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ABSTRACT

The Hubble constant (H0) is one of the fundamental parameters in cosmology, but there is a heated debate around the >4σ tension
between the local Cepheid distance ladder and the early Universe measurements. Strongly lensed Type Ia supernovae (LSNe Ia) are an
independent and direct way to measure H0, where a time-delay measurement between the multiple supernova (SN) images is required.
In this work, we present two machine learning approaches for measuring time delays in LSNe Ia, namely, a fully connected neural
network (FCNN) and a random forest (RF). For the training of the FCNN and the RF, we simulate mock LSNe Ia from theoretical
SN Ia models that include observational noise and microlensing. We test the generalizability of the machine learning models by using
a final test set based on empirical LSN Ia light curves not used in the training process, and we find that only the RF provides a low
enough bias to achieve precision cosmology; as such, RF is therefore preferred over our FCNN approach for applications to real
systems. For the RF with single-band photometry in the i band, we obtain an accuracy better than 1% in all investigated cases for
time delays longer than 15 days, assuming follow-up observations with a 5σ point-source depth of 24.7, a two day cadence with a few
random gaps, and a detection of the LSNe Ia 8 to 10 days before peak in the observer frame. In terms of precision, we can achieve
an approximately 1.5-day uncertainty for a typical source redshift of ∼0.8 on the i band under the same assumptions. To improve
the measurement, we find that using three bands, where we train a RF for each band separately and combine them afterward, helps
to reduce the uncertainty to ∼1.0 day. The dominant source of uncertainty is the observational noise, and therefore the depth is an
especially important factor when follow-up observations are triggered. We have publicly released the microlensed spectra and light
curves used in this work.
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1. Introduction

The Hubble constant, H0, is one of the fundamental parameters
in cosmology, but there is a tension1 of >4σ (Verde et al. 2019)
between the early Universe measurements inferred from the
cosmic microwave background (CMB; Planck Collaboration I
2020) and late Universe measurements from the Supernova H0
for the Equation of State (SH0ES) project (e.g., Riess et al.
2016, 2018, 2019, 2021). However, results from Freedman et al.
(2019, 2020) using the tip of the red giant branch (TRGB)
or from Khetan et al. (2021) using surface brightness fluctua-

? https://github.com/shsuyu/HOLISMOKES-public/tree/
main/HOLISMOKES_VII
1 https://github.com/shsuyu/H0LiCOW-public/tree/
master/H0_tension_plots (Bonvin & Millon 2020).

tions (SBFs) are consistent with both. An independent anal-
ysis using the TRGBs by Anand et al. (2021) has derived a
slightly higher H0 value, bringing it closer to the results of the
SH0ES project, which is based on Cepheids. Moreover, recent
results from Blakeslee et al. (2021) using SBFs that are cali-
brated through both Cepheids and TRGBs are in good agreement
with the SH0ES project and ∼2σ higher than the CMB values.
As an alternative to the distance ladder approach, Pesce et al.
(2020) measured H0 from the Megamaser Cosmology Project,
which also agrees well with the SH0ES results and is about ∼2σ
higher than the Planck value. Gravitational wave sources act-
ing as standard sirens also provide direct luminosity distances
and thus H0 measurements (e.g., Abbott et al. 2017). While this
is a promising approach, current uncertainties on H0 from stan-
dard sirens preclude them from being used to discern between
the SH0ES and the CMB results.
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Lensing time-delay cosmography, as an independent probe,
can address this tension by measuring H0 in a single step. This
method, first envisaged by Refsdal (1964), combines the mea-
sured time delay from the multiple images of a variable source
with lens mass modeling and line-of-sight mass structure to infer
H0. The COSmological MOnitoring of GRAvItational Lenses
(COSMOGRAIL; Courbin et al. 2018) and H0 Lenses in COS-
MOGRAIL’s Wellspring (H0LiCOW; Suyu et al. 2017) collab-
orations, together with the Strong lensing at High Angular Res-
olution Program (SHARP) (Chen et al. 2019), have successfully
applied this method to lensed quasar systems (e.g., Bonvin et al.
2018; Birrer et al. 2019; Sluse et al. 2019; Rusu et al. 2020;
Chen et al. 2019). The latest H0 measurement from H0LiCOW
using physically motivated mass models is consistent with mea-
surements from SH0ES but is in >3σ tension with results from
the CMB (Wong et al. 2020). The STRong-lensing Insights into
the Dark Energy Survey (STRIDES) collaboration has further
analyzed a new lensed quasar system (Shajib et al. 2020). The
newly formed Time-Delay COSMOgraph (TDCOSMO) orga-
nization (Millon et al. 2020), consisting of H0LiCOW, COS-
MOGRAIL, SHARP and STRIDES, has recently considered a
one-parameter extension to the mass model to allow for the mass-
sheet transformation (e.g., Falco et al. 1985; Schneider & Sluse
2013; Kochanek 2020). Birrer et al. (2020) used the stellar kine-
matics to constrain this single parameter, resulting in an H0 value
with a larger uncertainty, which is statistically consistent with the
previous results using physically motivated mass models. In addi-
tion to placing constraints on H0, strongly lensed quasars also
provide tests of the cosmological principle, especially of spatial
isotropy, given the independent sight line and distance measure-
ment that each lensed quasar yields (e.g., Krishnan et al. 2021a,b).

In addition to strongly lensed quasars, supernovae (SNe)
lensed into multiple images are promising as a cosmologi-
cal probe and are in fact the sources envisioned by Refsdal
(1964). Even though these systems are much rarer in compar-
ison to quasars, they have the advantage that SNe fade away
over time, facilitating measurements of stellar kinematics of
the lens galaxy (Barnabè et al. 2011; Yıldırım et al. 2017, 2020;
Shajib et al. 2018) and surface brightness distributions of the
lensed-SN host galaxy (Ding et al. 2021) to break model degen-
eracies, for example, the mass-sheet transformation (Falco et al.
1985; Schneider & Sluse 2014). Furthermore, strongly lensed
type Ia supernovae (LSNe Ia) are promising given that they
are standardizable candles and therefore provide an additional
way to break model degeneracies for lens systems where lensing
magnifications are well characterized (Oguri & Kawano 2003;
Foxley-Marrable et al. 2018).

So far, only three LSNe with resolved multiple images have
been observed, namely SN “Refsdal” (Kelly et al. 2016a,b), a
core-collapse SN at a redshift of z = 1.49, the LSN Ia iPTF16geu
(Goobar et al. 2017) at z = 0.409, and AT2016jka (Rodney et al.
2021) at z = 1.95, which is most likely a LSN Ia. Nonethe-
less, with the upcoming Rubin Observatory Legacy Survey of
Space and Time (LSST; Ivezic et al. 2019), we expect to find
∼103 LSNe, of which 500 to 900 are expected to be type Ia SNe
(Quimby et al. 2014; Goldstein & Nugent 2017; Goldstein et al.
2018; Wojtak et al. 2019). Considering only LSNe Ia with spa-
tially resolved images and peak brightnesses2 brighter than 22.6
in the i band, as in the Oguri & Marshall (2010, hereafter OM10)
lens catalog, leads to 40 to 100 LSNe Ia, depending on the LSST

2 Of the fainter image for a double system; for a quad system, the peak
brightness of the third brightest image is considered.

observing strategy, of which 10 to 25 systems yield accurate
time-delay measurements (Huber et al. 2019).

To measure time delays between multiple images of
LSNe Ia, Huber et al. (2019) used the free-knot spline esti-
mator from Python Curve Shifting (PyCS; Tewes et al. 2013;
Bonvin et al. 2016), and therefore the characteristic light-curve
shape of a SN Ia is not taken into account. Furthermore,
they do not explicitly model the variability due to microlens-
ing (Chang & Refsdal 1979; Irwin et al. 1989; Wambsganss
2006; Mediavilla et al. 2016), an effect where each SN image
is separately influenced by lensing effects from stars in
the lens, leading to the additional magnification and dis-
tortion of light curves (Yahalomi et al. 2017; Goldstein et al.
2018; Foxley-Marrable et al. 2018; Huber et al. 2019, 2021;
Pierel & Rodney 2019). While PyCS has the advantage of being
flexible without making assumptions on the light-curve forms,
model-based methods are complementary in providing addi-
tional information to measure the time delays more precisely.

One such model-based time-delay measurement method was
implemented by Pierel & Rodney (2019), where template SN
light curves are used. Even though microlensing is taken into
account in this work, it is done in the same way for each filter.
A more realistic microlensing treatment for SNe Ia, with varia-
tions in the SN intensity distribution across wavelengths, was first
introduced by Goldstein et al. (2018) using specific intensity pro-
files from the theoretical W7 model (Nomoto et al. 1984) calcu-
lated via the radiative transfer code SEDONA (Kasen et al. 2006).
Huber et al. (2019, 2021) have built upon this study, but using
the radiative transfer code ARTIS (Kromer & Sim 2009) to cal-
culate synthetic observables for up to four theoretical SN explo-
sion models. In this work, we follow the approach of Huber et al.
(2019, 2021) to calculate realistic microlensed light curves for
LSNe Ia to train a fully connected neural network (FCNN) and
a random forest (RF) model for measuring time delays. In addi-
tion, this method also allows us to identify dominant sources of
uncertainties and quantify different follow-up strategies.

This paper is organized as follows. In Sect. 2 we present our
calculation of mock light curves, which includes microlensing
and observational uncertainties. The creation of our training, val-
idation, and test sets is explained with an example mock obser-
vation in Sect. 3, followed by an introduction to the machine
learning (ML) techniques used in this work in Sect. 4. We apply
these methods to the example mock observation in Sect. 5, where
we also test the generalizability by using empirical LSN Ia light
curves not used in the training process. In Sect. 6 we investi-
gate, based on our example mock observation, potential filters for
follow-up observations and the impact of microlensing and noise
on the uncertainty, before we investigate more mock observations
in Sect. 7. We discuss our results in Sect. 8 before summarizing
in Sect. 9. Magnitudes in this paper are in the AB system.

We have publicly released the microlensed spectra and light
curves used in this work online3.

2. Simulated light curves for LSNe Ia

The goal is to develop a software that takes photometric light-
curve observations of a LSN Ia as input and predicts as an output
the time delay between the different images. For a ML approach,
we need to simulate a realistic data set where we account for dif-
ferent sources of uncertainties. We therefore specify in Sect. 2.1
our calculation of microlensing, and we explain in Sect. 2.2 our

3 https://github.com/shsuyu/HOLISMOKES-public/tree/
main/HOLISMOKES_VII
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determination of observational uncertainties including estimates
of the moon phase.

2.1. Microlensing and SN Ia models

To calculate light curves for a LSN Ia with microlens-
ing, we combine magnifications maps from GERLUMPH
(Vernardos & Fluke 2014; Vernardos et al. 2014, 2015) with the-
oretical SN Ia models, where synthetic observables have been
calculated with ARTIS (Kromer & Sim 2009). The basic idea is
to place a SN in a magnification map and solve for the observed
flux:

Fλ,o(t) =
1

Dlum
2(1 + zs)

∫
dx
∫

dy Iλ,e(t, p(x, y)) µ(x, y), (1)

where Dlum is the luminosity distance to the source, zs is the red-
shift of the source, µ(x, y) is the magnification factor depending
on the positions (x, y) in the magnification map, and Iλ,e(t, p) is
the emitted specific intensity at the source plane as a function
of wavelength, λ, time since explosion, t, and impact parameter,
p (i.e., the projected distance from the ejecta center, where we
assume spherical symmetry similar to Huber et al. 2019, 2021).
Lensing magnification maps depend on three main parame-
ters, namely the convergence κ, the shear γ and the smooth
matter fraction s = 1 − κ∗/κ, where κ∗ is the convergence
of the stellar component. Further, our maps have a resolution
of 20 000× 20 000 pixels with a total size of 20 REin × 20 REin,
where the Einstein radius, REin, is a characteristic size of the
map that depends on the source redshift zs, lens redshift zd, and
masses of the microlenses. As in Huber et al. (2021), we follow
Chan et al. (2021) for generating the microlensing magnification
maps and assume a Salpeter initial mass function (IMF) with a
mean mass of the microlenses of 0.35 M�; the specifics of the
assumed IMF have negligible impact on our studies. From the
flux we obtain the AB magnitudes via

mAB,X(ti) = −2.5 log10


∫

dλ λS X(λ) Fλ,o(t)∫
dλ S X(λ) c/λ

×
cm2

erg

 − 48.6 (2)

(Bessell & Murphy 2012), where c is the speed of light and
S X(λ) is the transmission function for the filter X (that can be
u, g, r, i, z, y, J, or H in this work). This calculation is discussed
in much greater detail by Huber et al. (2019), which was initially
motivated by the work of Goldstein et al. (2018).

The calculation of microlensing of LSNe Ia requires a the-
oretical model for the SN Ia that predicts the specific inten-
sity. To increase the variety of different light-curve shapes we
use four SNe Ia models computed with ARTIS (Kromer & Sim
2009). These models have also been used in Suyu et al. (2020)
and Huber et al. (2021), and are briefly summarized in the
following: (i) the parameterized 1D deflagration model W7
(Nomoto et al. 1984) with a Chandrasekhar mass (MCh) carbon-
oxygen (CO) white dwarf (WD), (ii) the delayed detonation
model N100 (Seitenzahl et al. 2013) of a MCh CO WD, (iii)
a sub-Chandrasekhar (sub-Ch) detonation model of a CO WD
with 1.06 M� (Sim et al. 2010), and (iv) a merger model of two
CO WDs of 0.9 M� and 1.1 M� (Pakmor et al. 2012).

Figure 1 shows the light curves for the four SN Ia models
in comparison to the empirical SNEMO15 model (Saunders et al.
2018). The light curves are normalized by the peak. Magnitude
differences between SN Ia models are within 1 mag. To pro-
duce the median and 2σ (97.5th percentile – 2.5th percentile)
light curves of SNEMO15, we consider all 171 SNe Ia from

Fig. 1. Normalized LSST u- and g-band rest-frame light curves for four
theoretical SN Ia models (merger, N100, sub-Ch, and W7) in compari-
son to the empirical model SNEMO15.

Saunders et al. (2018). Data of the empirical models cover only
3305 Å to 8586 Å and therefore the u band, starting at 3200 Å,
is only an approximation, but an accurate one since the filter
transmission in the missing region is low. The rest-frame u and g
cover approximately the observed r, i, and z bands for a system
with redshift of 0.76, which we investigate in Sects. 3 and 5.
Light curves from theoretical and empirical models show the
same evolution, although there are quite some differences in the
shapes. The variety of different theoretical models is helpful to
encapsulate the intrinsic variation of real SNe Ia. In building our
training, validation and test sets for our ML methods, we also
normalize the light curves after the calculation of the observa-
tional noise, which we describe next.

2.2. Observational uncertainty and the moon phase

Magnitudes for filter X including observational uncertainties can
be calculated via

mdata,X = mAB,X + rnormσ1,X , (3)

where mAB,X is the intrinsic magnitude without observational
noise, rnorm is a random Gaussian number with a standard devi-
ation of unity, and σ1,X is a quantity that depends mainly on
mAB,X relative to the 5σ depth m5. This calculation is based on
LSST Science Collaboration (2009) (for more details, see also
Appendix A).

In order to calculate mdata,X , the 5σ depth of the corre-
sponding filter X is needed. In this work we consider eight
filters, namely the six LSST filters, u, g, r, i, z, and y, as well
as two infrared bands, J and H. To estimate the moon phase
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Fig. 2. Estimated 5σ depth for eight different filters, u, g, r, i, z, y, J, and
H, accounting for the moon phase. Day 0 corresponds to the first quarter
in the moon phase. Full moon is around day 8, and new moon is on
day 23.

dependence of filter X, we used the exposure time calculator
(ETC) of the European Southern Observatory (ESO) with a flat
template spectrum. For ugriz we used the ETC of OmegaCAM4,
and for yJH we used the ETC of VIRCAM5, where we assume
an airmass of 1.2. Further, we used the typical fixed sky model
parameters with seeing ≤1′′ as provided by the ETC, which we
found to be a conservative estimate of the 5σ depth by testing
other sky positions. We investigated one cycle phase (25 August
2020 to 24 September 2020) to obtain relative changes of the
5σ depth with time and matched these relative changes to the
typical mean of the single-epoch LSST-like 5σ depth plus one
magnitude, given by (23.3+1, 24.7+1, 24.3+1, 23.7+1, 22.8+1,
and 22.0+1) for (u, g, r, i, z, and y), respectively, assuming a fixed
exposure time. These mean values take into account that in typi-
cal LSST observing strategies, redder bands are preferred around
full moon, while bluer bands are used more around new moon.
Going one magnitude deeper than the LSST 5σ depth provides a
better quality of photometric measurements for time-delay mea-
surements, and is feasible even for a 2 m telescope (Huber et al.
2019). The absolute values for J and H bands are set by the ETC
of VIRCAM in comparison to the y band.

The results for one cycle phase are shown in Fig. 2, where
we find full moon around day 8 and new moon around day 23.
As expected, bluer bands are much more influenced by the moon
phase in comparison to redder bands. As we are typically inter-
ested in getting LSNe Ia with time delays greater than 20 days
(Huber et al. 2019), it is important to take the moon phase into
account. Furthermore, we note that our approach on the 5σ depth
assumes an isolated point source, where in reality we also have
contributions from the host and lens light, which are the lowest
for faint hosts and large image separations. Even though these
are the systems we are interested in targeting, our uncertainties
are on the optimistic side. The construction of light curves in the
presence of the lens and host is deferred to future work, although
LSNe have the advantage that the SNe fade away and afterward
an observation of the lensing system without the SN can be taken
and used as a template for subtraction.

4 https://www.eso.org/observing/etc/bin/gen/form?INS.
NAME=OMEGACAM+INS.MODE=imaging
5 https://www.eso.org/observing/etc/bin/gen/form?INS.
NAME=VIRCAM+INS.MODE=imaging

Table 1. Mock system of the OM10 catalog for generating mock light
curves to train our ML techniques.

zs zd Image 1 (κ, γ) Image 2 (κ, γ) Time delay [days]

0.76 0.252 (0.251, 0.275) (0.825, 0.815) 32.3

Notes. We assume s = 0.6, similar to Huber et al. (2021). The image
separation for this double system is 1.7 arcsec and therefore typically
resolvable with certain ground-based telescopes under most seeing con-
ditions.

Fig. 3. Simulated observation for which ML models will be trained to
measure the time delay. The gray dashed curve marks the 5σ point-
source depth, that accounts for the moon phase. The marked data points
are also listed in Eq. (4).

3. Example mock observation and data set for
machine learning

In this section we present a specific mock observation as an
example, to explain the data structure required for our ML
approaches.

3.1. Mock observation

As an example, we take a LSN Ia double system of the OM10
catalog (Oguri & Marshall 2010), which is a mock lens catalog
for strongly lensed quasars and SNe. The parameters of the mock
LSN Ia are given in Table 1, where we have picked a system with
a source redshift close to the median source redshift zs = 0.77 of
LSNe Ia in OM10 (Huber et al. 2021). The corresponding mock
light curves are produced assuming the W7 model, where the i
band is shown in Fig. 3 and all bands (ugrizyJH) together are
shown in Appendix B. To calculate magnitudes with observa-
tional noise we use Eq. (3). For the moon phase we assume a
configuration where the i-band light curve peaks around new
moon. Further configurations in the moon phases will be dis-
cussed in Sect. 7.1. To avoid unrealistic noisy data points mdata,X
for our mock system in Fig. 3, we only take points mAB,X brighter
than m5 + 2 mag into account, before we add noise on top. Fur-
thermore, we assume a two day cadence with a few random gaps.

3.2. Data set for machine learning

Our data of the mock LSN Ia contain measurements of light
curves in one or more filters of the two SN images. The input
data for our ML approaches are ordered, such that for a given fil-
ter, all magnitude values from image 1 are listed (first observed
to last observed), followed by all magnitude values from image
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2. This structure is illustrated in the following definition and will
be referred to as a single sample,

mi1,1 . . .mi1,Ni1 mi2,1 . . .mi2,Ni2 ≡ d1 d2 . . . dNd , (4)

for an example of a double LSN Ia with observations in the
i band. There are Ni1 photometric measurements in the light
curve for SN image 1, and Ni2 photometric measurements for
SN image 2. The magnitude value of the first data point in the i
band from the first image in Fig. 3 is denoted as mi1,1, and the
last data point is mi1,Ni1 . The first data point of the second image
in the i band is denoted as mi2,1. For simplification, we define
Nd = Ni1 + Ni2, and d j as the jth magnitude value in Eq. (4).
If multiple filters are available, then a ML model can be trained
per band, or multiple bands can be used for a single ML model,
which will be explored in Sect. 6.3.

We introduce our FCNN and RF methods in detail in Sect. 4;
we describe here the data set required for these two approaches
in the remainder of this section. Important to note is that both
methods always require the same input structure as defined in
Eq. (4), with exactly the same number of data points6. From
this input, we can then build a FCNN or a RF that predicts the
time delay. As additional information, the 5σ depth is required
for each data point, to create noise in a similar way as in our
mock observation. Furthermore, microlensing uncertainties are
taken into account by using the κ, γ, and s values of each LSN
Ia image. The weakness of this approach is that we need to
train a ML model for each observed LSNe Ia individually, but
the advantage is that we can train our model very specifically
for the observation pattern, noise and microlensing uncertainties
such that we expect an accurate result with a realistic account of
the uncertainties. Given that the data production and training of
such a system take less than a week and multiple systems can
be trained in parallel, this approach is easily able to measure the
delays of the expected 40 to 100 potentially promising LSNe in
the 10 year LSST survey (Huber et al. 2019).

Our ML approaches require the same number of data points
in each sample. We therefore produce our data set, for training,
validation and testing of the ML models, such that the number
of data points is always the same as in our mock observation
in Fig. 3. We calculate the light curves for the SN images via
Eqs. (1) and (2) where we use random microlensing map posi-
tions. We then shift the light curves for each SN image randomly
in time around a first estimate of the delay. In our example,
we use the true observed time values of the mock observation
tobs,1 = 0.0 d and tobs,2 = 32.3 d as the first estimate for the SN
images 1 and 2, respectively. For a real system, we do not know
these time values exactly and therefore probe a range of values
around these first estimates in our training, validation and test
sets. In particular, for each sample in the training set, we pick
random values between tobs − 10 d and tobs + 12 d as the “ground
truth” (input true time value) for that specific sample. Different
samples in the training set have different ground truth values. We
also tested more asymmetric ranges with tobs−10 d and tobs + test,
where test = 16, 18, 22, 30 d, and find results in very good agree-
ment, with no dependence on asymmetries in the initial estimate.

Data points are then created at the same epochs as the ini-
tial observation. Using the 5σ depth of each data point of our
observation, we calculate for each random microlensing posi-
tion 10 random noise realizations following Eq. (3). Since we
are not interested in the overall magnitude values we normal-
ize the resulting light curve by its maximum. Our total data set

6 To avoid unrealistically noisy data points, we limit the maximum
amount of noise allowed, as described in Appendix A.

Fig. 4. Simulated data to train a ML model. The filled dots correspond
to the mock observation shown in Fig. 3. The open dots represent the
simulated training samples, where two out of the 400 000 are shown for
the i band in the top and bottom panels.

used for training has a size of 400 000 samples coming from
4 theoretical SN Ia models, 10 000 microlensing map positions
and 10 noise realizations. Each sample has the data structure of
Eq. (4). For the validation and test sets, we calculate two addi-
tional microlensing maps with the same κ, γ and s values as the
training set, but with different microlensing patterns from ran-
dom realizations of the stars. This provides “clean” validation
and test sets that the ML methods have not encountered during
training in order to fairly assess the performance of the methods.
Our validation and test set have each a size of 40 000 samples,
from 4 models, 1000 microlensing map positions and 10 noise
realizations.

Two examples of our training data are shown in Fig. 4 in
open circles. The first panel (sample 5) shows for the first SN
image a good match to the initial mock observation (in solid cir-
cle). The simulated training data are therefore almost the same
as the mock observation. Differences in fainter regions (higher
normalized magnitudes) come from observational noise. For the
second image, the time value t2 of the simulated training data is
larger than the true value tobs,2 and therefore we find the peak a
few data points later. The general idea of providing data in such
a way is that the ML model learns to translate the location of the
peak region into the time value t. The difference between the two
time values from the first and second image is then the time delay
we are interested in. The second panel (sample 33) in Fig. 4 is
a nice example illustrating why going directly for the time delay
is not working that well in this approach. We see that both sim-
ulated images for training are offset to the right by almost the
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same amount. This would in the end lead to a very similar time
delay as the initial mock observations, even though the input val-
ues are very different from those of the initial observations.

Our described approach can be seen as a fitting process that
has the weakness that if the models for training are very differ-
ent in comparison to a real observation, our approach will fail.
From Fig. 1 we see that the four SN Ia models predict different
shapes of the light curves and locations of peaks. Therefore, to
compensate for different peak locations, we randomly shift the
four SN Ia models in time by −5 to 5 days. Furthermore, to make
the noise level more random and compensate for different peak
brightness, we vary also the overall magnitude values by −0.4 to
0.4. The random shifts in time and magnitude are the same for
a single sample, and therefore this approach creates basically a
new model with the same light-curve shape, but slightly different
peak location and brightness. Since the ML models do not know
the actual values of the random shifts in time or magnitude the
location of the peak for a certain SN Ia model is smeared out.
Therefore, this approach introduces a much larger variety in the
SN Ia models and Appendix C shows that this helps to generalize
to light curves from sources that were not used in training the ML
model. We also tested random multiplication factors to stretch or
squeeze the light curves in time (instead of the random constant
shift in time as just described), but our approach with the ran-
dom shifts works slightly better as discussed in Appendix C. We
therefore use the random shifts for the rest of this paper.

4. Machine learning techniques

In this section we explain the two different ML models used in
this work, namely a deep learning network using fully connected
layers and a RF. We use these simple ML approaches to get
started, because if they work well, then more complicated mod-
els might not be necessary. Results from these simple approaches
would also serve as a guide for the development of more com-
plex ML models. The techniques all use the input data structure
as described in Sect. 3, and provide for each image of the LSN Ia
a time value t as shown in Fig. 3. For the first appearing image,
the (ground truth) time t = 0 is the time of explosion and for
the next appearing image it is the time of explosion plus the time
delay ∆t. Given our creation of the data set, which is done like
a fitting process for each light curve, we do not train the system
to predict only the time delay, but instead we have as output one
time value per image as described in Sect. 3.2.

4.1. Deep learning – Fully connected neural network

Neural networks are a powerful tool with a broad range of appli-
cations. To solve our regression problem, we used a FCNN, con-
sisting of an input layer, two hidden layers, and one output layer,
as shown in Fig. 5. Although universal approximation results
(Cybenko 1989; Hornik et al. 1989) suggest that a FCNN with
only one hidden layer of arbitrarily large width can approximate
any continuous function, FCNNs with finite widths but more lay-
ers have shown to be more useful in practice. We therefore used
two hidden layers instead of one and tested different widths of
the networks by introducing the scaling factor f for a variable
number of nodes in the hidden layers in order to optimize the
number of hidden nodes.

In our FCNN, each node of the input layer corresponds to
a magnitude value of a single observation for a given filter and
image, sorted as in the example of Eq. (4). Each node of the
input layer (d j) is connected by a weight (w1, jk) to each node of
the first hidden layer (h1,k). In addition, a bias (b1,k) is assumed

and we introduce non linearities, by using a rectified linear units
(ReLU) activation function (e.g., Glorot et al. 2010; Maas et al.
2013), which is 0 for all negative values and the identity function
for all positive values. Therefore, the nodes of the first hidden
layer can be calculated via

h1,k = ReLU

 Nd∑
j=1

w1, jk d j + b1,k

 , k = 1, 2, . . . 10 f . (5)

Further, all nodes in the first hidden layer are connected to
all nodes in the second hidden layer in a similar manner:

h2,k = ReLU

 10 f∑
j=1

w2, jk h1, j + b2,k

 , k = 1, 2, . . . 5 f . (6)

The nodes from the second hidden layer are then finally con-
nected to the output layer to produce the time values

tk =

5 f∑
j=1

w3, jk h2, j +b3,k, k =

{
1, 2 (double system)
1, 2, 3, 4 (quad system). (7)

The output layer consists of two nodes for a double LSN Ia
and four nodes for a quad LSN Ia. We tested also other FC net-
work structures such as using a different network for each image,
using three hidden layers, or using a linear or leaky ReLU acti-
vation function, but our default approach described above works
best.

We train our system for a certain number of epochs Nepoch,
where we use the ML library PyTorch (Paszke et al. 2019). At
each epoch, we subdivide our training data randomly into mini
batches with size Nbatch. Each mini batch is propagated through
our network to predict the output that we compare to the ground-
truth values by using the mean squared error (MSE) loss. To
optimize the loss function, we use the Adaptive Moment Esti-
mation (Adam) algorithm (Kingma & Ba 2014) with a learning
rate α on the MSE loss to update the weights in order to improve
the performance of the network7. Per epoch, we calculate the
MSE loss of the validation set from our FCNN, and store in the
end the network at the epoch with the lowest validation loss.
By selecting the epoch with the lowest validation loss, we mini-
mize the chance of overfitting to the training data. Typically we
reach the lowest validation loss around epoch 200 and an exam-
ple for the training and validation curve for our FCNN is shown
in Appendix D.

The test data set is used in the end to compare different
FCNNs, which have been trained with different learning rates
α, sizes f and mini-batch sizes Nbatch.

4.2. Random forest

The RF (Breiman 2001) is a method used for classification
and regression problems, by constructing many random decision
trees. In this section we give a brief introduction on the idea of a
RF and explain the setup we are using.

To build a RF, we construct many random regression trees,
which are a type of decision trees, where each leaf represents
numeric values (for the outputs). For our case, we create a total
of Ntrees random regression trees where a schematic example for
a single regression tree is shown in Fig. 6. The root node is
shown in magenta, the internal nodes in gray and the leaf nodes

7 For the other hyperparameters of the Adam optimizer, we used the
PyTorch default values.
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Fig. 5. FCNN, where the input layer has Nd data points and d j stands
for the magnitude value of the jth data point in Eq. (4). The size of the
two hidden layers scales by a factor f , and the outputs are two (four)
time values for a double (quad) LSN Ia.

in green. The root node splits our whole data set containing sam-
ples as defined by Eq. (4), into two groups based on a certain
criterion (e.g., mi1,2 < 1.2): first where the criterion is true, and
second where it is not. The internal nodes split the data in the
same manner, until no further splitting is possible and we end up
at a leaf node to predict the two time values t1 and t2 as output.

To create random regression trees we use a bootstrapped
data set, which draws randomly samples from the whole training
data (400 000 samples) until it reaches a given size Nmax samples.
Importantly, an individual sample of the original training data
can be drawn multiple times and each random regression tree is
built from an individual bootstrapped data set, which is used to
create the root, internal and leaf nodes. However, only a random
subset of the features (e.g., just mi1,2, mi2,5, and mi2,9) is consid-
ered to construct the root node or a single internal node, where
the splitting criterion (e.g., mi1,2 < 0.5) of a single feature is
defined based on the mean value (e.g., m̄i1,2 = 0.5) from all sam-
ples under investigation (Nmax samples for the root node and fewer
samples for the internal nodes depending on how the data set was
split before). The number of available features we pick randomly
from all features for the creation of a node is Nmax features

8.
In the following, we demonstrate the construction of the root

node for a regression tree, as shown in Fig. 6, for the example
of Nmax features = 3. Therefore, we randomly pick three features
from Eq. (4), which we assume to be mi1,2, mi2,5, and mi2,9. From
a bootstrapped data set with Nmax samples samples of our train-
ing data set, we assume to find the mean values m̄i1,2 = 1.2,
m̄i2,5 = 1.0, and m̄i2,9 = 0.6. Therefore, we investigate the three
criteria mi1,2 < 1.2, mi2,5 < 1.0, and mi2,9 < 0.6 as potential
candidates for the root node, where each of the criteria splits the
Nmax samples training samples into two groups. We select the best
splitting criterion as the one that results in the lowest variance in
the predictions within each of the groups created by the split. In
other words, we can compute through this comparison a residual
for t1 and t2 for each sample. From this, we can calculate the
sum of squared residuals for each candidate criterion, and the
criterion that predicts the lowest sum of squared residuals will
be picked as our root node, which would be mi1,2 < 1.2 in our
schematic example. For each of the resulting two groups, we fol-
low exactly the same procedure to construct internal nodes that

8 A single feature such as mi1,2 can be picked multiple times.

Fig. 6. Schematic example of a regression tree for a double system that
predicts two time values for certain input data as in Eq. (4). The root
node is represented by the magenta box, the internal nodes by gray
boxes, and the leaf nodes by green boxes.

split the data further and further until no further splitting is possi-
ble or useful9 and we end up at a leaf node to predict the output.
To avoid a leaf node containing just a single training sample,
we used two parameters, namely, Nmsl, the minimum number of
samples required to be in a leaf node, and Nmss, the minimum
number of samples required to split an internal node. From the
multiple training samples in a leaf node, the t1 and t2 values of a
leaf node are the average of all samples in the leaf node.

Following the above procedure, many random regression
trees are built; to create an output for a single (test) sample, all
regression trees are considered and the final output is created
from averaging over all trees.

For this approach we used the object
sklearn.ensemble.RandomForestRegressor of the
software scikit-learn (Pedregosa et al. 2011; Buitinck et al.
2013), where we assume the default parameters except for
the previously mentioned Nmsl, Nmss, Ntrees, Nmax samples and
Nmax features.

5. Machine learning on example mock observation

In this section we apply the ML techniques from Sect. 4 to our
example mock observation of a double LSNe Ia described in
Sect. 3. In Sect. 5.1 we find the best FCNN and RF and com-
pare results from the corresponding test sets based on the four
theoretical models also used in the training process. In Sect. 5.2
we use the best FCNN and RF and apply it to an empirical data
set not used in the training process to test the generalizability
of both models. This final test is very important since in reality
we can never assure that our assumed light-curve shapes in the
training process will fully match a real observation.

5.1. Best fit: Fully connected neural network versus random
forest

To find a FCNN and a RF that provide the best fit to our mock
observation from Fig. 3, we explore a set of hyperparameters as
listed in Table 2 for the FCNN and Table 3 for the RF.

To find the best ML model for our mock observation, we
used the test set to evaluate each set of hyperparameters. This
is just to find an appropriate set of hyperparameters, which we
will use for the sake of simplicity from here on throughout the

9 Further splitting is not useful if none of the investigated splitting cri-
teria would lead to further improvements of the sum of squared residuals
in comparison to not splitting the remaining samples.
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Table 2. Investigated parameters for the training process of the FCNN
(see Fig. 5) for the system listed in Table 1.

α 0.01, 0.001, 0.0001, 0.00001

f 5, 10, 20, 40, 80, 160
Nbatch 64, 128, 256, 512
Nepoch 400

Notes. We vary the learning rate, α, the size of the hidden layers by
a factor f , and the size of the mini batches, Nbatch. Furthermore, 400
training epochs (Nepoch) are sufficient given that the minimum loss of
the validation set is typically reached around 200 training iterations.

Table 3. Investigated parameters for the training process of the RF (see
Fig. 6 for a single regression tree) for the system listed in Table 1.

Ntrees 200, 400, 800

Nmss 2, 4, 8
Nmsl 1, 2, 4
Nmax samples 50 000, 100 000, 200 000, 300 000, 400 000
Nmax features 1,

√
Nall features,Nall features

Notes. We vary the number of trees, Ntrees, the minimum number of
samples required to split an internal node, Nmss, the minimum number of
samples required to be in a leaf node, Nmsl, the size of the bootstrapped
data set, Nmax samples, and the maximum number of features, Nmax features,
considered to create a root or internal node.

paper10. Our final judgment of the performances of the ML mod-
els will be based on the “SNEMO15 data set” where light curves
will be calculated using an empirical model (see Sect. 5.2). The
distinctions between the various data sets for our ML approaches
are summarized in Table 4. For each sample i of the test set, we
get two time values, t1,i and t2,i, from which we can calculate
the time delay ∆ti = t1,i − t2,i, which we compare to the true
time delay ∆ttrue,i to calculate the “time-delay deviation” of the
sample as

τi = ∆ti − ∆ttrue,i. (8)

We investigate here the absolute time-delay deviation instead of
the relative one (τi/∆ttrue,i), because this allows us to draw con-
clusions about the minimum time delay required to achieve cer-
tain goals in precision and accuracy. From our results, we do
not find a dependence on the absolute time delay (e.g., 32.3 d
for Fig. 4) used in the training process, which is what we expect
from the setup of the FCNN and the RF and is demonstrated in
Sect. 7.4.

For the FCNN, we find that (α, f ,Nbatch,Nepoch) =
(0.0001, 40, 256, 400) provides the best result, meaning
that the median of τi of the whole test set is lower than
0.05 days (to reduce the bias) and the 84th–16th per-
centile (1σ credible interval) of the test set is the low-
est of all networks considered. For the RF the hyper-
parameters (Ntrees,Nmss,Nmsl,Nmax samples,Nmax features) =

(800, 4, 1, 200 000,
√

Nall features) provide the best result. In
the following we always use these two sets of hyperparam-
eters for the FCNN or the RF, unless specified otherwise.
We note that Ntrees = 800 is on the upper side of what we
investigated, but increasing the number of trees further makes

10 Such hyperparameter optimizations are usually performed using the
validation set, whereas we are using the test set because we have the
SNEMO15 data set for ultimate performance test.

Table 4. Explanation of the different types of data sets used for our ML
approaches.

Data set type Description and purpose

Training set To train the ML models. Light curves of
four theoretical SNe Ia models are used.

Validation set To find the training epoch for the FCNN
that has lowest validation loss (four
SNe Ia models as in training process).

(Corresponding) test set To evaluate the performance of a ML
model using four theoretical models as
in the training process. The term
“corresponding” is used if all
parameters (e.g., κ, γ, . . .) for the
production of the test set are the same
as for the training set.
This data set does not test the
generalizability to different SN Ia
light-curve shapes.

SNEMO15 data set Final test set using light curves from the
empirical SNEMO15 model not used
in the training process, which most
importantly tests the generalizability of
the trained ML models.

the computation even more costly. Nevertheless, we tested
also Ntrees = 1000, 1200, 1600, 2000 and Ntrees = 3000 with
(Nmss,Nmsl,Nmax samples,Nmax features) from the best fit as listed
above. We find results that are basically the same as for
Ntrees = 800 or slightly worse (0.02 d at most) and therefore
we stick with Ntrees = 800, which is sufficient. The comparison
between the FCNN and the RF is shown in Fig. 7, where
we quote the median (50th percentile), with the 84th–50th
percentile (superscript) and 16th–50th percentile (subscript)
of the whole sample of light curves from the corresponding
test set. The results include microlensing and observational
uncertainties as described in Sect. 2. For the training and testing,
we considered the four SN Ia models, merger, N100, sub-Ch
and W7 (therefore we use the description “corresponding test
set” in the title of Fig. 7). Further, the results are based on using
just the i band, assuming the data structure as defined in Eq. (4).

Instead of looking at the whole sample of light curves from
the test set at once, we show in Appendix E how the time-delay
deviation τi depends on the time delay of the test samples. We
find for both networks a slight trend that time delays far away
from the true time delay of the mock observation yield larger
deviations, where the effect is stronger for the RF in comparison
to the FCNN. However, this is not surprising as very long time
delays come from rare scenarios where the t1 value of the first
image is highly underestimated and the t2 value of the second
image is highly overestimated. Similarly, very short time delays
tend to have t1 that is highly overestimated and t2 that is under-
estimated. Given that these scenarios are rare in the training set,
it is more difficult to learn these cases. Still, the FCNN com-
pensates for these edge effects better, which explains the better
performance of the FCNN in comparison to the RF on the corre-
sponding test set as shown in Fig. 7.

However, we see that both ML models provide accurate mea-
surements of the time delay with the 1σ uncertainty for the
FCNN around 0.7 days and the RF around 0.8 days, where both
have low bias (≤0.04 days). Nevertheless, the training and test
set is produced by using the same SN Ia models. If light curves
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Fig. 7. FCNN and RF on the whole sample of light curves from the
specified test set for the mock observation in Fig. 3. The ML models’
hyperparameters are set to the values at which the test set yields a bias
below 0.05 days and the smallest 68% credible interval of the time-delay
deviation (in Eq. (8)).

in the test sets are different from the ones used for training, this
can lead to broadened uncertainties, and more critically, also to
biases (see Appendix C). Further, we learn from Appendix C
that, as soon as the different light curves used for training cover
a broad range, the trained ML model can be used for light-curve
shapes it has never seen. Therefore, in Sect. 5.2, we evaluate the
RF and the FCNN trained on four theoretical models on a data
set based on the empirical SNEMO15 model.

5.2. Generalizability of ML models: Evaluation on SNEMO15
data set

To test if the ML models trained on four SN Ia models with the
random shifts in time and magnitude as introduced in Sect. 3.2
can generalize well enough to real SN Ia data, we created a data
set based on the empirical SNEMO15 model, which is shown in
Fig. 1. The empirical model covers only a wavelength range from
3305 Å to 8586 Å, and with zs = 0.76 (Table 1), the i band is the
bluest band we can calculate.

To account for macrolensing and brightness deviations for
the SNEMO15 model in comparison to the theoretical SN mod-
els, we set the median SNEMO15 light curve equal to the mean
value of the four macrolensed SN Ia models. Since the light
curves are normalized before the training process, this is only
important to avoid over- or underestimations of the observational
noise. Furthermore, to include microlensing, we use microlensed
light curves from the four theoretical models, initially created
for the corresponding test set, and subtract the macrolensed light
curve, assuming µmacro = 1/((1 − κ)2 − γ2). Therefore, we get
from our 4 models 4000 microlensing contributions for the light
curves, which the FCNN or the RF have not seen in its train-
ing process. For each of the microlensing contributions, we then
draw randomly one of the 171 SNEMO15 light curves to create
a microlensed SNEMO15 light curve. From the 4000 microlens-
ing contributions, we have a sample of 4000 microlensed light
curves. For each light curve, we then draw 10 random noise
and time-delay realizations to create a data set, as described in
Sect. 3.2. We call this the SNEMO15 data set.

Figure 8 shows the results where we evaluate the FCNN and
the RF from Fig. 7, trained on four theoretical SN Ia models, on

Fig. 8. FCNN and RF trained on four theoretical models for the i band
evaluated on the whole sample of light curves from the two specified
data sets. The dashed black line represents the corresponding test set
based on the four theoretical models, and the data set of the blue line is
based on the empirical SNEMO15 model.

the corresponding test set (built from the same four theoretical
SN Ia models) and on the SNEMO15 data set. The first important
thing we note is that the RF shows almost no bias, whereas the
FCNN has a higher bias when evaluated on the SNEMO15 data set.
To investigate this further, we look at results from the RF and the
FCNN for the set of hyperparameters as listed in Tables 2 and 3
for three different cases using the i band, z band, or y band.

We find that the absolute bias of the FCNN for the different
hyperparameters and bands (i, z, and y) is mostly below 0.4 days
but higher values are also possible. The problems are that these
variations in the bias in the SNEMO15 data set are not related to
biases we see in the corresponding test sets or due to a specific
set of hyperparameters. As a result, we cannot identify the under-
lying source of the bias, apart from that it is due to suboptimal
generalization of the theoretical SN Ia models to SNEMO15 in the
FCNN framework.

The RF works much better in this context, as the abso-
lute bias is always lower than 0.12 days for the i, z, and y
bands. Only the hyperparameter Nmax features = 1 can lead to a
higher bias up to 0.22 days, but this hyperparameter is excluded
because of its much worse performance in precision on the
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Fig. 9. Bias of FCNN and RF on the corresponding test set, com-
posed of four theoretical SN Ia models used for training, and a data
set based on the empirical SNEMO15 model, not used during training,
for a variety of different hyperparameters and filters (i, z, and y), i.e.,
from model averaging. The large biases on the SNEMO15 data set up to
1 day in our FCNN approach come from the different hyperparameters
even though the corresponding test set provides biases within 0.25 days.
The RF provides much lower biases in all cases; it depends only weakly
on the hyperparameters and is instead mostly set by the filters under
consideration.

corresponding test set in comparison to Nmax features =√
Nall features or Nmax features = Nall features. Therefore, as long as we

restrict ourselves to LSNe Ia with delays longer than 12 days we
can achieve a bias below 1%, which allows accurate measure-
ments of H0. Furthermore, the bias is not the same in all filters.
While the absolute bias in the y band goes up to 0.12 days, we
have a maximum of 0.08 days in the z band and 0.03 days in the i
band. The comparison of multiple bands therefore helps to iden-
tify some outliers.

The bias investigation of the FCNN and the RF is summa-
rized in Fig. 9 using all hyperparameters (except Nmax features = 1,
which is excluded because of its bad performance on the corre-
sponding test set) and the i, z, and y bands. From the upper panel
we see that the large biases of our FCNN on the SNEMO15 data
set are not related to biases we see in the corresponding test set
and therefore identifying a set of hyperparameters just from the
corresponding test set which works also well on the SNEMO15
data set is not possible. From the lower panel of Fig. 9 we see
that also the biases in the RF from the corresponding test set
and the SNEMO15 data set are not directly related with each other

but this is not a problem as the biases on the SNEMO15 data set
are low enough for precision cosmology. From this example we
see that the RF is able to generalize to a new kind of data not
used in the training process, which does not work well for our
FCNN. In principle this was already suggested by the investiga-
tion done in Appendix C, but with the random shifts in time we
introduced, it seemed to significantly improve the generalizabil-
ity, but it was still not enough for the final test on the SNEMO15
data set. Investigating the importance of all the input features as
listed in Eq. (4), we find that the FCNN focuses mostly on the
peak directly whereas for the RF the features before and after the
peak are the most important ones. More about this is discussed
in Appendix F.

In the remainder of the paper, we proceed to present results
based on the RF, because the significant bias in our FCNN makes
accurate cosmology difficult to achieve especially for LSN Ia
systems with short delays. Using deeper networks would not be
enough to improve our FCNN, as this would just allow a better fit
to the training data but does not ensure any improvement on the
generalizability of the network. Therefore, it would be necessary
to provide more realistic input light curves for the training pro-
cess, as it has problems to generalize to light-curve shapes it has
not seen. Such an improvement could be achieved by using the
SNEMO15 light curves as well in the training process, but then
a test set with light-curve shapes it has never seen would be
missing. Another approach would be to incorporate regulariza-
tion or dropout into our FCNN or by constructing a network that
outputs in addition to the time values the associated uncertain-
ties, but given that this was not necessary for the corresponding
test set to perform well, it would be some kind of fine tuning
to our SNEMO15 data set, because all tests before were encour-
aging to proceed to the final test. Therefore, we postpone fur-
ther investigations of FCNNs to future studies, especially since
other network architecture, such as recurrent neural networks,
long short-term memory networks (Sherstinsky 2020), or Gaus-
sian processes, could potentially reduce model complexity while
having lower inductive bias11 (Wilson & Izmailov 2020).

Another thing we learn is that the distribution of the recov-
ered time delays from the SNEMO15 data set is ∼0.5 days broader
than that of the corresponding test sets. This is not surprising
as the RF and the FCNN have never seen such light curves
in the training process. A ∼1.4 day precision on a single LSN
Ia is still a very good measurement and allows us to conduct
precision cosmology from a larger sample of LSNe Ia. Never-
theless, we see in this section that even though the uncertain-
ties for the RF are larger than that of the FCNN, the RF pro-
vides low bias when used on empirical data and is therefore
preferred.

6. Microlensing, noise, and choice of filters

In this section we use the RF from Sect. 5.1 and apply it to
the mock observation from Sect. 3, for hypothetical assump-
tions about microlensing and noise to find sources of uncertain-
ties (Sects. 6.1 and 6.2). We further investigate potential bands
to target for follow-up observations (Sect. 6.3). In this section
all results presented are based on the RF on test sets from the
four theoretical models. The conclusions drawn in this section
would be the same if the results from the FCNN would be
presented.

11 Inductive bias refers to the bias coming from assumptions that a ML
model has to make to generalize based on training samples.
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Fig. 10. RF evaluated on all samples from its corresponding test set
(black dashed line, where training and test sets have the same κ and γ
values) and on all samples from two other test sets (blue and orange),
with slightly different κ and γ values of the microlensing map in com-
parison to that of the training data.

Fig. 11. RF evaluated on all samples from its corresponding test set
(black dashed line, where training and test sets have the same s value)
and on all samples from three other test sets (blue, orange, and green),
with different s values of the microlensing map in comparison to that of
the training data.

6.1. Microlensing map parameters κ, γ, s

To investigate uncertainties in the microlensing characterization,
we use the RF from Sect. 5.1, but evaluate it on different test sets
with varying κ, γ, and s values, which deviate from the original
training data.

Figure 10 shows the RF evaluated on different test sets.
The black dashed line represents the evaluation of the RF on
the corresponding test set, which is calculated according to
Sect. 3.2. The blue and orange lines represent very similar test
sets, but calculated on a different microlensing map. Instead
of the κ and γ values listed in Table 1, we assume for the
first image (κ, γ) = (0.201, 0.225) and for the second image
(κ, γ) = (0.775, 0.765) to calculate the test set corresponding to
the blue line. The orange line represents a LSNe Ia where we
have for the first image (κ, γ) = (0.301, 0.325) and for the sec-
ond image (κ, γ) = (0.875, 0.865). Even though the RF has never
seen (κ, γ) configurations as represented by the orange and blue

line in the training process, the results are very similar to the cor-
responding test set of the RF and given that typical model uncer-
tainties are around 0.05 (e.g., More et al. 2017), uncertainties in
κ and γ are not critical for our procedure.

In Fig. 11 we do a similar investigation, but this time we vary
the s value of the microlensing maps. From the comparison of
the black dashed line to the orange line, which represents almost
the same s value, we see that the uncertainties are almost com-
parable. Therefore, the much wider uncertainty for s = 0.3 (blue
line) is not due to variations from different microlensing maps
for the same parameter set, but from the fact that lower s values
provide more micro caustics in the map, which leads to more
events where these caustics are crossed and therefore to more
microlensing events and higher uncertainties. This also explains
the much tighter uncertainties of s = 0.9, which corresponds to
a much smoother microlensing map. These results are in good
agreement with those of Huber et al. (2021), who also showed
that higher s values lead to lower microlensing uncertainties.

For a real observation, the s value is often not known very
precisely, which is no problem as the RF still works very well.
The only thing one has to be careful about is that an underes-
timation of the s value leads to an overestimation of the overall
uncertainties. Therefore, going for a slightly lower s value as one
might expect is a good way to obtain a conservative estimate of
the uncertainties.

6.2. Uncertainties due to microlensing and noise

In this section we compare the RF from Sect. 5.1 to other RF
models with various assumptions about microlensing and noise
as shown in Fig. 12.

From the two cases containing microlensing in comparison
to the two cases without microlensing, we find that microlensing
increases the uncertainties almost by a factor of two. Although
this is quite substantial, we see that the contribution of the
observational noise is much higher and is the dominant source
of uncertainty in the time-delay measurement. Therefore, to
achieve lower uncertainties, deeper observations with smaller
photometric uncertainties are required. This is in agreement with
Huber et al. (2019), who found that a substantial increase in
the number of LSNe Ia with well measured time delays can be
achieved with greater imaging depth.

6.3. Filters used for training

In this section we investigate eight different filters (ugrizyJH)
and possible combinations of them to get more precise mea-
surements. Figure 13 shows eight RF models where each is
trained and evaluated on a single band. The i band, presented
first in Sect. 5.1 provides the most precise measurement. The
next promising filters are r, z, g, and y in that order. For the
bands u, J, and H, the precision of the measurement is poor and
therefore almost not usable. The reason for the strong variation
between different bands is the quality of the light curve, which
becomes clear from Fig. B.1, where only the g to y bands provide
observations where the peak of the light curves can be identified.
Light curves with the best quality are the r and i bands, which
therefore work best for our RF.

There are different ways to combine multiple filters to mea-
sure the time delay. The first possibility would be to con-
struct color curves to reduce the effect of microlensing in the
so-called achromatic phase (Goldstein et al. 2018; Huber et al.
2021). However, as pointed out by Huber et al. (2021) our best
quality color curve r−i would be not ideal as there are no features
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Fig. 12. Comparison of the RF model from Sect. 5.1 to three other RF
models with hypothetical assumptions about noise and microlensing.
Each histogram is based on the whole sample of light curves from their
corresponding test set. For our realistic mock observation, the noise
in the light curves dominates over microlensing as the main source of
uncertainty for measuring the time delays.

for a delay measurement within the achromatic phase. Further,
we saw in Sect. 6.2 that our dominant source of uncertainty is
the observational noise instead of microlensing. Therefore, using
color curves for this mock example is not practical. We further
see that even though color curves are in theory a good way to
reduce microlensing uncertainties, in a real detection it might
fail because not enough bands with high quality data are avail-
able.

Another way of combining multiple filters is to train a single
RF model for multiple filters. Generalizing Eq. (4) for the r and
i bands, we used as input structure

mr1,1 mr1,2 . . .mr1,Nr1 mr2,1 . . .mr2,Nr2 mi1,1 . . .mi1,Ni1 mi2,1 . . .mi2,Ni2 ,

(9)

and more bands will be attached in the same way. The results
are summarized in Fig. 14, where we see that combining the
two most promising bands improves the uncertainty by about
0.1 days, but adding more bands does not help. Comparing these
results to Fig. 15, where different distributions from Fig. 13 are
multiplied with each other12, we see that a single RF model for
multiple filters does not profit much from multiple bands. There-
fore, it is preferable to use a single RF model per band and com-
bine them afterward. Using three or more filters can also help
to identify potential biases in a single band as pointed out in
Sect. 5.2. Combining the r, i, and z bands via multiplication helps
to reduce the uncertainty by more than a factor of two in com-
parison to using just the i band for our system with zs = 0.76.
Further bands that might be considered for follow-up observa-
tions are the g and y bands.

The choice of the ideal filters depends on the source redshift
and therefore we show in Fig. G.1 a similar plot as in Fig. 13 but
for zs = 0.55 and zs = 0.99, which corresponds to the 16th and
84th percentile of the source redshift from LSNe Ia in the OM10
catalog. From this we learn that the three most promising filters
are the g, r, and i bands for zs . 0.6, whereas for zs & 0.6 the
r, i, and z bands are preferred. The main reason for this behavior
is the low rest-frame UV flux of SNe Ia due to line blanketing,

12 We assume that different filters have independent detector noise.

Fig. 13. Eight different RF models, each trained on a data set from a sin-
gle band (as indicated in the legend) and evaluated on the whole sample
from the corresponding test set, similar in procedure to Sect. 5.1.

Fig. 14. Multiple filters used to train a single RF following the data
structure as defined in Eq. (9) (example for ri). Each histogram is based
on the whole sample of light curves from their corresponding test set.
Using more than two filters does not improve the results further.

which gets shifted more and more into the g band for higher
zs. If four filters could be used, then we have g, r, i, and z for
zs . 0.8 and r, i, z, and y for zs & 0.8. If resources for five filters
are available, we recommend g, r, i, z, and y; the J band might
be preferred over the g band for high source redshifts (zs > 1.0).
However, given the poor precision in the g and J bands at such
high redshifts, it is questionable how useful the fifth band is in
these cases.

7. Machine learning on further mock observations

In this section we investigate further mock systems. We test
systems with different moon phases (Sect. 7.1) and source,
respectively lens redshifts (Sect. 7.2) to investigate the change
of the uncertainties in comparison to our mock system from
Sects. 3, 5, and 6. Furthermore, we test the number of data points
required before peak to achieve good time-delay measurements
(Sect. 7.3) and a quad system with various different properties in
comparison to our previous studies (Sect. 7.4).
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Fig. 15. Single RF trained per filter using a similar data structure as in
Eq. (4) (example for the i band), leading to six RF models for the six
filters g, r, i, z, y, and J. The combination of the filters is done by mul-
tiplying the corresponding distributions shown in Fig. 13. We see that
multiple filters help to drastically reduce the uncertainties. Therefore,
observing three to four bands would be ideal.

7.1. Different moon phases

In this section we address the effect of different moon phases.
We assume the same LSN Ia as in Sects. 3, 5, and 6, but place
it differently in time. From Fig. B.1, we can already estimate
that if we ignore the u band, which has too low signal-to-noise
anyway, mostly the g band will be influenced as other bands are
significantly brighter than the 5σ point-source depth or there is
only a minor dependence on the moon phase.

For the LSN Ia presented in Sects. 3, 5, and 6, we see from
Fig. B.1 that for the g band, the observations before the peak are
significantly affected by moon light, which according to Fig. 13
leads to an uncertainty around 2.1 d. For a case where the peak in
the g band overlaps with the full moon we find a similar uncer-
tainty, whereas a case where the peak in the g band matches
the new moon has an uncertainty around 1.7 d. For cases where
the peak is not significantly brighter than the 5σ point-source
depth, the moon phase is important, but given that our ML mod-
els work with a variable 5σ point-source depth, the effect of the
moon phase is taken into account in our uncertainties. In terms
of follow-up observations, one might consider to observe longer
at full moon especially in the bluer bands to reach a greater depth
or resort to redder bands if the moon will likely affect the obser-
vations in the bluer bands adversely, but apart from that, we rec-
ommend in general to follow-up all LSNe Ia independently of
the moon phase.

7.2. Source and lens redshifts

The mock system we investigated in Sects. 3 and 5 has zs = 0.76,
which roughly corresponds to the median source redshift of the
OM10 catalog. Furthermore, we have learned from Sect. 6.2 that
the observational noise is the dominant source of uncertainty and
we therefore expect a large dependence of the time-delay mea-
surement on zs (assuming a fixed exposure time during observa-
tions).

We therefore investigate in this section zs = 0.55 and zs =
0.99, which correspond to the 16th and 84th percentiles, respec-
tively, of the source redshift from LSNe Ia in the OM10 catalog.
To probe just the dependence on zs, we leave all other param-

Fig. 16. Two LSNe Ia similar to Fig. 3 but with different source red-
shifts. The LSN Ia in the upper panel has zs = 0.55, and the one in the
lower panel has zs = 0.99.

eters as defined in Table 1. We do not scale the absolute time
delay with the source redshift, since this is just a hypothetical
experiment to demonstrate how different brightnesses, related to
the source redshift, influence the time-delay measurement.

The two cases are shown in Fig. 16, where we see the much
better quality of the light curve for zs = 0.55 (upper panel) in
comparison to zs = 0.99 (lower panel). Further, we also probe
the lens redshift by investigating zd = 0.16 and zd = 0.48, which
also corresponds to the 16th and 84th percentile of the OM10
catalog and where we also leave other parameters unchanged.

The results are summarized in Table 5. We see that in com-
parison to zs = 0.76, the case with zs = 0.55 has an improved
uncertainty by ∼0.2 d, where the case zs = 0.99 has a reduced
uncertainty by ∼0.7 d. This trend is expected, and means that
especially for the case of zs = 0.99, a greater depth would
improve the results significantly. Comparing the results of vary-
ing lens redshifts, we see a much smaller impact on the uncer-
tainty. Still there is a slight trend that higher lens redshifts
correspond to larger time-delay uncertainties, which is in good
agreement with Huber et al. (2021), who find the tendency that
microlensing uncertainties increase with higher lens redshift if
everything else is fixed. The reason for this is that the physi-
cal size of the microlensing map decreases with higher lens red-
shift, which makes a SN Ia appear larger in the microlensing map
and therefore events where micro caustics are crossed are more
likely. More details are available in Huber et al. (2021).

The impact of the source redshift on the best filters to target
is discussed previously in Sect. 6.3.
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Table 5. Time-delay measurement of different LSNe Ia with varying
source and lens redshifts.

zs, zd Corresponding test set SNEMO15 data set

0.76, 0.252 (Fig. 3) 0.04+0.83
−0.87 d 0.02+1.38

−1.42 d
0.55, 0.252 (Fig. 16) 0.04+0.59

−0.67 d 0.01+1.29
−1.25 d

0.99, 0.252 (Fig. 16) 0.01+1.64
−1.66 d 0.02+2.1

−2.16 d
0.76, 0.16 0.04+0.83

−0.89 d −0.09+1.26
−1.30 d

0.76, 0.48 0.06+0.97
−1.06 d −0.09+1.45

−1.51 d

7.3. Data points before peak

In this section we discuss the number of data points required
before peak to achieve a good time-delay measurement. The case
presented in Sect. 3 has a large number of data points before
peak, which is not always achievable in practice, especially
since vetting of transient candidates and triggering of light-curve
observations often require additional time. Therefore, we inves-
tigate a similar mock system as in Fig. 3, but with a later detec-
tion in the first-appearing SN image. In Fig. 17, we show a case
where we have the first data point at the peak in the i band in
comparison to three other cases where we have four, three, or
two data points before the peak. The case for the at-peak detec-
tion provides as expected the worst precision but more worrying
is the large bias of 0.83 days. Already two data points before
peak improve the results significantly and allow precision cos-
mology for LSNe Ia with a time delay greater than 22 days.
Nevertheless, we aim for four data points before peak as we
could achieve a bias below 1% already for a delay greater than
10 days; furthermore, the precision is also improved substan-
tially and almost at the level of the mock observation in Fig. 3
and corresponding results in Fig. 8. This would correspond in the
observer frame to a detection about eight to ten days before the
peak in the i band. Given that a SN Ia typically peaks ∼18 rest-
frame days after explosion and the typical lensed SN redshift
is ∼0.7, we would need to detect and start follow-up observa-
tions of the first-appearing SN image within ∼15 days (observer
frame) in order to measure accurate time delays. The results pre-
sented here are in good agreement with the feature importance
investigations shown in Fig. F.1, where we find that especially
the rise slightly before the peak is very important for the RF.

7.4. Quad LSNe Ia and higher microlensing uncertainties

So far we have only discussed double LSNe Ia, but in this section
we present a LSN Ia with four images. Our mock quad LSN Ia is
similar to the one presented in Sect. 3, but we varied the source
position for the double system in the same lensing environment
using the GLEE software (Suyu & Halkola 2010; Suyu et al.
2012) such that we get a quad system, where the parameters are
listed in Table 6 and the light curves from the system are shown
in Fig. 18. For images one to three, the κ and γ values are closer
to 0.5 in comparison to the double system from Table 1, which
means that the macro magnification is higher but microlensing
uncertainties are increased as shown in Huber et al. (2021). For
image four, we have κ and γ values far from 0.5; this leads to
lower microlensing uncertainties but therefore also to a much
fainter image, which can be seen in Fig. 18.

In principle such a quad system can be investigated in two
ways. The first approach is to train a separate RF per pair of
images, leading to six RF models in total. The other way is to

Fig. 17. Time-delay deviations of mock observations similar to Fig. 3
but with a later detection, meaning fewer data points before the peak in
the i band of the first-appearing SN image. Each histogram is based on
the whole sample of light curves from the related SNEMO15 data set. We
compare the cases where we have four, three, or two data points before
the peak in comparison to an at-peak detection.

Table 6. Source redshift, zs, lens redshift, zd, convergence, κ, shear, γ,
and the time values for the four images of a mock quad LSN Ia.

zs zd (κ, γ) t [d]

Image 1 0.76 0.252 (0.435, 0.415) ≡0.00
Image 2 0.76 0.252 (0.431, 0.424) 0.01
Image 3 0.76 0.252 (0.567, 0.537) 0.34
Image 4 0.76 0.252 (1.28, 1.253) 20.76

Notes. The image separation varies between 0.6 and 1.6 arcsec, and
therefore it might be challenging to resolve all images with ground-
based telescopes given limits due to seeing.

Fig. 18. Light curves of the mock quad LSN Ia from Table 6 for the i
band.

train a single RF for the whole quad system that takes as input
magnitude values of four images instead of two images, similar
to Eq. (4). The outputs as shown in Figs. 5 and 6 are then four
instead of two time values.

The results for both approaches are summarized in Table 7
and the correlation plots are shown in Appendix H. We find fewer
correlations for the approach “separate RF per pair of images”
than for the approach “single RF for all images”, especially for the
cases where the noisy fourth image is included in the time-delay
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Table 7. Deviations of the time-delay measurements (τi j = ∆ti j−∆ttrue,i j)
for the LSN Ia quad system shown in Fig. 18.

Separate RF Single RF
per pair of images for all images

Time-delay dev. of ∆t21 0.01+1.63
−1.63 d −0.01+1.65

−1.64 d
Time-delay dev. of ∆t31 −0.05+1.85

−1.85 d 0.01+1.89
−1.87 d

Time-delay dev. of ∆t41 0.15+1.84
−1.96 d 0.26+2.24

−2.36 d
Time-delay dev. of ∆t32 −0.03+1.86

−1.89 d 0.01+1.89
−1.88 d

Time-delay dev. of ∆t42 0.14+1.81
−1.93 d 0.26+2.25

−2.33 d
Time-delay dev. of ∆t43 0.15+2.07

−2.19 d 0.25+2.40
−2.55 d

Notes. The second column shows the case where a separate RF is
trained per pair of images, leading to six RF models in total, in com-
parison to a single RF (third column) for the whole quad system.

measurement. This is because in the first case, six RF models are
trained independently from each other, whereas the second case
only uses a single RF that predicts four time values for the four
images. Still the case “separate RF per pair of images” is preferred
because it provides lower biases and tighter constraints. This is
not surprising, as providing all the data from the four images at
once is a much more complex problem to handle in comparison
to training a RF for just two images. While the time-delay devi-
ations between both approaches are almost comparable for pairs
of images among the first, second and third images, for the cases
where the fourth image is included, the single RF for the whole
quad system performs much worse. This suggests that especially
handling noisy data can be treated better in the approach of a sepa-
rate RF for each pair of images and therefore it is always preferred
to train a separate RF per pair of images.

In the following we analyze the different uncertainties of
the time-delay measurements from different pairs of images as
shown in Table 7. The most precise time delay is the one between
the first and second image, but if we compare this uncertainty to
the uncertainty of the lower panel of Fig. 8 for the double LSNe
Ia from Fig. 3, we see that the precision is 0.2 days worse. This
can be easily explained by the higher microlensing uncertainties
coming from the κ, and γ values much closer to 0.5 as shown
in Table 6 in comparison to Table 1. Higher microlensing uncer-
tainties are also the reason why uncertainties of ∆t31 and ∆t32
are larger than ∆t21, even though the third image is the brightest
one and therefore has the lowest amount of observational noise.
The precision and also accuracy of the time-delay measurement
where image four is involved are the worst in Table 7, which is
explained by the very poor quality of the light curve from the
fourth image. We further see that ∆t31 and ∆t32 as well as ∆t41
and ∆t42 have very similar uncertainties, which is expected since
light curves from image one and two are almost identical and
therefore this is a good check of consistency.

Even though the time-delay measurements between the first
three images have the lowest time-delay deviation in days, the
absolute time delay is very short, which leads to a very high rel-
ative deviation. For this specific mock quad LSNe Ia, it would
only make sense to measure time delays with respect to the
fourth image, where we would achieve a precision around 10%
and an accuracy of 0.7%.

8. Discussion

We train a FCNN with two hidden layers and a RF using four
theoretical SN Ia models, to measure time delays in LSNe Ia.

We find that both ML models work very well on a test set based
on the same four theoretical models used in the training pro-
cess, providing uncertainties around 0.7 to 0.9 days for the i band
almost without any bias. Applying the trained ML models to the
SNEMO15 data set, which is composed of empirical SN Ia light
curves not used in the training process, we find that the uncer-
tainties increase by about 0.5 days, but this is not surprising as
such light curves have never been used in the training process
and a measurement with a 1.5-day uncertainty on a single band
is still a very good measurement.

However, when applied to the SNEMO15 data set, the FCNN
yields biased results. The biases are mostly within 0.4 days, but
larger ones are also possible, making our FCNN approach not
suitable for precision cosmology. Furthermore, this shows that
the generalizability to light-curve shapes not used in the training
process is not working for our FCNN approach, since biases on
the corresponding test set composed of four theoretical models
as used in the training process are negligible. This was already
suggested by results presented in Fig. C.1, where the training
on three theoretical models was not general enough to perform
well on the fourth model not used in the training process. How-
ever, we introduced random shifts in time of the light curves,
which reduced the bias significantly and motivated us to apply
our FCNN trained on four theoretical models (with random shifts
in time to reduce the bias), to the SNEMO15 data set as a final
test, where we find unfortunately significant biases. Deeper and
larger fully connected networks will not solve this problem as
they will just fit the training data better and do not guarantee
the generalizability. To overcome this, regularization, dropout
or uncertainty estimates as additional output to the time values
might help. However, this would be some kind of fine tuning
to our SNEMO15 data set, because our investigations up to that
stage (which shows that our FCNN, trained using three theo-
retical models, generalizes well to a test set composed of four
theoretical models, with negligible resulting biases), were very
encouraging to apply our FCNN to the final test (SNEMO15 data
set), which it failed. However, we defer further investigations
of FCNN to future work, especially since more complex ML
approaches such as recurrent neural networks or long short-term
memory networks (Sherstinsky 2020) might fit the problem even
better.

The RF provides significantly lower biases on the SNEMO15
data set – with 4 or more data points before peak, which means
a detection of the first LSNe Ia image about eight to ten days
before peak, the bias can be kept within 0.10 days. If one of the
images is very faint as shown in Fig. 18, we still can reach an
accuracy of 0.15 days and therefore a delay longer than 15 days
provides already a time-delay measurement better than 1%.
Given the low bias in the RF especially in comparison to the
FCNN, the RF is the one to use for a real application.

Huber et al. (2019) used the free-knot spline estimator from
PyCS (Tewes et al. 2013; Bonvin et al. 2016) to measure time
delays for LSNe Ia. To compare this approach to our results, we
apply PyCS as used in Huber et al. (2019) to the SNEMO15 data
set. For the system shown in Fig. 3 with a very well sampled
light curve, we achieve similar uncertainties as the RF shown in
Fig. 8. However, as soon as we look at cases, where we have a
reduced number of data points before peak as shown in Fig. 19
(in comparison to the RF results in Fig. 17), we see that the RF
approach achieves a much higher precision. In terms of the bias,
as long as we provide two data points or more before peak the
RF and PyCS provide sufficient results. For the case where the
first data point is at the peak of the i band, even though PyCS
provides a much better bias than the RF, the measurement has
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Fig. 19. Same as Fig. 17 but this time using PyCS on all samples from
the SNEMO15 data set.

substantially poorer precision. Overall the RF works better to
measure time delays in LSNe Ia in most cases in comparison to
PyCS. However in a real application, both approaches could be
used to cross-check the time-delay measurements.

9. Summary

In this work we have introduced two ML techniques, namely a
deep learning network using a FCNN with two hidden layers
and a RF to measure time delays of LSNe Ia. We simulated LSN
Ia light curves for the training process, including observational
noise and microlensing uncertainties using four different theo-
retical models. Our training set is composed of 400 000 LSNe
Ia coming from 4 theoretical models, 10 000 microlensing map
positions, and 10 noise realizations. Our test set has a size of
40 000 LSNe Ia, and we drew 1000 microlensing map positions
instead of 10 000 as for the training set. We constructed a fur-
ther data set based on the empirical SNEMO15 model to create
realistic LSN Ia light curves not used in the training process to
check if our approach is general enough to handle real observa-
tions of LSNe Ia. To add microlensing to the SNEMO15model, we
used the microlensed light curves from the theoretical models,
subtracting the macrolensed light curve to get the microlensing
contribution.

To summarize our results, we looked at the more realistic
results from the empirical SNEMO15 data set. From the investiga-
tion of the RF and the FCNN, we find that only the RF provides
sufficiently low bias and is therefore the approach to use in a real
application. From all investigated systems where we assumed a
two-day cadence with a few random gaps, we found that we can
achieve an accuracy better than 1% for the RF if we restrict our-
selves to LSN Ia systems with a delay longer than 15 days, where
we obtain the first data point around eight to ten days before the
peak in the light curve of the first-appearing SN image. In terms
of precision, we can achieve an uncertainty of 1.5 days from the
i band alone for the median source redshift ∼0.76 of LSNe Ia
in OM10. Using three bands where the time delay is measured
separately for each RF and combined afterward, we can reach
an approximately 1.0-day uncertainty. The three most promis-
ing filters to target are g, r, and i for zs . 0.6 and r, i, and z for
higher source redshifts. As a fourth and fifth band, the z and y
for zs . 0.6 and the g and y for zs & 0.6 might be considered. We
find that the gain from multiple filters is the best if a ML model
is trained individually per band. The other bands investigated in

this work (u, J, and H) provide very poor-quality light curves
and are therefore not useful.

From our investigations, we find mainly that the observa-
tional noise is the dominant source of uncertainty in measur-
ing time delays, and to improve the results presented here, a
greater depth would be required. The depth we assumed for
follow-up observations is one magnitude deeper than the single-
epoch LSST-like 5σ depth, meaning 25.7, 25.3, 24.7, 23.8, and
23.0 for g, r, i, z, and y, respectively. From the investigation of
the source redshifts, we find that in comparison to the median
source redshift of ∼0.76 of LSNe Ia in OM10, zs = 0.55 can
improve the precision in the i band by 0.2 days, but zs = 0.99
might lower the uncertainty by 0.7 days, which suggests that,
especially for higher source redshifts, a greater depth might be
required. Although a greater depth could also compensate for the
moon phase, the impact on the uncertainty is weaker (an at most
0.4 days worse uncertainty in our investigation) and becomes
even less relevant the redder the bands are. We further find that
typical uncertainties in the microlensing parameters (κ, γ, and
s) are not relevant for our training process. Only a significantly
overestimated s value would lead to an underestimation of the
uncertainties. Furthermore, we find that our approach works best
if an individual RF is trained per pair of images.

In comparison to the free-knot spline estimator from PyCS
(Tewes et al. 2013; Bonvin et al. 2016) as used in Huber et al.
(2019), our approach works better overall, providing an
improved precision of up to ∼0.8 days. We therefore can expect
slightly more LSNe Ia with well-measured time delays than the
number predicted by Huber et al. (2019).

In this work we have developed a new method to measure
time delays of LSNe Ia. The RF provides accurate and precise
time-delay measurements that are comparable with or better than
current methods and is therefore an important tool to pave the
way for LSNe Ia as cosmological probes. The downsides of our
approach are: that a RF needs to be trained separately for each
individual system’s observing pattern; the dependence on the SN
Ia models used in the training process; and that our approach
cannot for the moment be applied to other types of LSNe. A
highly promising approach to overcoming this and building a
ML network that is more general is the use of recurrent neu-
ral networks or long short-term memory networks (Sherstinsky
2020), which will be investigated in a future study.
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Appendix A: Photometric uncertainties

The photometric uncertainty σ1 from Eq. 3 is defined as:

σ2
1 = σ2

sys + σ2
rand, whereσsys = 0.005 mag (A.1)

and

σ2
rand = (0.04 − γc)x + γcx2(mag2). (A.2)

The parameter γc varies from 0.037 to 0.040 for different fil-
ters and x = 100.4(mAB,X−m5), where mAB,X is the AB magnitude in
filter X from Eq. (2) of the SN data point and m5 is the 5σ point-
source depth (for more details, see LSST Science Collaboration
2009, Sect. 3.5, p. 67).

A magnitude value mAB,X, which is much higher (fainter)
than the 5σ point-source depth m5, can lead to unrealistic mdata,X
in Eq. (3). Normally one would just delete such a data point,
but for our ML model this is not possible, given that we always
need the same number of data points as input. Therefore, to

avoid such outliers in our data set used for training, valida-
tion and testing, we ensure that all magnitude values lower than
m5 cannot exceed m5 (bright data point just due to large error)
or be much fainter than this value (data point not observable).
Specifically, if the SN image brightness mAB,X (see Eq. (3)) is
fainter than m5 and the calculated uncertainties would lead to
a mdata,X that is smaller (brighter) than m5 or larger (fainter)
than maxt(mAB,X(t)) + (maxt(mAB,X(t)) − m5), we replace that
data point with a uniform random number between m5 and
mAB,X + (mAB,X −m5), where the term (mAB,X −m5) ensures that
the uniform random number can be fainter than mAB,X, but not
by more than the magnitude difference between mAB,X and m5.

Appendix B: Light curves of mock observation in
multiple bands

Figure B.1 shows all the bands from the mock observation dis-
cussed in Sects. 3, 5, and 6.

Fig. B.1. Further bands for the mock observation of Sect. 3. The dashed gray line marks the 5σ point-source depth that accounts for the moon
phase.
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Appendix C: Bias reduction: Training on three
models

In this section we discuss some hypothetical cases where we
assume that only three of the four theoretical models are avail-
able for the training of the ML method.

We start with the FCNN as described in Sect. 4.1 and inves-
tigate four different cases namely: (merger, N100, sub-Ch),
(merger, N100, W7), (merger, sub-Ch, W7), and (N100, sub-
Ch, W7) for the training process. The black solid line in each
panel of Fig. C.1 shows the case where the trained model is
evaluated on the corresponding test set, meaning that the test
set contains light curves from all three models in the same
fraction as in the training data. The other four distributions,
shown in each panel, correspond to the evaluation of the FCNN
trained on 3 models, on a test set that contains just light curves
from a single SN Ia model. The shown results are the median
(50th percentile), with the 84th–50th percentile (superscript) and
16th–50th percentile (subscript). The left column contains the
normalized light curves as displayed in Fig. 1 and the right
column contains the same models but during the training pro-
cess we allow for a random shift in time from [−5, 5] days and
a random shift in magnitude from [−0.4, 0.4]. We only apply
the shifts in the training set and not in the test set although
the results look similar. While the shift in magnitude is only
applied to make the noise level more flexible, the shifts in
time help to increase the variety of the light curves, especially
so that the locations of the peak from different models do
overlap.

From the left column of Fig. C.1, we learn that as soon as a
model was included in the training process the network performs
very well on the test set of the model. For the case of (merger,
N100, sub-Ch) for the training process, the network works also
very well on the test set from W7, even though it has never seen
light curves from that model. The reason for that seems to be that
light curves from the W7 model are close to the sub-Ch model
for early times and close to the N100 model in later times (espe-
cially for the rest-frame g band) as shown in Fig. 1. The other
three cases still work on the model it was not trained on, but we
detect biases on the order of almost a day, especially for the sub-
Ch and merger model (left column, rows two and four). From
the right column of Fig. C.1 we find that our applied random

shifts in time and magnitude significantly help to overcome these
biases. Even though this broadens the distributions of the models
it was trained on slightly, it tightens the distribution of the mod-
els it was not trained on and therefore helps to generalize to real
observations.

In Fig. C.2 we do the same experiment but this time using
the RF. For the cases (merger, N100, sub-Ch), (merger, N100,
W7), and (merger, sub-Ch, W7) we find that applying the ran-
dom shifts in the training process improves the bias and preci-
sion on the test set based on the model not used in the training
process. Only for the case of using (N100, sub-Ch, W7) in the
training process the merger results get worse. This suggests that
especially the merger model, which deviates most from the other
three models as shown in Fig. 1 and therefore helps to increase
the variaty, is required in the training process. However, the
comparison between Figs. C.1 and C.2 shows that the RF does
already a pretty good job without the random shifts, and there-
fore the RF generalizes better to slightly different light-curve
shapes in comparison to our FCNN approach. Nevertheless, the
results from the right column of Fig. C.1 are an encouraging sign
that with the random shifts in time our FCNN approach can also
be generalized better to SN Ia light curves, which were not used
in the training process.

Instead of random shifts in time, one might argue that dif-
ferent random multiplication factors that stretch or squeeze the
light curves in time might work even better. Therefore, we tested
different ranges for the random factors, namely, (0.95 to 1.05),
(0.9 to 1.1), (0.85 to 1.15), (0.8 to 1.2), (0.7 to 1.3), (0.6 to 1.4),
(0.5 to 1.5), and (0.2 to 1.8), where the factor 1 provides the light
curves as shown in Fig. 1. We find that (0.7 to 1.3) works best to
reduce biases in a similar way as shown in Fig. C.1. Neverthe-
less applying a FCNN and RF model trained on four theoretical
models with the random multiplication factors to an empirical
data set based on SNEMO15 similar as in Sect. 5.2, we find that
even though the precision for the FCNN is roughly 0.05 days
better as in Fig. 8 the FCNN still predicts substantial biases for
the SNEMO15 data set up to 0.5 days and is therefore not useful.
Furthermore, the precision of the RF on the SNEMO15 data set
for the random shifts in time between [−5, 5] days (as shown in
Fig. 8) is roughly 0.2 days better than results from using random
multiplication factors and therefore using the random shifts in
time was a valuable choice.
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Fig. C.1. FCNNs trained on three SN Ia models and evaluated on all samples of its corresponding test set, in comparison to the evaluation on all
samples from four test sets from the four individual SN Ia models. The left column shows the case where the SN Ia models have been used as
shown in Fig. 1. The right column contains plots in which the SN Ia models are randomly shifted within ±5 d in time and ±0.4 in magnitude. The
random shifts make the training set generalize better to test sets that are not represented by the training set.
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Fig. C.2. RF networks trained on three SN Ia models and evaluated on all samples of their corresponding test set, in comparison to the evaluation
on all samples from four test sets from the four individual SN Ia models. The left column shows the case where the SN Ia models have been used
as shown in Fig. 1. The right column contains plots where the SN Ia models are randomly shifted within ±5 d in time and ±0.4 in magnitude. The
random shifts are far less important than for the FCNN approach shown in Fig. C.1.
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Appendix D: Train and validation loss

Fig. D.1. Training and validation loss of the FCNN for 400 training
epochs.

In Fig. D.1 we see for the FCNN the training loss in comparison
to the validation loss for 400 training epochs. The network that
provides the lowest validation loss is the one that will be stored
to reduce the chance of overfitting the training data.

Appendix E: Time-delay deviation as a function of
time delay

Figure E.1 shows the time-delay deviation as a function of time
for the LSN Ia from Fig. 4.

Fig. E.1. Time-delay deviation, τi, from Eq. (8) as a function of the time delay, where we have binned up the samples from the corresponding test
set with similar time delays (bin size: two days) for the LSN Ia from Fig. 4. The vertical gray line marks the true absolute time delay from the
mock LSN Ia system. The corresponding test set has LSN Ia systems that span a range of input time-delay values, which include the vertical gray
line. Results from the FCNN network are shown in the left panel, and the RF is presented in the right panel.
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Appendix F: Feature importance of FCNN and RF

In this section we investigate which of the features in Eq. (4)
are the most important ones for the FCNN and the RF. For the
FCNN the estimate is difficult and therefore we consider as an
approximation just the input layer, where we calculate for each
feature (input node) the mean of all the weights connected to
that feature (negative weights are removed because a ReLU acti-
vation function is used). The results are summarized in the upper
panel of Fig. F.1, where we see that the FCNN focuses mainly
on the region of the peak.

To estimate the importance of the features for the RF
we use from the software scikit-learn the feature_

importances_tool13 (Pedregosa et al. 2011; Buitinck et al.
2013). This tool basically measures the decrease in performance
of a RF if a specific feature would be removed. The results are
shown in the lower panel of Fig. F.1. Comparing these results
to the FCNN, we find that the RF is mainly focusing on the rise
before the peak but also the decline afterward is important. The
peak itself does not matter much. We further see that the noisy
part of the light curves is almost not considered in comparison
to the FCNN. Focusing on higher signal-to-noise data points,
less on the peak and more on the rise and decline seems to help
the RF to perform better on the empirical SNEMO15 data set in
comparison to the FCNN.

Fig. F.1. Evaluation of the features (input nodes) for the FCNN (left panel) and the RF (right panel). The features (input nodes) are listed in Eq. (4),
where feature 1 stands for mi1,1 and the last feature (81) is mi2,Ni2 .

Appendix G: Filters for different redshifts

Figure G.1 shows the performance of the RF on different filters
for zs = 0.55 and zs = 0.99.

Fig. G.1. Both panels show different RF models, each trained on a data set from a single band (as indicated in the legend) and evaluated on all
samples from the corresponding test set. The left panel shows the case for zs = 0.55, and the right panel shows zs = 0.99, without the u band,
which is already too faint for such a source redshift.

13 https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
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Appendix H: Correlation plots

Figures H.1 and H.2 show the correlation plots
(Foreman-Mackey 2016) for a quad system of a LSN Ia using a

separate RF model per pair of images in comparison to a single
RF for all images.

Fig. H.1. Correlation plots using separate RF models per pair of images for the LSN Ia quad system shown in Fig. 18. The contour plot shows the
1σ, 2σ, and 3σ contours. The dashed lines in the histograms correspond to the median and the 1σ and 2σ range.
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Fig. H.2. Correlation plots using a single RF model for all images for the LSN Ia quad system shown in Fig. 18. The contour plot shows the 1σ,
2σ, and 3σ contours. The dashed lines in the histograms correspond to the median and the 1σ and 2σ range.

A157, page 25 of 25


	Introduction
	Simulated light curves for LSNe Ia
	Microlensing and SN Ia models
	Observational uncertainty and the moon phase

	Example mock observation and data set for machine learning
	Mock observation
	Data set for machine learning

	Machine learning techniques
	Deep learning – Fully connected neural network
	Random forest

	Machine learning on example mock observation
	Best fit: Fully connected neural network versus random forest
	Generalizability of ML models: Evaluation on SNEMO15 data set

	Microlensing, noise, and choice of filters
	Microlensing map parameters , , s
	Uncertainties due to microlensing and noise
	Filters used for training

	Machine learning on further mock observations
	Different moon phases
	Source and lens redshifts
	Data points before peak
	Quad LSNe Ia and higher microlensing uncertainties

	Discussion
	Summary
	References
	Photometric uncertainties
	Light curves of mock observation in multiple bands
	Bias reduction: Training on three models
	Train and validation loss
	Time-delay deviation as a function of time delay
	Feature importance of FCNN and RF
	Filters for different redshifts
	Correlation plots

