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Abstract

From supernovae in distant galaxies to laboratory-based wakefield accelerators, the collision-
less interaction of relativistic particles with a plasma medium of ionised gas is relevant to
many physical scales. The dynamics are often governed by kinetic instabilities, resulting in
electromagnetic field fluctuations. This dissipation of a directed relativistic flow transfers
kinetic energy to field energy, which can give rise to collisionless shocks in the astrophysical
context. Unprecedented experimental investigations have enabled investigations of plasma
instabilities on an accessible scale. Plasma wakefield accelerators, utilised to achieve higher
accelerating fields compared to conventional accelerators, are also subject to instabilities and
can be adapted to investigate these regimes relevant to astrophysics.

The interaction of a relativistic beam with unmagnetised plasma results in a filamentary
structure and can be categorised between the electromagnetic current filamentation instabil-
ity driven by the plasma return current or two-stream instabilities driven by the electrostatic
plasma response. In the latter, the beam excites Langmuir plasma waves, conventionally
called wakefields in particle accelerators. The current imbalance in the system defines the
regimes of these filamentation instabilities. The electromagnetic instability dominates for a
dense beam. For a dilute beam, the plasma current is negligible, and plasma electrons are
mainly deflected by the beam charge.

The transverse two-stream instability leads to modulation of the beam along the propaga-
tion direction and transverse filamentation. A three-dimensional spatiotemporal two-stream
theory for warm beams with a well-defined extent is developed. Diffusion due to a finite emit-
tance gives rise to a non-uniform dominant wavenumber and a cut-off wavenumber above
which filamentation is suppressed. Remarkable agreement is found between the theoretical
model with fully electromagnetic and quasistatic particle-in-cell simulations. For charged
beams, filamentation appears to be suppressed when the predicted distance between fila-
ments is larger than the rms beam width in good agreement with experimental observations.
These findings provide a crucial basis for designing laboratory astrophysics experiments in-
vestigating filamentation instabilities and for plasma wakefield experiments seeking to avoid
them.

A transverse gradient in the beam-generated wakefield deflects the ions in the plasma via the
ponderomotive force. In contrast to the amplifying effect on the current-driven instability,
the wakefield weakens. Three saturation mechanisms on wakefield-driven instabilities are
identified as transverse wavebreaking, transverse decoherence and detuning of the wakefield.
These mechanisms are enhanced by the motion of plasma ions. The suppression of the
transverse two-stream instability, which takes the form of the self-modulation instability
for narrow beams, is observed in good agreement between particle-in-cell simulations and
experimental results. The investigation extends the knowledge of the different effects of ion
motion on wakefield-driven instabilities and how to avoid the adverse effects.

Keywords: plasma-based accelerators, plasma instability, wakefield-driven filamentation,
linear theory, particle-in-cell simulations, ion motion
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Kurzfassung

Von Supernovae in fernen Galaxien bis hin zu Kielfeld-Beschleunigern im Labor - die kollisi-
onsfreie Wechselwirkung relativistischer Teilchen mit einem Plasmamedium aus ionisiertem
Gas ist für viele physikalische Größenordnungen von Bedeutung. Die Dynamik wird häufig
von kinetischen Instabilitäten bestimmt, die zu elektromagnetischen Fluktuationen führen.
Diese Dissipation einer gerichteten relativistischen Strömung überträgt kinetische Energie in
Feldenergie, was im astrophysikalischen Kontext zu kollisionsfreien Schocks führen kann. Ex-
perimentelle Untersuchungen ermöglichen die Erforschung von diesen Plasmainstabilitäten
in einem zugänglichen Maßstab. Kielfeld-Beschleuniger, die im Vergleich zu konventionellen
Beschleunigern höhere Beschleunigungsfelder erreichen können, sind ebenfalls Instabilitäten
unterworfen und können zur Untersuchung dieser für die Astrophysik relevanten Regime
angepasst werden.

Die Wechselwirkung eines relativistischen Strahls mit einem unmagnetisierten Plasma führt
zu filamentären Strukturen und kann unterteilt werden in die elektromagnetische Strömungs-
filamente Instabilität, die durch den Plasma-Rückstrom angetrieben wird, oder in Zwei-
Strom Instabilitäten, die durch ein elektrostatisches Feld angetrieben werden. In Letzteren
regt der Teilchenstrahl Langmuir-Plasmawellen an, die in Teilchenbeschleunigern üblicher-
weise als Kielfelder bezeichnet werden. Das Stromungleichgewicht im System definiert die
Regime dieser Filamentationsinstabilitäten. Die elektromagnetische Instabilität dominiert
für einen dichten Teilchenstrahl. Bei einer geringen Strahldichte werden die Plasmaelektro-
nen hauptsächlich durch die Ladungsdichte des Strahles abgelenkt.

Die transversale Zwei-Strom-Instabilität führt zu einer Modulation des Strahls entlang der
Ausbreitungsrichtung und zu transversaler Filamentierung. Eine dreidimensionale raumzeit-
liche Zwei-Strom-Theorie für warme Teilchenbündel mit gut definiertem Ausmaß wurde ent-
wickelt. Diffusion aufgrund einer endlichen Emittanz führt zu einer nicht einheitlichen domi-
nanten Wellenzahl und einer Grenzwellenzahl, oberhalb derer die Filamentierung unterdrückt
wird. Das theoretische Modell stimmt bemerkenswert mit elektromagnetischen und quasi-
statischen Teilchen-in-Zelle Simulationen überein. Bei geladenen Teilchenbündel scheint die
Filamentierung unterdrückt zu werden, wenn der Abstand zwischen den Filamenten größer
ist wie die Breite des Bündels, was in guter Übereinstimmung mit experimentellen Beob-
achtungen steht. Diese Erkenntnisse bieten eine wichtige Grundlage für die Planung von
astrophysikalischen Experimenten zur Untersuchung von Filamentierungsinstabilitäten und
für Kielfeld-Experimente, die diese meiden.

Ein transversaler Gradient im strahlerzeugten Kielfeld lenkt die Plasmaionen über die pon-
deromotorische Kraft ab. Im Gegensatz zum verstärkenden Effekt auf die stromgetriebe-
ne Instabilität schwächt sich das Kielfeld ab. Drei Sättigungsmechanismen bei Kielfeld-
getriebenen Instabilitäten sind identifiziert: Transversales Wellenbrechen, transversale De-
kohärenz und Verstimmung des Kielfeldes. Diese Mechanismen werden durch die Bewegung
der Plasmaionen verstärkt. Die Unterdrückung der transversalen Zwei-Strom-Instabilität,
die für schmale Teilchenbündel die Form der Selbstmodulationsinstabilität annimmt, wurde
in guter Übereinstimmung zwischen Teilchen-in-Zelle Simulationen und experimentellen Er-
gebnissen beobachtet. Die Untersuchung erweitert das Wissen über die verschiedenen Effekte
der Ionenbewegung auf Kielfeld-getriebene Instabilitäten und darüber, wie die nachteiligen
Auswirkungen vermieden werden können.
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Introduction

High-energy physics investigates the fundamental particles and forces under conditions simi-
lar to those found in the early universe. These extreme conditions at energy densities beyond
1011 J/m3 and temperatures above 105 K (Drake, 2006) are found in laboratory experiments
designed to probe the fundamental forces of nature and in astrophysical phenomena. Un-
der such conditions, matter is often in the state of plasma – an ionised gas consisting of
free electrons and ions. This ionised state makes up to 99.9 % of the visible matter in the
universe (Planck Collaboration, 2014), highlighting the importance of plasma-based studies
for understanding the behaviour of matter under extreme conditions and the fundamental
processes shaping the cosmos.

At these high energies, the interaction between plasma particles is collisionless, meaning
they interact collectively through the electromagnetic field instead of over direct collisions.
These interactions occur on various physical scales and often yield unstable systems. The
arising instabilities dissipate the kinetic energy of the relativistic particles, converting it into
fluctuations of the electromagnetic field. This energy transfer can trigger the formation of
collisionless shocks, characterised by an abrupt change in density, flow and pressure (Bret,
Gremillet, and Dieckmann, 2010; F. F. Chen, 2016; Michno and Schlickeiser, 2010).

Collisionless shocks are extensively studied to understand how energy is redistributed across
various astrophysical scales. On the interplanetary scale, for instance, the bow shock forms
due to the interaction of the solar wind with Earth’s magnetosphere (Turc et al., 2023). On
a larger scale, shocks are present in extragalactic environments such as active galactic nuclei
(Bohdan et al., 2021), which are regions at the centres of galaxies where supermassive black
holes actively accrete matter and emit vast amounts of energy. In galaxy clusters, collisionless
shocks occur during mergers of smaller galaxy clusters, which heat the intracluster medium
(Bykov et al., 2019).

Cosmic rays, i.e. high-energy particles in space primarily represented by protons and Helium
nuclei, are accelerated to TeV energies through diffusive shock acceleration and Landau
resonance at the shock front. In Fermi-type diffusive shock acceleration, particles gain energy
while being scattered back and forth across the shock front through magnetic turbulence
(Fermi, 1954; Spitkovsky, 2008). Particles also gain energy via Landau resonance when the
velocity of the plasma wave and its electrostatic field match the velocity of the particles
(Iwamoto, Amano, Hoshino, et al., 2019; Landau, 1946; Tajima, Yan, et al., 2020).



2 1 Introduction

1.1 Acceleration from Filamentary Structures

Most shock environments occur in weakly magnetised plasma with magnetic fields of a few
microgauss (Heiles and Crutcher, 2005). However, extraordinary regions such as gamma-
ray bursts from collapsing stars or merging neutron stars and black holes exist where the
background magnetic field is negligible (Medvedev and Loeb, 1999; Perna et al., 2016). The
interaction between the stream of relativistic particles with such an unmagnetised plasma
medium can be usually categorised between the Weibel-like current filamentation instability
(CFI), driven by plasma currents (Fried, 1959; Weibel, 1959), or the two-stream instabilities,
driven by the electrostatic plasma response (Bludman et al., 1960; Fǎınberg et al., 1969). In
the latter, the stream excites a Langmuir plasma wave (Tonks and Langmuir, 1929), which
results in similar filamentary behaviour as CFI (Bret, Gremillet, and Dieckmann, 2010).

The current-driven filamentation in counterstreaming plasmas has been found to achieve
magnetic fields perpendicular to the propagation with energy densities ranging from 10−5

to 10−1 of the kinetic energy density (Medvedev and Loeb, 1999). This magnetic field is
strong enough to deflect the streaming particles until the system is thermalised, ultimately
forming a collisionless shock. Numerical studies of relativistic shocks in magnetised plasmas
by Iwamoto, Amano, Hoshino, et al. (2019) and Iwamoto, Amano, Matsumoto, et al. (2022)
have revealed that electrostatic plasma waves are excited by the interaction of intense elec-
tromagnetic waves and reflected particles at a lower density near the shock front. These
waves can accelerate particles that are decoupled from the upstream bulk flow. Electrostatic
acceleration of this kind may allow ions to reach energies beyond 1021 eV for ions (Tajima,
Yan, et al., 2020), offering an alternative to Fermi-type acceleration, which is limited by
significant synchrotron radiation losses at such high energies (Jackson, 1999).

The current imbalance in the system defines the regimes for the filamentation instabilities.
For CFI to dominate, the relativistic stream must have a density of the order greater than
the surrounding plasma, such as in the interstellar medium (Bret, Gremillet, and Dieckmann,
2010). The plasma current becomes negligible for a dilute stream, and the plasma electrons
are primarily deflected by the electric field driven by the charge imbalance (Katsouleas et al.,
1987; Keinigs and Jones, 1987). For dense streams with a smooth gradient rather than a
sharp discontinuity, an underdense region exists dominated by the two-stream instability.

The plasma consists of electrons and ions interacting with the particle stream on different
time scales, where the motion of the ions has a different effect on the respective instabil-
ities. While plasma electrons quickly thermalise after undergoing CFI, a subsequent ion
filamentation enhances the growth of the magnetic field, allowing it to pervade the shock
front (Frederiksen et al., 2004; Peterson et al., 2021). Conversely, a collective oscillation
of the plasma electrons is disturbed by the motion of ions. As a result, the stability of an
electrostatic field weakens, which may suppress the two-stream instabilities (F. F. Chen,
2016; Vieira et al., 2012).

While much of our understanding of the shock formation and the relevant plasma insta-
bilities in the astronomical context comes from spacecraft measurements and simulations,
experimental advancements have enabled researchers to recreate and study these processes
on a more accessible scale. The experiment led by Fiuza et al. (2020) demonstrated with
counter-streaming plasmas the formation of turbulent collisionless shocks with an accumu-
lation of plasma and electron acceleration, addressing diffusive shock acceleration. In the



1.2 Wakefield Accelerators 3

investigation by Zhang et al. (2022), a temperature anisotropy was induced into a plasma
by a laser, which gave clear evidence of the current-driven filamentation linked to the self-
magnetisation in the interstellar plasma medium as a precursor to collisionless shocks. For
streams with a transverse extent, Arrowsmith et al. (2021) showed the feasibility of gener-
ating a dense electron-positron beam from a proton beam and studying its interaction with
plasma.

Beam-driven wakefield accelerators are also subject to plasma instabilities and can be adapted
to investigate regimes relevant to astrophysics. The experimental studies published by Allen
et al. (2012) and Verra, Amoedo, et al. (2024) revealed that adjusting the parameters of a
wakefield accelerator can effectively control the onset and characteristics of beam filamenta-
tion.

1.2 Wakefield Accelerators

The achievable centre-of-mass collision energy exponentially increased until recent limita-
tions arose due to radiofrequency (RF) and magnet technologies as shown by Figure 1.1.
Further energy improvements require extraordinarily long machines like the Large Hadron
Collider (13.6 TeV, 27 km) at CERN (Rosmino, 2022). The most recent plans include the
Compact Linear Collider (0.38–3 TeV, 11–50 km) and Future Circular Collider (100 TeV,
98 km) at CERN (The Compact Linear Collider 2024; Zimmermann et al., 2020), or the
Circular Electron–Positron Collider (240 GeV, 100 km) in China (The CEPC Project 2013).
While the RF-based technology enables high precision and reliability, the accelerating gra-
dient is limited to around 100 MV/m by the electric breakdown in the cavity structure and
limitations of the superconductive magnets (Esarey, Schroeder, et al., 2009).

Plasma wakefield accelerators utilise the electrostatic field corresponding to the Langmuir
plasma wave to accelerate charged particle beams (P. Chen et al., 1985; Tajima and Dawson,
1979). The plasma wave can sustain electric field amplitudes substantially higher than RF
cavities of conventional accelerators (Adli et al., 2018; Caldwell and K. V. Lotov, 2011;
Schroeder et al., 2011). As a possible avenue for next-generation particle accelerators, the

Figure 1.1: Centre-of-mass collision en-
ergy of hadron (red) and electron-positron
(blue) colliders shown against completion
year. Credit: Tigner (2001).
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Figure 1.2: Schematic of a beam-driven wakefield. The charged beam (red), the excited
plasma density wave (blue), with the electron trajectories shown in cyan, and the wakefield
(violet arrows), with lineouts of the on-axis longitudinal and off-axis radial Wakefield com-
ponent.

limit on the electrostatic field in plasma-based wakefield accelerator increases with the plasma
density np and is defined by the cold non-relativistic wavebreaking field (Dawson, 1959)

E0 = mecωp/e ≈ 96
√
np [cm−3] [V/m]. (1.1)

Here, me is the electron mass, c is the speed of light and ωp is the plasma frequency, given
by

ωp =
√
e2np/(ε0me), (1.2)

with e the elementary charge and ε0 the vacuum permittivity. It can reach realistic values of
Ez = 1 − 100 GV/m for plasma densities of 1014 cm−3 to 1018 cm−3, which has the potential
to reduce the footprint of future high-energy accelerators. The work by Veksler (1956)
and Budker and Naumov (1956) first mentioned the usage of fields sustained in plasma to
accelerate particles. Yet, it was the work by Tajima and Dawson (1979) that suggested
the first plasma-based accelerator, based on the ponderomotive force of a laser pulse (the
gradient in the electromagnetic field) separating the plasma electrons from the ions. Only
a few years later, Joshi et al. (1981) published the first experimental results. This type of
plasma-based accelerator is referred to as laser wakefield accelerator (LWFA). It was found
later by P. Chen et al. (1985) that a relativistic charged particle beam excites a similar plasma
response, referred to as plasma wakefield accelerator (PWFA). The first experimental results
were published by Rosenzweig et al. (1988). The excited plasma wave is known as Langmuir
wave (Tonks and Langmuir, 1929), with the corresponding electromagnetic field referred to
as wakefield in the concept of particle accelerators (Dawson, 1959).

Figure 1.2 shows the plasma response to a short beam in its frame, ζ = z − ubt, where
the plasma particles flow to the left. The plasma electrons are displaced relatively to the
heavier ions by the space-charge effects of the beam or by the ponderomotive force of a laser
pulse. The relative displacement between electrons and ions builds up a net charge and
an electrostatic field, which acts as a restoring force. The resulting coherent oscillation of
plasma electrons is close to the plasma wavelength. A proportion of the driver’s energy is
stored in the plasma wave and its resulting longitudinal Ez and transverse W⊥ wakefield
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Figure 1.3: The longitudinal on-axis wakefield (blue), excited by a) a short, dense beam or
b) a train of microbunches of lower density (red).

component with respect to the propagation direction of the driver. The phase difference
between the longitudinal and transverse components is π/(2kp), which enables a focussing
and accelerating region within the wakefield.

Usually, the utilised intense laser pulse or dense beam fits within half the wakefield period
(kpσζ < 1), sketched in Figure 1.3a), to drive a wakefield (Albert et al., 2021; Clayton et al.,
2016). Here, kp = ωp/c is the plasma wavenumber and σζ is the rms length of the driver.
For high-intensity laser or high-density beams, usually used in wakefield accelerators, the
plasma electrons are fully expelled, leaving a uniform ion column in which injected witness
beams are accelerated. A long beam, kpσζ ≫ 1, drives a weak wakefield as the plasma
electrons only compensate for the beam charge. However, the wakefield acts back on the
beam by modulating the beam radius. This allows the wakefield to grow along the beam
length, resulting in an instability referred to as axisymmetric self-modulation instability
(SMI) (Schroeder et al., 2011). The resulting train of microbunches resonantly drives the
wakefield to considerable magnitudes, illustrated in Figure 1.3b).

1.2.1 AWAKE Experiment

The Advanced Wakefield Experiment (AWAKE) at CERN aims to accelerate electron beams
in the wakefield resonantly driven by a proton beam up to accelerating field amplitudes of
1 GV/m. The long proton beam undergoes SMI during the first meters it propagates in
the plasma. The witness electron beam is injected after 3 − 4 m into the resonantly-driven
wakefield of the beam. The collaboration established a detailed understanding of relevant
plasma instabilities and how to control these (K. V. Lotov and Minakov, 2020; Verra, Zevi
Della Porta, et al., 2022). In addition to SMI (Adli et al., 2018; Morales Guzman et al., 2021),
the beam undergoes hosing, a snake-like amplification of the beam centroid misalignment
(Moreira et al., 2023; Nechaeva et al., 2024). The comprehensive overview of achievements
is listed in Gschwendtner, K. Lotov, et al. (2022).
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The proton beam is provided by a staged acceleration process through RF cavities. Hydrogen
protons from an electric discharge are bunched and accelerated to 50 MeV by the linear
accelerator LINAC4, followed by an acceleration to 1.4 GeV by the Proton Synchrotron
Booster, then to 25 GeV by the Proton Synchrotron. After a final acceleration stage at the
Super Proton Synchrotron (SPS), the beam at the experiment has an energy of 400 GeV.
A witness electron beam is created by a laser pulse hitting a photocathode. The beam is
then pre-accelerated up to 20 MeV before it is injected into the plasma cell, extending over
10 m.

The experimental setup of AWAKE during Run 1 in 2018 is shown in Figure 1.4. In this
setup, a laser pulse (duration of 120 fs, maximum energy of 450 mJ, wavelength of 780 nm)
co-propagates with the proton beam and single ionises the Rubidium vapour in the plasma
cell. Rubidium ions have been chosen for the motion of the significantly heavier plasma
ions to be negligible. The vapour at the plasma entrance and exit flows into expansion
volumes, so the plasma density drops quickly. This provides with the laser an uniform
plasma density. Locating the ionisation front of the laser within the beam locks in the phase
and initial magnitude of the beam-driven wakefield. This seeds the growth of SMI (Batsch
et al., 2021) and enables reproducible electron acceleration, experimentally confirmed up to
2 GeV (Gschwendtner, Turner, et al., 2019).

After the Rubidium cell, the proton beam propagates through a metallic screen (Aluminium
coated, 150µm thick SiO2), placed 3.5 m behind the plasma exit due to the expansion volume.
Optical transition radiation (OTR) is emitted by the screen and imaged onto the entrance
slit of a streak camera (Rieger et al., 2017). This enables the time-resolved projection of

Figure 1.4: Schematic of AWAKE experimental setup during Run 1 (2018). Obtained from
Adli et al. (2018).
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Figure 1.5: Schematic of the AWAKE experiment with the discharge of Helium gas during
the DPS run in 2023. Credit to Alban Sublet for the photograph during the commissioning
of the plasma source.

the beam at the expense of one projected transverse dimension. Additionally, longitudinal
projections of the proton beam can be taken before and after the plasma. Plasma densities
are measured by longitudinal, double-pass interferometry or by extracting the modulation
frequency of the self-modulated proton beam. The electron beam is focussed by quadrupole
magnets and bent by dipole magnets onto a scintillator screen, measuring the energy from
the horizontal position.

Future plans involve a staged wakefield acceleration, possibly extending hundreds of meters.
Although laser ionisation provides a uniform plasma density, it is not feasible to this extent.
One of the alternatives involves the usages of discharge plasma sources (DPSs) in which an
electric current ionises the plasma via an applied voltage between two electrodes beyond
the striking voltage. This allows for reliable plasma operations with different gases such
as Xenon, Argon and Helium at various densities. In the DPS run in May 2023 with the
experimental setup sketched in Figure 1.5, the plasma was partially and at most singly-
ionised over 3.5, 6.5 or 10 m. The plasma density is adjusted by changing the gas pressure
between 8 and 24 Pa, the peak current of the discharge between 300 and 600 A or the time
delay between discharge and the arrival of the proton beam (Torrado et al., 2023).

Next to feasibility studies for the self-modulation of the proton beam, the high variability
of the beam radius, plasma density, and mass of plasma ions allowed for a detailed study of
the filamentation instabilities and investigated the effect of the motion of the plasma ions.
The glass window at the entrance of the DPS prevented seeding the instabilities with the
laser ionisation front. However, no expansion volume was required, such that a second OTR
screen was installed at a distance of 0.3 m behind the plasma exit, enabling unprecedented
transverse resolution of the longitudinal projections.
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1.3 The Goal of this Project

Most of the literature investigates the plasma dynamics for non-bounded, homogeneous
particle streams. In the astrophysical context, however, the stream is usually bounded along
the propagation direction, and for laboratory settings, it is additionally confined transversely.
This work explores how wakefields arise from the interaction between a relativistic beam
with a well-defined extent and plasma and the required parameters. A gradient in the
wakefield deflects the ions of the plasma, which was previously found to suppress the SMI.
The saturating mechanisms, possibly mitigating wakefield-driven filamentation as well, are
being explored in collaboration with the experiment.

These investigations contribute valuable insights into how plasma instabilities, as precursor
mechanisms in producing high-energy particles, can be accessed through wakefield accel-
erators. Specifically, the electrostatic filamentation leads to strong accelerating wakefields,
limited only by the wavebreaking threshold. This introduces a complementary acceleration
mechanism to Fermi-type particle acceleration in collisionless shocks.

The theoretical aspects of these kinetic instabilities, along with the numerical methods used,
are outlined in Chapter 2, establishing the foundation for analytic and numerical studies.
Applications of the numerical methods and considerations for investigating relativistic beams
with a well-defined extent in plasma are detailed in Chapter 3. The work presented in
Chapter 4 and Chapter 5 address the following questions:

• Chapter 4: Laboratory-Relevant Filamentation Instabilities
– How accurately can the theory for wakefield-driven filamentation of warm beams

describe the filamentation growth and dominant wavenumbers observed in simu-
lations and experimental observations?

– What beam parameters are necessary to access the various beam-plasma insta-
bilities, and how do these instabilities transition between each other?

• Chapter 5: Ion Motion in Wakefield-Driven Instabilities
– How does the motion of plasma ions influence the wakefield?
– What is the effect of ion motion on the saturation of wakefield-driven instabilities?

These chapters closely compare analytic models with particle-in-cell simulations and con-
clude with observations from laboratory experiments in collaboration with the AWAKE
experiment at CERN to emphasise the robustness of the simulations and theory. These find-
ings build a crucial basis for designing experiments investigating filamentation instabilities
and for beam-driven wakefield accelerators seeking to avoid them. A final summary of these
findings is provided in Chapter 6, along with suggestions for future work.
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2
Basics of Beam Plasma Physics

Chapter Summary
• Different filamentation instabilities of particle streams in plasma are treated with

kinetic plasma theory, and the dominant regimes are discussed. Current-driven
filamentation exhibits a dominating magnetic field, while in oblique filamentation
instability, the electric field dominates. The growth rate of the filamentation insta-
bilities is well described only for spatially uniform streams and plasmas.

• The beam dynamics of charged beams with a finite extent are presented. The
wakefield-driven axisymmetric self-modulation instability modifies the beam radius.
A transverse gradient in the wakefield acts as a ponderomotive force, possibly af-
fecting heavy plasma ions.

This chapter introduces the basic principles of plasma in Section 2.1 and the kinetic equations
for unmagnetised plasma in Section 2.2. The growth rate derived from these equations for an
unstable beam-plasma system describes the different filamentation modes relevant for this
work in Section 2.3. In Section 2.4, the dynamics in beam-plasma interactions are described
for bounded systems. The utilised numerical methods are listed in Section 2.5.

2.1 Principles of Plasma

Plasma is an ionised gas, referred to as the fourth state of matter beside solid, liquid and gas,
in which atoms are (partly) stripped of their electrons due to high energy densities. This
results in a quasineutral composition of positively charged ions and negatively charged elec-
trons. The transition to the plasma state is characterized by a continuous and progressive
ionisation rather than an abrupt change and occurs if the thermal energy exceeds the ioni-
sation energy of atoms. However, not every ionised gas exhibits plasma properties, widely
defined by:

"[Plasma is] a quasineutral gas of charged and neutral particles, which exhibits collective
behaviour." - F. F. Chen (2016)

The emphasis lies here on quasi-neutrality and collective behaviour.

Quasi-neutrality: The motion of plasma particles is directed to create electromagnetic
fields, which effectively shield any disturbances such as charged particles or photons. If
a positive or negative charge is present, a sheath of plasma particles evolves around it to
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shield out any potential field, which forms a new equilibrium. For finite thermal energies, the
plasma distribution is described by the Boltzmann distribution, ne = ne0 exp [−eΦ/(kBTe)],
with kB the Boltzmann constant, and ne the density and Te the temperature of the plasma
electrons. This distribution can be inserted into Poissons’ law for the electrostatic potential,
∇2Φ = −ρ/ε0 with ρ the charge density. For small potentials, eΦ ≪ kBTe, the solution to
the differential equation is an exponential decaying potential, Φ = [Φ0/r] exp (−r/λD), with
the screening distance

λD =
√
ε0kBTe/(nee2), (2.1)

referred to as Debye length. The potential field is not negligible within this length defined
by the electrons being significantly more mobile than the ions. The potential decreases with
fewer particles available to shield the potential and decreases with the plasma temperature
as electron fluctuations result in leaks in the shield. The system only remains quasineutral
at an extent vastly larger than the Debye length, which is a lower boundary for the density
of the ionised gas to be defined as plasma. Further, a statistically meaningful number of
particles is required within the Debye shielding sphere, [4/3]neπλ3

D ≫ 1.

Collective behaviour: The collective behaviour of plasma fundamentally differs from
gases. The motion of neutral gases is mainly determined by collisions over Brownian mo-
tion (Einstein et al., 1915) except for short-range Van-der-Waals interactions. Rather than
by locally bounded collision, the plasma motion is dominated by the collectively generated
electromagnetic field from local charge and current fluctuations acting on large distances.
The long-range interaction can lead to the formation of complex structures such as waves,
turbulence and instabilities. If electrons are displaced by δz from a uniform ion background,
a potential builds up to restore quasi-neutrality. The resulting electrostatic force results
in an oscillation as electrons overshoot their equilibrium position due to their inertia. An
analytic description of this oscillation is given by the equation of motion

dp

dt = FL = q(E + v × B), dx

dt = p

γm
(2.2)

with d/ dt the total time derivative, p = γmv, the momentum, γ = [1 + p2/(mc)2]1/2 = [1 −
v2/c2]−1/2 the relativistic or Lorentz factor, x the position and v the velocity of the particles,
FL the Lorentz force, E the electric field and B the magnetic field. Inserting the electric
field from Poissons’ law into the linearised equation of motion, i.e. neglecting the v × B
term, gives the equation of a harmonic oscillator, ∂2

t δz + ω2
pδz = 0. This plasma oscillation

due to wave-particle interactions times the mean collision time τc separates collisionless and
collisional plasma. Collisionless plasma, ωpτc → ∞, is relevant to a wide range of phenomena
in the astrophysical context and to plasma-based wakefield accelerators.

2.2 Kinetic theory in unmagnetised plasma

In the most basic description, the electric E and magnetic B fields affect the plasma particles
via the Lorentz force. Vice versa, the position and momentum of the particles define a
charge density ρ and current density j of the plasma, which self-consistently influences the
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electromagnetic fields described by Maxwell’s equations in vacuum
∇ · E = ρ/ε0 Gauss’ law
∇ · B = 0 Gauss’ law for magnetism

∇ × E = −∂tB Faraday’s law of induction
∇ × B = µ0 (j + ε0∂tE) Ampere’s circuital law,

(2.3)

with µ0 the vacuum permeability, relating to the speed of light c by ε0µ0 = 1/c2.

While numerical studies of plasma behaviour in this fundamental description become fea-
sible with the exascale computing power, an analytic description would be daunting. The
collective property of plasma enables a kinetic description in phase-space by the distribution
f(t,x,p), a function of time t, position and momentum. The number of particles within
a phase-space volume is f dx dp. Relevant macroscopic plasma quantities are derived from
the moments of the distribution function, given by∫

vnf(t,x,p) dp. (2.4)

The first three moments of the distribution functions link to the number density n(t,x), the
collective velocity of the plasma u(t,x) and pressure tensor P(t,x) given by

n(t,x) =
∫
f(t,x,p) dp

n(t,x)u(t,x) =
∫

vf(t,x,v) dp

n(t,x)P(t,x) =
∫

(v − u)2f dp.

(2.5)

As individual particle interactions are negligible in a collisionless plasma, the distribution
function remains constant in phasespace, df(t,x,p)/dt = 0, referred to as Liouville’s theo-
rem (Landau and Lifshitz, 1959). The trajectory of the plasma particles in phase-space is
defined by the equation of motion given in Equation (2.2). The governing kinetic equation
for the time evolution of the distribution function in collisionless plasma, referred to as the
Vlasov equation, is given by

d
dtf = (∂t + v · ∇ + F · ∇p) f = 0, (2.6)

with ∇ and ∇p the gradient operators on the configuration and momentum space. The
Boltzmann equation extends the Vlasov equation by particle collisions such that the dis-
tribution function may vary along the particle trajectories, df(t,x,p)/ dt = (∂tf)c. Here,
(∂tf)c is the rate of change of the distribution function due to collisions where different
models exist, such as the Fokker-Planck equation, including Coulomb collisions.

The collisionless evolution of the plasma is self-consistently described by the Vlasov-Maxwell
equation

[∂t + v · ∇ + (E + v × B) · ∇p] f = 0
∇ × E = −∂tB
∇ × B = µ0 (j + ε0∂tE) .

(2.7)

The electromagnetic field influences the plasma distribution via the Lorentz force, and the
macroscopic quantities of the distribution function give the rate of change in the electromag-
netic field described by Faraday’s law of induction and Ampere’s circuital law.
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2.3 Filamentation Instabilities in Unmagnetised Plasma

All phenomena in collisionless plasma can be described by the Vlasov-Maxwell equation
(Bellan, 2006). The simplest analytic approach is to view the behaviour of the plasma and
the electromagnetic field as a composition of harmonic waves. The plasma usually consists
of a stable homogeneous background distribution f0 = f(p) which is superimposed by a
small time-varying perturbation δf = δf(t,x,p) to f = f0 + δf . The Fourier-transformed
equations yield a dispersion relation, ω = ω(k), with k the wavevector, which can be split
into an oscillating, ℜ(ω), and growing, ν = ℑ(ω), part of the waves. Thus, the dispersion
relation reveals the dynamical behaviour of a given plasma setup and enables the study of
unstable regimes in which the perturbation exponentially grows while |δf | ≪ |f |.

For an unmagnetised plasma, the linearised system is described by

fs(t,x,p) = fs(p) +
∑
ω,k

δf̂s(p) exp (ik · x − ωt)

E =
∑
ω,k

δÊ exp (ik · x − ωt) , B =
∑
ω,k

δB̂ exp (ik · x − ωt)
(2.8)

where the subscript s denotes the plasma species. The dispersion relation for the electric
field is obtained by combining Faraday’s law and Amperes law in Fourier space to[

(ω2/c2)ϵ(ω,k) + k ⊗ k − k2I
]
δÊ = 0. (2.9)

The solution are given by the determinant
∣∣(ω2/c2)ϵ(ω,k) + k ⊗ k − k2I

∣∣ = 0, with I the
unit tensor and ⊗ the tensor product. The dielectric tensor ϵlm(ω,kl) = δlm+ ijl/(ε0ωδÊm),
with δlm the Kronecker-Delta, is interpreted as the relative permittivity of the plasma and
quantifies the electric field’s ability to react to perturbations. The current is expressed by j =∑
s[qs/ms]

∫
[ps/γs]fs(p) dp, where the species distribution function fs can be replaced by the

spectral version of Vlasov Equation (2.6) δf̂s = −i[qs/ω] [I + ps ⊗ k/(γsmsω − k · ps)] δÊ ·
∇pfs(ps). The fully electromagnetic dielectric tensor is expressed by

ϵ(ω,k) = I +
∑
s

ω2
s

ω2ns

∫
ps
γs

(
I + ps ⊗ k

γsmsω − k · ps

)
· ∇pfs(ps) dps. (2.10)

For brevity, the index s of the plasma species will be omitted, with quantities referring to
any species unless explicitly stated otherwise.

For a cylindrical symmetry in the Fourier space and the equilibrium distribution function,
f(p) = f(pz)f(p2

x)f(p2
y), the second transverse dimension can be neglected, kx = 0. Hence,

Equation (2.9) reduces to∣∣∣∣∣∣∣
ω2ϵzz − c2k2

y ω2ezy + c2kykz 0
ω2ezy + c2kzky ω2ϵyy − c2k2

z 0
0 0 ω2ϵxx − c2k2

∣∣∣∣∣∣∣ = 0, (2.11)

which results in two branches (Bret, Firpo, et al., 2004).

I. 0 =
(
ω2ϵxx − c2k2

)
II. 0 =

[
ω2
(
ϵ2zy − ϵzzϵyy

)
+ c2

(
k2
zϵzz + 2kzkyϵzy + k2

yϵyy
)]
.

(2.12)
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The first electromagnetic branch with a dielectric component perpendicular to the direction
of the wave propagation k is referred to as the Weibel instability (Weibel, 1959). The second
branch includes an electrostatic component with a dielectric component parallel to k driven
by space charge and an electromagnetic term driven by the plasma current. This branch is
a composition of the two-stream filamentation, also referred to as oblique instability (OBI)
(Bret, Firpo, et al., 2004; Landau, 1946), and the CFI (Fried, 1959).

In the perpendicular limit, kz = 0, the second branch simplifies to(
ω2ϵzz − c2k2

y

)
ϵyy = ω2ϵ2zy. (2.13)

The coupled dielectric components ϵzx on the rhs correspond to space-charge effects (Hao
et al., 2008; Tzoufras et al., 2006) and dominate in highly asymmetric systems, where the fil-
aments of the different plasma species are compressed at different rates. The second branch
is fully electromagnetic for symmetric systems, ∑s ωsus = 0. For arbitrary asymmetries in
density, mass and collective velocity, space-charge effects result in an electrostatic compo-
nent.

The evolution of instabilities in the system is segregated into three phases: Seed, unstable
loop and saturation. The initial anisotropy in phase space can originate from a driving
electromagnetic pulse or a particle beam. Any small-scale fluctuation within the phase
space of the driver or plasma results in small currents which generate an electromagnetic
field. The feedback loop is closed if the generated field acts to reinforce the perturbation
and amplify the currents. This results in exponential growth of the perturbation and the
electromagnetic field over time.

2.3.1 Weibel-type Current Filamentation

The pioneering work from Weibel (1959) identified the exponential growth of purely elec-
tromagnetic waves from a temperature anisotropy in a single-species plasma at rest, i.e. the
momentum spread is higher in one direction. Any current fluctuation along the axis with
the higher temperature excites a perpendicular magnetic field, which deflects the particles
as shown in Figure 2.1 to enhance the current modulation and results in an increase of the
magnetic field. The distribution of the unstable system can be defined by a bi-Maxwellian
velocity distribution in a non-relativistic regime

f(v) = m

2πTzTy
exp

(
−
mv2

y

2Ty

)
exp

(
−m(vz + uz)

2Tz

)
, (2.14)

with Tz,y the plasma temperature linked to a momentum spread by Tz = σ2
p/m. Only the

purely growing, Re(ω) → 0, and transverse, kz = 0, terms are considered. Thus, the space-
charge term in Equation (2.13) vanishes and the dispersion relation becomes (R. C. Davidson
et al., 1972)

0 = c2k2
y − ω2

k +
∑

ω2[1 − (Tz +muz)/Ty] −
∑

ω2[(Tz +muz)/Ty]ξZ(ξ), (2.15)

with ξ = ω/[k(2Ty/m)1/2] and Z(ξ) = π1/2 ∫ dx exp (−x2)/(x − ξ) the plasma dispersion
function simplified for small values to Z(ξ) ≈ −2ξ. For small anisotropies, |Tz + muz −
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Figure 2.1: Schematic of the Weibel instability. b) The magnetic
field growing from anisotropy in the plasma temperature, adapted
from Medvedev and Loeb (1999).

Ty|/Ty ≪ 1, the maximum growth rate of the Weibel instability is (R. C. Davidson et al.,
1972)

νweibel =
√

8
27π

Ty
mec2

Ty
Tz

(
Tz
Ty

− 1
)3/2

. (2.16)

The work by Weibel has been extended by Fried (1959) to counterstreaming plasmas, referred
to as CFI. The system effectively remains in anisotropy in momentum space, which gives rise
to the growth of the electromagnetic field. The Weibel instability coexists with CFI being on
different branches of the dispersion relation given in Equation (2.12). Thus, any anisotropy
in any of the counterstreaming plasmas increases the growth rate of the field. Considering
a stream with non-relativistic temperatures, T ≪ mc2, propagating in a cold plasma, the
maximum growth rate of the transverse modes is (Bret, Firpo, et al., 2004; Silva, R. A.
Fonseca, Tonge, Dawson, et al., 2003; Silva, R. A. Fonseca, Tonge, Mori, et al., 2002)

νcfi =
√

2ωβub/c
1 + σp/(mbc)

, (2.17)

with ωβ the betatron frequency of the streaming plasma, defined by

ωβ =
√
q2
bnb/(2γbmbε0) (2.18)

and nb the beam peak density summed over all beam species.

In the linear regime, The spectral Poisson equation gives k · δÊ = δρ̂/ε0. The purely
electromagnetic transverse mode of the instability, k · δÊ = 0, can only yield a perturbation
in the current density but not in the charge density since δρ̂ = 0 (Bret, Firpo, et al., 2005).
Thus, the Weibel instability and the purely electromagnetic mode of CFI only yield current
filamentation. Any charge filamentation during the linear regime must come from space-
charge effects excited by the longitudinal mode.

The current perturbation grows exponentially until the magnetic field is strong enough to
magnetically trap the particles within the currents. This saturation level for the magnetic
field is reached when the betatron frequency of the trapped particles is on the order of
the growth rate (R. C. Davidson et al., 1972). Beyond this saturation, rectified current
filaments merge with each other. The instability results in a transfer of kinetic energy to
thermal energy and an isotropic plasma temperature.
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a b c

Figure 2.2: Scheme of current driven filamentation for a particle beam. a) Initial setup,
where any fluctuation in the beam acts as a driver for the seed of the instability. b) Beam
and plasma filamentation result in exponential growth of the perturbation and magnetic
field. c) The saturation of the instability as the magnetic field traps the particles of the
driver.

For a bounded quasi-neutral beam propagating into plasma, the scheme for CFI varies
slightly compared to the periodic system introduced in Section 2.3 and is illustrated in Fig-
ure 2.2. The beam propagates from a vacuum into a plasma, where small current fluctuations
in the beam result in perpendicular magnetic fields (Figure 2.2a). The return current of the
plasma response results in a growing magnetic field, which amplifies the current fluctuation
in the beam (Figure 2.2b). The plasma electrons flow with the positive charge of the beam
particles such that the plasma return current acts against the growing magnetic field. For a
sufficiently strong magnetic field, the beam particles are magnetically trapped and undergo
betatron oscillation (Figure 2.2c).

2.3.2 Two-Stream Filamentation

The (longitudinal) two-stream instability is one of the most fundamental instabilities in
plasma and only considers the purely electrostatic modes in kz while neglecting the per-
pendicular modes. The plasma system becomes two-stream unstable if at least two plasma
species with different group velocities u intersect, such that the centre-of-mass moves. First
works by Bludman et al. (1960), Fǎınberg et al. (1969), and Watson et al. (1960) consid-
ered the growth of electrostatic waves in a two-dimensional spectrum, k = (kz,ky), which
propagate at an angle to the flow direction of the driver. Due to the finite longitudinal
wavenumber, the waves are not purely growing, ℜ(ω) > 0. The oblique waves act to am-
plify both longitudinal and transverse modulations in the charge density due to a finite
longitudinal and transverse electric field.

For the kinetic approach, the whole second branch of the dispersion relation in Equa-
tion (2.12) has to be considered. The distribution function for a cold (monochromatic
k∆v ≪ |ω − kzub|) stream with velocity ub is expressed by a delta-distribution, f(v) =
δ(v − ubẑ). For this stream propagating in cold plasma, the dispersion relation is given by
(Fǎınberg et al., 1969)

0 =
[
1 −

ω2
p

ω
−

2ω2
β

γ2
b (ω − kzub)2

] [
(k2
z + k2

y)c2 + ω2
p + 2ω2

β − ω2
]

−
2ω2

βω
2
pk

2
yu

2
b

ω2(ω − kzub)2 . (2.19)
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The growth rate has a distinct maximum at the electron wavenumber kz = ke = ckp/ub,
expressed by (Bludman et al., 1960; Bret, Firpo, et al., 2004)

νobi = (
√

3/2)[ηuω2
βωp]1/3 (2.20)

ηu =
(c2 − u2

b)k2
p + u2

bk
2
y

c2k2
p + u2

bk
2
y

, (2.21)

with ηu the spectral two-stream factor in two-dimensional geometry. The classical solution
for (longitudinal) two-stream instability (TSI) is retrieved in the non-relativistic limit, ub ≪
c, neglecting the transverse mode, ky = 0.

For cold streams, the growth rate increases asymptotically with the transverse wavenumber,
i.e. fine-scale filaments grow faster. A finite temperature or Landau-damping (resonant
wave-particle interaction) damps higher wavenumbers, but the dispersion relation becomes
analytically untraceable. The two-dimensional growth spectrum was numerically studied
for Heaviside, Maxwellian and Maxwell-Jüttner distribution functions in Bret and Deutsch
(2006), Bret, Firpo, et al. (2004), and Bret, Gremillet, and Bénisti (2010), respectively. For
relativistic stream temperature, Tb ≳ mbc

2, OBI becomes dominant over CFI purely due to
thermal effects. The growth rate of OBI scales significantly different from the parameters of
the streaming plasma by ω2/3

β relative to CFI by ω1/2
β , which enables to split the regimes in

which the respective instabilities are dominant.

2.3.3 Dominant Regimes

The opposing currents of the plasma species must be comparable for CFI to dominate. For
a relativistic stream and a plasma initially at rest relevant in the astrophysical context, this
requires a dense stream with a minimum density semi-analytically derived to 0.53np for a
Lorentz factor of γ = 2.44 in Bret, Gremillet, and Dieckmann (2010). For ultrarelativistic
streams, this density limit increases to the plasma density. For a stream propagating through
overdense plasma, the plasma current is negligible and OBI dominates. Thus, the substantial
restriction on the densities is eased for counterstreaming plasmas.

While all filamentation instabilities exhibit a growing wave with a similar finite transverse
wavenumber, the physical response of the plasma and the growth of the electromagnetic
fields significantly differ, as shown in Figure 2.3. For a single species with anisotropy, strong
current filaments within the plasma and a perpendicular magnetic field emerge due to the
Weibel-mediated growth. The time-varying magnetic field gives rise to the weak electric field
component, which results in a negligible charge separation, ρp ≈ 0.

The charge density vastly differs for a relativistic stream consisting of positrons and electrons,
propagating through an equally dense plasma consisting of electrons and immobile ions. A
dominantly transverse modulation forms in both the charge density of the stream and the
longitudinal current density of the plasma. While a strong electric field emerges, the magnetic
field is higher by a factor of 2 and the system is dominated by CFI. Charge separation occurs
and couples with the electrostatic, longitudinal modes, which weakens the growth of the
electromagnetic mode (Tzoufras et al., 2006).

For a dilute stream prone to OBI, the response of both species shows a clear longitudinal
mode at kz = kp, given by a predominantly electrostatic response of the plasma. The electric
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Figure 2.3: Kinetic simulation of the relevant filamentation instabilities. Shown from top
to bottom for a system dominated by the Weibel instability (left), CFI (centre) or OBI
(right): The charge density of the plasma electrons (Weibel) or streaming positrons (CFI,
OBI), the longitudinal current density of the plasma electrons, the transverse electric and
magnetic field.
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Figure 2.4: Phasespace evolution during the instability growth. The initial phase-space
distribution giving rise to A) the Weibel instability, B) the current filamentation instability
or C) the two-stream filamentation, adapted from Bret, Gremillet, and Dieckmann (2010).
The phasespace in pzy shown for the simulation in Figure 2.3 at a) t = 0, b) towards
saturation of the instability, and c) as the system becomes isotropic.

field dominates over the magnetic field by a factor of 4. For lower densities of the stream
relative to the plasma, the gap between electric and magnetic field magnitude increases.
The motion of the beam particles is predominantly governed by the electric field following
previous studies by Li et al. (2022) and Shukla, Vieira, et al. (2018).

The corresponding phasespace in pzy of the streaming positrons and plasma electrons in
the different instability regimes is shown in Figure 2.4. For the Weibel-dominated regime,
small current fluctuations due to the anisotropy in plasma temperature form sinusoidal
modulation of the occupied phasespace observed in Figure 2.4b). The resulting magnetic field
amplifies the sinusoidal modulation. The wave becomes nonlinear towards the saturation of
the instability, and the system converges towards a velocity isotropy in Figure 2.4c). For the
CFI-dominated regime, the stream has no longitudinal temperature, but its finite transverse
temperature enables the formation of longitudinal current fluctuations. The dense stream
results in a substantial fluctuation in the longitudinal momentum of the plasma and, thus, in
a strong plasma return current. The modulation of the occupied phasespace by the species
is a composition of waves at different phases since both electromagnetic and electrostatic
modes drive the instability. For the OBI-dominated regime, the dilute stream results in a
weak modulation of the longitudinal momentum of the plasma and the filamentation is driven
by the electrostatic transverse oscillation of the plasma electrons instead of the currents of
the species.

Next to comparing the growth rates from simulation to theory, the relative partition of the
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Figure 2.5: The exponential growth of the mean electromagnetic field components for the
different regimes in Figure 2.3, compared to theory.

saturated electric and magnetic field magnitude enables to verify whether the evolution of
the system is dominated by the purely magnetic Weibel instability, electromagnetic CFI or
electrostatic OBI as shown in Figure 2.5. For all instabilities, the evolution in simulation
is separated into three intervals: For low times, the current fluctuation increases given by
the finite temperature. The system becomes coarse-grained, and the different instabilities
compete with each other. One instability dominates, visible by the exponential growth of
the magnetic field for the Weibel-dominated regime or electric and magnetic field for CFI
and OBI. The field growth from theory agrees with the respective theory, evaluated by
E ∼ exp(νt). The absolute value for the analytic expression is set to fit the growth from
the simulation. The fields grow several orders of magnitude before they deviate from the
analytic prediction. This saturation results from magnetic trapping in the Weibel- and CFI-
dominated regime or as the perturbation in the density of the stream reaches the order of
baseline density for OBI.

Within laboratories, approximating a homogeneous and infinite stream and plasma system
is no longer applicable. The beam utilised in plasma-based experiments usually has a fi-
nite extent and contains a profile in configuration space, which alters the dynamics of the
instabilities and requires a different approach addressed in the next section.

2.4 Beam Dynamics

For a relativistic beam of finite emittance in a vacuum, beam particles propagate ballisti-
cally. The transverse evolution of their trajectories can be described by the Courant-Snyder
parameters, also referred to as Twiss parameters, where the geometric or rms beam emit-
tance corresponds to the area the beam occupies in the transverse phasespace (x, y, px, py).
The emittance can be linked to the transverse momentum spread of the beam equivalent to
its temperature. Here, longitudinal or transverse refers to parallel or perpendicular to the
propagation direction of the beam. The rms emittance along each transverse direction is
defined by

ϵgy =
√

|cov(y, y′)| =
√

⟨y2⟩⟨y′2⟩ − ⟨yy′⟩2, (2.22)



20 2 Basics of Beam Plasma Physics

with y′ = tan (py/pz) the propagation angle of the particles and ⟨·⟩ =
∫

·nb dy/
∫
nb dy the

weighted average over the beam density. For a laboratory-relevant Gaussian-Maxwellian
transverse profile

f(y, pz, py) = 1
2πσyσy′

exp
(

− y2

2σ2
y

)
exp

(
− y′2

2σ2
y′

)
, (2.23)

with σy the rms width and σy′ the rms of the propagation angle, the geometric emittance
simplifies to ϵgy = σyσy′ at the beam waist. The beam waist is usually located at the plasma
entrance in plasma-based experiments. For relativistic beams with much larger longitudinal
momentum compared to the transverse momentum spread, pz ≫ σpy, the angle is Taylor
approximated to y′ ≈ py/pz and σy′ ≈ σpy/σpz. The momentum spread is a function of
the rms emittance, σpy = ϵypz/σy. The geometric emittance depends on the energy of the
beam particles and is, thus, replaced by the normalised emittance, ϵn = ϵgγbub/c, which
remains invariant under acceleration. The thermal spread in the lab frame can be linked to
the normalised emittance of a beam with a Gaussian transverse profile by

σpy = ϵny/σy, (2.24)

and equivalent for x.

In the presence of an electromagnetic force by the self-fields of a charged beam or the
wakefield excited by the beam propagating in plasma, the evolution of the rms beam width
is described by (Reiser, 2008)

∂2
zσy −

ϵ2ny
γ2
bσ

3
y

= ⟨|y|(Ey + ubBx)⟩
γbσymb/me

. (2.25)

The self-fields of a charged beam are given by the electric repulsion from the beam charge
and the magnetic field from the beam current. For the relativistic or quasineutral beam,
i.e. consisting of equal populations of particles with opposite charges, the self-fields can be
neglected as the charge-repulsion term is compensated by the magnetic field. In the absence
of self-fields, the beam evolution is described by the beam emittance, and the rms beam
width is

σy(z) =
√
σ2
y0 + z2ϵ2ny/(γ2

bσ
2
y0), (2.26)

with σy0 = minz(σy) the rms width at the beam waist at z = 0. The range from the beam
waist at which the rms width of the beam has increased by a factor of

√
2 is defined by the

Twiss beta value
βT = γbσ

2
y0/ϵny = γbσy/σpy. (2.27)

With this link between the beam width and emittance to the electromagnetic field excited
by the beam in plasma, beam-plasma instabilities due to the finite extent of the beam can
be investigated.

2.4.1 Self-Modulation Instability

As introduced by Figure 1.2, the beam charge results in an electrostatic plasma response,
which gives rise to the wakefield. The wave equation for the electromagnetic field can be
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derived from Maxwell’s equation, expressed in Equation (2.3), to(
∇2 − ∂2

t /c
2
)

E = µ0∂tj + ∇ρ/ε0(
∇2 − ∂2

t /c
2
)

B = −µ0∇ × j.
(2.28)

and remains linear for dilute beams, |ρb| ≪ enp. The low bulk return current of the plasma is
negligible for the low beam density, and only the oscillatory current fluctuation is considered.
Except for the Bessel functions from the cylindrical geometry, the exact derivation of Green’s
function is equivalent to the theory for wakefield-driven filamentation in Cartesian geometry,
discussed in Section 4.2.

For radially symmetric beam charge density ρb, the longitudinal and radial wakefield com-
ponents are expressed by (Katsouleas et al., 1987; Keinigs and Jones, 1987)

Ez = ke
ε0

∫ ∞

0
dr′r′I0(ker<)K0(ker>)

∫ 0

ζ
dζ ′ρb(ζ ′, r′)ke cos ke(ζ − ζ ′)

Wr = 1
ε0

∫ ∞

0
dr′r′I1(ker<)K1(ker>)

∫ 0

ζ
dζ ′∂r′ρb(ζ ′, r′)ke sin ke(ζ − ζ ′),

(2.29)

with In and Kn the modified Bessel functions of nth-order, where r> = max(r, r′) and r< =
min(r, r′) are the maximum and minimum between the variable and its integrand, respec-
tively. In two-dimensional configuration space (z, r) → (z, y), the terms with the Bessel func-
tions are replaced by exponential functions, In(kpr<)Kn(kpr>) → exp (kpy<) exp (−kpy>).
The radial wakefield has a stronger effect in three-dimensional geometry close to the beam
but drops more quickly with radius relative to the two-dimensional geometry. This is in ac-
cordance with the beam charge density reducing more quickly with beam width, ρb ∼ Q/σ2

r ,
in three dimensions relative to ρb ∼ Q/σy in two dimensions. The beam current has a higher
contribution to the wakefield closer to the axis, which is considered by the definition for the
effective slice current of the beam, Ieff(ζ) =

∫∞
0 dr′r′K0(r′)I(ζ, r′), with I the beam current.

Beams shorter than π/kp only experience the decelerating wakefield, transferring energy to
the plasma. Conversely, the decelerating and accelerating interval of the wakefield interact
with long beams, such that the energy in the excited wakefield is transferred back to the
beam. Short beams are significantly more effective in driving strong wakefields than long
beams.

The schematic of SMI is shown in Figure 2.6a), with the corresponding evolution of the
plasma response and excited wakefield at the onset and saturation of the instability illus-
trated in Figure 2.6b). The plasma electrons are attracted towards the positively charged
beam, which results in a higher plasma density on-axis and a transverse wakefield focusing
on the whole beam. The longitudinal and transverse wakefield component is superimposed
by a small longitudinal modulation at k = ke in the beam frame due to the transverse oscil-
lation of the displaced plasma electrons. The longitudinal motion of relativistic particles is
negligible, such that the transverse wakefield dominantly drives the beam. The transverse
wakefield modulates the beam radius, alternating between focussing and defocussing beam
particles. The modulation of the beam width enhances the oscillation of the plasma elec-
tron and, consequently, the wakefield amplitude. If the beam head is not truncated, e.g.
by an ionisation front, the SMI develops from small-scale inhomogeneities within the beam
resulting from a finite beam emittance.
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Figure 2.6: The evolution of a long proton beam undergoing self-modulation while propa-
gating in plasma. a) Schematic of SMI, with the beam-induced electron oscillation (violet
line) and the resulting wakefield force acting on the beam (black arrows). Credit to John
Farmer. b) The growth of SMI at the propagation distance of z = 6183/kp = 1.5 m (left)
and z = 20610/kp = 5 m (right) for a plasma density of np = 4.8 × 1014 cm−3. From top to
bottom: The beam density, plasma charge density, and longitudinal and transverse wakefield
component.

The SMI saturates if the beam is fully modulated and the focussing force of the wakefield
is compensated by the charge-repulsion of the beam. The resulting train of microbunches,
equally spaced at the plasma wavelength, resonantly drive the wakefield to amplitudes up to
three orders of magnitude higher than the initial wakefield. The longitudinally unmodulated
length at the beam head is focussed by the non-oscillatory term of the transverse wakefield.
The detailed saturation mechanisms are discussed under the influence of plasma ions with a
finite mass in Chapter 5.

The effect of the transverse wakefield on a perturbation δr around the equilibrium width of
the beam r0 is obtained by inserting Equation (2.29) into Equation (2.25). The evolution
of the radius envelope along the length of a long beam is described in the beam frame
(ζ = z−ubt, τ = z/ub) by (∂ζ∂2

τ + iω2
βηr)δσ̃r = 0. Green’s function is obtained by a Laplace

transform for a narrow beam with a flat top profile along the transverse direction. The
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growth of the perturbation radius in the asymptotic limit, ωβτ → ∞, is given by (Schroeder
et al., 2011)

Γsmi = δσ̃r
σr0

= 1√
4π

expNsmi√
Nsmi

, Nsmi = 33/2

25/3

(
ηrω

2
βτ

2kpζ
)1/3

, (2.30)

with the N the number of exponentiation or e-folding number, i.e. Γ ∼ exp(N). The beam
shape factor ηr depends on the configuration space by ηr,3D = 4I2(kpσr)K2(kpσr) and ηr,2D =
[3/(kpσr)2](1 + kpσr) exp (−kpσr)[cosh (kpσr) − sinh (kpσr)/(kpσr)]. Since ηr,3D > ηr,2D, the
growth rate of SMI is higher in three dimensional geometry. The analytic solution to the
instability growth is not purely imaginary and includes an oscillatory part, which reduces
the phase velocity of the growing wave relative to the beam velocity by

uψ = ub

[
1 − 2

33/2
Nsmi
ωpτ

]
. (2.31)

In beam physics, the betatron frequency ωβ generally refers to the oscillation frequency of the
particles in a charged beam around an equilibrium in a magnetic field. In a plasma channel,
the beam particles undergo transverse betatron oscillation due to the excited plasma wake
(Esarey, Shadwick, et al., 2002). For wakefield-driven instabilities, such as SMI, the inverse
of this frequency sets the timescale for the exponential growth.

2.4.2 Nonlinear Force from Heterogeneous Electromagnetic Fields

The beam charge that excites the plasma wake in PWFA is missing in LWFA. The electro-
magnetic impulse excited by the utilised laser is represented by the high-frequency carrier
and its envelope, E(x) = Ẽ(x) cosωpt. The response of the plasma particles is too slow
to react to the fast oscillation within the electromagnetic pulse. Instead, the particles ex-
perience a force away from regions with electromagnetic fields of higher magnitude. This
force is referred to as ponderomotive force and can be derived from the Lorentz force for the
electrons, mev̇ = −e[E(x) + v × B(x)], with v̇ = dv/ dt (F. F. Chen, 2016). To first order,
meδv̇ = −eE(x0), yields

δv = −e
meωp

Ẽ sinωpt, δx = e

meω2
p

Ẽ cosωpt (2.32)

in which the average transverse trajectory remains constant. For the second-order terms,
E is evaluated to first-order at the actual particle position during its oscillation x1 using
Taylor’s expansion, E(x) = E(x0)+(δx·∇)E|r=r0 +· · · . The nonlinear magnetic term in the
Lorentz force, δv × δB is obtained via the Faraday’s equation ωpδB = −∇ × Ẽ|r=r0 sinωpt.
The particle trajectory and its finite average over the oscillation period is given to second
order by

meδ
2v̇ = −e [(δx · ∇)E + δv × δB]〈

meδ
2v̇
〉

2π/ωp

= −e2

2meω2
p

[
(Ẽ · ∇)Ẽ + Ẽ × (∇ × Ẽ)

]
,

(2.33)

with δ2· a second-order perturbation. With Ẽ ×(∇×Ẽ) = ∇Ẽ2 −(Ẽ ·∇)Ẽ and ⟨cos2 ωpt⟩ =
⟨sin2 ωpt⟩ = 1/2, the ponderomotive force, Fp = me⟨δ2v̇⟩, is derived by

Fp = − e2

meω2
p

∇Ẽ2. (2.34)
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The exponent of the electric field emphasises that the ponderomotive force is not traceable
by linear theory.

2.4.3 Relativistic Fluid Theory

The analytic description for the beam width is insufficient to describe the growth of fine-scale
perturbations within the beam density. While the kinetic description of plasma accurately
describes a vast regime of waves and instabilities, resolving the 6D + t phase-space usually
requires the system to be homogeneous and unbounded to be analytically solvable with
linear theory. Spatial approximations only exist for a negligible variation of the distribution
function in configuration space (Bers, 1983). The cruder fluid model can explain a substantial
amount of observations if a detailed description of the momentum space is not required.
Instead, the evolution in momentum space is given by the moments of the distribution
function Equation (2.4).

Inserting the macroscopic parameters into the momenta of the distribution function yields
the charge continuity and momentum equation in the relativistic regime (Siambis, 1987)

∂tn+ ∇ · (nv) = 0
∂tp + (v · ∇)p + P/n = FL.

(2.35)

The pressure tensor P can be expressed in terms of the temperature along the respective
axis via ∇Pzxy = kBTzxy∇n. For a Maxwellian in momentum space

f(p) = 1
(2π)3/2σpzσpxσpy

exp
(

−pz − γmu

2σ2
pz

− p2
x

2σ2
px

−
p2
y

2σ2
py

)
, (2.36)

the non-diagonal pressure terms vanish. The diagonal terms, Paa = n−1 ∫ (pa − ⟨pa⟩)(va −
⟨va⟩)f(p) dv, allow an analogy to the temperature by

kBTy = σ2
py/(mγ). (2.37)

For non-relativistic temperatures, σpr ≪ γmu, the pressure tensor can be closed by a diffu-
sion term (Bret and Deutsch, 2006)

∇P = 2
3
σ2
pr

mγ
∇n. (2.38)

This not only assumes the pressure tensor to be isotropic but also ignores the dependency
on any microscopic event. The postulation of a Maxwellian distribution may be a drastic
assumption, but Bret and Deutsch (2006) points out that the instability growth rate in this
approximation agrees well with the kinetic formulation. The limit on the beam temperature
for which the effect of diffusion can be considered purely diffusive is derived to σpr/(mc) <
[3/210/3(n/np)1/3γ1/3(1 + γ−2)2/3/(1 + γ−1)2]1/2 in Bret, Gremillet, and Bénisti (2010).

For the analytic studies in Chapter 4, the fluid equations are linearised with

n → n+ δn u → uẑ + δu, (2.39)
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with δn the amplitude of the perturbation wave in the density. For relativistic beams or
beams with low emittance, the longitudinal momentum is much larger than its transverse
momentum spread. In such cases, the linearised gamma factor, γ(u) = [1−(u2+δu2)/c2]−1/2,
can be Taylor approximated to

γ(u) ≈ γ(u) + ∇γ(u) · δu + 1
2δu

T (∇ ⊗ ∇)γ(u) · δu +O(δu3) (2.40)

≈ γs(1 + γ2u · δu), (2.41)

with γ = [1 + p2/(mc)2]1/2 = [1 −u2/c2]−1/2. The linearised convection term in the momen-
tum equation is formulated by

(v · ∇)p ≈ γm(u · ∇)[δu + γ2/c2(u · δu)u] = (γ2δuz,δu⊥), (2.42)

and the linearised fluid equations are derived to

(∂t + u∂z)δn = −n∇ · δu

(∂t + u∂z)δu = 1
γm

(
Fz/γ

2

F⊥

)
+ ∇P

n
,

(2.43)

with longitudinal Fz and perpendicular F⊥ component of a force acting on the fluid. Apply-
ing ∇ to the linearised momentum equation and inserting the linearised continuity equation
cancels out δu and yields[

(∂t + u∂z)2 + 2
3
σ2
pr

m2γ2 ∇2
]
δn = n

mγ

(
∂zFz
γ2 + ∇⊥ · F⊥

)
, (2.44)

with the definition of the pressure term from Equation (2.38). The Lorentz factor lowers the
impact of the longitudinal force on the momentum by a factor of γ−2.

The fluid equation in the lab (Eulerian) frame contains the convective term ∂t+u ·∇, which
can be greatly simplified in the Lagrangian frame. Instead of observing a fluid motion from
a specific location in space through which the fluid passes, the fluid motion is considered
from the individual fluid elements moving through phasespace in the Lagrangian frame. The
location and time of the fluid elements are expressed as a snapshot in time by

ζ = x − Λ(ζ,τ), τ = t with Λ(ζ,τ) =
∫ τ

0
u(ζ,τ ′) dτ ′, (2.45)

where Λ is the convective term tracing the fluid motion. The partial derivatives in configura-
tion space and time transform to ∇ = [1/(1+∇ζ ·Λ)]∇ζ and ∂t = ∂τ−[u(ζ,τ)/(1+∇ζ ·Λ)]·∇ζ ,
such that the convective term rewrites to a co-moving time-derivative

∂t + u · ∇ → ∂τ . (2.46)

For the beam propagating along +z, each slice contains the same velocity, Λ(ζ,τ) = ubtẑ
and the Lagrangian frame of the beam as a snapshot in time simplifies to ζ = z− ubt, τ = t.
In the experimental setup, the image of the beam is taken as a snapshot in position, i.e. each
beam slice is measured at the same position at different lab times. The beam frame is then
defined by

ζ = z − ubt, τ = z/ub, (2.47)
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such that each beam slice ζ has propagated the same amount of time τ in plasma. The
partial derivatives transform in the beam frame to

∂t = −ub∂ζ , ∂z = ∂ζ + ∂τ/ub. (2.48)

and the convective term rewrites to ∂t + u · ∇ → ∂τ , equivalent to the Lagrangian frame
given as a snapshot in time.

The existent kinetic theories for the filamentation instabilities provide the foundation to un-
derstand the performed simulations throughout the next chapters and verify their numerical
convergence. Two simulation methods, listed in the next section, are essential to investi-
gate the nonlinear regimes not traceable by linear theory and validate the three-dimensional
analytical model derived in Chapter 4.

2.5 Methods

This doctoral work is conducted at the Group of Plasma Astrophysics within the TOK de-
partment at the Max Planck Institute for Plasma Physics in collaboration with the AWAKE
experiment at the European Organization for Nuclear Research (CERN). The results are
obtained using analytic methods and numerical computations with particle-in-cell (PIC)
simulations and compared to experimental measurements at the AWAKE experiment. The
simulations are performed with the codes OSIRIS (R. Fonseca et al., 2002), QV3D (built
on the VLPL platform) (Pukhov, 1999, 2015) and LCODE (Sosedkin and K. Lotov, 2016)
on the MPCDF computing cluster. OSIRIS is a relativistic, fully electromagnetic, massively
parallel PIC code developed and maintained by the Osiris consortium, which consists of the
Extreme Plasma Physics (EPP) team in the Group of Lasers and Plasmas and the Particle-
in-Cell and Kinetic Simulation Software Center (PICKSC) at the University of California,
Los Angeles. The fully-electromagnetic PIC method is referred to as full-PIC. QV3D is a
quasistatic PIC code for simulations of plasma wakefield acceleration in three-dimensional
geometry developed by Alexander Pukhov at the University of Düsseldorf and maintained by
John Farmer. LCODE is another quasistatic PIC code developed at the Novosibirsk State
University, which is used for the axisymmetric studies in Chapter 5.

The complex nature of plasma motivates computer simulations to extend beyond analytic
models. The exascale era allows for in-depth studies of realistic scenarios in laboratories
and astrophysical contexts. numerical investigations on plasma were pioneered by works of
J.M. Dawson, C.K. Birdsall and A.B. Langdon in the early 60s. Simulations may predict
physical phenomena, motivate new research, and aid experimental design. Where good
agreement between experiment and simulations occurs, simulations give a deep insight into
the evolution and physical phenomena, out of reach for experimental diagnostics or analytic
models (Birdsall and Langdon, 2018).

Magnetohydrodynamic approaches are an essential tool to simulate the collective behaviour
of plasma and are widely used in astrophysics to nuclear fusion research. The plasma is
treated as a single fluid interacting with the electromagnetic field, where the fluid equations
are discretised on a grid to solve for the variables. Kinetic approaches are required for systems
not in thermal equilibrium or involve detailed particle-wave interactions, such as injection
processes or particle acceleration. numerical methods include solving the Vlasov equation
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or the elementary PIC algorithm. The Vlasox-Maxwell equation, given in Equation (2.6), is
solved with the finite difference or finite element method on an Eulerian grid in phasespace
in the Vlasov method. However, the Vlasov method is computationally expensive for multi-
dimensional problems as large proportions of the phase space are not occupied by the plasma
(Birdsall and Langdon, 2018; Pukhov, 2015).

The Lagrangian Vlasov or PIC method resembles a physical analogy to reality, being the self-
consistent evolution between particles and fields. The difference relies on resolving macropar-
ticles, where each macroparticle substitutes for significantly more physical particles. This
approximation is possible due to the collective nature of the plasma (Birdsall and Langdon,
2018). The macroparticles propagate within a spatial grid and contain a momentum, i.e.
the momentum space is implicitly resolved. This reduces the six-dimensional problem to
a three-dimensional problem for the grid. Without the spatial grid, each particle-particle
interaction must be evaluated, a N2

m problem, with Nm the number of macroparticles. By
depositing the current and charge of the particles onto a grid, the particle-mesh interaction
only requires Nm evaluations.

2.5.1 Fully-electromagnetic particle-in-cell

Precision errors over many computation steps can be avoided by normalising the numerical
plasma and field quantities formulated as

Density n′ = n/np j′ = j/(enpc)
Momentum p′ = p/(mc) σ′

p =
√
kBT/(mc2)

Fields E′ = E/E0 B′ = cB/E0
Operators ∂′

t = ∂t/ωp ∇′ = ∇/kp,

(2.49)

which rewrites the Maxwell equations without any unit-specific constants to ∇′ · E′ = ρ′,
∇′ ·B′ = 0, ∇′×E′ = −∂′

tB
′ and ∇′×B′ = j′+∂′

tE
′. The combination of either Faraday’s or

Ampere’s law with Gauss’ law results in the charge continuity Equation (2.35) ∂tρ+∇·j = 0,
which combined with Gauss’ law sets the initial condition for the electromagnetic field in
the simulation. The electromagnetic PIC method only utilises Faraday’s and Ampere’s
law, making the algorithm local and, thus, less prone to the usually unphysical boundary
conditions (Pukhov, 2015).

The scheme for a fully electromagnetic PIC code with an explicit time advance on a Yee-
lattice is shown in Figure 2.7. In the finite-difference scheme, the charge of the macroparticles
is deposited onto the grid centre. The relevant current source term is deposited to the grid
edges by tracking how much charge has transversed through each cell boundary during a
particle push utilising Equation (2.35) (Pukhov, 2015). The obtained current density is
used to update the fields on the grid via the Maxwell equations defined in Equation (2.3).
The fields are interpolated to the macroparticles, and the momentum and position of the
macroparticles are updated via the Lorentz force.

Fully-electromagnetic PIC simulations are required to comply with the Courant-Friedrichs-
Lewy condition to avoid non-physical growth of the electromagnetic field. This condition
strongly constrains the maximum timestep to c∆t ≤ [∑n(∆xn)−2]−1/2, with ∆xn the spatial
grid resolution along each dimension (Courant et al., 1928). Simulating systems with plasma
species evolving at different spatial and time scales may become computationally expensive.
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Field interpolation

Field update

Particle push

Current / charge
deposition

Figure 2.7: Conceptual circle of the PIC method. Macroparticles move within the grid,
while the electromagnetic fields and current density of the plasma species are defined on a
Yee lattice and nodes, respectively.

This gap in timescale is considerable for a relativistic and heavy beam evolving at the
inverse betatron frequency ω−1

β propagating through the plasma with a response time of
the inverse plasma frequency ω−1

p (Pukhov, 2015). In experimentally relevant studies, the
plasma interacts with the beam over length scales ranging from micrometres to centimetres,
which is several orders of magnitude shorter than the acceleration length that can extend
up to hundreds of meters.

For fully-electromagnetic simulations, the relativistic beam can be simulated in a frame
moving with the beam to reduce the length of the simulation window. To avoid the growth
of unphysical waves at the downstream boundary, the window must move at the speed of
light. The constraint on the time step remains and requires the quasistatic model.

2.5.2 Quasistatic Particle-in-Cell

The time scales between beam and plasma can be bridged by separating the fast plasma
response from the slow beam scale. For the relativistic beam, the beam evolution along
its propagation is significantly slower than the response of the plasma electrons along the
beam length, expressed by |∂ζδρp| ≫ |∂τδρp/ub| for the plasma quantities and equivalent
for the electric and magnetic field. This is known as the quasistatic approximation: The
plasma response depends only along the beam, so plasma electrons at different propagation
distances copy their motion with a time-delay t (Tuev et al., 2023). Instead of modelling
electrons in the simulation volume, a transverse plane of electrons streams along the beam
length. This reduces the number of required macroparticles for the plasma.

The propagation step in the quasistatic method is shown in Figure 2.8. The stream of plasma
particles propagates along the beam length with the constrain ∆ζ < k−1

p . The resulting
electromagnetic fields from the plasma response push the beam particles via the Lorentz force
with a propagation time step only constrained by the physical beam evolution, τ < ω−1

β .
For the studies on relativistic proton beam, the speedup of quasistatic simulations relative
to the full PIC method is estimated to ωp/ωβ = [2γb(mb/me)/(nb/np)]1/2 ∼ 104 to 105. The
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Figure 2.8: Scheme of quasistatic PIC. In the beam frame, a stream of plasma electrons
(blue) with step size ∆ζ responds to the beam (red). Each transversed beam slice ∆ζ is
pushed with the propagation step ∆z < c/ωβ with the resulting wakefield force.

resulting fields are a snapshot at a fixed position along the propagation direction, such that
each slice propagated the same amount of time in plasma in analogy to the experimental
setup. The resulting fields from full PIC simulations are a snapshot in time, which impacts
the field growth, discussed in Section 4.2.2.

Transforming the system to the beam frame and neglecting any partial derivatives with the
slow time τ for the plasma response, the wave equation given in Equation (2.28) is expressed
by (Tuev et al., 2023) (

∇2
⊥ + 2

c
∂τζ

)
E =

(
∂τ/c+ ∂ζ

∇⊥

)
ρ

ε0
− µ0ε0∂ζj(

∇2
⊥ + 2

c
∂τζ

)
B = −

(
∂τ/c+ ∂ζ

∇⊥

)
× j.

(2.50)

The mixed derivatives ∂τζ include the dynamic electromagnetic waves with a group velocity,
which are not included in conventional quasistatic models. The computation of ∂ζjz can
be avoided by the continuity equation in the beam frame ∂ζρ = ∂ζjz + ∇⊥ · j⊥ and gives
(∇2

⊥ + 2∂τζ/c)Ez = ∇⊥ · j + ∂τ/c(ρ + jz/c). In the quasistatic model, the equation of
transverse motion dx⊥/dt = p⊥c/(p2 +m2c2)1/2 for the plasma electrons is set by

∂ζp = (FL − [vz/c]∂τp)/(vz − c) (2.51)

The beam particles are pushed with the Lorentz force from the plasma wakefield after the
stream of electrons transversed the simulation window.
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3
Application of Numerical Methods on

Beam-Plasma Studies

Chapter Summary
• An analytic model for a non-linear wakefield excited by a dense stream in plasma is

developed and compared to fully electromagnetic PIC simulations. The longitudinal
wavenumber increases with beam density, where three different effects are identified:
The beam charge density increases the oscillation frequency, while relativistic effects
for large oscillations decrease the frequency; the plasma return current modifies
the wavenumber depending on the beam charge. The model agrees well with the
simulations, although non-physical plasma heating occurs.

• Quasistatic simulations of beam filamentation in plasma are compared to fully elec-
tromagnetic simulations, where the computing resources are significantly reduced
with the quasistatic method. The growth of the field energies for current-driven
and wakefield-driven in quasistatic simulations and fully electromagnetic simula-
tions in two-dimensional geometry agree well with fully electromagnetic simulations
in three-dimensional geometry. This enables the numerical study of the instabilities
in a laboratory-relevant regime.

Plasma instabilities were studied in the most straightforward configuration with one dimen-
sion in configuration space in the early years of computers, which reflected realistic scenarios
with caveats. This gives a deep insight into the multi-dimensional phase space and nonlinear
regimes and verifies existent linear theories. This chapter introduces the nonlinear wakefield
response to a charged stream without a transverse modulation in Section 3.1, where the
physical increase of the longitudinal wavenumber is evaluated with an excursion to a non-
physical increase of the plasma temperature limiting simulation studies. In Section 3.2, the
current- and wakefield-driven filamentation of finite beams in three dimensions is discussed
and compared between the PIC methods listed in Section 2.5.
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3.1 Nonlinear Wakefield

In one dimension, the wakefield excited by a stream from Equation (2.29) reduces to its
longitudinal component

Ez = ρb0ke
ε0

∫ 0

ζ
dζ ′f(ζ ′)ke cos ke(ζ − ζ ′), (3.1)

which for a dilute flat-top stream with its head at ζ = 0, ρb0 = qbnbΘ(−ζ), is a simple sine-
wave Ez = [ρ̂b0ke/ε0] sin ke(ζ − ζ0)Θ(−ζ). The theory introduced in this section considers
the effect of the plasma return current and relativistic plasma motion for stream charge
densities in the magnitude of ∼ enp.

For a positively-charged stream propagating through plasma, the plasma electron at position
z experiences an attractive force towards the head of the stream, zup = z0e + δz + ubt, with
z0e the initial electron position and δz the distance between the beam head and plasma
electron. From Gauss’ law, the force acting on the electron depends on the charge density
summed over all species between the beam head and the current electron position

E(z) = 1
ε0

∫ zup

z
ρpi + ρpe + ρb dz′, E(zup) = 0. (3.2)

With an initially quasineutral plasma, ρpi + ρpe ≈ 0, the electron only witnesses the at-
tractive force due to the positive charge of the beam towards the beam head Eb(z) =
−[e/ε0]

∫ zup
z nb dz′ = −[enb/ε0](zup − z). While the electrons accelerate upstream, the ions

are stationary. The deficit between electron and ion charge density results in a restoring
electric force downstream with Ei(z) = [e/ε0]

∫ z
z0e
npi dz′ = [enpi/ε0](z − z0e). Due to the

two opposing forces, the electron oscillates around a moving equilibrium position zeq, where
the force on the electron cancels out, −eEb(zeq) = −eEpi(zeq). The equilibrium position and
velocity ueq = d(xeq(t) − x0e)/ dt of the plasma electron are

zeq = nb(δz + ubt)
nb + npi

+ x0e, ueq = ub
nb

np + nb
<
ub
c
, (3.3)

with the plasma return current jpz = −eueq.

The boundary value problem from Gauss’ law in Equation (2.3) can be reformulated with
E(zeq) = 0, and the oscillation of the plasma electrons around their equilibrium positions
is

E(z) = e

ε0

∫ z

zeq

[
npi(z′) + nb(z′)

]
dz′ = e

ε0
(npi + nb)(z − zeq). (3.4)

Defining ·̇ = d(·)/ dt, the non-relativistic equation of motion, mez̈ = F (z) = −eE(z), gives
z̈ + ω2

n(z − zeq(t)) = 0, with ωn/ωp = (1 + nb/np)1/2 the total plasma electron frequency.
Transforming the equation to the Lagrangian frame for the plasma electrons, ζe = z − uet
and τ = zeq/ueq, results in ∂2

τ ζ̇e + ω2
nζ̇e = 0, which has the general solution

ζ̇e(ζ,τ) = ζ̇e0(ζ) cosωnτ + ωnζe0(ζ) sinωnτ

ζe(ζ,τ) =
∫ τ

0
ζ̇e(ζ,τ ′) dτ ′ = ζe0(ζe) ∗ (1 − cosωnτe) + [ζ̇e0(ζe)/ωn] sinωnτe,

(3.5)
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with ζ̇e0 and ζe0 the initial values. This set of equations describes a harmonic oscillation of
the individual electrons. For simplicity ζe0 = 0, and the equilibrium velocity of the electrons
is ζ̇e0 = ueq. With the initial condition z0(τ) = ueqτe, the electron position in the lab frame
and the electric field from Equation (3.4) are

ze(ζe) = ζe(τe) +A sin (knζe)

Ez(ζe) = ρb
ε0
A sin (knζe),

(3.6)

with kn = ωn/(ub − ueq) the electron wavenumber in the lab frame and A = ζ̇e0/ωn = 1/kn.
The harmonic oscillation of the electric field can be transformed to the lab frame by the
discrete Fourier transform sin (knζe) = ∑∞

l=1 cl sin (lknze), with the Fourier coefficient cl =
[kn/π]

∫ 2π
0 dz sin (lknx) sin (knζe) = (−1)l+1[2/(nA)]Jl(lA), to

Ez(ze) = enpkp
ε0

∞∑
l=1

2(−1)l+1

n
Jl

(
l
ρb
enp

kn
kp

)
sin (lknze). (3.7)

Relativistic effects must be considered when the kinetic energy of particles is a considerable
fraction of the particle’s rest energy, (E − E0)/E0 = γ − 1 ≳ 0.1. Considering a highly
relativistic beam, ub ≈ c, and that the maximum velocity during an electron oscillation
is approximately double the equilibrium velocity, the beam density applying to the rule
is nb ≳ np/4. In the plasma frame, the equation of motion for the relativistic harmonic
oscillator rearranges to

d
dτe

p = d
dτe

meζ̇e√
1 − ζ̇2

e/c
2

= −e2

ε0
(nb + np)ζe. (3.8)

In normalised units, τ ′
e = ωnτe, ζ ′

e = knζe the differential equation rewrites to 0 = ζ̈e
′ + (1 −

ζ̇ ′
e)3/2ζ ′

e. Further normalising electron momentum, p′
e = pe/(mec) = ζ̇ ′

e/(1 − ζ̇ ′2
e )1/2, gives

ζ̇e = p′
e/(1 + p′2

e )1/2 and ζ̈e = ṗ′
e/(1 + p′2

e )3/2. These equations are combined to

ṗe
′ + ζ ′

e

(1 + p′2
e )3/2 = 0 ⇒ ṗ′

e = −ζ ′
e. (3.9)

The integral of the time derivative, p̈′
e = −ζ̇ ′

e = −p′
e/(1 + p′2

e )1/2, times ṗ′
e results in ṗ′

e
2 =

2[γeq − (1 + p′2
e )1/2], with γeq = (1 − u2

eq/c
2)−1/2. The time period T = 4t0 for the periodic

motion of p′
e, with t0 the time from zero momentum to the maximum momentum, p′

eq =
p(t0) = (γ2

eq − 1)1/2, is solved by separation of variables

I = T

4 =
√

2
π

∫ peq

0

dp′
e√

γeq −
√

1 + p′2
e

=
√

2
π

∫ arsinh(peq)

0

cosh p′
e dp′

e√
γeq − cosh p′

e

≈
p′

eq
arsinh p′

eq
. (3.10)

The time has to be Lorentz-transformed to the lab frame, Tlab = γeqT . The electron fre-
quency is

ωrel = ωn/(γeqI) < ωn. (3.11)

such that relativistic effects result in a lower plasma frequency.
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The wavelength is defined by the distance between equal phases, where the beam velocity
limits the phase velocity at the beam head. The beam passes the electrons with the upstream
velocity ub, initiating the electron oscillation with ω = ωrel. The phase velocity of the
plasma wave decreases relative to the beam velocity due to the equilibrium velocity of the
electrons ueq towards the beam head. The phase velocity, uψ = ω/k, is defined by the ratio
between the electron frequency and the wavenumber of the plasma wave excited by the beam,
(ub − ueq) = ωrel/krel. Combining Equations (3.3) and (3.11), the electron wavenumber is

krel
ke

= (1 + nb/np)3/2

γeqI
= nb
np

√
1 + nb

np

arsinh [peq/(mec)]
p2

eq/(mec)2 , (3.12)

with peq/(mec) = 1/
√

[c2/u2
b ](np + nb)2/n2

b − 1. The influence of the plasma return current
decreases the wavelength compared to the plasma wavelength λp. In previous studies, the
increase of the longitudinal plasma wavenumber due to the relativistic time-dilation of the
electron oscillation was derived to (Esarey, Schroeder, et al., 2009; K. V. Lotov, 2013)

ke = kp/[1 + ασ(Ẽz/E0)2], (3.13)

where ασ is an arbitrary factor set by the beam width. The analytic expression from one-
dimensional theory, α = 3/16, is retrieved for wide beams. This enables semi-analytically
obtaining the wavenumber with the electric field known from simulations.

The analytic description of the plasma response is compared to simulations. One-dimensional
fully-electromagnetic PIC simulations are used, in which plasma particles have one degree
of freedom and k = kζ . The relativistic, γb = 22.4 (ub/c = 0.999), cold positron stream has
a flat-top profile with extent kpζ < 1. The stream propagation through a uniform plasma is
considered in the co-moving frame ζ = z−ct. The grid size of the simulation is kp∆z = 0.05,
and the time step is set to ωp∆t = 0.048. The plasma ions are modelled stationary, and the
stream particles propagate with constant longitudinal momentum. The stream and plasma
species are represented by one and 256 macroparticles per cell. The boundary conditions
are open for the macroparticles and electromagnetic fields. The stream is initialised in a
vacuum, and the plasma response after the whole beam enters the plasma is obtained. The
fields are solved in the Yee lattice, while the linear interpolation scheme for the shape of the
macroparticle is set.

The harmonic oscillation in the plasma frame results in an anharmonic oscillation in the lab
frame. Figure 3.1a) shows that plasma electrons remaining equidistant during oscillation
in the plasma frame are closer to each other towards ze = Nπ/krel in the lab frame. The
equivalent increase in the plasma density results in the electric field steepening towards a
saw-tooth profile. Due to the non-linear profile, the integral form in Equation (3.1) is not
applicable. An extension to this model requires non-linear fluid theory for the plasma density
and results in a series expression with Bessel functions (R. Davidson and Schram, 1968),
comparable to Equation (3.7). The electric field is not unique above the limit |Ez|/E0 =
kp/krel decreasing with the wavenumber of the plasma wake, which is physically interpreted
as electrons crossing each other. This phase mixing disturbs the coherent oscillation of the
plasma electrons and is referred to as (longitudinal) wavebreaking.

The quasi-linear wakefield excited by the stream with longitudinal flat-top profile is shown
in Figure 3.2a). The envelope of the sine-wave remains constant along the length of the
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Figure 3.1: The nonlinear wakefield re-
sponse. a) the electron position in the
plasma frame and b) the longitudinal wake-
field are shown in the lab frame according
to Equation (3.6) for different perturbation
amplitudes.
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Figure 3.2: The plasma wake driven by a flat-top charged stream with ρb = 0.25 enp. a)
The longitudinal electric field excited by the stream (grey) along the beam length from
simulation (cyan), linear theory, kζ = kp, (orange-dashed) and the derived non-linear theory
(red-dashed). b) The phasespace of the plasma electrons in ζpζ . c) The electron trajectories
are shown relative to the sum of the moving equilibrium positions with the initial electron
positions.
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Figure 3.3: The wavenumber and equilibrium
velocity of the plasma electrons as a function of
the beam density. The cyan dots are from sim-
ulation, and the lines are obtained from linear
theory (orange), the nonlinear theory derived
in Equation (3.12) (red-solid), or solved semi-
analytically with the nonlinear theory given by
Esarey, Schroeder, et al. (2009) (red-dashed).
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stream. The semi-analytic solution of the electric field along the beam length from linear
theory in Equation (3.1) is expressed in differential form by

∂ζEzc(ζ) = krel[iEzc(ζ) + ρb(ζ)/(ε0k
2
p)], (3.14)

with the physical solution Ez = ℜ(Ezc). The wavenumber from the simulation is higher
compared to linear theory, kζ = kp, but agrees well with the semi-analytic solution of Equa-
tion (3.14) with the wavenumber from the derived nonlinear theory expressed in Equa-
tion (3.12). The envelope from simulation is slightly lower compared to theory, indicating
that the wave becomes non-linear.

The amplitude and equilibrium momentum of the longitudinal electron oscillation, shown
by the ζpζ phasespace in Figure 3.2b), agrees well with the analytic prediction of peq = 0.2
from Equation (3.3). The momentum spread equivalent to the plasma temperature, σpe =
(Te/mec)1/2, of the plasma increases for kpζ < −20π, although no physical heating process is
apparent in the cold plasma such as collisions, resistance or neutral particles. This numerical
heating, discussed in more detail in Appendix A.1, results in plasma electrons crossing each
other in Figure 3.2c) such that electrons witness the electric field from the electron plasma
charge density and some electrons are self-injected. Here, the effect of numerical heating is
mitigated by obtaining the wavenumber close to the stream head.

The wavenumber of the plasma wake from simulation increases relative to the plasma
wavenumber from linear theory with the density of the stream in Figure 3.3. This increase
agrees with the derived nonlinear theory given in Equation (3.12), while the semi-analytic
solution by evaluating Equation (3.13) slightly overestimates the plasma wavenumber. The
equilibrium velocity of the plasma electrons from simulation and nonlinear increases asymp-
totically with the beam density. The excellent agreement verifies that the following relativis-
tic effects can be safely neglected for this setup: The frequency of the relativistic oscillation
depends on the kinetic energy ω(z) = ωe[1+Ekin(z)]1/2 due to the time dilation and remains
not constant over the oscillation period. Additionally, the oscillation peak for the electron
velocity reduces from ueq due to the non-linear relativistic addition of velocities.
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3.2 Filamentation Modes in Quasineutral Beams

Simulations of Weibel-mediated collisionless shocks in the astrophysical context involved
counterstreaming pair plasma, i.e. quasineutral electron-positron streams (Spitkovsky, 2008).
Therefore, extensive numerical studies of the interaction of quasineutral beams with plasma
were performed (Muggli et al., 2013; Shukla, Vieira, et al., 2018) as well as an experimental
study planned at the HiRadMat facility at CERN (Arrowsmith et al., 2021). The required
computational resources to achieve numerical convergence and bridge the gap between beam
and plasma evolution, ωβ ≪ ωp, in full PIC simulations can be significantly higher relative to
quasistatic PIC simulations for instability studies of relativistic beams in a low-temperature
plasma. While quasistatic simulations are utilised for studies on SMI, it has not been investi-
gated whether quasistatic simulations resolve the physics of CFI and OBI. The quasineutral
beam undergoes the filamentation instabilities while suppressing SMI and requires a lower
propagation distance and a shorter simulation window relative to a proton beam to track
the saturated phase of the instabilities due to its low inertia.

The filamentation of a relativistic, γb = 567.5, electron-positron beam is numerically studied
by two- and three-dimensional fully-electromagnetic PIC simulations and compared with
three-dimensional quasistatic PIC simulations. The beam has a longitudinally Cosine-
squared profile expressed by

f(ζ) = Θ
(√

2πσζ − |ζ|
)

cos2
[√

π

2
ζ

2σζ

]
, (3.15)

to limit the longitudinal extent of the beam. Along each transverse axis, the beam has a
Gaussian profile with rms width of kpσr = 2 and a momentum spread of σpr/(mbc) = 0.1.
The total beam charge is constantly set to Q = 2.92 nC. This corresponds to a total beam
peak density of nb = np for a beam with rms length 1/kp and a plasma wavelength of
λp = 6.43 × 10−2 mm. The beam evolution is considered in the co-moving frame at the
speed of light. The grid size is kp∆(x, y, ζ) = (0.05, 0.05, 0.08), and each equally-weighted
macroparticle represents 143 physical particles for the beam. For the quasistatic simulations,
the propagation step is kp∆z = 10, and the plasma species with stationary modelled plasma
ions is represented by nine macroparticles per cell. For full PIC simulations, the timestep is
set to ωpt = 0.03, and the plasma species is represented by 9 and 27 macroparticles per cell
in two- and three-dimensional configuration space, respectively. The field solver is set to fei
of type Xu to avoid numerical Cherenkov (Xu et al., 2020). The methods used to mitigate
numerical instabilities for the filamentation studies are addressed in Appendix A.2.

The evolution of a filamented short and dense electron-positron beam after propagating
600/ωp in plasma is shown in Figure 3.4a). The dominantly transverse modulation of the
beam grows both along the length of the beam and the plasma and results in beam fila-
ments with the density compressed by an order of magnitude higher compared to the beam
peak density. The instability saturates as beam particles get magnetically trapped, undergo-
ing betatron oscillations. During the non-linear phase of the instability, oppositely aligned
currents repel from each other while rectified currents merge into larger filaments and gen-
erate a strong perpendicular magnetic field. A perpendicular electric field results from both
the space charge of the beam and a time-varying magnetic field following Faraday’s law
∇ × E = −∂tB. The varying magnetic field results in an electric field enclosing it and
generates a plasma return current oppositely aligned to the beam current (Muggli, 2020).
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Figure 3.4: Beam filamentation of a) a dense and short kpσζ = 1, and b) a dilute and long,
kpσζ = 8, quasineutral beam propagating in plasma. From top to bottom: The beam charge
density, plasma electron density, and electric and magnetic field of a filamented beam after
a propagation time 600/ωp.

The evolution of a dilute beam with identical parameters from Figure 3.4a), but with the
rms length of kpζ = 8 is shown in Figure 3.4b). The transverse modulation contains an
additional longitudinal modulation at the plasma wavenumber kζ = kp due to the plasma
wakefield component in the transverse electric field excited by the space charge of the beam.
After saturation, the beam and its filaments diverge. From theory, the beam modulation
is dominantly driven by OBI (Bret, Firpo, et al., 2004). A detailed discussion of the exact
mechanism and the connection to transverse two-stream instability (TTS) (Lawson, 1977)
is provided in the main Chapter 4.

To quantify the field components, the energy density of the electric or the magnetic
field summed within x2 + y2 < 4σ2

x,y is divided by the initial beam energy, ϵ(E⊥)/ϵb =
(E2

⊥/E
2
0)/[(γb − 1)(2π)3/2nbσζσ

2
r ]. Figure 3.5a) shows the maximum electric and magnetic

field slice energy along the beam length as a function of the propagation distance in plasma.
The growth is exponential during the first betatron timescales and quickly decreases as the
filamentation instability becomes non-linear. The transverse magnetic field is twice as large
as the transverse electric field within the short beam. For the dilute beam, the electric field
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Figure 3.5: The saturation field energy for varying beam densities. a) The growth of the
electric (red) and magnetic (blue) field for a dense (solid) or dilute (dotted) beam. The
beam shape is indicated by the grey line. b) Maximum electric (red) and magnetic (blue)
field energy along the beam length against its rms length at constant beam charge.

dominates the magnetic field by an order of magnitude after a few plasma oscillations, which
maintains its magnitude after the beam due to the excited plasma wave. The growth rate as
a function of the betatron frequency is higher for the beam with a lower number density, al-
though the total beam charge is constant. As will be shown analytically in Section 4.4.1, the
growth for wakefield-driven filamentation is maximum at the tail of the beam and depends
on the integrated beam density, ∼

∫
nb dζ. This indicates that the different filamentation

instabilities drive the high and low-density beams, respectively.

The transition from the beam evolution dominated by the magnetic field for dense beams to
particles driven by the plasma wakefield for low beam densities is investigated by increasing
the beam rms length under constant total beam charge. The smooth transition in field
energy along the beam length of the transverse electric and magnetic field components is
shown in figure Figure 3.5b). The magnetic field energy is only higher for very short rms
lengths, kpσζ < 2, while for 2 ≤ kpσζ ≤ 4 the magnetic and electric field equally contribute to
the evolution of the beam. For higher beam densities, kpσζ > 4, the magnetic field decreases
asymptotically well described by the fit |B⊥| ∼ (σζ)−1.2. The saturated magnitude of the
magnetic field decreases not only with the lower beam current, predicting |B⊥| ∼ σ−1

ζ , but
as the beam diverges more quickly. For a beam length σζ > λp, the wakefield is resonantly
driven to a maximum magnitude depending on the integrated charge density along the beam
length and remains constant for a constant total beam charge.

3.2.1 Benchmark

The parameters have been carefully chosen to be comparable to the work by Shukla, Martins,
et al. (2020). The beam energy in the reference was Eb = 29 GeV (γb = 56750), which is
reduced to γb = 567.5 to considerably save computational resources in full PIC simulations.
The normalised beam emittance is scaled down accordingly by the factor of (γreduced/γb)1/2

to achieve identical Twiss beta by βGaus = γbσr/σpr. Figure 3.6 shows in a) the linear and the
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Figure 3.6: The electric and magnetic field energy with respect to the Lorentz factor (in
the betatron frequency) of the dense beam. The growth of the electric field is shown along
the plasma length in a) logarithmic and b) linear scale summed over the beam length and
c) along the length of the beam at ωβτ = 25. d), e) and f) equivalently show the growth of
the magnetic field energy. The beam centre is located at ζ = 0 The statistical mean (solid),
and the standard deviation (shaded area) over three runs with different particle seed.

non-linear phase of the filamentation instability along the length of b) the plasma and c) the
beam. The growth during the linear and nonlinear regime remains equivalent, considering
the growth scaling with the betatron frequency, including the Lorentz factor. Therefore, the
beam Lorentz factor is set to γb = 567.5 as the baseline for the benchmark between the PIC
methods and the spatial dimensionality.

In addition to reducing the Lorentz factor, beams with reduced mass are often used to lower
the computational overhead of simulations. It should be noted that the two-stream instability
growth scales with ωβ ∼ 1/(γbmb)1/2 along the propagation time while damping scales with
σpr/(γbmb), discussed in Section 4.3. Therefore, when scaling the beam mass, the beam
momentum spread in units of mbc, σpr/(mbc), should be scaled by a factor (mb/mreduced)1/2

to maintain the ratio of the growth and diffusion rates.

The electric and magnetic field energies are compared between the quasistatic three-
dimensional code QV3D and the full PIC code OSIRIS in two- and three-dimensional geom-
etry. The slice energy from two-dimensional simulations is projected to an area integration
by [π/2]

∫
(E2

⊥/E
2
0)|y| dy to compare to three-dimensional simulations. For the dense beam

in Figure 3.7, the exponential growth during the first betatron timescales and the energy at
which the fields saturate in a) and d) are equally reflected by all simulations, although the
initial field energy is lower in Osiris. The locations and momenta of the beam particles are
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Figure 3.9: Positron trajectories of
the dense beam within |ζ| < 0.5σζ and
|x| < 0.3/kp along the propagation in
plasma. The particles are equidistant
at the plasma entrance and the per-
pendicular magnetic field is obtained
at ζ = x = 0.
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equal between the three-dimensional simulations, seeded by an external program, but the
current must be smoothed in the fully electromagnetic simulation (see Appendix A.2). Dur-
ing the non-linear phase in which beam filaments merge, the electric and magnetic fields are
well reflected within the statistical uncertainties along the length of the beam for long prop-
agation times ωβτ < 40. The statistical variation is higher for two-dimensional simulations
due to the lower number of filaments.

For very long propagation beyond 40/ωβ, two-dimensional simulations slightly underestimate
the fields within the beam as merging rectified currents must flow over opposite currents in
plane geometry in contrast to a three-dimensional geometry where rectified current filaments
merge while repelling from opposite current filaments. In two-dimensional geometry and
quasistatic simulations, the electric field is slightly higher behind the beam. At this stage,
the beam filaments merged into one central electron filament undergoing strong betatron
frequencies beyond the scope of this work. For unbounded systems, the work by Takamoto
et al. (2018) showed that the exponential growth is well reflected. For the non-linear regime,
however, the magnetic field remains more stable in three-dimensional simulations and the
electrostatic component is overestimated in two dimensions.

For the dilute beam in Figure 3.8, the fields also agree well during the exponential growth
in the first betatron timescales. The electric field and, thus, the plasma wakefield is compa-
rable between the quasistatic and full PIC simulation. In two-dimensional simulations, the
wakefield excited by the beam charge density is overestimated for ωβτ > 10, since the beam
divergence affects the beam density less in two-dimensional geometry, ∼ Q/σr, compared
to three-dimensional geometry, ∼ Q/σ2

r . The magnetic field shows a negligible deviation
between the PIC methods at the beam centre.

Quasistatic simulations, as well as fully electromagnetic simulations in two-dimensional ge-
ometry, resolve not only the exponential growth of the filamentation instabilities but also
the non-linear phase governed by magnetically trapped beam particles and filament merging
in CFI, or the divergence of beam filaments in OBI, discussed in Section 4.5.1, for very long
propagation distances beyond the scope of this work, usually within ωβτ < 6. The mag-
netic trapping of beam particles is shown in Figure 3.9 for the quasistatic simulation. For a
sufficiently high magnetic field, |B⊥| ≳ |E⊥|, the trajectories of the beam particles oscillate
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within the enclosing field lines. Beam particles with high transverse momentum may jump
between areas of magnetic trapping.

Quasistatic PIC simulations for relativistic beams in cold plasma significantly reduce com-
putational resources and avoid issues like numerical Cherenkov radiation and grid heating,
which may occur in fully electromagnetic simulations. Benchmarks confirm that these sim-
ulations accurately track current-driven and wakefield-driven filamentation instabilities for
relevant beam and plasma parameters. This enables the investigation of filamentation insta-
bilities in fully three-dimensional geometry over the required time scale. Since quasistatic
simulations are limited to the static electromagnetic field, comparisons to two-dimensional
fully-electromagnetic simulations remain a vital tool.
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4
Laboratory-Relevant Filamentation

Instabilities

Chapter Summary
• Dilute beams propagating in unmagnetised plasma are prone to wakefield-driven

instabilities; a (longitudinal) two-stream and transverse two-stream. Transverse
two-stream results in beam filamentation comparable to CFI, but with a longitudi-
nal modulation at the plasma wavenumber. A finite temperature causes fine-scale
perturbations to spread out and reduces the growth for high wavenumbers.

• An analytic model for wakefield-driven filamentation is derived, agreeing with pre-
vious research, and extended to warm beams with arbitrary profiles in three-
dimensional geometry. The resulting dominant and cut-off wavenumber depend
on the beam slice and propagation distance. This analytic model is in remarkable
agreement with simulations and experimental observations.

• Beyond the applicability of the model, the field growth saturates when the beam or
plasma is fully modulated, and the beam filaments diverge. For a dense beam with
a smooth density profile, the two-stream filamentation at the beam head excites
a wakefield, which sets the initial condition for current-driven filamentation at the
beam centre.

Next to the electromagnetic CFI driven by the plasma return current (Fried, 1959; Weibel,
1959), a relativistic beam can excite an electrostatic plasma wakefield (see Section 2.3), which
leads to the two-stream instabilities (Bludman et al., 1960; Fǎınberg et al., 1969), driven
by the electrostatic plasma response (see Section 2.3). The beam excites a wakefield, which
leads to the TSI and the TTS (Lawson, 1977). The combined influence of TSI and TTS is
generally referred to as oblique instability (OBI) (Bludman et al., 1960; Bret, Firpo, et al.,
2004; Califano et al., 1998; Chang et al., 2016; San Miguel Claveria et al., 2022; Shukla,
Vieira, et al., 2018; Thode, 1976; Watson et al., 1960) and allows dilute beams to undergo a
similar filamentary behaviour as CFI.

Previous theoretical work on CFI for cold, spatially uniform streams determined that the
temporal growth rate increases with transverse wavenumber (R. C. Davidson et al., 1972).
These studies were extended to warm streams, in which diffusion acts to suppress small-scale
filamentation, and a dominant wavenumber (Jia et al., 2013; Silva, R. A. Fonseca, Tonge,
Mori, et al., 2002) with a growth rate given in Equation (2.17) was calculated. For cold
longitudinally bounded streams, CFI was found to exhibit spatiotemporal growth only at
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the beam head within the length of ke|ζ| ≲ [4η∞ω
2
β/(γ2

bωp)]τ . The respective spatiotemporal
number of exponentiation within this length (Pathak et al., 2015) or the temporal growth
rate beyond this length (R. C. Davidson et al., 1972) are

Ncfi(τ, ζ) =
√

2η∞keζ(τ/ωp)ωβ, νcfi =
√

2η∞ωβ, (4.1)

with η∞ = k2
y/(k2

p + k2
y) the relativistic limit for the spectral two-stream factor given in

Equation (2.21).

For two-stream instabilities in cold uniform streams, the growth rate also increases with
transverse wavenumber (Bret, Firpo, et al., 2004; Watson et al., 1960). It was predicted
that diffusion would suppress the growth of small-scale filaments (Bludman et al., 1960),
which was later studied numerically. A threshold above which the system is stable was found
analytically (Bret, Gremillet, and Bénisti, 2010). For a localised disturbance in cold bounded
systems, TSI (Bers, 1983; Jones et al., 1983) and TTS (San Miguel Claveria et al., 2022)
demonstrate a pulse-shaped spatiotemporal growth. However, the effect of a finite beam
emittance on the spatiotemporal growth of the filamentation instability has not previously
been treated analytically.

This chapter introduces a fully three-dimensional, spatiotemporal theory describing the fil-
amentation of a warm beam due to wakefield-driven two-stream instabilities. This allows
limits to be set on the beam temperature for laboratory astrophysics seeking to investigate
these instabilities and PWFA experiments seeking to avoid them. The structure is as fol-
lows: Wakefield-driven filamentation is introduced in Section 4.1. In Section 4.2, an analytic
expression for the growth of wakefield-driven filamentation is derived for a cold beam with
arbitrary profile. The theory is extended to warm beams in Section 4.3, which considers the
effect of diffusion. This allows the exact value for the dominant wavenumber to be calcu-
lated, as well as the cut-off above which no filamentation occurs. The analytic predictions are
throughout compared to two and three-dimensional PIC simulations, which show excellent
agreement. In Section 4.4, the experimentally observed suppression of beam filamentation is
discussed in good agreement with the introduced theory. Considerations beyond the appli-
cability of this model, including the saturation and divergence of the wakefield-driven beam
filaments and the transition to a current-driven filamentation, are shown in Section 4.5.

The combined analytic and numerical investigation on wakefield-driven filamentation and a
brief comparison to published experimental results has been accepted by Physical Review E
(Walter et al., 2024). The experimental results on filamentation at AWAKE are published
in Physical Review E (Verra, Amoedo, et al., 2024).

4.1 Wakefield-Driven Filamentation

The regimes for the two filamentation instabilities are defined by the current imbalance in
the system. The beam and plasma currents must be comparable for CFI to dominate. For
a relativistic beam propagating in stationary plasma, relevant in the astrophysical context,
this requires a dense beam, nb ≳ np (Bret, Gremillet, and Dieckmann, 2010). For a dilute
beam (nb ≪ np), the plasma current is negligible, and plasma electrons are mainly deflected
by the beam charge. The resulting wakefield leads to TSI and TTS (Bret, Gremillet, and
Dieckmann, 2010; Katsouleas et al., 1987; Keinigs and Jones, 1987).
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Figure 4.1: Filamentation of a dilute quasineutral beam due to wakefields. Transverse and
longitudinal slices of the a) positron and b) electron density of the beam after propagating
ωβτ = 2.6 in an initially uniform plasma. c) The electron density of the corresponding
plasma response. The beam propagates to the right, with its head at ζ = 0. The transverse
and longitudinal slices are taken at kpζ = −18π and kpx = 0, respectively.

Plasma wakefield experiments use a charged beam, which is usually dense and short, kpσζ <
1, with σζ the rms length (Albert et al., 2021; Clayton et al., 2016). A dilute and long
beam, kpσζ ≫ 1, is subject to TTS. For narrow beams, kpσr ≲ 1, TTS can take the form of
the axisymmetric SMI modulating the beam radius (see Section 2.4.1), or the antisymmetric
hosing instability displacing the beam centroid (Moreira et al., 2023). Fully modulated,
the beam can resonantly drive a quasi-linear wake with an accelerating field comparable
to that driven by a short, dense beam (Gschwendtner, K. Lotov, et al., 2022). Wakefield
experiments do not utilise wide beams as they may undergo filamentation due to transverse
perturbations (Verra, Amoedo, et al., 2024) and degrade the wakefield. Experiments that
investigate filamentation instabilities may operate with quasineutral beams to suppress SMI
(Arrowsmith et al., 2021; Shukla, Vieira, et al., 2018).

This filamentation of a quasineutral, dilute beam and the corresponding plasma response is
shown in Figure 4.1 after propagating 2.6/ωβ in plasma. Both the beam and the plasma
response exhibit roughly equidistant filaments, where positrons and electrons are oppositely
aligned due to the plasma wakefield that drives the instability. The plasma electrons align
with the beam positrons driven by the beam charge. A periodic modulation occurs along
the beam, arising due to the oscillation of the wakefield.

The simulation in Figure 4.1 was carried out with the quasistatic PIC method. The rela-
tivistic, γb = 22.4 (ub/c = 0.999), warm electron-positron beam has a longitudinally flat-top
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profile with extent −20π < kpζ < 0, along each transverse axis a Gaussian profile with rms
width of σr = σx = σy = 3/kp, and a momentum spread of σpr = σpx = σpy = 0.05mbc.
The peak density of the beam positrons and electrons is nb/2 = 0.02np, i.e. nb is the total
peak density of the beam. The grid size is kp∆(x, y, ζ) = (0.01, 0.01, 0.1), the propagation
step is kp∆z = 2. The beam species and plasma electrons are represented by 16 and 4
macroparticles per cell, and the plasma ions are stationary. Adding more macroparticles
per cell for the cold plasma species has no observable effect. For the beam, the instability
growth remains unaffected, although the initial wakefield decreases.

From theory, the filamentation growth rate increases with transverse wavenumber for a cold
beam. In simulations, the finite spatial resolution limits the maximum wave number that
can be modelled. This leads to a dominant wavenumber determined by the cell size. For
the finite emittance considered in Figure 4.1, diffusion results in a physical reduction of
the growth rate at higher wavenumbers, yielding a dominant wavenumber well within the
resolution limit of the simulation. In the next section, an analytic model is developed for
wakefield-driven two-stream instabilities.

4.2 Filamentation of Cold Beams

4.2.1 Wakefield Induced by a Modulated beam

The charge density of the beam drives an electrostatic plasma response, expressed as the
longitudinal Ez and transverse W⊥ wakefield (Bret, Firpo, et al., 2004; Katsouleas et al.,
1987; Keinigs and Jones, 1987; Lawson, 1977). The plasma is quasineutral, i.e. the plasma
ion density equals the initial plasma electron density npi = npe = np and the plasma ions are
stationary, mi → ∞. Given a dilute beam propagating in the +z direction, the associated
fields are Ez, W⊥ = E⊥ + ubẑ × B⊥, with ẑ the unit vector along z. Only the oscillatory
plasma current jp is considered. The corresponding wave equations of the potential Φ and
vector field A in the Lorentz gauge are

(∇2 − ∂2
t /c

2)Φ = −(ρb + δρp)/ε0

(∇2 − ∂2
t /c

2)A = −µ0(jb + jp),
(4.2)

with δρp the charge density of the plasma perturbation and jb = ρbubẑ the beam current
density. The electric field can be obtained by E = −[∇Φ + ∂tA] and the magnetic field by
B = ∇ × A to the wave equation expressed in Equation (2.28). For a cold unmagnetised
plasma, Ohm’s law (me/e) dup/ dt+jp×B/np−∇Pp/np = E +up×B reduces to µ0∂tjp =
−k2

pE. The magnetic field is found from Faraday’s law, ∇ × E = −∂tB. The wave equation
of the electromagnetic fields are then expressed by

(∇2 − ∂2
t /c

2 − k2
p)E = µ0∂tjb + ∇(ρb + δρp)/ε0

(∇2 − ∂2
t /c

2 − k2
p)B = −µ0∇ × jb.

(4.3)

A link between the plasma perturbation to the beam charge density is expressed by Equa-
tion (2.44), me∂

2
t δρp = −e2∇E = −e2(ρb + δρp)/ε0.

Consistent with measurements in the experiments taken at a given position, the beam frame
(see Equation (2.47)) is utilised with ζ = z − ubt, τ = z/ub. For relativistic beams, the
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quasistatic approximation (see Section 2.5.2) results in (∂2
z −∂2

t /c
2)δρp → (1−u2

b/c
2)∂ζδρp =

∂2
ζ δρp/γ

2
b . The full set of differential equations is reformulated to

(∇2
⊥ − ∂2

ζ/γ
2
b − k2

p)Ez = ∂ζ(ρb/γ2
b + δρp)/ε0

(∇2
⊥ − ∂2

ζ/γ
2
b − k2

p)E⊥ = ∇⊥(ρb + δρp)/ε0

(∇2
⊥ − ∂2

ζ/γ
2
b − k2

p)B⊥ = µ0ub∇⊥ρb

(4.4)

with ∇⊥ = (∂x, ∂y) and ∇⊥ = (−∂y, ∂x).

Defining the three-dimensional Fourier transform

ρ̂b = Fζxy{ρb}(kζ , kx, ky) =
∫∫∫ ∞

−∞
dζ dx dyρb exp (−ikζζ − ikxx− ikyy) , (4.5)

the spectral form of the plasma fluid in the beam frame is given by δρ̂p = −k2
e ρ̂b/(k2

ζ + k2
e),

with ke = ckp/ub. The field components transform to

Êz = − i

ε0
√

2π
kζ(k2

ζ/γ
2
b + k2

p)Fζxy{ρb}
(k2
ζ − k2

e)(k2
ζ/γ

2
b + k2

p + k2
r)

Ê⊥ = 1
ε0

√
2π

k2
ζFζxy{∇⊥ρb}

(k2
ζ − k2

e)(k2
ζ/γ

2
b + k2

p + k2
r)

B̂⊥ = ub/c
2

ε0
√

2π
Fζxy{∇⊥ρb}

k2
ζ/γ

2
b + k2

p + k2
r

,

(4.6)

with kr = (k2
x+k2

y)1/2 the transverse wavenumber in three-dimensional configuration space.

For an ideal cold beam, there is no charge perturbation exciting a wake-
field. Therefore, a charge density with a transverse modulation, ρb0 =
qbδnb0f(ζ)g̃(x, y) cos (kxx+ φx) cos (kyy + φy), is applied to a quasineutral beam. Here,
f(ζ) and g(x, y) are the longitudinal and transverse beam profile, f̃(ζ) and g̃(x, y) are the
slowly varying envelope, |∂y g̃| ≪ ky|g̃|, and kx,y and φx,y are the modulation wavenum-
bers and phases, respectively. The positron and electron density may be given by ne+,e− =
0.5[nbf̃(ζ)g̃(x, y) ± δnbf(ζ)g̃(x, y) cos (kxx) cos (kyy)].

In order to include the self-fields of the beam, it is crucial to evaluate the path integrals in
ζ first before addressing the transverse directions. This avoids the branches of the purely
electromagnetic mode at kζ = ±iγkp for finite γ, sketched in Figure 4.2. A small plasma
dissipation ϵ > 0 slightly shifts the singularities to ±ke. The ideal plasma case is recovered
by ϵ → 0 after the transform inversion (Keinigs and Jones, 1987). The inverse Fourier
transforms for ζ < 0 are

Êz = qbδnb
ε0

Fxy{g(x, y)}
k2
e + k2

r

∫ 0

−∞
dζ ′f(ζ ′)

[
k2
e cos ke(ζ − ζ ′) + k2

r exp
(
−γb

√
k2
p + k2

r |ζ − ζ ′|
)]

Ê⊥ = qbδnb
ε0

Fxy{∇⊥g(x, y)}
k2
e + k2

r

×
∫ 0

−∞
dζ ′f(ζ ′)

[
ke sin ke(ζ − ζ ′) − γb

√
k2
p + k2

r exp
(
−γb

√
k2
p + k2

r |ζ − ζ ′|
)]

B̂⊥ = γbub
c2

qbδnb
ε0

Fxy{∇⊥g(x, y)}√
k2
p + k2

r

∫ 0

−∞
dζ ′f(ζ ′) exp

(
−γb

√
k2
p + k2

r |ζ − ζ ′|
)
.

(4.7)
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Figure 4.2: Integration path for the inverse Fourier trans-
form in ζ. Adapted from Keinigs and Jones (1987).
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The slowly varying transverse envelope g̃ vanishes at the boundaries. Neglecting the small
spectral broadening due to g̃(x, y), the transverse inverse Fourier transform of the transverse
electric field gives

E⊥ ∼ F−1
xy

{Fxy {∇⊥g(x,y)}
k2
e + k2

r

}
≈ ∇⊥g(x, y)

k2
e + k2

r

(4.8)

and of the longitudinal electric field gives Ez ∼ −[ke/(k2
e + k2

r)]g(x, y). The second electro-
magnetic term in the integral can be split into the contribution of the local beam slice and
the inductive, purely decaying fields due to a change in beam shape∫ 0

ζ
dζ ′f(ζ ′) exp

(
−γb

√
k2
p + k2

r |ζ − ζ ′|
)

= f(ζ)
γb
√
k2
p + k2

r

−
∫ 0

ζ
dζ ′∂ζ′f(ζ ′)

exp
(
−γb

√
k2
p + k2

r |ζ − ζ ′|
)

γb
√
k2
p + k2

r

.

(4.9)

The latter can be safely ignored if the plasma is non-diffusive (Keinigs and Jones, 1987).

In the linear regime, δnb ≪ nb and |Ez|,|W⊥| ≪ E0, and without any limitation on the
longitudinal shape, the fields can be expressed by

Ez = qbδnb
ε0

keg(x, y)
k2
e + k2

r

∫ 0

ζ
dζ ′f(ζ ′)ke cos ke(ζ − ζ ′)

E⊥ = qbδnb
ε0

∇⊥g(x, y)
k2
e + k2

r

[∫ 0

ζ
dζ ′f(ζ ′)ke sin ke(ζ − ζ ′) − f(ζ)

]
B⊥ = −ub

c2
qbδnb
ε0

∇⊥g(x, y)
k2
p + k2

r

f(ζ).

(4.10)

The integral terms correspond to the wakefield, where each beam slice f(ζ) drives a plasma
response with the amplitude depending on the transverse beam shape. The magnetic field
and the second summand in the transverse electric field from the charge-repulsion are the
self-fields of the beam. For relativistic beams, ke → kp, the self-fields can be neglected since
Wf ∼ f(ζ)(1 − u2

b) = f(ζ)/γ2
b → 0. Behind the beam, the self-fields disappear while the

envelope of the wakefield remains constant. In a vacuum, the wakefield vanishes such that
relativistic beam particles move ballistically.

Throughout the analytic treatment, comparisons are initially made to simulations in two-
dimensional geometry, consistent with previous analytic and numerical studies. In this
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geometry, relativistic beam particles effectively have one degree of freedom, and kr = ky.
The two-dimensional simulations are carried out with the fully electromagnetic PIC method.
The grid size of the simulation is kp∆(y, z) = (0.02, 0.06), and the time step is set to ωp∆t =
0.0172. The beam and plasma species are each represented by 384 and 192 macroparticles
per cell. The number of particles per cell is significantly higher than that used in the three-
dimensional simulations due to the relative decrease in the total number of cells in the
two-dimensional simulations. The boundary conditions are open for the macroparticles and
electromagnetic fields. The beam is initialised in a vacuum and propagates into plasma.
The beam parameters are equivalent to Figure 4.1, but with an initially cold beam. The
perturbation in the charge density of the beam has an amplitude of eδnb = 0.01 enp and a
wavenumber of ky/kp = π.

Figure 4.3a) shows the initial wakefield driven by the transversely modulated beam when each
beam slice just entered the plasma, τ = 0. The longitudinal and transverse wakefield exhibit
a longitudinal modulation at kζ = ke and a transverse modulation at the seeded wavenumber
ky = πkp. The transverse wakefield is stronger than the longitudinal component in agreement
with the theoretical ratio, W̃⊥ = Ẽzkrub/(kpc), from Equation (4.10). For comparison, the
wakefield driven by a narrow single-species beam is shown in Figure 4.3b). Unlike the wide
beam, the wakefield extends beyond the narrow beam. However, in both cases, the transverse
wakefield periodically alternates between focussing and defocussing along the beam, which
gives rise to TTS for a transversely modulated beam or SMI for a narrow single-species
beam.
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Figure 4.3: Beam-driven wakefield immediately after entering the plasma, τ = 0. The
beam charge density and corresponding longitudinal and transverse wakefield are shown for
a) the wide quasineutral beam with transverse modulation and b) a narrow single-species
beam of identical amplitude δnb and width ky.
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4.2.2 Growth of Two-Stream Filamentation

Beam particles are accelerated or decelerated by the longitudinal wakefield and focussed
or defocussed by transverse wakefield. The evolution of a cold beam is described by the
linearised fluid equation (see 2.44)

∂2
τ δnb = (∂t + ub∂z)2 δnb =

2ω2
β

qb/ε0

(
∂zEz
γ2
b

+ ∇⊥ · W⊥

)
. (4.11)

This wakefield reinforces the density modulation causing the wakefield to grow along the
beam length, which leads to an instability. By applying the spatial derivative along ζ to
Equation (4.11), the spatiotemporal growth from the integral terms in Ez and E⊥ can
be analysed. For early-times and long beams, ωβτ ≪ keζ, the beam perturbation can be
described by δnbg(x,y)f̃(ζ)[exp (ikeζ)/2+c.c.] (Schroeder et al., 2011), considering the longi-
tudinal wavenumber of the wakefields at kζ = ke. The integral along ζ from Equation (4.10)
reduces to

∂ζW⊥ ∼ ∂ζ

∫ 0

ζ
f̃(ζ ′)exp (ikeζ ′)

2 sin ke(ζ − ζ ′) ≈ i

2 f̃(ζ) exp (ikeζ). (4.12)

For a flat-top beam with the head at ζ = 0, f̃(ζ) = Θ(−ζ), the initial perturbation is
given by δnb(τ = 0, ζ) = δnb0Θ(−ζ). The self-fields in Equation (4.10), which only act
within a beam slice, Ex,y ∼ f(ζ) and Bx,y ∼ ubf(ζ), are negligible compared to the growing
wakefield term. For a slowly varying transverse envelope, the transverse gradient simplifies
to ∇2

⊥g(x, y) ≈ −k2
rg(x, y) and the perturbation amplitude follows[

∂ζ∂
2
τ + iηukeω

2
β g̃(x, y)

]
δnb(τ,ζ) = 0 (4.13)

ηu =
(c2 − u2

b)k2
p + u2

bk
2
r

c2k2
p + u2

bk
2
r

, (4.14)

with ηu the spectral two-stream factor from Equation (2.21), but in three dimensional ge-
ometry. The spectral factor includes the dependency on the beam velocity, where the first
and second term represent the respective contribution of the longitudinal and transverse
wakefield component and, therefore, of TSI and TTS.

The Green’s function can be solved by a double Laplace transform

Lζτ{δnb}(kζ ,kτ ) =
∫∫ ∞

−∞
dτ dζδnb exp (−kζζ − kττ)

= kζLζ {(kτ + ∂τ )δnb(τ = 0,ζ)} + Lτ
{
∂2
τ δnb(τ,ζ = 0)

}
kζk2

τ + iηukeω2
β g̃(x,y) .

(4.15)

With a sharp plasma boundary at τ = 0 in accordance to experiments and simulations, the
initial condition, δnb(τ, ζ = 0) = δnb0, results in ∂τδnb(τ = 0, ζ) = ∂2

τ δnb(τ, ζ = 0) = 0 and
Lζ{δnb(τ = 0, ζ)} = δnb0/kζ . The transform in ζ can be readily solved by the Bromwich
contour integral shown in Figure 4.4, using the Residue with

L−1
ζ {δn̄b} = 1

2πi lim
T→∞

∫ α+iT

α−iT
dkζekζζδn̄b =

∑
ζs

Res
{
ekζζδn̄b

}
(4.16)
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Figure 4.4: Integration path for the inverse Laplace trans-
form in ζ̃.
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τ , and gives

δn̄b = [δnb0/kτ ]Θ(ζ) exp
[
iηug̃(x, y)ω2

βkeζ/k
2
τ

]
. (4.17)

Due to the singularity at kτ = 0, the exponential may be replaced by its series expres-
sion exp[iηug̃(x,y)ω2

βkeζ/k
2
τ ] = ∑

n[iηug̃(x,y)ω2
βkeζ/k

2
τ ]n/n! to calculate the inverse Laplace

transform in τ . Using the relation L−1{k−2n−1
τ } = τ2n/(2n)! (Abramowitz and Stegun,

1964) gives the solution to Equation (4.15) as a complex power series

δnb,ts = δnb0

∞∑
l=0

[
iηug̃(x,y)ke|ζ|ω2

βτ
2
]l

l!(2l)! . (4.18)

The solution contains a growing imaginary and oscillatory real term, which can be obtained
by the absolute, Γts = |δnb,ts/δnb0|, and the phase ψ(δnb,ts).

The asymptotic expansion, τ → ∞, to Equation (4.18) can be obtained by utilising the saddle
point method (Oughstun, 2009) to Equation (4.17). The inverse Laplace transform in τ can
be approximated by

∫
dkτ b(kτ ) exp[iτh(kτ )] ≈ [2π/(τ |∂2

kτ
h(k̂τ )|)]1/2b(k̂τ ) exp [τh(k̂τ )], with

b(kτ ) = k−1
τ , h(kτ ) = ηug̃ω

2
βkeζ/k

2
τ , and k̂τ = [2ηug̃ω2

βζ/τ ]1/3 exp (−iπ/3) the dominant
saddle-point of h(kτ ). This gives the asymptotic solution to Equation (4.15)

δnb,ts ≈ δnb0√
4π

exp{(3/22/3)[iηug̃(x, y)ke|ζ|ω2
βτ

2]1/3}√
(3/22/3)[iηug̃(x, y)ke|ζ|ω2

βτ
2]1/3

. (4.19)
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Using Euler’s identity, i1/3 =
√

3/2 + i/2, the asymptotic growth of the beam perturbation
due to the combined two-stream instabilities is

|δnb,ts| ≈ δnb0√
4π

expN∞√
N∞

, N∞ = 33/2

25/3

[
ηug̃(x, y)ke|ζ|ω2

βτ
2
]1/3

. (4.20)

Figure 4.5 compares the asymptotic solution to including the first N terms for the semi-
analytic solution of Equation (4.18),which shows good agreement for ωβτ > 0.1, N ≥ 10. In
the non-relativistic and ultra-relativistic limit for streams, the asymptotic form simplifies to
previous works (Jones et al., 1983; San Miguel Claveria et al., 2022). The transition from
spatiotemporal to purely temporal growth of the two-stream mode (San Miguel Claveria
et al., 2022), in which the instability saturates in ζ yet continues to grow along τ , becomes
relevant if the plasma density gradually increases, and requires an extension of the model
presented here. The ratio between the filamentation of beams from Equation (4.20) to
unbounded systems from Equation (2.20) is N∞/(νobiτ) = (3/22/3)[ke|ζ|/(ωpτ)]1/3, such
that transverse perturbations in beams grow faster relative to unbounded streams for ke|ζ| >
[4/27]ωpτ .

The oscillatory term yields a phase ψ of the growing electrostatic wave, which is in the
asymptotic limit expressed by

ψ = π

4 − ke|ζ| − 3
25/3 (ηug̃(x,y)ke|ζ|ω2

βτ
2)1/3.

The corresponding phase velocity, uψ = −∂tψ/∂zψ, reduces relative to the beam velocity

uψ = ub

1 − 1
22/3

(
ηug̃(x,y)

ω2
β

ω2
p

|ζ|
cτ

)1/3 = ub

[
1 − 2

33/2
N∞
ωpτ

]
. (4.21)

In addition to the filamentation instability, a single-species beam is subject to the axisym-
metric SMI for which the spectral factor ηu is substituted by Bessel functions in the analytic
expressions for the growth and phase velocity (Pukhov et al., 2011; Schroeder et al., 2011).
The ratio between the analytic growth expressions for a cold beam in Equation (4.20) and
(2.30) is N∞(ub → c)/Nsmi = k

2/3
r /[I2(kpσr)K2(kpσr)(k2

p+k2
r)]1/3. For a single-species beam,

the growth rate of a transverse modulation within the beam exceeds the rate at which the
transverse envelope changes for π/kr ≲ σr. Although a quasineutral bunch is not subject
to SMI, it requires the consideration of the filamentation instability for two species. When
the mass of the bunch particles is equal, the introduced theory can be readily applied by
defining nb as the total bunch density summed over all bunch species.

The resulting growth of the filamentation instability from the initial plasma response in
Figure 4.3a) is illustrated in Figure 4.6 at a propagation of 2.6/ωβ in plasma. The mod-
ulation amplitude of the beam charge density in Figure 4.6a) increases along the beam
length, and contains a longitudinal modulation at kζ = ke due to the electrostatic plasma
response. The transverse wakefield from Figure 4.6b) and c) alternates between focusing
and defocusing, both transversely and along the beam, resulting in alternating positron and
electron filaments. The magnetic field in Figure 4.6c) is weaker than the electric field by an
order of magnitude and is predominantly due to the local beam current. For a relativistic
beam, Coulomb repulsion is compensated by the magnetic field, so the beam evolution is
determined entirely by the plasma wakefield.
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Figure 4.6: The evolution of a modulated beam propagating in plasma. The a) beam charge
density, b) electric and c) magnetic field of a filamented beam with a transverse modulation,
ky/kp = π, at ωβτ = 2.6. d) The transversely averaged electric field along the plasma length
with the theoretical phase shift superimposed. e) The envelope growth of the electric field
Ẽy, along the length of the beam ζ at the propagation times ωβτ = {0.8,1.6,2.6}, showing the
simulation and theoretical values by solid and dotted lines, respectively. The black dotted
line indicates the seed of the electric field.

The electric field (taken as the average over the range 0 < kyy < π) in Figure 4.6d) shows
the growth along the beam length as the beam propagates in plasma. The modulation
shifts backwards, illustrating that the phase velocity is lower than the beam velocity. The
superimposed lines represent the integral of the phase velocity from Equation (4.21) over
the length of the plasma and agree well with the phase of the wave.

Figure 4.6e) and Figure 4.7a) show the envelope growth of the electric field (averaged
over the range −π < kyy < π) along the beam and the plasma length, respectively.
The envelope of the plasma wakefield is calculated as the mean of the absolute peak
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Figure 4.7: The growth along the propagation in plasma and the transverse beam profile.
a) Simulated and theoretical envelope growth of the electric field along the propagation
τ at equidistant beam slices kpζ = {−6π,−12π,−18π}. b) beam profile from simulation,
obtained by fitting the observed growth to Equation (4.18), compared to the initial beam
shape.

and trough values along the beam length, determined using SciPy’s peak-finding algo-
rithm. The seed value agrees well with the analytic expression for the Fourier spectrum
Êy0 = F⊥{Ey0} = [eδnb0/ε0]ky/(k2

p +k2
y), obtained by solving Equation (4.10) for the initial

beam profile. The growth of the electric field is compared with the semi-analytic solution
to Equation (4.18), including the first ten terms, and shows excellent agreement along the
beam up to a propagation time in plasma of ∼ 2/ωβ. For τ > 2/ωβ, the field growth begins
to decrease relative to the analytic predictions (Figure 4.6d,f) while the phase velocity in-
creases (Figure 4.6e). The field growth for ωβτ > 2 in Figure 4.7a) is lower than the theory.
This saturation occurs when the beam is fully modulated, ρb > qbnb, with the electron and
positron filaments fully separating as seen in Figure 4.6a) for kpζ < −10π.

To consider a transverse profile on the beam, Equation (4.18) is fitted to the simulation data
along the plasma length at kpζ = −12π with g̃(y) as a free parameter. The fit coefficient
agrees well with the Gaussian profile of the beam in Figure 4.7b). In contrast to a longitudinal
extent resulting in an increase of the growth along the beam, the growth rate and seed
level correlate with the transverse envelope g̃(y). The growth rate at a given transverse
coordinate can be treated as a stream with the local beam density. The curved phase fronts
in the beam modulation are due to the dependency of the phase velocity on the transverse
envelope, g̃(y)1/3, in Equation (4.21).

The fields from fully-electromagnetic PIC simulations are in the lab frame as a snapshot in
time and require the transformation into the beam frame by τ = (z+ζ)/ub to be comparable
to experimental observations. The observed evolution of the beam filamentation changes in
the lab frame, which is shown for the electric field from Figure 4.6 in Figure 4.8. While
the electric field grows along the full length of the beam in the beam frame, shown in
Figure 4.8a), the electric field decreases at a given length along the beam in the lab frame



4.2 Filamentation of Cold Beams 57

3
0
3

k p
y

3
0
3

k p
y

3
0
3

k p
y

60 50 40 30 20 10 0
kp

0

75

150

pt

p = 0

Ey, max

0.2

0

0.2

E y
/E

0

0.2

0

0.2

E y
/E

0

0.2

0

0.2

E y
/E

0

0.2

0

0.2

E y
/E

0

0.2

0

0.2

E y
/E

0

0.2

0

0.2

E y
/E

0

0.2
0.02
0.002

0
0.002
0.02
0.2

E y
/E

0

0.2
0.02
0.002

0
0.002
0.02
0.2

E y
/E

0

Figure 4.8: Electric field growth in the beam and lab frame. a) A snapshot of the transverse
electric field is shown in the beam frame at ωpτ = 70, and in the lab frame at b) ωpt = 100
and c) ωpt = 130. Vertical lines with the same linestyle show the beam slice of identical
propagation time in plasma. d) The transversely averaged electric field from Figure 4.6d)
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Figure 4.9: The enve-
lope of the electric field in
the lab frame at different
times. The sharp plasma
entrance is located at z =
0.
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since each beam slice propagated different times within the plasma, shown in Figure 4.8b)
and c). The evolution of the electric field along the length of the beam and plasma from
Figure 4.6d) is shown for the lab frame in Figure 4.8d). Further along the beam length, the
electric field grows later, t > −ζ/ub.

Figure 4.9 shows the envelope growth of the electric field in the lab frame with a localised
initial disturbance at the beam head, z = 0, and reveals the pulse-shaped profile. The front
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edge of the growing wave moves at the velocity of the beam. The location of the peak
electric field is equivalent to the peak of the growth in Equation (4.20) with respect to the
propagation distance and propagates at a constant velocity, żmax E = (2/3)ub. The growth
is higher in the front vicinity of the pulse in agreement with the analytic prediction from
Equation (4.20), where TTS grows more quickly along the length of the plasma relative to
the length of the beam, N∞ ∼ τ2/3ζ1/3. Taking the transformation into account, the growth
is well reflected by the semi-analytic expression from Equation (4.18). The instability is not
fully convective (Bers, 1983) since no physical effect, such as a finite plasma temperature,
damps the plasma wake in this model, and no spatial point returns to its original unperturbed
state, limt→∞N∞ ̸= 0.

4.2.3 Initial Perturbation Fields

At early propagation times, the evolution of the beam perturbation and the plasma pertur-
bation are defined by the initial seed rather than its initial growth rate. For short times,
the evolution of the perturbation is described by [∂2

τ + iηuω
2
β g̃(x, y)]δnb,S = 0. With the

initial condition δnb,S(τ = 0) = δnb0, the differential equation can be solved by a Fourier
transform, and the purely temporal growth evolves as

δnb,S = δnb0
[
ηug̃(x, y)ω2

βτ
2 + 1

]
. (4.22)

This can be observed in Figure 4.10a) and b) along the length of the plasma and in Fig-
ure 4.10d) and e) along the length of the beam, where the plasma and beam perturbation
are not purely exponential. The same initial field with the bunch perturbation δn̂b as seed
dominates their initial growth. The exponentially growing term for the plasma perturbation
is seeded by the depth of the beam modulation, and the exponential term for the beam
perturbation grows from the wakefield modulating the beam. The exponential terms only
dominate after the beam has propagated for some time. This propagation time is higher at
the beam head as the growth rate of TTS is lower, shown by the growing gap between the
simulation and the semi-analytic term. However, the transverse electric field in Figure 4.10c)
and f), proportional to the difference between plasma and beam charge density

E⊥
E0

= kr
k2
e + k2

r

eδnp − qbδnb
np

, (4.23)

exhibits exponential growth even at early times.

The two-stream filamentation can be analytically described by the evolution of the plasma
perturbation, as outlined in the previous work by (San Miguel Claveria et al., 2022), and can
be extended to incorporate for a finite plasma temperature. Instead, the beam perturbation
is considered here to include the effect of a finite beam emittance on the field growth.

4.3 Filamentation of Warm Beams

The filamentation of the beam depicted in Figure 4.1 results in a dominant wavenumber, a
behaviour the theory for cold beams cannot describe. Diffusion of warm beams causes fine-
scale perturbations within the beam to spread out, reducing the growth rate of the instability.
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Figure 4.10: Non-exponential growth of the initial perturbation fields. The growth of the
spectral a) plasma perturbation, b) beam perturbation and c) electric field shown along the
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The orange dashed lines show the semi-analytic solution to Equation (4.18), and for the
green lines the growth from the initial perturbation in Equation (4.22) is added. The dotted
lines indicate the seed for the two-stream instability.

For non-relativistic temperatures, σpr ≪ γbmbub, the fluid equation in Equation (4.11) can
be extended to include the thermal pressure from the momentum spread to

∂2
τ δnb =

2ω2
β

qb/ε0

(
∂zEz
γ2
b

+ ∇⊥ · W⊥

)
+ ∇2P
γbmb

, (4.24)

where the pressure can be described by P = (2/3)[σ2
pr/(γbmb)]δnb,tsg(x, y) (Bret and

Deutsch, 2006). Diffusion is spatially uniform and can be treated separately from the
spatiotemporal growth of the filamentation instability. In the absence of a wakefield, the
evolution of the beam perturbation is described by[

∂2
τ + 2

3
σ2
pr

m2
bγ

2
b

∇2
⊥

]
δnb,tsg(x, y) = 0. (4.25)
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Figure 4.11: Effect of diffusion on TTS. a) The transverse electric field resulting from a cold
and warm beam of increasing temperature with a transverse perturbation at ky/kp = 2π.
b) The corresponding growth of the spectrum at the seeded wavenumber, Êy = |Êy|(ky),
obtained from simulation and theory at kpζ = −12π.

The exponential damping rate νd of a transverse perturbation is then

δnb = δnb,ts exp (−νdτ), νd =
√

2
3
σprkr
γbmb

. (4.26)

The total growth rate is, therefore, the sum of the growth rate from two-stream instabilities
with the damping rate from diffusion, expressed by

Γtot = |δnb/δnb0| = Γts exp (−νdτ) (4.27)

The effect of temperature can only be considered as purely diffusive for σpr/(mbc) <

[3/210/3(nb/np)1/3γ
1/3
b (1 + γ−2

b )2/3/(1 + γ−1
b )2]1/2 (Bret, Gremillet, and Bénisti, 2010). This

corresponds to σpr/(mbc) < 0.2 for the beam parameters in Figure 4.1.

The influence of diffusion on the filamentation instability is examined for beams with different
temperatures. Since diffusion has a larger effect at higher wavenumbers, the parameters are
as for the beam in Figure 4.6 but with a transverse modulation at ky/kp = 2π. The excited
electric field is shown in Figure 4.11a) at 2.6/ωβ. The field is lower compared to Figure 4.6b)
due to the difference in wavenumber, agreeing with Êy ∼ ky/(k2

p +k2
y) from Equation (4.10).

For the cold beam, the seeded wavenumber continues to dominate along the length of the
beam.

For warm beams, the phase fronts deviate from the case of the cold beam. The field reduces
with temperature close to the beam head since the filamentation instability grows along
the beam while diffusion is spatially uniform. The transverse modulation shifts from the
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the results from simulation and theory, as well as the theoretical growth Γ. The dotted and
dash-dotted lines indicate the theoretical value for the wavevector of maximum electric field
amplitude kEmax , and the cut-off wavenumber kcut.

seeded wavenumber, a change that becomes evident further away from the beam head. The
growth of the field spectrum along the plasma length from simulation and theory, shown
in Figure 4.11b), reveals that damping of the seeded wavenumber increases with the beam
temperature. The observation agrees with the analytic description for the effect of diffusion
on the growth in Equation (4.27).

The development of filaments with wavenumbers lower than the seeded wavenumber indicates
a higher growth rate for larger-scale filaments, such that the whole spectrum of the instability
has to be considered. In order to investigate the variation of the filamentation wavenumber,
the electric fields corresponding to the transverse slice at kpζ = −12π in Figure 4.1 are
shown in Figure 4.12a). The transverse component Ey is predominantly modulated along y,
and Ex is predominantly modulated along x. However, transverse modulations occur with
a broad range of spatial scales and orientations in the transverse plane.

For unseeded beams, the instability grows from fluctuations in the beam due to the finite
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temperature, and the resulting electric field is a superposition of all growing transverse
modulations. The respective contributions of the wavenumbers can be separated by a Fourier
transform. Taking the two-dimensional Fourier transform of the transverse electric field
components and plotting the absolute amplitude, i.e. |Ê⊥| = |Êy| + |Êx|, in Figure 4.12b)
reveals a wide range of growing transverse wavenumbers. The spectrum is azimuthally
symmetric, showing that growing transverse modulations have no preferred orientation in
the transverse plane. The radial symmetry is in agreement with the spectral factor in
Equation (4.18), η1 → k2

r/(k2
p +k2

r), which predicts that the growth rate of the filamentation
instability only depends on the absolute value of the transverse wavevector. Thus, the
filamentation in transverse planes is coupled, and the transverse modulations in each plane
cannot be treated independently.

Averaging the spectrum of the electric field in Figure 4.12b) over all orientations, (kx,ky) →
kr, gives the radial spectrum in Figure 4.12c). The spectrum of the electric field grows with
transverse wavenumbers up to kr/kp ∼ 5 due to the higher growth rate of the filamentation
instability and reduces for higher wavenumbers due to diffusion. The comparison to theory
requires an analytic description of the fields at τ = 0, which act to seed the instability. These
seed fields are found from simulation to scale as |Ê⊥0| ∼ (krσ3

pr)1/2, with the absolute value
determined by the simulation. The wakefield after propagation is the product of the seed
spectrum with the theoretical growth spectrum, |Ê⊥| = |Ê⊥0(kr)|Γtot(kr), which shows an
excellent agreement to the simulation.

The spectrum of the growth exhibits a transverse wavenumber of maximum growth
kΓmax(τ, ζ) and cut-off wavenumber kcut(τ, ζ) above which the instability is suppressed. In the
asymptotic approximation for relativistic beams, the wavenumber of maximum growth can
be found by solving [d/ dkr] exp [N∞(kr) − νd(kr)τ ]/[4πN∞(kr)]1/2 = 0 for kr = kΓmax and
the cut-off wavenumber can be found by solving exp [N∞(kr) − νd(kr)τ ]/[4πN∞(kr)]1/2 = 0
for kr = kcut, which can expressed by

2N∞(kΓmax) = 3(1 + k2
Γmax)νd(kΓmax)τ + 1

N∞(kcut) = νd(kcut)τ + ln
√

4πN∞(kcut).
(4.28)

The wavenumber of maximum growth scales as kΓmax ∼ σ
−1/3
pr and the cut-off wavenum-

ber scales as kcut ∼ σ−1
pr . The cut-off frequency for unbounded systems simplifies to

kcut ∼ (nb/np)1/2ub/σpr, and remains a constant over the beam and plasma length (Bret,
Gremillet, and Bénisti, 2010). Since the two-stream instability is spatiotemporal, while dif-
fusion is spatially uniform, the characteristic wavenumbers for bounded systems depend on
the propagation time in plasma and position within the beam. For the scaling of the seed
field, the wavenumber of maximum spectral value kEmax(τ, ζ) is obtained from

1 + 3k2
Emax + 4N∞(kEmax) = 6(1 + k2

Emax)νd(kEmax)τ. (4.29)

The predicted wavenumber at which the electric field is maximum, kEmax ≈ 4.9, from
Equation (4.29) aligns well with the simulation data. The electric field above the calculated
cut-off wavenumber, kr/kp ≳ 50, is attributed to numerical noise.

The whole scope of the introduced theory is compared to two- and three-dimensional simula-
tions of unseeded warm beams with different temperatures in Figure 4.13. Other parameters
are as for the beam in Figure 4.1. The growth spectrum from simulations is obtained by
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Figure 4.13: The spectral growth dependency on the beam temperature. The theoretical
growth for different beam temperatures (solid lines) at kpζ = −12π and ωβτ = 2.6, compared
to two-dimensional electromagnetic (dashed lines) and three-dimensional quasistatic (dotted
lines) PIC simulations.

taking the ratio between the electric field spectrum after propagation with the scaling of
the seed field. This ratio is fitted to the growth spectrum from theory for two- and three-
dimensional simulations, respectively. Slight variations in the field spectrum occur when the
filamentation instability grows from random fluctuations in the beam. Thus, the growth
spectrum is averaged over five two-dimensional runs and three three-dimensional runs for
each temperature and compared to the analytic expression for the total growth in Equa-
tion (4.27).

Agreement is found for the dependency of the growth spectrum on the temperature for both
two- and three-dimensional simulations. The alignment is better in three dimensions since
the total number of beam particles is an order of magnitude higher. For cold beams, theory
predicts that the growth increases with wavenumber due to the filamentation instability. For
warm beams, the growth increases with wavenumber up to kΓmax and then decreases as the
influence of diffusion becomes stronger. With higher temperatures, the growth is lower for
all wavenumbers and the wavenumber of maximum growth and cut-off wavenumber shift to
lower values in good agreement with the predicted values from evaluating Equation (4.28).
Thus, transverse modulations in the beam occur at larger scales. The distance between
filaments is inversely related to kEmax . However, this means that the in-plane distance is
higher in three-dimensional simulations with kx ∼ ky ∼ kEmax/

√
2, compared to the distance

in two-dimensional simulations with ky ∼ kEmax .

A further agreement on the dependency of the growth spectrum is found along the length
of the beam, shown in Figure 4.14. Not only does the growth increase along the length
of the beam given by the spatiotemporal growth from the two-stream instability, but the
dominant wavenumber kΓmax and cut-off wavenumber kcut shift to larger values in agreement
to evaluating Equation (4.28). This is in contrast to an unbounded system, where the
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Figure 4.14: The spectral growth along the beam. The spectrum from theory for ωβτ = 2.6
and σpr/(mbc) = 0.1 (solid lines), compared to two-dimensional electromagnetic (dashed
lines) and three-dimensional quasistatic (dotted lines) PIC simulations. The theoretical
dominant and cut-off wavenumber are given by dash-dotted lines. The orange line is identical
to the orange line in Figure 4.13.

spectrum of the growth rate remains spatially uniform and constant along the propagation
time in plasma.

The analytic expression accurately predicts the dependency of the growth from the wakefield-
driven filamentation instability and the damping from diffusion. The theory also verifies that
the growth of the filamentation instability can be effectively modelled in two dimensions at
a lower in-plane wavenumber without losing generality.

4.4 Experimental Observation of the Filamentation Instabil-
ity

In initial experimental studies with proton beams from the SPS, introduced in Section 1.2.1,
the filamentation was studied with the Rubidium plasma from the Run 1 setup. The 400 GeV
proton beam with 0.7×1011 to 3×1011 particles has a profile well approximated by a Gaussian
in transverse and longitudinal directions. The beam rms width is variably set between 0.2
to 0.5 mm and rms lengths between 5 to 12 cm at the waist. In this run, the highest plasma
density np = 7.3 × 1014 cm3 and a beam width of σr = 0.46 mm = 2.4/kp at the plasma
entrance was chosen. Due to the expansion volumes, utilised for the rapid density decrease
at the plasma entrance and exit, the OTR screen was placed 3.5 m behind the plasma exit.

However, simulation results for these beam parameters show that visible filaments of the
longitudinally projected beam at the plasma exit (Figure 4.15a) are not evident after the
beam propagated for an additional 3.5 m in vacuum (Figure 4.15b). Filaments with a small
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rms size diverge due to the emittance increase from the filamentation instability, discussed in
Section 4.5.1. Thus, transverse modulations smear out in a vacuum, and only a resemblance
is observable in the longitudinal projection at 3.5 m in good agreement with the experimental
observation shown in Figure 4.15c).

In the DPS studies for the future plans on staged acceleration over hundreds of meters,
another screen was placed at a distance of ∼ 0.3 m behind the plasma exit since no expansion
volumes were necessary. Filled with Xenon gas, the DPS could operate at a higher densities
up to np = 9.38 × 1014 cm3. This gave the unique opportunity at the AWAKE experiment
to study the onset of the filamentation instability by varying the plasma density (Verra,
Amoedo, et al., 2024). The proton beam had a total charge of 43 nC, an rms length of
σζ/c = 163 ps, an rms width of σr = 0.5 mm and a normalised emittance of 2.5 mm mrad.
The plasma length was cτ = 10 m.

The experimental observations of the beam filamentation are shown for the close screen
in Figure 4.16a), obtained from Verra, Amoedo, et al. (2024). At a plasma density of
np = 9.38 × 1014 cm−3 and beam width of σr = 0.5 mm = 2.9/kp, the beam filamentation
is evident and consistently observed throughout all datasets, while the transverse envelope
of the beam remains bi-Gaussian. The distance between the two filaments indicated by the
red line was measured to λf = 0.27 mm. Taking the average distance between all filaments
of this dataset yields λf = 0.33(±0.06) mm.

Next to the longitudinal projected images, the beam is projected along one transverse di-
rection within the slit of the streak camera (see Section 1.2.1). The time-resolved images,
shown in Figure 4.16b), observe the evolution of the instability along the beam length at
the screen 3.5 m behind the plasma exit. Multiple filaments were observed at the beam tail,
confirming the spatiotemporal growth of the instability in the experiment. No longitudinal
modulation in the beam density, predicted from the electrostatic plasma response for TTS,
is observed for all measurements.

In roughly half of the dataset at a plasma density of np = 2.25 × 1014 cm−3 (kpσr = 1.5), the
signature for SMI was observed, given by a single on-axis filament in the longitudinal projec-
tion (Figure 4.17a) and a train of microbunches in the time-resolved image (Figure 4.17b).

Figure 4.15: Beam projection from simulation and experiment after a long proton beam
propagated 10 m in plasma with np = 7×1014 cm−3. The beam from simulation is projected
a) at the plasma exit and b) 3.5 m after the plasma exit. c) The beam projection at the
screen positioned 3.5 m behind the plasma exit in the experiment, provided by L. Verra, P.
Muggli et al. (AWAKE collaboration).
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Figure 4.16: Observation of filamentation at the AWAKE experiment with the plasma
density at np = 9.38 × 1014 cm−3. a) The projection and b) the time-resolved image taken
of the beam at the screens placed 0.3 m and 3.5 m behind the plasma exit, respectively.
The colour scale is saturated to enhance the transverse modulation. Obtained from Verra,
Amoedo, et al. (2024).

Figure 4.17: Threshold of the beam
undergoing TTS or SMI. The measured
a) projection and b) time-resolved im-
age of the self-modulated beam, and
measured c) projected and d) time-
resolved image of a filamented beam
at a plasma density of np = 2.25 ×
1014 cm−3. Obtained from Verra,
Amoedo, et al. (2024).

In the other half, represented by Figure 4.17c) and d), two filaments are observed with no
longitudinal modulation. This suggests the threshold for the plasma density and the corre-
sponding beam width for the filamentation instability to occur. No filaments are observed
at lower plasma densities.

The onset of filamentation by varying the plasma density was further studied in experiments
with electron beams by Allen et al. (2012). The 0.06 GeV electron beam had a total charge
of 1 nC, an rms length of σζ/c = 5 ps, an rms width of σr = 0.065 mm and a normalised
emittance of 6 mm mrad; the plasma length was cτ = 0.02 m. At a plasma density of
np = 12 × 1016 cm−3, beam filamentation was observed with a distance of λf = 0.042 mm,
although the transverse beam envelope observed in the experiment was significantly modified
through its interaction with the plasma and no longer resembles a Gaussian ellipsoid. For
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np = 1.6 × 1016 cm−3, no filamentation was observed. The threshold for the filamentation
instability to occur was found to be σr = 2.2/kp for the beam width, which corresponds to
a plasma density of 3.4 × 1016 cm−3.

4.4.1 Analytic Extension to Laboratory-Relevant Beam Profiles

Laboratory-relevant beams commonly contain a longitudinally varying beam density. The
perturbation growth along the beam length is proportional to the wakefield, which is the
integral over the beam length. With the relation expressed in Equation (4.12), the exponent
given in Equation (4.17) is extended to account for the arbitrary longitudinal beam profile

δn̄b
δnb0

= Θ(ζ)
kτ

∏
ζ

exp
[
iηug̃(x, y)ω2

βkef̃(ζ)|∆ζ|
k2
τ

]
→ Θ(ζ)

kτ
exp

 iηug̃(x,y)ω2
βke|

∫ ζ
ζ0
f̃(ζ ′) dζ ′|

k2
τ

 ,
(4.30)

where ζ0 is the seed position, e.g. due to a ionising laser front. The two-stream growth in
the exact Equation (4.18) and asymptotic limit Equation (4.20) reformulates to

Γts = |δnb,ts|
δnb0

=

∣∣∣∣∣∣∣
∞∑
l=0

[
iηug̃(x, y)ω2

βτ
2ke|

∫ ζ
ζ0
f̃(ζ ′) dζ ′|

]l
l!(2l)!

∣∣∣∣∣∣∣ (4.31)

≈ 1√
4π

expN∞√
N∞

, N∞ = 33/2

25/3

[
ηug̃(x, y)ω2

βτ
2ke

∣∣∣∣∣
∫ ζ

ζ0
f̃(ζ ′) dζ ′

∣∣∣∣∣
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. (4.32)

The evolution of a beam with a smooth longitudinal profile and the corresponding electric
field are shown in Figure 4.18a) and b). Beam parameters are as of Figure 4.6, but with
the longitudinal profile reflecting a Cosine-squared function (see Equation (3.15)) with an
rms length of kpσζ = 30 and the beam head truncated at ζ = 2σζ . The modulation in the
charge density of the beam and the electric field are comparable to the plasma response to
the beam in Figure 4.6, although the magnitude of the electric field is the integrated beam
density along the beam length. Beam slices with lower density are fully modulated at a
lower absolute amplitude of the perturbation, and the electric field from simulation deviates
from theory.

Given by the analytic expression for the growth in Equation (4.31), the growth along the
beam is proportional to the integrated charge density, N∞ ∼ [

∫
nb(ζ ′) dζ ′]1/3. The semi-

analytic solution of Equation (4.31) is in good agreement with the envelope growth of the
electric field from simulation up to a propagation time in plasma of ∼ 3/ωβ, shown in
Figure 4.18c) and d). The seed value agrees well with the analytic expression for the Fourier
spectrum times the value of the longitudinal beam profile at the truncation, Êy0f̃(ζ0).

Before saturation, the introduced theory on wakefield-driven beam modulation applies to an
arbitrary beam envelope, f̃(ζ)g̃(x,y). The analytic expressions lose their validity at a given
transverse point or downstream from a given longitudinal point at which the beam is fully
modulated, ρb ≳ qbnb. Especially for beams with a low-density tail, this quickly limits the
theory to the interval between the beam head and the beam centre.
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Figure 4.18: The evolution of a beam with longitudinal Cosine-squared profile, truncated
at ζ/σζ = 2. The snapshot in a) shows the beam charge density and in b) the electric field.
The envelope growth of the electric field is shown along the length of c) the beam and d)
the plasma.

4.4.2 Application of the Theory to Experimental Results

The experimental observation of beam filamentation enables the comparison to three-
dimensional simulations and the introduced theory with the beam and plasma parameters
chosen accordingly to the run for a deeper understanding of the dominating instability. For
the simulation, the plasma density is set to np = 7 × 1014 cm−3 and for the beam the rms
length is set to kpσζ = 246 and the rms width is set to kpσr = 2.3, which gives a beam
peak density of nb = 0.0026np. With a normalised emittance of ϵn = 2.2µm, the momen-
tum spread equals σpr/(mbc) = 0.005. For the numerical parameters, the grid size is set to
kp∆(x, y, ζ) = (0.02, 0.02, 0.1), and the propagation step is kpz = 400. The beam is repre-
sented by ∼ 12.3×109 macroparticles, where each numerical particle resembles 24.4 physical
particles. Plasma electrons are represented by 9 particles per cell. To avoid a truncated
beam head due to the simulation window, the longitudinal profile of the beam resembles the
Cosine-squared function (see Equation (3.15)).

The filamentation of the long proton beam after a propagation distance of 6.4 m in plasma
is shown in Figure 4.19. The longitudinal and transverse slices show the spatiotemporal
growth of the filamentation instability. In addition to transverse modulations, shown in
Figure 4.19a), the beam contains a longitudinal modulations at kζ = kp at varying phases
due to the plasma wake. Small wakefields seeded at random phases due to the transverse
temperature in the beam compete with the wakefield seeded by the beam shape, e.g. the
truncated beam head. These small seeds result in a random phase shift of the dominat-
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Figure 4.19: Wakefield-driven filamentation of the proton beam after a propagation time of
τ = 1.3/ωβ = 6.4 m/c in plasma at np = 7 × 1014 cm−3. a) The transverse and longitudinal
slice taken of the beam charge density. The dash-dotted lines indicate the position of the
transverse slices. The b) electric field and c) magnetic field (increased by a factor of 20)
excited by the beam. d) The simulated growth and theory of the electric field envelope along
the length of the beam at different propagation times.
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ing wakefield relative to the cold beam case, shown in Figure 4.11a). The occurrence of
longitudinally-modulated filaments cannot be concluded in the experiment since the phase
differences are averaged over by the finite resolution of the streak camera.

Due to the high inertia of the beam particles, the instability grows over several hundreds
of plasma skin depths. Towards the beam tail, the beam is fully modulated and diverges.
This divergence will be discussed for the longitudinal flat-top beam from Figure 4.6 in
Section 4.5.1. A lower seed in the experiment would be consistent with the observation
of the onset of the filamentation at the beam tail, while in the simulation, the beam tail
is fully modulated. The beam is considerably coarser in the simulation with 12.3 × 109

macroparticles relative to ∼ 3 × 1011 beam particles in the experiment.

The corresponding electric and magnetic fields are shown in Figure 4.19c) and d), respec-
tively. The electric field dominates the magnetic field by two orders of magnitude with an
equivalent longitudinal and transverse signature as discussed in Section 4.2.2. The envelope
growth of the electric field along the length of the beam in Figure 4.19e) agrees well with the
semi-analytic solution to Equation (4.31), shown by the dotted lines at different propagation
times. The simulation and theory show that for these beam and plasma parameters, the
beam filamentation is in the wakefield-driven regime.

The expected distance between filaments, λf = 2π/kEmax , is shown in Figure 4.20 as a
function of the spatiotemporal growth and damping from diffusion. At the back of the beam,
where filamentation is strongest, the expected distance between filaments is independent
of the beam length, depending instead on the total beam charge, ω2

βζ ∼
∫
nb dζ, from

Equation (4.31).

In experiments carried out with both proton (Verra, Amoedo, et al., 2024) and electron
(Allen et al., 2012) beams, the onset of filamentation was studied by varying the plasma
density. Taking the experimental parameters Taking the parameters of the experiment with
the proton beam from Verra, Amoedo, et al. (2024) and varying the plasma density gives the
dashed line in Figure 4.20. Point (a) corresponds to a plasma density np = 9.38×1014 cm−3,
for which filamentation was observed. The predicted distance between filaments, λf =
2/kp = 0.34 mm, is comparable to the observed average distance of 0.33(±0.06) mm. Taking
the parameters of the experiment with the proton beam from Verra, Amoedo, et al. (2024)
and varying the plasma density gives the dotted line in Figure 4.20. Point (b) corresponds to
a plasma density np = 12 × 1016 cm−3, for which filamentation was observed. The predicted
distance between filaments, λf = 2.7/kp = 0.042 mm agrees with the observed filamentation
distance.

The points (α) and (β) correspond to the cases in Verra, Amoedo, et al. (2024) and Allen
et al. (2012), where the predicted distance between filaments is equal to the rms beam width
and agree with the threshold of the rms width of the beam at which filamentation was
observed. The plasma density of Point (c) 2.25 × 1014 cm−3, where the threshold between
filamentation and SMI has been found, is close to the plasma density of 2.44 × 1014 cm−3 for
point (α). The observed threshold between one and multiple electron filaments at a beam
width of σr = 2.2/kp in Allen et al. (2012) agrees with the plasma density of 3.4 × 1016 cm−3

in (β). Point (d), with a plasma density of 1.6 × 1016 cm−3 is well below point (β), and no
filamentation is observed. The distance between filaments for the instability cutoff, 2π/kcut,
corresponds to a plasma density 50–140 times lower than the observed threshold. This
dependence of the instability threshold on kEmax and not kcut may be due to the competition
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Figure 4.20: The distance between filaments as a function of beam and plasma parameters.
The y and x-axis are proportional to the growth of TTS and damping due to diffusion. The
dashed line corresponds to the experimental parameters in Verra, Amoedo, et al. (2024) for
varying plasma density, while the dotted line corresponds to the experimental parameters in
Allen et al. (2012). Points a, b, c, and d correspond to individual measurements in Verra,
Amoedo, et al. (2024) and Allen et al. (2012), with α and β marking the point at which the
distance between filaments is predicted to reach the rms beam width.

of the filamentation instability with SMI of the charged beams used in these experiments.
Further experimental and numerical studies would allow this prediction for the instability
threshold to be tested across a larger parameter space.

4.5 Considerations Beyond the Model

The theory on wakefield-driven filamentation shows excellent agreement with simulations and
published experimental results, although this analytic model based on linearised equations
holds limitations towards saturation or for beams of asymmetric composition discussed in
this section.

4.5.1 Saturation of Two-Stream Filamentation

As discussed in Section 4.3, the applicability of Equation (4.18) reaches its limit for a fully-
modulated beam, δnb ≈ nb, or if the plasma is fully modulated, δnp ≈ np. The latter is
equivalent to the transverse wakefield reaching the wavebreaking limit |E⊥| ≈ E0. Fig-
ure 4.21a) shows the cold beam in Figure 4.6 at a propagation time of 5/ωβ beyond the
applicability of the analytic model. The beam and the filaments diverge, which decreases
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Figure 4.21: Beam divergence after saturation of TTS for the cold beam in Figure 4.6. a)
The beam charge density, b) the transverse wakefield and c) the positron momentum spread
shown as a snapshot at ωβτ = 5. d) The envelope taken of the transverse electric field (red),
beam perturbation (blue), and transverse momentum spread (green), and e) the evaluated
rms width (magenta) at kpζ = −12π from simulation and theory.

the beam charge density and, therefore, the response of the plasma wake, shown in Fig-
ure 4.21b). The momentum spread in Figure 4.21c) grows with the transverse wakefield,
since beam particles are accelerated at different rates along the transverse axis.

The growth of the momentum spread for the beam positrons is shown along the plasma
length at kpζ = −12π alongside the beam perturbation and transverse electric field in Fig-
ure 4.21d). The momentum spread grows proportionally to the transverse wakefield, such
that the filaments stay confined. With the initial value defined by σpy,0/(mbc) = δnb0/np,
this growth agrees well with the semi-analytic solution to TTS given in Equation (4.18).
Equivalent to the transverse wakefield, the growth of the momentum spread deviates from
the analytic prediction when the beam is fully modulated, δnb ≈ nb. The analytic model
allows higher values for the beam perturbation, δnb > nb, which is physically impossible.
As the transverse wakefield does not increase further, the beam particles detrap, and the
filaments diverge under the influence of the high momentum spread. Consequently, the wake-
field amplitude weakens with the beam perturbation and the beam width increases, shown
in Figure 4.21e). The increase of the beam width from the initial value σy0 = 3/kp is in good
agreement with the semi-analytic solution to ∂2

τσy = u2
bσ

2
py(ζ, τ)/(σyγ2

bm
2
bc

2), obtained from
Equation (2.25) by neglecting the wakefield term.
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4.5.2 Sequential Filamentation of Asymmetric Beam Compositions

The analytic model, given by Equation (4.18), assumes beam particles of equal Lorentz
factor, charge magnitude and mass. But instead of an electron-positron beam, the beam can
also consist of an asymmetric composition of beam species, e.g. an electron-proton beam. For
these multi-species beams, the fluid equations of the beam species couple asymmetrically,
with the filamentation of the different species developing at different rates (Graw et al.,
2022). The corresponding betatron frequency in the analytic expressions is replaced by the
total betatron frequency

ωβ =
√∑

s

ω2
βs =

√∑
s

q2
sns

2γsms
, (4.33)

with ns the number density of the respective beam species and qs, γs, ms the charge, Lorentz
factor and mass of its particles. If the betatron frequencies of both species are sufficiently
different, ωβe− ≫ ωβp+, the filamentation of the different species is separable in propagation
time.

As shown in Figure 4.22a), the electron beam filaments more rapidly than the proton beam
with half the growth rate of the equivalent electron-positron beam. At an extended time
scale, the proton beam filaments at a significantly lower rate, shown in Figure 4.22b). When
the density modulation of the proton beam becomes relevant, the electron beam has already
strongly diverged for keζ < −2π, which reduces the plasma wakefield. Further, the beam is
no longer quasineutral so that SMI starts to compete with TTS. The density modulation of
the electron beam is amplified by the proton filamentation at the beam head.

The envelope of the electric field shows in Figure 4.22c) the two growth regimes for the

5
0
5

k p
y

20 16 12 8 4 0
kp

5
0
5

k p
y

0.04 0.02 0 0.02 0.04
b/(enp)

0.04 0.02 0 0.02 0.04
b/(enp)

0.1 1 10 100
e

10 5

10 3

10 1

E y
/E

0

18
6
kp

0.01 0.1 1
p +

Simulation
Growth e-
Growth p+

0.01 0.1 1
p +

Figure 4.22: The evolution of an electron-proton beam. The beam charge density is shown
during a) the electron filamentation at τ = 125/ωp = 2.6/ωβe− and b) the proton filamen-
tation at τ = 1250/ωp = 0.6/ωβp+. c) The envelope of the electric field growing along the
plasma length (solid) with the semi-analytic solution given for the filamentation of the elec-
tron (dotted) and proton (dashed) beam.
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respective beam species. The electric field grows quickly due to the electron filamentation
and acts as the seed for the proton filamentation for later timescales, which sets the seed level
for the analytic prediction of the proton filamentation accordingly. The analytic prediction
for the electron beam filamentation agrees with the simulation, while the prediction for the
proton beam filamentation slightly deviates. A possible extension of the theory would need
to include the saturation and divergence of the beam filaments.

4.6 Transition between Modulation Instabilities

The observations from the experiments give an excellent agreement to the introduced theory
on wakefield-driven filamentation referred to as TTS. Yet, the question remains in which
parameter space the respective modulation instabilities are dominant and how they transition
into each other.

4.6.1 Transition to Longitudinal Two-Stream

To qualitatively compare the dominant regime of the (longitudinal) two-stream and trans-
verse two-stream instability, the spectral parameter from Equation (4.13) can be rewritten
to ηu = ηTSI + ηTTS. The longitudinal and transverse contributions are provided by

ηTSI =
(c2 − u2

b)k2
p

c2k2
p + u2

bk
2
r

, ηTTS = u2
bk

2
r

c2k2
p + u2

bk
2
r

, (4.34)

and shown in Figure 4.23a) and b).

As expected, TSI is dominant for non-relativistic beams, and the longitudinal wakefield
component predominantly modulates the beam. However, for transverse perturbations with
a long scale kr/kp < 1, TSI remains dominant even in mildly relativistic regimes. This is a
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Figure 4.23: The spectral dependency ηu for a) TSI and b) TTS on beam velocity ub and
wavenumber kr. The purple line indicates where TSI and TTS equally contribute.
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consequence of the relative strength between the wakefield components varying as Ẽ⊥/Ẽz =
krub/(kpc) according to Equation (4.10). TTS is dominant for highly relativistic beams or
high transverse wavenumbers in mildly relativistic beams, such that the transverse wakefield
predominantly modulates the beam. Given a negligible energy spread of the beam, the
longitudinal wavenumber of the two-stream instability uniformly equals kζ = ke = ckp/ub for
the two-stream instabilities. However, CFI, which becomes dominant for overdense beams,
represents a different longitudinal wavenumber (kζ = 0) and growth scaling as discussed in
Bret, Gremillet, Bénisti, and Lefebvre (2008) and Pathak et al. (2015).

Figure 4.24 shows the growth of an initial perturbation kr/kp = π for two different beam
velocities. As can be seen, the growth scales with ωβτ and keτ , in agreement with Equa-
tion (4.20), as the spectral parameter ηu remains roughly constant between non-relativistic
and relativistic beams for kr/kp ≳ 3. For a constant wavenumber, the transverse wakefield is
weaker than the longitudinal wakefield in the non-relativistic limit, given by the theoretical
ratio.

4.6.2 Transition to Current-Driven Filamentation

The wakefield- and current-driven filamentation are addressed in Figure 4.25 for the labora-
tory setup in Section 4.4.2, but with the beam being quasineutral to avoid SMI and pinching.
Figure 4.25a) shows the beam evolution with the resulting electromagnetic fields for the di-
lute beam. Equivalent to the previous sections, the wakefield term in the electric field Ey
dominantly drives the beam particles, and each beam filament contains a longitudinal mod-
ulation at kζ = kp. The growth of the envelope of the electric field averaged within |y| < σr
(Figure 4.25d) agrees with the analytic solution for TTS, given by Equation (4.31).

The dense beam, shown in Figure 4.25e), also exhibits both transverse and longitudinal
modulation at the beam head, and the electric field (Figure 4.25f) dominates. But the
response differs towards the beam centre when the magnetic field (Figure 4.25g) surpasses
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Figure 4.25: Filamentations of a dilute, experiment-like (nb/np = 0.0026) and a dense
(nb/np = 0.52) positron-electron beam. Given for the dilute beam, its a) charge density,
and the b) electric field and c) magnetic field (different scale) excited by the beam from
simulation, with d) their envelope averaged within ±kpσr (solid) from simulation and theory.
The respective quantities for the dense beam are given in e-h).

the electric field. Beam particles bunch together into filaments in which the longitudinal
modulation is weaker. The electric field saturates as the plasma is fully modulated, which
is equivalent to the wavebreaking number reducing with the transverse wavenumber by
E0 ∼ ky/(k2

p + k2
y). While TTS saturates at the beam head, the magnetic field continues to

grow along the length of the beam at a much lower rate and saturates at the beam centre.
The transition of different growth rates along the length of the beam indicates that the beam
front filaments due to the significantly higher growth of TTS. Further along the beam, TTS
sets the initial condition for a second phase of exponential growth from CFI at a considerably
lower rate.

The growth of wakefield-driven filamentation can be compared analytically to the growth
of CFI. However, CFI exhibits spatiotemporal growth only at the beam head in the mildly
relativistic regime (Pathak et al., 2015). For cold streams, the growth ratio between Equa-
tion (4.20) and Equation (4.1) is N∞/(νcfiτ) = (33/2/25/3)[keζ/(η1/2

1 ωβτ)]1/3. Setting the
length to the rms length of the beam, ζ → σζ , and the propagation time from Figure 4.25,
gives a ratio of 9.0 for the dilute beam, and TTS dominates over CFI. For the dense beam
in Figure 4.25e), the theoretical growth ratio reduces to 5.6, and TTS remains dominant.

As wakefield-driven filaments are modulated at kζ = ke, while current-driven filaments
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Figure 4.26: Pinching and hosing of a dense single-species beam with parameters from
Figure 4.25.

contain no longitudinal modulation (kζ = 0), they can grow in parallel (Bret, Gremillet,
and Bénisti, 2010). The product of the respective initial seed times the growth, which then
determines whether the evolution of the beam is dominated by the wakefield or the magnetic
field. Thus, the wakefield may couple with the longitudinal mode of a truncated dense beam,
such that TTS remains dominant in a parameter space in which CFI would dominate for
unbounded systems. While CFI only dominates for beam densities comparable to the plasma
density, TTS remains dominant at the beam head for a smooth longitudinal profile and sets
the initial condition for CFI at the beam centre.

The fully-electromagnetic simulations in Figure 4.25 are conducted in two-dimensional ge-
ometry. The theory on TTS in Section 4.3 showed in agreement with simulations that the
growth is commensurate in two and three dimensions. numerical studies by Takamoto et al.
(2018) as well as the benchmark studies in Section 3.2 showed similar agreement for the ex-
ponential growth of CFI. The spatial grid is set to kp∆(y, z) = (0.02, 0.08), the time step is
ωp∆t = 0.018, and the beam and plasma species are represented by 72 and 36 macroparticles
per cell. The beam transverse temperature is scaled by

√
mb/me to σpr = 0.2 to maintain

an equivalent ratio between filamentation growth and damping from diffusion. To signify
the characteristic differences of the wakefield-driven filamentation to CFI, a comparison is
drawn to a dense beam (nb = np/2), expected to be at the lower bound of CFI at its peak
density. Other parameters are identical.

For the beam parameters presented here, the transition from wakefield- to current-driven
beam filamentation can be reached by scaling the beam density up by two orders of mag-
nitude. This is feasible for quasineutral beams for which SMI is suppressed. A relativistic
charged beam pinches and undergoes hosing before any transverse modulation is observable
due to its transverse extent, as shown in Figure 4.26.

The analytic model for wakefield-driven filamentation of warm beams, introduced in this
chapter, shows in excellent agreement with particle-in-cell simulations the spatiotemporal
growth for arbitrary beam profiles and the spatial dependency of the dominant and cut-off
wavenumber. The robustness of the model is undermined with experimental observations in
which filamentation appears to be suppressed when the predicted distance between filaments
is larger than the rms beam width for single-species beams. Although this section is beyond
the applicability of this model, it describes the extreme conditions of a dense beam with a
longitudinal profile undergoing wakefield- and current-driven filamentation. This is due to
the wakefield excited by the dilute beam head setting the initial condition for CFI at the
beam centre, which could be considered in future studies.
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5
Ion Motion in Wakefield-Driven

Instabilities

Chapter Summary
• A transverse gradient in the beam-generated wakefield gives a ponderomotive force,

which deflects heavy ions in the plasma.
• The effect of ion motion on the wakefield and self-modulation instability are studied

with simulations and experimental observations.
• Three mechanisms reducing the wakefield and leading to the saturation the self-

modulation instability are identified: Transverse decoherence, transverse wavebreak-
ing and detuning. Ion motion enhances each effect depending on the beam shape.
The enhanced reduction of the wakefield and suppression of the instability reduces
the modulation of the beam tail in agreement with the experimental observations.

In the previous studies on the interaction of electron-positron beams with plasma, the motion
of plasma ions is ignored, i.e. mi → ∞. This approximation results in a uniform plasma
wavenumber, kζ = ke, and enables the derivation of the analytic model for wakefield-driven
filamentation from linearised fluid equations. The considerations of an electron-proton beam
in Section 4.5.2 have shown that the beam species filament at different rates depending on
the mass, Lorentz factor and charge of the particles. However, this asymmetric composition
is the general case for an electron-ion plasma. Only for plasma ions with significantly higher
mass, mi ≫ me, can the motion of plasma ions be neglected.

In the case of a wakefield excited resonantly by a train of microbunches, the witness beam
is typically placed further downstream at a significant magnitude of the growing wakefield.
Thus, the effect of ion motion on the accelerating wakefield may cumulate over hundreds of
plasma oscillation periods. For such an extended interaction time between the beam and
the plasma and sufficiently low ion mass, the effect of ion motion on the plasma wake is
no longer negligible. Consequently, the ion density and the plasma wave number are no
longer uniform. Numerical studies by Spitsyn et al. (2018) and experimental studies by
Gilljohann et al. (2019) have shown that the ponderomotive force of the wakefield excited by
a laser pulse results in a transversely-varying ion density. As a result, the plasma electrons
oscillate at different frequencies and transversely cross each other. This disturbs the coherent
oscillation of the electrons and, eventually, the plasma wave breaks (Bulanov et al., 1997).
This transverse wavebreaking weakens the wakefield (Minakov and K. V. Lotov, 2024; Vieira
et al., 2012, 2014).
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Figure 5.1: Resonantly-driven longitudinal wakefield with a) a constant wavenumber, kζ =
kp, and b) a wavenumber depending on the amplitude of the longitudinal wakefield kζ =
kζ(Ẽz). The semi-analytic solution for the on-axis longitudinal wakefield is obtained by
solving Equation (2.29).

A wakefield growing from two-stream instabilities, such as the wakefield-driven filamenta-
tion introduced in Chapter 4 or the axisymmetric SMI introduced in Section 2.4.1, grows
as long as the wavenumber of the electron oscillation remains constant along the length
of the longitudinally-modulated beam and along the propagation length in plasma. This
is illustrated for a train of microbunches resembling a self-modulated charged beam in Fig-
ure 5.1. Yet, the longitudinal wavenumber increases for high wakefield amplitudes due to the
relativistic electron oscillation, given by Equations (3.12) and (3.13). On the contrary, the
wavenumber reduces towards saturation of SMI as the phase velocity increases, analytically
expressed by uψ(Γ) in Equation (2.31) for SMI and Equation (4.21) for TTS. Due to the
increasing wavenumber, the wakefield stops to grow along the length of the beam or even
reduces as it detunes from the resonant condition with the self-modulated beam, illustrated
in Figure 5.1. Beyond previous studies, the magnitude of the wakefield may also reduce
if the phase of the plasma wave is not constant along the transverse direction, referred to
as transverse decoherence or the wakefield detunes from the train of microbunches. Two
additional saturation mechanisms are amplified by a phase shift in the plasma wakefield due
to ion motion.

This chapter investigates the effect of ion motion on the three mechanisms in different setups.
In the beginning, the influence on the wakefield is isolated from any temporal evolution of
the beam and only the instantaneous plasma response to a short beam in Section 5.1 and
a train of microbunches Section 5.2 is studied, resembling the early stage and saturation of
SMI. Afterwards, the cumulative effect of ion motion on a self-modulating beam is studied
in Section 5.3 and compared to collaborative experimental observations in Section 5.4. This
allows limits to be placed on the ion mass for PWFA experiments and extends the physical
understanding relevant to these experiments. In Section 5.5, the effect of ion motion is briefly
discussed for wakefield-driven filamentation.

The numerical investigation throughout the following sections has been presented at the
Annual Meeting of the APS Division of Plasma Physics 2023. The combined experimental
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and numerical results of ion motion at the AWAKE experiment at the end of this chapter
have been submitted to Physical Review Letters (Turner et al., 2024).

5.1 Response to a Short Driver

Equivalent to a long beam before undergoing SMI or a dense laser pule studied by (Spitsyn
et al., 2018), a short beam drives a wakefield of constant magnitude and the beam density
has a negligible effect on the wavenumber. The beam and plasma parameters are chosen to
reach a wakefield magnitude comparable to the resonantly-driven wakefield in accordance
with the DPS run at AWAKE. The relativistic, γb = 426, short proton beam consists of
2 × 1010 particles, has a bi-Gaussian profile with rms length σζ = 0.81 ps = 1/kp and radius
σr = 160µm = 0.66/kp. The normalised emittance is ϵn = 2.2µm. The instantaneous
plasma response to the short driver is shown in Figure 5.2.

For stationary ions, the ion density in Figure 5.2a) remains spatially uniform. The modu-
lation depth in the plasma charge density in Figure 5.2b) is associated with the amplitude
of the electron oscillation and depends on the beam charge density at a given radius, i.e.
the modulation depth increases with the charge perturbation from the driver. The phase
of the plasma wave is higher on-axis relative to the fringe due to the relativistic oscillation
of the plasma electrons described by Equation (3.13). For narrow beams, kpσr ≈ 1, the
relativistic dilation reduces, quantified by ασ ≈ 0.1 (K. V. Lotov, 2013). The longitudinal
and transverse wakefield in Figure 5.2c) and d) remain constant as a function of ζ conforms
to an ideal system with cold, non-diffusive plasma.

For Helium ions, the ion density varies along the transverse direction with increasing depth
downstream, while the average ion density within kpr < 1 reduces. Transversely, the min-
imum ion density is located at the peak of the radial wakefield, kpr ≈ 1.2. The deflected
ions form an ion filament on-axis and a cylindrical ring at kpr ≈ 1.8. Since the beam is
short, the increasing variation in the ion density must dominantly come from the wakefield
acting on the plasma ions for an extended time. The plasma wavelength and, thus, the
phase of the plasma response increases or decreases at radii of lower or higher ion density,
respectively. The plasma wave bends into a ’C’ shape within −300 < kpζ < −200, referred
to as transverse decoherence, which results in a decrease in the longitudinal wakefield and
an increase in the transverse wakefield. The plasma wave breaks at ∼ −300/kp but recovers
at ∼ −350/kp. This transverse wavebreaking coincides with a build-up of a sheath electric
field in the radial wakefield component beyond the plasma in agreement with studies by
(Gorn et al., 2020). For −400 < kpζ < −350, the transverse decoherence amplifies, and
both wakefield components decrease. The interaction length in ζ for which the effect of ion
motion becomes relevant is ∼ 200/kp at a wakefield amplitude of Wr ∼ 0.2E0.

The simulations are carried out using the quasistatic PIC code LCODE (Sosedkin and K.
Lotov, 2016) in a quasi-three-dimensional cylindrical geometry. While two- and three-
dimensional simulations effectively model the exponential growth of TTS, showed in Sec-
tion 4.3, the growth of the axisymmetric SMI differs depending on the geometry as depicted
by Section 2.4.1. The computational resources can be significantly reduced using a qua-
sistatic code, which showed excellent agreement for TTS in the previous chapter. Since SMI
is the axisymmetric mode of TTS, the spatial domain can be further reduced by utilising
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Figure 5.3: The envelope averaged
within kpr < 1 of a) the longitudinal and
b) the radial wakefield component for the
short beam in Figure 5.2. d) The sheath
electric field is shown at kpr = 6.5, and
e) the difference taken of the phase of the
plasma wave at r = 0.5/kp and 1/kp.
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cylindrical coordinates. For the short beam and train of microbunches, the beam parameters
are chosen to excite a quasi-linear wakefield with amplitudes comparable to the experiment,
Wr ∼ 0.2E0. The initially uniform plasma density is np = 4.8 × 1014 cm−3 and the plasma
ions are chosen between stationary ions and Helium (mi/me = 7344). Only the instanta-
neous plasma response along the length of the beam ζ at a propagation distance of z = 0 is
retrieved. The spatial resolution is 80 cells per plasma skin depth. Beam and plasma par-
ticles are represented by 1 and 100 macroparticles per cell, uniformly spaced on the spatial
grid. The low number of beam particles suffices since no beam evolution is retrieved, and
the particle weight gives the local beam density.

The envelope of the wakefield components averaged within kpr < 1 (Figure 5.3a-b) are
compared to the occurrence of the sheath electric field at kpr = 6.5 (Figure 5.3c) and the
phase difference (Figure 5.3d). For stationary ions, the wakefield is constant, and no sheath
field occurs. A small phase difference occurs as the wavenumber slightly increases on-axis
due to the relativistic electron oscillation. For Helium ions, the increase of the longitudinal
wakefield and decrease of the transverse wakefield for kpζ < −200 and the decrease of both
components for kpζ < −380 aligns well with the phase shift of the plasma wave reaching
the order of π/kp and is, thus, correlated to transverse decoherence. A small increase in the
sheath electric field due to the plasma wave breaking aligns only with a small additional
increase of the radial wakefield at ∼ −300/kp and amplifies the decrease of the wakefield for
kpζ < −380. For the short beam, the wakefield is dominantly decreased due to the transverse
decoherence.

5.1.1 Wakefield-driven Ion Motion

Plasma ions do not experience the fast oscillation of the plasma wave due to their high mass,
but experience the envelope of the wakefield. For a radial gradient present in the wakefield
envelope, the corresponding ponderomotive force, Fp = −[e2/(meω

2
p)]∇Ẽ2, given by Equa-

tion (2.34), deflects ions transversely over an extended time. Although the ponderomotive
force is nonlinear, Fp ∼ E2 ∼ (ρp − ρb)2, its effect on the plasma ions remains linear for
δni ≪ np, with δni the perturbation density of plasma ions. In the quasistatic regime,
ub|∂τδni| ≪ |∂ζδni|, the linearised fluid equation, expressed by Equation (4.11), yields for
the plasma ions (Vieira et al., 2012)

miu
2
b∂

2
ζ δρi = ρp∇ · Fp (5.1)

with the ponderomotive force as the only source of momentum change. The equation can
be rewritten to

∂2
ζ

k2
e

δni(ζ)
np

= − q/e

4mi/me

∇2

k2
p

(
Ẽ2(ζ)
E2

0

)
. (5.2)

For a constant gradient in the electric field excited by the short beam, the solution to
Equation (5.2) is given by a double integral in ζ with δni(ζ = 0) = ∂ζδni(ζ = 0) = 0 as
initial conditions to

δni
np

= −∇2(Ẽ2/E2
0)

8mi/me
ζ2. (5.3)

The envelope of the longitudinal and radial electric field excited by the short beam are
shown in Figure 5.4a) and b) for Helium ions. The fields vary radially and contribute to the
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Figure 5.4: The effect of the envelope of the wakefield on the ion density for the short
beam in Figure 5.2. The envelope of a) the longitudinal and b) the radial electric field,
c) the ponderomotive force. The ion density obtained by d) the simulation and the semi-
analytic solution to Equation (5.2) with the wakefield from e) static ions and f) Helium ions.
g)-i) Wakefield components and ponderomotive force for static ions.

ponderomotive force shown in Figure 5.4c). Ions are deflected from the peak of the radial
wakefield at ∼ 1/kp, which results in a reduced ion density around the peak of the radial
wakefield. For kpζ < −200, the wakefield components and ponderomotive force are affected
by the change in ion density (Figure 5.4d). The semi-analytic solution of Equation (5.2)
with the electric field from the run with Helium ions (Figure 5.4e) agrees well with the
simulation, qualitatively validated in Figure 5.5 along a) the length of the beam and b)
the radial axis. In Figure 5.4f) and Figure 5.5b), showing the semi-analytic solution with
the wakefield from static ions (Figure 5.4g-i), the agreement to simulation gets worse for
kpζ < −250. The change in ion density self-consistently reduces the magnitude and gradient
in the longitudinal wakefield while it amplifies the radial wakefield and the ponderomotive
force.

5.1.2 Transverse Decoherence

Generally, the restoring force on the deflected plasma electrons depends on the ion and beam
density. Including the relativistic oscillation of plasma electron, the longitudinal wavenumber
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is expressed by (K. V. Lotov, 2013; Morales Guzman et al., 2021)

ki
kp

=

√
1 + (δni + nb)/np
1 + ασ(Ẽz/E0)2 . (5.4)

The changes in the plasma wavenumber are usually small, |ki − kp| ≪ kp. However, for a
long interaction time between wakefield and ions, the small change in ki cumulates in the
considerable phase difference φ to a wave with a wavelength of λp, described by

kpφ(ζ,r) =
∫ 0

ζ
dζ ′ki(ζ ′,r) − kpζ. (5.5)

The plasma wave, illustrated in Figure 5.6a), is shown at different radii in Figure 5.6b) with
the location of the zero-crossings, ρp(ζc) = 0. Due to the phase shift along the transverse
axis, oscillating plasma electrons get closer, and the plasma wave within 1 < kpr < 1.5
becomes anharmonic. The wavenumber as a function of ζ is then given by kζ = π/⟨∆ζc⟩λ,
where ⟨∆ζc⟩λ is the mean difference between three consecutive zero-crossings (required for
anharmonic waves). The difference of the phase relative to the phase of a linear wave with
kζ = kp is shown in Figure 5.6c). The simulation agrees with the semi-analytic solution of
the phase difference by solving Equation (5.4) for the observed change in ion density. For
regions where the wave breaks, e.g. at kpr ≈ 0.9 for kpζ < −300, Equation (5.4) loses its
validity.

The expression for the wakefield in Equation (2.29) assumes a constant longitudinal
wavenumber. In the general case of a variable wavenumber, the field equation defined by
Equation (4.4) is solved for the relativistic regime without replacing the plasma perturbation
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The dots mark the zero-crossings of the plasma wave. c) The cumulative phase of the plasma
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with its expression from linear fluid theory. The wakefields follow the equation

(∇2
r − k2

p)Ez = ∂ζδρp/ε0

(∇2
r − k2

p)Wr = ∂rδρp/ε0.
(5.6)

Following the wave equations, the wakefield components depend on the respective gradient of
the plasma charge density. Under the Hankel transform, Hn{δρp}(kr) =

∫∞
0 rJn(krr)δρp dr,

with Jn the Bessel function, the Laplacian transforms to ∇2
r → −k2

r . The wakefield is then
obtained by the inverse Hankel transform

Ez =
∫∫ ∞

0
dr′r′ dkr[kr/(k2

p + k2
r)]J0(krr<)J0(krr>)∂ζδρp

Wr =
∫∫ ∞

0
dr′r′ dkr[kr/(k2

p + k2
r)]J1(krr<)J1(krr>)∂r′δρp.

(5.7)

With the relation In(kpr<)Kn(kpr>) =
∫∞

0 dkr[kr/(k2
p + k2

r)]Jn(krr<)Jn(krr>) (Abramowitz
and Stegun, 1964), the wakefield simplify to

Ez(ζ, r) = qb
ε0

∫ ∞

0
dr′r′I0(kpr<)K0(kpr>)∂ζδρp(ζ, r′)

Wr(ζ, r) = qb
ε0

∫ ∞

0
dr′r′I1(kpr<)K1(kpr>)∂r′δρp(ζ, r′).

(5.8)

A transverse decoherence in the plasma wave has various effects on the wakefield compo-
nents, as illustrated in Figure 5.7. For minor variations in the phase of the plasma wave
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Figure 5.7: The effect of transverse decoherence on the wakefield. a) The plasma charge
density, b) the longitudinal and c) the transverse wakefield component from simulation
theory, and d) and e) the respective lineouts at kpr = 1.

(Figure 5.7a), φr < π/kp, the longitudinal wakefield decreases (Figure 5.7b), being the
transverse integral over the plasma wave decreases. However, the transverse wakefield (Fig-
ure 5.7c) increases in magnitude as defined by the integral over the transverse gradient of
the plasma charge density. The transverse wakefield decreases for significant variations in
the phase, φr ≈ π/kp, when the suppressing effect of transverse decoherence dominates the
increase in the transverse gradient of the plasma wave. The wakefield from the simulation
agrees with the semi-analytic solution by evaluating Equation (5.8) with the plasma charge
density from the simulation, quantitatively shown in Figure 5.7d-e).

The sensible choice of the gas utilised for wakefield acceleration experiments relies on how the
effect of ion motion scales with the ion mass. Given by Equation (5.3), the interaction length
for the change in ion density scales with m

−1/2
i . Utilising the Taylor-approximation, (1 +

δni/np)1/2 ≈ 1 + δni/(2np), the phase for a constant wakefield scales with φ ∼ ζ3/(mi/me).
Thus, the length for which ion motion affects the phase difference provides a weaker scaling
of m−1/3

i . Figure 5.8a) verifies that the change in the envelope of the wakefield correlates
with the phase difference between the radii, φr = φ(kpr = 0.5) − φ(kpr = 1), shown in
Figure 5.8b). Thus, the length for which the wakefield amplitude varies scales accordingly
with the ion mass with (mi/me)1/3 in agreement with recent theoretical and numerical
studies by Spitsyn et al. (2018). This weak scaling eases the constraints on the ion mass to
avoid the destructive interference of mobile ions with the plasma wave.
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5.2 Response to a Train of Microbunches

For a train of microbunches equivalent to a fully-modulated long beam towards saturation
of SMI, an additional saturation mechanism has to be included: The wakefield detunes from
the microbunches. The transverse shape remains Gaussian, while the longitudinal shape of
the beam is a simple sine function with wavenumber at kp and a peak effective current of
75.5 A.

Figure 5.9 shows the effect of ion motion on a resonantly-driven wakefield. For stationary
ions, the plasma wave and the longitudinal and radial wakefield, respectively shown in Fig-
ure 5.9b), c) and d), are resonantly amplified for kpζ > −250. For kpζ < −250, the plasma
wake saturates and eventually decreases. For Helium ions, the radial modulation of the ion
density in Figure 5.9a) is stronger compared to Figure 5.2a), given that the radial wakefield
in Figure 5.9c) has grown to a slightly higher amplitude. The plasma wave in Figure 5.9b)
and the wakefield reduce for kpζ < −350 and for kpζ < −400 the plasma is turbulent. No
transverse decoherence is apparent in the plasma charge density as the positive charge of
the microbunches corrects the phase bending due to a lower ion density.

Equivalent to Figure 5.3, the mean envelope of the wakefield within kpr < 1 is compared
to the electric sheath field and the phase difference between kpr = 0.5 and kpr = 1. For
stationary ions, the longitudinal and transverse wakefield in Figure 5.10a) and b) increase
linearly for kpζ > −200. The fields saturate at kpζ ∼ 350 and decrease further downstream.
The wakefield detunes from the resonant condition, defined by the distance between the
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Figure 5.9: a-d) Description as Figure 5.2, but for a train of microbunches. e) Phase
difference between wakefield and the train of microbunches relative to the resonant condition.

Figure 5.10: The field envelopes for the
train of microbunches in Figure 5.9. De-
scription as Figure 5.3.
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microbunches since the wavenumber of the relativistic electron oscillation increases for high
longitudinal electric fields. The wakefield saturates as it detunes by ∼ π/(2kp) and reduces
for a higher phase difference. The wakefield reduces at the same rate as it initially increased
if the phase difference to the microbunches reaches ∼ π/kp. The sheath field (Figure 5.10c),
the phase difference in the plasma wave between kpr = 0.5 and 1 (Figure 5.10d) and the
detuning of the wakefield from the microbunches (Figure 5.10e) remain negligible. The
detuning of the wakefield is quantified by the phase difference between the zero-crossing of
the wakefield from peak to trough and the microbunch centres. A phase difference of 0 is
equivalent to resonant amplification.

For Helium ions, the resonant amplification of the wakefield for kpζ > −200 remains com-
parable to stationary ions. In contrast to the short beam, the decrease of the longitudinal
wakefield and increase of the radial wakefield for kpζ < −250 due to transverse decoherence
(Figure 5.10d) remains negligible. The phase difference at different radii reaches a con-
siderable value for kpζ < −400, at which length the wakefield is already suppressed. The
initial decrease of both components within −320 < kpζ < −270 correlates with the wakefield
detuning from the microbunches (Figure 5.10e). The strong decrease of the wakefield for
kpζ < −300 correlates instead with the sheath electric field (Figure 5.10c). Thus, trans-
verse wavebreaking is the dominant mechanism for decreasing the wakefield excited by a
pre-modulated beam.

The dominant effects of ion motion differ in the two limits of a beam undergoing SMI. For
a wakefield driven by a non-modulated driver, the transverse decoherence in the plasma re-
sponse is the dominating effect for the reduced wakefield amplitude. For a resonantly-driven
wakefield, the wakefield amplitude is dominantly influenced by transverse wavebreaking,
while detuning between the wakefield and microbunches contributes.

5.2.1 Transverse Wavebreaking

The peak amplitude plasma electrons can oscillate is just before they cross paths. For
a one-dimensional system, ky = kx = 0, this is equivalent to the wavebreaking limit of
the longitudinal wakefield Ez = E0, discussed in Section 3.1. Transverse wavebreaking is
connected to transversely oscillating electrons crossing paths. This generally occurs at much
lower wave amplitudes compared to the wavebreaking limit due to a curvature in the plasma
wake (Bulanov et al., 1997), observed throughout the previous sections. The transverse
distance between oscillating electron trajectories to cross decreases with the phase difference
and is at its minimum for a phase difference of π/2. Transverse wavebreaking is enhanced
with increasing amplitude of the transverse wakefield or a stronger curvature in the plasma
wake, as is the case for a non-uniform ion density.

The trajectories of neighbouring plasma electrons are shown with the electric field in Fig-
ure 5.11 for the pre-modulated beam in Figure 5.9. The trajectories of plasma electrons cross
at ∼ −300/kp. When they cross, electrons experience an increase in the electrostatic force
and are either drawn to the central axis or ejected outward. The plasma is no longer neutral
when the outward propagating electron leaves the plasma column. Consequently, a sheath
electric field builds up beyond the plasma wall at kpr = 6, drawing the ejected electrons
back into the plasma column. Re-entering plasma electrons disturbs the plasma wake, such
as the green trajectory at kpζ = −350 (Gorn et al., 2020).



5.3 Response to an Evolving Beam 91

Figure 5.11: Electric field super-
imposed by neighbour trajectories
of the plasma electron for the pre-
modulated beam with Helium ions.
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Figure 5.12: Phasespace in rpr of the plasma electron at chosen intervals ζ ± 10/kp with
stationary (red) and Helium (blue) ions for the pre-modulated beam in Figure 5.9

The evolution of plasma electrons under transverse wavebreaking is shown in the rpr phas-
espace in Figure 5.12. For stationary ions, the width of the occupied phasespace increases
between kpζ = −150 and −250, with the peak of the particle momentum at kpζ ≈ 1. For
kpζ < −350, the width dominantly decreases at kpζ = 1 as the plasma wake detunes from
the microbunches. For Helium ions, the occupied volume is squeezed down to lower radii
at kpζ = −250 and −350 with the peak at kpr = 0.9 and 0.5, respectively. The work by
Minakov and K. V. Lotov (2024) has shown that as transverse wavebreaking occurs, coherent
electrons are drawn from larger radii to the wavebreaking region such that it temporarily
recovers. This results in a transfer of energy and an increase in the plasma wave ampli-
tude close to the wavebreaking region. However, the electrons continue to move radially
and draw the energy away from the recovered wavebreaking region and the plasma wave
breaks, shown at kpζ = −350 and −450. Ejected electrons are separated from the occupied
phasespace volume of the plasma wave.

5.3 Response to an Evolving Beam

After unravelling the effect of ion motion on the instantaneous plasma response, the cumula-
tive effect on a self-modulating beam is discussed in this section. The plasma quantities and
wakefield at the early stage of SMI are shown in Figure 5.13 at a propagation distance of
1.5 m. The beam density in Figure 5.13a) is weakly modulated and remains comparable be-
tween stationary and Helium ions. Due to the low ion mass and the long interaction length,
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Figure 5.13: The plasma response to a beam undergoing self-modulation at a propagation
distance of z = 1.5 m = 6183/kp. a) The beam density, b) the plasma ion density, c) the
plasma charge density, and d) the longitudinal and e) radial component of the wakefield
shown for stationary and Helium ions.

the low wakefield amplitude results in a relevant density modulation of the ion species, as de-
picted by Figure 5.13b). The plasma charge density in Figure 5.13c) and the radial wakefield
in Figure 5.13 increase along the length of the beam due to the spatiotemporal growth of
SMI. This growth saturates at kpζ ≈ −1050 for Helium ions. The phase difference between
different radii has to be compared to the run with stationary ions since the beam charge
density itself has an effect on the local plasma wavelength, and the growth of SMI results in
a reduced phase velocity relative to the beam velocity, as depicted by Equation (2.31). The
plasma wave bends into a ’C’ shape as the cumulative phase increases for regions with lower
ion density. The effect of ions shows equivalent features compared to instantaneous plasma
response to a short driver in Figure 5.2.

Consistent with the ion motion studies at the DPS run, the baseline plasma density is set
to np = 4.8 × 1014 cm−3. The long proton beam consists of 2.8 × 1011 particles with an
rms length of σζ = 170 ps = 210/kp and an rms radius of σr = 160µm = 0.66/kp resulting
in a peak density of nb/np = 0.0284. The propagation distance of the beam in plasma
is z = 10 m = 41200/kp. The beam in simulations is considerably coarser compared to the
experiment, which yields a higher seed for SMI. To achieve numerical convergence and results
comparable to the experimental run, the propagation of 10 m is divided into 160 steps. The
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Figure 5.14: Chosen initially equidistant trajectories of plasma electrons for stationary and
Helium ions. The oscillation amplitude is magnified by 1.5. Curves of constant phase are
shown by black curves, and the ion density is shown in the background.

spatial distribution is bi-Gaussian, with a smooth cut at 3.4σζ in the longitudinal direction
and a transverse cut at 3σr. The beam and plasma species are represented by a relatively
high number of 81 and 100 macroparticles per cell, which are uniformly loaded.

Figure 5.14 investigates the effect of the non-uniform plasma wavelength on the electron
trajectories. For stationary ions, the electron oscillation remains coherent, and the radial
equilibrium position of the electrons remains roughly constant along the beam. For Helium
ions, the oscillation phase increases or decreases depending on the local ion density for
Helium ions, emphasised by the bending of the curves of equal phases. The radial equilibrium
position of the electrons varies attracted by the ions.

The plasma response to a self-modulated beam at a propagation distance of 5 m, where
SMI has saturated for a significant length of the beam, is shown in Figure 5.15. The beam
density for stationary ions shows the signature for a beam undergoing SMI. Since SMI is
spatiotemporal, the beam is fully modulated towards the beam centre into microbunches.
This train of microbunches resonantly amplifies the plasma wake while the beam particles
between the microbunches diverge under the influence of the defocussing wakefield. The
beam head is focused by the non-oscillatory term of the wakefield. For kpζ < −800, the
wakefield detunes from the microbunches and, consequently, the microbunches dampen the
wakefield instead of amplifying it. Vice versa, the microbunches in the focussing phase of
the radial wakefield at the early stage of SMI shift to the defocussing interval saturation.
This deteriorates the microbunches for kpζ < −800 and decreases the effective current of the
beam.

For Helium ions, the beam density increases again for kpζ < −900 towards the beam tail
as the wakefield amplitude decreases earlier along the length of the beam. The beam tail
contains a weak longitudinal modulation, which implies that the wakefield is not considerably
weakened at the early stage of SMI due to ion motion. Despite the beam shape being
significantly different, the variation in the ion density and the reducing envelope of the plasma
wave and wakefield for kpζ < −800 is equivalent to the instantaneous plasma response from
the pre-modulated beam in Figure 5.9.
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Figure 5.15: Description as Figure 5.13 but after a propagation distance of z = 5 m =
20610/kp.

The relative reduction of the longitudinal and radial wakefield at the early stage of SMI is
evaluated by the mean value of the envelope within kpr < 1 and outlined in Figure 5.16a) and
b). The decrease of the wakefield with Helium ions relative to the wakefield with stationary
ions correlates with an increase of the phase difference in the plasma wave, outlined in
Figure 5.16d). The sheath electric field (Figure 5.16c) and detuning of the wakefield from
the resonant condition (Figure 5.16e) remain negligible. Transverse decoherence remains
the dominating effect comparable to the effect of ion motion on the instantaneous plasma
response to the short beam.

The beam is, for the most part, fully modulated at kpz = 20610 with stationary ions. The
detuning of the wakefield from the resonant condition has only an effect for −900 < kpζ <
−800 as the beam for kpζ < −900, the microbunches strongly diverged. The sheath electric
field (Figure 5.16h) increases for −800 < kpζ < −600 where the beam self-modulates into
microbunches and saturates for kpζ < −800 as the radial wakefield stops growing. The high
density of the microbunches with a strong radial gradient over hundreds of plasma periods
along the beam length results in transverse wavebreaking even with stationary ions.

With Helium ions, the decrease in the wakefield is amplified within −950 < kpζ < −800.
This reduction is predominantly due to transverse wavebreaking, as shown by the enhanced
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build-up of the sheath electric field for kpζ < −800. The transverse decoherence in the
plasma response (Figure 5.16i) is reduced for Helium ions compared to stationary ions as
the microbunches correct for the phase difference from the reduced ion density. Figure 5.15j)
shows that the wakefield detunes from the resonant condition for kpζ < −700. This has an
additional impact within −800 < kpζ < −700 next to transverse wavebreaking. While
detuning has a minor effect in reducing the wakefield, it results in a shorter beam head as
microbunches are defocussed earlier along the beam.

The cumulative effect of plasma ions with finite masses on SMI is shown in Figure 5.17. For
stationary ions, the beam effective current and wakefield components in Figure 5.17a), b) and
c) show the spatiotemporal growth of SMI. The initial Gaussian beam self-modulates, which
increases the peak effective current and results in a spatiotemporal growth of the wakefield.
At a propagation distance of ∼ 4 m, the instability saturates such that the phase of the radial
wakefield increases. The detuning wakefield defocusses the microbunches, which decreases
the effective current along the length of the beam and the plasma. Thus, the wakefield
saturates earlier along the beam at a higher propagation distance. The envelope of the
plasma wave in Figure 5.17e) correlates with the radial wakefield, as both quantities depend
on the radial gradient in the phase of the collective electron oscillation. The longitudinal
wakefield in Figure 5.17b) is more resilient to the resulting transverse decoherence. Besides
detuning, transverse wavebreaking reduces the wakefield for stationary ions, shown by the
sheath electric field in Figure 5.17f).

For Helium ions, both the transverse decoherence in the plasma response and transverse
wavebreaking due to the transverse variation of the ion density (Figure 5.17d) reduces the
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Figure 5.17: Beam undergoing self-modulation along the beam and plasma length for sta-
tionary and Helium ions. Mean envelope of the a) beam effective current, the b) longitudinal
and c) radial wakefield component, the d) plasma ion density, e) plasma charge density and
f) the sheath electric field. Propagation distance on the y-axis and beam slice on the x-axis.
The dashed line indicates where the radial wakefield is significantly reduced (∼ 0.1 W̃r,peak).

wakefield behind the black dashed line. As a result, the transverse wakefield acts less on
the beam tail, which does not undergo self-modulation (Figure 5.17a). Earlier along the
beam length relative to the dashed line, the wakefield magnitude remains comparable to
the run with stationary ions. The reduced ion density results in the amplified detuning
of the wakefield, and thus, the microbunches are defocused earlier along the beam. The
sheath electric field (Figure 5.17f) increases by a factor of two due to a higher occurrence of
transverse wavebreaking.
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5.4 Ion Motion at the Experiment

The mass of plasma ions as the critical parameter for the influence of ion motion was varied
at the DPS run, while other parameters were kept constant. The DPS allows for the reliable
plasma operation with Xenon (with a density range of 0.68 × 1014 cm−3 < np < 9.38 ×
1014 cm−3), Argon (0.1 × 1014 cm−3 < np < 9.3 × 1014 cm−3) and Helium (0.1 × 1014 cm−3 <
np < 4.8 × 1014 cm−3). The cumulative effect on the self-modulating beam is used as a
diagnostic for the suppression of the instability. The simulation parameters are identical to
the Section 5.3, but with the mass of the plasma ions set to Xenon (mi/me = 241048) or
Argon (mi/me = 73345). Parts of this section are published in (Turner et al., 2024).

After a propagation distance of 10 m in plasma, the particles from the simulation are bal-
listically projected for another ∆s = 3.5 m. This accounts for the vacuum gap between the
plasma exit and the screen for the streak camera in the experiment. The radial position at
the slit is given by rslit = [(r+ ∆spr/pz)2 + (∆spφ/(rpz))2]1/2, with r the radial position, pr
the radial momentum and pφ the azimuthal momentum of the beam particles at the plasma
exit. The projection to the slit of the streak camera with a width of 80µm is realised by ran-
domly assigning an azimuthal angle φ to the beam particles and transforming to Cartesian
coordinates, (x,y)slit = (rslit cosφ,rslit sinφ).

Figure 5.18 shows the experimental and numerical observation, averaged over five runs for
the beam charge at the streak camera. The beam distribution in vacuum verifies that the
experimentally determined beam parameters are correctly reproduced in the simulations.
The beam width remains bi-Gaussian with an increased width due to the beam divergence.
The beam distributions for stationary ions, Xenon and Argon are qualitatively similar. The
beam head is focussed within 200 ps < ζ < 400 ps, while for ζ < 200 ps the beam is self-
modulated. The resulting train of microbunches appears as a spine in the simulation and is
generally not observed in the streak images due to the finite resolution of the ns timescale
shown here. On the ps-timescale, microbunches are observed for all gases within the front
half of the beam. The beam particles defocussed by the radial wakefield appear as wings at
ζ ∼ 200 ps.

For the Helium plasma, the beam distribution remains similar to the other gases for
−100 ps < ζ, such that SMI developed similarly. Beyond that interval, SMI is suppressed
beyond that interval, observable by a higher beam charge towards the tail of the beam in
good agreement between simulations and experimental observations. The planar profile of
the beam is simultaneously measured by two streak cameras with slits that are orthogonally
aligned to each other. This enabled to observe Qslit(ζ,y,x = 0) and Qslit(ζ,y = 0,x) and ver-
ify that the beam is radially symmetric and justifies that the numerical studies in cylindrical
geometry are sufficient.

The charge at the slit summed over the transverse plane is compared between all gases for the
experimental and numerical results in Figure 5.19. The absolute value for the experiment is
chosen for the vacuum profile to match the simulation. It provides an estimate of how much
SMI has evolved by the location and height of the peak charge. The peak is further towards
the front of the beam and smaller in the simulations. This indicates that SMI is seeded by
wakefields at a higher initial level compared to the beam and is coarser in the simulations
compared to the experiment. Although the profiles of the charge at slit significantly differ
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Figure 5.18: The time-resolved beam charge at slit after propagating for 10 m in a) a
vacuum, or a plasma at with b) stationary ions, c) Xenon ions, d) Argon ions or e) Helium
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show the experimental observations. The distribution is averaged over five experimental or
simulation runs, respectively. The plasma density is given by np = 4.8 × 1014 cm3 and the
colour scale is saturated to highlight the beam tail.
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Figure 5.20: a-e) The beam charge at slit from simulation (Figure 5.18a-e), superimposed
by the radial wakefield (cyan) at the plasma exit. The respective ion density at the plasma
exit is shown in f-j).

between the experiment and the simulations, the physical result remains equivalent for all
gases.

Figure 5.20 shows the radial wakefield and ion density, corresponding to the simulation
results from Figure 5.18. A modulation in the ion density is apparent for all gases with
finite ion mass, given by the appearance of the ion filament. The peak wakefield magnitude
at ζ ∼ 100 ps is comparable between all gases and the effect of ion motion is negligible.
For stationary ions, the wakefield is resonantly driven for ζ > 100 ps, but detunes further
downstream such that the microbunches damp the wakefield. The wakefield peak in Xenon
is slightly lower but remains constant along the beam length. Slight variations in the ion
density result in a different beam shape due to the cumulative effect on SMI, but may
compensate for the phase shift due to the decrease in phase velocity from the instability
growth. For Argon, the ion mass is low enough to affect the wakefield amplitude but does
not suppress SMI considerably, such that the beam remains fully modulated in agreement
with previous numerical studies (Vieira et al., 2014). For a longer beam in Argon or a higher
plasma density, the motion of ions is detrimental enough to result in a higher beam charge
towards the tail. For Helium, the results from Section 5.3 are reflected.

The simulations and experimental observations show that plasma ions with a finite mass
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enhance not only transverse wavebreaking in agreement with previous studies by Minakov
and K. V. Lotov (2024), Spitsyn et al. (2018), and Vieira et al. (2012, 2014), but also
transverse decoherence and detuning of the wakefield from the modulated beam. These
effects weaken the wakefield and suppress the SMI earlier along the beam and its propagation
in plasma compared to non-evolving ions.

5.5 Ion Motion in Wakefield-driven Filamentation

Since SMI is the axisymmetric form of TTS, the investigations on wakefield-driven filamen-
tation in Chapter 4 are briefly unified with the findings from this chapter on ion motion.
The wakefield- and current-driven filamentation of the dilute or the dense beam from Sec-
tion 4.6.2, but with Helium ions instead of stationary ions, is shown in Figure 5.21.

For the dilute beam, the modulation in the beam charge (Figure 5.21a) is equivalent to
the simulation with stationary ions. However, the magnitude of the transverse electric field
(Figure 5.21b) reduces for kpζ < −250 ≈ −σζ , which is in the non-linear regime where the
filaments diverge (Section 4.5.1). The envelope of the electric field averaged over |y| < σr
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Figure 5.21: The effect of ion motion on wakefield- and current-driven filamentation of the
beams in Figure 4.25. For the dilute beam, a) shows the charge density, b) the electric field
and c) the magnetic field (different scale) excited by the beam from simulation. d) The field
envelope averaged within |y| < σr for Helium ions (solid) and stationary ions (dotted). The
respective quantities for the dense beam are given in e-h).
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(Figure 5.21d) shows a comparable growth in Helium and plasma with stationary ions beyond
the exponential growth for 200 < kpζ. The rate at which the electric field reduces for
kpζ < −250 is similar to the rate at which it grows for −200 < kpζ < 200. This trend agrees
with the reduction of the wakefield observed for the self-modulating beam in Section 5.3.

For the dense beam, the beam charge density (Figure 5.21a) and electromagnetic fields (Fig-
ure 5.21b-c) are comparable for ζ > 0. Over a short length, the beam is driven by the
wakefield, and ion motion has no observable effect. As the transition from the wakefield- to
current-driven filamentation occurs for kpζ < −100, the beam divergence is weaker compared
to the evolution in plasma with stationary ions. Further, the beam filaments are more com-
pressed, and the longitudinal modulation is weaker. The electric and magnetic fields sustain
their high magnitudes as the ion filaments pervade beyond the beam. This is in agreement
with previous analytic and numeric work on the subsequent ion current filamentation by
(Frederiksen et al., 2004; Peterson et al., 2021), amplifying the magnetic field.

Both in the TTS and its axisymmetric form, the SMI, the motion of plasma ions reduces
the wakefield as the phase of the plasma wave varies transversely. The suppression of the
beam modulation depends on whether the wakefield is considerably reduced during the
exponential growth of the instability or as it saturates. This is in contrast to the TTS of an
asymmetric beam composition, discussed in Section 4.5.2, where the beam species undergoes
an additional wakefield-driven filamentation stage of the heavier species, but also to CFI,
where the plasma undergoes a subsequent ion filamentation.
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6
Summary

This doctoral work aimed to improve the understanding of filamentation instabilities for
beams with well-defined extent in the laboratory and astrophysical context and investigate
the feasibility of studying these in currently available PWFA. This was accomplished by a
set of analytic and numerical approaches with comparisons made to laboratory studies in
collaborative efforts with the AWAKE experiment. Chapter 1 began with an introduction
to existing experiments with the potential to study these kinetic micro-instabilities resulting
in filamentary electrostatic and electromagnetic fluctuations. Relevant phenomena in the
astrophysical framework were briefly listed.

An overview of the relevant kinetic instabilities for unbounded systems and the utilised
numerical methods was provided in Chapter 2, where the study was narrowed down to
the current-driven filamentation and wakefield-driven two-stream instability. Moving to
finite-sized beams, quasistatic simulations of these instabilities were compared to fully-
electromagnetic simulations in Chapter 3. The quasistatic PIC method significantly reduced
computing resources while not being prone to the non-physical grid heating in a cold plasma.
Although previous numerical studies utilised the fully electromagnetic PIC method, the qua-
sistatic model shows the ability to reflect the physics of beam filamentation for relativistic
beams. Experimental measurements are generally limited, such that these simulations and
analytic models provide a reliable and established method to deepen the physical under-
standing. With this foundation, the central questions of this work were explored.

6.1 Laboratory-Relevant Filamentation Instabilities

Summary: In Chapter 4, a three-dimensional, spatiotemporal theory for the wakefield-
driven filamentation instability was presented for warm beams of finite size. This model
extends previously published theories for two-dimensional cold beams and reflects laboratory-
relevant configurations. The electrostatic plasma response in TTS leads to the growth of
transverse filaments, comparable to CFI, with an additional longitudinal modulation.

The derived theory provides several significant advancements over previous studies and re-
markable agreement with PIC simulations:

• The beam profile influences the growth rate and the seed level, with the growth rate
at a fixed transverse position equivalent to a stream with the local beam density and
the growth at a fixed longitudinal position proportional to the integrated beam density
along the beam length.
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• For beams with finite emittance, diffusion acts to damp small-scale filamentation.
The dependency of the growth spectrum on the temperature is identified for dilute
beams. Theory and simulations showed that the filamentation growth rate depends
on kr = (k2

x + k2
y)1/2. Explicit expressions for the dominant and cut-off wavenumber

are calculated and depend on the propagation time in plasma and position within the
beam. This arises as diffusion is spatially uniform while the filamentation instability
grows along the beam length.

• Two-dimensional simulations reproduce the behaviour of three-dimensional simulations
in the linear regime, with the caveat that kr = ky in this reduced geometry, resulting
in filaments that are more tightly clustered.

A general trend of the expected distance between filaments and the spectral growth along the
beam and plasma length was found with unprecedented accuracy for warm beams with arbi-
trary spatial profiles. The predicted distance between filaments agreed well with previously
published experimental results in Allen et al. (2012) and Verra, Amoedo, et al. (2024). For
single-species beams, filamentation appeared to be suppressed when the predicted distance
between filaments is larger than the rms beam width, 2π/kEmax > σr. These findings provide
a crucial basis for designing laboratory astrophysics experiments investigating filamentation
instabilities and for PWFA experiments seeking to avoid them.

The chapter compared the recent observation of beam filamentation at the AWAKE ex-
periment to the introduced theory and simulation. With the currently achievable beam and
plasma parameters, the proton beam is dominantly driven by the wakefield and not by a mag-
netic field and, thus, undergoes the transverse two-stream instability. Increasing the beam
peak density to ∼ np/2 reveals a spatiotemporal transition from wakefield- to current-driven
beam filamentation due to the saturation of the wakefield, which has not been addressed
before.

Outlook: One possible extension of this work is to connect the spatiotemporal theory of
wakefield-driven filamentation to current-driven filamentation of warm dense beams dom-
inated by the magnetic field instead of the wakefield, which leans on the work by Pathak
et al. (2015). With a stronger focus on the astrophysical context, analytic investigation of
the transition from electrostatic to electromagnetic regime of the filamentation instability
is possible, relevant to dense beams with a smooth beam head. This requires including the
saturation time and level of the wakefield, setting the initial condition for CFI.

Further, the potential usage of the advanced quasistatic method for simulations of colli-
sionless shocks can significantly reduce computing resources and enable three-dimensional
simulations. Investigating beam compositions with different particle masses on the current-
and wakefield-driven filamentation is analogous to collisionless shocks of a mixture of plasma
species. Further experimental studies would allow the analytic predictions to be tested across
a larger parameter space.

6.2 Ion Motion in Wakefield-Driven Instabilities

Summary: The developed linear theory on wakefield-driven instabilities in Chapter 4 does
not account for the different effects of the motion of ions. These effects are investigated
in Chapter 5 in different experimentally-relevant setups. In agreement with semi-analytic
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treatments and experimental observations, simulations verified that plasma ions experience
the ponderomotive force from the beam-driven wakefield. The transverse deflection of the
ions results in a heterogeneous ion density with the trough ion density at the peak of the
transverse wakefield. As a result, the phase of the plasma wave shifts along the transverse
coordinate.

Three saturation mechanisms of the SMI were identified to be enhanced by the phase shift,
where the previously studied transverse wavebreaking was one of them. Several new aspects
were addressed:

• The plasma density wave bows inward, causing transverse decoherence and a reduction
of the wakefield strength. Yet, a small bowing temporarily enhances the transverse
wakefield. Additionally, the wakefield detunes from the train of microbunches and,
thus, from the resonant condition.

• The dominating effect for the wakefield decrease is studied in the cases of a wake-
field with a constant magnitude or being resonantly driven, which represents the early
stage and saturation of the SMI. The transverse decoherence predominantly reduces
the wakefield at the early stage of SMI. When the beam is strongly modulated, the
transverse wavebreaking dominates, while the detuning of the wakefield from the res-
onant condition cuts down the effective current of the beam.

Transverse wavebreaking depends on the transverse variation of the plasma phase. This
variation in the plasma phase also leads to a transverse gradient in the plasma charge density,
∇rρp, resulting in transverse decoherence. The phase shift scales with the cube root of the
ion mass and remains negligible for the beam and plasma parameters at AWAKE when using
plasma ions heavier than Argon ions in agreement with experimental results. However, the
stability of the plasma wake is weakened over long periods, even for higher ion mass, as the
detrimental effect of ion motion continues to grow after the beam has passed.

Outlook: Future work may involve the development of a theory which considers the non-
linear change in wakefield amplitude depending on the transverse variation of the phase.
A general expression for the decrease in wakefield amplitude based on ion mass and beam
charge (or laser intensity) allows the identification of the parameter space where ion motion
is negligible. This is a crucial foundation for wakefield experiments aiming to avoid such
effects, whether driven by a short beam or resonantly driven by a train of microbunches.

The study focused on the axisymmetric SMI. However, it can be extended to TTS in contrast
to the amplifying effect on the current-driven filamentation (Peterson et al., 2021; Ruyer et
al., 2015) as depicted in Section 5.5. The dominating saturation mechanism for TTS and
how it scales with the transverse wavenumber may also be subject to future work.

6.3 Concluding Remarks

This work investigated the applicability of beam-driven wakefield accelerators to study fil-
amentation instabilities of relativistic particle streams interacting with plasmas in an as-
trophysical context. Many studies on collisionless shocks linked to Fermi-type accelerated
high-energy particles focus on the Weibel or current filamentation instability. Nonetheless,
some astrophysical regions exist where the acceleration of particles to ultra-high energies
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is connected to the Landau resonance with wakefields, e.g. in active galactic nuclei or the
foreshock region. Given the currently achievable parameter space in experiments, the work
mainly focused on wakefield-driven instabilities. Ultimately, the remarkable agreement of
the analytic model with simulations and experiments proves fertile ground for designing
future experiments and for further research in the astrophysical context.
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A
Numerical Considerations

A.1 Non-Physical Instabilities

The non-physical heating of the plasma, observed in PIC simulations with higher stream den-
sities, occurs due to the spatial discretisation from the grid and a finite number of macropar-
ticles (Pukhov, 2015). Consequently, the plasma phasespace is altered, which may mimic
physical phenomena and lead to imprecise conclusions. Grid heating occurs if the Debye
wavelength, kpλD = σpz/(mec), is not resolved by the spatial grid. High-frequency modes
of the plasma waves, not resolved by the grid, are aliased to lower frequencies. As a result,
the grid adds imaginary roots to the dispersion relation for the warm plasma and the re-
sulting kinetic instability increases the plasma temperature exponentially until the Debye
wavelength is resolved by the grid. This limit was predicted to λD ≈ ∆z/π for a streaming
plasma without a driver by Birdsall and Langdon (2018).

The plasma temperature for the stream in Figure 3.2 is shown in Figure A.1a) as a function
of the grid size. For kpζ < −12, the momentum spread of the plasma electrons exponentially
heats up by several orders of magnitude independent of the grid size. For very low resolu-
tion, high peaks occur for ∼ −12/kp as plasma electrons are self-injected. The saturated
temperature σ̂pζ increases with grid size and is by a factor of two below the limit by Birdsall
and Langdon (2018).

The median of the saturated temperature in Figure A.1b) additionally increases with the
density of the stream. For low charge densities of the stream ρb ≤ 0.3 enp, the value from
simulation agrees well with the fit σ̂pζ ∼ nb∆z, with the absolute value of the fit set to
align with the dataset from ρb = 0.2 enp. Within this range, the plasma saturates at lower
temperatures than the limit from Birdsall and Langdon (2018) such that the condition is
eased. For higher charge densities of the driving stream, ρb > 0.4 enp, the stability condition
for the plasma temperature is worse relative to a non-driven plasma stream. The later is in
accordance with the work by Cormier-Michel et al. (2008) demonstrating a worse stability
condition for a laser-driven plasma wake relative to a non-driven plasma. Self-injection for
low resolutions increases with the density and results in the deviation from the fit.

To mitigate grid-heating, the fully-electromagnetic PIC simulations are conducted in two-
dimensional geometry and the quasistatic PIC code QV3D is utilised for three-dimensional
simulations to reach a sufficiently high grid resolution. Further, the exponential heating
can be mitigated by a low-pass filter, generally by choosing a quadratic particle shape and
applying a binomial current filter.
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Figure A.1: Non-physical plasma heating due to the discretised configuration space. a)
The plasma temperature along the length for the stream in Figure 3.2 for different grid
resolutions ∆z, and its averaged value over the plasma period. b) The saturated plasma
temperature after grid heating from simulation (·) and a polynomial fit (–) as a function of
the grid resolution at different stream densities. Dotted lines correspond to the saturated
Debye wavelength from Birdsall and Langdon (2018).

A.2 Methods to Mitigate Numerical Instabilities

Instead of the commonly used Yee-solver (finite-difference time-domain scheme with a second-
order central difference) (Yee, 1966), the custom dispersion-free fei solver of type Xu (Xu
et al., 2020) combined with a binomial low-pass filter for the current deposition is used to
strongly mitigate for numerical instabilities and avoid the effect of spatial and temporal
grid aliasing between the particles with numerical modes of the grid. The numerical growth
occurs due to Cherenkov resonance in the Brillouin zone between the streaming beam parti-
cles and the grid of the electromagnetic field when the phase velocity of light for the solver
has a subluminal phase velocity, uψ < c and can lead to particle-wave resonances with the
relativistic stream. This may result in transverse deflection of the particles and transverse
currents, which imitate the instabilities studied in this work. Additionally, a space-charge
field arises when finite-difference errors are larger than 1/γ2 (Xu et al., 2020), relevant for
the ultrarelativistic beams considered here. Most commonly, the relativistic equation of
motion is discretised with the finite-difference time-centred Boris algorithm (Boris, 1970).
The simulations conducted in this work additionally utilised the Vay pusher (Vay, 2008), an
extension of the Boris pusher for relativistic particles, γb > 5.

If no current filter is applied in the fully-electromagnetic simulations, exemplary shown
in Figure A.2a), a non-physical seed magnetic field occurs after the short beam propagated
100/ωp in a vacuum. A 5-pass compensated binomial current smoother is required within the
conducted studies to avoid this spurious field behind the beam as illustrated in Figure A.2b).
For the quasistatic simulations, no current smoother is required to omit the spurious field
behind the beam.
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Figure A.2: Effect of current
smoothing on the magnetic field
for a quasineutral beam prop-
agating ωpt = 100 in vacuum.
The excited magnetic field by
applying a) no filter or b) a 5-
pass compensated binomial fil-
ter on the beam current.
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Figure A.3: Seed fields from initialising macroparticles of the quasineutral beam. The
negatively (blue) and positively (red) charged particles are initialised a) equally weighted
with different positions or b) identical positions, or c) equally spaced. The marker size
indicates the weight of the particles. The respective seed magnetic field after the beam
propagated for 100/ωp in a vacuum is shown in d), e) and f).
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The instabilities grow from the electromagnetic fields seeded by the macroparticles of the
beam, which depends on the number of macroparticles and the initialisation method. The
momentum of the particles is randomly sampled from the Maxwell distribution. For equally-
weighted particles, the position can be either randomly sampled (Figure A.3a), or with
identical initial position between the particles with opposite charge (Figure A.3b). To ensure
a uniform resolution of the simulation domain, which becomes essential for a low number
of macroparticles, the particles can be loaded equally spaced with different weights (grid-
loading), shown in Figure A.3c). Charged beam particles undergo betatron oscillation, which
may decrease the phasespace resolution for grid-loaded particles as the few particles at the
beam centre with high weight interchange with a high amount of particles with low weight
at the beam edge. Most of the conducted studies here are limited to a couple of betatron
timescales, < 6/ωβ and particles are grid-loaded.

The initial fields excited by a quasineutral beam after a propagation time of ωpτ = 100 is
shown in Figure A.3c-e). For equal-weighted particle seeding with random particle position
(Figure A.3d), strong fringe fields are excited as the transverse beam slices are not neutral.
These fields can be avoided by randomly seeding the position of the positrons and assigning
the same positions to the electrons, as illustrated in Figure A.3e). The peak value of the
seed field is lower relative to the magnetic field excited by the same total amount of equally-
spaced particles in Figure A.3f), but the signal-to-noise ratio varies along the beam. The
seed field is higher at the fringe areas of the beam since these areas are poorly resolved by the
macroparticles including the beam head where the filamentation instabilities are seeded.

A.3 Spatial Convergence of Filamentation Instabilities

The numerical studies consistently include convergence checks of the resolved phasespace, e.g.
of the propagation step, the spatial grid and the number of macroparticles implicitly resolving
the momentum space. The results of the simulations vary within the statistical uncertainties
when changing the numerical resolution and remain reproducible with a variance much lower
than the mean of a quantity.

Figure A.4 shows the dependency of the field energy when decreasing the grid resolution
by a factor of four from the baseline, i.e. from kp∆(x, y) = (0.025, 0.025) to kp∆(x, y) =
(0.05, 0.05). For a constant number of beam particles, the initial field energy (see Fig-
ure A.4a) reduces as each grid is filled with four times more particles relative to the baseline.
For a constant number of particles per cell, the initial field energy is slightly higher since
the beam is coarser, consisting of four times fewer particles. In both cases, the exponential
growth is converged. But during the nonlinear stage in which filaments merge, the electric
and magnetic field components are slightly higher. For a negligible change in the field ener-
gies within the statistical uncertainties, the total number of beam particles must be scaled
by (∆x∆y)1/2 to keep the initial seed comparable. In this example, this corresponds to
reducing the number of beam particles by a factor of two.
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• E. Walter, J. P. Farmer, et al., 2024. Wakefield-driven filamentation of warm beams
in plasma. arXiv: 2406.07977. url: https://arxiv.org/abs/2406.07977 [accepted by
Phys. Rev. E]

• M. Turner, E. Walter, et al. (AWAKE Collaboration), 2024. Experimental Observation
of Motion of Ions in a Resonantly Driven Plasma Wakefield Accelerator. arXiv: 2406.
16361. url: https://arxiv.org/abs/2406.16361 [submitted to Phys. Rev. Let.]

• L. Verra, C. Amoedo, et al. (AWAKE Collaboration), 2024. “Filamentation of a rela-
tivistic proton bunch in plasma”. In: Phys. Rev. E 109 (5), p. 055203. doi: 10.1103/
PhysRevE.109.055203. url: https://link.aps.org/doi/10.1103/PhysRevE.109.055203

Conferences

Talks

• Erwin Walter, John Farmer, Martin Weidl, Patric Muggli, Alexander Pukhov, Frank
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