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YU. CHISTYAKOV 

A. MININ  
E. KHOLODOVA  

V. KUSHERBAEVA  
Corporate Technology 

Siemens LLC 
Volynskiy lane 3, 191186, St. 

Petersburg 
RUSSIA 

yury.chistyakov@siemens.com 
elena.kholodova@siemens.com

alexey.minin@siemens.com 
victoria.kusherbaeva@siemens.com

H.-G. ZIMMERMANN 
Corporate Technology 

Siemens AG 
D-81730 Muenchen,  

Mch-P, R. 53.220 
GERMANY 

hans_georg.zimmermann 
@siemens.com

 
 
 
 
 

A. KNOLL 
Robotics and Embedded 

Systems department 
Technische Universität 

München 
Boltzmannstraße 3 
85748 Garching bei 

München  
GERMANY 

knoll@in.tum.de

Abstract: - Use of Complex-Valued Neural Networks (CVNN) is proposed for modeling of power transformer. 
An advantage of this approach is possibility to build accurate and precise models, training the network with 
previously simulated or with measured real data (transformer’s voltages and currents). Inherent capability of 
CVNN to handle complex values appears as an advantage in comparison with real-valued neural networks in 
power engineering. Due to neural networks’ nature, it is possible to take into account of different spontaneous 
factors which hardly can be precisely considered in analytical models. The paper describes modeling of a 
transformer system with On-Load Tap Changer (OLTC) voltage control using analytical method and new 
CVNN-based method. In the first part of the paper analytical model is introduced. The model is based on 
conventional transformer’s equations complemented with nonlinearities in magnetizing system, ambient 
temperature influence on windings and OLTC voltage stabilization. Typical day-long load curve is used for the 
simulation. The second part of the paper describes basics of CVNNs and the application of the approach for 
modeling of the transformer system. Data generated by analytical model is used for training and verification of 
derived CVNN-based model. Verification shows that CVNN is capable to track nonlinear dynamics of power 
equipment. Proposed method can be considered as basics for further developments of CVNN use in the field of 
electrical equipment modeling.  
 
 
Key-Words: - Complex-valued neural network; CVNN; Transformer modeling; Power equipment modeling; 
On-load tap changer; OLTC, Continuous Time Modeling, Complex Valued Back Propagation. 
 
1 Introduction 
Detailed modeling of electrical power network 
elements is necessary for receiving accurate 
simulation data. In analytical models it is usually 
difficult to take into account all the factors that have 
influence on the power equipment. An approach 
which allows to build a model which may track a lot 
of real phenomena in dynamic regimes is modeling 
using neural networks. In [1],[2] modeling of a 
transformer with Real-Valued Neural Networks 
(RVNN) is described. Such networks are also 
applied for the task of differential protection and 
transformer insulation modeling [3],[4]. The approach 
generally consists of two parts: firstly one generates 
data with analytical model; then a neural network is 

trained and tested. Comparison with analytical 
results shows applicability of an approach. 

In the present paper the modeling of a power 
transformer system with nonlinearities (due to On-
Load Tap Changer) is proposed as an extension of 
[5], using the approach based on Complex-Valued 
Neural Networks (CVNN). As its name implies the 
difference from real-valued ones in capability to 
deal with intrinsic capability to deal with the 
complex numbers instead of the real ones. Taking 
into account the common representation of electrical 
values as rotating vectors, which can be treated as 
complex numbers, this feature is useful and 
promising in frame of power grid elements 
modeling.  
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Like in approaches using RVNN, on the basis 
of analytical model simulation data, CVNN-based 
model work is shown. Conventional method is 
described in the first part of the paper: temperature 
influence, on-load work, tap changer and result of 
the simulation by itself. The second part deals with 
CVNN principles. Then, having simulated data from 
the analytical model, the CVNN is trained and 
tested. The results are explained using various 
statistical measures. 
 
 
2   Analytical Transformer Modeling 
Well-known basic equations of a power transformer, 
supplemented by terms representing a nonlinear 
magnetizing system, influence of an ambient 
temperature and On-Load Tap Changer (OLTC) 
voltage stabilization system are considered to be an 
analytical model of a power transformer system in 
the paper. The system is considered to work on 
some changing load which corresponds to the 
evening load peak. Basic equations and nonlinear 
part are widely discussed in literature [5] and are 
omitted here. Remaining peculiarities are given 
below.  

 
 

2.2 Influence of ambient temperature on the 
transformer 
In order to get more realistic model, windings’ 
resistance dependence from temperature have been 
introduced: 

(1 ( 20))nomR R Tα= + −    (1) 
where R is calculated winding resistance 

    – nominal winding resistance nomR
    α – temperature coefficient 

                 T – temperature 
Transformer windings are assumed to be made 

from copper and corresponding temperature 
coefficient 33.8 10  1Kα − −= ⋅  is used. 

Temperature variation is assumed as in Fig. 1 
within 12 hours time range from 12:00 till 24:00 
(from 0:00 p. m. till 12:00 p. m.). Sun peak happens 
in the daytime, then the temperature decreases due 
to weather change for the worse.  
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Fig. 1. Temperature variation 

2.3 Load curve 
Implemented transformer model works on some 
specified load which should be treated as equivalent 
impedance of some power system, supplied by the 
transformer. Peak on the load curve (Fig. 2) 
corresponds to evening peak of a typical household 
load. For being more realistic, small noise to the 
load profile is added.  
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Fig. 2. Load variation [7, p. 47] 

Moreover, in some points of simulation models 
of short circuits are added. Introduced extreme 
regimes help to test OLTC stabilization system and 
ability of CVNN to handle with such nonlinear data.  

 
 

2.4 On-load tap changer  
The transformer under consideration is equipped 
with On-Load Tap Changer (OLTC) mechanism on 
the primary winding. Range of voltage variation is 
equal to 15%±  with 2.5% step. 
 
 
2.5 Transformer’s parameters 
Given transformer model is based on the real 
transformer data of Russian transformer OMP-10/10 
[6]. 

Table 1. Transformer Parameters 

Parameter Symbol Value Unit 
Nominal power S 10 KVA 

Primary 
winding voltage U1, Uhv 10 KV 

Frequency f 50 Hz 
Secondary 

winding voltage U2, Ulv 230 V 

No-load current Inl 4.2 % 
No-load power Pnl 60 W 

Short circuit 
power Psc 280 W 

Short circuit 
voltage Usc  3.8 % 

 
The detailed calculation of the equivalent 

circuit parameters is given in [5]. 
 
 



2.6 Simulation results 
Analytical modeling is carried out in MATLAB, 
where all mentioned above peculiarities are 
implemented. 

Transformer is assumed to work with nominal 
input AC voltage, having voltage output equals to 
230 V (RMS) consequently.  

Simple voltage control algorithm with OLTC is 
applied. The aim is to keep secondary voltage on the 
nominal level in spite of load and temperature 
fluctuations. During the simulation RMS value of 
secondary voltage  is calculated over each 
electrical cycle using integral formula. Then it is 
compared with predefined quality margins (220 and 
240 V) and corresponding control action (OLTC 
switching) is undertaken. 

2RMSU

Results, obtained from the simulation are 
presented in    Fig. 3, where all voltages, currents, 
temperature, load and OLTC position are presented. 
Fig. 4 shows  voltage value during the 
simulation.  

2RMSU

As it can be seen, temperature variation has low 
influence on the secondary current. At the same 
time, load variation has significant influence on the 
results being the main reason for OLTC switchings. 
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Fig. 3. Results of the simulation. Because of introduced 
variation of load, temperature and OLTC control currents 
and secondary voltage vary in time.  

The main aim of the conducted analytical 
modeling is to generate data of the transformer with 
nonlinearities in order to train and test complex-
valued neural network in the next section. Time 
scaling has been used (12 hours is represented by 60 
seconds of power device simulation). Such an 
assumption makes the task of CVNN even harder 
since the change of loads and temperature happens 
slower in reality. See next sections for details.  
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Fig. 4. Modeled OLTC voltage control increases quality 
of supply facilitating to keep secondary voltage in 
defined margins (220 and 240 V). Margins violation 
happens in case of heavy faults because of limited OLTC 
switching range.  

 
 

3 Complex-Valued Neural Networks 
Complex-Valued Neural Network (CVNN, see [8] 
and [9]), an essential extension of a traditional real-
valued neural network, is a universal approximator 
of data, where inputs of network, weights and 
transition functions are from the complex values 
domain. 

The basics of CVNN are briefly discussed in 
the paper. The task for the NN is to find the 
mapping from inputs into outputs ( ) so that 
the selected inputs propagated through the neural 
network can lead to the set of expected values 
(targets). The CVNN can be trained with absolutely 
the same methods which are used for the Real 
Valued NN but with some minor modifications 
which we will discuss below. 

→

Feed Forward Path. The feed forward path is 
the same for the CVNN as it is discussed in many 
papers for the Real-Valued Neural Network 
(RVNN). It is shown with gray arrows at the Fig. 5. 
Network inputs propagate through the input layer 
(netin0 in Fig. 5) of the network, then go to the first 
hidden layer as its inputs (netout0). Then the inputs 
are to be multiplied with the weights matrix W1 
which consists of complex numbers. After this 
linear algebra operation a transition function f 
should be applied. The procedure is repeated 
iteratively. After the information goes out of the 
network (netout2) it should be compared to the 
teacher signal target (see Fig. 5) using the error 
function. The so called feed forward path is 
absolutely the same for the CVNN as it is normally 
considered for the RVNN. The difference starts 
when one is trying to calculate the approximation 
error. The approximation error is defined as follows 
(see [12]): 



( )( )
1

1 min
T

d d
t t t t w

t

E y y y y
T =

= − − →∑                (2) 

where the bar above the values means 
conjunction. This error is a non analytical function, 
which means that there is no derivative defined in 
the normal sense. Fortunately, one can calculate the 
derivatives using the so called Wirtinger calculus by 
considering the special class of functions which 
maps its complex arguments to a real space. A more 
detailed discussion of this problem was done in [8]. 
Presented error function (see eq. 2) is universal 
since it optimizes not only the length of the complex 
value, but also its angle (or phase). Utilization of 
this error function allows calculating the Taylor 
expansion and using it for the gradient descent 
weights optimization. 

Weights Optimization. In order to minimize 
the error (which is the point of the neural network 
training) the gradient descent (GD) algorithm, 
which uses its Taylor expansion to adjust the 
network weights, is used: 

2

2( ) ( ) T TE w w E w g g g Ggηη+ Δ = − +               (3) 
After the Taylor expansion is calculated the 

training rule can be represented as follows: 

             , dEw g g
dw

ηΔ = − ⋅ =                (4) 

where η  is the so called learning rate – a real valued 
constant, which serves the following needs. Taking 
it relatively small we can ignore all the members of 
the Taylor expansion of the order different from 
one. Note that gradients conjunction is very 
important due to the need in the existence of the 
Taylor expansion for the network training. 
Calculation of the gradients can be efficiently 
utilized with the error back propagation algorithm 
presented at the Fig.5. Doing the iterative changes 
of the weights according to the eq.4 one can train 
the CVNN to reproduce the desired output values 
having only the input information. 

Backward Path. Here, in order to calculate all 
partial derivatives of the error with respect to the 
weight one have to propagate the derivative of the 
error back through the network till the input layer 
(first proposed in [13]). In case of CVNN, the back 
propagation algorithm remains nearly the same as it 
is typically used in real-valued neural networks (for 
details refer to [11]). The back propagation 
calculations are marked with black arrows at Fig. 5. 
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Fig. 5. Complex Valued Back-Propagation. Notations: 
netin - layer inputs, netout - layer outputs, din -layer 
derivative input, dout -layer derivative output,  are 
network weights, arrows show the information flow. The 
figure depicts the locality of the BP algorithm and 
independence of the BP from the network architecture.  

iW

One can see from the Fig. 5 that the back 
propagation for the CVNN has changes related to 
values conjunctions. These conjunctions appear due 
to the Wirtinger calculus used to calculate the 
derivatives of the errors (see [11] and [12]).  

NN Training for the Given Problem. The 
inputs for the network are the following parameters: 
input current, input voltage, load and temperature, 
the outputs (desired values) we are interested here 
are the output current (I2) and the output voltage 
(U2). According to the transformer model described 
above a set of 50000 patterns is generated. 30000 
patterns are used for network training and the rest 
20000 are used to test the network and to provide 
the results. For this experiment the network had 10 
neurons at two hidden layers, at which the transition 
functions are sin. The network is trained for each 
output. Learning rate equals to 0.01η = . It is taken 
small so that we can neglect all terms of the order 
above 1 at the Taylor expansion (see eq. 3-4). The 



amount of epochs for training is equal to 100, i. e. 
the 100 steps of the back propagation algorithm. 

During the training process the error for the 
outputs is exponentially decreasing to 3.685e-003 
for I2 is, and to 4.944e-003 for U2. 

Some noise can also be added in order to check 
the approximation.  

The following statistics for the training set are 
used to check the quality of data approximation: 

• Root mean squared error (RMSE) 
• Correlation coefficient (R) 
• Determination coefficient (R2) 
The results of modeling are shown in Fig. 6 and 

Table 2, where time characterizes time steps at 
which measurements are made.  Here one can see 
that the network approximation is quite good, which 
also can be verified by testing the network on the 
test set (see Fig. 7-8 and Table 3). The output values 
almost coincide with the target ones and only differ 
slightly at the bump area; and the statistical 
coefficients are also close to their corresponding 
best values. 

Table 2. Quality of training 

Real part RMSE R R2 
I2 0.0033 0.9997 0.9995 
U2 0.0058 0.9999 0.9999 
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Fig. 6. Results of the transformer modeling for the subset 
of data containing bumps. One can see the real part of the 
network outputs and the actual values of I2, U2 on the 
training set. 
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Fig. 7. Results of the transformer modeling for I2. One 
can see the real part of I2. The difference between the 
outputs and target is small. 
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Fig. 8. Results of the transformer modeling for U2. One 
can see the real part of  U2 on the test set. The difference 
between the outputs and target is small.  

Table 3. Quality of testing 

Real part RMSE R R2 
I2 0.04 0.95 0.90 
U2 0.02 0.99 0.99 

 
 
4 Conclusions  
The work of a transformer is modeled with a 
complex-valued neural network. The described 
approach enhances the preliminary simulation 
results derived in the previous research [5]. Injection 
of nonlinearities and adding noise in the analytical 
model for generating data made the model more 
realistic. 

From obtained results the following 
conclusions can be formulated: 

• Use of CVNN is justified for tasks of 
modeling power transoformer with high 
degree of nonlinearity (OLTC). Moreover, 
the described neural network can also be 
used for dynamics forecasting of the 
transformer. 

• Capabitlity to deal with complex numbers 
instead real ones gives the benefit to CVNN 
approach in comparison with RVNN.  

• Described new method (CVNN) can be 
used for power equipment modeling. 

The following step for new method 
development is implementing of tests with data 
from real devices. The attractive feature is that it is 
possible to model each grid device individually, just 
teaching the CVNN with measured data from 
particular device.  

Significant end-use of the approach consists in 
integration of obtained CVNN-based transformer 
model in power engineering simulation software 
packages. 
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