A., Chan, J. H. H., et al. 2018, ApJ, 867, 107
Wong, K. C., Suyu, S. H., Chen, G. C. F., et al. 2020, MNRAS, 498, 1420

A1, page 15 of 27

http://linker.aanda.org/10.1051/0004-6361/202142505/94
http://linker.aanda.org/10.1051/0004-6361/202142505/95
http://linker.aanda.org/10.1051/0004-6361/202142505/96
https://arxiv.org/abs/1905.11946
http://linker.aanda.org/10.1051/0004-6361/202142505/98
https://arxiv.org/abs/astro-ph/0510346
http://linker.aanda.org/10.1051/0004-6361/202142505/100
http://linker.aanda.org/10.1051/0004-6361/202142505/101
http://linker.aanda.org/10.1051/0004-6361/202142505/102
http://linker.aanda.org/10.1051/0004-6361/202142505/103
http://linker.aanda.org/10.1051/0004-6361/202142505/104
http://linker.aanda.org/10.1051/0004-6361/202142505/105
http://linker.aanda.org/10.1051/0004-6361/202142505/106
http://linker.aanda.org/10.1051/0004-6361/202142505/107
http://linker.aanda.org/10.1051/0004-6361/202142505/108
http://linker.aanda.org/10.1051/0004-6361/202142505/109
http://linker.aanda.org/10.1051/0004-6361/202142505/110
http://linker.aanda.org/10.1051/0004-6361/202142505/110
http://linker.aanda.org/10.1051/0004-6361/202142505/111
http://linker.aanda.org/10.1051/0004-6361/202142505/112


A&A 666, A1 (2022)

Appendix A: Visual inspection results

We present in Table A.1 the results of the single-object inspec-
tion for each user. The agreement between the human classifiers
is low, as can be observed in Fig. A.1, which displays the number
of images labeled as either ML or SL by each user and the num-
bers shared between each pair of users. The discrepancy between
users is less pronounced for the NL images. The category SA
causes the most confusion since no image is labeled as SA by
all users, and the overlap between the users selecting the greatest
and lowest number of SA (User 1 and User 5) is only five objects.
As a result, despite the classification guidelines, the number of
ML or SL candidates varies greatly between users (see Fig. A.1).
Even so, the agreement between users is the greatest for the SL
category, hence showing a good consensus for the objects with
the most striking lensing features.

Table A.1. User results of the detailed visual inspection.

Classification User 1 User 2 User 3 User 4 User 5 User 6

NL 4492 4151 4389 3941 3398 4012
SA 17 23 61 178 408 221
ML 96 423 144 474 775 357
SL 23 31 34 35 47 38

User
 1

User
 2

User
 3

User
 4

User
 5

User
 6

User 1

User 2

User 3

User 4

User 5

User 6

119

65 454

44 113 178

69 205 82 509

65 223 95 254 822

52 164 110 129 175 395

Fig. A.1. Illustration of the overlap between the visual classification of
different users. The diagonal terms show the number of SL and ML
labeled by each user during the first steps of the inspection, whereas the
nondiagonal terms correspond to the number of ML and SL objects that
are shared between the users in the corresponding rows and columns.
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Appendix B: Auto-encoder architecture

We present in Fig. B.1 the architecture of the deblending auto-
encoder. In this scheme all layers are represented by a box and
the connections between the different layers are shown with
arrows. The decoder is separated in two independent and sym-
metrical sections that specialize in extracting the lensed source
features and the deflector images. For both the encoder and the

decoder we use a combination of dense and convolutional layers.
The decoder part has three output layers. The last two convolu-
tional layers output the deblended lensed-source and deflector
images and the Add layer returns the sum of the two deblended
images. We applied “Relu” activations to all neurons of the net-
work except in the last three layers for which we used sigmoid
activations in order to keep the range of the output between -1
and 1.

Fig. B.1. Architecture of the deblending auto-encoder. Each box represents a layer and the arrows show the connections between the different
layers of the networks. The names indicated in the rectangles correspond to the different layer subclasses of the Keras API used in the model. The
dimensions of the input and output of each layer are indicated in brackets. For convolutional layers the last dimension corresponds to the number
of filters.
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Appendix C: Maybe lens candidates

We show in Fig. C.1 the 101 ML candidates obtained at the
end of the visual inspection process. It includes all candidates

displaying convincing probable lensing features but that require
follow-up observations to be confirmed.

J020255+300539 J093114+300703 J130259+300953 J233812+301327 J021336+301804 J123129+302224 J095505+303230 J154600+303600 J112140+303748

J021058+304423 J081258+305338 J173658+305817 J234324+305858 J120329+311304 J232205+311448 J074144+311642 J112901+311925 J164700+315322

J130354+315655 J163847+320109 J154613+320732 J130530+321143 J164624+321352 J083044+322708 J114050+322955 J120659+323602 J132126+323845

J163115+324034 J001119+324635 J112035+325158 J015835+325940 J162540+331556 J164822+332824 J160308+333036 J175507+334318 J160903+335108

J231403+335806 J121959+340210 J005359+340231 J234747+341149 J232225+341458 J094931+343819 J154613+350448 J090919+351503 J111018+351716

J085335+352650 J121351+353334 J120729+355838 J131719+355859 J115458+362005 J004211+362510 J104949+362926 J104233+362936 J124724+364403

J100422+364821 J011119+365506 J164113+370415 J165911+371346 J171127+380843 J082216+381337 J091952+390350 J082141+391539 J174744+391856

J114609+395955 J152012+402157 J092056+404009 J091957+413848 J102618+414208 J114114+414544 J113203+430718 J165239+442135 J165402+444252

J080114+455838 J171725+461830 J100021+474746 J150803+485728 J135800+492334 J133645+495308 J102147+500808 J152414+502559 J141559+502742

J135525+503250 J164433+503638 J101441+504451 J182125+510038 J151250+510553 J164753+511308 J073301+513431 J135131+520718 J172451+532101

J082055+533513 J165643+535717 J071431+543145 J150036+551015 J143158+554329 J145252+580240 J145432+584957 J182524+590228 J144129+601008

J151505+612848 J071707+701827

Fig. C.1. Images classified as maybe lenses (MLs) after the final visual inspection step.
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Appendix D: Modeling results

We show in Figs. D.1–D.7 a mosaic with the modeling
results for the 32 SL candidates.

J113952+303204 Reconstructed Residuals Convergence Source

J113952+303204

J021219+303310

J090129+303355

J093542+303803

Fig. D.1. Modeling results for the first four of the 32 SL lens candidates. Shown inside the red dashed box are two modeling results for the same
image, but with different masks. The top row corresponds to the results from the automated masking procedure, and in the bottom row to the
results after applying a custom mask. 1st column: CFIS r-band image. 2nd column: Image reconstruction using best-fit model parameters. The
white regions are masked pixels corresponding to locations of neighboring objects in the observed image. In red we show the critical lines of
the lens model. 3rd column: Normalized residual map of the image reconstruction. 4th column: Lens mass model convergence map. 5th column:
Reconstructed source light profile (unlensed). In red are shown the caustic lines of the lens model.

A1, page 19 of 27



A&A 666, A1 (2022)

J164940+304909 Reconstructed Residuals Convergence Source

J115830+312349

J165049+312328

J124223+312905

J095335+313238

Fig. D.2. Continued from Fig. D.1.

A1, page 20 of 27



E. Savary et al.: Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

J155923+314712 Reconstructed Residuals Convergence Source

J165710+315052

J165710+315052

J094411+322038

J235527+325244

Fig. D.3. Continued from Fig. D.2.
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J110219+334224 Reconstructed Residuals Convergence Source

J075346+341633

J075346+341633

J112053+342146

J112053+342146

Fig. D.4. Continued from Fig. D.3.
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J075523+344539 Reconstructed Residuals Convergence Source

J153959+354954

J171340+364204

J094819+373739

J174828+374539

Fig. D.5. Continued from Fig. D.4.
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J124548+375435 Reconstructed Residuals Convergence Source

J143004+410557

J155517+415138

J090728+423301

J091415+431855

Fig. D.6. Continued from Fig. D.5.

A1, page 24 of 27



E. Savary et al.: Strong lensing in UNIONS: Toward a pipeline from discovery to modeling

J143611+432921 Reconstructed Residuals Convergence Source

J103148+434256

J163522+510828

J131730+564054

J144037+591141

Fig. D.7. Continued from Fig. D.6.
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J081959+535624 Reconstructed Residuals Convergence Source

J081959+535624

Fig. D.8. Continued from Fig. D.7.
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Appendix E: Examples of contaminants

We present in Fig. E.1 examples of images taken randomly from the 238
mergers and 361 ring galaxies, and the 950 identified after the visual inspection.

J010017+312808 J022515+312815 J155356+312831 J112453+312907 J095444+312934

J164114+312932 J165123+312953 J004442+313015 J164129+313217 J174452+313325

J021347+300232 J093820+300443 J021217+300631 J021611+300837 J174750+300913

J160840+300932 J232642+300944 J091245+301026 J173624+301245 J174844+301243

J231402+300531 J104508+300753 J162830+300738 J111632+300839 J122933+301643

J165456+302326 J105928+302349 J173124+302607 J154117+302631 J010406+303221

Spirals

Mergers

Rings

Fig. E.1. Examples of images classified by at least one person as spirals (first two rows), mergers (two rows in the middle), or ring galaxies (last
two rows) during the visual inspection. Each of them were identified by at least one user.
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