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Abstract

Modern low-emission gas turbines operate close to the lean blowout limit, a regime in which
the combustor is susceptible to thermoacoustic instabilities. Understanding the various thermoa-
coustic feedback loops and reliably, accurately, and efficiently predicting their stability proper-
ties is an essential prerequisite to mitigate these undesired instabilities. Linearized thermoa-
coustic models are an established class of approaches to analyze thermoacoustic instabilities
during their onset.

Linearized thermoacoustic models are commonly derived based on application-specific assump-
tions, and their transferability to other applications is, thus, limited. In contrast, this thesis fo-
cuses on comprehensibility and consistency, such that the developed models apply to a wide
range of application cases. Furthermore, the models are adaptable to application-specific ef-
ficiency requirements by introducing assumptions a posteriori. The linearized thermoacoustic
models developed in the context of this thesis include:

• a framework for the consistent analysis of thermoacoustic sources in motion. Isolating an-
alytical source terms in differential equations for a moving source region, e.g. the exother-
mic reaction zone of a flame, requires tracking its motion. An Arbitrary Lagrangian-
Eulerian reference frame is utilized to consistently track perturbation sources. This ap-
proach provides an analytical framework for consistently analyzing acoustic, entropic,
vortical and compositional perturbation sources, offering insight into the underlying
source mechanisms. The framework has been exemplified for the source terms of en-
tropic inhomogeneities. For models approximating the source movement, the framework
gives an analytical insight into spurious disturbances generated due to modeling errors.

• a framework to consistently infer global flame transfer functions from experimental pres-
sure measurements. Inferring the global flame transfer function from the acoustic transfer
matrix of the whole combustor requires a model. In the context of this thesis, a general-
ized model-based inference method has been developed to consistently identify the global
flame transfer function from experimental measurements. The developed method extends
the state-of-the-art burner-flame transfer matrix approach to test rigs with complex fea-
tures such as bypass annulus, effusion holes and combustion chamber end contractions.
The capabilities of the new framework have been showcased for the Scaled Acoustic Rig
for Low Emission Technology by Rolls-Royce.

• a Jacobian-based framework for the derivation of comprehensive thermoacoustic jump
conditions. The proposed procedure provides highly accurate jump conditions, including
acoustic, entropic and compositional perturbations. Assumptions during the derivation are
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minimized and the resulting jump conditions are, thus, valid for a wide range of applica-
tion cases. Application-specific efficiency requirements might be achieved by introducing
assumptions a posteriori without a lengthy rederivation. As an example, the framework
has been used to derive a comprehensive jump condition of a lean premixed flame, which
was subsequently validated for a lean hydrogen-vitiated air autoignition flame.

Besides the developed frameworks mentioned above, the following detailed analysis contributes
to this thesis:

• Assessment of various solution strategies to solve the thermoacoustic eigenvalue problem.
This study focuses on evaluating and comparing contour integration methods with meth-
ods that approximate and reformulate the eigenvalue problem. Solving the thermoacous-
tic eigenvalue problem reliably, accurately and efficiently is essential for the meaningful
linear stability analysis of a thermoacoustic system.

The models developed and the analysis performed within this thesis add to a basis of consis-
tent and comprehensive thermoacoustic models. These models contribute to understanding and
predicting thermoacoustic instabilities, accelerating future research and the development of gas
turbine combustors.
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Kurzfassung

Moderne schadstoffarme Gasturbinen operieren nahe der Magergrenze, einem Bereich, in dem
die Brennkammer anfällig für thermoakustische Instabilitäten ist. Das Verständnis der ver-
schiedenen thermoakustischen Rückkopplungsschleifen und die zuverlässige, genaue und ef-
fiziente Vorhersage ihrer Stabilitätseigenschaften ist eine wesentliche Voraussetzung für die
Minderung dieser unerwünschten Instabilitäten. Linearisierte thermoakustische Modelle sind
eine etablierte Klasse von Ansätzen, um thermoakustische Instabilitäten während ihres an-
fänglichen Wachstums zu analysieren.

Linearisierte thermoakustische Modelle werden in der Regel auf der Grundlage anwen-
dungsspezifischer Annahmen abgeleitet und sind daher nur begrenzt auf andere Anwendungen
übertragbar. Im Gegensatz dazu liegt der Schwerpunkt dieser Arbeit auf Allgemeingültigkeit
und Konsistenz, so dass die entwickelten Modelle auf eine Vielzahl von Anwendungsfällen
anwendbar sind. Darüber hinaus sind die Modelle durch die Einführung von nachgestellten An-
nahmen an anwendungsspezifische Effizienzanforderungen anpassbar. Die im Rahmen dieser
Arbeit entwickelten linearisierten thermoakustischen Modelle umfassen:

• einen mathematischen Rahmen für die konsistente Analyse von thermoakustischen
Quellen in Bewegung. Die Isolierung von analytischen Quelltermen in Differentialgle-
ichungen für eine bewegte Quellregion, z. B. die exotherme Reaktionszone einer Flamme,
erfordert die Verfolgung ihrer Bewegung. Ein Arbitrary Lagrangian-Eulerian Bezugssys-
tem wird verwendet, um Quellregionen von Störungen konsistent zu verfolgen. Dieser
Ansatz bietet einen analytischen Rahmen, um die Quellen akustischer, entropischer,
wirbelartiger und kompositioneller Störungen konsistent zu analysieren und Einblicke in
die zugrunde liegenden Quellenmechanismen zu gewinnen. Der mathematische Rahmen
wurde für die Quellterme von entropischen Inhomogenitäten beispielhaft angewendet.
Für Modelle, die eine Näherung der Quellenbewegung verwenden, bietet der mathema-
tische Rahmen analytische Einblicke in fehlerhafte Störungen, die aufgrund von Model-
lierungsfehlern entstehen.

• eine Methode zur konsistenten Bestimmung globaler Flammenübertragungsfunktionen
aus experimentellen Druckmessungen. Die Bestimmung der globalen Flammenüber-
tragungsfunktion aus der akustischen Übertragungsmatrix der gesamten Brennkammer
erfordert ein Modell. Im Rahmen dieser Arbeit wurde eine verallgemeinerte modell-
basierte Methode entwickelt, um die globale Flammenübertragungsfunktion aus exper-
imentellen Messungen konsistent zu bestimmen. Die entwickelte Methode erweitert
den Standardansatz der Brenner-Flammen-Übertragungsmatrix auf Prüfstände mit kom-
plexen Merkmalen wie Nebenstromringraum, Effusionslöcher und Querschnittsreduktion
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am Brennkammerauslass. Die Leistungsfähigkeit der neuen Methode wurde am Scaled
Acoustic Rig for Low Emission Technology von Rolls-Royce demonstriert.

• einen auf Jacobi-Matrizen basierender mathematischer Rahmen für die Herleitung all-
gemeingültiger thermoakustischer Sprungbedingungen. Das vorgeschlagene Verfahren
liefert hochgenaue Sprungbedingungen, die akustische, entropische und kompositionelle
Störungen einschließen. Die Annahmen während der Herleitung sind minimiert und die
resultierenden Sprungbedingungen sind daher für eine große Anzahl von Anwendungs-
fällen gültig. Anwendungsspezifische Effizienzanforderungen können durch die Ein-
führung von nachträglichen Annahmen ohne langwierige Herleitung erreicht werden. Als
Beispiel wurde der mathemaische Rahmen verwendet, um eine allgemeine Sprungbe-
dingung für eine magere Vormischflamme abzuleiten, die anschließend für eine magere
Wasserstoff-Selbstzündflamme validiert wurde.

Neben den oben erwähnten entwickelten mathematischen Rahmenwerken trägt die folgende
detaillierte Analyse zu dieser Arbeit bei:

• Bewertung von verschiedenen Lösungsstrategien zur Lösung des thermoakustischen
Eigenwertproblems. In dieser Arbeit wurde der Schwerpunkt auf die Bewertung und den
Vergleich von Konturintegrationsverfahren mit Verfahren zur Approximation und Refor-
mulierung des Eigenwertproblems gelegt. Die zuverlässige, genaue und effiziente Lösung
des thermoakustischen Eigenwertproblems ist für eine aussagekräftige lineare Stabilität-
sanalyse eines thermoakustischen Systems unerlässlich.

Die entwickelten Modelle und die im Rahmen dieser Arbeit durchgeführten Analysen erweit-
ern eine Basis konsistenter und umfassender thermoakustischer Modelle. Diese Modelle tragen
zum Verständnis und zur Vorhersage thermoakustischer Instabilitäten bei und beschleunigen die
zukünftige Erforschung und Entwicklung von Gasturbinenbrennkammern.
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Nomenclature

Latin Characters

A [m2] cross-section
A operator matrix (NLEVP)
B burner transfer matrix
c [ms ] speed of sound

cp [ J
kgK ] specific heat capacity at constent pressure

cv [ J
kgK ] specific heat capacity at constent volume

c compositional inhomogenity (characteristic)
C combustor transfer matrix

e [ J
kg ] sensible non-chemical internal energy

E [ J
kg ] total non-chemical internal energy

E [ J
m3 ] perturbation energy

f [Hz] frequency
F [−] flame transfer function
F flame transfer matrix

g [ J
kg ] sensible non-chemical Gibbs’ free enthalpy

h [ J
kg ] sensible non-chemical enthalpy

H filter matrix
He [−] Helmholtz number

∆h0 [ J
kg ] enthalpy of formation

I [cd] chemiluminescence intensity
J Jacobian
K operator matrix (NLEVP)
L linear operator
M Mach number
M operator matrix (NLEVP)
n [−] normal vector
N nonlinear operator (NLEVP)
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Nomenclature

Na [−] algebraic multiplicity
Ng [−] geometric multiplicity
NY [−] number of species
p [Pa] pressure
Q [−] spatial distribution of distributed flame transfer function
Q operator matrix (source terms, NLEVP)

R [ J
kgK ] specific gas constant

R rational operator (REVP)

s [ J
kgK ] entropy

s [1
s ] Laplace-variable

s entropic inhomogenity (characteristic)
S scattering matrix
St [−] Strouhal number
T [K] temperature
T transfer matrix
u [ms ] material velocity
us [ms ] mesh velocity
U state vector
v eigenvector
v vortical disturbance (characteristic)
V [m3] volume
VD [ms ] diffusion velocity
w vector of characteristics
W flux
x [m] spatial coordinate (Eulerian reference frame)
X [m] spatial coordinate (Lagrangian reference frame)
Y [−] species mass fraction
Z operator matrix (boundary conditions, NLEVP)

Greek Characters

ϵ error
ζ diffusive flux

λ [ W
mK] heat conductivity

τ [ N
m2 ] viscous stress tensor

Π acoustic wave (characteristic)

ρ [ kg
m3 ] mass density

σ [1
s ] growth rate

xii



Nomenclature

χ [m] spatial coordinate (ALE reference frame)
ψ arbitrary physical quantity
ω [1

s ] angular frequency
ω̇ source term
Ω [ms ] vorticity
Ω̇ integral source term

Operators

∂
∂t

∣∣∣
x

time derivative at constant x

∂
∂t

∣∣∣
X

time derivative at constant X

∂
∂t

∣∣∣
χ

time derivative at constant χ

det(·) determinant∫
Ω integration over the domain Ω

O order of magnitude
! factorial

Superscripts

(·) steady mean
(·)′ perturbation (time domain)

(̂·) perturbation (frequency domain)

(̆·) perturbation within the ALE framework

(̃·)′ approximation

Subscripts

(·)ac acoustic
(·)c compact
(·)ch corresponding to a characteristic
(·)conv convective
(·)ck corresponding to compositional inhomogeneities k

(·)d downstream
(·)ϵ spurious
(·)ene corresponding to the energy balance equation
(·)E corresponding to the perturbation energy
(·)nc non-compact
(·)mom corresponding to the momentum balance equation
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Nomenclature

(·)p products
(·)r reactants
(·)s corresponding to entropic inhomogeneities
(·)spec corresponding to the species balance equation
(·)u upstream

Abbreviations

ALE Arbitrary Lagrangian-Eulerian
APE Acoustic Perturbation Equations
BFTM Burner-Flame Transfer Matrix
CFD Computational Fluid Dynamics
DTD Distributed Time Delay
FTF Flame Transfer Function
ITA Intrinsic Thermoacoustic
LEE Linearized Euler Equations
LEVP Linear Eigenvalue Problem
LNSE Linearized Navier-Stokes Equations
LRF Linearized Reactive Flow
MBI Model-Based Inference
NLEVP Nonlinear Eigenvalue Problem
REVP Rational Eigenvalue Problem
RQL Rich-Quench-Lean
SCARLET Scaled Acoustic Rig for Low Emission Technology
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1 Introduction

The emission of greenhouse gases is the primary driver of anthropogenic climate change, caus-
ing, among other things, a rise in average global temperature (≈1.1 ◦C above 1850-1900 in
2011-2020, see Fig. 1.1), worldwide changes in many weather and climate extremes and neg-
ative impacts on food and water security as well as human health [120]. To limit these risks,
195 countries committed to joined efforts of limiting global warming to 1.5 ◦C but at least well
below 2.0 ◦C above preindustrial levels [238]. In pursuit of this target, the committed countries
aim for a reduction in greenhouse gas emissions, eventually reaching greenhouse gas neutrality
(e.g. Germany by 2045 [97], European Union [233] and the United States of America [234] by
2050, China before 2060 [98] and India by 2070 [96]).

Today, the dominant contribution to worldwide greenhouse gas emissions results from fossil
fuel combustion [120], accounting for almost 80 % of the worldwide total energy supply [183].
To reduce fossil fuel consumption, generating electricity from renewable sources (mainly wind
and solar) combined with increased electrification1 of end-users in industry and transportation
is essential in the transition to a decarbonized future [183]. Until 2050, the global electricity de-
mand is projected to increase by at least 80 % with an increasing share in the worldwide energy
consumption from approximately 20 % today to 30−50% [183]. However, a major challenge
in deploying large shares of renewable energy sources in the overall power generation is their
natural intermittency and uncertainty [8, 141].

Gas turbines, with their high operational flexibility [45, 78, 191] and comparably low green-

1Electrification may include direct electrification or the use of hydrogen using electrolyzers.
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Figure 1.1: Change in global surface temperature Tglob relative to 1850-1900 (Dataset from
[121, 128, 237]). The red shaded area indicates temperature levels above the 1.5 ◦C
limit agreed on in the Paris agreement [238].
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Introduction

house gas emissions compared to coal-fired plants [61], are essential to counterbalance these
issues during the transition to fully renewable power generation and maybe beyond that point
if powered with synthetic fuels produced from renewable energies [78, 100]. Besides the appli-
cation in power generation, gas turbines in aero engines are expected to remain the dominant
propulsion system in short2, medium3 and long-haul4 aircraft throughout the following decades,
utilizing Sustainable Aviation Fuels or hydrogen (H2) as a propellant [7]. Full electrification will
most likely remain restricted to commuter5 and regional6 air transport due to the comparably
low power densities of batteries (today) [7]. The continuous development of gas turbine tech-
nology to increase efficiency and fuel flexibility while simultaneously reducing emissions thus
contributes to the transition to carbon-neutral power generation and air transportation.

Gas turbines burning hydrocarbon fuels emit greenhouse gases and pollutants such as carbon-
dioxide (CO2), carbonmonoxid (CO), nitrogen oxides (NOx), unburned hydrocarbons, and soot,
which may contribute to climate change and/or have other detrimental effects on the environ-
ment and human health [139, 151]. While the CO2 emissions solely depend on the type and
amount of burned fuel, the formation of CO, NOx, unburned hydrocarbons, and soot are sig-
nificantly impacted by the combustion process [139, 151]. Over the last decades, numerous
industrialized countries implemented increasingly restrictive emission regulations of pollutants
and greenhouse gases for stationary gas turbines [139] and aero engines [151]. Regulatory limits
particularly focused on NOx emissions [139, 151], which contribute to the formation/depletion
of ozone in the troposphere/stratosphere and other detrimental environmental effects such as
acid rain [151]. Lean premixed combustion has been established for stationary gas turbines to
meet the strict NOx emission limits by reducing overall gas temperatures [52]. Simultaneously,
emissions of CO, unburned hydrocarbons and soot can be minimized while keeping NOx emis-
sions low by avoiding fuel-rich mixtures and enabling longer residence times in the combustor
[151]. Future aero engines may also require moving away from RQL (Rich-Quench-Lean) sys-
tems towards lean premixed injection technologies to further decrease fuel consumption and
NOx emissions [151].

1.1 Thermoacoustic instabilities in gas turbines

A major issue - lean premixed combustion systems are designed to operate close to the lean
blowout condition to decrease NOx emissions, where the combustion process becomes more
sensitive to perturbations and tends to become unstable [52, 148, 225, 250]. So-called self-
excited thermoacoustic instabilities7 may establish. Thermoacoustic instabilities result from a
complex coupling between unsteady heat release fluctuations in the flame region and the acous-
tics of the system including possible additional contributions of unsteady vortical, entropic or
mixture perturbations. This coupling may establish a positive feedback loop inducing large pres-
sure oscillations, which can limit the gas turbine’s operational range, degrade its performance,

2short haul: 100-150 seats, 45-120 min flights [7]
3medium haul: 150-250 seats, 60-150 min flights [7]
4long haul: > 250 seats, > 150 min flights [7]
5commuter: 9−19 seats, < 60 min flights [7]
6regional: 50−100 seats, 30−90 min flights [7]
7Also referred to as "combustion instabilities" or "combustion dynamics".
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1.1 Thermoacoustic instabilities in gas turbines

Figure 1.2: Burner assembly of a gas turbine combustor (left) new and (right) damaged by ther-
moacoustic instabilities. (Goy et al.. [99] (original, Copyright © 2005 by E.ON UK
and republished in this work with permission) and Huang and Yang [118] (repro-
duction with improved quality))

increase emissions, promote mechanical fatigue and may even result in catastrophic failure of
the combustor [147, 194]. Fig. 1.2 illustrates an example of the detrimental effects thermoa-
coustic instabilities may have on the gas turbine combustor. Thus, thermoacoustic instabilities
must be avoided at all costs during the operation of a gas turbine and are an essential part of
combustion research [194].

Note that switching fuel from hydrocarbons to carbon-free alternatives such as hydrogen to
eliminate CO2 emissions significantly impacts the combustion process within the combustor.
However, the susceptibility to thermoacoustic instabilities remains and may even increase [3, 6,
47, 149].

The research on thermoacoustic instabilities may be subdivided in three fields:

1. Understanding the various feedback loops and the contributing physical mechanisms.

Starting from the first description of thermoacoustic instabilities by Lord Rayleigh [202]
in the 1870’s, researchers investigate the underlying physical mechanisms that can con-
tribute to various thermoacoustic feedback loops in different combustors or under differ-
ent operating conditions. Examples are contributions of indirect sound sources emitted
by accelerated vortical perturbations [116, 117, 137], hot spots8 [41, 55, 57, 80, 155]
and mixture inhomogeneities [119, 153, 154], e.g. in the area contraction downstream
of a combustion chamber, intrinsic thermoacoustic feedback loops [29, 75, 110], clusters
of eigenmodes in annular and can-annular combustors [84, 85, 241, 242], the dynamics
and sensitivities of autoignition flames in reheat combustors [31, 86, 87, 220, 258], high-
frequency dynamics of transverse modes [170, 259], or the effect of preferential diffusion
in hydrogen-fuel blends [71]. Still today, not all effects are perfectly understood due to
the complexity and variety of possible thermoacoustic feedback loops and the research
on fundamental mechanisms continues.

8Also referred to as "entropy waves" or entropic inhomogeneities
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2. Modeling the various feedback loops to accurately and efficiently predict thermoacoustic
instabilities.

Detecting thermoacoustic instabilities that require design chances late in the design pro-
cess of gas turbine combustors, e.g. during full-scale engine testing, is very expensive and
time-consuming. Therefore, analytical and numerical models of different complexity may
be used to assist throughout all development stages of gas turbine combustors, increasing
the likelihood of earlier detection of instabilities. Today, a variety of models and pre-
diction tools for the different design stages exist, ranging from numerically inexpensive
network models [28, 64, 70, 76, 131, 165, 186, 214, 218] to accurate but numerically ex-
pensive high-fidelity simulations [6, 31, 71, 247, 248]. Modeling assumptions to increase
efficiency may be chosen based on the knowledge of essential physical mechanisms in
the system at hand. Research continues to further increase the reliability, accuracy and
efficiency of prediction tools.

3. Techniques to mitigate thermoacoustic intabilities.

Mitigation techniques build on the experimental observation or the numerical/analytical
prediction of thermoacoustic instabilities. Various active [12, 13, 157, 196, 214, 263] and
passive control methods [56, 205, 245, 246, 249, 262] exist and are continuously devel-
oped. Passive control methods detune the combustor by introducing passive dampers such
as Helmholtz resonators or by changing the geometry of the combustor. Active control
methods actively detune the combustion system during operation, e.g. by changing the
fuel mass flow or emitting additional sound via loudspeakers for active noise canceling.

1.2 The scope of this thesis

An accurate understanding, modeling and prediction of thermoacoustic instabilities during their
onset is essential for their efficient mitigation and a crucial part of thermoacoustic research.
During the onset of thermoacoustic instabilities, the amplitudes of perturbations in gas turbine
combustors are typically small before growing exponentially and saturating at a finite ampli-
tude. To predict this onset of instability, the assumption of small perturbation amplitudes can
be used to significantly simplify the underlying balance equations for reactive flows, reducing
the numerical effort of the resulting methods significantly compared to full-scale high-fidelity
simulations. The approaches based on this small amplitude assumption are called linearized
thermoacoustic models. These models are widely used for various tasks in all three pillars of
thermoacoustic research. This thesis focuses on the development and analysis of linear models
within the first two pillars - understanding and modeling/prediction.

In thermoacoustic research, models to analyze or predict thermoacoustic phenomena are typi-
cally developed focusing on a specific application case. Simplifications, such as the neglect of
certain physical effects, simplified gas properties, or other approximations, are introduced to
simplify the corresponding derivation or streamline the corresponding computations. While the
derived models are suited for the specific application case at hand, their applicability to other
applications is, in most cases, strongly limited by the introduction of simplification a priori or
during the derivation. The models must be rederived for scenarios that deviate significantly from
the original application case. The goal of this thesis is to develop linear methods and frameworks
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1.2 The scope of this thesis

that are comprehensive and consistent, making them applicable to a wide range of thermoacous-
tic systems. Rather than focusing on specific application cases, a priori assumptions are mini-
mized. Application-specific optimizations to increase efficiency may be introduced a posteriori,
rendering the derived models highly flexible. Overall, this thesis aims to add to a basis of con-
sistent and comprehensive methodologies to accelerate future research and the development of
gas turbine combustors.

This thesis is organized as follows. Chapter 2 recalls the fundamental governing equations for
general three-dimensional reactive flows and their linearization in different reference frames.
Chapter 3 revisits state-of-the-art hybrid linearized thermoacoustic models. Chapter 4 details
the resulting thermoacoustic eigenvalue problem from which the stability of an thermoacoustic
system may be assessed. Chapter 5 puts the papers that contributed to this thesis in perspective
with literature. Finally, an outlook is given in Chapter 6.
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2 Governing equations

This chapter reviews the differential balance equations of three-dimensional reactive flows
and their simplification under the small amplitude assumption. The characteristic perturbations
propagating in such flows are discussed. Additionally, mathematical tools for a change in refer-
ence system and the transformation from time to frequency domain are outlined.

2.1 Reference frames

The governing equations of reacting flows may be expressed using one of three distinct refer-
ence frames [62]. Depending on the application, each may offer some advantages:

• The Lagrangian reference frame X tracks individual material particles during motion. In
the context of combustion, the Lagrangian perspective is predominantly used to model
and track evaporating droplets in fuel sprays, e.g. [2, 92, 138, 142, 236].

• The Eulerian reference frame x describes the flow properties at a fixed point in space. The
Eulerian perspective is the standard approach for the formulation and numerical compu-
tation of fluid flow problems and has been extensively used in the context of combustion,
e.g., [31, 71, 138, 247, 248, 257].

• The Arbitrary Lagrangian-Eulerian (ALE) reference frame χ represents a moving refer-
ence frame that does not track the material particles but another user-defined quantity.
It is well suited to track free surfaces and interfaces, e.g. between different materials or
media [62]. The ALE method is, for example, used in the KIVA family [10, 11, 235] of
computational fluid dynamic solvers for complex fuel and air flows, ignition, combustion,
and pollution formation. Furthermore, the ALE framework has been used in the context
of thermoacoustic instabilities to track the displacement of a perturbed flame front or an-
other moving source region to understand and model the underlying physical mechanisms
[105, 168, 259].

Mathematically, the coordinate transform between the different reference frames is represented
by correcting the temporal derivatives when expressed in fixed spatial coordinates x [62],

∂ψ

∂t

∣∣∣∣
x︸ ︷︷ ︸

Eulerian

= ∂ψ

∂t

∣∣∣∣
χ

−us, j
∂ψ

∂x j︸ ︷︷ ︸
ALE

= ∂ψ

∂t

∣∣∣∣
X
−u j

∂ψ

∂x j︸ ︷︷ ︸
Lagrangian

, (2.1)

where

u j =
∂x j

∂t

∣∣∣∣
X

and us, j =
∂x j

∂t

∣∣∣∣
χ

(2.2)
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Governing equations

are the material velocity (temporal derivative at constant X) and the mesh velocity (temporal
derivative at constant χ) of the ALE framework, with respect to a spatially fixed observer, re-
spectively.

2.2 The reactive flow equations

The balance equations of mass, momentum, energy and species provide the basis for the math-
ematical description of three-dimensional reactive flows. Utilizing the Eulerian framework and
Einstein’s summation convention1, the reactive flow equations read [195]

∂

∂t


ρ

ρui

ρE
ρYk


x

+ ∂

∂x j


ρu j

ρu j ui

ρu j E
ρu j Yk

=− ∂

∂x j


0
p

pui

0

δi j +
∂

∂x j


0

ζmom,i j

ζene, j

ζspec, j

+


0
0
ω̇T
ω̇k

 (2.3)

with density ρ, pressure p, the species mass fraction Yk of species k, the heat release rate ω̇T
and the species reaction rates ω̇k . E = e + 1

2 ul ul and e are the total and sensible non-chemical
internal energy, respectively. Due to mass conservation,

NY∑
k=1

Yk = 1, (2.4)

only NY −1 species need to be balanced. The diffusive terms
0

ζmom,i j

ζene, j

ζspec, j

=


0
τi j

τi j ui

0

+


0
0

λ ∂T
∂x j

0

−


0
0

ρVDk , j Yk hk

ρVDk , j Yk

 (2.5)

may be separated into viscous effects related to the viscous stress tensor τi j , thermal diffusion
effects formulated in terms of Fourier’s law with the isotropic thermal conductivity λ and the
effects of species diffusion with an effective diffusion velocity VDk , j of species k. T is the
temperature and h is the sensible non-chemical enthalpy. In the context of combustion, the
stress tensor is typically used assuming a Newtonian fluid combined with Stoke’s hypothesis
[20],

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
−2/3µ

∂ul

∂xl
δi j . (2.6)

µ is the dynamic viscosity. The determination of the diffusion velocity Vk, j depends on the
diffusion model used, e.g. Fick’s law [81] or the Hirschfelder and Curtiss approximation [109].
The species’ reaction rates ω̇k are typically expressed in terms of the thermal state variables
(p,T ,ρ) and the gas composition [195]. The heat release rate of chemical reactions

ω̇T =∆h0
kω̇k (2.7)

1In Einstein’s summation convention, a product with two repeated indices is summed over,

ai bi =
∑

i
ai bi .
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2.3 The linearized reactive flow equations

is governed by the species’ reaction rates. ∆h0
k is the enthalpy of formation of species k.

To close Eq. (2.3), a thermal equation of state relating the thermal state variables p, ρ and T as
well as a caloric equation of state relating the thermal energy with the sensible internal energy
es is required. This thesis uses the assumption of a perfect gas mixture with the thermal equation
of state

p = ρRT with R = Rk Yk (2.8)

and the caloric equation of state

de = cv dT +ek dYk . (2.9)

Instead of Eqs. (2.8) and (2.9), the Gibbs equation for an ideal gas mixture (canonical equation
of state)

de = T ds + p

ρ2
dρ+ gk dYk (2.10)

is often used, e.g. [150, 153, 154, 168, 206]. R, s, cv and gk are the specific gas constant, entropy,
specific heat capacity at constant volume and the sensible non-chemical Gibbs’ free enthalpy of
species k. Note that the material derivative ∂/∂t |X (Lagragian framework) replaces the the total
differentials d in Eqs. (2.9) and (2.10) for flow problems.

The equations stated in this section or approximations thereof are solved directly by high-
fidelity simulations of reactive flows. Furthermore, the reactive flow equation in an ALE or
Lagrangian reference frame can easily derived from the Eulerian framework (Eq. (2.3)) by uti-
lizing Eq. (2.1).

2.3 The linearized reactive flow equations

To isolate unsteady processes in the reactive flow, which may contribute to thermoacoustic
instabilities, a Reynolds decomposition 2 [204]

ψ(x, t ) =ψ(x)+ψ′(x, t ) (2.11)

is typically applied for any physical quantity ψ. Additionally, the unsteady perturbations ψ′

are assumed to be much smaller than the underlying steady base variables ψ (ψ′(x, t ) ≪ψ(x))
during the onset of thermoacoustic instabilities. Then, Eq. (2.3) can be separated into two sets
of equations, which are solved subsequently. The first set of equations describes the steady
base flow fields ψ(x) unaffected by small perturbation. This set of equations is analogous to
Eq. (2.3) with vanishing time derivatives and is therefore not explicitly stated here. The second
set of equations expresses the generation and propagation of small perturbations in the steady
base flow fields. Neglecting non-linear perturbation terms (O (ψ′ψ′) ≈ 0) reveals the Linearized

2For many applications, it might be reasonable to further decompose the flow perturbations, e.g. to distinguish
between random fluctuations of fine-scale turbulence and coherent flow structures [150]. However, this is beyond
the scope of this work.
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Reactive Flow (LRF) equations [17],

∂

∂t


ρ′

ρ′ui +ρu′
i

ρ′E +ρE ′

ρ′Y k +ρY k


x

+ ∂

∂x j


ρ′u j +ρu′

j(
ρ′u j +ρu′

j

)
ui +ρu j u′

i(
ρ′u j +ρu′

j

)
E +ρu j E ′(

ρ′u j +ρu′
j

)
Y k +ρu j Y ′

k



=− ∂

∂x j


0
p ′

p ′ui +pu′
i

0

δi j +
∂

∂x j


0

ζ′mom,i j

ζ′ene, j

ζ′spec, j

+


0
0
ω̇′

T
ω̇′

k


(2.12)

with the linearized diffusive fluxes
0

ζ′mom,i j

ζ′ene, j

ζ′spec, j

=


0
τ′i j

τ′i j ui +τi j u′
i

0

+


0
0

λ′ ∂T
∂x j

+λ∂T ′
∂x j

0



−


0
0(

ρ′V Dk , j +ρV Dk , j

)
Y k hk +ρV Dk , j

(
Y ′

k hk +Y k h′
k

)(
ρ′V Dk , j +ρV Dk , j

)
Y k +ρV Dk , j Y ′

k

 .

(2.13)

The linearized thermal (Eq. (2.8)), caloric (Eq, (2.9)) and canonic (Eq. (2.10)) equation of state
read

p ′

p
= ρ′

ρ
+

Y ′
k

Y k

+ T ′

T
, (2.14)

e ′ = cvT ′+ek Y ′
k (2.15)

and

e ′ = T s′+ p

ρ2ρ
′+ g k Y ′

k . (2.16)

All other constitutive equations in Sec. 2.2 are linearized accordingly. The interested reader
is referred to Avdonin et al. [17] and Meindl et al. [161] for the complete set of linearized
equations. Note that all flow variables as well as material properties, e.g. viscous, thermal and
compositional diffusivities, must be linearized to obtain a set of linearized equations that is fully
consistent with the original non-linear problem stated in Sec. (2.3) [17].

The LRF equations are linear in the perturbed quantities and consequently less expensive to
solve numerically than the non-linear system of reactive flow equations (2.3). Furthermore, the
LRF equations within an ALE or Lagrangian reference frame can be derived analogously to the
formulation in the Eulerian reference frame (Eq. (2.12)) by starting the linearization procedure
from the reactive flow equations in the corresponding reference frame.
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2.4 Characteristic flow decomposition

acoustic vortical entropic compositional
Π+/Π− v j s ck

Pressure p ′ ✓ - - -
Vorticity Ω′

j - ✓ - -
Entropy s′ - - ✓ -
Mass fraction Y ′

k - - - ✓

Velocity u′
j ✓ ✓ - -

Density ρ′ ✓ - ✓ ✓
Temperature T ′ ✓ - ✓ ✓

Table 2.1: Impact of acoustic waves, vortical perturbations, entropic inhomogenities [50, 150]
and compositional inhomogenities on various primitive flow variables.

2.4 Characteristic flow decomposition

In the absence of chemical reactions and diffusive effects as well as assuming a uniform base
flow field, the LRF equations 2.12 can be decomposed into four types of non-interacting pertur-
bations – namely acoustic waves, vortical perturbations as well as entropic and compositional
inhomogeneities [50, 119, 150, 153]. The decomposition in these four types of canonical per-
turbations is highly illustrative for understanding the spatiotemporal dynamics in a combustor
possibly contributing to thermoacoustic instabilities. Diffusive effects, chemical reactions or
other flow non-uniformities in the LRF equations (2.12) can be understood as generation, de-
struction and conversion mechanisms of these canonic perturbations.

Acoustic waves Π+/Π− are isentropic, irrotational and isochemical perturbations propagating
with the speed of sound superposed on the base flow velocity, c+u j . In subsonic flows, acoustic
waves are the only type of perturbation able to travel upstream and are, therefore, essential for
closing a thermoacoustic feedback loop. In contrast, vortical perturbations v j as well as entropic
s and compositional ck inhomogeneities are convected with the mean flow velocity u j and, thus,
are only able to propagate downstream. Vortical perturbations are incompressible, isentropic
and isochemical. Entropic inhomogeneities are incompressible, irrotational and isochemical,
whereas compositional waves are incompressible, isentropic, and irrotational.

Table 2.1 provides an overview of primitive variables affected by these canonical perturbations.
For small perturbations, p ′ is a purely acoustic perturbation. Disturbances of vorticity, entropy
and composition are exclusive to vortical, entropic and compositional disturbances, respectively.
Density, temperature and velocity perturbations are affected by more than one perturbation type.

Note that while the decomposition in vortical, entropic and compositional perturbation as de-
tailed in this section and Tab. 2.1 is common, it is not unique [50, 150] for the convected per-
turbations. In thermoacoustics, non-acoustic temperature fluctuations are sometimes used as
perturbation types instead of entropic disturbances. The corresponding canonic perturbation
related to changes in composition would be isobaric, irrotational and isothermal.
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2.5 Transformation to the Laplace Domain

For many investigations of thermoacoustic systems, an analysis in frequency space is required
or advantageous over the time domain formulation. To obtain the frequency space representation
of the LRF equations, Eq. (2.12) is projected onto a harmonic time dependency via the Laplace
transform,

ψ̂(x, s) =
∫ ∞

0
ψ′(x, t )e−st dt . (2.17)

The angular frequency ω and the growth rate σ of the corresponding harmonic time dependency
are encoded in the Laplace variable

s =σ+ iω . (2.18)

The Laplace transform replaces the temporal derivative in the LRF equation (2.12) by a multi-
plication with the Laplace variable s,

∂ψ′(x, t )

∂t

∣∣∣∣
x
⇒ sψ̂(x, s) . (2.19)

In numerical simulations, this removes the necessity for a time-stepping procedure and the
corresponding constraints on the numerical time step. Consequently, the frequency space for-
mulation offers a computationally cheaper way to perform, e.g. a (frequencywise) input-output
analysis to determine transfer matrices (Sec. 3.2) or transfer functions (Sec. 3.3). Furthermore,
the frequency space formulation is required to perform a linear stability analysis for a thermoa-
coustic system (see Sec. 4).

In addition to the classical Eulerian formulation, this thesis uses the LRF equations expressed
in an ALE reference frame. In a general ALE reference frame, spatially varying Doppler shifts
originating from the local mesh velocity us, j appear and the frequency space formulations of
the two reference frames would not be comparable. However, the mesh velocity of the ALE
framework is limited to small movements (us, j = 0, us, j = u′

s, j ) in this work. The mesh velocity
is consequently much smaller than the propagation velocities of the acoustic and convective
perturbations. The Doppler shift appears as a second-order effect under these assumptions and
can be neglected.

12



3 Hybrid linearized thermoacoustic
models

Thermoacoustic phenomena pose a multi-scale problem with physical mechanisms acting on
very different time and length scales. These range from thin flame fronts (O (10−4m)) with intri-
cate chemical and diffusive mechanisms to large-scale acoustic waves (O (100m)) propagating
relatively fast with the speed of sound augmented by the mean flow velocity [158, 195]. This
is challenging for monolithic numerical simulations such as high-fidelity CFD simulations or
solving the LRF equations since the accurate computation of reactive and diffusive processes
in the flame front requires a high spatial resolution, restricting the local mesh size. Combined
with the strong non-linearity of the chemical reaction rates, this results in a stiff numerical
problem [158, 195]. For time-domain simulations, the time step is additionally restricted due to
the combination of small local cell sizes and the high propagation velocity of acoustic waves
[158, 195].

Hybrid linearized thermoacoustic modeling approaches leverage the disparity in scales to sep-
arate the large-scale acoustic from the small-scale chemical processes. Instead of explicitly
resolving the perturbed chemical processes, the perturbed heat release rate ω̇′

T resulting from
flow-flame interactions is modeled externally. The onset of thermoacoustic instabilities is sub-
sequently assessed by evaluating the propagation and generation of acoustic waves (and poten-
tially other convective perturbations) utilizing the external model of ω̇′

T. In this work, linearized
thermoacoustic models that require linearized perturbations such as the perturbed heat release
rate ω̇′

T as an external input are denoted as hybrid. In contrast, linearized models such as the
LRF equations (Sec. 2.3) resolve all linearized perturbations internally and are referred to as
monolithic. However, note that all linearized methods require steady base flow fields as an input
and thus are not standalone approaches for thermoacoustic stability analysis.

3.1 Spatially resolved three-dimensional hybrid models

A variety of hybrid linearized models for three-dimensional thermoacoustic problems exist
conceptually. All these models may be derived by introducing additional assumptions into the
most general linear system of equations, the LRF equations (2.12). Note that introducing addi-
tional assumptions typically reduces the numerical effort in solving the corresponding system
of equations while the accuracy of the computed results decreases simultaneously. Listed with
increasing simplifications, the most common hybrid linearized thermoacoustic models for three-
dimensional problems are:

• The Linearized Navier-Stokes equations (LNSE), e.g. [92, 93, 134–136, 160], omit the
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Hybrid linearized thermoacoustic models

species balance equations and the reaction mechanism. Neglecting the NY − 1 species
balance equations significantly reduces the number of degrees of freedom (DOF) of the
discretized LNSE compared to the discretized LRF equations. For example, neglecting
the four species balance equations of a simple 2-step reaction mechanism such as the
2S-CM2 [24, 161] in a three-dimensional problem reduces the DOF by 44 %. Addition-
ally, dropping the chemical reaction mechanism reduces the stiffness of the linear system
of equations. On the downside, compositional inhomogeneities are no longer explicitly
resolved, but their effect on the perturbed heat release rate ω̇′

T may be modeled by the
external input.

• The Linearized Euler Equations (LEE), e.g. [105, 111, 112, 221], are obtained by ad-
ditionally neglecting diffusive effects (τ = 0, λ = 0, Vk = 0). In regions with significant
diffusive effects, e.g. propagation-stabilized flames or shear/boundary layers, a coarser
mesh can be used since these effects are neglected and consequently do not need to be
resolved. However, neglecting diffusive effects omits the damping of convective waves as
well as acoustic-convective dissipation mechanisms such as acoustic-vorticity dissipation.
Furthermore, note that besides the accuracy decrease resulting from the neglect of diffu-
sive effects, spurious perturbations, e.g. spurious vortical perturbations in boundary layers
[135, 159], may be generated by inconsistencies between the LEE and the corresponding
base flow field if the latter retains viscous effects. This is the case in many technically
relevant combustion applications in which the diffusive effects play a prominent role in
the flame stabilization.

• The Acoustic Perturbation Equations (APE) [36, 77] are obtained by filtering the LEE
or LNSE to retain only the acoustic wave propagation in arbitrary complex mean flow
fields. The interaction of the resolved acoustic waves with vortical or entropic perturba-
tions may be introduced as an external input (modeled or from high-fidelity simulation)
or is neglected altogether. A coarser mesh may be used since the short convective pertur-
bations are not explicitly resolved [104]. This comes at the cost of a complex modeling
of the acoustic-convective interaction terms or an additional reduction in accuracy if ne-
glected [104].

• The classical acoustic wave equation (time-domain) or Helmholtz equation (frequency
domain), e.g. [93, 166, 167, 182], is obtained from the LEE1 by assuming a stagnant fluid
(u j = 0) and neglecting all convective perturbations. Disregarding all convective perturba-
tions omits all acoustic-convective interaction mechanisms and thus discards all acoustic-
convective thermoacoustic feedback loops. Additionally, acoustic-convective dissipation
mechanism such as acoustic-vorticity dissipation are neglected. Furthermore, mean flow
effects are essential in many thermoacoustic systems and crucial for accurately predicting
acoustic reflection and transmission coefficients and, therefore, for an accurate stability
assessment of the whole system, e.g. [63, 93, 159]. Thus, the assumption of a stagnant
fluid should be chosen with great care.

1The acoustic wave equation or Helmholtz equation may be alternatively derived from the APE by assuming a
stagnant fluid (u j = 0) and omitting the acoustic-convective interaction and dissipation terms
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3.2 Thermoacoustic network models

ref

F

BC D AC F D BC

Figure 3.1: Illustrative network model of a ducted slit flame. The model is stacked as a sequence
of two compact elements, representing a flame (F) and an area change (AC), and
two non-compact elements, representing ducts (D). The flame transfer function F

referenced to the reference point "ref" provides the flow-flame interaction closure
(see Sec. 3.3) to the flame element. Boundary conditions (BC) at the in- and outlet
complete the model.

3.2 Thermoacoustic network models

In contrast to fully resolving a three-dimensional thermoacoustic system with all its complex
features, network models lump the thermoacoustic system into independently modeled subsys-
tems and interconnect them via predefined - often quasi-one-dimensional - interfaces. Fig. 3.1
shows an illustrative network model of a ducted slit flame. Each subsystem - a so-called network
element - is characterized via its transfer matrix T or its scattering matrix S. Both matrices are
lumped representations of the scattering, conversion, generation or destruction of the character-
istic perturbations (see Sec. 2.4) within the corresponding element.

The transfer matrix relates the primitive states upstream (index ’1’) and downstream (index ’2’)
of the element. For example, the transfer matrix of a 2-port system is defined as


u′

2
p ′

2
s′2

Y ′
k,2

(Ω′
j ,2)

= T


u′

1
p ′

1
s′1

Y ′
k,1

(Ω′
j ,1)

 (3.1)

and is schematically displayed on the right side of Fig. 3.2. Deriving the transfer matrix of an
element starting from the fundamental balance equations is straightforward due to the use of
primitive variables. However, evaluating the transfer matrix regarding the impact of the corre-
sponding element on the network model is difficult since the primitive variables do not feature
a well-defined direction of propagation.

The scattering matrix directly links the characteristic perturbations Π+/Π−, s, ck, j and (v j ,1)2

2The vortical perturbations are usually neglected in network models assuming quasi-onedimensional interfaces.
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S T

1 2 1 2

u′
1, p ′

1

s′1, Y ′
k,1

(Ω′
j ,1)

u′
2, p ′

2

s′2, Y ′
k,2

(Ω′
2, j )

Π+
2 , s2, ck,2

(v j ,2)

Π−
2

Π+
1 , s1, ck,1

(v j ,1)

Π−
1

Figure 3.2: Schematic depiction of an exemplary 2-port network element represented in terms
of (left) the scattering matrix S with the corresponding characteristic input and out-
put disturbances, and (right) the transfer matrix T with the upstream and down-
stream primitive variables.

and is defined as 
Π+

2
Π−

1
s2

ck,2

(v j ,2)

= S


Π+

1
Π−

2
s1

ck,1

(v j ,1)

 (3.2)

in case of a 2-port system. The left side of Fig. 3.2 illustrates the scattering matrix in this case.
Since the direction of propagation of all these characteristic perturbations are well-defined, the
scattering matrix offers a useful form for interpreting the internal causality of the element and
its impact on a thermoacoustic network model.

The scattering/transfer matrices of the individual subsystems may be determined from experi-
mental measurement data or numerical simulations. Alternatively, analytical or semi-empirical
models can be derived from a linearized set of balance equations L , either the full LRF equa-
tions (2.12) or any of the simplified models detailed in Sec. 3.1. These models may be classified
in acoustically/convectively compact3 and non-compact elements. Compactness of a subsys-
tem assumes that its spatial extent ∆x is much smaller than the shortest wavelength λmin of a
characteristic perturbation corresponding to a maximum frequency fmax of interest,

∆x ≪λmin . (3.3)

The transfer/scattering matrix of non-compact elements typically results from the analytical
solutions of the linearized conservation equations of simple elements such as ducts with or
without changes in area and/or temperature [67, 76, 210, 251]. In contrast, compact elements -
so-called jump conditions - lump the whole subsystem into a localized discontinuity in the flow
variables by analytically approximating the volume integral over the whole subsystem Ω,∫

Ω
L dx 7−→ SorT . (3.4)

3The assumption of convective compactness is required if convective perturbations such as entropic, vortical
or compositional perturbations are included in the derivation of a thermoacoustic jump condition. If only acoustic
perturbations are considered, acoustic compactness is sufficient.
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In the limit of acoustic/convective compactness, the volume integral in Eq. (3.4) is then evalu-
ated in the limit of a vanishing Helmholtz (acoustically compact case)

He= ∆x
λ

= ∆x
c

f → 0 (3.5)

or Strouhal number (convectively compact case)

St= ∆x
λ

= ∆x
u

f → 0. (3.6)

Additional assumptions, such as a reduced order in Mach number, constant gas properties, or
a restriction to a subset of characteristic perturbations (see Sec. 2.4) are typically introduced
during the derivation of jump conditions to simplify the analytical evaluation of the volume
integral [169]. Classical examples of thermoacoustic jump conditions are flames [65, 88, 146,
169, 230], area jumps [65, 69, 103, 219], compact nozzles [59, 60, 153, 155] or junctions [127].

Low-order network modeling, e.g. [28, 64, 70, 76, 131, 165, 186, 218], is a computationally in-
expensive technique to describe and predict thermoacoustic phenomena in confined combustion
systems with a widespread range of applications. Network models have been proven useful to
gain a fundamental understanding of basic phenomena in the dynamics of confined combustion
systems, e.g. intrinsic thermoacoustic modes [29, 75, 110] or mode clustering in annular and
can-annular combustors [39, 84, 85, 241, 242]. Additionally, network models are exceptionally
suited for extensive parameter studies, e.g., in the early design phase of developing a gas turbine
combustor, due to the low computational cost. Furthermore, network models may be used in the
post-processing of experimental measurements such as for the extraction of the thermoacoustic
transfer behavior of the flame, e.g. [253] or PAPER-MBI [74]. Alternatively, network models
may be combined with experimental measurement data to infer unknown model parameters to
increase the accuracy of model predictions and to provide uncertainty bounds [124, 254].

3.3 Flow-flame interactions

The flow-flame interactions for hybrid linearized thermoacoustic approaches are typically mod-
eled by assuming that the perturbed heat release rate ω̇′

T results from one or multiple different
time-lagged perturbations ψ′

ref(t − τ) at a reference plane (index (·)ref) with the normal vec-
tor nref, j . In the limit of small amplitude perturbations (see Sec. 2.3), this interaction may be
modeled in the frequency domain as a Multiple-Input-Single-Output (MISO) system,

ˆ̇ωT(s,x)∫
Ω ω̇T dx

= [
Fu(s,x) Fp(s,x) Fs(s,x) FY,k (s,x)

]


û j n j

u j n j
p̂
p
ŝ

cp
Y ′

k

Y k


ref

, (3.7)

superpositioning the contributions of different linearly independent (see Sec. 2.4) flow pertur-
bations. The flame transfer function (FTF) Fψ determines the gain and phase relation between
ω̇′

T and an perturbed quantity ψ′. Depending on the flame type, a flame may be sensitive to all
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Figure 3.3: Flame response data in the form of (left) the unit impulse response and (right) the
bode plot of the corresponding FTF F (s) evaluated for zero growth rate (Re(s) =
σ= 0).

flow perturbations u′, p ′, s′ and Y ′
k , e.g. autoignition flames [31, 86, 169, 258], or only to a

subset thereof. In general, the FTFs F (s,x) in Eq. (3.7) are functions of frequency and space.
However, it is impractical to determine spatially resolved FTFs for each frequency for most
application cases. Thus, only the global dynamics of the flow-flame interaction

∫
Ω

ˆ̇ωT dx∫
Ω ω̇T dx

(s) = [
Fu(s) Fp(s) Fs(s) FY,k (s)

]


û j n j

u j n j
p̂
p
ŝ

cp
Y ′

k

Y k


ref

(3.8)

are usually determined, while the spatial distribution

Q(s,x) = F(s,x)

F(s)
(3.9)

is modeled if required.

The flow-flame coupling is very complex and highly specific to the thermoacoustic system at
hand and the FTFs are typically determined from high-fidelity simulations or experimental mea-
surements. For simplistic academic cases, approximations via analytical models might be used.
However, the theoretical functional form of an FTF throughout the complex plane is known in
the limit of small perturbations. In this limit, the flame acts as a linear time-invariant system and
is fully characterized by its unit impulse response (time domain) [197]. The generalized func-
tional form of the FTFs throughout the complex plane in the frequency domain is then given by
the (discrete) Laplace transform of a (discrete) unit impulse response [197],

F (s) =
∑
n

hn exp(−sτn) . (3.10)

FTFs of the fundamental functional form stated in Eq. (3.10) are called Distributed Time Delay
(DTD) models. The coefficients hn and τn of the DTD models may be identified from broad-
band forced high-fidelity simulations via system identification methods [198, 200]. Fig. 3.3
displays an illustrative example of a unit impulse response and the corresponding FTF.
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3.3 Flow-flame interactions

In the case of a harmonically forced4 flame, the FTF is only determined at individual frequen-
cies. This is typically the case for experimental measurement data, e.g. [4, 74, 140, 203, 219]. A
continuous description of the FTF throughout the complex plane is then typically approximated
via rational fitting [101, 185],

F (s) =
∑P

p=0 ap sp∑Q
q=0 bq sq

with P <Q . (3.11)

Alternatively, semi-empirical approximations of Eq. (3.10) with presumed functional forms of
the time delay distribution (e.g. [140], [4]) may be used to approximate continuous FTFs.

4Separate forcing of individual frequencies.
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4 The thermoacoustic eigenvalue
problem

All Laplace-transformed systems of linearized balance equations (Sec. 2.3, 3.1, 3.2) can be
reformulated into an eigenvalue problem after numerical discretization, e.g. with Finite Volume,
Finite Elements or in terms of "network elements", and closure with the necessary input data.
The thermoacoustic eigenvalue problem of the general form

N (s)v̂ = 0, v̂ ̸= 0, (4.1)

is linear in the perturbed states v̂ but typically non-linear in the Laplace-variable s, even though
it results from reformulating a linearized set of balance equations. This non-linear dependence
on s of the operator N (s) results either from (semi-)analytical solutions of simple elements
in network models, e.g. the wave propagation in ducts, or from lumped parameters modeling
unresolved processes, e.g. the flow-flame interaction in hybrid thermoacoustic models (Sec. 3)
or the thermoacoustic scattering outside of the resolved domain enforced by complex boundary
conditions.

Table 4.1 lists the structure of the operator N (s) for various linearized models. The matrix Qn(s)
denotes the non-linear s-dependencies from underresolved source regions within the discretized
thermoacoustic system, e.g. a combustion chamber. For example, the FTFs (Sec. (3.3)) used in
hybrid thermoacoustic models are lumped parameters approximating the flow-flame interaction
instead of fully resolving the linearized chemical reactions. The index n corresponds to the n-
th underresolved source region. The matrix Zm(s) expresses the non-linear s-dependencies of
boundary conditions of the discretized thermoacoustic system. Frequency-dependent boundary
conditions may be understood as lumped models approximating the relevant scattering of acous-
tic and convective perturbations outside of the spatially resolved domain. Examples are rotor and
stator stages of a turbine downstream of a combustion chamber [22, 58, 125, 126, 145, 177, 178]
or multi-perforated liners [43, 180, 232, 260, 261] at combustor walls. The index m corresponds
to the m-th boundary condition. The matrix M relates with the corresponding prefactor s to the
Laplace-transformed time derivative of the local flow perturbations. Note that for the Helmholtz

Linearized models N (s)

LRF sM + K + Zm(s) + Qn

LEE/LNSE sM + K + Zm(s) + Qn(s)
Helmholtz s2M + K + Zm(s) + Qn(s)

Network models K + Zm(s) + Qn(s) + Ap (s)

Table 4.1: Structure of the operator N (s) for different linearized models.
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equations, the prefactor s2 appears due to the second-order time derivative in the wave equation.
The matrix Ap (s) denotes the non-linear s-dependencies of (semi-)analytical solutions used in
network models, e.g. for the wave propagation in ducts. The index p corresponds to the p-th
analytical solution. The matrix K includes all other frequency-independent terms. Note that the
explicit form of the matrices M, K, Zm and Qn depends on the underlying system of linearized
balance equations, the discretization scheme as well as the chosen closure models.

4.1 Special structures of the thermoacousic eigenvalue prob-
lem

Non-linear eigenvalue problems (NLEVP) do not exhibit a closed-form solution, and the num-
ber of eigenpairs of an NLEVP is (potentially) infinite [102]. NLEVPs are, therefore, signif-
icantly harder to solve than their linear counterpart, and solution methods are tailored to the
problem at hand [102, 243]. For fast and efficient computation, solution strategies may ex-
ploit certain structures of the NLEVP. Thus, this section lists special structures of the ther-
moacoustic NLEVP that arise under certain modeling assumptions. Specific solution strategies,
namely outer iteration methods, contour integration methods, and methods based on approxi-
mation and reformulation are discussed in the Sec. 5.4 contextualizing the results from PAPER-
NLEVP [167].

The structure of the thermoacoustic NLEVP is determined mainly by the models used to approx-
imate the unresolved physical processes within (Qn) and outside1 (Zm) the spatially resolved
domain. In addition, partial (semi-)analytical solutions (Ap) impact the structure of the NLEVP
arising from network models. In the particular case that all these models are approximated via
rational functions, the thermoacoustic NLEVP takes the form of a so-called rational eigenvalue
problem (REVP, N (s) =R(s)). The modeling of the unresolved processes via rational functions
is typical if the flow-flame feedback (Sec. 3.3) and the boundary impedances are determined ex-
perimentally. The approximation via rational functions of partial (semi-)analytical solutions in
network models such as the wave propagation in ducts [76] is not uncommon. The REVP has
the favorable property that it can be reformulated in an equivalent linear eigenvalue problem of
higher dimension [231] for which many well-established solution methods exist, e.g. [207].

The thermoacoustic eigenvalue problem becomes linear if all relevant physical sources within
the spatially discretized domain are resolved (Qn(s) = Qn), simple frequency-independent
boundary conditions are applicable (Zm(s) = Zm) and no partial (semi-)analytical solutions are
used (Ap (s) = Ap),

N (s) :=L (s) = sM+K+Zm +Qn . (4.2)

If frequency-independent boundary conditions are applicable, LEVPs arise if the thermoacous-
tic system is described via the monolithic LRF equations (2.12), e.g. [35, 240].

1Underresolved processes outside of the spatially resolved domain are represented by s-dependent boundary
conditions.
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4.2 Eigenpairs and their classification

(a) (b)

Figure 4.1: Illustrative example of the real part of eigenvectors Re(v̂) in an annular combustor
corresponding to (a) a simple eigenpair, and (b) a semi-simple eigenpair with Na =
Ng = 2.

4.2 Eigenpairs and their classification

The solutions of the thermoacoustic eigenvalue problem are the eigenpairs (s,v̂) constituting
of the eigenvalue s and the eigenvector v̂. The eigenvalue s = σ+ iω (see Eq. (2.18)) provides
information about the natural angular frequency ω and the growth rate σ, which expresses the
linear asymptotic stability of the thermoacoustic system. The system is linearly stable if for all
eigenvalues σ < 0. In case of an unstable thermoacoustic system, the mode shapes v̂ may be
used for an effective placement of acoustic dampers, e.g. [162].

Eigenvalues are mathematically classified via their algebraic Na and geometric multiplicities
Ng. The algebraic multiplicity Na of an eigenvalue s equates to the number of roots of the deter-
minant of the non-linear operator N (s) (det(N (s)) = 0). The geometric multiplicity Ng is the
number of the independent eigenvectors v̂ corresponding to an eigenvalue s. Mathematically,
the eigenvalues of a system are classified as simple (Na = Ng = 1), semi-simple (Na = Ng > 1)
or defective (Na > Ng) (see e.g. [102, 207]). In a thermoacoustic system, simple eigenmodes
correspond to, e.g., longitudinal modes [39, 40, 167]. Figure 4.1a illustrates such a longitudinal
mode in an annular model combustor. Semi-simple eigenmodes appear, e.g., in systems with ro-
tational symmetry such as annular and can-annular combustors [39, 40, 84, 85, 167, 174, 242]
(typically with Na = Ng = 2 [173]). For example, Figure 4.1b shows the two eigenmodes cor-
responding to a semi-simple eigenvalue in an annular model combustor. Defective eigenvalues
are, e.g., exceptional points [106, 163, 211]. Note that in numerical computations, a defective
eigenpair cannot be obtained exactly due to round-off errors [163].

4.3 Spurious eigenpairs and incomplete spectra

Besides the strict mathematical classifications of eigenvalues, one may distinguish between
physical and spurious eigenpairs. Spurious eigenpairs are additional eigenpairs in the spectrum
of the eigenvalue problem, which are not valid solutions of the underlying physical system
and result as a by-product of approximations applied throughout the modeling cascade. Anal-
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ogously, eigenpairs may vanish due to approximations resulting in the determination of an in-
complete eigenspectrum. The approximations applied throughout the modeling cascade may be
distinguished in the following three steps:

1. Analytical modeling of a real-world problem.

2. Numerical discretization of the analytical model.

3. Approximations applied for the efficient solving of the thermoacoustic eigenvalue prob-
lem.

This work focuses on the approximations applied in the third step of the modeling cascade
and all spurious eigenpairs and incomplete spectra discussed result from the corresponding
approximations. Spurious eigenpairs or incomplete spectra corresponding to the approximations
made in the first or second step of the modeling cascade are not further analyzed.
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5 Contextualization and Discussion of
Publications

5.1 Consistent analysis of source terms in thermoacoustic
systems

Analyzing source terms that contribute to the generation of acoustic and convective perturba-
tions offers insight into the underlying physical mechanisms and their importance in various
physical configurations. For a consistent analysis, these source terms must be strictly sepa-
rated from propagation terms in the flow differential equations. In the general case of a source
region in motion, this strict separation requires the tracking of the source region (see PAPER-
ALE [168]). In thermoacoustic systems, the most prominent source region is the exothermic
reaction zone of the flame, which may generate acoustic, vortical, entropic or compositional
perturbations in response to various disturbances.

For the source terms of entropy perturbations generated by a flame, several studies, e.g.
[68, 176], derive from the entropy balance equations in differential form that the generation
of entropy disturbances originates from a perturbation of the heat-to-flow power ratio (ω̇T/pu)′

and conclude that the total unsteady heat release rate of a flame contributes to the generation of
entropy waves. Several jump conditions derived from the same balance equations share this
conclusion [65, 107, 144, 244]. However, all these studies assume a flame at rest. In con-
trast, a realistic flame moves in response to various disturbances (e.g. acoustics, upstream
flow velocity, vortical flow structures, turbulence, fuel concentration, hot spots). Bauerheim
showed for a premixed flame that the assumption of a flame at rest results in the paradox
that in the zero Mach number limit, a resting flame obeys volume instead of mass conserva-
tion [21]. Strobio Chen et al. [230] resolved that paradox by taking the flame movement into
account. Furthermore, Strobio Chen et al. [230] analytically showed, utilizing a jump con-
dition, that neglecting the flame motion results in a spurious generation of entropy inhomo-
geneities. Meindl et al. [161] visualized this spurious generation in spatially discretized numer-
ical simulations for a propagation-stabilized, one-dimensional flame and a two-dimensional
duct flame. Instead of the heat-to-flow power ratio, the heat-added-per-unit-mass (ω̇T/ρu)′

may be identified from theoretical considerations or jump conditions accounting for the flame
motion as the dominant mechanism generating entropy disturbances in premixed flames, e.g.
[132, 199, 209, 214, 230]. For jump conditions, the need to account for the flame movement
to accurately predict the generation of entropy perturbations in premixed flames is widely ac-
cepted [46, 88, 95, 171, 226, 227] and introduced in the derivation. In contrast, the effect of the
flame motion on the source terms of entropy disturbances in the integral/differential equation
is not apparent, and their isolation is not straightforward. This resulted in the misinterpreta-
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tion of some analytical terms as sources in several studies, e.g. [79, 256]. PAPER-ALE [168]
consistently isolates the source terms of entropy perturbations in general three-dimensional re-
active flows by tracking the source region utilizing an ALE framework. In agreement with the
theoretical and quasi-one-dimensional results, this approach identifies the perturbed heat re-
lease rate per unit mass (aligned with the mean entropy gradient) as the dominant contribution
to generating entropy perturbations in premixed flames. In addition, PAPER-ALE combines
temperature-entropy diagrams with an order of magnitude analysis to discuss all non-diffusive
sources of entropy perturbations in the low-frequency and low-Mach number limit of premixed
flames.

For acoustic perturbations, the local displacement of the flame was identified as an essential
driving mechanism for transverse high-frequency thermoacoustic modes [172, 222]. In addi-
tion, Meindl et al. [161] observed that neglecting the flame movement results in a spurious gen-
eration of acoustic perturbations when this modeling assumption simultaneously alters the mass
flow rate across the flame front. Meindl et al. [161] demonstrated this numerically for a spa-
tially discretized one-dimensional, premixed, propagation-stabilized, passive (ω̇′

T = 0) flame.
While this spurious generation of acoustic waves does not appear in the analysis of Strobio
Chen et al.[230] due to the assumptions intrinsic to the corresponding jump condition (constant
gas properties and retaining only terms up to first order in Mach number), PAPER-JUMP [169]
provides a comprehensive jump condition for arbitrary premixed flames incorporating this ef-
fect. PAPER-JUMP [169] visualize this spurious acoustic wave generation for a flame at rest
for a one-dimensional autoignition flame. Overall, the framework in PAPER-ALE [168] can
be applied to derive an acoustic analogy to consistently identify the acoustic source terms of a
moving flame front in three-dimensional flows (see Appendix A.2).

Furthermore, note that the procedure for consistently isolating source terms detailed in PAPER-
ALE [168] applies to any balance equations of perturbed quantities. Thus, it can also be used to
identify the source terms corresponding to vortical or compositional perturbations for a moving
flame front.

Besides the consistent isolation of source terms, PAPER-ALE [168] offers an analytical frame-
work to analyze the modeling errors corresponding to various models ũ′

s, j , e.g., a flame at
rest (ũ′

s, j = 0), approximating the flame displacement velocity u′
s, j . The modeling error is de-

termined by subtracting the source terms identified with the procedure in PAPER-ALE [168]
from the approximate differential equation obeying ũ′

s, j . For convective perturbations ψ′ such
as entropic, vortical or compositional disturbances, the direct error ϵconv of neglecting the flame
movement (ũ′

s, j = 0) is for example given by (see Appendix A.1)

ϵconv =−u′
s, j
∂ψ

∂x j
. (5.1)

ϵconv becomes maximal if the flame is displaced in the direction of the mean gradient of ψ and
vanishes in case the displacement is orthogonal to the mean gradient of ψ. Analogously, the
direct error ϵac in the generation of acoustic perturbations resulting from neglecting the flame
movement (ũ′

s, j = 0) is identified as (see Appendix A.2)

ϵac =
∂

∂t

(
u′

s, j
∂ρ

∂x j

)∣∣∣∣
χ

− ∂

∂xi

(
u′

s, j
∂ρui

∂x j

)
+2ui

∂

∂xi

(
u′

s, j
∂ρ

∂x j

)
. (5.2)
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Publication ˘̇ωT(s,x)
ω̇T(x)

ûs, j (s,x) mixed term

Zellhuber et al. [259] p̂
γp

1 û j

Méry [170] −1
s
∂û j

∂x j
û j

Heilmann et al. [105] − û j

Avdonin [16] −1
s
∂û j

∂x j
û j ˆ̇ωAvdonin

Table 5.1: Closure models for the spatial distribution Q(s,x)

ϵac represents spurious acoustic sources of monopole and dipole type resulting from a spurious
mass flux u′

s, j
∂ρ
∂x j

and a spurious momentum flux u′
s, j

∂ρui
∂x j

, respectively, through the flame front.

Understanding the mechanisms that result in the generation of spurious perturbations is impor-
tant to assess the quality and applicability of various models ũ′

s, j for specific application cases.
Especially for hybrid linearized thermoacoustic models based on partial differential equations
(LNSE, LEE, APE, Helmholtz) using global flame transfer functions F (s), incorporating the
flame movement poses a problem. In this case, a model approximating the spatial distribution
of the heat release perturbation Q(s,x) (Eq. (3.9)) is required. The flame displacement velocity
ûs, j (s,x) (frequency space) is intrinsically encoded in Q(s,x). In low-frequency applications, a
common assumption is to assume that this spatial distribution follows the mean heat release rate
(e.g. [17, 92, 160, 182])

Q(s,x) = ω̇T(x)∫
Ω ω̇T dx

. (5.3)

However, Meindl et al. [161] showed that this approximation intrinsically neglects the flame
movement. Instead, tracking the flame displacement with an ALE framework provides the gen-
eral spacial distribution [105, 259]

Q(s,x) = 1

F (s)

 ˘̇ωT(s,x)∫
Ω ω̇T dx︸ ︷︷ ︸

I

− 1

s
ûs, j (s,x)

∂

∂x j

(
ω̇T(x)∫
Ω ω̇T dx

)
︸ ︷︷ ︸

II

 . (5.4)

The first term (I) corresponds to the fluctuations within the ALE reference frame tracking the
flame. The second term (II) represents the fluctuations observed locally in an Eulerian frame-
work due to the displacement of the flame. However, the application of Eq. (5.4) in hybrid ther-
moacoustic models requires closure models for the heat release rate perturbation observed in the
moving reference frame ˘̇ωT(s,x) and the mesh velocity ûs, j (s,x). In literature, various models
have been proposed and are listed in Tab. 5.1. The models proposed by Zellhuber et al. [259],
Méry [170] and Heilmann et al. [105] assume the displacement of the exothermic reaction

1Zellhuber et al. [259] provide an additional term
( ˜̇ωT/ρ̃

)′
/
( ˜̇ωT/ρ̃

)
corresponding to the mass-specific heat

release rate in the moving reference frame. However, this term itself requires a closure model, which is not provided
by Zellhuber et al. [259]. Therefore, this term has been neglected in all applications of the Zellhuber model [16]
and is consequently neglected in Tab. 5.1.
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zone to occur simply as a response to velocity perturbations. However, ûs, j (s,x) may be af-
fected also by changes to the local reaction velocity. For example, the local reaction velocity of
propagation-stabilized flames might be affected by perturbations of the local flame front cur-
vature, which alters local diffusive effects such as thermal preheating. In autoignition flames,
the reaction velocity is additionally sensitive to pressure, temperature and compositional fluctu-
ations [31, 86, 169, 258]. Avdonin [16] reformulates the monolithic LRF equations utilizing a
tabulated chemistry approach to formulate a model for Q(s,x). The resulting model adds an ad-
ditional correction term ˆ̇ωAvdonin to the model of Méry [170] corresponding to the reaction-rate
perturbations of the progress variable. However, the perturbation of the progress variable is not
explicitly resolved in hybrid thermoacoustic models and the formulation of Avdonin [16] can
not be used directly. Ultimately, better models for Q(s,x) and, therefore, for ˘̇ωT(s,x) and ûs, j

are required for the use in hybrid thermoacoustic models.

5.2 Consistent inference of global flame transfer functions
from experimental pressure measurements

Two established approaches exist to determine global flame transfer functions F (s) from ex-
perimental measurements - the optical and the acoustic approach.

The optical approach measures the filtered chemiluminescence intensity I of free radicals such
as CH* [19, 66], OH* [5, 19, 26, 133] or C2* [201] in the reaction zone of the flame. The
heat release rate perturbation Ω̇′

T/Ω̇T, necessary to identify the global FTFs (Eq. (3.8)), is then
determined by correlation with the intensity perturbations I ′/I . For fully premixed flames in
low Mach number flows and assuming small perturbations, I ′/I and Ω̇′

T/Ω̇T linearly depend
on each other and can be used interchangeably. In this case, the optical approach works well
[19, 26]. This changes for cases where I and Ω̇T show distinct sensitivities to more than one
perturbed flow variable, e.g., for partially premixed flames [26, 216, 217]. For partially pre-
mixed flames, the heat release rate depends linearly on both the mass flow rate through the
flame front and the equivalence ratio. In contrast, the intensity shows a linear dependence on
the mass flow rate but an exponential dependence on the equivalence ratio [108]. For such cases,
Schuermans et al. [217] proposed to measure the chemiluminescence of several free radicals to
separately identify the contributions to I ′/I , such as the mass flow rate and equivalence ratio
perturbations in a partially premixed flame, by solving the inverse problem. Ω̇′

T/Ω̇T is built from
this result in a subsequent step. While the method proposed by Schuermans et al. [217] is con-
sistent, it is susceptible to measurement errors [218]. In high-pressure applications, the optical
approach is additionally restricted by constraints regarding the optical access, heat radiation
from combustor walls and a reduced chemiluminescence intensity due to a lower probability of
forming the free radicals [218]. Overall, the optical approach is not well suited for cases such
as partially premixed flames or spray flames, in particular at engine-like operating conditions.

The acoustic approach reconstructs the flame transfer matrix from measured acoustic pressure
perturbations with two microphone arrays located in a duct upstream and downstream, respec-
tively, of an acoustically forced combustor. The global FTF is determined in a subsequent step
from the flame transfer matrix. The acoustic approach is based on the direct evaluation of acous-
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measurements
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Figure 5.1: Schematic representation of (a) a simple test rig and (b) a test rig with a realistic
gas turbine combustor as test section, both under reactive ("hot") conditions. Sirens
are not shown.

tic sources and is applicable independent of the level of premixedness, fuel composition or
operating pressure. Therefore, the acoustic approach is not limited by the restrictions of the
optical approach. However, the post-processing of the measurement data is more demanding in
comparison [26]. The acoustic approach can be subdivided in the following steps:

1. The acoustic pressure signals of each microphone array are used to reconstruct locally the
complex wave amplitudes of the upstream and downstream traveling acoustic waves. This
reconstruction requires two acoustically independent test states [1] and assumes plain
acoustic waves propagating with a constant velocity in a duct of constant cross-section
(green regions in Fig. 5.1). Theoretically, this reconstruction may be performed with two
microphones per array (two-microphone method [51, 122, 223]). However, to increase the
robustness of the reconstruction, at least three microphones per array (multi-microphone
method [192, 193]) are typically used nowadays. Paschereit and Polifke [186–188] were
the first to adopt the multi-microphone method for combustion applications.

2. The locally reconstructed acoustic wave amplitudes are used to determine the transfer
matrix of the combustor C enclosed by the two microphone arrays. The resulting C is a
black box model of the combustor section between the reference positions ’u’ and ’d’ (see
Fig. 5.1).

3. The flame transfer matrix F is an intrinsic part of C and needs to be isolated. The estab-
lished approach [214, 216] treats the combustor as a sequence of a burner section and the
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flame. The corresponding combustor transfer matrix is modeled as the product of F and
the burner transfer matrix B,

C = FB . (5.5)

Under this assumption, C is referred to as the "burner-flame transfer matrix" (BFTM),
and thus, the overall approach is called the "BFTM approach" throughout this work. The
BFTM approach uses a second measurement at the same operating point without fuel
injection ("cold" combustor, F = I) to determine B, assuming an unchanged transfer be-
havior of the burner section [214, 216]. Then, the flame transfer matrix F = CB−1 can be
ultimately inferred. The BFTM approach has been successfully applied for a wide vari-
ety of flame response studies in simplistic test rigs with a burner section in between two
ducts, e.g. [18, 26, 27, 53, 54, 129, 156, 212], as displayed in Fig. 5.1a.

For test rigs with more complex features, such as the combustor section displayed in
Fig. 5.1b, the assumptions of the BFTM approach no longer hold [9, 72]. In such a test
rig, acoustic branches bypassing the flame, e.g. through the bypass annulus and the effu-
sion cooling holes, or acoustic scattering within the combustor section, e.g. at an area
contraction at the end of the combustion chamber, invalidate Eq. (5.5). PAPER-MBI
[74] visualizes the resulting inconsistency of the BFTM approach for SCARLET (SCaled
Acoustic Rig for Low Emission Technology) [82, 83], a rig to test aero-engine burners
under realistic engine conditions at a low technology readiness level. Significant errors in
the computed F showcase the need for more sophisticated models to represent the interior
dynamics of the combustor section in test rigs with complex features. Thus, PAPER-MBI
[74] develops a consistent framework to infer F from C in such cases,

F = [
Tru (C−Tdu)−1 Tdp +Trp

]−1
. (5.6)

In contrast to the BFTM approach, a second measurement of the non-reacting test rig
is insufficient to fully characterize the interior dynamics of the combustor. Instead, the
novel method relies strongly on the accurate modeling of the acoustic interaction en-
cased in the transfer matrices Tru, Tdu, Tdp and Trp, bridging the gap between the states
’u’,’d’,’r’ and ’p’ in Fig. 5.1b. Eq. (5.6) is referred to as the Model-Based Inference (MBI)
method. PAPER-MBI [74] uses a low-order network model to apply the MBI method to
SCARLET, showcasing the capabilities of the method and its applicability to complex
test rigs. A follow-up study2 [113] indicated that the usage of additional measurement
of the non-reacting test rig (not necessarily at the same operating point) may be used to
reduce systematic modeling errors and to improve the robustness of the MBI method.

4. The global flame transfer functions can be approximated from F by utilizing an analytical
model such as the Rankine-Hugoniot jump condition, e.g. [88, 230] or PAPER-JUMP
[169].

5.3 Comprehensive thermoacoustic jump conditions

Jump conditions that describe the coupling of perturbations across compact elements, e.g.
flames [65, 88, 146, 169, 230], area jumps [65, 69, 103, 219], compact nozzles [59, 60, 153, 155]

2student thesis of Thomas Hollweck [113] supervised by the author
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5.3 Comprehensive thermoacoustic jump conditions

Paper O (M x) cp Π+/Π− s ck u′
s

Chu [48] O
(
M

1
)

cp(Yk ) ✓ (✓)3 - ✓

Dowling and Stow [65] O
(
M

0
)

cp ✓ (✓)4 - -

Schuermans [214] O
(
M

1
)

cp(Yk ) ✓ (✓)5 (✓) ✓

Strobio Chen et al. [230] O
(
M

1
)

cp ✓ ✓ (✓) ✓

Li and Morgans [146] O
(
M

0
)

cp(T,Yk ) ✓ - - -

Gant et al. [88] O
(
M

1|2−3
)

cp ✓ ✓ - ✓

PAPER-JUMP [169] O
(
M

∞)
cp(T,Yk ) ✓ ✓ ✓ ✓

Table 5.2: Established jump conditions derived for premixed flames and the assumptions used.
The table marks the subset of the modelled characteristics (acousticΠ+/Π−, entropic
s, compositional ck), the usage of simplified gas properties (cp), the approximation
order in Mach number (O (M

x
)) and if the flame movement u′

s is accounted for.
Lumped compositional perturbations, e.g., in terms of equivalence perturbations,
are checked in brackets. Two exponents are detailed for O (M

x
) if the approximation

order in Mach number is chosen differently for the mean field (first exponent) and the
perturbed fields (second exponent). More details are found in PAPER-JUMP [169].
(Table adopted from PAPER-JUMP [169])

or junctions [127], are key elements of every thermoacoustic network model. Their trans-
fer/scattering matrices provide insight into the coupling of characteristic perturbations across
the compact elements and may help to gain a fundamental understanding of the underlying
physical mechanisms. Depending on the application case, applying jump conditions (standalone
or as a subsystem in network models) requires a trade-off between accuracy and computational
efficiency. Additional assumptions may be used to reduce the complexity or increase the nu-
merical efficiency. The most common simplifications are to assume simplified gas properties,
use a reduced order in Mach number approximation, or restrict the derivation to a subset of
perturbations, e.g., neglect convective perturbations. Jump conditions with low complexity or
high numerical efficiency are mostly favored, focusing on gaining a fundamental understanding
or performing extensive parameter studies. Problematically, the corresponding simplifications
are typically introduced a priori or during the derivation of the jump condition. While the cor-
responding result is valid for a specific application, the a priori introduction of simplifications
strongly limits the generality of the derived element. The jump condition must be rederived from
scratch if another application case violates one of the initial assumptions or has more stringent
accuracy requirements. An illustrative example of a repeatedly derived compact element is the
premixed flame. Table 5.2 provides an overview of some established jump conditions of pre-
mixed flames in chronological order.

PAPER-JUMP [169] proposes a Jacobian-based framework to derive jump conditions with wide

3Chu [48] considers only the incoming entropy perturbation s′1.
4Dowling and Stow [65] consider only entropy waves downstream of the flame.
5Schuermans [214] considers only entropy waves downstream of the flame.
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generality and flexibility to prevent the repeated derivation of the same jump condition for
various application cases. The proposed framework minimizes the assumptions made during
the derivation of jump conditions, resulting in a highly accurate6 formulation accounting for
acoustic, entropic and compositional perturbations. Application-specific assumptions may be
introduced a posteriori to simplify the highly accurate jump condition to a formulation with
increased efficiency and reduced complexity. Furthermore, the Jacobian modularity of the pro-
posed framework provides a structure that might be exploited for a numerically efficient imple-
mentation of the resulting jump conditions. The proposed framework is applicable for deriving
a variety of compact elements. The procedure is showcased in PAPER-JUMP [169] to derive a
highly accurate model for a lean premixed flame. The lean premixed flame model is then val-
idated utilizing a one-dimensional autoignition flame burning a hydrogen-vitiated air mixture
typical for the second stage of the reheat combustion system [94]. The autoignition flame is sen-
sitive to all incoming perturbations [31, 86, 258], has a non-negligible mean flow Mach number
and hydrogen as a fuel ensures a change in gas properties across the flame. The jump condition
derived in PAPER-JUMP [169] shows an excellent agreement with the reference solution. Fi-
nally, PAPER-JUMP [169] investigates the impact of the most frequently used simplifications
(reduced order in Mach number, constant gas properties, flame at rest) on the accuracy of the
method.

Highly accurate jump conditions are typically required when used within network models to
infer information from experimental data, e.g., [253] or PAPER-MBI [74] since already small
inconsistencies in a jump condition might accumulate to significant errors in a complex network
model [252].

5.4 Coherent solution strategies for the thermoacoustic
eigenvalue problems

In the most general case and as discussed in Sec. 4, the eigenvalue problem resulting from
linearized thermoacoustic models is nonlinear. Since the number of eigenpairs of a nonlinear
eigenvalue problem is potentially infinite [102], it is usually not possible to compute all eigen-
pairs. On the other hand, missing an unstable eigenpair is a potentially catastrophic case for
the thermoacoustic system. Thus, any method used for solving the thermoacoustic eigenvalue
problem must meet the following requirements to perform a reliable thermoacoustic stability
analysis:

(I) The solution procedure computes all relevant eigenpairs (a) reliably, (b) accurately and
(c) efficiently.

(II) The solution procedure avoids the computation of spurious eigenpairs if possible.

Relevant eigenpairs correspond to eigenvalues within and close to the unstable half-plane. Ad-
ditionally, an application-specific cut-off frequency can be determined since high-frequency

6Highly accurate in the context of jump conditions.
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Figure 5.2: Eigenvalues of the MICCA combustor [32, 143] at EM2C (CentraleSupérlec) com-
puted with different solution strategies. Displayed are the computed physical eigen-
values ( ), the missed physical eigenvalues ( ) and computed spurious eigenval-
ues ( ) calculated with (a) a fixed-point iteration (outer iteration method) with the
passive thermoacoustic modes as initial guesses ( ) as proposed by Nicoud and
Benoit [182], (b) Beyn’s method [23] (contour integration) utilizing the contour
displayed, and (c) the Krylov-Schur algorithm [228, 229] applied to an approxi-
mated REVP. (Results are adopted from (a) Buschmann et al. [40] and (b) & (c)
PAPER-NLEVP [167])

perturbations are damped more strongly7 and are typically subject to lower driving rates result-
ing from the flow-flame feedback8. The cut-off frequency depends on the geometrical dimen-
sions, the feedback mechanism and the operating conditions of a thermoacoustic system. It may
range from several hundred Hz for longitudinal instabilities up to several kHz for high-frequent
transverse modes. An additional challenge for solution methods of the thermoacoustic eigen-
value problem is a high number of eigenvalues, e.g. due to clusters of (intrinsic) eigenmodes
in annular or can-annular combustors [39, 84, 85, 241, 242], complex geometries [194] or hy-
drodynamic processes [159]. Overall, three basic methodologies have been used to solve the
thermoacoustic NLEVP:

• Outer iteration methods, e.g. fixed-point iteration [40, 164, 182], Newton’s method
[102, 123, 164] or more generally Householder’s method [115, 164], iterate from an ini-
tial guess of an eigenvalue to a solution of the system. An initial guess within the basin of
attraction of each relevant eigenvalue is needed to fulfill requirement (Ia). For thermoa-
coustic systems, Nicoud and Benoit [182] proposed to use a fixed-point iteration starting
from the eigenvalues of the "passive" thermoacoustic system. The "passive" system de-
notes the thermoacoustic system ("active" system), additionally assuming a steady heat
release from the flame (ω̇′

T = 0). However, this approach has severe shortcomings. First,
relevant eigenpairs in the "active" thermoacoustic system may not exist or are way outside
the relevant region in the "passive" thermoacoustic system. For example, intrinsic ther-

7The impact of diffusive effects on perturbations typically increasing with frequency.
8The flow-flame feedback in form of the FTF typically shows a low pass filter behavior.
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moacoustic (ITA) modes [29, 75, 110] do not exist in the "passive" thermoacoustic system
[114, 224]. Second, the basin of attractions of the individual eigenpairs of the "active"
system are complex-shaped and of different sizes. Thus, it is common that an eigenpair
of the "passive" system is not located within the basin of attraction of the correspond-
ing eigenpair of the "active" system. Buschmann et al. [40] discussed the first and second
shortcomings. Figure 5.2a shows their results, visualizing numerous missed eigenpairs by
the fixed-point iteration applied. Furthermore, Mensah et al. [164] showed that ITA modes
can be repellors for the fixed-point iteration. In contrast, Newton’s method, or generally
Householder’s method9, uses additional gradient information and guarantees all thermoa-
coustic eigenvalues to be attractors. The basin of attraction of ITA modes increases with
increasing order of Householder’s method. On the downside, an increasing portion of
initial guesses does not converge at all. Overall, the lack of a general methodology for
choosing initial guesses requires a grid search throughout the relevant part of the stability
map. In combination with an unknown and potentially large number of eigenpairs with
complex shaped and different-sized basins of attractions, this approach is neither reliable
nor efficient for computing all relevant eigenpairs. Therefore, outer iteration methods vi-
olate the requirements (Ia) and (Ic) and should not be used for a thermoacoustic stability
analysis.

• Contour integration methods, e.g. Beyn’s method [23] or the Sakurai-Sugiura method
[15, 208, 255], are based on Cauchy’s integral theorem [44] combined with Keldysh’s ex-
pansion [130] of the operator N (s)−1 (see Eq. (4.1)) [102]. The contour integration uses
a user-defined closed contour within the complex stability map to filter [239] the spec-
trum. All eigenpairs within the contour are retained and are found – in theory. In practice,
the accuracy and completeness of the computed spectrum within the contour depend on
user-defined parameters. Those parameters may include the number of quadrature points
used to discretize the specified contour, an estimated upper bound of the summed ge-
ometric multiplicities of all eigenvalues within the contour and some tolerance values
to remove spurious eigenmodes from the spectrum. Buschmann et al. [39, 40] applied
Beyn’s method to thermoacoustic systems based on the Helmholtz equation, proving its
capabilities of finding eigenpairs of simple or semi-simple type, even if they are clustered
in a small region (see Fig. 5.2b). A direct comparison of Buschmann et al. [40] between
Beyn’s method and the fixed-point iteration proposed by Nicoud and Benoit [182] demon-
strates the superiority of Beyn’s method for thermoacoustic systems concerning the com-
putation of a complete eigenspectrum. PAPER-NLEVP [166, 167] utilizes analogous test
cases as Buschmann et al. [40] to investigate in more detail the role of the user-defined pa-
rameters in Beyn’s method on the completeness and the precision of the computed eigen-
spectrum. With respect to the requirements formulated for a reliable method of solving
the thermoacoustic eigenvalue problem, Beyn’s method performs as follows:

(Ia) Beyn’s method provides a theoretical guarantee of finding all eigenvalues in a spec-
ified contour [23]. In practice, this guarantee holds as long as the estimate of the
summed geometric multiplicities is larger than the actual number of geometric mul-
tiplicities within the contour.

(Ib) The accuracy of the computed eigenpairs in Beyn’s method strongly depends on

9Householder’s method is a generalization of Newton’s method to higher perturbations.
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the interplay of the user input parameters and is typically unknown a priori. Espe-
cially eigenpairs in proximity but outside of the specified contour substantially im-
pact the accuracy of the computed eigenspectrum. These eigenpairs are not fully fil-
tered out from the spectrum due to the numerical discretization of the contour [239].
Thus, these eigenpairs should be accounted for when estimating the upper bound of
summed geometric multiplicities inside the filter spanned by the discretized con-
tour. This is highly relevant for thermoacoustic systems with a large number of
eigenmodes. In addition, a subsequent iterative scheme may be used to converge
the computed eigenvalues to the required accuracy level.

(Ic) Beyn’s method requires N independent LU-decompositions, where N is the number
of quadrature points used to discretize the specified contour. The method scales
well for parallel computations due to the independence of these LU-decompositions.
However, for efficient computations, it is recommended to choose N relatively low
and increase the estimate of the summed geometric multiplicities within the filter
spanned by the contour instead.

(II) The number of computed spurious eigenpairs may be as high as the difference be-
tween the actual sum of geometric multiplicities inside the filter spanned by the
discretized contour and its estimated upper bound. Consequently, each eigenpair
has to be double-checked, e.g. via the residual [23] or with a subsequent iterative
procedure [40].

Contour integration methods to solve the thermoacoustic eigenvalue problem have been
used by [39, 40, 166, 167, 184].

• The last strategy is to approximate the NLEVP with a LEVP for which a multitude of
well-established LEVP solution methods [207] can be applied, e.g. the Arnoldi [14] or
the Krylov-Schur [228, 229] algorithm combined with a shift-and-invert spectral trans-
form. Therefore, the NLEVP is reformulated in two steps. First, the NLEVP is approx-
imated via an NLEVP of a simpler structure, such as a REVP (see Sec. 4.1). Since the
REVP typically approximates the NLEVP well only in a limited region of the complex
domain, care has to be taken that this approximation is sufficiently accurate in the re-
gion of interest. Criteria on the quality of this approximation, e.g. [102], can be used to
define regions of confidence [213]. In a second step, the REVP is recast into a LEVP
of higher dimension [231]. For a direct comparison with Beyn’s method (contour in-
tegration), PAPER-NLEVP [166, 167] computed the same testcases with this approach
utilizing the Krylov-Schur algorithm and a shift-and-invert spectral transform. With re-
spect to the requirements set for a reliable method to solve the thermoacoustic eigenvalue
problem, this approach has the following properties:

(Ia) The completeness of the spectrum within the region of interest cannot be guaranteed,
if the REVP results from a general NLEVP (see discussion in Sec. 4.3). However, no
problems with incomplete spectra have been observed in PAPER-NLEVP [166, 167]
for testcases including mode clusters as well as eigenpairs of simple, semi-simple
and almost defective types (see Fig. 5.2c). If the thermoacoustic NLEVP is already
of rational type (see discussion in Sec. 4.1), no approximations are needed and the
eigenspectrum is complete.

35



Contextualization and Discussion of Publications

(Ib) The accuracy of the computed eigenpairs depends mainly on how well the REVP
approximates the NLEVP locally. If the thermoacoustic NLEVP is already of ratio-
nal type, the requested accuracy is easily set in the solvers used to solve the linear
eigenvalue problem.

(Ic) Assuming a single shift10, the main computational effort in solving the linear eigen-
value problem results from a single LU-decomposition. Note that the reformulated
linear eigenvalue problem has more degrees of freedom than the REVP or NLEVP.
However, especially for large eigenvalue problems this increase is typically negligi-
ble. An exception is the quadratic dependence on s in the Helmholtz equation (see
Tab. 4.1), which doubles the degrees of freedom.

(II) For the spurious eigenvalues, analogous arguments to (Ia) and Sec. 4.3 apply.

For thermoacoustic systems, this method has been used extensively, e.g. [17, 30, 76, 160,
215].

PAPER-NLEVP [166, 167] compares the contour integration method and the approach utilizing
a rational approximation directly. They conclude that for the contour integration, the combina-
tion of an a priori unknown accuracy level combined with an unknown but potentially large sum
of geometric multiplicities inside and in the proximity of the contour renders the user-defined
input parameters hard to set efficiently. In contrast, the approximation with a rational eigen-
value problem has been found to compute the complete eigenspectrum with only a few spurious
eigenpairs. In addition, the computation of the higher dimensional LEVP usually results in a
speed-up and avoids hard-to-set user parameters. The errors introduced by the rational approxi-
mation have been small and found to be minor in comparison to the advantages of the approach.
In addition, no approximation error exists if the NLEVP is already rational, which is a quite
common case in practical applications.

10shift-and-invert spectral transform
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6 Outlook

In this publication-based thesis, several linearized thermoacoustic models have been developed
and analyzed. A focus on consistency and comprehensiveness renders the developed models
and frameworks applicable for a wide range of application cases. The developed models and
performed analysis contribute to the understanding and prediction of thermoacoustic phenom-
ena and build a solid groundwork to accelerate future research and development on various
thermoacoustic systems.

To further strengthen the basis laid out by the developed methodologies, the following projects
have been identified for future research:

1. Analyzing additional sets of linear balance equations and methodologies concerning the
implication of the flame front movement:

The framework in PAPER-ALE [168] provides a comprehensive approach to under-
standing the physical mechanisms underlying the generation of various perturbations for
sources in motion in three-dimensional reactive flows. Within this thesis and PAPER-
ALE [168], the framework is applied to the LRF equations to identify the effects of
flame movement on the sources of the characteristic perturbations. Furthermore, spuri-
ous sources of perturbations resulting from modeling errors are identified analytically for
cases in which a flame model approximating the flame movement is used. For example,
knowing these spurious sources is essential to assess the quality of flame models used in
hybrid linear thermoacoustic models. The formulations detailed in Appendix A directly
apply to the LNSE and the LEE.

However, besides the LRF, LNSE and LEE, additional sets of linearized equations and
linear methodologies are used to analyze thermoacoustic systems. To indentify inconsis-
tencies and misinterpretations, the framework in PAPER-ALE [168] should be used to
identify the implications of flame front motion and the sensitivities to modeling errors
within additional methodologies such as:

a. The Acoustic Perturbation Equations.
The APE framework [36, 77] has been used in previous studies, e.g. [36–38, 89, 189,
190], to analyze thermo-acoustic sources in reactive flows. These studies identified
source terms of significant strength in addition to the unsteady heat release rate con-
tributing to the overall sound emission. In particular, accelerating entropy gradients
were identified as a significant or even dominant contributor [189, 190]. However,
this finding contradicts the established understanding of unsteady heat release rate
as the sole - or at least predominant - acoustic source in thermoacoustic systems.
So far, this controversy has not been resolved. A hypothesis is that the additional
sources may be spurious, arising from a misrepresentation of flame movement. This
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effect is thought to be similar to the generation of spurious perturbations in LNSE
simulations, which occur when the closure model of the perturbed heat release rate
ω̇′

T fails to adequately capture the flame movement [161]. Thus, a consistent anal-
ysis of the APE framework concerning the influence of flame movement would be
valuable for identifying potential inconsistencies, either supporting or refuting this
hypothesis. To perform the corresponding derivations, the steps in deriving the APE
(see [36, 77]) should be applied to the LRF equations formulated in an ALE refer-
ence frame. Furthermore, a strict separation between propagation and source terms
may be obtained by applying the framework in PAPER-ALE [168].

b. Energy-based methods.
Starting from the early works of Lord Rayleigh [202], energy-based methods have
been used to define stability criteria for thermoacoustic systems and analyze various
processes contributing to the amplification or damping of thermoacoustic instabili-
ties. By recombining the perturbed reactive flow equations, energy-based methods
define a balance equation of a predefined perturbation energy E ,

∂E

∂t
+ ∂WE , j

∂x j
= ω̇E . (6.1)

The perturbation energy E increases when the sources ω̇E exceed the energy losses
via fluxes ∂WE , j

∂x j
,

∂E

∂t
> 0 ⇔ ω̇E > ∂WE , j

∂x j
. (6.2)

Eq. (6.2) balances the perturbation energy locally and instantaneously. However,
global energy budgets,∫

Ω

∂E

∂t
dx> 0 ⇔

∫
Ω
ω̇E dx>

∫
Ω

∂WE , j

∂x j
dx , (6.3)

energy budgets averaged over one perturbation period,∮
∂E

∂t
dt > 0 ⇔

∮
ω̇E dt >

∮
∂WE , j

∂x j
dt , (6.4)

or a combination of both are more relevant to assessing the stability properties of a
thermoacoustic system. Examples of perturbation energy budgets are the Rayleigh
criterion [202], extended Rayleigh criteria [181], and balances of acoustic [42, 175]
or generalized perturbation energies [34, 49, 179].
Perturbation energy budgets are typically formulated in an Eulerian reference frame
and, hence, do not track the movement of the flame front. Following the argumenta-
tion in PAPER-ALE [168], this results in the incomplete separation between prop-
agation and source terms and may result in misinterpreting source mechanisms of
perturbation energy and misleading local energy budgets. Thus, the framework of
PAPER-ALE [168] should be applied to the derivation of perturbation energy bud-
gets to strictly separate propagation and source terms, identifying the effect of local
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flame movement. For this purpose, the steps in deriving the individual energy bud-
gets should be applied to the reactive flow equations1 formulated in an ALE refer-
ence frame. A strict separation between propagation and source terms is obtained
by following the framework in PAPER-ALE [169].
As a short remark, even though budgets of perturbation energy are widely used, the
meaningful definition of disturbance energy E remains a topic of active research [90,
91].

2. Developing a comprehensive model for the flame front movement in various three-
dimensional application cases:

A prerequisite to quantifying sources in three-dimensional flows or deriving quantitative
flame models, e.g. for hybrid linear stability analysis, is a closed form of the underlying
set of linearized balance equations. A specific model for the mesh velocity u′

s, j is required
to obtain a closed form for any set of linearized balance equations formulated in the ALE
reference frame2. Thus, mathematical conditions or quantities characteristic to the source
region of interest, e.g. the exothermic reaction zone of a flame, must be defined to enable
its tracking3. Overall, three conditions are required in the general three-dimensional case
since the mesh velocity u′

s, j is a vector. For example, a progress rate of reaction in com-
bination with the stretch and the curvature of the flame front may be used to track the
exothermic reaction zone of a flame.

Next, the mesh velocity u′
s, j may be identified after specifying the ALE tracking condi-

tions. Note that the displacement of the flame is intrinsic to the LRF equations [161] –
independently of the reference frame. Thus, combining the LRF equations and the ALE
tracking conditions provides a closed system of analytical differential equations. Their
solution is the mesh velocity as a function of all other perturbed and base flow field quan-
tities,

u′
s, j = f

(
ρ′,u′

i ,E ′,Y ′
k ,ρ,ui , p,E ,Y k , ...

)
. (6.5)

The remaining question is whether a closed-form analytical solution of u′
s, j can be found.

In pursuit of a closed form of u′
s, j , the derivation may be eased by performing it in several

steps for systems with increased complexity, e.g. for a one-dimensional kinematically sta-
bilized flame, a one-dimensional autoignition flame, and eventually a three-dimensional
propagation-stabilized flame without and with diffusion all first for perfectly and then
partially premixed flames. Taking advantage of the linearity of the underlying system
of equations, the different effects adding to u′

s, j can be superpositioned. In addition, the
triple decomposition proposed by Heilmann et al. [105] may help to solve the system of
partial differential equations to find a closed form for u′

s, j .

For hybrid linearized models, the general solution of the mesh velocity u′
s, j is not directly

applicable due to some unresolved perturbed quantities. For example, the LNSE do not
1Since the perturbation energy is a second-order perturbation, the first-order LRF equations, as stated in

Sec. 2.3, are useless for deriving perturbation energy balances. Thus, deriving a consistent balance equation for the
perturbation energy must start from the reactive flow equations (Sec. 2.2).

2Note that the Eulerian (u′
s, j = 0) and the Lagrangian (u′

s, j = u′
j ) reference frames are specific forms of an ALE

framework with very particular choices of u′
s, j . Thus, both – the Lagrangian and the Eulerian reference frame –

provide closed forms for any set of linearized balance equations since the mesh velocity u′
s, j is defined by default.

3The tracking is perfect when the source region of interest is at rest in the ALE reference frame.
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resolve the species mass fractions Y ′
k . Thus, the unresolved perturbed quantities must be

approximated via the available variables, e.g. for the LNSE

Y ′
k = f

(
ρ′,u′

i ,E ′,ρ,ui , p,E ,Y k , ...
)

. (6.6)

Eventually, an approximated mesh velocity u′
s, j for hybrid linearized models is obtained

by substituting these approximate perturbations into Eq. (6.5).

3. Extending the MBI method to increase accuracy and reliability of flame transfer matrix
predictions:

The MBI method relies strongly on accurately modeling the inner dynamics of the
thermoacoustic system. Systematic modeling errors directly falsify the inferred flame
transfer matrices. Furthermore, assessing the quality of the predicted flame transfer
matrix coefficients is difficult since the corresponding uncertainty bounds are unknown
in the current formulation of the MBI method. Incorporating measurement and model
parameter uncertainties and combining the MBI method with statistical procedures
such as Bayesian inference (see [33, 152] for the mathematical details) may relax these
constraints. The statistical procedures enable the determination of the most probable
model parameters for a given model, the uncertainties of model parameters, and the
uncertainties in the model prediction [124, 253, 254]. Additional measurements, e.g. of
the cold combustor, may be used to reduce uncertainty bounds and to rate the quality
of various models in representing the thermoacoustic system [124, 253, 254]. Note that
choosing the most suitable model will reduce but not erase systematic modeling errors.
Especially when experimental data is limited or for test rigs with complex features,
relevant systematic modeling errors may remain. A promising idea for further reducing
the impact of systematic modeling errors on the identified flame transfer matrix is to
take advantage of the correlation between systematic modeling errors of the hot and cold
combustor [113]. A first analysis of the MBI method in this direction shows promising
results [113]. However, a systematic approach still must be developed. Future studies in
this direction should focus on establishing criteria to determine if a viable correlation
between the hot and cold combustor matrices exists. Additionally, future studies should
work on optimizing the placement of correction terms to minimize the impact of system-
atic modeling errors on the identified flame transfer function when a viable correlation is
present.

4. Building a network modeling toolbox based on the framework in PAPER-JUMP [169]:

So far, the Jacobian-based framework detailed in PAPER-JUMP [169] has only been
used for deriving comprehensive jump conditions for compact premixed flames [169]
and area changes (Supplementary Material to PAPER-JUMP [169]). However, other
compact elements exist that are essential to representing thermoacoustic systems with
network models. The framework in PAPER-JUMP [169] should be applied to derive
such models. Examples of additional essential compact elements are various types of
junctions. Appendix B comments on the procedure to derive compact jump conditions
for two types of junctions – the flow split (1-N junction) and the flow merge (N-1
junction). Eventually, a network modeling toolbox should be built incorporating the
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derived models and taking advantage of the Jacobian-based structure of the framework
in PAPER-JUMP [169].

5. Extending the framework in PAPER-JUMP [169] for non-compact elements:

The assumption of compactness limits the validity range of jump conditions. Especially
in low Mach number flows when taking convective perturbations such as entropic or com-
positional disturbances into account, the assumption of convective compactness is a sub-
stantial restriction.

In the derivation of jump conditions, the assumption of (convective) compactness is intro-
duced by approximating all perturbed volume integrals, e.g. the accumulation term (see
PAPER-JUMP [169])

P′ := ∂

∂t

(∫
Ω

Udx
)′

with U = [
ρ,ρu,ρE ,ρYk

]T , (6.7)

in the limit of vanishing Strouhal numbers4 St= 0 (O (St0)),

P′ ≈ P′∣∣
St=0 . (6.8)

Higher approximation orders O (Stn) must be taken into account to relax the assumption
of (convective) compactness,

P′ ≈
N∑

n=0

dnP′

dStn

∣∣∣∣
St=0

Stn

n!
. (6.9)

Determining higher-order approximations is not straightforward. However, especially for
area changes, examples of transfer and scattering matrices relaxing the assumption of
compactness exist in the literature. For example, the L-ζ-model of Schuermans et al. [219]
relaxes the assumption of acoustic compactness to first order in He5. Furthermore, Du-
ran and Moreau [67] utilize a Magnus expansion [25] to derive a solution for quasi-
onedimensional nozzle flows for arbitrary orders in St and He. For determining higher-
order approximations for the accumulation term (Eq. (6.7)) of a premixed flame, Ap-
pendix C outlines a first concept. Two cases are considered – a non-compact flame
with and infinitely thin flame front (Appendix C.1) and a non-compact flame sheet (Ap-
pendix C.2). The examples in Appendix (C) should serve as a first guideline on how to
relax the assumption of compactness within the framework of PAPER-JUMP [169]. This
guideline should be used to complete the derivation of a non-compact premixed flame
element as well as to extend the procedure to other network elements.

To better understand the effects of non-compactness, filter matrices

HT = T−1
c Tnc and HS = S−1

c Snc (6.10)

relating the compact (index ’c’) and non-compact (index ’nc’) transfer and scattering
matrices can be used. For example, Yoon [256] derived a spatial low-pass filter behavior
for sources generating entropy perturbations within a convectively non-compact constant
temperature gradient at rest in a one-dimensional domain.

4or Helmholtz He= 0 (O (He0)) if only acoustic compactness is of concern
5The Helmholtz number He is the equivalent parameter to the Strouhal number St when considering acoustic

instead of convective compactness.
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7 Summary of Papers

7.1 An Arbitrary Lagrangian-Eulerian framework for the
consistent analysis of entropy wave generation

Label: PAPER-ALE [168]

Original Abstract: Entropy waves are generated in many technically relevant flow processes
such as combustion, mixing, or convective heat transfer. When accelerated, entropy waves gen-
erate acoustic waves that contribute to the overall sound emission and can lead to self-excited
thermoacoustic instabilities, especially at low frequencies. In order to reduce or prevent these
undesirable byproducts of the flow, an understanding of the generation mechanisms of entropy
waves is key. This study derives the analytical source terms of entropy disturbances for moving
sources in general three-dimensional reactive flows. In this general setup, the consistent deriva-
tion of the generation mechanisms requires the tracking of the moving source for which an
Arbitrary Lagrangian-Eulerian (ALE) framework is utilized. The derived differential equations
provide a fundamental understanding of the underlying source mechanisms.

In addition, the general three-dimensional differential equations are reduced to a quasi-one-
dimensional jump condition to unify the analysis of the entropy wave generation. This unified
framework is used for an in-depth analysis of a premixed flame, where all source terms that
generate entropy disturbances are analyzed and their relative importance are quantified. The
dominant contribution of unsteady heat addition per unit mass to the generation of entropy
waves is reaffirmed for lean premixed flames. Finally, by comparison with the entropy genera-
tion mechanisms of a heated gauze at rest, it is emphasized once more that a heat source at rest
is an invalid model for a premixed flame.

Relevance for the thesis: Framework to consistently analyze the generation of various pertur-
bations resulting from general sources in motion. Exemplified for sources generating entropy
perturbations.

CRediT author statement: M. Merk: Conceptualization, Methodology, Validation, Formal
analysis, Visualization, Writing - original draft, Writing - review & editing. A. J. Eder: Concep-
tualization, Methodology, Validation, Formal analysis, Visualization, Writing - original draft,
Writing - review & editing, Project administration. W. Polifke: Conceptualization, Methodol-
ogy, Validation, Writing - review & editing, Supervision, Funding acquisition.

Status: Published in Combustion and Flame.

Review process: Peer-reviewed, Scopus listed.
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Reference: M. Merk∗, A. J. Eder∗, and W. Polifke. An Arbitrary Lagrangian-Eulerian
framework for the consistent analysis of entropy wave generation. Combustion and Flame
262:113334, 2024. doi: 10.1016/j.combustflame.2024.113334. Reproduced on p. 63 ff.
(*Joint first authors)
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7.2 Model-based inference of flame transfer matrices from acoustic measurements in an
aero-engine test rig

7.2 Model-based inference of flame transfer matrices from
acoustic measurements in an aero-engine test rig

Label: PAPER-MBI [74]

Original Abstract: Flame dynamics in the form of a flame transfer matrix (FTM) is not directly
measurable in a test rig, but must be deduced from transfer matrix measurements of the com-
bustion system. The burner-flame transfer matrix (BFTM) approach for estimating the FTM is
based on local pressure signals from two microphone arrays located upstream and downstream
of the combustor. It combines acoustic transfer matrix measurements in non-reacting and re-
acting conditions, where the latter implicitly includes the flame dynamics. A simple matrix
operation then yields the FTM. However, this approach assumes that there is loss-free wave
propagation at a constant speed of sound with no change in cross-sectional area between the
microphone locations and the burner/flame. The present work demonstrates the limitations of
these assumptions when applied to a test rig with complex features, such as effusion cooling,
bypass annulus, and downstream end contraction. To remedy the shortcomings of the BFTM
approach, this work proposes a novel method to infer the FTM for complex combustors by
combining reactive transfer matrix measurements of the entire combustor with an accurate low-
order thermoacoustic network model (LOM) of the test rig. This generalized method reduces to
the BFTM approach as a special case.

In this work, the Rolls-Royce Scaled Acoustic Rig for Low Emission Technology (SCARLET)
operated under realistic engine conditions (Tin ≈ 825 K, pin ≈ 25 bar, kerosene) is used to
analyze the capabilities of the proposed model-based inference method and the limitations of the
BFTM approach. In a first step, a LOM based on the geometry and operating point of SCARLET
is formulated using a generic FTM. This generic model is used to visualize the limitations of the
BFTM approach in terms of various physical and geometrical parameters. Finally, experimental
measurement data is used to deduce the FTM of SCARLET using the proposed approach.

Relevance for the thesis: Consistent and quantitatively accurate framework for the inference
of flame transfer matrices and flame transfer functions from acoustic measurements.

CRediT author statement: A. J. Eder: Conceptualization, Methodology, Software, Valida-
tion, Investigation, Formal analysis, Data curation, Visualization, Writing - original draft, Writ-
ing - review & editing, Project administration. M. Merk: Conceptualization, Methodology,
Software, Validation, Investigation, Formal analysis, Data curation, Visualization, Writing -
original draft, Writing - review & editing. T. Hollweck: Conceptualization, Software, Valida-
tion, Investigation, Formal analysis, Data curation, Visualization, Writing - review & editing. A.
Fischer: Conceptualization, Validation, Investigation, Formal analysis, Data curation, Writing
- review & editing draft. C. Lahiri: Conceptualization, Validation, Investigation, Formal anal-
ysis, Data curation, Writing - review & editing draft. C. F. Silva: Conceptualization, Writing
review & editing draft. W. Polifke: Conceptualization, Writing - review & editing, Supervision,
Funding acquisition.

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review process: Peer-reviewed, Scopus listed.
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Reference: A. J. Eder∗, M. Merk∗, T. Hollweck, A. Fischer, C. Lahiri, C. F. Silva, and W.
Polifke. Model-based inference of flame transfer matrices from acoustic measurements in an
aero-engine test rig. Journal of Engineering for Gas Turbines and Power, 147(3):031022, 2025.
doi: 10.1115/1.4066366. Reproduced on p. 74 ff.
(∗Joint first authors)

Comment: A first version of this publication was presented and published in the proceedings
of the ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition [73].
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7.3 A Jacobian-based framework for the derivation of comprehensive thermoacoustic jump
conditions

7.3 A Jacobian-based framework for the derivation of com-
prehensive thermoacoustic jump conditions

Label: PAPER-JUMP [169]

Original Abstract: Low-order network models are an efficient framework to describe and pre-
dict thermoacoustic phenomena in confined combustion systems. These models are based on
the interconnection of compact and non-compact elements representing the main features of the
system. Assumptions such as reduced Mach number approximations or constant gas properties,
are typically applied in the derivation of these elements.

This work proposes a Jacobian-based framework for the derivation of comprehensive thermoa-
coustic jump conditions (compact elements) accounting for acoustic, entropic, and composi-
tional perturbations. The modularity provided by the Jacobian-based formulation renders the
framework easily applicable for the derivation of a variety of compact elements and provides
a straightforward implementation guideline. Application-specific assumptions to increase com-
putational efficiency or to ease the implementation may be included a posteriori, enabling easy
switching between accurate and efficient formulations without rederivation. The capabilities
of this framework are demonstrated by deriving a novel, highly accurate lean premixed flame
model. This novel flame model is validated via a lean premixed H2 autoignition flame.

Relevance for the thesis: A framework for deriving thermoacoustic jump conditions applicable
to a wide variety of thermoacoustic systems, accounting for acoustic, entropic and composi-
tional perturbations.

CRediT author statement: M. Merk: Project administration, Conceptualization, Methodol-
ogy, Software, Validation, Investigation, Formal analysis, Visualization, Writing - original draft,
Writing - review & editing. F. Schily: Conceptualization, Methodology, Writing - review &
editing. W. Polifke: Conceptualization, Supervision, Writing - review & editing.

Status: Published in Combustion and Flame

Review process: Peer-reviewed, Scopus listed.

Reference: M. Merk, F. Schily, and W. Polifke. A Jacobian-based framework for the derivation
of comprehensive thermoacoustic jump conditions. Combustion and Flame, 274:113958, 2025.
doi: 10.1016/j.combustflame.2024.113958. Reproduced on p. 85 ff.
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7.4 The Nonlinear Thermoacoustic Eigenvalue Problem and
Its Rational Approximations: Assessment of Solution
Strategies

Label: PAPER-NLEVP [167]

Original Abstract: Nonlinear eigenvalue problems (NLEVPs) arise in thermoacoustics by con-
sidering the temporal evolution of small perturbations in the relevant governing equations. In
this work, two solution strategies are compared: (i) a contour-integration-based method that
guarantees to provide all eigenvalues in a given domain and (ii) a method that approximates the
NLEVP by a rational eigenvalue problem, which is generally easier to solve. The focus lies on
numerical speed, the completeness of the computed spectrum, and the appearance of spurious
modes, i.e., modes that are not part of the original spectrum but appear as a result of the approx-
imation. To this end, two prototypical thermoacoustic systems are considered: a single-flame
Rijke tube and an annular model combustor. The comparison of both methods is preceded by a
detailed analysis of the user-defined input parameters in the contour-integration-based method.
Our results show that both methods can resolve all types of considered eigenvalues with suf-
ficient accuracy for applications. However, the recast linear problem is overall faster to solve
and allows a priori precision estimates – unlike the contour-integration-based method. Spuri-
ous modes as a by-product of the NLEVP approximation are found to play a minor role, and
recommendations are given on how to eliminate them.

Relevance for the thesis: Assessment of different strategies to solve large eigenvalue problems
from spatially discretized thermoacoustic systems reliably, accurately and efficiently.

CRediT author statement: M. Merk: Project administration, Conceptualization, Methodol-
ogy, Software, Validation, Investigation, Formal Analysis, Visualization, Writing - original
draft, Writing - review & editing. P. E. Buschmann: Conceptualization, Methodology, Soft-
ware, Investigation, Formal Analysis, Visualization, Writing - original draft, Writing - review &
editing. J. P. Moeck: Conceptualization, Formal Analysis, Writing - review & editing, Supervi-
sion. W. Polifke: Conceptualization, Formal Analysis, Writing - review & editing, Supervision.

Status: Published in Journal of Engineering for Gas Turbines and Power.

Review process: Peer-reviewed, Scopus listed.

Reference: M. Merk, P. E. Buschmann, J. P. Moeck and W. Polifke. The Nonlinear Ther-
moacoustic Eigenvalue Problem and Its Rational Approximations: Assessment of Solu-
tion Strategies. Journal of Engineering for Gas Turbines and Power, 145(2):021028,2023.
doi:10.1115/1.4055583. Reproduced on p. 102 ff.

Comments:

• A first version of this publication was presented and published in the proceedings of the
ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition [166].

• In PAPER-NLEVP, there is a formatting error. Sec. 2 should not be a section and all
references to sections within the paper should be incremented by unity.
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A Modeling errors of u′
s, j : Spurious

generation of disturbances in
three-dimensional linearized flows

The ALE framework enables the tracking of moving source regions of convective and acous-
tic disturbances, e.g. a flame, in three-dimensional reactive flows. The physical source terms
are isolated analytically using the framework provided in PAPER-ALE [168]. Among these
sources, terms related to the movement of the source region u′

s, j appear explicitly in the differ-
ential balance equation.

In practical applications, the absolute velocity u′
s, j of a flame front is not always known and

may be modeled via ũ′
s, j . The requirements for a good model may be assessed by formulating

a balance equation of spurious perturbations

ψ′
ϵ = ψ̃′−ψ′. (A.1)

Such a balance equation can be derived by subtracting the physical from the approximated
balance equations. (̃·)′ denotes an arbitrary physical quantity obeying the balance equation ap-
proximating the movement of the source region.

The following two sections identify the balance equations of spurious characteristic flow dis-
turbances (see Sec. 2.4) generated by modeling errors of ũ′

s, j . The corresponding spurious
source terms are an analytical representation of the spurious perturbations analysed by Strobio
Chen et al.1 [230] and Meindl et al.2 [161] generalized to arbitrary modeling errors ũ′

s, j and ar-
bitrary spurious convective (Sec. A.1) and acoustic (Sec. A.2) disturbances in three-dimensional
reactive flows.

A.1 Convective characteristics

The balance equation for each convectively propagated characteristic perturbation (entropic,
vortical, compositional) expressed from the viewpoint of the moving source region may be
expressed as (see PAPER-ALE [168])

∂ψ′

∂t

∣∣∣∣
χ

+u j
∂ψ′

∂x j
= u′

s, j
∂ψ

∂x j
+ ω̇′

ψ . (A.2)

1Chen et al. [230] analysed spurious entropic disturbances for a flame at rest (ũ′
s, j = 0).

2Meindl et al. [161] analysed spurious entropic disturbances and spurious acoustic waves for a flame at rest
(ũ′

s, j = 0).
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Modeling errors of u′
s, j : Spurious generation of disturbances in three-dimensional

linearized flows

In contrast, the approximated balance equation utilizing the model ũ′
s, j deteriorates to

∂ψ̃′

∂t

∣∣∣∣
χ

+u j
∂ψ̃′

∂x j
= ũ′

s, j
∂ψ

∂x j
+ ˜̇ω′

ψ . (A.3)

Then, substracting Eq. (A.2) from Eq. (A.3) results in the balance equation for the spurious
convective characteristics

∂ψ′
ϵ

∂t

∣∣∣∣
χ

+u j
∂ψ′

ϵ

∂x j
=

(
ũ′

s, j −u′
s, j

) ∂ψ
∂x j︸ ︷︷ ︸

I

+ω̇′
ψ,ϵ︸︷︷︸
II

. (A.4)

Term I describes the direct generation of spurious convective perturbations resulting from a
mismatch between u′

s, j and the corresponding model ũ′
s, j . Term I vanishes if this mismatch

is oriented orthogonally to ∂ψ/∂x j . Consequently, the model ũ′
s, j only needs to match u′

s, j in
the direction of ∂ψ/∂x j to avoid the generation of spurious convective characteristics. After
the initial generation of spurious perturbations, term II describes the physical interaction of
the spurious perturbations3 with the mean flow while propagated, resulting in an additional
generation/destruction/conversion of spurious convective perturbations.

A.2 Acoustic perturbations

Analogously to the balance equation for the spurious convective characteristics, an acoustic
analogy for the spurious acoustic waves can be derived. Utilizing an ALE reference frame and
the framework proposed in PAPER-ALE [169], the acoustic analogy is derived starting from
the conservation equation of mass,

∂ρ′

∂t

∣∣∣∣
χ

+ ∂
(
ρu j

)′
∂x j

= u′
s, j
∂ρ

∂x j
(A.5)

and the conservation equation of momentum,

∂
(
ρui

)′
∂t

∣∣∣∣∣
χ

+ ∂
(
ρu j ui

)′
∂x j

+ ∂p ′

∂x j
δi j = u′

s, j

∂ρu j

∂x j
+
∂ζ′mom,i j

∂x j
. (A.6)

The acoustic analogy is then derived by taking the temporal derivative (in the ALE framework)
of Eq. (A.5),

∂2ρ′

∂t 2

∣∣∣∣
χ

+ ∂

∂t

(
∂
(
ρu j

)′
∂x j

)∣∣∣∣∣
χ

= ∂

∂t

(
u′

s, j
∂ρ

∂x j

)∣∣∣∣
χ

(A.7)

subtracting the divergence of Eq. (A.6),

∂

∂t

(
∂
(
ρui

)′
∂xi

)∣∣∣∣∣
χ

+ ∂2
(
ρu j ui

)′
∂xi∂x j

+ ∂2p ′

∂xi∂x j
δi j =

∂

∂xi

(
u′

s, j

∂ρu j

∂x j

)
+
∂2ζ′mom,i j

∂xi∂x j
(A.8)

3Not only a specific convective perturbation but all spurious convective and acoustic perturbations.
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A.2 Acoustic perturbations

from it and replacing density fluctuations via

ρ′ = p ′

c2 +ρ′
s+ρ′

ck
. (A.9)

p ′/c2, ρ′
s and ρ′

ck
are the density fluctuations related to acoustic, entropic and compositional

disturbances. Moving all terms related to u′
s, j , mean flow gradients as well as non-acoustic

density fluctuations to the right-hand side yields the wave equation in the ALE framework of
the form

1

c2

(
∂2p ′

∂t 2

∣∣∣∣
χ

+2u j
∂

∂t

(
∂p ′

∂x j

)∣∣∣∣
χ

+ui u j
∂2p ′

∂xi∂x j

)
− ∂2p ′

∂xi∂x j
δi j

= ∂

∂t

(
u′

s, j
∂ρ

∂x j

)∣∣∣∣
χ

− ∂

∂xi

(
u′

s, j
∂ρui

∂x j

)
+2ui

∂

∂xi

(
u′

s, j
∂ρ

∂x j

)
+ ω̇′

a

(A.10)

ω̇′
a includes all acoustic sources unrelated to u′

s, j .

Utilizing the model ũ′
s, j , Eq. (A.10) is approximated by

1

c2

(
∂2p̃ ′

∂t 2

∣∣∣∣
χ

+2u j
∂

∂t

(
∂p̃ ′

∂x j

)∣∣∣∣
χ

+ui u j
∂2p̃ ′

∂xi∂x j

)
− ∂2p̃ ′

∂xi∂x j
δi j

= ∂

∂t

(
ũ′

s, j
∂ρ

∂x j

)∣∣∣∣
χ

− ∂

∂xi

(
ũ′

s, j
∂ρui

∂x j

)
+2ui

∂

∂xi

(
ũ′

s, j
∂ρ

∂x j

)
+ ˜̇ω′

a .

(A.11)

Substracting Eq. (A.10) from Eq. (A.11) yield the wave equation of spurious acoustic waves

1

c2

(
∂2p ′

ϵ

∂t 2

∣∣∣∣
χ

+2u j
∂

∂t

(
∂p ′

ϵ

∂x j

)∣∣∣∣
χ

+ui u j
∂2p ′

ϵ

∂xi∂x j

)
− ∂2p ′

ϵ

∂xi∂x j
δi j

= ∂

∂t

((
ũ′

s, j −u′
s, j

) ∂ρ
∂x j

)∣∣∣∣
χ︸ ︷︷ ︸

Ia

− ∂

∂xi

((
ũ′

s, j −u′
s, j

) ∂ρui

∂x j

)
︸ ︷︷ ︸

Ib

+2ui
∂

∂xi

((
ũ′

s, j −u′
s, j

) ∂ρ
∂x j

)
︸ ︷︷ ︸

Ic

+ ω̇′
a,ϵ︸︷︷︸
II

(A.12)
The source term Ia denotes a spurious acoustic monopole resulting from a spurious mass flux
through the exothermic reaction zone of the flame. The source terms Ib and Ic represent dipole
sources due to a spurious momentum flux and spurious mass flux through the flame region,
respectively. Source term II again represents the physical interaction of the spurious perturba-
tions4 with mean flow gradients after the initial generation, resulting in additional generation/
scattering/refraction/conversion of spurious acoustic perturbations.

4Not only acoustic but also convective perturbations.
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B On the derivation of comprehensive
jump conditions of junctions

This chapter comments on the derivation of two different types of junctions – a flow split
(1-N-junction) and a flow merge (N-1-junction) – utilizing the procedure detailed in PAPER-
JUMP [169]. This chapter does not detail all six steps of the derivation procedure in PAPER-
JUMP [169], but only outlines first ideas on modeling the junctions and highlights specifics one
should keep in mind.

B.1 The flow split – a 1-N -junction

This section considers the flow split, as illustrated in Fig. B.1. The junction is located in a duct
of constant cross-section

A = A1 =
N∑
n

A2n , (B.1)

and viscous losses are assumed to be negligible. The flow split may be separated in N flow
tubes that are only coupled via the pressure acting on the interfacing streamlines. Thus, the
inflow cross-section may be split into sub-cross-sections,

A = A1 =
N∑
n

A1n . (B.2)
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A11

A12

Figure B.1: Schematic representation of a 1-N -junction with N = 2. The junction is separated
in N = 2 flow tubes with the volumes V1 ( ) and V2 ( ). The flow tubes are coupled
only via the pressure on the interfacing streamline ( ). The junction is enclosed in
a duct of constant cross section.
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On the derivation of comprehensive jump conditions of junctions

However, note that the inlet cross-sections of the individual flow tubes depend on the flow
properties and can be perturbed (A′

1n ̸= 0), in contrast to the fixed geometrical outlet cross-
sections (A′

2n = 0).

For this model, N volume integrations over the individual flow tubes are performed in step 2
of the procedure in PAPER-JUMP [169], providing N times 3+ (NY −1) equations. After lin-
earizing these equations (step 3) and choosing the local perturbed state vectors (step 4), closure
models for the pressure coupling between the flow tubes must be defined. If the junction en-
closes a finite volume, additional closures for the accumulation terms (see PAPER-JUMP [169])
are required. Eventually, the jump condition of the 1-N -junction is determined in step 6. The
N (3+ (NY − 1)) equations are used to determine u′

2n , s′2n and Y ′
k,2n at all outflows, p ′

1 at the
inflow in addition to the perturbed inflow cross-sections A′

1n of N −1 flow tubes. The linearized
version of Eq. (B.2) defines the N -th cross-section A′

1N . All other perturbations are required
as an input. Note that the number of inputs equals the number of characteristic perturbations
entering the system. The resulting transfer matrix T of the flow split is rectangular.

B.2 The flow merge – a N -1-junction

This section considers the flow merge, as illustrated in Fig. B.2. The junction is located in a
duct of constant cross-section

A =
N∑
n

A1n = A2. (B.3)

Viscous losses in the shear layer between the inflow streams should be considered. In con-
trast to the flow split (Sec. B.1), separating the junction into weakly coupled flow tubes is
impossible due to the mixing of the N inflows within the junction. Thus, only a single vol-
ume integration over the entire control volume V is performed in step 2 of the framework in
PAPER-JUMP [169]. This provides 3+ (NY −1) coupling relations. However, N +2+ (NY −1)
coupling relations, equal to the number of characteristic perturbations leaving a N -1-junction,
are required to derive the transfer matrix of the system. Thus, additional N−1 coupling relations

211

12

u2

u12

u11 A11

A12

Figure B.2: Schematic representation of a N -1-junction with N = 2 enclosed by the control
volume V ( ). The junction is enclosed in a duct of constant cross-section.
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B.2 The flow merge – a N -1-junction

must be determined1. When these additional coupling relations are identified and appropriate
closure models for the viscous losses (and potentially the accumulation terms (see Sec. B.1)) are
defined, the procedure detailed in PAPER-JUMP [169] is straightforward. The resulting transfer
matrix T of the N -1-junction is once again rectangular.

1The N −1 missing relations most likely couple the inflow and outflow pressures.
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C Towards relaxing the assumption of
compactness for jump conditions of
premixed flames

This chapter outlines a concept towards relaxing the assumption of compactness for the com-
prehensive jump condition of a premixed flame derived in PAPER-JUMP [169]. Therefore, an
expansion of the volume integrals appearing within the derivation to higher orders in Strouhal
St (convective compactness) or Helmholtz He (acoustic compactness) number is required. The
following sections illustrate this expansion for the accumulation term (Eq. (6.7)) for two spe-
cific examples - a non-compact premixed flame with an infinitely thin flame front (Sec. C.1) as
well as a non-compact flame sheet (Sec. C.2). Combining the two approaches is required when
both effects contribute to the non-compactness of the premixed flame.

C.1 A non-compact premixed flame with an infinitely thin
flame front

This section considers the non-compact premixed flame schematically depicted in Fig. C.1. The
flame is placed in a duct of constant cross-section A, and the control volume

V =
∫
Ω

dx (C.1)

21

V1 V2

∆x0 x

A1(x)
u1 u2

Figure C.1: Schematic representation of a non-compact premixed flame ( ) including a mov-
ing flame front. The infinitely thin flame front separates the control volume V ( )
into the subvolumes V1 ( ) and V2 ( ).
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encloses the flame at every instance. The flame front is assumed to be infinitely thin, separating
the control volumes into the subvolumes V1 upstream and V2 downstream of the flame. The
flame front displaces in response to incoming perturbations, oscillating around its mean posi-
tion. The mean state vectors U1 and U2 are considered constant within V1 and V2, respectively.
Under these assumption, the accumulation term (Eq. (6.7)) simplifies to

∂

∂t

(∫
Ω

Udx
)′
= (

U1 −U2
) ∂V ′

1

∂t︸ ︷︷ ︸
I

+ ∂

∂t

∫
Ω

U′
1 dx1︸ ︷︷ ︸

IIa

+ ∂

∂t

∫
Ω

U′
2 dx2︸ ︷︷ ︸

IIb

.
(C.2)

Term I is related to the movement of the flame front and equivalent to the term derived in
PAPER-JUMP [169] assuming compactness. In contrast, the terms IIa and IIb vanish in the
limit of compactness (St,He → 0) [169]. Relaxing the assumption of compactness requires the
derivation of higher-order approximations of terms IIa and IIb.

Next, the characteristic disturbances within V1 and V2 are assumed to propagate without damp-
ing (s = iω, σ= 0) in x-direction only. Then, the perturbed state vectors

U′
i = JU ,i w′

i (C.3)

may be expressed via the vector of characteristic perturbations

w′
i =


Π+

i
Π−

i
si

ck,i

=


Π+

i (t )exp
(
− s(x−xi )

u1+c1

)
Π−

i (t )exp
(
− s(x−xi )

u1−c1

)
si (t )exp

(
− s(x−xi )

u1

)
ck,i (t )exp

(
− s(x−xi )

u1

)

 with x1 = 0 and x2 =∆x , (C.4)

and the corresponding jacobian matrix

JU ,i =
∂U′

i

∂w′
i

. (C.5)

Utilizing Eq. (C.3), the volume integrals over the perturbed state vectors within terms IIa and
IIb in Eq. (C.2) simplify to

∂

∂t

∫
Ω

U′
i dxi = JU ,i

∂

∂t

∫ ∆x

0
w′

i Ai (x)dx (C.6)

Ai (x) is the local cross-section of the corresponding subvolume Vi (see Fig. C.1). Approximat-
ing the cross-sections A1(x) and A2(x) via a Taylor series of order N ,

A1(x) ≈
N∑

n=0

dn An
1

dxn

∣∣∣∣
0

xn

n!
and A2(x) = A− A1(x) , (C.7)

and moving all spatially independent factors out of the integral (Eq. (C.6)) yields only integrals
of the general form∫ ∆x

0
xn exp

(
s(x −xi )

uch,i

)
dx =

n∑
p=0

(−1)p
(

uch,i

s

)p+1 n!

(n −p)!

[
xn−p exp

(
s(x −xi )

uch,i

)]∆x

0
. (C.8)
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In Eq. (C.8), uch,i denotes the characteristic propagation velocity and may take the values ui+c i ,
ui − c i or ui depending on the investigated characteristic. ! is the factorial.

The maximum approximation order of Eq. (C.8) in terms of St or He is n. This is shown in the
following. For example, assuming a convective disturbance (uch,1 = u1) propagating through
the subvolume V1 (x1 = 0), Eq. (C.8) yields

∫ ∆x

0
xn exp

(
sx

u1

)
dx =

n−1∑
p=0

(−1)p
(

u1

s

)2p−n+1 n!

(n −p)!
(2πi St1)n−p exp(2πi St1)

+ (−1)n
(

u1

s

)n+1

n!
(
exp(2πi St1)−1

)
.

(C.9)

Overall, the maximum value of n in Eq. (C.2) is set via the approximation order N of the cross
section A1(x) (Eq. (C.7)). Furthermore, note that Eq. (C.9) vanishes in the limit of compactness
(St1 = 0) as discussed for Eq. (C.2). Finally, note that Eq. (C.9) can be formulated analogously
for the subvolume V2 or for acoustic perturbations. He replaces St in case of the acoustic per-
turbations.

C.2 A non-compact flame sheet

This section considers the non-compact flame sheet displayed in Fig. C.2. In contrast to
Sec. C.1, the flame is quasi-onedimensional with a flame front of finite thickness. Analogously
to Sec. C.1, the flame is located in a duct of constant cross-section A and, at every instance,
enclosed by the control volume V (Eq. (C.1)). The flame sheet with the center position x f (t )
oscillates around its mean position x f in response to incoming perturbations. Furthermore, we
assume that the state vector

U = U1 + (U2 −U1) g (x −x f (t )) (C.10)

0

21

∆x xx f (t )

u1 u2

Figure C.2: Schematic representation of a non-compact premixed flame sheet ( ) enclosed in
the control volume V ( ). The center position of the flame sheet x f (t ) displaces
with time.
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can be interpolated from the states upstream (U1) and downstream (U2) of the flame via the
function g . g is an user-defined function, which fulfills the conditions

g (x1) = 0 and g (x2) = 1. (C.11)

Linearizing Eq. (C.10) yields the perturbed state vector

U′ = U′
1 +

(
U′

2 −U′
1

)
g (x −x f )+ (

U2 −U1
) dg

dx f
x ′

f (t ) . (C.12)

Utilizing Eq. (C.12), the accumulation term (Eq. (6.7)) simplifies to

∂

∂t

(∫
Ω

Udx
)′
= ∂

∂t

∫
Ω

U′ dx

= (
U1 −U2

)
A
∂x ′

f (t )

∂t

∫ ∆x

0

dg

dx f
dx︸ ︷︷ ︸

I

+ A
∫ ∆x

0
U′

1 +
(
U′

2 −U′
1

)
g (x −x f )dx︸ ︷︷ ︸

II

(C.13)

Term I is related to the displacement of the flame sheet. In the compact case, this term simplifies
to the accumulation term derived in PAPER-JUMP [169]. Term II vanishes in the compact case,
but must be expanded to higher orders to relax the assumption of compactness.

For this purpose, the function g (x−x f ) is approximated by a Taylor series of order N expanded
around the flame center x f ,

g (x) ≈
N∑

n=0

dn g n

dxn

∣∣∣∣
x f

(x −x f )n

n!
, (C.14)

and the perturbed state vectors as formulated in Eq. (C.3) are used. Utilizing these approxima-
tions, the integrals in term II (Eq. (C.13)) yield again the general form in Eq. (C.8). The rest of
the derivation procedure is equivalent to Sec. (C.1).
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A B S T R A C T

Entropy waves are generated in many technically relevant flow processes such as combustion, mixing, or
convective heat transfer. When accelerated, entropy waves generate acoustic waves that contribute to the
overall sound emission and can lead to self-excited thermoacoustic instabilities, especially at low frequencies.
In order to reduce or prevent these undesirable byproducts of the flow, an understanding of the generation
mechanisms of entropy waves is key. This study derives the analytical source terms of entropy disturbances
for moving sources in general three-dimensional reactive flows. In this general setup, the consistent derivation
of the generation mechanisms requires the tracking of the moving source for which an Arbitrary Lagrangian–
Eulerian (ALE) framework is utilized. The derived differential equations provide a fundamental understanding
of the underlying source mechanisms.

In addition, the general three-dimensional differential equations are reduced to a quasi-one-dimensional
jump condition to unify the analysis of the entropy wave generation. This unified framework is used for an
in-depth analysis of a premixed flame, where all source terms that generate entropy disturbances are analyzed
and their relative importance are quantified. The dominant contribution of unsteady heat addition per unit
mass to the generation of entropy waves is reaffirmed for lean premixed flames. Finally, by comparison with
the entropy generation mechanisms of a heated gauze at rest, it is emphasized once more that a heat source
at rest is an invalid model for a premixed flame.

Novelty and significance statement
The analytical terms of entropy wave generation are derived consistently for moving sources in a general

three-dimensional reactive flow. It is shown and emphasized that a consistent derivation requires the tracking
of the local entropy sources. Therefore, an Arbitrary Lagrangian–Eulerian framework is used.

The derived equations provide a fundamental insight into the generation of entropy disturbances in reactive
flows, e.g. premixed flames. Furthermore, the derived equations can be seen as a starting point to consistently
extract sources of entropy waves from numerical simulations.

1. Introduction

Isobaric and irrotational disturbances [1] – so-called entropy waves
– occur in many technically relevant unsteady flow processes such
as combustion, mixing, or convective heat transfer. These entropic
disturbances are convected with the mean flow velocity and generate
a dipole-type acoustic sound source when accelerated [2–5]. In gas
turbines, aero-engines, or rocket engines, entropy waves generated in
the combustion chamber are accelerated as they enter a high-pressure
turbine stage or a downstream nozzle. The acoustic waves generated –
some leaving the combustor and some propagating back – affect the sys-
tem in two ways. The outward propagating acoustic wave contributes

∗ Corresponding author.
E-mail address: moritz.merk@tfd.mw.tum.de (M. Merk).

1 Joint first authors.

to the overall sound emission of the engine [6–8], while the inward
propagating wave can result in self-excited low-frequency thermoacous-
tic combustion instability. This type of oscillation, often referred to as
‘‘rumble’’ [9–11], has been an active area of research [12–16] since the
early work of Keller et al. [17,18] in the 1980’s and can lead to reduced
combustor lifetime or even system failure [6,19,20]. In order to prevent
instability or to reduce the contribution to overall sound emissions, an
understanding and accurate modeling of the generation, dispersion, and
convection of entropy waves, and their conversion to acoustic energy
is essential. This work focuses on a consistent description of entropy
wave generation by unsteady combustion.

https://doi.org/10.1016/j.combustflame.2024.113334
Received 10 November 2023; Received in revised form 18 January 2024; Accepted 19 January 2024
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Nomenclature

Roman letters

𝐴s Surface of source region (m2)
𝑐p Isobaric heat capacity ( J

kgK )
𝑓 Frequency (Hz)
𝑔 Mass specific sensible-plus-chemical Gibbs’ free

enthalpy ( J
kg )

ℎ Mass specific sensible-plus-chemical enthalpy ( J
kg )

ℎs Mass specific sensible enthalpy ( J
kg )

𝐻 Mass specific total non-chemical enthalpy ( J
kg )

�̇�s Mass flux density relative to the local entropy source
region ( kg

m2s )
M Mach number (-)
�̇�s Mass flux relative to the local entropy source region

( kgs )
𝑛 Normal vector (-)
𝑝 Pressure ( kg

ms2 )
�̇� Volumetric heat release rate ( W

m3 )
�̇� Integral heat release rate (W)
𝑠 Mass specific sensible-plus-chemical entropy ( J

kgK )
𝑡 Time (s)
𝑇 Temperature (K)
𝑢 Flow velocity (ms )
𝑢s Velocity of entropy source region (ms )
𝑉 Volume (m3)
𝑉𝑘 Diffusion velocity of species 𝑘 (ms )
𝑥 Eulerian coordinate (spatially fixed) (m)
𝑥s (Eulerian) coordinate of the entropy source region

(m)
𝑌 Mass fraction (-)

Greek letters

𝛼 Heat transfer coefficient ( W
m2K )

𝛾 Ratio of specific heats (-)
𝜆 Heat conductivity ( W

mK )
𝜌 Mass density ( kgm3 )
𝜏𝑖𝑗 Viscous stress tensor ( kg

ms2 )
𝜙 Equivalence ratio (-)
𝜒 ALE coordinate (moving with 𝑢s) (m)
𝜓 Source term of entropy generation ( W

m3K )
𝛹 Integral source term of entropy generation (WK )
�̇�𝑘 Volumetric reaction rate of species 𝑘 ( kg

m3s )
�̇�𝑘 Integral reaction rate of species 𝑘 ( kgs )

Operators

𝛿 Delta distribution
𝛥 Difference
 Heaviside function
 Order of magnitude

To develop a fundamental understanding of the processes leading
to the generation of entropy waves in exothermic reaction zones,
analytical [21–24] and numerical [25–29] procedures are the methods
of choice in the literature. Many experimental studies concentrate on
the convection and acoustic response of entropy waves [30–33] and on
the conversion to acoustic energy when accelerated [34,35], but not on

Subscript

diff Due to diffusive effects
gen Generated
𝑝 Acoustic contribution
|𝑝 Derivative at constant pressure
ref Reference value
𝑠 Entropic contribution
|𝑠 Derivative at constant sensible-plus-chemical en-

tropy
|𝑥 Derivative at fixed Eulerian coordinate 𝑥
|𝜒 Derivative at fixed Arbitrary Lagrangian–Eulerian

coordinate 𝜒
𝑌 Compositional contribution
|𝑌 Derivative at constant mass fraction
�̇�𝑘 Due to chemical reaction
1 Gas state in front of the reaction zone
2 Gas state behind the reaction zone
∥ Parallel to the local 𝑠 gradient

Superscript

Mean
′ Perturbation

Abbreviations

ALE Arbitrary Lagrangian–Eulerian
LHS Left-hand side
Q1D Quasi one-dimensional
RHS Right-hand side

the underlying generation mechanisms, except e.g. [36]. In contrast,
numerical calculations provide comprehensive access to the fields of
all relevant physical quantities. Depending on the trade-off between
accuracy and computational time, there are numerical methods of vary-
ing complexity, ranging from high-fidelity simulations, e.g., large eddy
simulation, to semi-analytic network models, some of which use sim-
plistic analytical solutions such as quasi-one dimensional (Q1D) jump
conditions. In any case, analytical tools are needed to provide a priori
the underlying system of equations and a posteriori guidelines for
visualizing and interpreting effects of interest in the simulation results.
Closed-form analytical solutions exist only for simplistic situations but
can provide an in-depth understanding of physical mechanisms. A
proper understanding of the analytical equations is essential for the
correct interpretation of both numerical and analytical results.

Starting from analytically derived entropy balance equations in dif-
ferential form, several studies such as Morgans and Duran [8] or Duran
et al. [7] argue that the total unsteady heat release rate of a flame
contributes to the generation of entropy waves and that a perturbation
of the heat-to-flow power ratio is the origin of entropic perturba-
tions [37]. Derived from the same balance equations, several analyt-
ically reduced quasi-one-dimensional jump conditions agree with this
conclusion [36,38–40]. However, all of these studies consider the flame
as a heat source at rest. In contrast, a premixed flame front exhibits
local displacements in response to various disturbances (e.g. acous-
tics, upstream flow velocity, vortical flow structures, turbulence, fuel
concentration). This neglect of flame motion leads problematically to
the spurious generation of entropy waves, as shown by Strobio Chen
et al. [22] for a Q1D jump condition across a premixed flame, or by
Meindl et al. [27] in one- and two-dimensional numerical simulations.
This conclusion is widely accepted for quasi-one-dimensional jump con-
ditions [41–46]. However, especially in differential/integral equations,
the effect of flame motion on the source term of entropy waves is not
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obvious, and the resulting source terms have been misinterpreted [23,
47].

Other studies, e.g. [13,17,37,48,49], argue from theoretical con-
siderations or the derivation of one-dimensional jump conditions that
perturbations of the heat added per unit mass are the only impor-
tant generation mechanism of entropy waves in exothermic reaction
zones. However, to the best of the authors’ knowledge, the corre-
sponding source terms have never been isolated adequately in differ-
ential/integral equations.

The objective of this work is (i) to consistently derive the source
terms of entropy disturbances for moving sources in general three-
dimensional reactive flows, and (ii) to unify the description of entropy
wave generation of moving sources from the three-dimensional differ-
ential equations to the limit of quasi-one-dimensional jump conditions.
An Arbitrary Lagrangian–Eulerian (ALE) reference frame [50] is used
to explicitly take into account the movement of the source region.

The paper is structured as follows: In Section 2.1, the general three-
dimensional differential balance equation for entropy disturbances is
derived, and the entropy source terms of general sources in motion
are identified. Section 2.2 reduces the differential equation to a quasi-
one-dimensional jump condition to simplify the subsequent analysis of
the individual source terms and recover the results of Strobio Chen
et al. [22]. Section 3 evaluates the jump condition for two exemplary
cases – a moving lean premixed flame front and a fixed heated source
such as a heated gauze – including a detailed source term analysis for
the lean premixed flame. Section 4 provides a conclusion and outlook
for future work.

2. Analytical framework

Analyzing the source terms of entropy perturbations in flow dif-
ferential equations provides an insight into the underlying physical
mechanisms and their importance in various physical configurations.
For a meaningful analysis, the isolation of terms generating entropy
perturbations from simple transport terms is crucial. In the most gen-
eral case of a moving entropy source region, the displacement of
its time-invariant part does not generate entropy perturbations [22,
27,51]. The strict separation between mechanisms of transport and
generation in the differential equations requires the tracking of the
local displacement of the entropy source region. Analytically, this is
achieved by using an Arbitrary Lagrangian–Eulerian coordinate sys-
tem [50] following the entropy source region as proposed by Heilmann
et al. [51].

This paragraph utilizes the example of a one-dimensional, perfectly
premixed exothermic reaction zone in the limit of negligible diffusive
effects to illustrate the need for entropy source tracking to strictly sepa-
rate the generation and transport mechanisms of entropy disturbances.
The investigated reaction zone is kinematically stabilized and responds
to incoming velocity perturbations by a displacement of the reaction
zone. No entropy disturbances are generated [22] since the global
entropy generation remains time-invariant. This simplistic example is
shown in Fig. 1(a) in an Eulerian coordinate system 𝑥 (spatially fixed)
with a relative motion between the coordinate system and the entropy
source region. In the subfigure on the left, the spatial distribution of
entropy is displayed. The subfigure on the right shows the respective
temporal entropy signal observed at the fixed coordinate 𝑥∗. In the case
of the fixed coordinate system, a non-constant, time-dependent entropy
signal is observed at 𝑥∗, which might be interpreted as the result of a
source of entropy waves. However, this signal is not evidence for the
generation of a convected entropy disturbance but merely an artifact
of the relative motion of the entropy source region relative to 𝑥∗. This
artifact disappears when the exothermic reaction zone is expressed in
an ALE coordinate system 𝜒 that perfectly tracks the entropy source re-
gion (see Fig. 1(b)). In this case there is no relative movement between
the entropy source region and the coordinate system (Fig. 1(b) (left))

Fig. 1. One-dimensional fully premixed exothermic reaction zone perturbed by incom-
ing velocity perturbations expressed in (a) a fixed (Eulerian) coordinate system 𝑥 and
(b) a moving (ALE) coordinate system 𝜒 perfectly tracking the corresponding entropy
source region. The subplots on the left depict the spatial entropy distribution in the
different coordinate system. The subplots on the right show the temporal entropy signal
at the fixed coordinates 𝑥∗ and 𝜒∗, respectively.

and the expected constant, time-invariant entropy signal is observed at
the coordinate 𝜒∗ (Fig. 1(b) (right)).

In this work, the ALE framework [50] is used to unify the analytical
source formulation of entropy disturbances from the general three-
dimensional balance equations to the quasi-one-dimensional jump con-
dition. The derivations throughout this work involve the transformation
between the ALE, the Eulerian, and the Lagrangian (coordinate system
moving with a reference mass) frameworks. Expressed in the fixed
spatial coordinates 𝑥, the three-dimensional coordinate transformation
between the different systems is performed by simply rewriting the
convective operator [50]. Using Einstein notation, the convective op-
erator of the different coordinate systems expressed in the fixed spatial
coordinates 𝑥 reads

D
D𝑡

⏟⏟⏟
Lagrangian

= 𝜕
𝜕𝑡
||||𝜒 +

(
𝑢𝑗 − 𝑢s,𝑗

) 𝜕
𝜕𝑥𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
ALE

= 𝜕
𝜕𝑡
||||𝑥 + 𝑢𝑗

𝜕
𝜕𝑥𝑗

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Eulerian

. (1)

This expression of the ALE framework in the non-moving coordinates 𝑥
is chosen for a more straightforward application in numerical simula-
tions. We refer to Donéa and Huerta [50] for a detailed derivation of
this corresponding coordinate transformation. In Eq. (1), 𝑢s,𝑗 is the local
velocity between the moving ALE coordinates 𝜒 and the fixed Eulerian
coordinates 𝑥. Since the ALE framework perfectly tracks the entropy
source regions throughout this work, 𝑢s,𝑗 is equal the local movement
of these regions. 𝜕∕𝜕𝑡|𝑥 and 𝜕∕𝜕𝑡|𝜒 refer to the time derivatives at the
fixed coordinate 𝑥 and 𝜒 , respectively. The difference between the two
time derivatives is the displacement operator
𝜕
𝜕𝑡
||||𝑥 −

𝜕
𝜕𝑡
||||𝜒 = −𝑢s,𝑗

𝜕
𝜕𝑥𝑗

. (2)

Its effect is visualized in Fig. 1(a) (right) for the perturbed one-
dimensional fully premixed flame. The explicit appearance of the
displacement operator in (Eq. (2)) in the ALE framework is key to the
strict separation of generation and transport mechanisms in differential
equations.

2.1. General balance equation for entropy disturbance

The derivation of the balance equation for entropy disturbances in
general three-dimensional reacting flows of an ideal gas mixture starts
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from the Gibbs’ equation of a multi-component gas [52–55]:

𝑇 d𝑠 = dℎ − d𝑝
𝜌

−
𝑁∑
𝑘=1

𝑔𝑘d𝑌𝑘 , (3)

where 𝜌, 𝑝, 𝑇 , ℎ =
∑𝑁
𝑘=1 ℎ𝑘𝑌𝑘 and 𝑠 =

∑𝑁
𝑘=1 𝑠𝑘𝑌𝑘 are the density,

the pressure, the temperature, the sensible-plus-chemical enthalpy,
and entropy. 𝑌𝑘 and 𝑔𝑘 = ℎ𝑘 − 𝑇 𝑠𝑘 are the mass fraction and the
sensible-plus-chemical Gibbs’ free enthalpy of the 𝑘th of 𝑁 species,
respectively.

For flow problems, the total differentials d in Eq. (3) are replaced
by the material derivatives D∕D𝑡 (Lagrangian framework) and after
multiplication with 𝜌∕𝑇 , Eq. (3) reads

𝜌D𝑠
D𝑡

= 1
𝑇

(
𝜌Dℎ
D𝑡

− D𝑝
D𝑡

)
−

𝑁∑
𝑘=1

𝑔𝑘
𝑇
𝜌
D𝑌𝑘
D𝑡

. (4)

Next, the balance equation for sensible-plus-chemical enthalpy [55,56]

𝜌Dℎ
D𝑡

− D𝑝
D𝑡

= 𝜏𝑗𝑖
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(
𝜆 𝜕𝑇
𝜕𝑥𝑗

)
− 𝜕
𝜕𝑥𝑗

(
𝜌
𝑁∑
𝑘=1

ℎ𝑘𝑌𝑘𝑉𝑘,𝑗

)
, (5)

and the species balance equations [56]

𝜌
D𝑌𝑘
D𝑡

= − 𝜕
𝜕𝑥𝑗

(
𝜌𝑌𝑘𝑉𝑘,𝑗

)
+ �̇�𝑘 , (6)

are used to gain a better insight into the mechanisms of entropy gen-
eration. In Eqs. (5) and (6), volume forces and volumetric heat sources
(e.g. an electric spark or a radiative flux) are neglected. 𝜏𝑖𝑗 , 𝜆, 𝑉𝑘 and
�̇�𝑘 are the viscous stress tensor, the heat conductivity, the diffusion
velocity and the volumetric reaction rate of specie 𝑘. Substituting
Eqs. (5) and (6) into Eq. (4) and transforming from the Lagrangian to
the ALE framework (see Eq. (1)) yields the entropy balance equation
for a general three-dimensional reacting flow

𝜌D𝑠
D𝑡

= 𝜌 𝜕𝑠
𝜕𝑡

||||𝜒 + 𝜌
(
𝑢𝑗 − 𝑢s,𝑗

)

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
�̇�s,𝑗

𝜕𝑠
𝜕𝑥𝑗

= 𝜓�̇�𝑘 + 𝜓dif f . (7)

The mass flux density �̇�s,𝑗 is introduced for brevity and describes the
local mass flux density relative to the local entropy source region,
which is moving with the local velocity 𝑢s,𝑗 . The two source terms on
the right-hand side (RHS) of Eq. (7)

𝜓�̇�𝑘 = −
𝑁∑
𝑘=1

𝑔𝑘
𝑇
�̇�𝑘 =

�̇�
𝑇

−
𝑁∑
𝑘=1

ℎs,𝑘
𝑇
�̇�𝑘 +

𝑁∑
𝑘=1

𝑠𝑘�̇�𝑘 , (8)

and

𝜓dif f =
1
𝑇
𝜏𝑗𝑖
𝜕𝑢𝑗
𝜕𝑥𝑖

+ 1
𝑇

𝜕
𝜕𝑥𝑗

(
𝜆 𝜕𝑇
𝜕𝑥𝑗

)
+

𝑁∑
𝑘=1

𝑠𝑘
𝜕
𝜕𝑥𝑗

(
𝜌𝑌𝑘𝑉𝑘,𝑗

)
− 1
𝑇

∑
𝑘=1

𝜕ℎ𝑘
𝜕𝑥𝑗

𝜌𝑌𝑘𝑉𝑘,𝑗 ,

(9)

correspond to the entropy generation due to chemical reactions and
due to diffusive effects, respectively. In Eq. (8), 𝜓�̇�𝑘 is further divided
into three processes [28]. The first term corresponds to the entropy
generation due to the volumetric chemical heat release rate �̇� =
−
∑𝑁
𝑘=1 𝛥ℎ

0
𝑓,𝑘�̇�𝑘 - the energy conversion process from chemical into

sensible enthalpy. The second and third terms take into account the
changes in sensible2 enthalpy ℎs and the sensible-plus-chemical entropy
due to a change in the composition of the gas mixture. The source
term 𝜓dif f is divided into four contributions, namely (from left to right
in Eq. (9)) viscous dissipation, heat conduction, entropy transport by
species diffusion and enthalpy transport by species diffusion.

2 Note that the ‘‘chemical part’’ of the sensible-plus-chemical enthalpy ℎ is
already included in the first term �̇�∕𝑇 via the definition of the volumetric heat
release rate.

Fig. 2. Mass particle 𝑚 convects along its pathline 𝛤 across a source region with the
entropy source density 𝜓∕�̇�s,∥ =

(
𝜓�̇�𝑘 + 𝜓dif f

)
∕�̇�s,∥.

Eq. (7) is valid for general unsteady flows. The aim of the following
paragraph is to derive the balance equation for low-amplitude entropy
perturbations based on a first-order perturbation ansatz, which is in-
troduced into Eq. (7) by expressing all physical quantities 𝛶 (𝑥, 𝑡) =
𝛶 (𝑥) + 𝛶 ′(𝑥, 𝑡) as the sum of a time-invariant mean 𝛶 (𝑥) and a small
fluctuating part 𝛶 ′(𝑥, 𝑡)≪ 𝛶 (𝑥). Then, applying a subsequent separation
of scales allows to split Eq. (7) into its mean (zeroth-order perturbation)

�̇�s,𝑗
𝜕𝑠
𝜕𝑥𝑗

= 𝜓 �̇�𝑘 + 𝜓dif f , (10)

and its linearized (first-order perturbation) part

𝜌 𝜕𝑠
′

𝜕𝑡
||||𝜒 + �̇�s,𝑗

𝜕𝑠′

𝜕𝑥𝑗
= −�̇�′

s,𝑗
𝜕𝑠
𝜕𝑥𝑗

+ 𝜓 ′
�̇�𝑘

+ 𝜓 ′
dif f . (11)

In Eqs. (10) and (11), the terms �̇�s,𝑗
𝜕𝑠
𝜕𝑥𝑗

and �̇�′
s,𝑗

𝜕𝑠
𝜕𝑥𝑗

represent the
projection of the mean and perturbed mass flux densities onto the local
mean sensible-plus-chemical entropy gradient and can be reformulated
as

�̇�s,𝑗
𝜕𝑠
𝜕𝑥𝑗

= �̇�s,∥𝑛𝑗
𝜕𝑠
𝜕𝑥𝑗

and �̇�′
s,𝑗
𝜕𝑠
𝜕𝑥𝑗

= �̇�′
s,∥𝑛𝑗

𝜕𝑠
𝜕𝑥𝑗

, (12)

with the amplitudes of the mean �̇�s,∥ and perturbed �̇�′
s,∥ mass flux

densities in the direction of the mean sensible-plus-chemical entropy
gradient 𝜕𝑠∕𝜕𝑥𝑗 (see Fig. 2), and the corresponding normal vector

𝑛𝑗 =

𝜕𝑠
𝜕𝑥𝑗
||||
𝜕𝑠
𝜕𝑥𝑖

||||
. (13)

Then, by taking advantage of the projection property in Eq. (12), the
mean sensible-plus-chemical entropy gradient in the linearized entropy
balance equation (11) is substituted with the mean entropy balance
equation (10), yielding

𝜌 𝜕𝑠
′

𝜕𝑡
||||𝜒 + �̇�s,𝑗

𝜕𝑠′

𝜕𝑥𝑗
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Transport

= 𝜓 �̇�𝑘

(
𝜓 ′
�̇�𝑘

𝜓 �̇�𝑘
−
�̇�′

s,∥

�̇�s,∥

)
+ 𝜓dif f

(
𝜓 ′
dif f

𝜓dif f
−
�̇�′

s,∥

�̇�s,∥

)

= �̇�s,∥

(𝜓�̇�𝑘
�̇�s,∥

)′
+ �̇�s,∥

(
𝜓dif f
�̇�s,∥

)′

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Generation

,

(14)

D.1 PAPER-ALE
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with

(𝜓�̇�𝑘
�̇�s,∥

)′
= �̇�

�̇�s,∥𝑇

⎡⎢⎢⎢⎢⎣

(
�̇�
�̇�s,∥

)′

(
�̇�
�̇�s,∥

) − 𝑇 ′

𝑇

⎤⎥⎥⎥⎥⎦

−
𝑁∑
𝑘=1

ℎ𝑠,𝑘
𝑇

�̇�𝑘
�̇�s,∥

⎡⎢⎢⎢⎢⎣

(
�̇�𝑘
�̇�s,∥

)′

(
�̇�𝑘
�̇�s,∥

) +

(
𝑐p,𝑘𝑇

ℎ𝑠,𝑘
− 1

)
𝑇 ′

𝑇

⎤⎥⎥⎥⎥⎦

+
𝑁∑
𝑘=1

𝑠𝑘
�̇�𝑘
�̇�s,∥

⎡⎢⎢⎢⎢⎣

(
�̇�𝑘
�̇�s,∥

)′

(
�̇�𝑘
�̇�s,∥

) +
𝑠′𝑘
𝑠𝑘

⎤⎥⎥⎥⎥⎦

(15)

and

(
𝜓dif f
�̇�s,∥

)′
=
⎛⎜⎜⎝

𝜏𝑗𝑖
𝜕𝑢𝑗
𝜕𝑥𝑖

�̇�s,∥𝑇

⎞⎟⎟⎠

′

+

⎛⎜⎜⎜⎜⎝

𝜕
𝜕𝑥𝑗

(
𝜆 𝜕𝑇
𝜕𝑥𝑗

)

�̇�s,∥𝑇

⎞⎟⎟⎟⎟⎠

′

+
⎛⎜⎜⎜⎝

∑𝑁
𝑘=1 𝑠𝑘

𝜕𝜌𝑌𝑘𝑉𝑘,𝑗
𝜕𝑥𝑗

�̇�s,∥

⎞⎟⎟⎟⎠

′

−
⎛
⎜⎜⎝

∑
𝑘=1

𝜕ℎ𝑘
𝜕𝑥𝑗

𝜌𝑌𝑘𝑉𝑘,𝑗

�̇�s,∥𝑇

⎞⎟⎟⎠

′

.

(16)

Eq. (14) is the balance equation for small sensible-plus-chemical
entropy perturbations strictly separating terms related to transport
(left-hand side (LHS)) and generation (RHS).

The generation terms on the RHS of Eq. (14) show that small-scale
entropy perturbations are generated only by disturbances of the local
sources 𝜓�̇�𝑘∕�̇�s,∥ (unit J/(kg m K)) or 𝜓dif f∕�̇�s,∥ (unit J/(kg m K)).
By analyzing the corresponding units, two important contributions can
be identified: First, the length-based density3 (unit 1/m) of the local
energy addition per unit mass (unit J/kg). Integration of this quantity
along the path of a mass particle moving through an entropy source
region gives its total energy change per unit mass. To the local entropy
generation, only the mass flux density parallel to the local entropy
gradient contributes. The second important effect is the temperature at
which the local energy addition per unit mass density takes place (unit
J/(kg m)). The local entropy generation decreases with increasing
temperature for a constant length-based density of the local energy
addition per unit mass. The total entropy generated per unit mass across
an entropy source region is then given by the path integral

𝑠gen = ∫𝛤
𝜓�̇�𝑘 + 𝜓dif f

�̇�s,∥
d𝑥 (17)

as shown in Fig. 2.

2.2. Jump condition for entropy disturbance across a moving heat source

This section derives a Q1D jump condition that models the gen-
eration of entropy perturbations across a source region. The Q1D
jump condition is an explicit analytical solution of the general balance
equation (14) of entropy perturbations integrated over a convectively
compact control volume enclosing an infinitesimally thin source sheet
(see Fig. 3). Diffusive effects are assumed to be negligible (𝜓dif f ≈ 0).
The source sheet is a continuous, two-dimensional surface in motion.
All state variables 𝛶 (e.g. �̇�s, 𝜌, 𝑝, 𝑇 , 𝑠) are modeled via step functions

𝛶 ≡ 𝛶1 + (𝛶2 − 𝛶1) (
𝐱 − 𝐱s(𝑡)

)
, (18)

3 A length-based density of a quantity 𝛶 refers to this quantity per unit
length. This definition is analogous to area-based densities such as the mass
flux density �̇�s (mass flux �̇�s per unit area) or to volume-based densities such
as the mass density 𝜌 (mass per unit volume).

Fig. 3. Spatially fixed control volume 𝑉 (dark blue, dashed line) enclosing an entropy
source region in motion (s, dark red, wrinkled solid line). The flow states in front (1,
dark blue) and after (2, light blue) the source region are indicated. The example is
based on a generic partially premixed burner. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

with the Heaviside function defined as

 (
𝐱 − 𝐱s(𝑡)

) ≡
⎧⎪⎨⎪⎩

0, 𝐱 < 𝐱s(𝑡)
ref , 𝐱 = 𝐱s(𝑡)
1, 𝐱 > 𝐱s(𝑡)

. (19)

State variables upstream and downstream of the entropy source re-
gion are assumed to be constant and are denoted by (⋅)1 and (⋅)2,
respectively. 𝐱 is the spatial coordinate and 𝐱s(𝑡) is the time-dependent
location of the source region. ’ref’ denotes a reference value of the
variable in the source region. We refer to Laksana et al. [57] for how
to choose this reference value for reactive flows.

The volumetric heat release rate �̇� as well as the volumetric reaction
rates �̇�𝑘 are modeled as

�̇� ≡ �̇�
𝐴s

𝛿
(
𝐱 − 𝐱s(𝑡)

)
⇒ �̇� = ∫ �̇�d𝑉

�̇�𝑘 ≡ �̇�𝑘
𝐴s

𝛿
(
𝐱 − 𝐱s(𝑡)

)
⇒ �̇�𝑘 = ∫ �̇�𝑘d𝑉

(20)

with the integral heat release rate �̇�, the integral reaction rates �̇�𝑘, the
delta distribution 𝛿 and the surface of the source region 𝐴s (see Fig. 3).

Integrating over a control volume 𝑉 as shown in Fig. 3 under the
Q1D assumptions and for negligible diffusive effects, Eq. (7) simplifies
to

�̇�s
(
𝑠2 − 𝑠1

)
= 𝛹�̇�𝑘 , (21)

with

𝛹�̇�𝑘 = �̇�
𝑇ref

−
𝑁∑
𝑘=1

(ℎs,𝑘
𝑇

)

ref
�̇�𝑘 +

𝑁∑
𝑘=1

𝑠𝑘,ref�̇�𝑘 , (22)

where �̇�s = ∫ �̇�s,𝑗d𝐴𝑠 is the mass flux across the entropy source
region. Analogous to Section 2.1, the introduction of the first-order
perturbation ansatz and the subsequent separation of scales yields the
Q1D entropy jump condition as

�̇� s
(
𝑠′2 − 𝑠

′
1
)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Transport

= �̇� s

(𝛹�̇�𝑘
�̇�s

)′

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Generation

, (23)

with the source term

(𝛹�̇�𝑘
�̇�s

)′

= �̇�

�̇� s𝑇 ref

⎡⎢⎢⎢⎣

(
�̇�
�̇�s

)′

(
�̇�
�̇�s

) −
𝑇 ′

ref

𝑇 ref

⎤⎥⎥⎥⎦

−
𝑁∑
𝑘=1

(
ℎ𝑠,𝑘
𝑇

)

ref

�̇�𝑘

�̇� s

⎡⎢⎢⎢⎣

(
�̇�𝑘
�̇�s

)′

(
�̇�𝑘
�̇�s

) +

(
𝑐p,𝑘𝑇

ℎ𝑠,𝑘
− 1

)

ref

𝑇 ′
ref

𝑇 ref

⎤⎥⎥⎥⎦

+
𝑁∑
𝑘=1

𝑠𝑘,ref
�̇�𝑘

�̇� s

⎡
⎢⎢⎢⎣

(
�̇�𝑘
�̇�s

)′

(
�̇�𝑘
�̇�s

) +
𝑠′𝑘,ref

𝑠𝑘,ref

⎤
⎥⎥⎥⎦
.

(24)
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An extensive derivation of the Q1D jump condition is given in Section 1
of the supplementary material.

Comparing the reactive entropy source term of the Q1D jump
condition in Eq. (24) and the general 3D formulation in Eq. (15), their
identical structure is evident. Note that the vectorial mass flux density
�̇�s,𝑗 and the amplitude of the mass flux density parallel �̇�s,∥ to the
mean density gradient in Eq. (15) both coincide in the mass flux �̇�s
in Eq. (24) due to the quasi-one-dimensional assumption. In analogy
to Section 2, the source term of entropy disturbances (Eq. (24)) in the
quasi-one-dimensional limit results from an energy addition per unit
mass added at a given temperature level. It includes a contribution of
the heat addition per unit mass.

For consistency, the derivation of the jump condition (Eq. (23)) in
this work is based on the general entropy balance equation derived
in Section 2.1. However, this approach requires the explicit definition
of a reference state within the source region to approximate integrals
such as ∫ �̇�∕𝑇 d𝑉 . This difficulty is avoided if the derivation of the
entropy disturbance jump condition is based on the energy equation
as is usually done in the literature [22,43]. Both derivation approaches
are equivalent if the reference temperature is chosen as

𝑇ref =
ℎs,2 − ℎs,1
𝑠2 − 𝑠1

− 1
2
𝑢22 − 𝑢

2
1

𝑠2 − 𝑠1
. (25)

Utilizing this reference temperature and introducing constant gas prop-
erties, no species fluctuations and an approximation to the first and
third order in Mach number into Eq. (23) yields the jump conditions
derived by Strobio Chen et al. [22] and Gant et al. [43], respectively.
More details are found in Section 2 of the supplementary material.

In the following section, the similarity between the three-dimensional
balance equation of entropy disturbances Eq. (14) and the quasi-one-
dimensional jump condition Eq. (23) is used to better understand the
general source terms.

3. Generation of entropy waves by moving and fixed heat sources

Numerous unsteady physical processes generate entropy waves, and
Section 2 presents a unified framework for consistently analyzing the
underlying mechanisms responsible for their generation. In this section,
the framework is applied to two exemplary cases – a lean premixed
flame in convective balance and a heated wire at rest – to understand
the dominant mechanisms that generate entropy waves in both cases.
The comparison of the two cases highlights the inherent difference in
the generation of entropy waves for sources at rest and in motion.

3.1. Heat source in motion - A lean premixed flame

A lean premixed flame is an exothermic reaction zone, where fuel
reacts with an excess of oxidizer. In analytical descriptions, the reaction
mechanism models the reaction kinetics, while the species balance
equations express the transport of individual species. The analysis of
the dominant entropy generation mechanism in a premixed flame is
divided into two parts. The first part investigates the non-diffusive en-
tropy source terms based on the formulation of the Q1D jump condition
in Eq. (24) following an order of magnitude analysis. In addition, the
non-diffusive generation mechanisms are explained using temperature-
entropy diagrams. The second part provides a rule of thumb for the
consideration of diffusive terms (see Eq. (16)).

3.1.1. The non-diffusive entropy generation mechanisms of a premixed
flame

Assuming complete combustion and infinitely fast reaction, the heat
added per unit mass and the mass of species 𝑘 reacting per unit mass
of a lean premixed flame can be written as [22,58,59]

�̇�
�̇�s

= 𝛥ℎ𝑟𝜙 and
�̇�𝑘

�̇�s
= 𝑌2,𝑘 − 𝑌1,𝑘 = 𝛥𝑌𝑘 , (26)

with the heat of reaction 𝛥ℎ𝑟 and the equivalence ratio 𝜙. Then,
the linearization of Eq. (26) under the assumption of a constant fuel
composition (𝛥ℎ′𝑟 = 0) yields
(
�̇�
�̇�s

)′

(
�̇�
�̇�s

) = 𝜙′

𝜙
and

(
�̇�𝑘
�̇�s

)′

(
�̇�
�̇�s

) =
𝑌 ′
2,𝑘 − 𝑌

′
1,𝑘

𝑌 2,𝑘 − 𝑌 1,𝑘
=
𝛥𝑌 ′

𝑘

𝛥𝑌 𝑘
. (27)

Substituting Eq. (27) into Eq. (23) leads to the Q1D balance equation
for entropy waves of a lean premixed flame

�̇� s
(
𝑠′2 − 𝑠

′
1
)
= �̇� s

[(𝛹�̇�𝑘
�̇�s

)′

I
+
(𝛹�̇�𝑘
�̇�s

)′

II
+
(𝛹�̇�𝑘
�̇�s

)′

III

]
, (28)

where the generation of entropy waves by the energy conversion from
chemical to internal energy at a specific temperature level 𝑇ref is
expressed as
(𝛹�̇�𝑘
�̇�s

)′

I
= �̇�

�̇� s𝑇 ref

(
𝜙′

𝜙
−
𝑇 ′

ref

𝑇 ref

)
. (29)

The remaining source terms in Eq. (28) refer to a change in sensible en-
thalpy due to either a change in composition or due to the temperature
dependence of the gas properties
(𝛹�̇�𝑘
�̇�s

)′

II
= −

𝑁∑
𝑘=1

(
ℎ𝑠,𝑘
𝑇

)

ref

𝛥𝑌 𝑘

[
𝛥𝑌 ′

𝑘

𝛥𝑌 𝑘
+

(
𝑐p,𝑘𝑇

ℎ𝑠,𝑘
− 1

)

ref

𝑇 ′
ref

𝑇 ref

]
, (30)

and a change in the chemical-plus-sensible entropy once again either
due to a change in composition or its dependency on a temperature or
pressure change
(𝛹�̇�𝑘
�̇�s

)′

III
=

𝑁∑
𝑘=1

𝑠𝑘,ref 𝛥𝑌 𝑘

[
𝛥𝑌 ′

𝑘

𝛥𝑌 𝑘
+
𝑠′𝑘,ref

𝑠𝑘,ref

]
, (31)

respectively.
The source terms on the RHS of Eq. (28) originate from the inter-

action of an incoming perturbation with the exothermic reaction zone.
In the small perturbation limit, incoming disturbances are considered
as a superposition of acoustic (𝑝′), entropic (𝑠′), and compositional (𝜙′,
𝑌 ′
𝑘) waves.4 This decomposition may be introduced into Eqs. (29), (30)

and (31) by the substitution of the temperature fluctuations with the
linearization of the Gibbs equation (3)

𝑇 ′

𝑇
= 𝛾 − 1

𝛾
𝑝′

𝑝
⏟⏞⏟⏞⏟
acoustic

+ 𝑠′

𝑐p
⏟⏟⏟
entropic

−
∑
𝑘

𝑠𝑘
𝑐p
𝑌 ′
𝑘

⏟⏞⏟⏞⏟
compositional

, (32)

and the linearization of the sensible-plus-chemical entropy of species 𝑘

𝑠′𝑘 =
𝜕𝑠𝑘
𝜕𝑝

|||||𝑠,𝑌𝑘
𝑝′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
acoustic

+
𝜕𝑠𝑘
𝜕𝑠

|||||𝑝,𝑌𝑘
𝑠′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
entropic

+
𝜕𝑠𝑘
𝜕𝑌𝑘

|||||𝑝,𝑠,𝑌𝑙≠𝑘
𝑌 ′
𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
compositional

. (33)

In Eq. (33), the explicit formulation of the acoustic, entropic, and com-
positional subcontributions is omitted here for the sake of simplicity.
Instead, Fig. 4 shows individual source mechanisms resulting from the
incoming compositional (Fig. 4(a)), acoustic (Fig. 4(b)), and entropic
(Fig. 4(c)) waves in the low Mach number (M → 0) and zero frequency
(𝑓 → 0) limit via temperature-entropy (𝑇 -𝑠) diagrams. In the limit of
these assumptions, all perturbations are spatially independent offsets

4 In the small perturbation limit, only (incoming) acoustic waves affect the
pressure fluctuations 𝑝′; only (incoming) entropy waves impact the entropy
fluctuations 𝑠′, and solely (incoming) compositional waves affect the mass
fraction 𝑌 ′

𝑘 and the equivalence ratio 𝜙′. This fact is easily derived from a
characteristic decomposition of the 1D reactive Euler equations.
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Fig. 4. Temperature-entropy (𝑇 -𝑠) diagrams of an exothermic reaction zone in the
low Mach number and zero frequency limit visualizing the entropy wave generation
mechanisms (𝛹�̇�𝑘∕�̇�s)′ and (𝛹�̇�𝑘∕�̇�s)′I for (a) an incoming compositional wave 𝑌 ′

𝑘
(𝜙′ > 0), (b) an incoming acoustic perturbation 𝑝′1 > 0, (c) an incoming entropy wave
𝑠′1 > 0. The black (solid), dark blue (dashed) and dark red (dash-dotted) lines correspond
to the unperturbed mean state, the perturbed case considering solely (𝛹�̇�𝑘∕�̇�s)′I and the
perturbed case considering the full source term (𝛹�̇�𝑘∕�̇�s)′.

(𝑓 → 0) and the combustion process is isobaric [56] (M → 0). In this
case, the mass-specific heat released by the reaction,

𝑞 = �̇�
�̇�s

= ∫ 𝑇 d𝑠 , (34)

is equivalent to the area under the isobaric lines in the 𝑇 -𝑠 diagram. In
Fig. 4, each sub-figure shows the mean process in black (solid line) and
the perturbed process in dark red (dash-dotted line). To visualize the
individual effects of the entropy wave sources (Eqs. (29), (30) and (31))
and since neglecting the sources (𝛹�̇�𝑘∕�̇�s)′II + (𝛹�̇�𝑘∕�̇�s)′III is a common
assumption in the literature [6,8,28], the additional process shown in
dark red (dashed line) considers solely the effect of the heat release
source term (𝛹�̇�𝑘∕�̇�s)′I.

Fig. 4(a) shows the effect of an incoming compositional wave 𝑌 ′
𝑘,1

in the form of an equivalence ratio perturbation 𝜙′
1 > 0 (𝑝′1 = 0, 𝑠′1 = 0)

of a lean premixed flame. In this case, the incoming perturbation shifts
the gas mixture closer to the stoichiometric condition. Consequently,
it increases the mass-specific heat release 𝑞 > 𝑞 (see Eq. (26)) by the
chemical reaction. This effect corresponds to the entropy source term

(𝛹�̇�𝑘∕�̇�s)′I (see Eq. (29)) and is shown by the increased area enclosed
by the dark blue dashed lines in Fig. 4a. The effect of the sources
(𝛹�̇�𝑘∕�̇�s)′II + (𝛹�̇�𝑘∕�̇�s)′III is a modulation of the shape of the isobaric
curve in the 𝑇 -𝑠 diagram. The modulation results from the change
in local gas composition and the corresponding perturbations in gas
properties and entropy sensitivities (see Eqs. (30) and (31)). Overall,
incoming equivalence ratio fluctuations generate entropy waves in
phase.

In Fig. 4(b), an incoming acoustic perturbation 𝑝′1 > 0 (𝑠′1 = 0,
𝜙′ = 0, 𝑌 ′

𝑘 = 0) shifts the incoming pressure to a higher isobaric line and
therefore to higher temperatures, while the mass-specific heat remains
unchanged (𝑞′ = 0, 𝑞 = 𝑞). Thus, an acoustic wave generates entropy
waves solely by changing 𝑇ref (and 𝑠𝑘,ref). The generated entropy wave
is 𝜋 out of phase with the acoustic wave. The contribution of the
entropy source (𝛹�̇�𝑘∕�̇�s)′I in this mechanism can be formulated as a
shift to another isobaric line, assuming unchanged specific heat 𝑐p,𝑘
and entropy 𝑠𝑘 compared to the mean state. The sources (𝛹�̇�𝑘∕�̇�s)′II +
(𝛹�̇�𝑘∕�̇�s)′III again modulate the new isobaric line by incorporating the
temperature (and pressure) dependence of 𝑐p,𝑘 and 𝑠𝑘.

In Fig. 4(c), an incoming entropy wave 𝑠′1 > 0 (𝑝′1 = 0, 𝜙′ = 0,
𝑌 ′
𝑘 = 0) at constant pressure shifts the mass-specific heat release to

higher entropy levels and thus to higher temperatures. In contrast, the
mass-specific heat release 𝑞 = 𝑞 remains constant. Similar to an acoustic
wave, an incoming entropy wave generates additional entropy waves
simply by changing 𝑇ref (and 𝑠𝑘,ref). The generated entropy wave is in
antiphase with the incoming wave. Destructive interference typically
weakens the resulting entropy wave. In addition to the shift to higher
entropy levels, the effect of the source (𝛹�̇�𝑘∕�̇�s)′I leads to a modulation
of the isobaric line due to the neglect of changes in specific heat
𝑐p,𝑘 and entropy 𝑠𝑘 relative to the mean state. Considering the full
source term (�̇�𝑘∕�̇�s)′, the modulation of the isobaric line of (�̇�𝑘∕�̇�s)′I is
compensated by (𝛹�̇�𝑘∕�̇�s)′II + (𝛹�̇�𝑘∕�̇�s)′III and the isobaric line remains
unchanged.

The understanding of the entropy wave generation mechanisms
for the Q1D description in the low Mach number and zero frequency
limit gained from Fig. 4 can be extrapolated to higher Mach numbers,
higher frequencies as well as to the full three-dimensional description
(Section 2.1). At higher frequencies, the integral generation of entropy
waves across the flame front exhibits a low-pass filter behavior [23],
resulting from the partial cancellation effects across the flame front.
The shape of this low-pass filter determines the frequency at which
the acoustic/convective compactness assumption and the Q1D jump
condition are no longer valid. At higher Mach numbers, the isentropic
acceleration of the gas across the flame front becomes significant.
Since the acceleration is isentropic, it does not directly affect the
generation of entropy waves. However, a distributed flame can mod-
ulate the acoustic source mechanism by altering local pressure values.
Expanding the interpretation of sub-mechanisms for the non-diffusive
three-dimensional flow requires considering the analysis depicted in
Fig. 4 as a local analysis, where the reference values (⋅)ref only pertain
to local quantities.

After gaining a qualitative understanding of the individual source
mechanisms from Fig. 4, the following paragraph focuses on an order
of magnitude analysis. This analysis aims to quantify the importance
of the compositional, acoustic, or entropic source contributions. To
simplify the analysis, and since in premixed flames, the source term
(𝛹�̇�𝑘∕�̇�s)′I is generally the main contributor to entropy wave genera-
tion [28,60], this is the only term considered in the following analysis.
However, the derived results are assumed to be reasonable estimates
even for cases where the source terms (𝛹�̇�𝑘∕�̇�s)′II+(𝛹�̇�𝑘∕�̇�s)′III are more
prominent, since previous analysis showed that the source (𝛹�̇�𝑘∕�̇�s)′II+
(𝛹�̇�𝑘∕�̇�s)′III may be of the same order of magnitude as (𝛹�̇�𝑘∕�̇�s)′I, but
is generally not the dominant contributor [28].
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First, the relative order of magnitude of the different perturbations
must be clarified. This study employs the normalized velocity perturba-
tion 𝑢′1∕𝑢1 in front of the reaction zone as a standard reference for other
perturbations. All remaining perturbations are related to this quantity
as follows:

1. Equivalence ratio perturbations are typically generated by a
velocity perturbation at the fuel injector. The corresponding
normalized equivalence ratio perturbation is of the same order
of magnitude as the velocity perturbation [61–63]


(
𝜙′

𝜙

)
≈ 

(
𝑢′1
𝑢1

)
. (35)

2. Perturbations in the incoming normalized equivalence ratio 𝜙′∕𝜙
can be expressed by perturbations in the incoming species mass
fraction 𝑌 ′

𝑘,1∕𝑌 𝑘,1 with a similar order of magnitude. In addi-
tion, the order of magnitude of 𝑌 ′

𝑘∕𝑌 𝑘 can be assumed constant
throughout the exothermic reaction zone due to the chosen
normalization:


(
𝑌 ′
𝑘,1

𝑌 𝑘,1

)
≈ 

(
𝑌 ′
𝑘,ref

𝑌 𝑘,ref

)
≈ 

(
𝜙′

𝜙

)
≈ 

(
𝑢′1
𝑢1

)
. (36)

3. In the absence of acoustic sources, the acoustic characteristic
variables

𝛱± = 1
2

(
𝑝′

𝑝
± 𝛾M1

𝑢′

𝑢

)
, (37)

remain constant. At the inlet, the normalized pressure pertur-
bation relates to the normalized velocity disturbance via the
Mach number M. Furthermore, the order of magnitude of the
normalized pressure fluctuations remains constant throughout
the reaction zone for low to moderate Mach numbers [22,43]:


(
𝑝′1
𝑝1

)
≈ 

(
𝑝′ref
𝑝ref

)
≈ 

(
M
𝑢′1
𝑢1

)
. (38)

4. The entropy perturbations at the reference point are generated
either by incoming compositional, acoustic or entropic waves
(see Fig. 4):
(
𝑠′

𝑐p

)

ref

=

(
𝑠′

𝑐p

)

ref,𝑌𝑘
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
compositional

+

(
𝑠′

𝑐p

)

ref,𝑝
⏟⏞⏞⏞⏟⏞⏞⏞⏟

acoustic

+

(
𝑠′

𝑐p

)

ref,𝑠
⏟⏞⏞⏞⏟⏞⏞⏞⏟

entropic

. (39)

Assuming that incoming acoustic, entropic, and compositional
waves continuously generate entropy waves, it can be inferred
that the entropy fluctuation at the reference point and behind
the flame follow the same functional dependence. In the low
Mach number limit, the order of magnitude of the sources in
Eq. (39) are known, deriving from the Q1D jump condition
proposed by Strobio Chen et al. [22, Eq. (42)]:

 ⎛⎜⎜⎝

(
𝑠′

𝑐p

)

ref,𝑌𝑘

⎞⎟⎟⎠
≤ 

(
𝜙′

𝜙

)
= 

(
𝑢′1
𝑢1

)
,

 ⎛
⎜⎜⎝

(
𝑠′

𝑐p

)

ref,𝑝

⎞
⎟⎟⎠
≤ 

(
𝑝′1
𝑝1

)
= 

(
M1

𝑢′1
𝑢1

)
,


((

𝑠′

𝑐p

)

ref,𝑠

)
= 

(
𝑠′1
𝑐p

)
.

(40)

The Q1D jump condition for the generation of entropy waves is
given in Eq. (28). Considering only the heat release source mechanism,
the generation of entropy waves normalized with 𝜁 = �̇�∕(�̇� s𝑇 ref) reads

𝑠′2
𝜁

−
𝑠′1
𝜁

= 𝜙′

𝜙
+

(∑
𝑘

𝑠𝑘𝑌 𝑘
𝑐p

𝑌 ′
𝑘

𝑌 𝑘

)

ref

−
(
𝛾 − 1
𝛾

𝑝′

𝑝

)

ref
−
(
𝑠′

𝑐p

)

ref
. (41)

If present, the non-diffusive generation of entropy waves is dominated
by fluctuations in incoming equivalence ratio

 ⎛⎜⎜⎝
𝜙′

𝜙
+

(
𝑠′

𝑐p

)

ref,𝑌𝑘

⎞⎟⎟⎠
= 

(
𝑢′1
𝑢1

)
. (42)

Compositional temperature fluctuations at the reference point,


((

𝑇 ′

𝑇

)

ref,𝑌𝑘

)
= 

(
−
∑
𝑘

(
𝑠𝑘𝑌 𝑘
𝑐p

)

ref

𝑌 ′
𝑘,1

𝑌 𝑘,1

)
⪅ 

(
10−1 𝜙

′

𝜙

)
, (43)

are typically at least an order of magnitude smaller than the effect of
the equivalence ratio perturbation, as shown by Patki et al. [28]. This
is true even though (

𝑌 ′
𝑘∕𝑌 𝑘

)
≈ (

𝜙′∕𝜙
)

and results from a partial
cancellation of the summands due to different signs of the species mass
fraction fluctuations 𝑌 ′

𝑘∕𝑌 𝑘 for different species.
The contribution of incoming acoustic waves to the generation of

entropy waves

 ⎛⎜⎜⎝
− 𝛾 − 1

𝛾
𝑝′

𝑝
−

(
𝑠′

𝑐p

)

ref,𝑝

⎞⎟⎟⎠
≈ 

(
−M1

𝑢′1
𝑢1

)
(44)

increases proportionally with the equivalence ratio and the Mach num-
ber M1 upstream of the flame. As the Mach number approaches zero,
this term vanishes. For M → 1, the acoustic contribution equals the
importance of equivalence ratio perturbations.

Incoming entropy waves generate entropy waves of the same order
of magnitude


(
−

(
𝑠′

𝑐p

)

ref,𝑠

)
= 

(
𝑠′1
𝑐p,1

)
. (45)

However, the generated entropy waves are out of phase by 𝜋 (see
Fig. 4), resulting in destructive interference across the flame front.
Typically, the amplitude of the incoming entropy wave is reduced
across the flame front.

3.1.2. The diffusive entropy generation mechanisms of a premixed flame
Diffusion effects are essential to most flames. Species diffusion is

necessary for mixing fuel and oxidizer in diffusion flames [64] and
is responsible for local equivalence ratio fluctuations in hydrogen fuel
blends [29]. Thermal diffusion is essential for stabilizing and anchoring
many flames, while viscous heating gains significance in high-speed
flows due to strong velocity gradients. Due to the dissipative nature
of all diffusion effects, they contribute to the generation of entropy
(see Eq. (9)) and their perturbations — to the generation of entropy
waves (see Eq. (16)). However, an order of magnitude analysis as per-
formed for the non-diffusive mechanisms in Section 3.1.1 to estimate
their relative importance for the generation of entropy waves is not
straightforward. As a conservative rule of thumb, the contribution of
the diffusive mechanisms to the local generation of entropy distur-
bances should be considered non-negligible in regions with leading
order contributions of the diffusive mechanisms to the generation of
entropy in the mean flow.

3.2. Heat source at rest - A heated wire gauze

In this section, a heated wire gauze in a flow field, as applied in
a typical Rijke tube [65], is used as an example for the generation
of entropy waves in a heat source at rest (𝑢s = 0). In this case,
incoming flow field perturbations affect the heat transfer between the
flow and the heated wire grid, leading to entropy wave generation. This
mechanism is analyzed in more detail using the Q1D jump condition
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(Section 2.2). Therefore, the heat flux between the wire gauze and the
flow is modeled by Newton’s law

�̇� = 𝛼𝐴s𝛥𝑇 , (46)

with the heat transfer coefficient 𝛼, the surface area of the heated
wire 𝐴s and the temperature difference between the fluid and the wire
surface 𝛥𝑇 . For a given geometry and fluid, the heat transfer coefficient

𝛼(�̇�s, 𝑇ref) (47)

depends only on the mass flux �̇�s and a reference temperature 𝑇ref for
the temperature-dependent fluid properties. The exact functional form
of Eq. (47) is typically given via correlations. Then, the mass-specific
heat flux is given by

�̇�
�̇�s

=
𝛼(�̇�s, 𝑇ref)𝐴s𝛥𝑇

�̇�s
, (48)

and the corresponding linearization
(
�̇�
�̇�s

)′

(
�̇�
�̇�s

) =

⎛⎜⎜⎜⎜⎝

𝜕𝛼
𝜕�̇�s

||||𝑇 ref

𝛼
− 1

⎞⎟⎟⎟⎟⎠

�̇� ′
s

�̇� s

+

𝜕𝛼
𝜕𝑇ref

||||�̇�s

𝛼

(
𝑇 ′

𝑇

)

ref
+ 𝛥𝑇 ′

𝛥𝑇
(49)

with
�̇� ′

s

�̇� s

=
𝑢′1
𝑢1

+ 1
𝛾1

𝑝′1
𝑝1

−
𝑠′1
𝑐p,1

. (50)

The index (⋅)1 denotes the inflow condition. Then, the generation of
entropy waves is given by

�̇� s
(
𝑠′2 − 𝑠

′
1
)
= �̇�
𝑇 ref

⎡⎢⎢⎢⎢⎣
𝜍
�̇� ′

s

�̇� s

+

⎛⎜⎜⎜⎜⎝

𝜕𝛼
𝜕𝑇ref

||||�̇�s

𝛼
− 1

⎞⎟⎟⎟⎟⎠

(
𝑇 ′

𝑇

)

ref
+ 𝛥𝑇 ′

𝛥𝑇

⎤⎥⎥⎥⎥⎦
(51)

with the prefactor of the perturbed mass flux

𝜍 =

⎛
⎜⎜⎜⎜⎝

𝜕𝛼
𝜕�̇�s

||||𝑇 ref

𝛼
− 1

⎞
⎟⎟⎟⎟⎠
≠ 0. (52)

Since the prefactor 𝜍 does not vanish, the interaction of incoming
velocity perturbations with the heated wire gauze generates entropy
waves due to a perturbation of the convective heat transfer. This is in
contrast to the lean premixed flame in Section 3.1, which is insensitive
to velocity perturbations.

A similar effect of a non-vanishing prefactor 𝜍 of the perturbed
mass flux appears when the flame in Section 3.1 is assumed to be at
rest. However, although this assumption is often made in the litera-
ture [36,38–40], the corresponding velocity sensitivity of the entropy
wave generation is spurious [22].

4. Conclusion

This study provides an analytical framework for the consistent
analysis of moving sources of entropy disturbances for general three-
dimensional reactive flows and in the limit of a quasi-one-dimensional
jump condition. The source terms of entropy perturbations are strictly
separated from transport mechanisms by an Arbitrary Lagrangian–
Eulerian framework that moves with the source itself.

The unified framework for the analysis of entropy perturbations
derived in this study provides a deep insight into the underlying
physical processes. As an example, the analytical framework is ap-
plied to a lean premixed flame (entropy source in kinematic balance
with the flow) and a heated wire gauze (entropy source at rest).
For the lean premixed flame, temperature-entropy diagrams and an

order of magnitude analysis are used to explain the different non-
diffusive mechanisms of entropy wave generation and quantify their
relative importance. In addition, and in agreement with earlier studies
in quasi-one-dimensional frameworks, this analysis reaffirms the dom-
inant contribution of equivalence ratio perturbations to the generation
of entropy disturbances [13,22,25,48]. Furthermore, it highlights the
heat release per unit mass as the key quantity for entropy wave genera-
tion in premixed flames. A comparison between the premixed flame and
a heated wire gauze shows the fundamentally different mechanisms of
entropy wave generation of sources in motion and at rest. In agreement
with Strobio Chen et al. [22] and Meindl et al. [27], this reemphasizes
the fact that premixed flames cannot be modeled via heat sources at
rest.

The necessity of the Arbitrary Lagrangian–Eulerian framework for
a clear separation between transport and generation effects has di-
rect implications for the source analysis in numerical simulations.
The derived analytical framework can be understood as a first step
towards correcting the numerical analysis of entropy wave generation
mechanisms.
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Model-Based Inference of Flame
Transfer Matrices From Acoustic
Measurements in an Aero-Engine
Test Rig
Flame dynamics, represented as a flame transfer matrix (FTM), is not directly measurable in
test rigs and must be deduced from transfer matrix measurements of the combustion system.
The burner-flame transfer matrix (BFTM) approach for FTM estimation is based on local
pressure signals from microphones located upstream and downstream of the combustor. It
combines acoustic measurements in nonreacting and reacting conditions, with the latter
implicitly including flame dynamics. A simple matrix operation yields the FTM. However,
this approach assumes loss-free wave propagation at constant speed of sound with no
change in cross-sectional area between the microphones and the burner/flame. The present
work demonstrates the limitations of these assumptions when applied to a test rig with
effusion cooling, bypass annulus, and end contraction. This work proposes a method to infer
the FTM for complex combustors by combining reactive transfermatrixmeasurements of the
entire combustor with an accurate low-order model (LOM) of the test rig. This generalized
method reduces to theBFTMapproach as a special case. TheRolls-Royce SCARLET test rig,
operating under realistic engine conditions, is used to analyze the capabilities of the
proposed model-based inference method and the limitations of the BFTM approach. First, a
LOM based on SCARLET’s geometry and operating point is formulated using a generic
FTM. This model visualizes the limitations of the BFTM approach concerning various
physical and geometrical parameters. Finally, experimental data is used to infer the FTM of
SCARLET using the proposed approach. [DOI: 10.1115/1.4066366]

1 Introduction

Lean-burn, low-emission combustion systems, such as modern
aero-engines, are susceptible to thermoacoustic combustion

instabilities that can restrict their operational range, increase wear,
or even damage the engine [1,2]. To prevent these self-excited
instabilities in future engine development programs, accurate and
efficient prediction tools are essential. Low-order thermoacoustic
network modeling [3–9] has been demonstrated to be an efficient
technique for predicting thermoacoustic instabilities in confined
combustion systems like aero-engine combustors. Such a low-order
model encompasses the main geometric features of the combustion
system and is based on the interconnection of compact (e.g., area
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change, end reflection, flow splits, flame) and noncompact (e.g.,
duct) quasi-one-dimensional acoustic elements [10,11]. The local
transfer behavior of each network element may be represented by its
transfer matrix, which links the upstream and downstream acoustic
pressure and velocity fluctuations, respectively. The transfer matrix
can be described for many elements using simple analytical models
based on linearized governing equations. However, transfer
matrices extracted from numerical simulations or experimental
measurements are used for elements with more complex dynamics.
The intricate dynamics of a flame require sophisticated methods

to model with accuracy. Apart from simulation-based approaches
[12–15], the flame transfer matrix (FTM) [16] is usually estimated
using measured data from a thermoacoustic test rig. However, since
a direct measurement of the FTM is not possible, it is usually
postprocessed from measured pressure signals. In this setup, the
model combustor is placed between twomeasurement ducts that are
equipped with microphone arrays. A siren modulates the air mass
flow of the thermoacoustically stable experimental setup, exciting
the flame at distinct frequencies. The microphone arrays with a
spatial distribution in the axial direction then measure the resulting
acoustic pressure fluctuations. Starting from the measured pressure
data, twomodeling steps are required to estimate the FTM. First, the
acquired pressure fluctuations enable the reconstruction of upstream
and downstreampropagating plane acousticwaveswhile assuming a
constant speed of sound and no changes in cross section between the
individual microphones. This technique was first proposed by
Munjal and Doige [17] and later extended to the multimicrophone
method (MMM) by Peters et al. [18]. Paschereit, Polifke and
Schuermans [16,19–21] adopted it for combustion applications. The
reconstructed acoustic waves may be utilized to relate the acoustic
pressure and velocity fluctuations upstream and downstream of the
combustor via a transfer matrix. This transfer matrix is a black-box
representation of the acoustic behavior of the combustor. In a second
step, the established approach for estimating the FTMcombines two
transfer matrices obtained from measurements in nonreacting
(“cold”) and reacting (“hot”) conditions. This approach assumes
that the transfer behavior of the hot burner can be expressed as a
sequence of the cold burner transfer matrix and the flame. The FTM
is then computed by simple matrixmultiplication of the hot and cold
burner transfer matrices [20,22]. This methodology has been
successfully employed in various studies [23–26] on premixed
flames in simplistic test rigs.
However, as pointed out in recent studies byAlanyalo�glu [27] and

Eder [28], this approach is not valid for complex configurations such
as aero-engine combustors. The primary discrepancies to simplistic
test rigs investigated in prior studies are an additional acoustic
communication path between the upstream and the downstreamduct
via an effusion cooling bypass annulus and more complex
combustion chamber geometries. While the FTM remains an
intrinsic part of the hot measurement, the assumption that the hot
burner transfer matrix is a simple sequence of the cold burner
transfer matrix and the flame does not hold anymore. Therefore, the
established approach is no longer applicable.
To remedy the limitations of the aforementioned approach, this

work presents a novel method that provides a consistent inference of
the FTM for complex test rigs. The proposed method combines
acoustic transfer matrix measurements of the full combustor under
hot conditions with a low-order thermoacoustic network model of
the test rig. The capabilities of themodel-basedmethod are analyzed
using the Rolls-Royce Scaled Acoustic Rig for Low Emission
Technology SCARLETð Þ [29,30], which comprises a single sector
aero-engine combustor and is operated under realistic engine
conditions (high pressure, preheating temperatures andmass fluxes).
The paper is structured as follows. Section 2 describes the

established method to postprocess the FTM from experimental
measurements and introduces the model-based inference method.
The experimental setup, acoustic transfermatrixmeasurements, and
a low-order thermoacoustic network model of SCARLET are
presented in Sec. 3. In Sec. 4, the network model is used to visualize
the limitations of the established method for test rigs with complex

features like SCARLET. In addition, the model-based inference
method is shown to be exact in the absence of modeling errors. In
Sec. 5, themodel-based inferencemethod is applied to experimental
data of SCARLET and the advantages and drawbacks of the novel
method are discussed. Finally, the work is concluded in Sec. 6.

2 Modeling Approach

In experimental setups, many quantities of interest cannot be
measured directly but must be postprocessed from the acquired data
utilizing models. The quality and validity of the postprocessed
quantities are therefore limited by themodeling assumptions used. It
is essential to understand these limitations.

2.1 Determination of Transfer Matrices From Acoustic
Pressure Measurements. The multimicrophone method
[16,18–21,31] is a postprocessing technique to approximate the
acoustic velocity and pressure perturbations at a reference point xref
based on pressure signals acquired from an axially-distributed
microphone array. Under the assumption of plane acoustic wave
propagation at constant speed and no changes in cross section, the
Fourier transformed pressure signals of the individual microphones

p01
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can be expressed in terms of the acoustic wave amplitudes f ¼
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accounts for the phase shift resulting from the acoustic wave
propagation between the microphones and the reference point,
Dxk ¼ xk � xref .x, p, q, c, and u are the angular frequency, pressure,
density, speed of sound, and flowvelocity. The superscripts �w andw0

denote the time-invariant mean value and a small perturbation of an
arbitrary quantity w. Then, the approximated acoustic wave
amplitudes at the reference point are retrieved as the least-squares
minimization of Eq. (1), e.g., by applying the Moore–Penrose
generalized inverse [32]
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where �ð ÞH and �ð Þ�1 are the Hermitian transpose and the matrix
inverse. Finally, fref and gref can be decomposed into the pressure
and velocity fluctuations at the xref via
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The transfer behavior of a system can be represented by a transfer
matrixT, which relates the pressure and the velocity perturbations at
the boundaries of a system, generally defined as
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Transfer matrices can be determined from acoustic measurements
by enclosing a system between the reference points of two
microphone arrays (i ¼ u, j ¼ d). Additionally, the measurement
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of at least two acoustically independent test states is needed. See
Åbom [33] for various possibilities of producing different test sets.
For two test states A and B, the transfer matrix can be obtained using

eT ¼
p0d

A

�q�c
p0d

B

�q�c
u0d

A u0d
B

0
B@

1
CA p0u

A

�q�c
p0u
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�q�c
u0u

A u0u
B

0
B@

1
CA

�1

(6)

Note that transfer matrices determined by the measurement
procedure detailed in this section are denoted with f�ð Þ throughout
this work.

2.2 Estimation of the Flame Transfer Matrix From Two
Measurements - the Burner-Flame Transfer Matrix Approach.
The flame transfer matrix F is an intrinsic part of the transfer matrixeTh of the reactive (“hot”) test rig. To extract F from the
experimentally determined eTh, the established postprocessing
approach [23–26] assumes that eTh can be modeled as a series of
the burner transfer matrix B and the flame transfer matrix F

Th :¼ FB (7)

Th is called burner-flame transfer matrix (BFTM) in this case. In
addition, the burner transfer matrix B is assumed to remain
unchanged by the combustion processes [22,34]. B is then
determined by the transfer behavior eTc of the nonreactive (“cold”)
test rig at the same inlet conditions

eTc :¼ B (8)

Assuming that the model in Eq. (7) accurately represents the
measured hot test rig (eTh ¼ Th), the flame transfer matrix can be
estimated via

F ¼ eTh eTcð Þ�1
(9)

Analogously to eTh, eTc is determined from experimental measure-
ments using the MMM detailed in Sec. 2.1. Throughout this work,
the method represented by Eq. (9) is referred to as the BFTM
approach due to the key modeling assumption in Eq. (7).
Figure 1(a) shows a simple test rig consisting of a burner section

between two ducts. In this simplistic case, the reference points of the

MMMcan be chosen to enclose solely the burner and the flame. The
assumptions of the BFTM approach hold. For combustor test rigs
with complex features such as effusion cooling, bypass annulus, and
downstream end contraction as shown in Fig. 1(b), the reference
points of the MMM typically brackets the full combustor.
Considering Fig. 1(b) it is evident that the transfer matrices eTc

and eTh measured with the MMM should be recognized as the
combustor transfer matrices eCc and eCh for the “cold” and “hot”
operating conditions, respectively. In this case, the modeling
assumption (Eq. (7)) of the BFTM postprocessing approach is no
longer valid [27,28] and a new method is required to deduce F fromeCh.

2.3 Model-Based Inference of the Flame TransferMatrix in
General Setups. In general, the inference of F, defined as (Fig. 2,
top right)

vp ¼ F vr (10)

from the measured hot combustor transfer matrix eCh, defined as
(Fig. 2, top left)

vd ¼ eChvu (11)

Requires a model that connects the states

vi ¼
p0

�q�c
u0

0
B@

1
CA

i

(12)

upstream (i ¼ r, “reactants”) and downstream (i ¼ p, “products”) of
the flame to the states upstream (i ¼ u) and downstream (i ¼ d) of
the combustor. This connector model (Fig. 2, center) is an
interconnection of different transfer matrices representing the
complexity of the underlying system. The subelements can be
modeled individually, e.g., via low-order models (LOM), or
provided from experimental measurements or numerical simula-
tions. The resulting connector transfer matrix can be expressed by
the general model [35]

vr

vd

� �
¼ Tru Trp

Tdu Tdp

� �
vu

vp

� �
(13)

Fig. 1 Schematic representation of (a) a simplistic and (b) an
aero-engine test rig under reactive conditions. Sirens are not
shown. The indices “u,” “r,” “p,” and “d” stand for upstream,
reactants, products, and downstream, respectively.

Fig. 2 Visualization of themodel-based inferencemethod (solid
arrows) to infer the flame transfer matrix (top right) from the
measured combustor transfer matrix (top left) utilizing a con-
nector model (center). “Inv.” denotes the inversion of a transfer
matrix and “&” the interconnection of two models. The gray
dashed arrows display the methodology to calculate the system
response from a known flame transfer matrix.
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In Eq. (13), vu and vp are chosen as inputs while vr and vd are treated
as outputs of the connector model. Note that this choice is arbitrary
and could be changed. The connector model’s subtransfer matrices
Tru, Trp, Tdu andTdp each depend on the reflection and transmission
coefficients of all subelements of the connector model.
Tru, Trp, Tdu, and Tdp can be extracted utilizing existing low-
order network toolboxes such as the open source MATLAB

VR
package

taX2 [35] developed at TUM. Note that Eq. (13) is valid for
connector models of arbitrary complexity.
To derive a closed-form representation of F, the inverse hot

combustor transfer matrix eChð Þ�1
(Fig. 2, lower left) is used as a

closure model to remove vu and vd from the connector transfer
matrix (Eq. (13)). Mathematically, this interconnection is expressed
in the following two steps. First, the bottom rowof Eq. (13) is used to
substitute vd in the definition of the inverse combustor transfer
matrix

vu ¼ eChð Þ�1
vd

¼ eChð Þ�1
Tduvu þ Tdpvpð Þ

(14)

This reveals an expression of the state vu in terms of the state vp only

vu ¼ eCh � Tdu

� ��1
Tdp vp (15)

Second, Eq. (15) is used to substitute vu in the top row of Eq. (13).
The result is the inverse flame transfer matrix F�1 (Fig. 2) that
expresses the state vr in sole dependence of the state vp

vr ¼ Tru
eCh � Tdu

� ��1
Tdp þ Trp

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

F�1

vp (16)

Finally, a simple matrix inversion provides the general rule for the
inference of the FTM from the measured hot combustor transfer
matrix

F ¼ Tru
eCh � Tdu

� ��1
Tdp þ Trp

h i�1

(17)

Throughout this work, the utilization of Eq. (17) is referred to as the
model-based inference (MBI) method, where the individual steps to
derive it are visualized in Fig. 2.
In contrast to the BFTM approach, described in Sec. 2.2, the MBI

method does not require the additional measurement of the cold
combustor transfer matrix eCc at the same operating point as eCh to
infer the FTM, reducing the experimental effort. Therefore, the
superscript “h” has been omitted throughout this section for
simplicity. Note, however, that the MBI method relies heavily on
the connector model’s accurate representation of the internal
combustor dynamics. Equation (17) shows that any modeling error
in the connector transfer matrices Tru, Trp, Tdu, and Tdp directly
impact the inferred F. Therefore, the quality of the connector model
must be ensured for reliable FTM predictions. In this work, the
comparison of a measured cold combustor transfer matrix eCc with
the corresponding model

Cc ¼ Tc
dp I� Tc

rp

� ��1
Tc
ru þ Tc

du (18)

is used to indicate the accuracy of the connector model. Equation
(18) is derived from the connectormodel (Eq. (13)) in the absence of
a flame, vp ¼ I vr, where I is the identity matrix. The superscript “c”
for the connector matrices Tru, Trp, Tdu, and Tdp denotes their
evaluation for the cold combustor. See Appendix for a detailed
derivation of the combustor model Cc (and Ch).

Note that the MBI method applies not only to reduced-order
network models—as used in the present work—but also to spatially
resolved models based on linearized equations, e.g., Helmholtz
equation, linearized Euler equations or linearized Navier-Stokes
equation. In this case, the input and output state vectors vu, vr, vp,
and vd of the connector model include numerous states and Eq. (13)
remains valid.

2.4 The Burner-Flame Transfer Matrix Approach—a
Special Case of the Model-Based Inference Method. The
postprocessing approach presented in Sec. 2.2 is a special case of
the generalized MBI method proposed in Sec. 2.3. In the absence of
an acoustic branch bypassing the flame, the transfermatricesTdu and
Trp of the connectormodel vanish (Tdu ¼ 0, Trp ¼ 0). Additionally,
assuming a combustion chamber with constant cross section
(Tdp ¼ Ddp), Eq. (17) simplifies to

F ¼ Dh
dp

� ��1eCh Th
ru

� ��1
(19)

Under the additional assumption thatTh
ru is not affected by the flame

(Th
ru ¼ Tc

ru ¼ Tru ¼ B) [22,34], Th
ru can be deduced from the cold

combustor transfermatrix eCc ¼ Dc
dpT

h
ru and Eq. (19) further reduces

to

F ¼ Dh
dp

� ��1 eCh|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
FB

eCcð Þ�1
Dc

dp|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
B�1

(20)

In this simple setup, the terms Dh
dp

� ��1eCh and Dc
dp

� ��1eCc are equal

to the BFTM (Eq. (7)) and the burner transfer matrix (Eq. (8)),
respectively. Accordingly, Eq. (20) is equivalent to the BFTM
approach (Eq. (9)).

3 Thermoacoustic Test Rig

In this study, the BFTM approach (Sec. 2.2) and the proposed
MBImethod (Sec. 2.3) are used to estimate the flame transfer matrix
from acoustic measurement data in an aero-engine test rig. The
experimental setup and a thermoacoustic low-order network model
of the rig are presented below.

3.1 Experimental Setup. The Rolls-Royce SCARLET test rig
[29,30] comprises a single-sector aero-engine combustion chamber
and is located in the HBK-3 (high-pressure combustion chamber)
test facility at the DLR (German Aerospace Center) in Cologne,
Germany. It was developed for efficient testing of liquid fuel
injectors under realistic engine conditions. The inlet conditions of
the rig represent the outlet conditions of the compressor stage in the
engine with a maximum pressure of 30 bar, a maximum preheating
temperature of 950K, and a maximum air mass flow of 4 kg/s. The
operating point investigated in this work is given in Table 1, where
kerosene is used as the liquid fuel. The measurements aim to
determine the cold and hot combustor transfer matrices eCc and eCh,
respectively, using the multimicrophone method described in
Sec. 2.1. These measurements are conducted in an acoustically
controlled environment and, therefore, guarantee a thermoacousti-
cally stable operation.

Table 1 Operating condition of SCARLET

Parameter Value Unit

Inlet pressure 25 bar
Inlet mass flow 3 kg s� 1

Inlet temperature 825 K
Thermal power 4.2 MW

2https://gitlab.lrz.de/tfd/tax
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The rig, shown in Fig. 3, consists of a back-pressure valve, two
dampers, four sirens, two acoustic measurement sections (constant
cross section) with an array of microphones, and an aero-engine
combustion chamber (test section). A variable back-pressure valve
restricts the total mass flow to adjust the pressure drop across the
installed injector unit from about 2% to 4% to the inlet pressure.
Upstream and downstream dampers ensure control of the acoustic
boundaries, thus minimizing end reflections and dampening the
occurrence of longitudinal modes. Two opposing sirens upstream
and downstream of the test section provide sinusoidal acoustic
excitation in the frequency range of approximately 100–1000Hz,
with the amplitude controlled by variations in the phase relation. The
two acoustic measurement sections for reconstructing the upstream
and downstream acoustic fields consist of five flush-mounted
microphones each, whereas the downstream ones are water-cooled.
The rig has approximately 200 static transducers to measure
temperatures, static pressures, mass flows, and differences of static
pressure with acquisition rates of 1Hz. Thesemeasurements include
upstream and downstream pressures, upstream temperature, pres-
sure drops across the injector and liner, and air mass flow. The static
pressures and pressure differences are measured at three radial
positions and then averaged. The downstream temperature is not
measured but estimated based on the fuel concentration, net caloric
value of the fuel, upstream pressure, and upstream temperature,
whereas the impact of wall cooling is neglected.
The test section is shown schematically in Fig. 4(a). It is situated

amidst the microphone arrays and consists of an injector unit with a

fuel spray nozzle and five axial swirlers, and a combustion chamber
with a bypass annulus for effusion cooling. Themain air is split at the
injector in three streams (through the injector for combustion,
through the bypass annulus, and through the heat shield as cooling
air). The combustion chamber walls are cooled by effusion cooling
(transpiration cooling), achieved by moving air from the outer
annulus through the liner structure (thousands of small holes). Due
to its application in an aero-engine, the geometry of the single-sector
axis-symmetrical combustor has a typical shape that tapers in
diameter toward its outlet (i.e., turbine inlet). The entire test section
(between the black dots) can be considered as a black-box by means
of the combustor transfer matrix as shown in Fig. 4(b). The
postprocessed combustor transfer matrices eCc (no flame) and eCh

(flame) are shown in Fig. 5. All frequencies in this work are
nondimensionalized using a Strouhal number for confidentiality

St ¼ f
Lref
uref

(21)

where f is the frequency,Lref is the diameter of the injector, and uref is
the bulk velocity of the inlet air stream.

3.2 Acoustic Network Model. The model-based inference of
the flame transfer matrix presented in Sec. 2.3 combines acoustic
transfermatrixmeasurements with an acoustic networkmodel of the
test rig. The network model of SCARLET used in this work is built
using taX [35] and consists of 185 elements in total, including duct
segments, area changes with and without pressure losses, converg-
ing and diverging junctions, and a compact flame element (in hot
conditions). The ducts are modeled based on the one-dimensional
acoustic wave equation [35] and are discretized with a third-order
upwind scheme. The shortest wavelength of interest is highly
resolved with 100 base points. Sudden area changes are represented
with the L� f model [16,36]. The injector, bypass entry, effusion
holes, and heat shield are penalized with a pressure loss coefficient f
calculated from measured pressure differences, while effective and
reduced lengths are set to zero [36]. Even though the geometry of the
injector unit is highly complex, the axially arranged swirl vanesmay
be reasonably assumed to have acoustically transparent behavior
[37]. Experimentally or numerically determined transfer matrices

Fig. 3 Isometric view of SCARLET. Flow in x-direction.

Fig. 4 (a) Schematic representation and (b) black-box model of
the SCARLET test section in Fig. 3. The five axial swirlers are
encompassed in the simplistic representation of the injector.

Fig. 5 Gain and phase of the coefficients of the experimental
combustor transfer matrices of SCARLET
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should be used to increase themodel’s accuracy, especially at higher
frequencies [20,38,39]. The convergent part of the combustion
chamber is modeled as ten consecutive series of duct and area
change. The real combustor has several thousand cooling holes in
the acoustic liner. These holes are lumped into 20 branches in the
LOM, each as a series of area change-duct-area change. Increasing
the number of branches does not improve the results. The upstream
and downstream boundaries are treated as nonreflective since they
do not affect the determination of the combustor transfer matrix
(acoustic/geometric changes outside the test section are irrelevant).
Furthermore, the dependence of material properties on the
temperature and mixture is neglected (cp 6¼ f T, Yið Þ ¼ const: and
R 6¼ f Yið Þ ¼ const:, i.e., c ¼ cp= cp � Rð Þ 6¼ f T, Yið Þ ¼ const:) and
lowMach numbers (O M1ð Þ) are assumed in all elements, which are
common (yet questionable) assumptions made in thermoacoustic
network models [14,40–42].
The acoustic network model in this work is based on geometrical

information (lengths, diameters, areas) and static measurements
(upstream and downstream pressure, upstream temperature,
upstream mass flow) of SCARLET. The downstream temperature
is estimated as described in Sec. 3. The flow splits are determined
using low-order model calculations for the flow, and the effective
surface area of the injector is approximated. The underlyingmodel is
physics-based and does not rely on spurious tuning parameters. This
ensures a reasonably accurate modeling of the internal system
dynamics, whereas fitting model parameters solely to global
behavior (i.e., combustor transfer matrix) would violate this
approach. A comparison of the cold combustor transfer matrix
from measurements eCc and the acoustic network model Cc (Eq.
(18)) is shown in Fig. 6. Both the gain and phase of the LOM are in
quantitative agreement with experiments. Together with the
physics-based approach of the LOM (internal system dynamics),
this agreement ensures accurate modeling of the global behavior.

4 Limitations of the Burner-Flame Transfer Matrix

Approach

TheBFTMmethod, as described in Sec. 2.2, is appealing due to its
simplicity and use of solely experimental input data. Unfortunately,

it is inconsistent for combustor geometries such as the present one
with effusion cooling, bypass annulus, and downstream end
contraction [27,28]. The goal of this section is to visualize this
inconsistency.
A method is consistent if it can recover the reference solution

without modeling errors, measurement inconsistencies, and uncer-
tainties. To generate such a fully consistent dataset in combination
with a known reference FTM, this section combines the LOM of
SCARLET (see Sec. 3.2) with a generic FTM to generate eCh.
Additionally, eCc at the same operating point is generated using the
LOM. Note that in this section, the transfer matrices F�, eCh, and eCc

are therefore purely analytical, while the flow quantities of the LOM
are based on the realistic engine condition given in Table 1. The
generic FTM has been generated using the Rankine–Hugoniot
relations [5,20]

FRH ¼
qccc
qhch

�hMh 1þ F xð Þð Þ
�chMc 1þ hF xð Þ

0
@

1
A (22)

where h ¼ Th=Tc � 1ð Þ, T is the temperature, qc is the acoustic
impedance, M is the Mach number, and F xð Þ is the flame transfer
function (FTF) of a velocity-sensitive flame used as closure for the
heat release rate fluctuations. The FTF is defined as

F xð Þ �
_Q0 xð Þ= _Q

u0c xð Þ=�uc (23)

where _Q is the heat release rate and uc is the velocity in the cold
region upstream of the flame. This work uses a generic distributed
time delay (DTD) model [43] of a partially premixed flame F� as
shown in Fig. 7. The corresponding generic FTM is obtained by
incorporating F� into Eq. (22) and is referred to as F�.
Figure 8 shows the FTMs postprocessed from the generic

combustor transfer matrices of the SCARLET LOM via the
BFTM approach (dash-dotted line) and the MBI method (solid
line) and compares them to the reference solution F�. The MBI
method is consistent, and its result coincides with the reference
solution for the generic dataset used. In Fig. 8, F� and the MBI
results are represented by the same (solid) line. In contrast, the FTM
postprocessed with the BFTM method shows large deviations from
F� in all transfermatrix coefficients. These discrepancies in the FTM
originate solely from the inconsistency of the BFTM method for
complex thermoacoustic test rigs like SCARLET and demonstrate
furthermore its inapplicability in such cases.
In SCARLET, the inconsistency of the BFTM method is due to

three features as summarized in Table 2—the area contraction at the
end of the combustion chamber (C) as well as the acoustics (A) and
the mean flow (M) bypassing the flame through the effusion holes.
The following paragraph analyzes their contributions to the

Fig. 6 Gain and phase of the coefficients of the combustor
transfer matrix for cold conditions obtained from experimental
data ~Cc and LOM Cc

Fig. 7 (a) Gain and (b) phase of the generic flame transfer
function F�
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deviations of the BFTMmethod. Therefore, the SCARLET LOM is
gradually adapted three times, removing the features M, A, and C.
Figure 9 displays the corresponding generic SCARLETmodels. All
other key features besides M, A, and C, like the FTM F�, mass flow
splits, and pressure losses, remain unchanged. The SCARLETLOM
detailed in Sec. 3.2 includes all features and is therefore awarded the

short namemodel-MAC (Fig. 9(a)). In themodel-MA (Fig. 9(b)), the
area contraction of the combustion chamber is removed by adapting
the diameter of the downstream duct. The model-M (Fig. 9(c))
additionally eliminates the acoustic bypass through the effusion
holes and the heat shield. This is achieved by inserting a fully
reflective, acoustically energy-conserving element into each
effusion hole and the heat shield. Finally, the model-0 (Fig. 9(d))
also removes the bypass mean flow by venting all bypass air through
a nozzle at the end of the bypass annulus.
The FTMspostprocessedwith theBFTMapproach for the generic

SCARLET model-MAC, model-MA, model-M, and model-0 are
visualized in Fig. 8 in addition to the MBI result. In the case of
SCARLET, the area contraction at the end of the combustion
chamber contributes most to the deviations of the BFTMmethod in
all transfer coefficients of F� (see the difference between model-
MAC and model-MA). The magnitude of this deviation is directly
linked to the area contraction and increases with stronger area
contractions and vice versa. Compared to the deviations introduced
by C, the deviations corresponding to the acoustic bypass (differ-
ence between model-MA and model-M) are smaller but yet in the
same order of magnitude. This contribution’s magnitude and
frequency content depend strongly on the flow characteristics and
the geometry of the bypass. Which of the two features, A or C,
dominates the deviations in a given setup, andwhether they partially
cancel each other out, highly depends on the problem. Overall, both
A and C should be assumed to invalidate the BFTM method for a
specific setup unless proven otherwise. The final deviation of the
cooling air reentering the combustion chamber (difference between
model-M and model-0) is inferior to the other two effects. For
model-0, the FTM postprocessed with the BFTMmethod coincides
with the referenceF�, proving that all features that render the BFTM
method inconsistent have been removed.

5 Application to Experimental Measurements

The model-based inference method is applicable for complex
thermoacoustic test rigs. As shown in Secs. 2.3 and 4, it is
furthermore exact if the available combustor transfer matrix and the
corresponding LOM are fully consistent. However, postprocessing
of real experimental measurement data has to deal with combustor
transfer matrices and LOMs subject to modeling and measurement
errors. Therefore, the available combustor transfer matrices and the
LOM are never fully consistent. This section discusses the
capabilities and functionality of the model-based inference method
in this case.

5.1 Flame Transfer Matrix of SCARLET. The model-based
inference method relies on the accuracy of the LOM used.
Therefore, to infer reliable results, it is necessary to ensure that
the LOM well approximates the combustor’s global and internal
system dynamics. The accuracy of the LOM concerning the global
dynamics of the combustor was assessed by first comparing the
experimental combustor transfer matrix eCc with the corresponding
modelCc (Eq. (18)) in Fig. 6. As a second measure for the accuracy
of theLOM, this section computes the FTMusing theBFTMmethod
(Eq. (20)) with eCc and withCc, respectively. The results are plotted
in Fig. 10. Note that although the BFTMmethod does not determine
the correct FTM (see Sec. 4), the two FTMs of the BFTM method

Fig. 8 Gain and phase of the coefficients of the generic F� and
the flame transfer matrices postprocessed from the generic
SCARLET models detailed in Fig. 9 via the BFTM approach:
model-MAC (original LOM), model-MA, model-M, and model-0.
Note thatmodel-0andF� overlap.TheMBI result coincideswithF�

in all cases and is therefore represented by the same solid line.

Table 2 Geometrical and flow features of different generic
SCARLET low-order models used in this section. Important
features are the meanflow bypass (M), the acoustic bypass
(A) and the area contraction at the end of the combustion
chamber (C).

M A C

model-MAC � � �
model-MA � �
model-M �
model-0

Fig. 9 Schematic representation of the generic SCARLET models. Bypass mean flow and bypass acoustics are indicated by
arrows and double arrows, respectively: (a) model-MAC, (b) model-MA, (c) model-M, and (d) model-0.
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should coincide in case of a perfect model. The magnitude of
discrepancy, on the other hand, will indicate to what extent
inadequacies of the model eCc impact the determination of the
FTM. Figure 10 shows a good agreement between the two FTMs for
St � 4:5. For St > 4:5, the two FTMs diverge in all coefficients, and
it is concluded that the LOM is inaccurate in this frequency range.
Figure 10 is therefore grayed out for St > 4:5.
Finally, the LOM described in Sec. 3.2 is used to infer the FTM

from the experimental combustor transfer matrix eCh of SCARLET
shown in Fig. 5. Themodel-based inferencemethod uses theLOMto
calculate the FTM of SCARLET. The resulting FTM is shown in
Fig. 10 as triangles. Analogous to Sec. 4, the FTMcoefficients of the
BFTM approach and the model-based inference method differ from

each other. This is expected due to the inconsistency of the BFTM
method. However, in contrast to the ideal case in Sec. 4, the FTM of
the model-based inference method is subject to modeling and
measurement errors resulting in potential discrepancies between the
experimental combustor transfer matrix eCh and the corresponding
LOM.At this point, no quantitative statement can bemade about the
accuracy of the FTM due to the lack of a reference solution of
SCARLET or a quantitative quality measure for the LOM applied.
Qualitatively, a comparison between the FTM obtained with the
model-based inference method and the BFTM approach shows
similar effects as in Fig. 8. The phase of F11 is flattened. The
coefficient F21 is strongly reduced in amplitude. The maximum
amplitude of the coefficientF22 is shifted to lower Strouhal numbers,
and at higher frequencies, the overall amplitude is reduced. The
phase of coefficientF22 remains nearly unchanged. The outlier in the
combustor transfermatrices eCc and eCh at St � 4 (see Figs. 5 and 6) is
present in all coefficients of the FTMs.
The inferred FTM in Fig. 10 suggests that the Rankine-Hugoniot

relations (Eq. (22)) together with the FTF in Eq. (23) are applicable
in the present case. For low Mach number flows (Mc � 1), the F22

element in Eq. (22) is commonly used to determine the flame
dynamics via F xð Þ ¼ 1=h F22 � 1ð Þ [23–26]. Figure 11 shows the
flame transfer function of SCARLET under these assumptions. The
upcoming section discusses possible ways to enhance the quanti-
fication of model accuracy for the model-based inference method.

5.2 Discussion. The model-based inference method is a
mathematically consistent approach to determining the FTM from
the experimental combustor transfer matrices of complex thermoa-
coustic test rigs. However, its dependence on a LOM introduces a
sensitivity to modeling errors. Any inaccuracies of the acoustic
LOM will manifest as errors in the FTM. Therefore, it is crucial to
ensure a good approximation of the global behavior and inner
system dynamics of the combustor by the LOM.
Combining the model-based inference method with statistical

procedures, such as Bayesian inference [44,45], may relax these
constraints. Explicitly accounting for uncertainties in the experi-
mental combustor transfer matrices and model input parameters
would help to quantify the propagation of errors in the FTM.
Additionally, the computation of uncertainty bounds for the FTM
would visualize the reliability of the inferred result. Furthermore,
quality measures could be systematically computed, facilitating the
assessment of different LOMs in terms of their alignment with
experimental combustor transfer matrices.
To ensure the fidelity of the internal system dynamics, it is

imperative to construct the LOM with a high degree of physical
realism. Introducing modeling assumptions, such as low Mach
number flows or constant gas properties, should be avoided or
chosen with meticulous care. In general, the LOM should be
designed to minimize the number of uncertain input parameters,
thereby enhancing its reliability in representing the intricacies of the
system’s internal system dynamics. If available, subelements or
subsections of the LOM may be replaced by scattering matrices
obtained from additional experiments or numerical simulations. In
this case, the quality of the LOM would increase with the
development of the combustor.

6 Conclusion and Outlook

This work focuses on the inference of the flame transfer matrix
from experimental combustor transfer matrices of thermoacoustic
test rigs with complex features, such as acoustic cross-
communication bypassing the flame or area contractions at the
combustion chamber outlet. The BFTM approach to postprocess the
FTM simply combines the experimentally determined transfer
matrices of the hot and cold burner at the same inlet conditions. Note
that the BFTM approach achieves robustness by heavily constrain-
ing the internal system dynamics. This work shows that this
approach is mathematically inconsistent for test rigs with complex
features. Instead, a model-based inference method utilizing a LOM

Fig. 10 Gain and phase of the coefficients of the flame transfer
matrices of SCARLET computed with the MBI method and
obtained with the BFTM approach using the experimental hot
combustor transfer matrix ~Ch in combination with the experi-
mental or modeled cold combustor transfer matrix ~Cc or Cc,
respectively, for comparison reasons and as an indicator for the
accuracy of the LOM used

Fig. 11 (a) Gain and (b) phase of the flame transfer function of
SCARLET computed with the MBI method and obtained with
the BFTM approach using the experimental hot combustor
transfer matrix ~Ch in combination with the experimental or
modeled cold combustor transfer matrix ~Cc or Cc, respectively
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to approximate the internal system dynamics of the combustor is
proposed—a generalized framework to infer the FTM in complex
setups. In addition, using a LOM can reduce the experimental effort
as cold measurements are only required to validate the same but not
at every operation point. The model-based inference method
converges to the BFTM method in the absence of complex test rig
features. The capabilities of the model-based inference method are
analyzed by applying it to generic and experimental data sets of the
Rolls-Royce SCARLET test rig operated under realistic engine
conditions.
Formulating an accurate LOM is the most challenging part of the

model-based inference method. A physics-based approach with
minimal assumptions is used in this study. For future work, we
propose to couple the MBI method with statistical procedures such
as Bayesian inference. This coupling promises the systematic
computation of quality measures to compare different LOMs,
uncertainty bounds for the inferred FTM, and a reduced error
propagation in the FTM.
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Nomenclature

B ¼ burner transfer matrix
C ¼ combustor transfer matrix
c ¼ speed of sound (m s– 1)
D ¼ duct transfer matrix
F ¼ flame transfer function
F ¼ flame transfer matrix

f, g ¼ acoustic Riemann invariants
M ¼ Mach number
p ¼ pressure (kg m– 1 s–2)
_Q ¼ heat release rate (Wm–3)
St ¼ Strouhal number
T ¼ transfer matrix
u ¼ velocity (m s–1)

Greek Symbols

c ¼ heat capacity ratio
h ¼ temperature ratio
q ¼ density (kg m–3)
x ¼ angular frequency (Hz)

Subscripts

r ¼ reactants
ref ¼ reference position
p ¼ products
u ¼ upstream

Superscripts

c ¼ cold
h ¼ hot

� ¼ generic

 ¼ measurement

Abbreviations

BFTM ¼ burner-flame transfer matrix
DTD ¼ distributed time delay
FTF ¼ flame transfer function
FTM ¼ flame transfer matrix
LOM ¼ low-order model
MBI ¼ model-based inference

MMM ¼ multi-microphone method

Appendix: Derivation of Combustor Transfer Matrix

Models

Analogously to the derivations in Sec. 2.3, a model for the hot
combustor matrix Cc can be derived by interconnecting the
connector model (Fig. 2, center) with a known flame transfer matrix
F (Fig. 2, upper right). For that purpose, the first row of Eq. (13) is
used to substitute vr in Eq. (10)

vp ¼ Fvr

¼ F Th
ruvu þ Th

rpvp

� � ) vp ¼ F�1 � Th
rp

� ��1

Th
ruvu

(A1)

Subsequently, Eq. (A1) is used to replace vp in the bottom row of
Eq. (13) to retrieve Ch

vd ¼ Th
dp F�1 � Th

rp

� ��1

Th
ru þ Th

du

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ch

vu (A2)

This procedure is displayed in Fig. 2 by the gray dashed arrows. The

cold combustor matrix model eCc is retrieved from Eq. (2) by
replacingwith the identitymatrix I and evaluatingTru, Trp, Tdu, and
Tdp for cold conditions

Cc ¼ Tc
dp I� Tc

rp

� ��1
Tc
ru þ Tc

du (A3)
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A B S T R A C T

Low-order network models are an efficient framework to describe and predict thermoacoustic phenomena in
confined combustion systems. These models are based on the interconnection of compact and non-compact
elements representing the main components of the system. Assumptions such as small Mach numbers or
constant gas properties are typically applied in the derivation of these elements.

This work proposes a Jacobian-based framework for the derivation of comprehensive thermoacoustic jump
conditions (compact elements) accounting for acoustic, entropic, and compositional perturbations. The modu-
larity provided by the Jacobian-based formulation renders the framework easily applicable for the derivation
of a variety of compact elements and provides a straightforward implementation guideline. Application-specific
assumptions to increase computational efficiency or, conversely, to ease the implementation may be included
a posteriori, enabling easy switching between accurate and efficient formulations without rederivation. The
capabilities of this framework are demonstrated by deriving a novel, highly accurate lean premixed flame
model. This novel flame model is validated for the case of a lean premixed H2 autoignition flame.

Novelty and Significance
This study proposes a novel framework for developing jump conditions for compact elements of ther-

moacoustic network models. Unlike the established approach of deriving case-specific jump conditions by
hand, our Jacobian-based method generates jump conditions valid for a wide range of application cases
with a modularity that eases implementation and the possibility of straightforward a posteriori customization
for specific application cases. For the first time, jump conditions for acoustic, entropic and compositional
perturbations across a lean premixed flame that allow for arbitrary Mach numbers, realistic gas properties
as well as flame movement are developed, showcasing the capabilities of the proposed framework. The
proposed framework adds flexibility to thermoacoustic network models that enable a quick adjustment to
vary application-specific requirements concerning accuracy and efficiency.

1. Introduction

Lean-burn combustion systems, such as low emission gas turbines or
aero-engines, are prone to thermoacoustic combustion instabilities that
can limit the operational range of the engine, increase wear, or even
result in system failure [1,2]. Accurate and efficient prediction tools are
crucial to aid and accelerate the design process in engine development
programs to prevent these self-excited instabilities.

Low-order network modeling [3–10] has been proven to be an
efficient technique in the description and prediction of thermoacous-
tic phenomena in confined combustion systems. These models are
based on the interconnection of acoustically/convectively compact as
well as non-compact elements. Examples for compact elements are
flames [11–14], area jumps [11,15–17], compact nozzles [18–21] or

∗ Corresponding author.
E-mail address: moritz.merk@tfd.mw.tum.de (M. Merk).

junctions [22]. Non-compact elements are, for example, ducts with
or without changes in area and/or temperature [10,23–25]. The ap-
plication of low-order network models is versatile. They are used to
gain a fundamental understanding of basic phenomena in the dy-
namics of combustion systems (e.g. mode clustering in annular and
can-annular combustors [26–29]) and played a crucial role in the
discovery of intrinsic thermoacoustic modes [30,31]. Their low numer-
ical cost renders low-order network models exceptionally suited for
extensive parameter studies, e.g. in early design phases. Additionally,
low-order network models may be used in the post-processing of exper-
imental measurements to get more accurate system stability predictions
with uncertainty bounds [32] or to extract the thermoacoustic transfer
behavior of the flame from microphone measurements [33].
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Nomenclature

𝑎 number of carbon atoms (fuel species) (–)
𝑎𝛴 relative gain error (–)
𝐴 area (m2)
𝑏 number of hydrogen atoms (fuel species) (–)
𝑐 speed of sound (ms )
𝑐p specific heat capacity at constant pressure

( J
k g K )

𝑓 frequency (Hz)
 flame transfer function (–)
𝐅 flux vector
𝐅∇ convective flux vector
𝐅p surface flux vector
ℎ sensible enthalpy ( J

k g )
𝛥ℎ0 enthalpy of formation ( J

k g )
𝐻 total non-chemical enthalpy ( J

k g )
He Helmholtz number (–)
𝐉 Jacobian matrix
𝐿 length (m)
𝐿𝜏 distance between the input and the

maximum heat release rate (m)
𝑀 Mach number (–)
𝐧 normal vector (–)
𝑁 number of species (–)
𝑝 pressure (Pa)
𝑃 approximation order in Mach number (–)
𝑅 specific gas constant ( J

k g K )
𝑠 entropy ( J

k g K )
𝐒 scattering matrix
St Strouhal number (–)
𝑡 time (s)
𝑇 temperature (K)
𝐓 transfer matrix
𝑢 velocity (ms )
𝑢q absolute flame velocity in a fixed reference

system (ms )
𝐔 state vector of conserved quantities
𝐯 state vector of perturbations
𝑉 volume (m3)
𝐰 vector of perturbation characteristics
x spatial coordinate (m)
𝐗 vector of mole fractions (–)
𝑋 mole fraction (–)
𝐘 vector of mass fractions (–)
𝑌 mass fraction (–)
Greek letters
𝛾 ratio of specific heats (–)
Γ filter matrix (–)
𝛿 Kronecker delta (–)
𝜆 wavelength (m)
Λ boundary matrix (–)
𝜈 stoichiometric coefficients (–)
𝜌 density ( k g

m3 )

The individual elements of network models, represented by trans-
fer/ scattering matrices, can be determined by experiments or nu-
merical simulations. Alternatively, models for the individual elements

Σ approximation error (–)
𝜙 equivalence ratio (–)
𝜑 phase (–)
𝜑𝛴 phase error (–)
𝜓 arbitrary physical quantity
�̇�T volumetric heat release rate ( W

m3 )
�̇�𝑌 vector of volumetric species reaction rates

( k g
m3s )

�̇� volumetric source vector
Ω integral source vector
�̇�T integral heat release rate (W)
Ω̇Y vector of integral species reaction rates ( k gs )

Operators

d differential
lim limes
 order of magnitude
Subscript

(⋅)air air
(⋅)d duct
(⋅)f fuel
(⋅)𝑘 of species 𝑘
(⋅)𝑖 at location 𝑖
(⋅)in characteristic perturbations entering the

system
(⋅)max maximum value
(⋅)out characteristic perturbations leaving the sys-

tem
(⋅)ref at a reference point
(⋅)w at the wall
Superscript

(⋅)A/B/C/D/E/F forcing case A/B/C/D/E/F
(⋅) mean quantity
(⋅)′ perturbed quantity
(⋅)+ non-dimensionalized perturbed quantity
̂(⋅) approximation
Abbreviations

FTF flame transfer function
Q1D quasi-one-dimensional
3D three-dimensional

can be derived from first principle. Such analytical models give in-
sight into the basic coupling of perturbations in the corresponding
physical system between the ‘‘ports’’ of the element. However, their
application typically requires a trade-off between accuracy and com-
putational efficiency, where the typical focus on extensive parameter
studies or fundamental insight favors efficiency or reduced complexity.
Deriving these elements, the focus on efficiency or reduced complexity
commonly results in a priori assumptions, e.g., assuming constant gas
properties or approximating to first-order in Mach number. Problem-
atically, introducing assumptions a priori limits the range of validity
of the elements. A rederivation is required when a different appli-
cation case violates any of these assumptions or has more stringent
accuracy requirements. Let us consider the example of a compact
flame element. Chu [34] derived the acoustic transfer behavior for
a discontinuity in motion, including terms up to first order in Mach
number and calorically perfect gas mixtures with different mixtures
upstream and downstream of the flame front. Dowling and Stow [11]
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as well as Schuermans [35] revisited this problem, additionally tak-
ing into account entropic disturbances generated by the flame. While
Schuermans [35] retained the flame motion and the assumption of a
calorically perfect gas mixture, Dowling and Stow [11] introduced the
additional assumption of constant gas properties and a heat source
at rest. Strobio Chen et al. [12] derived the jump condition for a
flame with constant gas properties taking the flame movement back
into account and emphasized that the assumption of a flame at rest
results in the generation of spurious entropy. In addition, including the
movement of the flame naturally resolves the paradox [36] that in the
zero Mach number limit, a flame at rest should conserve the volume
flow rate rather than the mass flow rate. Gant et al. [14] derived the
compact flame element for high Mach number autoignition flame since
the limitation to first order in Mach number of Strobio Chen et al. [12]
was too restrictive for the case under consideration. In parallel, Li and
Morgans [13] show a clear impact of non-constant gas properties on
thermoacoustic instability predictions for long combustion chambers
in the limit of negligible mean flow ((𝑀0)). However, flame move-
ment is not taken into account. Note that the list of papers above is
not exhaustive, but shows a clear pattern of repeated case-dependent
derivations that involve varying combinations of assumptions.

Nowadays, the coupling of low-order network models with experi-
mental measurements receives increased attention. The use of Bayesian
inference promises more reliable stability predictions in combination
with uncertainty quantification [32], whereas the model-based in-
ference method [33] uses low-order network models to retrieve the
thermoacoustic transfer behavior of a flame from experimental mea-
surements in complex test rigs. Both methodologies require an accurate
representation of the internal dynamics of the thermoacoustic systems.
However, even minor inaccuracies in the transfer behavior of single
elements can add up and alter the dynamics of complex thermoacoustic
systems significantly [32]. Therefore, the elements used should be as
accurate as possible and assumptions should be reduced to only those
that are well justified.

In this work, we focus on the derivation of thermoacoustic coupling
conditions for compact elements — so-called ‘‘jump conditions’’. The
goal of this study is (i) to provide a generalized framework for the
derivation of jump conditions with (ii) a wide generality and flexi-
bility. The framework is (iii) easily applicable for the derivation of a
variety of compact elements (e.g., flame, area jump) and (iv) provides
a straightforward implementation rule. The jump conditions derived
are (v) highly accurate and account for all characteristics (acoustic,
entropic, and compositional perturbations) in quasi-one-dimensional
reactive flows. Application-specific assumptions to increase efficiency
or reduce complexity are easily included (vi) a posteriori without requir-
ing a rederivation of the jump condition. Finally, the state variables are
chosen such that they are of the same order of magnitude for typical
application cases so that (vii) the transfer matrix/ scattering matrix
coefficients are non-dimensionalized and at the same time represent
the relative importance of the different incoming perturbations in
generating velocity, pressure, entropy, or compositional fluctuations.

This paper is structured as follows. Section 2 details the general
framework for deriving compact jump conditions with the features
mentioned above. The section is subdivided into the underlying fun-
damental equations (Section 2.1), the Jacobian-based framework (Sec-
tion 2.2), and a posteriori simplifications (Section 2.3). In Section 3,
the capabilities of the Jacobian-based framework are demonstrated by
deriving a novel jump condition for compact lean premixed flames
(Section 3.1). This novel jump condition resolves the transfer behav-
ior of acoustic, entropic, and compositional perturbations, accounts
for flame movement as well as realistic gas properties, and is valid
for flows of arbitrary Mach number. In Section 3.2, the accuracy of
this novel formulation is demonstrated by comparison to numerical
results of a one-dimensional H2 autoignition flame generated with
a linearized reactive flow solver. Section 3.3 discusses that the a

Fig. 1. Schematic representation of illustrative physical system. The control volume 𝑉
( ) encloses the system for which the thermoacoustic jump condition is derived.
The interior ( ? ) of the system requires a problem-specific model to find a closed
representation of the thermoacoustic jump conditions and is not further specified in
this example. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

posteriori introduction of frequently invoked assumptions recovers well-
known results for jump conditions found in literature. Furthermore,
the approximation errors corresponding to the most common approx-
imations are analyzed. Section 4 briefly comments on the application
of the Jacobian-based framework for non-reacting cases and Section 5
concludes the paper.

2. Generalized jump conditions

Fig. 1 displays an illustrative example of an element of a thermoa-
coustic network model enclosed by a control volume 𝑉 with a single
input port 1 and a single output port 2. The input and output states
are assumed to be quasi-one-dimensional (Q1D) to work as coupling
interfaces in Q1D network models. The interior of the system may
include three-dimensional (3D) effects. The goal of this work is to pro-
vide a framework for deriving generalized coupling relations between
the Q1D inputs and outputs of such a system accounting for acoustic,
entropic and compositional perturbations. In such a relation, any 3D
effects inside the control volume are included in an integral manner,
e.g., for an arbitrary physical source �̇�𝜓 via the volume integral

∫ �̇�𝜓 , dV. (1)

Analytical or semi-empirical closure models are needed to derive
closed-form coupling relations for the volume integrals such as Eq. (1),
e.g. models for the heat release rate of a flame [37] or for viscous
losses [38].

This work focuses on coupling relations in the limit of convective
compactness – so-called jump conditions. The assumption of convective
compactness is required since this work derives jump conditions that
include the description of entropic and compositional disturbances.
The assumption of acoustic compactness is sufficient if only acoustic
waves are considered. Compactness relates to the assumption that the
spatial extent 𝛥x of the system (see Fig. 1) is negligible compared to
the wavelengths 𝜆 of incoming and outgoing perturbations. Mathemat-
ically, jump conditions are typically the zeroth order approximation
with respect to the Strouhal number (convectively compact case)

St = 𝛥x
𝜆c

= 𝛥x
𝑢
𝑓 (2)

or the Helmholtz number (acoustically compact case)

He = 𝛥x
𝜆a

= 𝛥x
𝑐
𝑓 (3)
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of more general coupling relations and can be derived by evaluating
all terms in the limit St → 0 or He → 0, respectively. 𝑓 , 𝑢 and 𝑐
are the frequency, the flow velocity and the speed of sound. Note that
assuming convective compactness strongly restricts the frequency range
in which the jump condition approximates the underlying physical
system well. For convectively non-compact systems, coupling relations
of higher-order in the Strouhal number should be derived. The frame-
work proposed in Section 2.2 is extendable to higher-order coupling
relations, even though their explicit derivation is beyond the scope
of this paper. With increasing Strouhal number, the convective non-
compactness will result in a ‘‘spatial’’ low-pass filter behavior of the
sources related to convective effects [39].

Furthermore, note that even though this work focuses on jump
conditions of 2-port systems, the Jacobian-based framework proposed
in Section 2.2 is applicable to systems with arbitrary numbers of input
and output ports.

2.1. The fundamental equations

The basis of any jump condition is a closed system of balance
equations that provides the prerequisites for coupling the Q1D input
and output states

𝐔 =

⎡⎢⎢⎢⎢⎣

𝜌
𝜌𝑢

𝜌𝐻 − 𝑝
𝜌𝐘

⎤⎥⎥⎥⎥⎦
(4)

of a system (e.g. Fig. 1). 𝑝, 𝜌, 𝑢, and 𝐻 =
∑
𝑘 ℎ𝑘𝑌𝑘 + 1

2 𝑢
2 are the

pressure, density, velocity, and the total non-chemical enthalpy. ℎ𝑘 and
𝑌𝑘 correspond to the sensible enthalpy and the mass fraction of species
𝑘. 𝐘 = [𝑌1,… , 𝑌𝑘,… , 𝑌𝑁−1]𝑇 is the transposed vector of 𝑁 − 1 species
mass fractions. Note that as a consequence of mass conservation, the
𝑁th species mass fraction

𝑌𝑁 = 1 −
𝑁−1∑
𝑘=1

𝑌𝑘 (5)

can be expressed via 𝐘 and does not need to be resolved explicitly. The
interior dynamics of the system are described by the integral reactive
Navier–Stokes equations of the form
𝜕
𝜕 𝑡 ∫ 𝐔dV + ∫ 𝐅 ⋅ 𝐧dA = ∫ �̇�dV , (6)

where

𝐅 = 𝐅∇ + 𝐅𝑝 =

⎡
⎢⎢⎢⎢⎣

𝜌𝑢
𝜌𝑢2

𝜌𝑢𝐻
𝜌𝑢𝐘

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0
𝑝
0
𝟎

⎤⎥⎥⎥⎥⎦
(7)

are Q1D fluxes at the boundary of the system providing Q1D coupling
interfaces to neighboring elements in a network model. 𝐅∇ and 𝐅𝑝
are the convective flux and the surface flux, respectively. 𝟎 is a zero
vector of corresponding dimensions. The source vector �̇� describes 3D
volumetric source terms, e.g. due to chemical reactions such as the
volumetric heat release rate �̇�𝑇 or the volumetric species reaction rates
�̇�𝑌 . Additionally, diffusive effects such as pressure losses or wall heat
losses can be included in �̇�. ∫ dV and ∫ dA denote the integration over a
volume and the corresponding surfaces with the outward-facing normal
vector 𝐧, respectively. Note that 𝑉 and 𝐴 are yet undefined, and Eq. (6)
can be applied to any system.

To close Eq. (6), thermal, caloric, and canonical equations of states
are required. In this work, the perfect gas law (thermal equation of
state)

𝑝 = 𝜌
∑
𝑘
𝑅𝑘𝑌𝑘𝑇 , (8)

Gibbs’ equation of a multi-component gas [20,40–43] (canonic equa-
tion of state)

dℎ = 𝑇 d𝑠 + 1
𝜌
d𝑝 +

∑
𝑘

(
ℎ𝑘 − 𝑇 𝑠𝑘

)
d𝑌𝑘 (9)

and the caloric equation of state

dℎ = 𝑐pd𝑇 +
∑
𝑘
ℎ𝑘d𝑌𝑘 (10)

are used. 𝑅𝑘, and 𝑠𝑘 are the specific gas constant and the mass-specific
entropy of the species 𝑘. d denotes a differential.

Furthermore, in the case of chemical reactions, modeling the source
terms �̇�𝑇 and �̇�𝑌 requires a reaction mechanism and the calculation
of the corresponding chemical equilibrium. For example, the following
global reaction mechanism

𝝂1

⎡
⎢⎢⎢⎢⎢⎣

C𝑎H𝑏
O2
N2

CO2
H2O

⎤
⎥⎥⎥⎥⎥⎦

𝝂2

⎡
⎢⎢⎢⎢⎢⎣

C𝑎H𝑏
O2
N2

CO2
H2O

⎤
⎥⎥⎥⎥⎥⎦

, (11)

with the stoichiometric coefficients

𝝂𝑖 ∶=
[
𝜈𝑖,C𝑎H𝑏 𝜈𝑖,O2

𝜈𝑖,N2
𝜈𝑖,CO2

𝜈𝑖,H2O
]𝑇
, 𝑖 ∈ {1, 2}, (12)

can be used for lean combustion (𝜙 < 1) of an arbitrary hydrocarbon
fuel C𝑎H𝑏 in a medium temperature range [13,44]. Note that hydrogen
is represented by the special case 𝑎 = 0, 𝑏 = 2. In case of the
global reaction mechanism in Eq. (11), the stoichiometric coefficients
downstream of the reaction zone 𝜈2 can be expressed in terms of the
upstream coefficients 𝜈1 and are given via

𝝂2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
−(𝑎 + 𝑏

4 ) 1 0 0 0
0 0 1 0 0
𝑎 0 0 1 0
𝑏
2 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

𝝂1. (13)

The coefficients 𝑎 and 𝑏 are used to represent arbitrary hydrocarbon
fuels or hydrogen (𝑎 = 0, 𝑏 = 2). Note that the inclusion of CO2
and H2O in the incoming air mixture enables the modeling of viti-
ated air in axially staged combustors [14,45–49] or humidified air
for wet combustion [50,51]. For higher temperatures and fuel-richer
conditions, dissociated species cannot be neglected, and additional
equations, e.g. CO2 CO + 1

2O2or H2O H2 + 1
2O2, would have

to be taken into account. Then, the stoichiometric coefficients 𝜈2 in
Eq. (13) must be corrected. We refer to Li and Morgans [13] on how
to efficiently correct 𝜈2 in this case.

Finally, additional closure models are needed if diffusive effects are
taken into account in �̇�. However, the corresponding closure models
are highly problem-specific and are therefore not further detailed in
this section.

2.2. A Jacobian-based framework

On the basis of the general equations stated in Section 2.1, the
derivation of any thermoacoustic jump conditions including acoustic,
entropic and compositional perturbations can be generalized while
minimizing the assumptions made. The derivation is subdivided in the
following six steps:

1. Defining the physical system of interest, e.g., a flame element or
a sudden area jump. In this step, a schematic representation
of the system of interest is created, which can be used in the
following steps to derive the jump condition. Fig. 1 shows such
a schematic representation of an illustrative system of interest,
which is enclosed by the control volume 𝑉 . The interior of the
system must be defined in this step. However, since the interior
of the system is highly problem-specific, it is not further detailed
in the illustrative example of Fig. 1.

2. Analytical integration over the control volume. In this step, the
integral reactive Navier–Stokes Eqs. (6) are integrated over the
control volume 𝑉 of the system specified in step 1. This allows us
to partially evaluate the general terms in Eq. (6) analytically. For
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example, applying Eq. (6) to the exemplary system displayed in
Fig. 1, the fluxes across the system boundaries can be simplified
under the assumption of convective compactness to
lim
St→0∫ 𝐅 ⋅ 𝐧 dA = 𝐅2𝐴2 − 𝐅1𝐴1 + lim

St→0∫ 𝐅𝑝 ⋅ 𝐧 dAw, (14)

where the indices (⋅)1, (⋅)2 and (⋅)w denote the states upstream,
downstream and along the walls of the system of interest, re-
spectively.

3. Linearization of the integral reactive Navier–Stokes equations. All
physical quantities 𝜓 = 𝜓 + 𝜓 ′ are separated into a time-
independent mean part 𝜓 and a temporal deviation from that
state 𝜓 ′. Next, the perturbations are assumed very small (𝜓 ′ ≪
𝜓) such that the mean quantities are unaffected by the perturba-
tions and may be computed separately. Under these assumptions,
the analytically simplified (step 2) Eq. (6) can be separated
into two sets of equations — the first describing the mean
field and the second detailing the perturbation thereof. Within
the perturbed balance equation, higher-order perturbation terms
(((𝜓 ′)2)) are neglected due to the assumed small perturba-
tion amplitudes, rendering the equation linear in the perturbed
quantities 𝜓 ′.
For example, the flux vector 𝐅𝑖 at the location 𝑖 is split into

𝐅𝑖 = 𝐅𝑖 + 𝐅′
𝑖 =

⎡
⎢⎢⎢⎢⎢⎣

𝜌𝑢

𝜌𝑢2 + 𝑝

𝜌𝑢𝐻

𝜌𝑢𝐘

⎤
⎥⎥⎥⎥⎥⎦𝑖

+

⎡
⎢⎢⎢⎢⎢⎣

𝜌′𝑢 + 𝜌𝑢′

𝜌′𝑢2 + 2𝜌𝑢𝑢′ + 𝑝′
(𝜌′𝑢 + 𝜌𝑢′)𝐻 + 𝜌𝑢𝐻 ′

(𝜌′𝑢 + 𝜌𝑢′)𝐘 + 𝜌𝑢𝐘′

⎤
⎥⎥⎥⎥⎥⎦𝑖

(15)

with 𝐻 ′ = 𝑢𝑢′ + ℎ′. 𝐅𝑖 represents the mean flux vector con-
tributing to the mean balance equation, whereas 𝐅′

𝑖 is the linear
perturbation of the flux vector contributing to the perturbed
balance equation.

The following steps focus on the linearized balance equations since
a thermoacoustic jump condition is a closed representation of this set
of equations. Nonetheless, it is crucial to note that quantifying the
transfer coefficients of a jump condition requires the solution of the
mean balance equation as an input.

4. Defining the local perturbed state vector. A generalized thermoa-
coustic jump condition describes the abrupt change in two
acoustic, one entropic, and 𝑁 − 1 compositional perturbations
across a compact element. The local state of the perturbed
system is therefore described by 𝑁 + 2 perturbations, e.g. via
the state vector

𝐯+𝑖 =

⎡⎢⎢⎢⎢⎢⎣

𝑢+𝑖
𝑝+𝑖

𝑀 𝑖𝑠+𝑖
𝑀 𝑖(𝐘+

𝑖 )

⎤⎥⎥⎥⎥⎥⎦

, (16)

with the non-dimensional perturbations

𝑢+𝑖 =
𝑢′𝑖
𝑐𝑖
, 𝑝+𝑖 =

𝑝′𝑖
𝛾𝑝𝑖

, 𝑠+𝑖 =
𝑠′𝑖
𝑐p,𝑖

−
∑
𝑘

𝑠𝑘,𝑖
𝑐p,𝑖

𝑌 ′
𝑘,𝑖 and 𝑌 +

𝑘,𝑖 =
𝑌 ′
𝑘,𝑖

𝑌 𝑘,𝑖
.

The superscript (⋅)+ denotes a non-dimensional perturbation
throughout this work. 𝛾, 𝑐p and 𝑀 = 𝑢∕𝑐 are the ratio of
specific heats, the specific heat capacity at constant pressure and
the Mach number. The non-dimensional entropy term 𝑠+ equals
the non-dimensional, non-acoustic temperature fluctuation. In
literature, this term is also known as fluctuation of excess
temperature [52]. Note that the choice of 𝐯+𝑖 in Eq. (16) is not
unique and a matter of choice. In Eq. (16) 𝐯+𝑖 is defined such that
the incoming perturbations are of the same order of magnitude for typical application cases in the zero frequency limit [43]:

(𝑢+1 ) ≈ (𝑝+1 ) ≈ (𝑀1𝐘+
1 ) ≲ (𝑀1𝑠

+
1 ) . (17)

Velocity 𝑢+ and pressure 𝑝+ perturbations are related via the
acoustic characteristics (𝑝+ ± 𝑢+)∕2. For a freely propagating
plain acoustic wave in the absence of acoustic sources, the
acoustic characteristics are constant, and 𝑢+ and 𝑝+ are of the
same order in magnitude. Compositional perturbations 𝐘+ in
form of equivalence ratio perturbations are typically generated
across a fuel injector and are of the same order as the velocity
perturbation 𝑢′∕𝑢 = 𝑢+∕𝑀 [53–55]. Entropic inhomogeneities 𝑠+
up to the order of the velocity perturbation 𝑢′∕𝑢 = 𝑢+∕𝑀 may be
generated across a mixing section. Additionally, 𝑠+ of the order
of equivalence ratio perturbations (compositional perturbations
𝐘+) may be generated across a flame. Overall, note that the
scaling of the compositional 𝐘+ and entropic 𝑠+ perturbations
with the Mach number 𝑀 in Eq. (17) is required to relate these
perturbations to the velocity perturbation 𝑢+ instead of 𝑢′∕𝑢. We
refer to Merk et al. [43] for an in-depth discussion on the relation
in Eq. (17).
The scaling of each incoming perturbation to the same order
of magnitude ultimately results in thermoacoustic jump condi-
tions, where the relative magnitude of the individual transfer
matrix coefficients directly represents their relative importance.
Furthermore, choosing non-dimensional perturbations results in
a non-dimensional transfer matrix with a minimal number of
non-dimensional mean input groups.

5. Closure of the linearized system of equations. The generalized
thermoacoustic jump condition expresses the linearized reactive
Navier–Stokes equations solely in terms of the input and output
states 𝐯+𝑖 (Eq. (16)), e.g. 𝑖 ∈ {1, 2} in Fig. 1. Any additional
perturbations 𝜓 ′ must be expressed in terms of the states 𝐯+𝑖 via
the Jacobians 𝐉𝜓 ,𝑖,
𝜓 ′ =

∑
𝑖

𝜕 𝜓 ′

𝜕𝐯+𝑖
𝐯+𝑖 =

∑
𝑖
𝐉𝜓 ,𝑖𝐯+𝑖 . (18)

Additional equations are required to formulate the Jacobians
𝐉𝜓 ,𝑖. Note that the Jacobians solely depend on mean quantities
due to the linearity of the underlying equations with respect to
𝜓 ′. This property is emphasized by the overbar.
For example, the perturbations at the interface 𝑖 in density

𝜌′𝑖 = 𝐉𝜌,𝑖𝐯+𝑖 with 𝐉𝜌,𝑖 = 𝜌
[
0 1 − 1

𝑀 𝑖
− �̃�𝑖
𝑀 𝑖

]
(19)

and in sensible enthalpy

ℎ′𝑖 = 𝐉ℎ,𝑖𝐯+𝑖 with 𝐉ℎ,𝑖 = 𝑐p,𝑖𝑇 𝑖
[
0 (𝛾 𝑖 − 1) 1

𝑀 𝑖

�̃�𝑖
𝑀 𝑖

]
(20)

are expressed in terms of 𝐯+𝑖 by combining the linearized versions
of the perfect gas law (Eq. (8)), the Gibbs equation for a multi-
component gas (Eq. (9)) and the corresponding caloric equation
of state (Eq. (10)). In Eq. (19), the vector

�̃� = [𝑋1, … , 𝑋𝑘, … , 𝑋𝑁−1] with 𝑋𝑘 = 𝑋𝑘 −
𝑌 𝑘
𝑌 𝑁

𝑋𝑁 (21)

results from the perturbed specific gas constant 𝑅′∕𝑅 = �̃�𝐘+. 𝑋𝑘
is the molar fraction of species 𝑘. In Eq. (20), the vector

�̃� = [ℎ̃1, … , ℎ̃𝑘, … , ℎ̃𝑁 ] with ℎ̃𝑘 =
(ℎ𝑘 − ℎ𝑁 )

𝑐𝑝𝑇
𝑌 𝑘 (22)

relates compositional perturbations to a change in sensible en-
thalpy. Incorporating Eqs. (19) and (20) into Eq. (15), the lin-
earized flux vector 𝐅𝑖 is given by

𝐅′
𝑖 = 𝐉𝐹 ,𝑖𝐯+𝑖 with 𝐉𝐹 ,𝑖 = 𝐄𝑖𝐉𝐹 ,𝑖, (23)

where

𝐄𝑖 = 𝜌𝑖𝑐𝑖 diag
([

1 𝑐𝑖 𝑐p,𝑖𝑇 𝑖 𝟏
])

(24)
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is a diagonal matrix, and

𝐉𝐹 ,𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 𝑀 𝑖 −1 −�̃�𝑖

2𝑀 𝑖 1 +𝑀2
𝑖 −𝑀 𝑖 −𝑀 𝑖�̃�𝑖

�̃�𝑖 +𝑀
2
𝑖 (𝛾 𝑖 − 1) 𝑀 𝑖

(
�̃�𝑖 + 𝛾 𝑖 − 1

)
1 − �̃�𝑖

(
�̃�𝑖 − �̃�𝑖�̃�𝑖

)

𝐘𝑖 𝑀 𝑖𝐘𝑖 −𝐘𝑖 diag
(
𝐘𝑖

)
− 𝐘𝑖�̃�

⎤⎥⎥⎥⎥⎥⎥⎦
(25)

is the non-dimensional Jacobian. diag() transforms a vector into
a diagonal matrix and 𝟏 is a vector of ones of corresponding
dimensions. �̃�𝑖 = 𝐻 𝑖∕(𝑐𝑝,𝑖𝑇 ) is the non-dimensionalized mean
total non-chemical enthalpy.
Analogously, closure models are required to express the per-
turbed source vector

Ω′ = lim
St→0

(
∫ �̇� dV

)′
=
∑
𝑖
𝐉𝛺 ,𝑖𝐯+𝑖 , (26)

the perturbed accumulation term of the system

lim
St→0

𝜕
𝜕 𝑡

(
∫ 𝐔 dV

)′
=
∑
𝑖
𝐉U,𝑖𝐯+𝑖 (27)

and the fluctuating surface flux at walls (see Eq. (14))

lim
St→0

(
∫ 𝐅𝑝 ⋅ 𝐧 dAw

)′
=
∑
𝑖
𝐉Fw ,𝑖𝐯

+
𝑖 (28)

in terms of 𝐯+𝑖 . The problem-specific forms of 𝐉𝛺 ,𝑖, 𝐉U,𝑖 and 𝐉Fw ,𝑖
depend on the corresponding closure problems.

6. Formulation of the generalized thermoacoustic jump condition. After
the problem is closed in the previous step, the linearized reactive
Navier–Stokes equations can be reformulated into the transfer
matrix 𝐓 of the generalized thermoacoustic jump condition. In
the exemplary case displayed in Fig. 1 with a single state up-
stream and a single state downstream of the system, the transfer
matrix 𝐓 is generally defined as

𝐯+2 = 𝐓𝐯+1 (29)

and can be expressed via

𝐓 =
(
𝐉U,2 + 𝐉F,2𝐴2 + 𝐉Fw ,2 − 𝐉𝛺 ,2

)−1 (
−𝐉U,1 + 𝐉F,1𝐴1 − 𝐉Fw ,1 + 𝐉𝛺 ,1

)

(30)

following the previous steps.

The Jacobian-based derivation procedure proposed in this section is
easily applicable for deriving a variety of compact thermoacoustic jump
conditions. Furthermore, the Jacobian-based representation renders the
jump conditions easily extendable. If an important mechanism was
omitted in the definition of the system of interest (step 1), it can be
easily included a posteriori without rederiving the full jump condition.
For example, consider the case that the wall heat transfer should be
included in the examplary system of interest defined in step 1 and
displayed in Fig. 1. In this case, we simply need to derive a closure for
the additional source term of the wall heat transfer (⋅)wht following the
steps 2–5 and superpose it with the previously derived source Jacobian
(⋅)prev,

𝐉𝛺 ,𝑖 = 𝐉
prev
𝛺 ,𝑖 + 𝐉

wht
𝛺 ,𝑖 . (31)

The general form of the transfer matrix in Eq. (30) does not change.
Ultimately, this modularity of the Jacobian-based representation offers
a guideline for the straightforward implementation of 𝐓. Instead of
hard-coding the analytical transfer matrix 𝑇 , it is computationally
advantageous to implement all Jacobians individually and then perform
the operation detailed in Eq. (30) during run time. This retains the flex-
ibility to quickly exchange the individual closure models encoded in the
Jacobians. Additionally, the Jacobian-based approach, compared to the
hard-coded implementation, saves computational operations in setting

up the transfer matrix due to the factorized formulation, especially for
complex transfer matrices.

While the derivation of the transfer matrix 𝐓 is straightforward, an
equivalent representation of the thermoacoustic system – the so-called
scattering matrix – is typically used for physical interpretation. The
scattering matrix

𝐰+
out = 𝐒𝐰+

in , (32)

is expressed in terms of the characteristic amplitudes of the acoustic
(𝑓+ = 1

2

(
𝑝+ + 𝑢+

)
, 𝑔+ = 1

2

(
𝑝+ − 𝑢+

)
), entropic (𝑀 𝑠+) and com-

positional (𝑀𝐘+) perturbations entering (⋅)in and leaving (⋅)out the
system,

𝐰+
in =

[
𝑓+
𝑖 , 𝑔+𝑗 ,𝑀 𝑖𝑠

+
𝑖 𝑀 𝑖𝐘+

𝑖

]𝑇

𝐰+
out =

[
𝑓+
𝑗 , 𝑔+𝑖 ,𝑀 𝑗𝑠

+
𝑗𝑀 𝑗𝐘+

𝑗

]𝑇 , (33)

here with 𝑖 = 1 and 𝑗 = 2. 𝐒 is calculated from 𝐓 by applying the state
vector transformation from 𝐯+1 and 𝐯+2 to 𝐰+

in and 𝐰+
out.

2.3. A posteriori simplifications

The generalized thermoacoustic jump conditions derived follow-
ing the six steps in Section 2.2 account for acoustic, entropic, and
compositional perturbations while including changes in gas properties
and arbitrary Mach numbers. However, in many applications it may
be justified to use only a subset of the resolved perturbations or to
introduce additional assumptions to increase efficiency. Starting from
the general thermoacoustic jump conditions, simplifications are easily
introduced a posteriori. The most common assumptions are discussed in
the following subsections.

2.3.1. Restriction to a subset of perturbations
The restriction to a subset of perturbations is straightforward. The

transfer behavior of any subset of perturbations is represented by a
submatrix

𝐓red = Γ𝐓Λ . (34)

of the generalized transfer matrix 𝐓 (Eq. (30)). The filter matrix Γ

reduces the state vector 𝐯+𝑖 to

𝐯+red,𝑖 = Γ𝐯+𝑖 . (35)

Γ is rectangular with the number of columns equal to the length of
the complete state vector 𝐯+𝑖 and the number of rows equal to the
length of the reduced state vector 𝐯+red,𝑖. Additionally, Γ is binary when
reducing to a subset of perturbations, with ‘1’ indicating a perturbation
of interest. The boundary matrix Λ enforces boundary conditions at the
inlet, e.g. (⋅)1, intrinsic to the reduced jump condition,

𝐯+bc,1 = Λ𝐯+red,1 . (36)

Only perturbations of interest are assumed to enter the system. All other
perturbations at the inlet are assumed to be of zero amplitude. For
example, if there is a sole interest in coupling velocity and pressure
perturbations (acoustic transfer behavior), the filter matrix Γ is defined
via

[
𝑢+𝑖
𝑝+𝑖

]
=

[
1 0 0 𝟎
0 1 0 𝟎

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Γ

⎡⎢⎢⎢⎢⎢⎣

𝑢+𝑖
𝑝+𝑖

𝑀 𝑖𝑠+𝑖
𝑀 𝑖(𝐘+

𝑖 )

⎤⎥⎥⎥⎥⎥⎦

. (37)

In addition, no entropic or compositional perturbations are assumed to
enter the system at the inlet boundary (𝑠+1 = 0, 𝑌 +

𝑘,1 = 0),
⎡⎢⎢⎢⎢⎢⎣

𝑢+1
𝑝+1
0
𝟎

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
𝟎 𝟎

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟

Λ

[
𝑢+1
𝑝+1

]
. (38)
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Note that Λ = Γ𝑇 holds in general when restricting to a subset of
perturbations.

2.3.2. Lumping compositional perturbations
The generalized state vectors 𝐯+𝑖 are defined by two acoustic, one

entropic and 𝑁 − 1 compositional perturbations with, e.g. 𝑁 − 1 = 4
considering the global reaction mechanism in Eq. (11). This shows
that the accurate representation of all compositional waves 𝑌 +

𝑘 adds
significantly to the degrees of freedom of the thermoacoustic jump
condition. In the context of network modeling, this increase in degrees
of freedom raises the computational effort substantially.

A standard approach in the literature, e.g. [12,15], to reduce the
degrees of freedom of thermoacoustic jump conditions is to lump all
species into two mixtures, e.g. a fuel mixture (⋅)f and an air mixture
(⋅)air,

𝑌f = �̃�f𝐘 + 𝛼f,𝑁 and 𝑌air =
(
𝟏 − �̃�f

)
𝐘 +

(
1 − 𝛼f,𝑁

)
(39)

with �̃�f =
[
𝛼f,1, … , ̃𝛼f,𝑘, … , ̃𝛼f,𝑁−1

]
and 𝛼f,𝑘 = 𝛼f,𝑘 − 𝛼f,𝑁 , both of

immutable composition (𝜶f = const., 𝛼f,𝑘 ∈ {0, 1}). Due to mass
conservation (𝑌f + 𝑌air = 1), only a single compositional perturbation,
e.g., the perturbed fuel mass fraction

𝑌 +
f = −1 − 𝑌 f

𝑌 f
𝑌 +

air = 𝜷f𝐘+ (40)

with 𝜷f =
[
𝛽f,1, … , 𝛽f,𝑘, … , 𝛽f,𝑁

]
and 𝛽f,𝑘 = (𝛼f,𝑘𝑌 𝑘)∕(𝑌 f), must be

computed. Analogously to Section 2.3.1, a filter matrix Γ (see Eq. (35))
reduces the complete state vectors 𝐯+𝑖 to the corresponding reduced
state vector 𝐯+red,𝑖. If the only mixture to be computed is the perturbed
fuel mass fraction, the filter matrix takes the form

Γ =

⎡⎢⎢⎢⎢⎣

1 0 0 𝟎
0 1 0 𝟎
0 0 1 𝟎
0 0 0 𝜷f

⎤⎥⎥⎥⎥⎦
. (41)

In contrast to Section 2.3.1, the filter matrix Γ is not binary in this
case. Furthermore, when using lumped compositional perturbations,
the composition perturbations 𝑌 +

𝑘,1 at the inlet are assumed to be equal
to 𝑌 +

f,1 or 𝑌 +
air,1, depending on whether species 𝑘 is part of the fuel or air

mixture,

𝐘+
1 = 𝑌 +

f,1𝜶
𝑇
f + 𝑌 +

air,1
(
𝟏 − 𝜶𝑇f

)
= 𝑌 +

f,1𝜼
𝑇
f (42)

with 𝜶f =
[
𝛼f,1 , … , 𝛼f,5 , … , 𝛼f,𝑁−1

]
, 𝜼f =

[
𝜂f,1 , … , 𝜂f,𝑘 , … , 𝜂f,𝑁−1

]
and

𝜂f,𝑘 =
(
𝛼f,𝑘 −

(
1 − 𝛼f,𝑘

)
𝑌 𝑘∕𝑌 f

)
. The corresponding boundary matrix Λ

(see Eq. (36)) then reads

Λ =

⎡⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
𝟎 𝟎 𝟎 𝜼𝑇f

⎤⎥⎥⎥⎥⎦
. (43)

Eventually, the reduced transfer matrix 𝐓red for lumped compositional
perturbations is computed as defined in Eq. (34).

2.3.3. Simplified gas properties
The gas properties 𝑐p = 𝑐p(𝑇 ,𝐘), 𝛾 = 𝛾(𝑇 ,𝐘) and 𝑅 = 𝑅(𝐘) of a gas

mixture generally depend on the composition 𝐘 and partially on the
temperature 𝑇 . However, common assumptions are to neglect either
the dependency on 𝑇 , e.g. [34,35], or the dependency on both 𝑇 and
𝐘, e.g. [11,12,14,44], to reduce the numerical effort in computing the
thermoacoustic jump conditions.

Neglecting the dependency on temperature renders the specific heat
capacities and the ratio of specific heats constant for each species 𝑘
(𝑐p,𝑘 = const., 𝛾𝑘 = const.). This simplifies the temperature-dependency
of each species’ sensible enthalpy

ℎ𝑘 = ∫
𝑇

𝑇0
𝑐p,𝑘 d𝑇 ≈ 𝑐p,𝑘

(
𝑇 − 𝑇0

)
(44)

to a linear relation, where 𝑇0 is the reference temperature at which
the enthalpy ℎ𝑘(𝑇0) is defined to be zero. Relaxing the non-linear
temperature dependence of the sensible enthalpy to a linear one signifi-
cantly reduces the numerical effort of solving the mean-field equations.
The numerical effort of subsequently solving the linearized system
(Eq. (29)) is unaffected when neglecting the temperature dependence
of the gas properties since the dependence of the perturbed sensible
enthalpy

ℎ′𝑘 = 𝑐p,𝑘𝑇
′ (45)

on 𝑇 ′ is linear by default.
If the dependence of 𝑐p, 𝛾 and 𝑅 on the composition 𝐘 of the

gas mixture is neglected additionally, the gas properties of the overall
mixture become constant (𝑐p = const., 𝛾 = const., 𝑅 = const.). This
relates to the assumption that the gas properties of all species are equal
(𝑐p,𝑘 = 𝑐p, 𝑅𝑘 = 𝑅, 𝛾𝑘 = 𝛾). Since all species behave analogously in this
case, a detailed computation of the gas mixture composition 𝐘 is no
longer necessary. This results in a minor reduction of the computational
cost.

2.3.4. Reduced Mach number approximations
In low Mach number flows, higher-order Mach number effects may

be neglected. This approximation is introduced a posteriori into the
generalized jump condition by expanding each Jacobian 𝐉𝑖 in the
generalized transfer matrix 𝐓, e.g. Eq. (30), into a Taylor series up to
a specified order 𝑃 ,

𝐉𝑖 ≈
𝑃∑
𝑝=0

d𝑝𝐉𝑖
d𝑀

𝑝
𝑖

||||||𝑀=0

𝑀
𝑝
𝑖

𝑝!
. (46)

The Taylor expansion is performed with respect to the mean flow Mach
number 𝑀 𝑖 around the expansion point 𝑀 𝑖 = 0. ! denotes the factorial.

Note that for a consistent set of balance equations, the mean and
the perturbation equations must be expanded to the same order 𝑃 .
Then, analogous to dropping the 𝑇 -dependency of the gas mixture in
Section 2.3.3, neglecting higher-order Mach number terms can decrease
the computational effort of solving the mean-field equations by remov-
ing non-linear dependencies. For 𝑃 ≤ 2, the kinetic energy is neglected
and the resulting energy balance equation provides a linear relation
between heat addition and a change in sensible enthalpy. For 𝑃 ≤ 1,
the convective momentum flux is neglected in addition resulting in an
isobaric mean field.

The numerical effort for solving the perturbed system of equa-
tions (Eq. (29)) is only affected barely by the reduced Mach number
assumption since it is linear in the perturbed quantities by definition.

3. The lean premixed flame

The flame element is the core of any thermoacoustic network model
representing a combustion system. The general framework detailed in
Section 2.2 is therefore applied in the following to derive and validate
a generalized jump condition for a lean premixed flame including key
features such as realistic gas properties [13] and flame movement [12,
14,34,35] while resolving acoustic, entropic and compositional waves.

3.1. General derivation

The six steps (Section 2.2) in the derivation of a jump condition
representing a lean premixed flame are detailed in the following.

1. Defining the physical system of interest. The schematic representa-
tion of the lean premixed flame derived in this section is shown
in Fig. 2. The flame is assumed to be located in a duct of constant
cross-section 𝐴 = 𝐴1 = 𝐴2. The 3D flame front is assumed to be
of infinite thinness and to fully separate the flow upstream and
downstream of the flame. The flame is stabilized at an anchoring
point and the flame front is, on average, at rest. However, the
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local flame front may be displaced in response to incoming
flow perturbations, e.g. due to a local kinematic imbalance in
propagation stabilized flames or due to perturbations of the
autoignition delay time in autoignition flames. Diffusive effects
are considered negligible. A fixed control volume 𝑉 encloses the
flame at every time instance.

2. Analytical integration over the control volume. Analytical simpli-
fications of the integral reactive Navier–Stokes Eqs. (6) are
possible when applied to the lean premixed flame (step 1) in
the limit of a compact control volume 𝑉 . In this case, the
accumulation term of the system simplifies to
lim
St→0

(
𝜕
𝜕 𝑡 ∫ 𝐔dV

)
= − 𝜕 𝑉1

𝜕 𝑡
(
𝐔2 − 𝐔1

)
. (47)

See Section 1 of the supplementary material for a detailed
derivation of Eq. (47). Note that the accumulation term does not
vanish even in the limit of compactness due to the movement of
the flame front [12,56,57]. The cross-section averaged absolute
flame velocity in the reference frame at rest is defined as

𝑢q = 1
𝐴
𝜕 𝑉1
𝜕 𝑡 . (48)

Next, the surface integral in Eq. (6) is simplified for the compact
flame element to
lim
St→0∫ 𝐅 ⋅ 𝐧 dA = (

𝐅2 − 𝐅1
)
𝐴 . (49)

In contrast to Eq. (14), no wall–fluid interaction is considered as
a result of the constant cross-section 𝐴.
Neglecting diffusive effects, the source vector of the premixed
flame (step 1)

�̇� =

⎡⎢⎢⎢⎢⎣

0
0
�̇�T
�̇�Y

⎤⎥⎥⎥⎥⎦
(50)

includes the volumetric heat release rate �̇�𝑇 and the species reac-
tion rates �̇�𝑌 only. The corresponding volume integral cannot be
simplified in the limit of compactness. For the shorter notation
in the following steps, the global source vector

Ω = lim
St→0∫ �̇�dV =

⎡
⎢⎢⎢⎢⎣

0
0
�̇�T
Ω̇Y

⎤⎥⎥⎥⎥⎦
(51)

with the global heat release rate �̇�𝑇 and the global species
reaction rates �̇�𝑌 is introduced here.
Recombining Eqs. (47), (49) and (51), the integral reactive
Navier–Stokes equations simplify for the compact premixed
flame to
− 𝐴

(
𝐔2 − 𝐔1

)
𝑢q +

(
𝐅2 − 𝐅1

)
𝐴 = Ω . (52)

Note that 𝑢q and 𝛺 are not mutually independent as will be seen
in step 5.

3. Linearization of the integral reactive Navier–Stokes equations. In the
next step, Eq. (52) is separated into its mean and perturbed parts.
The mean equation of the premixed flame takes the form(
𝐅2 − 𝐅1

)
𝐴 = Ω. (53)

The mean cross-averaged flame velocity vanishes (𝑢q = 0) in
Eq. (53) since the flame is stabilized. The linear perturbed system
of equation equates to
−
(
𝐔2 − 𝐔1

)
𝐴𝑢′q +

(
𝐅′
2 − 𝐅′

1
)
𝐴 = Ω′ . (54)

Eq. (54) includes the movement of the flame 𝑢′q in response to
incoming flow perturbations.

4. Defining the local perturbed state vector. The perturbed state vector
𝐯+𝑖 defined in Eq. (16) is used throughout this work. The reasons
are detailed in step 4 in Section 2.2.

5. Closure of the linearized system of equations. The linearized set of
balance equations for the premixed flame (Eq. (54)) is closed by
expressing all perturbations 𝑢′q, 𝐅′

1, 𝐅
′
2 and Ω′ (with �̇�′

T and Ω̇′
Y)

in terms of the perturbed state vectors 𝐯+1 and 𝐯+2 .
Unsteady changes in the surface area of the flame as well as
effects directly affecting the reaction velocity alter the fuel con-
sumption rate of the flame and consequently result in a per-
turbed global heat release rate �̇�′

T and perturbed global species
reaction rates Ω̇′

Y. For realistic flames, these unsteady flame
dynamics are highly complex and not easily modeled. Therefore,
jump conditions rely on external inputs in the form of so-called
flame transfer functions (FTFs) to provide an accurate represen-
tation of the dynamics of the flame. The FTFs define �̇�′

T with
respect to the perturbed state at a reference point (⋅)ref. For a
lean premixed flame, �̇�′

T is defined as
�̇�′

T

�̇�T

= u
𝑢′ref
𝑢ref

+ p
𝑝′ref
𝑝ref

+ s𝑠
+
ref + Y𝐘+

ref + Y𝑁 𝑌
+
𝑁 ,ref , (55)

where u, p and s are the FTFs related to incoming velocity,
pressure and entropy perturbations. The vector

Y =
[Y1

, … ,Y𝑘 , … ,Y𝑁−1

]
(56)

constitutes of FTFs related to perturbations of the first 𝑁 − 1
species mass fractions and 𝑌𝑁 is the FTF of the perturbed
specie mass fraction 𝑁 , respectively. Note that some FTFs may
be negligible for some type of flames. However, u, p, s, Y
and Y𝑁 are required for the accurate representation of lean
autoignition flames [47,48,58]. The global species reaction rates
Ω̇Y are directly linked to the global heat release rate �̇�T via the
enthalpies of formation 𝛥ℎ0𝑘,

�̇�T =
𝑁∑
𝑘
𝛥ℎ0𝑘�̇�Y𝑘 ⇒

�̇�′
T

�̇�T

=
𝑁∑
𝑘
𝜂𝑘
�̇�′

Y𝑘

�̇�Y𝑘

. (57)

𝜂𝑘 = (𝛥ℎ0𝑘�̇�Y𝑘 )∕(
∑𝑁
𝑘 𝛥ℎ

0
𝑘�̇�Y𝑘 ) with ∑

𝑘 𝜂𝑘 = 1 is the relative
contribution of the non-dimensional perturbed reaction rate of
specie 𝑘 �̇�′

Y𝑘
∕�̇�Y𝑘 to the non-dimensional perturbed heat release

rate �̇�′
T∕�̇�T. Then, assuming all species reactions to show the

same integral dynamics, a direct relation between the perturbed
species reaction rates �̇�′

Y𝑘
and the heat release rate �̇�′

T is found,
�̇�′

T

�̇�T

=
�̇�′

Y𝑘

�̇�Y𝑘

. (58)

Ultimately, combining the closure models in Eqs. (55) and (58)
and choosing the reference point directly upstream of the flame
((⋅)ref = (⋅)1) reveals the overall closure of Ω′ as

Ω′ = 𝐉𝛺 ,1𝐯+1 with 𝐉𝛺 ,1 = Ω
[ u
𝑀1

𝛾1p
s
𝑀1

̃Y
𝑀1

]

and ̃Y = Y − 𝐘
𝑌 𝑁

Y𝑁 .
(59)

A closure model for the perturbed cross-section averaged abso-
lute flame velocity 𝑢′q of a lean premixed flame may be derived
from the balance equation of the reacting fuel mass flux,

− 𝐴
(
𝜌2𝑌 f,2 − 𝜌1𝑌 f,1

)
𝑢′q + 𝐴

(
𝜌1𝑢1

(
𝑌f,2 − 𝑌f,1

))′ = �̇�′
𝑌f
. (60)

Under the assumption of complete combustion (𝑌f,2 = 0)1 and
incorporating the closure model for the fuel species reaction rate
from Eq. (59), Eq. (60) yields the closure

𝑢′q = 𝐉𝑢q ,1𝐯
+
1 (61)

1 For fuel-rich flame, the same procedure as for the lean premixed flame
can be used to derive a closure model for 𝑢′q. In this case, the balance equation
of the oxidizer instead of the fuel species is used. Additionally, the assumption
of complete combustion in a fuel-rich flame equates to 𝑌ox,2 = 0.
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Fig. 2. Schematic representation of a premixed flame including a moving flame front.
The moving flame front ( ) is at every instance included in the fixed control
volume 𝑉 ( ). The flame separates the control volume 𝑉 into the sub-volumes 𝑉1
( ) and 𝑉2 ( ). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

with

𝐉𝑢q ,1 = 𝑐1
[
(1 − u) 𝑀1(1 − 𝛾1p) −(1 + s) (𝛿𝑖f − �̃�1 − ̃Y)

]
.

(62)

The closures of the perturbed flux vectors 𝐅′
1 and 𝐅′

2 are already
known and are defined in Eqs. (23), (24) and (25).

6. Formulation of the generalized thermoacoustic jump condition. Fi-
nally, the perturbed system of equations for the lean premixed
flame (Eq. (54)) is closed using the Jacobian-based closure mod-
els for the perturbed fluxes 𝐅′

1 and 𝐅′
2 (Eq. (23)) with 𝐉F,1 and

𝐉F,2 (Eqs. (24),(25)), the perturbed global source term Ω′ with
𝐉𝛺 ,1 (Eq. (59)) and the cross-section averaged absolute flame
velocity 𝑢′q (Eq. (61)) with 𝐉𝑢q ,1 (Eq. (62)). The generalized
transfer matrix of a lean premixed flame is then defined as

𝐓 =
(
𝐉F,2𝐴

)−1

⎛
⎜⎜⎜⎜⎜⎝

𝐉F,1𝐴 + 𝐴
(
𝐔2 − 𝐔1

)
𝐉𝑢q ,1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐉U,1

+𝐉𝛺 ,1

⎞
⎟⎟⎟⎟⎟⎠

. (63)

The form of Eq. (63) is analogous to the general Eq. (30) with
𝐉Fw ,1 = 𝐉Fw ,2 = 𝟎 (no area change), 𝐉U,2 = 𝟎 and 𝐉𝛺 ,2 = 𝟎.
Note that the explicit analytical formulation of the transfer
matrix of the lean premixed flame (Eq. (63)) in the general
case is omitted here since it would be far too lengthy to fit
this page. Furthermore, a Jacobian-based representation and im-
plementation is advantageous from a computational perspective
concerning flexibility and efficiency (see Section 2.2).

3.2. Validation

This section uses the one-dimensional autoignition flame shown in
Fig. 3(a) to validate the generalized jump condition of a lean premixed
flame (Eq. (63)). The flame is located in a domain of length 𝐿 = 5𝐿𝜏 ,
where 𝐿𝜏 is the location of the maximum heat release of the flame
(see Fig. 3(b)). To be consistent with the notation in Section 3.1, the
‘‘theoretical’’ states just upstream and downstream of the flame front
are indicated by (⋅)1 and (⋅)2, whereas the indices (⋅)0 and (⋅)3 denote
the states at the domain inlet and outlet, respectively. Furthermore,
the investigated flame burns a lean hydrogen (H2)-vitiated air mixture
typical for the second stage in reheat combustion systems [49]. The
corresponding species mass fractions, mean flow parameters and the
ratio of gas properties of the autoignition flame under investigated are
listed in Table 1.

Note that the general model for the lean premixed flame derived
in Sec. 3.1 is applicable to 3D flames. However, the case of a one-
dimensional H2 autoignition flame is sufficient and well suited for the

Fig. 3. The one-dimensional H2 autoignition flame.

Table 1
Mean flow values of the H2 autoignition flame.

Mean flow
parameters

𝑝0 101 325 Pa
𝑇 0 1100 K
𝑀0 0.1
𝐿𝜏 9.33 × 10−3 m

Specie mass
fractions

𝑌 H2 ,0 0.008
𝑌 H2O,0 0.050
𝑌 O2 ,0 0.180
𝑌 N2 ,0 0.762

Gas properties
𝑐p,3∕𝑐p,0 1.074
𝛾3∕𝛾0 0.964
𝑅3∕𝑅0 0.950

validation of the generalized jump condition for the following reasons.
First, the generalized jump condition is exact for a one-dimensional
flame in the limit of compactness. Second, autoignition flames are
sensitive to all incoming perturbations requiring all FTFs u, p, s
and ̃Y for an accurate representation [47,48,58]. Third, the mean flow
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Table 2
The independent characteristic forcing cases A-F computed for the H2 autoignition
flame.

Case Forced characteristic Characteristic amplitude

A acoustic (inlet) 𝑓+
0

B acoustic (outlet) 𝑔+3
C entropic (inlet) 𝑠+0
D compositional (inlet)

(
𝑌 +

H2

)
0
|
(
𝑌 +

N2

)
0

E compositional (inlet)
(
𝑌 +

O2

)
0
|
(
𝑌 +

N2

)
0

F compositional (inlet)
(
𝑌 +

H2O

)
0
|
(
𝑌 +

N2

)
0

Mach numbers in applications encountering autoignition are typically
higher than for propagation stabilized flames. Lastly, hydrogen as a fuel
ensures a change in all gas properties of the gas mixtures across the
flame (see Table 1). An additional practical reason, validation data for
the one-dimensional autoignition flame is easily computed utilizing the
current implementation of the spatially discretized linearized reactive
flow solver of Meindl et al. [59] (see below). Note that for a 3D flame,
the 3D effects would be simply encoded in the FTFs that appear as
coefficients in the jump conditions.

The reference solution for the autoignition flame is computed uti-
lizing the spatially discretized linearized reactive Euler equations in
combination with the UCSD reaction mechanism [60] reduced for
hydrogen/air combustion [61] (9 species, 21 reactions). The corre-
sponding mean fields, such as the mean heat release field in Fig. 3(b),
are solved using finite differences with a first-order upwind scheme.
The domain is resolved with 106 cells. The corresponding linearized
fields are solved in the frequency domain utilizing the Discontinuous
Galerkin solver detailed in Meindl et al. [59]. Third-order elements and
104 cells are used to resolve the computational domain of length 𝐿.
Non-reflecting characteristic boundary conditions are used at the inlet
and outlet [62].

Six linearly independent forcing cases exist to perturb the linearized
system of conservation equations, e.g. the six characteristic forcings
listed in Table 2. Note that there are only three linearly independent
forcings of coupled species perturbations for the four species H2, O2,
H2O, and N2 at the domain inlet. This is a direct consequence of mass
conservation (Eq. (5)). Consequently, in combination with the FTFs
u, p, s, only three coupled compositional FTFs, e.g. YH2 |N2

, YO2 |N2
and YH2O|N2

, as defined in Eq. (59) can be identified from numerical
simulations. Harmonic forcing of the six forcing cases in Table 2 enables
the frequency-wise determination of u, p, s, YH2 |N2

, YO2 |N2
and

YH2O|N2
with respect to the state at the domain inlet (⋅)0 via

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

p

s

YH2 |N2YO2 |N2YH2O|N2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 𝐀−1
0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
�̇�′T
�̇�T

)𝐴

(
�̇�′T
�̇�T

)𝐵

(
�̇�′T
�̇�T

)𝐶

(
�̇�′T
�̇�T

)𝐷

(
�̇�′T
�̇�T

)𝐸

(
�̇�′T
�̇�T

)𝐹

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

with

𝐀0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝑢+

𝑀

)𝐴 (
𝛾 𝑝+)𝐴 (

𝑠+
)𝐴 (

𝑌 +
H2

)𝐴 (
𝑌 +
O2

)𝐴 (
𝑌 +
H2O

)𝐴
(
𝑢+

𝑀

)𝐵 (
𝛾 𝑝+)𝐵 (

𝑠+
)𝐵 (

𝑌 +
H2

)𝐵 (
𝑌 +
O2

)𝐵 (
𝑌 +
H2O

)𝐵
(
𝑢+

𝑀

)𝐶 (
𝛾 𝑝+)𝐶 (

𝑠+
)𝐶 (

𝑌 +
H2

)𝐶 (
𝑌 +
O2

)𝐶 (
𝑌 +
H2O

)𝐶
(
𝑢+

𝑀

)𝐷 (
𝛾 𝑝+)𝐷 (

𝑠+
)𝐷 (

𝑌 +
H2

)𝐷 (
𝑌 +
O2

)𝐷 (
𝑌 +
H2O

)𝐷
(
𝑢+

𝑀

)𝐸 (
𝛾 𝑝+)𝐸 (

𝑠+
)𝐸 (

𝑌 +
H2

)𝐸 (
𝑌 +
O2

)𝐸 (
𝑌 +
H2O

)𝐸
(
𝑢+

𝑀

)𝐹 (
𝛾 𝑝+)𝐹 (

𝑠+
)𝐹 (

𝑌 +
H2

)𝐹 (
𝑌 +
O2

)𝐹 (
𝑌 +
H2O

)𝐹

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
0

.

(65)

Fig. 4 shows the resulting reference FTFs for forcing frequencies 𝑓
between 100 Hz and 2000 Hz with an increment of 100 Hz as markers.
For an accurate low-frequency limit of the FTFs, an additional data
point at 1 Hz is displayed. Note that the respective low-frequency limit
(𝑓 → 0 Hz) of the individual FTFs may be derived from theoretical
considerations [48,53,58]. In a linearized framework, all deviations
from the mean, including the displacement of the flame, are assumed
to be small. To limit the flame displacement in the low-frequency limit
(𝑓 → 0 Hz) with an infinite perturbation period, the absolute flame
velocity displacing the flame must become infinitesimally small (𝑢′q →

0).2 Thus, the low-frequency limits of the FTFs are evident from Eq. (62)
and are u = 1 [53], p = 1∕𝛾1 [58], s = −1 [48] and ̃Y = 𝛿𝑖f − �̃�1.
The low-frequency limits of the FTFs in Fig. 4 match the theoretically
obtained values. Rational fits of the FTFs are represented by the lines
in Fig. 4. Note that for an autoignition flame, each species perturbation
𝑌 ′
𝑘 can affect the species reaction rates of all species and consequently

have their own FTF. In Fig. 4, this effect is clearly visible from the
non-vanishing FTF YO2 |N2

.
In addition to the FTFs, the reference scattering matrix of the test

case domain is determined from the six forcing cases A-F listed in
Table 2 via

𝐒 = 𝐖+
out

(
𝐖+

in
)−1 (66)

with

𝐖+
𝑙 =

[(
𝐰+
𝑙
)𝐴 (

𝐰+
𝑙
)𝐵 (

𝐰+
𝑙
)𝐶 (

𝐰+
𝑙
)𝐷 (

𝐰+
𝑙
)𝐸 (

𝐰+
𝑙
)𝐹 ] (67)

and the state vectors 𝐰+
𝑙 (𝑙 ∈ {in, out}, 𝑖 = 0, 𝑗 = 3) as defined in

Eq. (33).
The thermoacoustic scattering of the domain displayed in Fig. 3(a)

encasing the one-dimensional autoignition flame can be modeled by
the simple network model detailed in Fig. 3(c). The network model
is a sequence of two ducts enclosing the compact flame derived in
Section 3.1, where the flame is located at the maximum heat release
x = 𝐿𝜏 of the spatially discretized flame (see Fig. 3(b)). The duct
element (e.g. [10]) with the scattering matrix

𝑆d =

⎡⎢⎢⎢⎢⎣

𝑒𝜑𝑓 0 0 𝟎
0 𝑒𝜑𝑔 0 𝟎
0 0 𝑒𝜑𝑐 𝟎
𝟎 𝟎 𝟎 𝐈 𝑒𝜑𝑐

⎤⎥⎥⎥⎥⎦
(68)

2 In a linearized framework, all deviations from the mean are assumed
to be small. The displacement 𝛥′(𝑡) of a flame front is therefore limited
to a small maximum value 𝛥′max. Now, assuming a harmonic displacement
of the flame front 𝛥′(𝑡) = 𝛥′max exp(𝑖𝜔𝑡) around its mean in response to a
harmonic perturbation, it becomes obvious that the absolute flame velocity
𝑢′q = 𝜕 𝛥′

𝜕 𝑡 = 𝑖𝜔𝛥′max exp(𝑖𝜔𝑡) vanishes in the low-frequency limit (𝜔 → 0). This is
necessary to keep a limited displacement while the time to reach the maximum
displacement becomes infinitely large. Note that this argument is independent
of the physical mechanism displacing the flame front, but solely results from
the assumption of small perturbations.
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simply apply the phase shifts

𝜑𝑓 = −2𝑖𝜋 𝑓 𝐿d
𝑐 + 𝑢

𝜑𝑔 = −2𝑖𝜋 𝑓 𝐿d
𝑐 − 𝑢

𝜑𝑐 = −2𝑖𝜋 𝑓 𝐿d
𝑢
,

(69)

propagating the acoustic, entropic and compositional disturbances
through the duct of length 𝐿𝑑 . 𝑖 is the complex number. Note that the
network model in Fig. 3(c) uses the state (⋅)0 at the domain inlet as a
reference for the FTFs. Then, interconnecting the scattering matrices
of the individual elements [10] results in the scattering matrix of the
domain approximated by the network model.

Fig. 5 compares the scattering matrices of the spatially resolved
one-dimensional autoignition flame (Fig. 3(b)) and the corresponding
network model (Fig. 3(c)). For conciseness, Fig. 5 shows only the H2
perturbations at the domain inlet and H2O perturbations at the domain
outlet. Overall, the scattering matrix of the network model shows an
excellent agreement in absolute and a very good agreement in phase
values with the reference solution. Only the phases of the coefficients
𝑆𝑠𝑓 and 𝑆𝑠𝑔 show a deviation between the network model and the
reference solution. However, note that the absolute values of the cor-
responding coefficients are almost zero and the phase information is
consequently meaningless and of no concern. The deviation results
from minor numerical artifacts in the reference solution. Furthermore,
no phase information is plotted for the coefficients 𝑆H2O𝑓 , 𝑆H2O𝑔 and
𝑆H2O𝑠 since their absolute values are zero by definition and the phase
is consequently undefined.

The entries of the state vector 𝐰+
𝑖 in Eq. (33) are defined to be in

the same order of magnitudes for typical application cases [43]. Con-
sequently, the amplitudes of the scattering matrix coefficients directly
visualize their relative importance for the thermoacoustic scattering.
For example, 𝑆𝑓 𝑠 and 𝑆𝑔 𝑠 indicate a significant acoustic wave genera-
tion by incoming entropy waves for the lean autoignition flame. This
sensitivity of autoignition flames to incoming entropic/temperature
disturbances is well documented in the literature (e.g. [14,47,48]).
Furthermore, the fifth row in Fig. 5 clearly shows that incoming entropy
disturbances are damped across the flame (|𝑆𝑠𝑠| < 1) and that the gen-
eration of entropy disturbances by acoustic waves is negligible (|𝑆𝑓 𝑠| ≈
0, |𝑆𝑔 𝑠| ≈ 0). Entropy disturbances are consequently predominantly
generated by disturbances in the fuel mass fractions (𝑆𝑠H2

). This is in
line with detailed analytical investigations (e.g. [12,43]).

3.3. Discussion

The generalized jump condition for a lean premixed flame derived
in Section 3.1 can be simplified to a multitude of jump conditions in
literature by introducing suitable assumptions a posteriori. The assump-
tions necessary to simplify this generalized jump condition to some
established results in the literature are listed in Table 3. The essen-
tial assumptions listed are the restriction to a subset of perturbations
(Section 2.3.1), lumping compositional perturbations (Section 2.3.2),
simplified gas properties (Section 2.3.3), reduced Mach number ap-
proximations3 (Section 2.3.4) and the neglect of the flame movement
𝐉𝑢q ,1 = 𝐉𝑢q ,2 = 𝟎. In addition to their intrinsic assumptions, the jump
conditions in the literature typically do not resolve the gas composition
(with Li and Morgans [13] being an exception) requiring additional
external inputs to close the jump condition. For example, Strobio
Chen et al. [12] and Gant et al. [14] use the temperature ratio 𝑇 2∕𝑇 1 as
an additional input. Schuermans et al. [35] requires the lower heating

3 In literature, the transfer matrix is expanded into a Taylor series up to
order 𝑃 directly instead of following the procedure detailed in Section 2.3.4.
In this case, the transfer matrix itself is the 𝑃 th order approximation of the
transfer matrix derived by the procedure in Section 2.3.4.

Fig. 4. Flame transfer functions 𝑢 ( , , 𝑝 ( , ), 𝑠 ( , ),
YH2 |N2

( , ), YO2 |N2
( , ) and YH2O|N2

( , ) for the one-dimensional
H2 autoignition flame. The markers symbolize the reference solution, the lines the
corresponding rational fit used to evaluate the jump condition. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

value of the fuel 𝐻𝑢, the fuel mass fraction 𝑌𝑓 and the gas specific ratios
𝑅2∕𝑅1 and 𝑐p,2∕𝑐p,1 as inputs, whereas Dowling and Stow [11] need the
mean heat release rate �̇�T. Note that the external input used can have
an impact on the accuracy of the jump condition.

In the following, the validation case detailed in Section 3.2 is used
to investigate the approximation errors of the corresponding scattering
matrix (Fig. 5) resulting from the assumptions of a reduced order
in Mach number, constant gas properties, or neglecting the flame
movement. The respective simplifications are introduced by following
the procedure detailed in Section 2.3. Throughout all cases, the mean
global heat release rate �̇�T is kept constant and the gas compositions
upstream (𝐘0) and downstream (𝐘3) of the flame are resolved. When
assuming constant gas properties, these are chosen equivalent to the gas
properties upstream of the flame (𝛾 = 𝛾0, 𝑅 = 𝑅0, 𝑐p = 𝑐p,0). Eventually,
the approximation error of the scattering matrix coefficient with index
𝑖𝑗 is defined as

𝛴𝑖𝑗 =

||||𝑆𝑖𝑗 − �̂�𝑖𝑗
||||

|𝑆 𝑖𝑗 |
, (70)

where �̂� 𝑖𝑗 is the approximation of the generalized scattering matrix
coefficient 𝑆 𝑖𝑗 in Fig. 5. Note that the approximation error defined in
Eq. (70) subtracts the complex-valued scattering matrix coefficients �̂�𝑖𝑗
and 𝑆𝑖𝑗 from each other, resulting in a measure accounting simultane-
ously for errors in gain 𝑎𝛴 ,𝑖𝑗 (relative error) and phase 𝜑𝛴 ,𝑖𝑗 .4 Fig. 6
illustrates the definition of the error measure 𝛴𝑖𝑗 in a phasor plot.

4 Eq. (70) can be expressed in terms of a relative error in gain 𝑎𝛴 ,𝑖𝑗 and a
phase error 𝜑𝛴 ,𝑖𝑗 ,
𝛴𝑖𝑗 =

[
𝑎2𝛴 ,𝑖𝑗 + 2(1 − cos (𝜑𝛴 ,𝑖𝑗

)
) + 2𝑎𝛴 ,𝑖𝑗 (1 − cos (𝜑𝛴 ,𝑖𝑗

)
)
] 1

2 .

A relative approximation error of, for example, 25 % may correspond solely
to an amplitude error of 𝑎𝛴 ,𝑖𝑗 = 0.25, solely to a phase error of 𝜑𝛴 ,𝑖𝑗 =
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Fig. 5. Scattering matrix coefficients of the H2 autoignition flame detailed in Table 1. Displayed are the results of the reference solution ( ) and the network model ( ). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Necessary assumptions to simplify the generalized compact flame element derived in this section a posteriori to
established results in the literature. The table marks the subset of the resolved characteristics (Section 2.3.1), the
usage of simplified gas properties (𝑐p, Section 2.3.3), approximation order in Mach number ((𝑀𝑥), Section 2.3.4)
and the consideration of the flame movement 𝑢q. If only a lumped compositional perturbation (Section 2.3.2) was
used, the compositional perturbation 𝑌 +

𝑘 is checked in brackets (✓). Two exponents are detailed for (𝑀𝑥
) if the

approximation order in Mach number are chosen differently for the mean field (first exponent) and the perturbed
fields (second exponent).

Paper  (𝑀𝑥) 𝑐p 𝑢+ , 𝑝+ 𝑠+ 𝑌 +
𝑘 𝑢q

Chu [34] (
𝑀

1)
𝑐p(𝐘) ✓ (✓)a – ✓

Dowling and Stow [11] (
𝑀

0)
𝑐p ✓ (✓)b – –

Schuermans [35] (
𝑀

1)
𝑐p(𝐘) ✓ (✓)c (✓) ✓

Strobio Chen et al. [12] (
𝑀

1)
𝑐p ✓ ✓ (✓) ✓

Li and Morgans [13] (
𝑀

0)
𝑐p(𝑇 ,𝐘) ✓ – – –

Gant et al. [14] (
𝑀

1|2−3)
𝑐p ✓ ✓ – ✓

This work (
𝑀

∞)
𝑐p(𝑇 ,𝐘) ✓ ✓ ✓ ✓

a Chu [34] considers only the incoming entropy perturbation 𝑠+1 .
b Dowling and Stow [11] considers only entropy waves downstream of the flame.
c Schuermans [35] considers only entropy waves downstream of the flame.

(
0 252

)
2𝜋
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First, 𝛴𝑖𝑗 of zeroth (𝑃 = 0), first (𝑃 = 1) and second (𝑃 = 2) order
Mach number approximations (Section 2.3.4) are investigated and dis-
played in Fig. 7. The zeroth order approximation is only displayed for
the acoustic scattering coefficients since the convective perturbations
are no longer propagated in this limit case [63]. As expected, Fig. 7
shows a decreasing 𝛴𝑖𝑗 for all coefficients with increasing order of
the Mach number approximation. For the H2 autoignition flame with
an inlet Mach number of 𝑀1 = 0.1, the zeroth order Mach number
approximation is with relative errors between 5 − 70% insufficient for
an accurate representation of the acoustic scattering of the flame. The
first-order approximations show decent relative errors of ≤ 3% for most
coefficients with an exception for 𝛴𝑠𝑠 at higher frequencies where the
relative error increases up to 6.5 %. The second-order approximation
is already very accurate with relative errors of ≤ 1.6 % once again
with the worst accuracy for 𝛴𝑠𝑠 at higher frequencies. Overall, the
approximation error of a reduced Mach number approximation of order
𝑃 scales with 𝑀1 via

Σ ∝𝑀
𝑃+1
1 . (71)

For test cases with 𝑀1 > 0.1, Mach number approximations of higher
than first order should be used to obtain an accurate jump condition
(see also the argumentation in Gant et al. [14]).

Second, Fig. 7 shows the approximation error due to the assumption
of constant gas properties (Section 2.3.3). The relative errors are with
up to 25 % for 𝛴𝑓 𝑔 and 𝛴𝑠𝑠 rather large. This stresses the fact that
for an accurate jump condition, the change in gas properties must
be taken into account (see also Li and Morgans et al. [13]). For the
H2 autoignition flame under investigation, the approximation error
corresponding to the assumption of constant gas properties clearly
dominates over the error introduced by first or higher-order Mach
number approximations. Overall, the change in gas properties depends
on the fuel and air composition, the inlet temperature 𝑇 1 and the fuel
mass fraction.

Finally, Fig. 7 displays the approximation error resulting from ne-
glecting the flame movement. Here, especially the scattering coeffi-
cients connected to the generation of entropy waves 𝛴𝑠𝑓 , 𝛴𝑠𝑔 and 𝛴𝑠𝑠
and 𝛴𝑠H2

show immense relative errors of almost 6000 %. The neglect
of flame movement results in the significant generation of spurious
entropic perturbations [12]. Additionally, the acoustic scattering co-
efficients (𝛴 ≤ 12 %) as well as the entropic-acoustic (𝛴 ≤ 19 %) and
the compositional-acoustic coupling (𝛴 ≤ 15 %) are affected when the
flame movement is neglected. This results in the additional generation
of spurious acoustic waves as previously observed by Meindl et al. [64].
In the low-frequency limit, the absolute flame velocity displacing the
flame is infinitesimally small (see Section 3.2). Consequently, the errors
resulting from the neglect of the flame movement decrease strongly
for low frequencies. That the error is not vanishing results from small
errors in the numerically determined FTFs displayed in Fig. 4. Addi-
tionally, Eq. (62) shows that the error resulting from the neglect of the
flame movement away from the zero frequency limit depends strongly
on the underlying flame dynamics and, therefore, the flame transfer
functions.

To the best of the authors’ knowledge, the jump condition proposed
by Gant et al. [14] is the most elaborate and accurate thermoacoustic
jump condition for the configuration at hand found in the literature.
Therefore, we choose, in addition to the numerical results, the formu-
lation of Gant et al. [14] as a reference in an effort to assess the validity
and accuracy of the Jacobian-based framework. Since Gant et al. [14]
use a state vector different from 𝐯+𝑖 , the state transformation
⎡
⎢⎢⎢⎣

𝑝′

𝜌𝑐
𝑢′
𝑅𝑇 ′

𝑐

⎤
⎥⎥⎥⎦𝑖

=
⎡
⎢⎢⎢⎣

0 𝑐 0
𝑐 0 0
0 𝑐 𝛾−1𝛾

𝑐
𝛾𝑀

⎤
⎥⎥⎥⎦𝑖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐕𝑖

⎡⎢⎢⎣

𝑢+

𝑝+

𝑀 𝑠+

⎤⎥⎥⎦𝑖
(72)

Fig. 6. Phasor plot illustrating the definition of the absolute approximation error
𝛴𝑖𝑗

|||𝑆 𝑖𝑗
||| ( ) as the length of the phasor interconnecting the phasors of the

reference 𝑆 𝑖𝑗 ( ) and the approximated �̂� 𝑖𝑗 ( ) scattering matrix coefficients.
All approximations on the isoline ( ) are of the same approximation error 𝛴𝑖𝑗

|||𝑆 𝑖𝑗
|||.

(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

must be applied to the transfer matrix 𝐓Gant of Gant et al. [14, Eq. (15)]
to obtain a transfer matrix

𝐓Gant,tf = 𝐕
−1
2 𝐓Gant𝐕1 (73)

comparable to Eq. (63). Subsequently, the approximate scattering
matrix �̂�Gant,tf is computed by replacing the flame transfer matrix
(Eq. (63)) with 𝐓Gant,tf for the validation case (Section 3.2). To deter-
mine �̂�Gant,tf, the global heat release rate �̇�T is held constant and the
gas properties are set equal to the inflow properties analogously to the
other simplification cases in this section. �̂�Gant,tf is plotted in Fig. 1 of
the supplementary material. Eventually, the approximation errors of
the jump condition of Gant et al. [14] are computed via Eq. (70) and
displayed in Fig. 7.

The jump condition of Gant et al. [14] uses two intrinsic assump-
tions — constant gas properties and the Mach number approximation
(𝑀1|2−3

) (see Table 3). In Fig. 7, the approximation errors associated
with the jump condition of Gant et al. [14] closely align with the errors
arising from the assumption of constant gas properties. This indicates
that the errors from assuming constant gas properties dominate over
those from the Mach number approximation (𝑀1|2−3

). To analyze and
visualize the errors associated with the two assumptions separately,
the authors derived an extended version of the jump condition of
Gant et al. [14], removing the assumption of constant gas properties
while retaining the Mach number approximation (𝑀1|2−3

). The analyt-
ical formulation of the extended jump condition is detailed in Sec. 3 of
the supplementary material. In Fig. 7, the approximation errors of the
extended jump condition are reduced significantly (roughly by an order
of magnitude for most coefficients) in comparison to those of the origi-
nal jump condition of Gant et al. [14]. This proves that the assumption
of constant gas properties dominates the approximation errors of the
original jump condition of Gant et al. [14] in the case considered here.
The errors associated with the Mach number approximation (𝑀1|2−3

)
(isolated in the extended jump condition) are minor in comparison and
behave similarly to (𝑀1

). Only the scattering coefficients associated
with the generation of entropic disturbances show a slightly smaller
order of approximation errors (𝑀1−2

). This indicates that the error
of the Mach number approximation (𝑀1|2−3

) is predominantly influ-
enced by the first-order mean flow approximation used, even though
second to third-order Mach number terms are taken into account in the
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Fig. 7. Approximation errors Σ introduced into the generalized scattering matrix of the H2 autoignition flame (Fig. 5). Displayed are the second ((𝑀2), ), first ((𝑀1),
) and zeroth order ((𝑀0), ) Mach number approximations, constant gas properties ( ) and the neglect of flame movement ( ). The zeroth order Mach

approximation is plotted only for the acoustic scattering coefficients. For reference, the approximation error of Gant et al. [14] ((𝑀1|2−3), constant gas properties, ) is plotted
at five distinct frequencies. In addition, the approximation error of Gant et al. [14]’s jump condition extended for realistic gas properties ((𝑀1|2−3), ) is displayed to isolate the
errors corresponding to the Mach number approximation used by Gant et al. [14]. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

perturbed system of equations. Nevertheless, the Mach number approxi-
mation (𝑀1|2−3

) used by Gant et al. [14] achieves small relative errors
𝛴 ≤ 2.4 % for all coefficients with significant absolute values5 and is
sufficient to achieve highly accurate jump conditions for the validation
case considered here.

4. Application to non-reacting cases

The framework proposed in Section 2 is not only applicable for re-
acting cases such as the lean premixed flame (Section 3) but also for the
derivation of comprehensive jump conditions for non-reacting elements
such as area changes or junctions. To emphasize this point, Section 4
in the supplementary material provides the exemplary derivation for a
shock-free area change with or without pressure loss.

5. Conclusion

This work introduces a Jacobian-based framework for the deriva-
tion of comprehensive thermoacoustic jump conditions for different

5 The largest relative errors of the Mach number approximation (𝑀1|2−3
)

appear in the coefficients 𝛴𝑠𝑓 ≤ 8 % and 𝛴𝑠𝑔 ≤ 23 %. However, these relative
errors are of no concern since the absolute values of 𝛴𝑠𝑓 and 𝛴𝑠𝑔 are negligible
(see Fig. 5).

application cases under minimal assumptions. The modularity and
generality of the framework render it applicable for the derivation
of a wide variety of compact elements. Additionally, the Jacobian-
based modularity provides a guideline for efficient and straightforward
numerical implementation of these jump conditions. The jump condi-
tions derived within this framework are comprehensive and account for
acoustic, entropic and compositional perturbations in reactive flows.
Furthermore, the framework provides easily interpretable transfer/
scattering matrices by choosing the state variables of the same or-
der of magnitude, resulting in relatable matrix coefficients. Finally,
application-specific assumptions to increase efficiency are easily in-
cluded a posteriori without the need for a rederivation of the jump
condition.

The easy applicability of the proposed framework is demonstrated
in this work by deriving the jump condition of a lean premixed flame.
This novel jump condition is subsequently validated for the test case
of a one-dimensional H2 autoignition flame, demonstrating its high
accuracy and easy interpretability. Furthermore, the generality of the
derived jump condition is shown by providing an overview of necessary
assumptions to simplify the novel jump condition a posteriori to some
established jump conditions in literature. The errors introduced by com-
mon approximations like a reduced order in Mach number, constant gas
properties and the neglect of flame movement are investigated.

The proposed framework provides the basis for network model
toolboxes that allow easy switching between highly accurate and highly
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efficient models. Such a toolbox would be suited not only for extensive
parameter studies but also for the usage in the post-processing of
experimental measurements that strongly rely on the accuracy of the
model [32,33]. Especially in complex network models, small modeling
errors in the individual jump conditions may accumulate across the
network, falsifying its transfer behavior significantly.
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The Nonlinear Thermoacoustic
Eigenvalue Problem and Its
Rational Approximations:
Assessment of Solution
Strategies
Nonlinear eigenvalue problems (NLEVPs) arise in thermoacoustics by considering the
temporal evolution of small perturbations in the relevant governing equations. In this
work, two solution strategies are compared: (i) a contour-integration-based method that
guarantees to provide all eigenvalues in a given domain and (ii) a method that approxi-
mates the NLEVP by a rational eigenvalue problem (REVP), which is generally easier to
solve. The focus lies on numerical speed, the completeness of the computed spectrum,
and the appearance of spurious modes, i.e., modes that are not part of the original spec-
trum but appear as a result of the approximation. To this end, two prototypical thermoa-
coustic systems are considered: a single-flame Rijke tube and an annular model
combustor. The comparison of both methods is preceded by a detailed analysis of the
user-defined input parameters in the contour-integration-based method. Our results show
that both methods can resolve all types of considered eigenvalues with sufficient accuracy
for applications. However, the recast linear problem is overall faster to solve and allows
a priori precision estimates—unlike the contour-integration-based method. Spurious
modes as a by-product of the NLEVP approximation are found to play a minor role, and
recommendations are given on how to eliminate them. [DOI: 10.1115/1.4055583]

1 Introduction

Modern low-emission gas turbines are susceptible to self-
excited pressure oscillations that can damage the engine, limit its
operating range or increase emissions [1]. These so-called ther-
moacoustic instabilities originate from an unstable feedback
between pressure oscillations and unsteady heat release. Design-
ing a stable gas turbine is imperative to ensure low emissions and
a stable operation. Hence, efficient and accurate numerical tools
are required to aid and accelerate the design process by predicting
the thermoacoustic stability of combustion chambers.

Several modeling strategies have been proposed to predict ther-
moacoustic stability. These strategies differ according to the num-
ber of assumptions inherent to them. In general, models with
fewer assumptions predict instabilities more accurately, but
demand a higher computational cost. Large eddy simulations [2,3]
model the underlying physics with high accuracy, but are prohibi-
tively expensive for parameter studies. Models based on lineariza-
tion of the conservative equations represent an attractive tradeoff
between costs and accuracy. A large parameter space can be
explored by using them. Listed by increasing number of assump-
tions, these are the linearized reactive flow equations (LRF) [4],
linearized Navier–Stokes equations (LNSE) [5,6], linearized Euler
equations (LEE) [7], or the thermoacoustic Helmholtz equation
[8]. Most simplified are low-order network models, which assume
one-dimensional waves [9–11].

All of the linearized methods have in common that, after a dis-
cretization and closure with necessary input data, a so-called non-
linear eigenvalue problem (NLEVP) is obtained

LðsÞv ¼ 0; v 6¼ 0 (1)

The operator L represents the discretized problem and solutions
are the eigenpairs ðs; vÞ. The set of eigenvalues forms the

spectrum R ¼ fs1; s2;…g. Here, s 2 C is the Laplace variable
with the growth rate ReðsÞ and angular frequency ImðsÞ. Stability
of a combustion chamber is given if for all eigenvalues
ReðsÞ < 0. The mode shape v is needed to determine where to
effectively place acoustic dampers [12]. L depends nonlinearly on
the eigenvalue s and linearly on v. The number of eigenpairs is
potentially infinite, and hence only a subset is sought. Eigenvalues
in thermoacoustic applications can be of simple, semi-simple
[13], or defective [14] type.

2 NLEVPs Include the Linear Eigenvalue Problem

(LEVP)

LðsÞv ¼ ðA� sI
�

v ¼ 0 () Av ¼ sv (2)

as a special case, but are significantly harder to solve since they
do not exhibit a closed form solution and the dependence on s is
highly problem-specific—solution methods are tailored to the
problem at hand [15,16]. Three main strategies have been
employed in the thermoacoustic field: iterative methods [8,17],
contour integration methods [18], and methods based on approxi-
mations of LðsÞ which eliminate the nonlinear dependency on s.
Thermoacoustic state-space models [6,9–11] correspond to this
last approach. Related is the Nyquist criterion [19], which only
assesses stability but does not provide the mode shape v.

Any such method must—at a minimum—return all relevant
eigenpairs. Since, the number of eigenpairs is (potentially) infinite
not all can be computed. Moreover, only modes at low frequen-
cies (�2:5 kHz) are usually considered relevant, since these are
observed in experiments. For every combustor, an individual cut-
off frequency has to be chosen depending on the geometrical
dimensions and operating conditions.

Iterative methods require an initial guess for every eigenvalue
inside the corresponding basin of attraction. However, an
unknown number of eigenvalues, different sizes and shapes of
basin of attractions and the lack of a general methodology on how
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Manuscript received July 12, 2022; final manuscript received July 28, 2022;

published online December 13, 2022. Editor: Jerzy T. Sawicki.

Journal of Engineering for Gas Turbines and Power FEBRUARY 2023, Vol. 145 / 021028-1
Copyright VC 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/gasturbinespow

er/article-pdf/145/2/021028/6960327/gtp_145_02_021028.pdf by Technische U
niversitaet M

uenchen user on 23 M
arch 2023

D.4 PAPER-NLEVP

103



to choose these initial guesses usually result in the computation of
an incomplete spectrum [17,18]. Contour integration permits to
specify an arbitrary domain in the complex plane in which all
eigenpairs are found—in theory. In practice, the computation of
an accurate and complete spectrum depends on user-defined
parameters. The method performs well for thermoacoustic prob-
lems [18]. Finally, NLEVPs can be replaced with an NLEVP of a
simpler structure, such as a rational eigenvalue problem (REVP).
The REVP is still nonlinear in s but has the favorable property
that it can be recast into a LEVP of higher dimension. This per-
mits to use well-established LEVP solution methods [20]. How-
ever, the introduced approximation will alter the spectrum.

Assume that an operator LðsÞ with spectrum R is approximated
by an operator ~LðsÞ with associated spectrum ~R. Formally [16],
one would require that

max
s2~R
jjLðsÞ � ~LðsÞjj2 � e (3)

needs to hold for ~LðsÞ to approximate LðsÞ well, where e is the
acceptable tolerance. The criterion is violated if ~R contains eigen-
values that are not in R—the spurious eigenvalues. Conversely, ~R
is incomplete if it does not contain all eigenvalues of R—a poten-
tially catastrophic case for thermoacoustic stability analysis.

This work addresses two principle points: (i) investigate the
role of user-defined parameters in the contour integration method
with respect to convergence and (ii) establish how and if the spec-
trum is polluted by spurious solutions when a thermoacoustic
NLEVP is transformed into an REVP. The objective is to give rec-
ommendation if, from the point of computational cost, the nonlin-
ear dependence in an NLEVP should be retained or if the less
costly REVP strategy can be pursued without a loss in precision.

In Sec. 2, the NLEVP of the thermoacoustic Helmholtz equa-
tion is formulated. Sources of the nonlinear dependence on s are
reviewed. In Sec. 3 the contour integration method is introduced
from a so-called filtering perspective, which will assist in the sub-
sequent analysis of the role of user-defined input parameters in the
latter half of the section. In Sec. 4, the approximation of the
NLEVP via a REVP is compared to the contour-integration-based
method. Special focus is placed on the occurrence of spurious
modes and the completeness of the computed spectrum. Conclu-
sions and implications for future work are given in Sec. 5.

3 The Thermoacoustic Nonlinear Eigenvalue Problem

In this work, the NLEVP of the thermoacoustic Helmholtz
equation is considered, but the findings generalize to LEE, LNSE
and, in case of frequency dependent boundary conditions, to LRF
models. The equation [8] reads in Laplace space

s2p̂ �r � ð�c2rp̂Þ ¼ sðc� 1Þq̂ (4)

where p̂ and q̂ are the Laplace-transformed pressure and heat-
release rate fluctuation, respectively, and s is the Laplace variable.
Physical parameters are the mean speed of sound field �c and the
ratio of specific heats c. Boundary conditions are defined in terms
of s-dependent impedances ZðsÞ

�c ZðsÞrp̂ � nþ sp̂ ¼ 0 (5)

Equation (4) is closed by expressing q̂ in terms of s and p̂, by
means of a flame transfer function (FTF)

q̂

�q
¼F sð Þ

û � n
�u � n

� �
ref

¼ � 1

s
F sð Þ

rp̂ � n
�q �u � nð Þ

� �
ref

(6)

where �q and �u are the mean density and velocity, respectively.
The FTF relates q̂ to an upstream velocity fluctuation û at a refer-
ence position and in a reference direction n.

Equation (4) can be discretized using a finite element or finite
volume method to account for the complex three-dimensional
geometries in combustion chambers. The discrete NLEVP reads

s2MþKþ
X
i¼1

s

ZiðsÞ
Zi þ

X
k¼1

Fk sð ÞQk

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

L sð Þ

v ¼ 0 (7)

Here, M and K are the mass and stiffness matrix, respectively.
Matrices Zi belong to boundaries i with prescribed impedances
Zi. Similarly, matrices Qk belong to a heat-release zone k with a
prescribed FTF FkðsÞ.

The quadratic coefficient of M only occurs in the thermoacous-
tic Helmholtz equation due to the second-order time-derivative in
the time-domain equation. The term is linear in s for LRF, LNSE,
or LEE models. Furthermore, no transfer functions Fk are needed
for LRF models. The dimension d of L depends on the chosen dis-
cretization method but is approximately 103 � 106 for industrial-
sized configurations.

In Eq. (7) boundary impedances ZiðsÞ and FTFs FkðsÞ are the
two principle sources of nonlinearity and suitable expressions
need to be obtained for these. Hereby, a number of difficulties
arise. Consider an FTF that is obtained from the forcing of a flame
at discrete frequencies and is, hence, only known for a set of
purely imaginary s. In order to describe how a complex-valued
eigenvalue s responds to the forcing/attenuation effect of the
flame in an NLEVP model, the FTF needs to be extrapolated into
the complex plane. Several methods are available to achieve this.
A distribution of time delays can describe the response of a flame
to initial perturbations in a natural way [21]—yielding a transcen-
dental function that is defined in all of C. Without making any
assumptions on the distribution of the time delays sj, the distrib-
uted time delay (DTD) model takes the form

FðsÞ ¼
X1
j¼0

hj expð�ssjÞ (8)

The simplest representative of this model type with a single time
delay is the n–s model [22]. Besides Eq. (8), slightly modified ver-
sions of DTD models with presumed functional forms of time
delay distribution were proposed, e.g., Komarek and Polifke [23]
and Æsøy et al. [24]. The unknown parameters of the DTD models
are usually retrieved from numerical computations or experimen-
tal measurements [25,26]. An extensive discussion about DTD
models can be found in the review of Polifke [21]. Alternatively,
rational approximation procedures are applied to fit the discrete
frequency response data [26]. A numerical procedure called vec-
tor fitting [27] will be employed later in this work.

For the boundary impedances ZiðsÞ DTD formulations can be
obtained via measurements or simulations as well. Furthermore,
analytic formulations derived from first principles [28,29] are
available—which might not be defined only for parts of C. For
laboratory test rigs with open/closed ends or chocked nozzles,
simple, frequency independent impedances are usually sufficient
[30]—as is the case in this work and FTFs are considered as the
only sources of nonlinearities in the eigenvalue.

4 Shortcomings in the Contour Integration Method

Explained From the Filtering Perspective

Buschmann et al. [18,31] employed Beyn’s method [32] to
solve thermoacoustic NLEVPs. In this section, the method is
introduced from the filtering perspective [33] to aid in a later anal-
ysis. This work only focuses on Beyn’s “Integral Algorithm 1” for
large-scale NLEVPs originating from multidimensional spatial
discretizations.

4.1 Analytical Description of Beyn’s Method. Keldysh [34]
proved that a unique expansion of the resolvent LðzÞ�1

in terms of
the left (adjoint) and right eigenvectors w and v, and of the form
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L zð Þ�1 ¼
Xn

k¼1

vkwH
k

1

z� skð Þ
þ R zð Þ (9)

exists, if LðzÞ depends analytically on z 2 C. Here, n is the
unknown number of eigenvalues, which can be infinite. RðzÞ is an
unknown matrix-valued holomorphic function.

Next, Beyn utilizes Keldysh’s theorem (9) and integrates
L�1ðzÞ over a closed contour C � Cþ

C
L zð Þ�1dz ¼

þ
C

X
k:sk2o Cð Þ

vkwH
k

1

z� skð Þ
dz

þ
þ

C

X
k:sk 62o Cð Þ

vkwH
k

1

z� skð Þ
dz

þ
þ

C
R zð Þ dz (10)

where the sum in Eq. (9) has been split into the set of eigenvalues
sk located inside C, denoted as oðCÞ, and those outside of C.
Recalling Cauchy’s theorem from analytic function theory [35],
the second and third term in Eq. (10) become zero. The first term
can be simplified further and the integral reduces to

þ
C

LðzÞ�1
dz ¼ 2pi

XnðCÞ
k¼1

vkwH
k (11)

where nðCÞ is the unknown number of eigenvalues inside of C.
Next, we define the pth moment matrix

Ap ¼
1

2pi

þ
C

zpL zð Þ�1dz ¼ VKpWH 2 C
d�d

(12)

with the matrices of left and right eigenvectors W ¼
½w1;…;wnðCÞ� 2 C

d�nðCÞ and V ¼ ½v1;…; vnðCÞ� 2 C
d�nðCÞ. K 2

C
nðCÞ�nðCÞ

denotes the diagonal matrix of the eigenvalues sk.
For spatially discretized problems, the number of eigenvalues

inside the contour nðCÞ will usually be much smaller than the
problem dimension. Therefore, a full inversion of L is avoided by
solving instead the smaller problem L�1 ~V with a random matrix
~V 2 C

d�l
, with the reduced rank l� d. Thus,

~Ap ¼
1

2pi

þ
C

zpL zð Þ�1 ~Vdz ¼ VKpWH ~V 2 C
d�l (13)

Note that the dimension of ~V has to be chosen in a way that it
holds that l > nðCÞ. However, since nðCÞ is unknown a priori, l
has to be estimated. According to Beyn [32], the precise choice of
~V is not relevant as long as WH ~V has full rank. The contour inte-
gral is discretized with a quadrature formula to yield

~Ap 	
XN

j¼1

ajz
p
j LðzjÞ�1 ~V; p ¼ 0; 1 (14)

Solving Eq. (14) is the main numerical effort of Beyn’s algorithm.
It necessitates the computation of N LU-decompositions of the N
operators LðzjÞ and the subsequent solution of Nl linear systems.
However, it is easily parallelizable due to the independence of all
N operators from one another.

Once the moment matrices in Eq. (14) are assembled, a singular
value decomposition (SVD) of ~A0 yields

~A0 ¼ VWH ~V ¼ V0R0WH
0 (15)

In R0, all singular values (and associated vectors in V0 and W0)
below a threshold tolr are removed. This is because if the integral
in Eq. (13) is evaluated analytically and l > nðCÞ, then R0 con-
tains l� nðCÞ singular values of value zero. Since the integral is

only approximated in Eq. (14) these are nonzero and need to be
removed. Otherwise, l� nðCÞ spurious modes occur in the latter
computation. Consequently, each eigenpair has to be double-
checked. This can be done via the residual [32] or a subsequent
fixed point iteration [18].

Finally, ~A1 and the SVD of ~A0 in Eq. (15) are used to define a
new matrix D as

D :¼ VH
0

~A1W0R
�1
0 ¼ ðVH

0 VÞKðVH
0 VÞ�1

(16)

For the specific algebraic reformulations, see Ref. [32]. The right-
hand side of Eq. (16) is an eigendecomposition of D, where K
contains the same eigenvalues as LðzÞ in C. The eigenvectors vk 2
C

d of L can be computed directly from the eigenvectors bk 2 C
l

of D via

vk ¼ V0bk (17)

Since D 2 C
l�l, the computation of its eigenvalues and eigenvec-

tors is cheap. Clearly, user input is required at several points dur-
ing the numerical computation, namely,

(1) dimension l of matrix ~V needs to be set,
(2) a contour C has to be prescribed,
(3) a number of sampling points N on C have to be specified

and
(4) an SVD cutoff tolr needs to be defined.

Any of these parameters affects the computed eigenpairs, as
will be detailed next.

4.2 Beyn’s Method: Filtering a Portion of the Spectrum.
Multiplying Keldysh’s theorem, Eq. (9), with ~V from the right
and inserting it into Eq. (14) gives

~Ap ¼
Xn

k¼1

vkwH
k

~V
XN

j¼1

ajz
p
j

zj � sk
þ
XN

j¼1

ajz
p
j R zjð Þ~V; p ¼ 0; 1 (18)

Following van Barel and Kravanja [33], the function

bp zð Þ ¼
XN

j¼0

ajz
p
j

zj � z
p ¼ 0; 1 (19)

is called a filter function (of order p) and depends on the applied
quadrature formula, see Eq. (14). In the limit N !1, it becomes
identical to the ideal filter

bp;idealðzÞ ¼
1; z inside C

0; z outside C

(
(20)

which would be achieved by analytically solving the integral in
Eq. (12). Clearly, bpðzÞ depends on the number of sampling points
(via N) and the chosen integration method (via the integral
weights aj).

Figure 1 shows b0ðzÞ on the imaginary axis for a circular con-
tour C ¼ z0 þ R expðiuÞ and different numbers of N. The higher
N, the narrower the filter function and the better the filtering
effect. If there are eigenvalues inside the tails, then these impact
the computational result—they are not filtered out completely.
Eigenvalues far distant from the contour have no impact.

It is important to note that bpðzÞ is independent of the problem
size d and the parameter l. Hence, the filtering effect is solely
dependent on N and the specified contour C. As Fig. 1 shows, the
tails of the filter function can be wide and potentially include a
significant number of eigenvalues outside of C.

4.3 Rijke Tube With Almost Defective Eigenvalue. The
Rijke tube investigated in this section is two-dimensional and
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depicted in Fig. 2. The model is chosen since it exhibits several
features of single-flame combustors and its parameters can be cho-
sen such that two simple eigenvalues in close proximity almost
form a defective eigenvalue. It is then of interest if contour inte-
gration has convergence difficulties for such an almost defective
eigenvalue pair since it nearly violates the full rank assumption
intrinsic to Eq. (13). An exactly defective eigenvalue cannot
be attained numerically due to round-off errors [14]. The tube is
L ¼ 0:5 m long and has a diameter of a ¼ 0:025 m. A heat source
of thickness dfl ¼ 0:1 mm is located in the middle of the tube and
causes a temperature increase from Tu ¼ 300 K to Tb ¼ 1200 K.
The acoustic response of the heat source is modeled via an n–s
model [22]

FðsÞ ¼ n expð�ssÞ (21)

The reference point lies infinitesimally upstream of the heat
source in the cold zone. The gas properties are taken as those of
air. At the inlet a pressure antinode (Zin ¼ 1) and at the outlet a
pressure node (Zout ¼ 0) are prescribed. The Rijke tube is discre-
tized in FEniCS [36] with 9848 cells using a first-order continuous
Galerkin finite element scheme resulting in d¼ 4801 degrees-of-
freedom (DOF) of L. The subsequent contour integration is per-
formed with the Python script of Buschmann et al. [18] calling
standard linear algebra routines from scipy [37] and numpy [38].

To investigate the convergence behavior of Beyn’s method
with an increasing number of quadrature points N, the algorithm
is setup to find all eigenpairs inside a circle of radius ðR=2pÞ ¼
850 s�1 centered at ðz0=2piÞ ¼ 950 s�1 (as in Buschmann et al.
[18]). The flame parameters are set to n¼ 0.6012354766306677
and s ¼ 2:1769913269101874 ms such that two simple eigenpairs
form almost a defective one inside C. The number of eigenvalues
inside the contour was estimated to l¼ 12 and tolr ¼ 10�10 is
used. To obtain a reference solution, a highly resolved contour
integration with N¼ 500 quadrature points is performed. Then,
the results are refined by a fixed-point iteration with a tolerance
on the residual of � 10�12. The computed reference eigenvalues
sref are listed in Table 1. The Rijke tube features modes of intrin-
sic (s1, s3, s6 and s7) and acoustic (s2, s4, s5 and s8) origin.

In the following, N is increased from 20 to 120 with an incre-
ment of 4. In Fig. 3, the accuracy of the eigenvalues of each com-
putation are expressed in terms of the relative deviation of the
eigenvalue s from the reference solution sref

es ¼
js� sref j
jsref j

(22)

The convergence of Beyn’s method can be split in three
regions. In region I (N< 44), Beyn’s method computes an incom-
plete spectrum with the eigenvalue s3 missing. However, since
unidentified eigenvalues inside the contour impact the accuracy of
all other eigenpairs, no convergence can be observed in this
region. This changes in region II starting from N 
 44, when
Beyn’s method is able to identify all eight eigenvalues inside C.
Increasing N from now on leads to a decrease in es. In the final
region III (N 
 96), an increase in quadrature points no longer
improves es. Especially, the eigenvalues s3 and s4, forming the
almost defective pair, show poor accuracy levels of es 	
Oð10�3 � 10�4Þ even for high N, whereas the simple eigenvalues
achieve es 	 Oð10�5 � 10�8Þ.

In region II (44 � N � 96), an interesting effect can be
observed: increasing the number of quadrature points from N¼ 64
to N¼ 68 reduces the accuracy es of all eigenvalues by approxi-
mately one order of magnitude and this phenomenon can be
explained by the role of the filter function. Figure 4(a) shows the
pole map for the reference solution and the cases N¼ 64 and

Fig. 2 Schematic depiction of the Rijke tube with chosen
parameters and boundary conditions

Table 1 Reference eigenvalues sref of the Rijke tube inside a
circular contour C of radius (R=2p)5850 s21 centered at
(z0=2pi)5950 s21

ImðsÞ
2p

s�1½ � ReðsÞ
2p

s�1½ �
Type

s1 126.32 �102.66 Simple
s2 295.28 50.07 Simple
s3 692.812 �3.797 Almost defective
s4 692.815 �3.798
s5 1090.63 49.23 Simple
s6 1258.84 �97.08 Simple
s7 1511.41 �107.88 Simple
s8 1681.60 50.46 Simple
s9

a 2067.65 �3.04 Simple
s10

a 2089.74 �4.47 Simple

adenotes eigenvalues in the close proximity but outside of C.

Fig. 1 Filter function b0(z) of a circular contour
((z0/2pi) 5 950 s21; (R/2p) 5 850 s21) along the imaginary axis:
analytic contour integration (Nfi‘, ) and N 5 32 ( ), N 5 64
( ), and N 5 128 ( ) quadrature points

Fig. 3 Convergence of Beyn’s method for the Rijke tube test
case in dependence of the number of quadrature points
expressed via the residual deviation of eigenvalues from the
reference result with simple eigenvalues ( s1, s2, s5,

s6, s7, s8) and (almost) defective eigenvalues ( s3,
s4)
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N¼ 68. For N¼ 64 Beyn’s method returns nine eigenvalues,
where the ninth one is located outside of C and relates to s�9 and
s�10. The ninth eigenvalue is not obtained with N¼ 68. The reason
is shown in Fig. 4(b). By increasing N¼ 64 to N¼ 68, the singular
value r9 crosses the threshold of tolr ¼ 10�10 and is therefore
neglected. However, the filter function in Fig. 4(c) shows that s�9
and s�10 are located just inside the tails and hence not fully damped
out. A decrease in accuracy is the consequence: negligence of a
physical eigenvalue with a significant contribution in the applied
filter decreases the accuracy of all eigenvalues.

The eigenvectors feature an analogous convergence pattern
including regions I–III and a jump between N¼ 64 and N¼ 68. At
N¼ 72, the maximum local deviation in absolute value is below
<0:17% and the principal angle to the reference eigenspace is
<4� 10�3 rad. Figure 5 displays the real part of the eigenvectors
of s2, s3, s4, and s8. As expected, the eigenvectors corresponding
to the almost defective eigenvalue pair, s3 and s4, are not distin-
guishable by eye.

4.4 MICCA Annular Model Combustor. Annular combus-
tion chambers exhibit a higher mode density than single-flame
combustors and, in addition, clusters of intrinsic modes [18]. This
increases the chances of a high number of modes in the vicinity of
a contour C, which could adversely effect the quality of the

numerical results of contour integration. To illustrate these effects,
the MICCA combustor [39,40] at EM2C (CentraleSup�elec) with 16
matrix burners is considered. See Fig. 6 for geometrical dimensions
and boundary conditions. A rotationally symmetric mesh with
107,264 cells is discretized with FEniCS [36] using a first-order
continuous Galerkin finite element method to yield 21,712DOF.

A discrete FTF is extracted from the experimental flame
describing function of Laera et al. [41] (operating condition B
ibid.) by taking the values with a forcing amplitude of u0=�u ¼ 0:1.
The data is fitted to a DTD model

FDTD sð Þ ¼
X2

i

Fþi þ F�i ; with

F6
i ¼

gi

2
exp

1

2
is6bið Þ2r2

i � ssi

� � (23)

Fig. 4 (a) Polemap of the Rijke tube test case inside and in close proximity to the contour C. Displayed is the reference
solution and the eigenvalues computed with Beyn’s method with N 5 64 and N 5 68. (b) Singular values ri computed for
the Rijke tube test case with N 5 60, N 5 64, N 5 68, and N 5 72 as well as tolr 5 10210. (c) Tail of the filter function
of the Rijke tube test case for N 5 60, N 5 64, N 5 68, and N 5 72. Eigenvalues s�9 and s�10 are located at .

Fig. 5 Real part of reference eigenvector Re(v) along the cen-
tral line of the Rijke tube for the simple eigenvalues s2 and

s8 and the almost defective eigenvalues s3 and s4.
The eigenvectors are scaled to max jvj5 1.

Fig. 6 Cut view of a single burner of the MICCA combustor,
including the plenum (p), burner (b), perforated plate (pp), flame
(f), combustion chamber (cc), and end correction (corr). Boun-
daries are set to rigid walls (Z5 ‘), except the outlet where
Z5 0 is applied.
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as proposed by Æsøy et al. [24]. The values of the parameters gi,
bi, ri, and si are listed in Table 2. FDTDðsÞ is a transcendental,
nonlinear function of s and defined in all of C. Since the parame-
ters can be attributed to physical mechanisms [21,42], the fit in
Eq. (23) will be used as a reference analytical FTF in this work.

Figure 7 shows the reference solution inside and in the vicinity
of a contour C. The solution is obtained in the same way as in the

previous Rijke tube case. Within the depicted circle, 16 eigenval-
ues are located: four simple and 12 degenerate ones. The sum
over all geometric multiplicities is 28; hence, none of the degener-
ate eigenvalues is defective. In Beyn’s method, the reduced rank l
has to be set larger than this sum. In the following, the number of
eigenvalues is understood to be the sum over all geometric multi-
plicities. The contour is nearly identical to the one employed by
Buschmann et al. [31]. One cluster (at approx. 400 Hz) is entirely
within C while a second one (at approx. 970 Hz) is intersected by
C. Including the eigenvalues just outside of C, the total sum over
all geometric multiplicities is 39. We refer to Buschmann et al. [18]
for the physical origin—intrinsic or acoustic—of the eigenvalues.

For a fixed number of sampling points N¼ 40 and with
tolr ¼ 0, three computations with l¼ 28, l¼ 35, and l¼ 40 are
performed. For N¼ 40 sampling points, the numerical filter con-
tains all 39 eigenvalues. Hence, l¼ 28 and l¼ 35 are insufficient
to account for all 39 eigenvalues and major inaccuracies in the
eigenvalues are observed, as Fig. 7 shows. Only for l¼ 40 is the
full spectrum inside C and the eigenvalues just outside returned.

Figure 7 also shows that some eigenvalues are computed accu-
rately even with an insufficient reduced rank l. Figure 8 contains a
convergence plot for three selected eigenvalues, marked in Fig. 7,
for l¼ 28, 35, and 40 as N is increased. It can be seen that the
eigenvalues show different behaviors: for l¼ 35 two eigenvalues
(left and right in Fig. 8) converge quickly to an accuracy below
10�9, but the third converges very slowly. The result is not
depicted, but N 	 80 (N 	 350) is necessary to push the error es

below 10�2 (10�9) for all eigenvalues with l¼ 35. Moreover, the
convergence plot shows that the precision levels for a certain
number of sampling points—no higher precision can be obtained
by using contour integration alone. If l¼ 28 is employed, the num-
ber of sampling points necessary increases to N 	 124 to push the
error es below 10�2, and N 	 500 for an error below 10�9. The
different behaviors are not connected to the mathematical type—
simple or semi-simple—of the eigenvalues.

The error in terms of local absolute value of the eigenvectors
are for l¼ 28, l¼ 35, and l¼ 40 <Oð10�2Þ when es � Oð10�2Þ.
However, the maximal principal angle between the reference and
the computed eigenspace converge even slower. If one requires a
maximum angle of � 0:01p, l¼ 35 and l¼ 28 require N¼ 120
and N¼ 184. For l¼ 40, N¼ 24 is sufficient. Figure 9 displays
one eigenvector in the reference degenerate eigenspace of the ref-
erence solution at s=ð2pÞ ¼ ð�65:2þ 955:8iÞ s�1.

4.5 Interplay of the User Input Parameters. The results
from Secs. 3.3 and 3.4 show that the contour cannot be understood
as a sharp line, but rather as a broader strip due to the filtering
effect. The presence of nonzero singular values is primarily due to
eigenvalues close to the contour and an insufficient reduced rank
l; the effect of a low number of quadrature points N is only sec-
ondary. Hence, rather than increasing N, it is better to keep all

Table 2 Parameters for the DTD model Eq. (23)

I gi

bi

2p
� 10�3

ri � ð2p� 104Þ si ðmsÞ

1 5.7761 4.1223 6.7446 1.6
2 1.6345 0.3094 36.00 1.2

gi, bi, ri, and si are the amplitude, a modulating term of the frequency, the
standard deviation, and a time delay, respectively.

Fig. 7 Pole map of the MICCA burner inside and in close prox-
imity to C which is a circle with (R/2p) 5 475 s21 and center
(z0/2pi) 5 500 s21. Displayed is the reference solution and the
results computed with l 5 28, l 5 35, and l 5 40 for N 5 40.
The small circles , and mark the eigenvalues for
which the convergence plot is displayed in Fig. 8.

Fig. 8 Convergence of Beyn’s method for the MICCA test case. Plotted are three different eigenvalues at
s/(2p) 5 (274:61148:9i) s21 (left), s/(2p) 5 (2109:71382:3i) s21 (center) and s/(2p) 5 (265:21955:8i) s21 (right) and for
l 5 28, l 5 35, and l 5 40. The corresponding eigenvalues are marked in Fig. 7.
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singular values (tolr ¼ 0) and increase the reduced rank l. This is
easily seen in Table 3 with l¼ 35 as with l¼ 40 where, in order to
reach the same accuracy, significantly more time has to be
expended. A conservatively high l combined with a comparatively
small N is usually the computationally more efficient choice.

Important to note, all conclusions drawn in Sec. 3 can be gener-
alized to arbitrary contours by analyzing the corresponding filter
functions.

5 A Rational Approximation

The approximation of the NLEVP by a REVP and a subsequent
reformulation into an equivalent LEVP of higher dimension is
used in several previous works in thermoacoustics and usually
corresponds to state-space models [4,6,9–11]. For the LEVP,
well-established and diverse solution methods are readily avail-
able [20]. In this section, the error due to approximation is dis-
cussed and is compared to the results of the contour-integration
based method from Secs. 3.3–3.5.

5.1 Reformulation of the Rational Eigenvalue Problem. In
the NLEVP Eq. (7), the s-dependent coefficient functions FkðsÞ
and ZiðsÞ�1

are approximated by the rational functions ~Fk and
~Z
�1

i . Then the resulting REVP takes the general form

~L
�

sÞv ¼ PðsÞ þ
X
j¼1

RjðsÞRj

� �
v ¼ 0 (24)

where PðsÞ 2 C
d�d is a matrix polynomial of degree m, RiðsÞ are

scalar proper rational functions, and Ri 2 C
d�d are constant mat-

rices. The domain in the complex plane, where the rational opera-
tor ~L approximates L sufficiently well is, in general, limited. Only
eigenvalues inside this domain can be expected to be approxi-
mated well [16], but the completeness of the spectrum cannot be
guaranteed. When using a criterion such as Eq. (3), only a region
of confidence can be defined [43].

In the following, we assume for simplicity ~Fk and s ~Z
�1

i to be
proper rational. Then, we identify

~L sð Þ ¼ s2Mþ
X
t¼1

s

Zc;t
Zt þK|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P sð Þ

þ
X
l¼1

s
~Zl sð Þ

Zl þ
X
k¼1

~Fk sð ÞQk|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}P
j¼1

Rj sð ÞRj

(25)

In contrast to Eq. (7), we split the boundary term into two parts,
distinguishing between constant and s-dependant boundary impe-
dances Zc;t and ~Zl. Next, an exemplary two-step reformulation
of Eq. (24) into a LEVP is performed for ~LðsÞ in Eq. (25). For
short notation, we restrict ourselves to a single rational term
RðsÞR. However, the procedure is easily generalized for multiple
rational terms [9,11,44].

First, the polynomial part PðsÞv can be reformulated, e.g., via
simple substitution of higher order terms

s
M 0

0 I

� �
þ Z0c K

�I 0

� �� �
sv

v

� �
þ R

0

� �
r ¼ 0 (26)

where I 2 C
d�d is the identity matrix of size equal to M.

Z0c ¼
P

t¼1ð1=Zc;tÞZt is the combined sum of boundary terms
with constant impedances and r ¼ RðsÞv is a source in volume,
e.g., by heat release, or at a boundary. This reformulation step is
quite expensive since it increases the DOF by a factor m. For the
Helmholtz equation, PðsÞ is a quadratic matrix polynomial
(m¼ 2). This results in a doubling of the DOF. For LEE, LNSE,
and LRF (m¼ 1) no reformulation is necessary and the number of
DOF stays the same.

Next, the proper rational source term r can be stated in terms of
a descriptor system

sEx ¼ Axþ Bv

r ¼ Cx
(27)

with the vector x 2 C
r�1 of internal states of the approximated

functions, the system matrix A 2 C
r�r

, the input matrix
B 2 C

r�d , the output matrix C 2 C
d�r , and the mass matrix

E 2 C
r�r . Substitute the second equation of Eq. (27) into Eq. (26)

and appending the first equation of Eq. (27) results in the general-
ized LEVP

L̂
�

sÞv̂ ¼ s

M 0 0

0 I 0

0 0 E

2
664

3
775þ

Z0c K RC

�I 0 0

0 �B �A

2
664

3
775

0
BB@

1
CCA

sv

v

x

2
664

3
775 ¼ 0

(28)

The number of additional DOF introduced by this reformulation
depends on the degree r of the numerator polynomial of RðsÞ
[11], which is usually in the range r 	 10� 100. For multidimen-
sional spatially discretized problems this is usually much smaller
than the problem dimension (r � d) and therefore negligible,
even if multiple rational approximations are used.

Importantly, the reformulation of the REVP as a LEVP can be
done without introducing spurious modes or truncating the spec-
trum [44].

5.2 Application to the Rijke and MICCA Cases. For the
Rijke case, a rational approximate of the n–s-model, Eq. (21), is
obtained by the spatial discretization of a one-dimensional advec-
tion equation [45]. The pseudospace of length s and propagation
velocity 1 m s�1 is resolved by 20 cells and is discretized with a
third-order discontinuous Galerkin finite element scheme. The
resulting linear model of ~F yields 80 DOF. For the MICCA com-
bustor, vector fitting [27] is employed to compute a rational

Fig. 9 Real part of an eigenvector v in the degenerate refer-
ence eigenspace at s/(2p) 5 (265:21955:8i) s21. The eigenvec-
tor is scaled to max jvj5 1.

Table 3 Choice of user-input parameters of Beyn’s method for
the Rijke tube and the MICCA cases to achieve an accuracy
es £ 1022 for all eigenvalues and wall-clock time

Test case l N tolr t (s)

Rijke 12 72 10�10 2.71
MICCA 28 124 0 220.97

35 80 0 150.83
40 20 0 39.62
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approximation of the flame response and two cases are consid-
ered. For MICCA-DTD, the distributed time delay model in
Eq. (23) is fitted (12 DOF) and is compared to the NLEVP solu-
tion of Sec. 3.4. This serves as an example for cases in which the
analytical form of the FTF is known and has to be approximated.
For MICCA-Exp, the experimental data [41] is fitted (6 DOF) and
the NLEVP solution computed with the same rational fit is used
as reference. This represents the case if only discrete data is avail-
able and has to be fitted anyway to achieve a continuous FTF.

An iterative Krylov–Schur algorithm [46,47] from SLEPc [48]
is called via the python package slepc4py to solve the proxy
LEVP, Eq. (28). Again, the required matrices are setup with
FEniCS [36]. In addition, a shift-and-invert spectral transform
[20] with the complex shift located at the center z0 of the contour
C is used. The eigenvalues closest to the shift, and therefore inside
C, are then expected to be computed first. The algorithm is
requested to converge at least to the same number of eigenpairs
lreq ¼ l � lconv as in Secs. 3.3 and 3.4 with a relative residual of
� 10�8. The most expensive single computational step is a LU-
decomposition of the shift operator L̂ðz0Þ. However, this has to be
computed only once, since only a single shift is performed.

Table 4 compares the LEVP eigenvalues with the NLEVP ones.
es is the range of the error and t is the wall-clock time for a com-
putation on a single core of a AMD Ryzen 5 3600 6-Core proces-
sor. Eigenvalues of the Rijke case are computed with very high
accuracy. This is expected since the pseudospace discretization of
the advection equation is known to approximate the n–s-model well.
All eight eigenvalues inside C are computed—including the pair that
almost forms a defective one—and no spurious modes occur.

Figure 10 shows the two results for the MICCA case. The
LEVP finds all eigenvalues in both cases. A dense cluster of spuri-
ous modes occurs only for MICCA-DTD close to the origin. It is
located between a close pole-zero pair of the rational DTD fit.
The LEVP with the fit of the DTD model (MICCA-DTD) shows
errors not exceeding 1.32%, see Table 4, and hence the rational fit
is satisfactory in the considered domain. For the direct fit of the
experimental data (MICCA-Exp), the NLEVP and the LEVP yield
the same eigenvalues. The computed eigenspaces show small
errors in terms of maximal local absolute value (� Oð10�4) and
angular error (� Oð10�2Þ rad) for all test cases and all types of
eigenvalues.

The case MICCA-DTD is the only case where the proxy LEVP
has an error introduced by the rational approximation, since the
NLEVP can employ the DTD model directly. However, this
assumes that the DTD model represents the flame response
exactly. In the present work, the DTD model was obtained from
the experimental flame frequency response. If such a procedure is
not possible, an NLEVP formulation and a proxy LEVP would
both require a fit of the experimental data, e.g., vector fitting.
Then the NLEVP and the LEVP give the same result with the
same error introduced by vector fitting. The use of either a DTD
model or a vectorfit needs to be decided on a case-by-case basis
and a general discussion is beyond the scope of this paper.

Spurious modes of the LEVP, like for MICCA-DTD, are in
general difficult to identify since they are correct solutions of the
REVP but not of the NLEVP. An identification procedure

therefore necessitates a comparison to the original NLEVP. If this
is possible, similar methods like for Beyn’s method could be
applied inside a region of confidence (see Sec. 4.1). However, the
original NLEVP is usually unknown in practical cases and we
therefore lack the comparative problem.

For single core computations, the speed-up achieved with the
proxy LEVP over the NLEVP formulation is significant. The
Krylov–Schur method and Beyn’s method both employ an LU
decomposition which is provided by the linear algebra back end
UMFPACK [49] in both cases; hence, they can be compared.
Even though the problem sizes are more than doubled for the
LEVP models, the computations are overall faster, see Tables 3
and 4. This is expected, since Beyn’s method requires N LU-
decompositions, while the LEVP only requires one. The speed-up
is not of factor N due to the different matrix sizes and since the
employed Krylov–Schur method for the LEVP also incurs a cost.
The demand in terms of memory was similar for both algorithms
in the computed testcases. For the LEE, LNSE, and LRF, the rela-
tive speed-up increases further compared to the Helmholtz equa-
tion due to the similar sizes of L and L̂ in that case.

For parallel computations, Beyn’s method has an advantage
over the Krylov–Schur method in terms of scalability due to the N inde-
pendent LU-decompositions. For a large numbers of cores (� N),
Beyn’s algorithm might outperform the Krylov–Schur algorithm in
terms of run time. However, if or for which number of cores this is the
case strongly depends on the problem size and type, the implementa-
tion of the algorithms, the architecture at hand, the parameters N and l
of Beyn’s algorithm, number of subspace iterations of the
Krylov–Schur algorithm, and many other quantities. Yet, the issues of
setting the user-defined input parameters for Beyn’s method remain.

6 Conclusions

Two solution methods for nonlinear eigenvalue problems asso-
ciated with the thermoacoustic Helmholtz equation have been
assessed by solving two problems representative of systems
encountered in thermoacoustic applications: a Rijke tube and the
MICCA annular combustor.

In a first step, the NLEVP is solved using Beyn’s contour inte-
gration method. It is established how certain user-defined parame-
ters affect the solution. Convergence tests show that the error of
the results reaches a plateau. Moreover, it is shown how the

Table 4 Wall-clock time t and range of accuracy es achieved
with the approximated REVP inside C for different test cases

Test case (DOF) lreq ðlconvÞ es t (s)

Rijke (9662) 12(12) Oð10�10 � 10�6Þ 0.335

MICCA-DTD (43,648) 28(28) Oð10�4 � 10�2Þ 9.9
35(40) Oð10�4 � 10�3Þ 22.9
40(58) Oð10�4 � 10�2Þ 30.3

MICCA-Exp (43,568) 28(30) Oð10�10 � 10�6Þ 10.8
35(39) Oð10�10 � 10�6Þ 13.2
40(41) Oð10�10 � 10�5Þ 13.2

The DOF of the LEVPs are stated.

Fig. 10 Stability map for the MICCA case computed with differ-
ent FTFs. (1) MICCA-DTD: analytical DTD model and its
rational approximation. (2) MICCA-Exp: rational approxima-
tion of the experimental data [41]. represents both the NLEVP
and the LEVP solution since it is not distinguishable in the plot.
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completeness of the spectrum and the precision of the eigenvalues
is primarily affected by eigenvalues close to the outside of the
contour. In a second step, terms nonlinear in the eigenvalue aris-
ing from the flame response in the NLEVP are approximated with
rational functions, and the ensuing problem is recast as a linear
eigenvalue problem. The approximation is found to introduce
only a few spurious modes, and the entire spectrum is computed.
The error due to the approximation is small and found to be minor
in comparison to the numerical speed-up and the avoidance of
hard-to-set user inputs that is achieved by employing well-
established linear solvers. Plus, the approximation error is non-
existent if the flame term is only available as a rational function in
the first place. For practical applications, the rational fitting of
gain and phase values for real valued frequencies is standard,
underscoring the use of a proxy LEVP as a sensible choice.

The findings in this work have implications for the solution
strategies of linearized models that also yield discrete NLEVPs,
such as LEE, LNSE, and LRF. Since these models generally result
in discrete formulations of higher dimension than the NLEVPs of
the thermoacoustic Helmholtz equation, an efficient solution strat-
egy needs to be chosen. The results in this work indicate that a
reformulation into an LEVP by using rational approximations of
any occurring eigenvalue nonlinearities is a sensible choice due to
the significant speed-up and the avoidance of hard-to-set user
inputs at a cost of a small modeling error. Future work will focus
on improving the approximation of the nonlinear terms via
rational functions and investigate how the approximation of multi-
ple nonlinearities—including frequency-dependent boundary
conditions—affects the solutions.
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Nomenclature

Symbols

d ¼ degrees-of-freedom
F ¼ flame transfer function

l ¼ reduced rank
L ¼ nonlinear operator
N ¼ number of quadrature points
R ¼ radius of contour
s ¼ Laplace variable/eigenvalue

tolr ¼ cutoff value
v, w ¼ right/left eigenvector

z ¼ complex number
Z ¼ impedance
z0 ¼ center of contour
C ¼ contour
es ¼ relative deviation of s from reference
r ¼ singular values
R ¼ spectrum of eigenpairs

Abbreviations

DOF ¼ degrees-of-freedom
DTD ¼ distributed time delay
FTF ¼ flame transfer function
LEE ¼ linearized Euler equations

LEVP ¼ linear eigenvalue problem
LNSE ¼ linearized Navier–Stokes equations

LRF ¼ linearized reactive flow equations
NLEVP ¼ nonlinear eigenvalue problem

REVP ¼ rational eigenvalue problem
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