
TUM School of Natural Sciences
Technical University of Munich

Theory of temperature-dependent
electronic structure and bulk
properties of semiconductors

Stefan A. Seidl





TUM School of Natural Sciences
Technische Universität München

Theory of temperature-dependent
electronic structure and bulk
properties of semiconductors

Stefan A. Seidl

Vollständiger Abdruck der von der TUM School of Natural Sciences der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Christian Back

Prüfer der Dissertation:
1. Prof. Dr. David Egger
2. Prof. Dr. Alessio Gagliardi

Die Dissertation wurde am 23.09.2024 bei der Technischen Universität München eingereicht
und durch die TUM School of Natural Sciences am 30.10.2024 angenommen.





v

Abstract

Energy materials form the basis of photovoltaics (PV) and are usually common
inorganic semiconductors or, more recently, also halide perovskites (HaPs). For
example, these two types of materials differ in the softness of the lattice, with HaPs
having a soft lattice. Characteristics such as the crystal structure and the electronic
band gap must be optimized and are key for the development of PV. Therefore the
structure-band-gap relationship, i.e. how dynamic-structure fluctuations impact the
band gap, has to be rationalized. Specifically, the remarkable optoelectronic prop-
erties of HaPs, dominated by vibrational anharmonicity, are not yet understood to
full extent. The necessity of an accurate modeling of the structural and electronic
properties, also under the influence of temperature, and the understanding of it, is
the task of the present work.
Density functional theory is probably the most common approach to access static and
dynamic properties of energy materials using exchange-correlation functionals. For
example, the calculation of the band-gap value depends strongly on the choice of the
exchange energy term in a functional, be it semilocal or exact exchange. Screened
hybrid functionals, which contain a mixture of both types of exchange energy, are
known to accurately predict electronic structure as well as lattice dynamics. A
recently developed functional, SRSH, which belongs to screened range-separated
hybrid functionals, has the advantage that it describes optical and electronic prop-
erties of semiconductors accurately at the same time. However, it has not yet been
clarified whether SRSH can capture the structural and vibrational properties of
common inorganic semiconductors accurately. In this work, the accuracy of the
SRSH functional is investigated by means of the equilibrium lattice constants and
phonon dispersion relations of seven prototypical semiconductors and compared to
the accuracy of commonly used exchange-correlation functionals, i.e. the semilocal
and hybrid functionals. The SRSH approach demonstrates equal accuracy in the
computation of bulk properties for semiconductors compared to the well-established
PBE and HSE functionals. In addition, as with the HSE functional, SRSH provides
phonon dispersion relations for semiconductors which are more accurate than those
obtained with PBE. Therefore, the SRSH functional can be counted among those
functionals which represent a uniform accurate framework for the calculation of
semiconductor bulk properties.
In the second part of this work, HaPs are investigated, which typically exhibit dif-
ferent average structures in the individual phases, that cannot explain the electronic
properties. First-principles molecular dynamics (MD) and stochastic Monte-Carlo
(MC) calculations are applied to the prototypical HaP CsPbBr3 to highlight the
impact of dynamic-structure fluctuations on the electronic properties at finite tem-
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perature. Thermal samples from MD and MC generally lead to larger band-gap
values at finite temperature compared to the band-gap value calculated from the
static average structure. Especially the mildly changing band gap across phase tran-
sitions, as experimentally observed, can only be revealed when the computational
method accounts for anharmonic lattice dynamics, as is the case with MD. Contrary
to these findings, an average crystal structure perturbed by thermal-activated har-
monic phonons, as is the case in MC, leads to a large jump of 450 meV in the band gap
at the phase transition of CsPbBr3. Consequently, the decoupled harmonic-phonon
picture, neglecting for example phonon-phonon interactions and anharmonic atomic
motions, cannot explain the band-gap contributions stemming from vibrational an-
harmonicity, which is a key in the profound understanding of HaPs.
In summary, this work provides profound insights into the accurate modeling of
structural and vibrational properties and their connection to electronic properties
of bulk semiconductors. These findings can aid the future development of energy
materials on the basis of computational modeling.
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Zusammenfassung

Die Grundlage der Photovoltaik bilden Energiematerialien, welche in der Regel
aus herkömmlichen anorganischen Halbleitern oder neuerdings auch aus Halogenid-
Perowskiten (HaPs) bestehen. Diese beiden Halbleitertypen unterscheiden sich zum
Beispiel in der Weichheit des Gitters, wobei HaPs ein weiches Gitter aufweisen.
Charakteristische Eigenschaften wie die Kristallstruktur oder die elektronische Ban-
dlücke spielen eine entscheidende Rolle bei der Entwicklung der Photovoltaik und
müssen dafür optimiert werden. Hierbei ist ein umfassendes Verständnis wie die
Gitterstruktur und vor allem die dynamischen Gitterschwankungen die elektronische
Bandlücke beeinflussen unabdingbar. Besonders die herausragenden optoelektron-
ischen Eigenschaften von HaPs stehen in Zusammenhang mit Schwingungsanhar-
monizität, welche noch nicht gänzlich verstanden ist. Deshalb ist eine akkurate
computerbasierte Modellierung der strukturellen Eigenschaften und der elektronis-
chen Eigenschaften, auch unter dem Einfluss der Temperatur, hilfreich und stellt die
Hauptaufgabe dieser Dissertation dar.
Die Dichtefunktionaltheorie, welche Austausch-Korrelations-Funktionale verwen-
det, ist wahrscheinlich die gängigste Theorie um statische und dynamische Eigen-
schaften von Energiematerialien zu beschreiben. So hängt zum Beispiel der berech-
nete Wert der Bandlücke stark von der Wahl des Austauschenergieterms des Funk-
tionals ab, welcher ein semilokaler oder ein exakter Austauschenergieterm sein kann.
Speziell abschirmende Hybrid-Funktionale, die eine Mischung aus beiden Arten des
Austauschenergieterm enthalten, sind dafür bekannt, dass sie sowohl die elektronis-
che Struktur als auch die Gitterdynamik akkurat bestimmen können. Darüber hinaus
hat ein kürzlich neu entwickeltes Funktional mit der Bezeichnung SRSH, welches
zu den abschirmenden und bereichstrennenden Hybrid-Funktionalen gehört, den
Vorteil, dass es gleichzeitig optische und elektronische Eigenschaften von Hal-
bleitern genau beschreiben kann. Allerdings ist noch nicht geklärt, ob das SRSH
Funktional auch strukturelle Eigenschaften und Schwingungseigenschaften gängiger
anorganischer Halbleiter genau berechnen kann. Deshalb wird in dieser Dissertation
die Genauigkeit des SRSH Funktionals anhand der Berechnung der Gitterkonstanten
und der Dispersionsrelationen für Phononen von sieben prototypischen Halbleitern
untersucht und mit der Genauigkeit von üblich verwendeten Funktionalen verglichen.
Diese sind semilokale und hybride Austausch-Korrelations-Funktionale. Als Ergeb-
nis liefert der SRSH-Ansatz eine ähnliche Genauigkeit bei der Berechnung der
Bulk-Eigenschaften von Halbleitern wie die etablierten PBE und HSE Funktionale.
Zusätzlich lässt sich sagen, dass das SRHS Funktional, wie auch das HSE Funktional,
Dispersionsrelationen für Phononen von Halbleitern berechnet, die genauer sind als
die, die mit Hilfe von PBE berechnet wurden. Daher bildet der SRSH-Ansatz einen
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konsistenten Rahmen für die Berechnung von Bulk-Eigenschaften von Halbleitern.
Im zweiten Teil dieser Dissertation werden HaPs untersucht, die typischerweise un-
terschiedliche mittlere Strukturen in den einzelnen Phasen aufweisen, welche die
elektronischen Eigenschaften nicht erklären können. Mit Hilfe von First-Principles
Molekulardynamik (MD) und stochastischer Monte-Carlo (MC) werden Berechnun-
gen für den prototypischen HaP CsPbBr3 durchgeführt, um bei endlicher Temperatur
den Einfluss von dynamischen Gitterschwankungen auf die elektronischen Eigen-
schaften zu untersuchen. Die von MD und MC resultierenden thermischen Samples
liefern im Allgemeinen eine größere Bandlücke als die Bandlücke, welche von der
statischen mittleren Struktur berechnet wurde. Die experimentell gemessene Ban-
dlücke verändert sich nur geringfügig über die Phasenübergänge hinweg, was sich
nur erklären lässt, wenn die Berechnungsmethode auch die anharmonische Gitterdy-
namik berücksichtigt, wie es in MD der Fall ist. Im Gegensatz zu diesem Ergebnis
führt eine mittlere Kristallstruktur, welche von thermisch-aktivierten harmonischen
Phononen ausgelenkt ist, wie es in MC der Fall ist, zu einem großen Sprung von
450 meV in der Bandlücke beim Phasenübergang von CsPbBr3. Folglich kann
ein entkoppeltes harmonisches Phononen-Modell, das beispielsweise die Phonon-
Phonon-Wechselwirkung und anharmonische atomare Bewegungen vernachlässigt,
nicht die Beiträge zur Bandlücke erklären, welche sich aus der Schwingungsanhar-
monizität ergeben. Deshalb stellt die Schwingungsanharmonizität einen fundamen-
talen Baustein zum tiefgreifenden Verständnis von HaPs dar.
Zusammenfassend lässt sich sagen, dass diese Dissertation fundierte Einblicke in
die akkurate Modellierung von strukturellen Eigenschaften und Schwingungseigen-
schaften bietet und deren Zusammenhang mit den elektronischen Eigenschaften von
Halbleitern erklärt. Diese Erkenntnisse können bei der künftigen Entwicklung von
Energiematerialien auf Grundlage von Computermodellen hilfreich sein.
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1. Introduction
Today’s world population is confronted with two important facts, namely a constantly
growing population and a constantly growing energy consumption per capita. Both
facts lead to an increase in total energy consumption, which in principle would not
be a problem if the earth’s resources were infinite. As this is definitely not the case
and fossil fuels in particular are running out in the long term, renewable energies are
playing an increasingly important role. This is also supported by the fact that with
other energy sources such as nuclear energy, there is the problem of how to store
radioactive waste safely in the long term. In addition, the burning of fossil fuels
such as oil, coal and gas is causing the problem of climate change, which is reflected
in global warming. The latter aspect leads to an acceleration of the transition away
from fossil fuels towards renewable energies [3].
In the field of renewable energies, one focus is on solar materials in connection with
photovoltaics (PV). The question of whether a material is suitable to be a good solar
material depends on the size of its band gap, which is characteristic for semiconduc-
tors. The basic concept of PV is to convert the energy of sunlight into electricity.
As sunlight is available practically free of charge, PV is a potential technology for
covering an increasing proportion of energy requirements. For this purpose, semi-
conductors are required for utilizing the photovoltaic effect. The device that contains
semiconductors for energy conversion is called a solar cell. In general, the larger
the solar cell, i.e. the larger the illuminated area, the higher the gained electricity.
This correlation motivates to maximize the gained electricity while maintaining the
same surface area in order to save space. An important parameter of a solar cell is
its efficiency, which, in simple terms, is the ratio between the gained electricity and
the radiative energy of the sunlight, or the ratio of output energy to input energy.
In principle, electricity is generated when electrons can overcome a potential barrier
with the help of an excitation. The potential barrier is defined as the band gap
and is the energy difference between the valence band and the conduction band or
between occupied and unoccupied electronic states. The excitation is caused by
electromagnetic radiation, such as sunlight, and occurs in portions of photons, i.e.
energy bundles of ℎ𝜈. If the energy of the photon is larger than the band gap, the
material can absorb the photon and an excited electron is generated. This creates
an electron-hole pair as a quasi-particle, whereby the excited electron is now in the
conduction band and the hole remains in the valence band. When the electron-hole
pair splits, the resulting free charge carriers move to the corresponding electrodes,
which are oppositely charged1. Consequently, electricity is generated.
In addition, the charge carrier dynamics are material-dependent and influence the

1In simplified terms, this is the process in a solar cell with a p-n junction.
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energy conversion efficiency of the solar cell. For instance, the common inorganic
semiconductor silicon (Si) achieves an efficiency of 26% in conventional crystalline
solar cells [4] and recently an efficiency of 36% in silicon-based multi-junction solar
cells [5]. The frequent use of Si solar cells is due to their low-cost production and the
abundance of Si on earth. In contrast, the inorganic semiconductor gallium arsenide
(GaAs) has a higher energy conversion efficiency as Si, but the production costs of
GaAs-based solar cells are considerably higher.
In addition to the class of group III-V semiconductors, such as the composite ma-
terial GaAs, or the semiconductors of group IV, such as Si, there is the class of
halide perovskites (HaPs). Note that HaPs are referred to as energy materials in the
new nomenclature. This relatively new class of energy materials is based on the
typical perovskite structure of oxides, which was first discovered in the 19th century.
However, HaPs attracted great attention in the semiconductor research during the
last decade, because of their fast rising energy conversion efficiency in the devel-
opment of HaP solar cells. For example, emerging PV using HaP solar cells have
achieved an efficiency of 26.1% in only 10 years of research [4], making HaPs a
promising material for future solar cell applications. Specifically, HaPs can occur
in two variants, namely as completely inorganic semiconductors such as CsPbBr3
or in a hybrid variant that also contains organic cations, e.g. an organic molecule
as in MAPbI3. While the halogen atom can vary, most HaPs contain lead, which
is problematic for the use in solar cells due to its toxicity. Additionally, one char-
acteristic of HaPs is short-term stability, which also has to be overcome, if HaPs
should be commercially used in solar cells. Consequently, toxicity and stability
continue to pose major challenges. Furthermore, HaPs exhibit structural softness,
which results in low-frequency vibrations [6] in comparison to high-frequency vi-
brations, for example, from stiff diamond. In principle, the structural softness can
be associated with HaP characteristics such as vibrational anharmonicity, unusual
lattice dynamics, phase transitions, charge carrier dynamics and others.
Comparing HaPs with common inorganic semiconductors on the microscopic level
reveals clear differences beyond the chemical composition. While common inorganic
semiconductors exhibit a well-defined reference crystal structure, HaPs only refer to
this structure as a time average, while undergoing instantaneous structures showing
temporal octahedral tiltings [7, 8, 9, 10]. This phenomenon can be explained by the
anharmonic atomic motions or thermal disorder characterizing HaPs [11, 12, 13] in
conjunction with symmetry breaking of the potential energy surface [8, 14]. There-
fore, the description of structural dynamics in the harmonic approximation, in which
the potential energy of the nuclei is expanded around equilibrium up to second order
in the atomic displacements, is insufficient for HaPs, while being quite successful
for common inorganic semiconductors.
With respect to the most important quantity in semiconductor research, the fun-
damental band gap, the thermal evolution of the band gap shows a very different
behavior between HaPs and common inorganic semiconductors. While for common
inorganic semiconductors the "Varshni effect" predicts a decreasing band gap with
increasing temperature [15], the HaP band gap increases with increasing temper-
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ature [16]. Additionally, HaPs exhibit temperature-induced phase transitions that
are accompanied by significant changes in the reference crystal structure [6], while
the corresponding experimental band-gap only mildly changes over the relevant
temperature range [17]. Note that the ambient temperature is not necessarily the
temperature to which the solar material is exposed, i.e. in practice the working tem-
perature can be some tens of degrees higher than the ambient temperature. Apart
from these differences, solar cells based on HaPs [18] and common inorganic semi-
conductors [19] have in common that the energy conversion efficiency decreases
with increasing temperature. This is due to the fact that higher temperatures lead to
a lower electrical conductivity in the solar material.
One key in understanding the thermal motions of atoms is lattice dynamics or atomic
vibrations. In the concept of quasi-particles, the lattice vibrations are referred to
as phonons, which have quantized energies. In principle, the influence of thermal
effects or temperature is basically associated with two phenomena: Electron-phonon
coupling and thermal expansion of the lattice. While the electron-phonon coupling
has a strong effect on the optical and electronic properties, such as a renormalization
of the electronic band structure, the thermal expansion has a rather small influence.
For common inorganic semiconductors, the lattice dynamics can be accurately de-
scribed in the harmonic approximation, i.e. with decoupled harmonic oscillators, but
for HaPs a description beyond the harmonic approximation is essential. Therefore,
a valid description of HaPs has to incorporate vibrational anharmonicity or anhar-
monic phonons associated with octahedral tilting as a characteristic of HaP dynamics.
In addition, anharmonicity also takes into account phonon-phonon coupling, which,
in conjunction with large atomic displacements and structural distortions, leads to
short phonon lifetimes for HaPs [20].
However, in addition to experimental research, computer simulations have also con-
tributed significantly to the investigation of solar materials. For instance, a solid-state
material can be described by a many-particle Hamilton operator, which can be solved
numerically but not analytically. There are several electronic structure codes that are
primarily based on plane waves and exploit the fact that crystals are characterized
by their periodic structures. Consequently, the modeling of solids as perfect crystals
on an atomic scale is achieved by applying a unit-cell. A very successful theory,
which calculates the ground state density of a system, is the density functional
theory (DFT). The fundamental equation on which DFT is based is a Schrödinger-
like equation, namely the Kohn-Sham equation, which is an effective one-particle
equation as used in mean-field theories. The ingenious idea in DFT is the use of
exchange-correlation functionals,𝑉XC, which allows DFT to be exact if𝑉XC is exact.
Specifically, 𝑉XC covers all quantum-mechanical interaction as well as corrections
to the kinetic energy of a non-interacting system.
The task of finding the best approximation for𝑉XC or optimizing existing functionals
is an endless challenge. For example, a very simple approximation of 𝑉XC is the lo-
cal density approximation (LDA), which calculates the exchange-correlation-energy
solely from the local charge density. More complex functionals go beyond that local
character and also consider density gradients, such as PBE [21], or contain fractions
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of exact-exchange, such as the hybrid functional HSE [22, 23]. However, not every
functional is appropriate for every system or material. For instance, the B3LYP
functional [24, 25] is suitable for molecules, but fails for metals, which can be seen
by the fact that it predicts a semiconductor instead [26]. A recently developed func-
tional, the screened range-separated hybrid (SRSH) functional, is characterized by
the ability to tune its parameters. In principle, any functional containing parameters
can be tuned, but the empirical tuning approach in SRSH additionally ensures that
the dielectric constant of the material correctly describes the asymptotic decay of the
screened exchange interaction in the long range. Furthermore, individual parameters
of the SRSH functional, which determine for example the amount of exact-exchange
over the distance or others, can be adjusted to accurately predict a specific quantity.
Consequently, the possibility of tuning SRSH raises the question, whether tuning
the functional to be accurate in one specific quantity comes at the expense of the
accuracy of other quantities. It is known, for example, that electronic and opti-
cal properties of common inorganic semiconductors can be accurately described if
SRSH is tuned to reproduce band gaps [27, 28]. So far, the performance of SRSH in
this case has not been tested for the prediction of bulk properties of common inor-
ganic semiconductors, such as lattice constants, bulk moduli, atomization energies
and phonon dispersion relations. This task is covered in chapter 3.
Apart from the well-established use of DFT in semiconductor research, DFT pro-
vides only a static description and therefore lacks in the inclusion of thermal effects.
Since solar devices are exposed to high working temperatures and thermal effects
have a strong impact on the electronic band gap of energy materials, a profound
understanding of thermal effects is essential. For this purpose, thermal effects can
be investigated, for example, with the help of first-principles molecular dynamics
(MD) simulations or stochastic Monte-Carlo (MC) calculations. Both approaches
are based on DFT and determine lattice dynamics or the temperature-dependent
band gap as a statistical mean value from distorted structures.
A variant of the MC method, as a stochastic sampling approach, calculates phonon-
distorted structures and refers thereby to the harmonic approximation. These dis-
torted structures or samples contain the thermal motions of the atoms. The MC
method has two advantages, namely the consideration of zero-point energies and the
correct prediction of the temperature-dependent trend of the band gap.
In contrast to the limitation of MC to the harmonic approximation, MD accounts
for all types of structural fluctuations, i.e. both harmonic and anharmonic fluctua-
tions. This is due to the different ansatz of MD, which solves the classical Newton’s
equations of motion to describe the system. Atomic forces are calculated and used
to update the atomic positions at each MD time step, resulting in a trajectory that
describes the atomic configuration in time. The essential advantage of MD is the
inclusion of vibrational anharmonicity, which is particularly relevant for very an-
harmonic materials. For instance, for anharmonic HaPs, MD captures large atomic
displacements as well as octahedral tiltings, both typical for HaP dynamics. This
leads to an accurate prediction of the thermal evolution of the band gap, also in
absolute values.
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Figure 1.1. Schematic representation of the statistical approaches MC (blue) and MD
(red) to illustrate the effects of different thermal motions on the electronic band gap Δ𝐸Gap
for anharmonic HaPs. While the stochastic MC method provides samples of distorted
structures using phonons calculated in the harmonic approximation, first-principles MD
simulations solve the classical Newton’s equations of motion to obtain a trajectory containing
the positions of the atoms. Consequently, due to the different ansatz of the two methods,
MD inherently accounts for anharmonicity, while MC excludes anharmonicity.

To quantify the contribution of vibrational anharmonicity, the equality of MD and
MC is first demonstrated for a harmonic material, and then the difference between
MC and MD is worked out for a prototypical anharmonic HaP. This task and a
microscopic insight into anharmonic fluctuations affecting the HaP band gap are
discussed in chapter 4. A schematic comparison of MD and MC with regard to
the different methodology and the effect on the temperature-dependent band gap for
anharmonic materials is shown in Fig. 1.1. In addition, the temperature-dependent
band gap is also calculated for HaPs in chapter 4 using a perturbative method such
as the Allen-Heine-Cardona (AHC) theory. This is particularly interesting when
comparing the results of AHC and MC, since the AHC theory only contains terms
up to the second order of perturbation theory, while MC contains all orders.
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2. Theory

2.1. Electronic structure and lattice dynamics

2.1.1. Many-particle Hamilton operator
Following notation for vectors is used (𝑖, 𝑛 ∈ ℕ):

r = (r1, ... , r𝑛),
r𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)𝑇 .

(2.1)

The most general form of the Hamilton operator, not taking into account relativistic
effects and assuming one type of atoms, describing a solid state material can be
written as following [29]:

�̂� = 𝑇e + 𝑇n + �̂�e-e + �̂�n-n + �̂�e-n (2.2)

with 𝑒 labelling the electrons and 𝑛 the nuclei. The first two terms describe the
kinetic energy of the electrons and nuclei, with 𝑚 labelling the electron mass and 𝑀
the nuclei mass. They read [29]:

𝑇e = −
𝑁e∑︁
𝑖=1

ℏ2

2𝑚
∇2
𝑖 ,

𝑇n = −
𝑁n∑︁
𝑗=1

ℏ2

2𝑀
∇2
𝑗 .

(2.3)

Here, 𝑁𝑒 is the number of electrons and 𝑁𝑛 the number of nuclei. The last three terms
of the Hamilton operator in the general form of equation (2.2) denote the interaction
between electrons, between nuclei and between electrons and nuclei. Here, r𝑖 and
r 𝑗 denote the electron positions and R𝑖 and R 𝑗 the nuclei positions, respectively.
𝑍e and 𝑍n denote the elementary charge e and the charge of the nuclei, which is a
multiple of the elementary charge e. The interaction potentials in (2.2) are described
by the Coulomb interaction and can be written as [29]:

�̂�e-e =
1
2

𝑁e∑︁
𝑖=1

𝑁e∑︁
𝑗=1, 𝑗≠𝑖

𝑍2
e

|r𝑖 − r 𝑗 |
,

�̂�n-n =
1
2

𝑁n∑︁
𝑖=1

𝑁n∑︁
𝑗=1, 𝑗≠𝑖

𝑍2
n

|R𝑖 − R 𝑗 |
,

�̂�e-n =

𝑁e∑︁
𝑖=1

𝑁n∑︁
𝑗=1

𝑍e𝑍n
|r𝑖 − R 𝑗 |

.

(2.4)
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The dynamics of the system is given by the time-dependent Schrödinger equation
and can be written with the Hamilton operator from equation (2.2) as [29]

𝑖ℏ
𝜕

𝜕𝑡
Ψ(r1, ..., r𝑁e ,R1, ...,R𝑁n , 𝑡) = �̂� Ψ(r1, ..., r𝑁e ,R1, ...,R𝑁n , 𝑡), (2.5)

with Ψ being the many particle wave function depending on the time, 𝑡, and the
positions of the electrons, r𝑖, and nuclei, R𝑖. If the material of interest would not be
a solid crystal but a single hydrogen atom, equation (2.5) could be solved analyti-
cally by performing a coordinate transformation into centre of gravity coordinates.
However, an analytical solution of equation (2.5) for a solid containing thousands of
atoms is not possible. Note that solids can often be modeled as periodic crystals with
few atoms in a unit-cell, so that the equation (2.5) can be solved numerically. For
heavier elements than the hydrogen atom, such as the next element in the periodic
table, helium, as well as for more complex systems such as crystals, the large mass
difference between the nuclei and the electrons is used to decouple equation (2.5).
This leads into two separate equations, one for the nuclei and one for the electrons,
and is called Adiabatic or Born-Oppenheimer approximation.

2.1.2. Born-Oppenheimer approximation
The difference between electron and nucleus mass is synonymous with the fact that
the movements of electrons and nuclei usually take place on different time scales.
Figuratively speaking, the valence electrons stick to the movement of the ions, which
consist of nuclei together with inner core electrons1. In the following, the total wave
function Ψ, depending on the set of valence electrons and ions at positions r and R
respectively, is a solution of the time-independent Schrödinger equation,

𝐸 Ψ(r,R) = �̂� Ψ(r,R). (2.6)

In order to decouple equation (2.6), a small parameter 𝜒 is introduced, which behaves
as follows [30]:

𝜒 −→ 0 for 𝑀 −→ ∞. (2.7)

With the help of 𝜒, the small motions of nuclei away from their equilibrium positions
R0
𝑖 can be expressed as

R𝑖 = R0
𝑖 + 𝜒u𝑖, (2.8)

where u𝑖 denotes a displacement vector. Anticipating that the potential is quadrati-
cally expanded with respect to the small displacements, one can argue that the kinetic
energies of the nuclei should be of the same order of magnitude as the potential.
With that argument one can derive following relation for 𝜒

𝜒 =

(𝑚
𝑀

) 1
4
. (2.9)

1In the following, the terms "ions" and "nuclei" are used synonymously.
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Except for hydrogen and helium, the parameter 𝜒 is smaller than 0.1. This justifies
an expansion of the Hamilton operator and the total wave function with respect to
the small parameter 𝜒. When expanding the wave function and truncating after first
order, the total wave function Ψ is a product of 𝜙(R) and 𝜓(r,R):

Ψ(r,R) = 𝜙(R)𝜓(r,R). (2.10)

Note that the wave function for the electrons 𝜓(r,R) depends on the nuclear coordi-
nates R only as a parameter2. Therefore, the electrons obey the following equation

(
𝑇e + �̂�e-e + �̂�e-n(R)

)
𝜓𝑛(r,R) = 𝐸𝑛(R)𝜓𝑛(r,R), (2.11)

where the subscript 𝑛 in 𝐸𝑛(R) and 𝜓𝑛(r,R) denotes the 𝑛-th state of the electronic
system. Furthermore, the R dependence is only present in the interaction term �̂�e-n.
The wave function for the nuclei 𝜙(R) follows the decoupled equation

(
𝑇n + �̂�n-n + 𝐸𝑛(R)

)
𝜙(R) = 𝜖𝜙(R). (2.12)

Note that the equation for the nuclei only depends on the electronic eigenenergies
𝐸𝑛(R) of the 𝑛-th eigenstate. In principle, it is valid to refer to the ground state
energy by disregarding 𝑛, since typical excited states that occur at finite temperature
do not deviate greatly on the scale, which is important for the ion movement [30].
Physically, 𝐸𝑛(R) can be interpreted as damping of the nuclear motion by the valence
electrons. In addition, the extent of the damping effect is independent of whether the
electronic system is in the ground or in an excited state, which is true for typically
excited states.
This means that the Born-Oppenheimer approximation does not consider the excita-
tion of electrons by nuclei motion or vice versa. Specifically, the approximation does
not include derivatives of the electronic wave functions with respect to the nuclear
displacements. To formulate this statement in the common terminology, electron-
phonon coupling is not taken into account in the Born-Oppenheimer approximation.
Going beyond this approximation requires the inclusion of higher order terms in the
expansion with respect to the parameter 𝜒.

2Normally, parameters are noted as superscript indices. For the sake of simplicity, the notation is
left as it is here.
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2.1.3. Formal description of electron-phonon interaction
In order to recognize the missing interaction, which is not captured by the Born-
Oppenheimer approximation, it is supportive to express the Hamilton operator for a
coupled electron-phonon system in second quantization [15]:

�̂� =
∑︁
q𝜈

ℏ𝜔q𝜈 (�̂�†q𝜈 �̂�q𝜈 +
1
2
) +

∑︁
𝑛k
𝜖𝑛k𝑐

†
𝑛k𝑐𝑛k

+ 𝑁
−1/2
p

∑︁
k,q,𝑚,𝑛,𝜈

𝑔𝑚,𝑛,𝜈 (k, q)𝑐†𝑚k+q𝑐𝑛k(�̂�q𝜈 + �̂�†−q𝜈)

+ 𝑁−1
p

∑︁
k,q,q′,𝑚,𝑛,𝜈,𝜈′

𝑔DW
𝑚,𝑛,𝜈,𝜈′ (k, q, q′)𝑐†

𝑚k+q+q′𝑐𝑛k

× (�̂�q𝜈 + �̂�†−q𝜈) (�̂�q′𝜈′ + �̂�†−q′𝜈′).

(2.13)

This form of the Hamilton operator takes into account the interaction of electrons
and phonons. An explanation of the individual symbols is given in the following
list:

• 𝑐†
𝑛k and 𝑐𝑛k: fermionic creation and anihilation operators of electrons

• 𝑛: electronic band index

• �̂�†q𝜈 and �̂�q𝜈: bosonic creation and anihilation operators of nuclei

• 𝜈: phonon branch index

• 𝜔q𝜈: frequency of the 𝜈-th lattice vibration at the q-point

• 𝜖𝑛k: single-particle electronic eigenvalue at the k-point

• 𝑁p: number of unit-cells

• 𝑔𝑚,𝑛,𝜈 (k, q): matrix element including the first-order derivative of the Kohn-
Sham potential (see chapter 2.2.1) with respect to the atomic displacement

• 𝑔DW
𝑚,𝑛,𝜈,𝜈′ (k, q, q′): Debye-Waller (DW) matrix element including the self-energy

The first term in the first line of equation (2.13) describes the decoupled phonon
system and the second term describes the decoupled electron system. The second
line determines the interaction between electrons and phonons in first-order nuclear
displacements, i.e., mixed terms of the form 𝑐

†
𝑛k · 𝑐𝑛k · �̂�q𝜈 appear. The last term,

called Debye-Waller term, which extends over lines three and four of equation (2.13),
describes the second-order electron-phonon coupling in the nuclear displacements.
In particular, the Debye-Waller term, which describes the electronic self-energy, is
important for the calculation of the temperature-dependent electronic band structure.
Therefore, it cannot be excluded in the expansion of the nuclear displacements, i.e.,
the second order is necessary [31]. Note that, the matrix elements 𝑔 and 𝑔DW have
the unit of energy and can be interpreted as a measure of the coupling strength
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Figure 2.1. Schematic representation of a unit-cell showing the vector-notation of a nucleus
exposed to lattice vibrations. In the harmonic approximation lattice vibrations are assumed
to be small. The current position of the vibrating nucleus (light red) is given by the vector
𝝉𝑝𝜅, which is the sum of the small displacement vectorΔ𝝉𝑝𝜅 and the equilibrium position 𝝉0

𝑝𝜅

of the nucleus (red). The static lattice for Δ𝝉𝑝𝜅 = 0 is described by the vector sum 𝑅𝑝 + 𝑅𝜅,
where 𝑅𝑝 points to the p-th unit cell and 𝑅𝜅 points to the 𝜅-th nucleus of the unit-cell (see
equation (2.15)).

between electrons and phonons.
However, the expression of the Hamilton operator in equation (2.13) does not include
terms such as the phonon self-energy. In general, this expression of the Hamilton
operator must be treated with caution, as the terms describing the phonons are only
valid in the harmonic (see next chapter 2.1.4) and Born-Oppenheimer approximation.
Furthermore, the Hamilton operator in (2.13) is rather a model for the inclusion of
the electron-phonon coupling than a helpful guide for the explicit calculation of the
occurring parameters.

2.1.4. Harmonic approximation providing phonons
The harmonic approximation starts with the assumption that the electrons are in
their ground state when entering the total potential energy in equation (2.12). In
addition, the nuclei are located at their lattice positions like classical particles. The
equilibrium position of a nucleus can be written as (see Fig. 2.1):

𝝉0
𝑝𝜅 = R𝑝 + R𝜅, (2.14)

and the current position including lattice vibrations can be described as follows:

𝝉𝑝𝜅 = R𝑝 + R𝜅 + Δ𝝉𝑝𝜅 . (2.15)

Here, R𝑝 is the vector pointing to the p-th unit-cell of the crystal, R𝜅 is the vector
pointing to the 𝜅-th nucleus of the unit-cell at equilibrium position, and Δ𝝉𝑝𝜅 is a
small displacement away from the equilibrium position.
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Figure 2.2. Schematic representation of the harmonic approximation, in which the real
potential of the nucleus (black solid line showing an arbitrary potential shape) is replaced by
a potential of parabolic form (black dashed line). The approximation is only valid for small
displacements of the nucleus (red) from its equilibrium position.

To calculate dynamical properties, such as a phonon dispersion relation, from a
vibrating lattice one has to start with the harmonic approximation. In this approxi-
mation, the total potential energy of the lattice is expanded up to the second-order in
the nuclear displacements around their equilibrium positions. Note that the approx-
imation is called harmonic because the real potential of the nuclei is approximated
by a potential of parabolic form (see Fig. 2.2).
The first-order term of the potential vanishes because of expanding around the
equilibrium position 𝝉0

𝑝𝜅:
𝜕𝑈

𝜕𝝉𝑝𝜅

����
𝝉0
𝑝𝜅

= 0. (2.16)

Aborting the expansion after the second-order leads to following expression [15]:

𝑈 = 𝑈0 +
1
2

∑︁
𝑝𝜅𝛼

∑︁
𝑝′𝜅′𝛼′

𝜕2𝑈

𝜕𝜏𝑝𝜅𝛼𝜕𝜏𝑝′𝜅′𝛼′
Δ𝜏𝑝𝜅𝛼Δ𝜏𝑝′𝜅′𝛼′ . (2.17)

Here, the summation over 𝛼 contains the Cartesian coordinates and 𝑈0 is the total
potential energy of the nuclei in equilibrium position. The second term is a Hesse
matrix, containing the second-order derivatives of the total potential energy with
respect to the displacement, and is called the interatomic force constants:

𝐶𝑝𝜅𝛼,𝑝′𝜅′𝛼′ =
𝜕2𝑈

𝜕𝜏𝑝𝜅𝛼𝜕𝜏𝑝′𝜅′𝛼′
. (2.18)
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In order to obtain the eigenvalue equation of the form 𝐴v = 𝜆v one must first perform
a Fourier transformation of the interatomic force constant matrix. This leads to the
Dynamical matrix:

𝐷𝜅𝛼,𝜅′𝛼′ (q) =
1

√
𝑀𝜅𝑀𝜅′

∑︁
𝑝′
𝐶0𝜅𝛼,𝑝′𝜅′𝛼′ exp(𝑖q · R𝑝′). (2.19)

With the help of the Dynamical matrix one can formulate the eigenvalue equation:∑︁
𝜅′𝛼′

𝐷𝜅𝛼,𝜅′𝛼′ (q)𝑒𝜅′𝛼′,𝜈 (q) = 𝜆𝑒𝜅𝛼,𝜈 (q) (2.20)

with 𝑒𝜅𝛼,𝜈 (q) being an eigenvector or phonon mode at a specific q-point. The
eigenvalue 𝜆 can be identified as the phonon frequency squared, which is q-point
dependent: ∑︁

𝜅′𝛼′
𝐷𝜅𝛼,𝜅′𝛼′ (q)𝑒𝜅′𝛼′,𝜈 (q) = 𝜔2

q𝜈𝑒𝜅𝛼,𝜈 (q). (2.21)

Since a hermitian matrix has real eigenvalues and the Dynamical matrix is hermitian,
the phonon frequencies squared have to be real:

𝜔2
q𝜈 ∈ ℝ. (2.22)

In addition, due to the Hermitian property of the Dynamical matrix, the eigenvectors
𝑒𝜅𝛼,𝜈 (q) are orthonormal for each q:∑︁

𝜈

𝑒∗𝜅′𝛼′,𝜈 (q)𝑒𝜅𝛼,𝜈 (q) = 𝛿𝜅𝜅′𝛿𝛼𝛼′∑︁
𝜅𝛼

𝑒∗𝜅𝛼,𝜈 (q)𝑒𝜅𝛼,𝜈′ (q) = 𝛿𝜈𝜈′
(2.23)

Using the matrix of the interatomic force constants, the Hamilton operator of the
nuclei can be expressed as

�̂�nucleus = −
∑︁
𝑝𝜅𝛼

ℏ2

2𝑀𝜅

𝜕2

𝜕𝜏2
𝑝𝜅𝛼

+ 1
2

∑︁
𝑝𝜅𝛼

∑︁
𝑝′𝜅′𝛼′

𝐶𝑝𝜅𝛼,𝑝′𝜅′𝛼′Δ𝜏𝑝𝜅𝛼Δ𝜏𝑝′𝜅′𝛼′ , (2.24)

where the constant term of the 0-th order, 𝑈0, is neglected. Note that this expres-
sion of the Hamilton operator for the nuclei first considers the Born-Oppenheimer
approximation and second the harmonic approximation. In addition, the Born-
Oppenheimer approximation is used to calculate the interatomic force constants via
the electronic energy, whereas any kind of excitation is skipped and only the ground
state is considered.
However, the important quantities such as the phonon eigenmodes and phonon fre-
quencies are only dependent on the q-point vector of the first Brillouin zone (BZ). For
a system containing N atoms in the unit-cell, the calculation of the eigenvalue equa-
tion of the Dynamical matrix results in 3N phonon branches: 3 acoustic branches,
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i.e. frequencies that go linearly to zero for q in the long-wavelength limit, and 3N-3
optical branches that, in comparison, do not disappear in the long-wavelength limit
[32]. In principle, the eigenmodes of the three acoustic branches can be interpreted
as the three translation modes in which the ions move together. For the eigenmodes
of the 3N-3 optical branches the ions move out of phase. In the result section 3,
phonon dispersion relations are calculated along a specific path through the BZ,
which show acoustic as well as optical branches.

2.2. Density functional theory
Since the solution of a many-particle Hamilton operator for large periodic systems
is still an unsolvable task in terms of computational effort, the problem has to be
reduced to an effective one-particle equation3. This can be achieved by using a mean-
field approach which, apart from kinetic energy, combines all types of interaction
in one effective potential or field 𝑉𝑒 𝑓 𝑓 (r). The effective potential 𝑉𝑒 𝑓 𝑓 (r) only acts
on a single particle. Therefore, an effective one-particle equation for the valence
electrons can be derived[

− ℏ2

2𝑚
∇2 +𝑉𝑒 𝑓 𝑓 (r)

]
𝜓(r) = 𝐸𝜓(r), (2.25)

which is formally a Schrödinger-like equation. Note that this equation is equiva-
lent to the equation (2.11) including the nucleus- and electron-electron interaction,
whereby the nuclei only appear as parameters according to the Born-Oppenheimer
approximation.
An example of the approximation of the electron-electron interaction of a system
to an effective potential or single-particle potential is the Hartree-Fock (HF) theory.
The HF equation is written as [33]:[
− ℏ2

2𝑚
∇2 +𝑉𝑛 +

𝑁∑︁
𝑗=1

∫
𝑑r′

𝑒2

|r − r′|

(
|𝜙 𝑗 (r′) |2 −

𝜙∗
𝑗
(r′)𝜙𝑖 (r′)𝜙 𝑗 (r)

𝜙𝑖 (r)

)]
𝜙𝑖 (r) = 𝜖𝑖𝜙𝑖 (r)

(2.26)
Here, 𝜙𝑖 (r) denotes a single particle wave function, forming a basis set, with corre-
sponding single particle energies 𝜖𝑖. Note that the index i runs from 1 to the number
of fermions N. The external grid potential is given by 𝑉𝑛. In HF, a single Slater
determinant of a non-interacting system is used to describe the full wave function in
terms of the orthogonal 𝜙𝑖 (r).
The HF equation (2.26) is derived from a variational principle and is able to describe
the initial interactive electron system by a single particle potential. Since the HF
potential, the last term in brackets on the left-hand side of the equation (2.26), is
itself dependent on the wave function 𝜙𝑖 (r), the HF equation can only be solved

3Note that methods such as the coupled-cluster method, many-body perturbation theory or the
GW approximation can solve a Hamilton operator for small molecules and even small periodic
systems.
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iteratively. The first term of the HF potential, the so-called Hartree term, takes into
account the classical Coulomb repulsion, while the second term takes into account
the quantum mechanical exchange and is referred to as the Fock term 𝑉Fock. Note
that the Fock term is non-local due to the r and r′ dependence of 𝜙 occurring in
the Fock term. However, the disadvantage of the HF theory is that the calculated
energy would never be exact even in the case of a not-truncated, i.e. infinite, basis
set of 𝜙′s. This results from the fact that the exact electron correlation, i.e. the exact
electron-electron interaction, cannot be described by the HF potential.
A very powerful method that has been successfully developed in recent decades and
follows the mean-field approach is the so-called density functional theory (DFT). In
principle, DFT is an extension of the HF theory in order to achieve a more precise
description of the effective one-particle potential. This results in a more accurate
calculation of the total or ground state energy. On the one hand, the Hartree term
𝑉Hartree remains the same in DFT as in HF. On the other hand, the Fock term in the
HF theory is replaced in DFT by an exchange-correlation term 𝑉XC. Note that 𝑉XC
or later 𝐸XC in the Kohn-Sham approach is mathematically a functional that depends
on the electron density n. In particular, 𝑉XC accounts for all quantum mechanical
interaction. Furthermore, 𝑉XC contains also interaction contributions to the kinetic
energy, since the expression for the kinetic energy in equation (2.26) is the expression
for a non-interacting system.

2.2.1. Kohn-Sham equation

The origin of DFT is based on two important theorems by Pierre Hohenberg and
Walter Kohn. The first theorem is as follows4:

Hohenberg-Kohn Theorem (HK1):
On the one hand, the external potential𝑉ext is determined as a unique functional, apart
from a constant, by the electron density 𝑛(r). On the other hand, 𝑉ext determines
the Hamilton operator �̂�, which provides the wave function of the ground state.
Consequently, the ground-state wave function 𝜓0(r) is a unique functional of the
ground state density 𝑛0(r) via �̂� [34].

The first Hohenberg-Kohn theorem is illustrated in Fig. 2.3. If the ground state
electron density 𝑛0(r) is known, the external potential 𝑉ext is uniquely determined
by it. With the help of the Kohn-Sham equation (see equation below (2.31)), the
ground state wave function can be calculated.
The second theorem is as follows:

4The original quotation, which contains the first theorem, reads "Thus v(r) is (to within a constant)
a unique functional of n(r); since, in turn, v(r) fixes H we see that the full many-particle ground
state is a unique functional of n(r)" [34].
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Figure 2.3. Illustration of the first Hohenberg-Kohn theorem, which states that the ground
state electron density 𝑛0(r) uniquely determines the external potential 𝑉𝑒𝑥𝑡 . Note that 𝑉𝑒𝑥𝑡 is
a functional of the 𝑛0(r). The Kohn-Sham Hamilton operator in turn depends on the external
potential𝑉𝑒𝑥𝑡 and provides the ground state wave function as a solution. The electron density
𝑛0(r) itself is given by the product of the ground state wave function (see equation (2.27)).

Hohenberg-Kohn Theorem (HK2):
The functional that provides the true ground state energy of the system only provides
the lowest energy if the input density is the true ground state density [34]. This
means that the ground state density of the non-interacting system corresponds to the
true ground state density.

Note that the second theorem is directly related to the variation principle. The two
theorems HK1 and HK2 form the basis for the derivation of DFT.
The idea of Hohenberg and Kohn was to combine the dependence of the ground state
density 𝑛0 on the ground state wave function 𝜓0 and the dependence of the ground
state energy 𝐸0 on the ground state wave function 𝜓0 in order to derive a dependence
of the ground state energy 𝐸0 on the ground state density 𝑛0:

𝑛0(r) = 𝑛0[𝜓0]
𝐸0 = 𝐸0[𝜓0]

}
𝐸0 = 𝐸0[𝑛0(r)] .

This combination has the advantage that the knowledge of all 3N spatial coordinates
of the electrons, which enter the wave function 𝜓𝑖 (r1, ..., r𝑁), can be replaced by
only the knowledge of the spatial coordinates of the charge density 𝑛(r). In general,
the charge density is a scalar function and has following form:

𝑛(r) =
𝑁∑︁
𝑖=1

|𝜓𝑖 (r) |2, (2.27)

where 𝜓𝑖 (r) is the many-body wave function of a non-interacting system, which is
exactly described by one Slater determinant. The next step in the derivation of DFT
is to formulate the energy density functional

𝐸 [𝑛(r)] = 𝑇 [𝑛(r)] +𝑉𝑛 [𝑛(r)] + 𝐸Hartree[𝑛(r)] + 𝐸XC[𝑛(r)], (2.28)
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Figure 2.4. Illustration of the Kohn-Sham mapping [35], which states the mapping from an
interacting to a non-interacting system by keeping the ground state density constant.

which consists of functionals of the kinetic energy 𝑇 , the grid potential 𝑉𝑛, the
classical electron-electron interaction 𝐸Hartree (𝐸H) and the exchange-correlation
energy 𝐸XC. Note that each single term is a functional of the density. The exchange-
correlation energy 𝐸XC will be explained in more detail in the next section 2.2.2.
The expressions for 𝐸H as well as for 𝑉𝑛 are already known from the HF theory. In
order to obtain an expression for the kinetic energy functional, which is in principle
an expression of an interacting system, the expression for the kinetic energy of a
non-interacting system is used. This approach leads to the necessity of the Kohn-
Sham mapping [35], which is illustrated in Fig. 2.4.
The Kohn-Sham mapping aims to map the interacting system onto a non-interacting
system by keeping the ground state charge density constant. It follows that the same
expression can be used for the kinetic energy of a non-interacting system as for the
kinetic energy of an interacting system:

𝑇 [𝑛0,interacting(r)] = 𝑇 [𝑛0,non-interacting(r)] . (2.29)

In Kohn-Sham DFT, the interaction contributions of the kinetic energy, which also
originate from the electron-electron interaction, are not included in the energy func-
tional 𝑇 [𝑛0(r)], but in the exchange-correlation functional 𝐸XC [29].
Consequently, DFT is a formally exact theory. However, the exact exchange-
correlation is not known. Based on the Kohn-Sham mapping, the total wave function
can be described with a single Slater determinant as for a non-interacting system.
Note that, in comparison, the HF theory approximates a linear combination of Slater
determinants for a interacting system by only one Slater determinant.
Since the specific form of 𝐸XC is unknown, the challenge in DFT is to construct an
accurate description of 𝐸XC. Next, 𝐸XC is divided into the exchange energy 𝐸X and
the correlation energy 𝐸C. The former, the exchange, which contains all quantum-
mechanical interactions as well as corrections to the kinetic energy, is dominated by
the Pauli principle. The latter, the correlation is primarily caused by the interaction
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of non-local charge densities. For example, two atoms, i and j, are correlated by
a charge density that is described by a function 𝑓 (r𝑖, r 𝑗 ). Often, the correlation
functional is approximated by the GGA correlation (see chapter 2.2.3), which does
not take non-local correlation into account. Note that there are also functionals,
which consider non-local correlation, such as functionals including Van der Waals
interaction.
From the Hohenberg-Kohn theorems and the Kohn-Sham mapping one can derive
the Kohn-Sham equation by varying the energy density functional 𝐸 [𝑛(r)] in equa-
tion (2.28). The variation principle is applied for the corresponding one-particle
wave function 𝜓𝑖 to be optimised and using the normalisation of the wave function:

𝛿𝜓∗
𝑖

{
𝐸 [𝑛(r)] −

𝑁∑︁
𝑗=1
𝜖 𝑗

( ∫
𝑑3𝑟 |𝜓 𝑗 (r) |2 − 1

)}
= 0. (2.30)

Applying the variational principle provides the Kohn-Sham equation, which is the
fundamental equation of DFT:[

− ℏ2

2𝑚
∇2 +𝑉𝑛(r) + 𝑒2

∫
𝑑3𝑟

𝑛(r′)
|r − r′| +

𝛿𝐸XC
[
𝑛(r)

]
𝛿𝑛(r)

]
𝜓𝑖 (r) = 𝜖𝑖𝜓𝑖 (r). (2.31)

Since the solution of the wave function is determined by the density-dependent
potential and the density in turn depends on the wave function, the Kohn-Sham
equation must be solved self-consistently.
The algorithm for the iterative solution of the Kohn-Sham equation is shown in
Fig. 2.5. First, the use of a pseudo-potential replaces the functional of the grid
potential 𝑉𝑛, which covers all ions including the inner core electrons. The pseudo-
potential approach, which is explained in more detail in chapter 2.2.6, does not
replace the valence electrons. To determine an initial or input charge density, the
input wave function is given as a trial superposition of atomic orbitals. Next, the
functionals 𝐸H and 𝐸XC are calculated with the help of the initial charge density. All
three functionals form 𝑉eff and the Kohn-Sham equation can be solved for the first
time. The solution, i.e. the new wave functions, are in turn used to calculate the new
charge density or output charge density.
If the energy difference resulting from the energies calculated with the input and
output charge density is below a specific energy convergence threshold, the ground
state density is found. As soon as the ground state density and thus also the ground
state energy is found, post-processing can begin.
However, if the energy difference resulting from the corresponding input and output
charge densities is larger than the convergence threshold, the iteration process must be
restarted. For this purpose, the output charge density is mixed with the input charge
density in specific fractions and the algorithm is restarted with the calculation of
the potentials. In principle, the iteration procedure must be continued by mixing
the old and new densities until they are equal, i.e. 𝑛in = 𝑛out, or at least below a
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Figure 2.5. Illustration of the DFT algorithm for the self-consistent calculation of the ground
state density of a system by updating 𝑉eff.
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threshold value, i.e. 𝑛out − 𝑛in ≤ 𝛿 5. As soon as the last iteration step is completed,
self-consistency is achieved.
The energy solutions 𝜖𝑖 (k) of the Kohn-Sham equation (2.31) are interpreted as
eigenenergies that are k-point-dependent on k-points of the 1st BZ, if the system
is periodic. The set of eigenenergies along a specific path through the BZ refers
to the electronic band structure interpretation of DFT eigenvalues. The Fermi
level can be understood as the boundary energy that distinguishes occupied from
unoccupied electronic states. For 0 K, the occupation of the electronic states is a
sharp step function. The eigenenergy belonging to the highest occupied band with
the highest value is referred to as the valence band maximum (VBM). Accordingly,
the eigenenergy belonging to the lowest unoccupied band with the lowest energy
value is referred to as the conduction band minimum (CBM). In DFT, the electronic
band gap or Kohn-Sham gap is defined as the difference between the VBM and
CBM. The exact electronic band gap is the fundamental band gap, which coincides
with the Kohn-Sham gap by adding the derivative discontinuity (DD) [37]:

𝐸Fundamental Gap = 𝐸Kohn-Sham Gap + DD. (2.32)

Basically, the DD is a kink in the shape of the exchange-correlation energy when the
electron number changes [37]. Note that adding or removing of an electron from
the system causes an integer change in the total number of electrons. In principle,
the DD can be traced back to the fact that the chemical potential is discontinuous
when the number of electrons is changed, which means that the energy for adding
or removing an electron is not the same [38]. In contrast to 𝐸XC, 𝑉𝑛 and 𝐸H do not
exhibit a DD.
However, solving the Kohn-Sham equation provides the wave function 𝜓𝑖 and en-
ergies 𝜖𝑖, which are only fictitious quantities of a fictitious system. In the usual
nomenclature, these quantities approximated by Kohn-Sham DFT are often referred
to the fundamental band gap and real wave function. The question of the accuracy
of the Kohn-Sham approximation leads to the DFT band gap problem, which means
that the band gap is drastically underestimated by conventional DFT. On the one
hand, band gaps calculated with standard DFT functionals such as the LDA or PBE
functionals suffer greatly from the underestimation of the band gap. On the other
hand, band gaps from HF are greatly overestimated. Thus it is therefore somewhat
intuitive to start mixing HF theory into DFT. This leads to the class of so-called
hybrid functionals that also contain a fraction of the Fock exchange in addition to
the PBE exchange.
Note that the Kohn-Sham equation 2.31 is the basis of Kohn-Sham DFT, in which the
𝐸XC functional is only dependent on a local or semilocal density. The extension of
Kohn-Sham DFT is the generalized Kohn-Sham formalism [39], which involves non-
local functionals that are explicitly orbital-dependent, such as the Fock exchange.

5The question of how close the two electron densities, 𝑛in and 𝑛out, must be to each other for them
to be considered identical is answered in chapter "7.4 Achieving self-consistency" of [36]. In
principle, one could only use 𝑛out as new input density, but mixing 𝑛out with 𝑛in usually leads to
improved convergence behavior, i.e. fewer iteration steps are required.
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However, the development of exchange-correlation functionals is an ongoing task,
as described next.

2.2.2. Exchange-correlation functionals
In general the analytical form of the exchange-correlation functional 𝐸XC is un-
known. In principle, DFT would be exact if 𝐸XC includes all quantum mechanical
interaction as well as corrections to the kinetic energy of a non-interacting system,
which are not covered by the terms 𝑉n, 𝐸H and 𝑇 of the Kohn-Sham equation (2.31).
One first attempt to find an explicit expression for 𝐸XC is the local density approxi-
mation (LDA) [40]. In this approximation, the density is approximated by a function
that only has a local dependency, i.e., is only dependent on r. Here, only an ex-
pression for the exchange energy 𝐸X can be derived exactly without taking the spin
into account. The relation between the exchange functional and the exchange energy
𝜖unif

X , where 𝜖unif
X is the exchange energy per electron of a homogeneous or uniform

electron gas with the density 𝑛(r), is as follows [33]:

𝐸LDA
X [𝑛(r)] =

∫
𝑑3𝑟 𝜖unif

X (𝑛(r))𝑛(r). (2.33)

For the ground state charge density the following relation holds:

𝑛 =
𝑁

𝑉
=
𝑘3

F
3𝜋2 (2.34)

with the volume V, the number of electrons N and the Fermi wave vector 𝑘F. From
the homogeneous electron gas as in the Hartree-Fock approximation it is known:

𝐸X = −3𝑒2

4𝜋
𝑁𝑘F = −3𝑒2

4𝜋
𝑁 (3𝜋2𝑛) 1

3 . (2.35)

For the exchange energy per electron 𝜖unif
X the following relation holds:

𝜖unif
X =

𝐸X
𝑁

= −3𝑒2

4𝜋
(3𝜋2𝑛) 1

3 . (2.36)

Inserting this expression into (2.33), provides the following expression for the LDA
exchange energy

𝐸LDA
X [𝑛(r)] = −3𝑒2

4𝜋
(3𝜋2) 1

3

∫
𝑑3𝑟 𝑛(r) 4

3 . (2.37)

Taking the variation of the LDA exchange energy with respect to the density 𝑛(r)
results in the following expression:

𝛿𝐸LDA
X [𝑛(r)]
𝛿𝑛(r) = −2𝑒2

(
3

8𝜋
𝑛(r)

) 1
3

. (2.38)
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Note that this expression is only the LDA exchange energy resulting from a charge
density, which is approximated by the charge density of the homogeneous electron
gas. In addition, no expression for the correlation energy is given here. In order to
derive an expression for the correlation energy, it is not possible to refer to the HF
theory, which does not contain any correlation by default.
However, the performance of DFT with LDA leads to an underestimation of the
electronic band gap [41]. Since LDA only calculates a locally dependent charge
density 𝑛(r), which only depends on the position r, the calculation is also less
computationally demanding than for other functionals, such as hybrid functionals.
To circumvent the limitation of LDA by using the density of the homogeneous
electron gas, one must in principle overcome the locality of the LDA approximation.
In other words, the functional must take into account the inhomogeneity of the charge
density of a real system.

2.2.3. GGA functional - PBE
An extension of the LDA functional, which only acts locally, is the addition of the
charge density gradient. This type of exchange-correlation functionals belong to the
class of generalized gradient approximation (GGA) functionals. By including the
charge density gradient ∇𝑛, the inhomogeneity of the charge density is taken into
account. GGA functionals are also referred to as semilocal functionals. The general
form of the exchange-correlation functional including the gradient and the electron
spin is [42]

𝐸GGA
XC [𝑛↑(r), 𝑛↓(r)] =

∫
𝑑3𝑟 𝑓 (𝑛↑(r), 𝑛↓(r),∇𝑛↑(r),∇𝑛↓(r)) (2.39)

with the combined charge density

𝑛 = 𝑛↑ + 𝑛↓. (2.40)

Note that there is some flexibility in generating a GGA functional. The function
𝑓 can be constructed to obey specific constraints on the exact functional, or by
fitting it to reproduce experimental results (empiric functionals). A discussion on
the construction of 𝑓 , or of XC-functionals in general, is beyond the scope of this
thesis.
One specific derivation of a GGA functional, in which the parameters enter as
universal constants, is the so-called PBE functional [21]. In principle, the function
𝑓 in the case of PBE is constructed in such a way that it fulfils all energetically relevant
constraints of the exact functional. Due to their additive nature, the exchange and
correlation functional can be derived independently:

𝐸GGA
XC [𝑛] = 𝐸GGA

X [𝑛] + 𝐸GGA
C [𝑛] . (2.41)

The exchange functional is given as [21]:

𝐸GGA
X [𝑛] =

∫
𝑑𝑟3𝜖unif

X (𝑛(r))𝑛(r)𝐹X(𝑠) (2.42)
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with 𝜖unif
X being the homogeneous electron gas for the exchange energy per particle

as in the derivation of LDA

𝜖unif
X (𝑛) = −3𝑒2

4𝜋
𝑘F(𝑛) (2.43)

and with the Fermi wavevector 𝑘F

𝑘F(𝑛) = (3𝜋2𝑛) 1
3 . (2.44)

Furthermore, 𝐹X is the spin-polarized enhancement factor, which is dependent on
the dimensionless density gradient s

𝑠(𝑛) = 1
2𝑘F(𝑛)

|∇𝑛|
𝑛
. (2.45)

A specific form for 𝐹X, in where the parameter 𝜅 and 𝜇 are included as universal
constants, is

𝐹X(𝑠) = 1 + 𝜅 − 𝜅

1 + 𝜇𝑠2

𝜅

(2.46)

with
𝜅 = 0.804 and 𝜇 = 0.21951. (2.47)

Note that the difference in the exchange functional for GGA in equation (2.42) and
for LDA in equation (2.33) is the gradient-dependent enhancement factor 𝐹X.
The correlation functional is given by [21]:

𝐸GGA
C [𝑛↑, 𝑛↓] =

∫
𝑑𝑟3𝑛(r) [𝜖unif

C (𝑟s, 𝜉) + 𝐻 (𝑟s, 𝜉, 𝑡)] (2.48)

where 𝑟s is the local Seitz radius determined by

𝑛 =
3

4𝜋𝑟3
s
=
𝑘3

F
3𝜋2 , (2.49)

with 𝜉 being the relative spin polarization

𝜉 =
𝑛↑ − 𝑛↓
𝑛

(2.50)

and 𝑡 being the dimensionless density gradient in the case for the correlation

𝑡 =
1

2𝜙𝑘𝑠
|∇𝑛|
𝑛
. (2.51)

Here, the dimensionless density gradient 𝑡 consists of the function 𝜙, which is a
spin-scaling factor

𝜙(𝜉) = [(1 + 𝜉) 2
3 + (1 − 𝜉) 2

3 ]
2

, (2.52)
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and the Thomas-Fermi screening wave number 𝑘s

𝑘s =

√︂
4𝑘F
𝜋𝑎0

, (2.53)

which includes the Bohr radius 𝑎𝑜

𝑎0 =
ℏ2

𝑚𝑒2 . (2.54)

The function H in (2.48) takes the gradient contribution into account and is structured
in such a way that it fulfils three specific conditions that are beyond the scope of this
thesis. H is given by

𝐻 =

(
𝑒2

𝑎0

)
𝛾𝜙3 ln

(
1 + 𝛽

𝛾
𝑡2

(
1 + 𝐴𝑡2

1 + 𝐴𝑡2 + 𝐴2𝑡4

))
(2.55)

with A being

𝐴 =
𝛽

𝛾

(
exp

(
− 𝜖unif

C /(𝛾𝜙3𝑒2/𝑎0)
)
− 1

)−1
(2.56)

and the parameter 𝛽 and 𝛾 are included as universal constant with following values

𝛽 = 0.066725 and 𝛾 = 0.031091. (2.57)

An advantageous property of the PBE functional is that it corresponds to the gen-
eral form of a GGA functional, which can be retraced for some limiting cases of
parameters. This allows, for example, PBE to go over to the local spin density
approximation (LSD) or LSD functional for certain limiting cases.
Note that PBE does not include Van der Waals (VdW) interaction, which means it
does not correctly describe long-range dispersion interaction. Furthermore, when
testing the accuracy of PBE, DFT-PBE provides slightly more accurate band gaps
than LDA [21, 43]. However, there are two more important points that serve for a
generally good understanding of functionals. Firstly, the PBE correlation energy is
only local, and this also applies to the hybrid functionals that are based on the PBE
correlation energy. Secondly, PBE is a non-empirical functional.

2.2.4. Hybrid functional - HSE
Due to the fact that DFT-PBE leads to an underestimation and HF to an overestimation
of the electronic band gap, it is intuitive to consider both theories in one functional.
Mixing a fraction of Fock exchange or exact-exchange (EXX)6 into an exchange-
correlation functional forms the class of hybrid functionals. One simple example
of a hybrid functional is the PBE0 functional [44], which is formed by mixing a

6Note that Fock exchange and exact-exchange are used synonymously.
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constant fraction of 1/4 Fock exchange with the complementary fraction of 3/4 PBE
exchange for the full exchange energy:

𝐸PBE0
X =

1
4
𝐸EXX

X + 3
4
𝐸PBE

X . (2.58)

The correlation energy in PBE0 is not divided into different energy terms and consists
only of the PBE correlation energy:

𝐸PBE0
XC =

1
4
𝐸EXX

X + 3
4
𝐸PBE

X + 𝐸PBE
C . (2.59)

Results from the literature show that electronic band gaps of common inorganic
semiconductors calculated with the global hybrid functional PBE0 are overestimated
[45]. As a hypothesis, it should be mentioned here, that the constant amount of Fock
exchange in the long-range region of the so-called unscreened hybrid functional
PBE0 could be responsible for the overestimation of the band gap. Note that the
calculation of the full Fock exchange is computationally demanding.
In order to get rid of the Fock exchange in the long-range region, the class of screened
hybrid functionals is introduced. The idea is to split the Coulomb potential into a
short-range (SR) and a long-range (LR) region by using the error function (erf)
[46, 47]. This results in the following identity:

1
𝑟
=

1 − erf(𝜔𝑟)
𝑟︸        ︷︷        ︸

SR

+ erf(𝜔𝑟)
𝑟︸   ︷︷   ︸

LR

. (2.60)

The parameter 𝜔 determines the division of SR and LR. Therefore 𝜔 is called the
range-separation or screening parameter7 and has the unit of the reciprocal length,
e.g. Bohr−1 or Å−1. In the next step, each region will be treated with different
amounts of the various exchange energies. The fraction of Fock exchange in the SR
region is determined by the unitless parameter a, while the Fock exchange is not
present in the LR region. This leads to following expression for the screened hybrid
functional HSE that replaces the slowly decaying LR part of the Fock exchange with
GGA exchange only:

𝐸HSE
XC = 𝑎𝐸

EXX,SR
X + (1 − 𝑎)𝐸PBE,SR

X + 𝐸PBE,LR
X + 𝐸PBE

C . (2.61)

Note that the correlation energy is not screened and, as in the case of PBE0, contains
only the PBE correlation energy. The specific parameters for the HSE functional
are: 𝑎 = 0.25 for the fraction of Fock exchange and 𝜔 = 0.2Å−1 for the screening
parameter [22, 23]. These parameters are chosen so that the electronic band gaps
of standard semiconductors can be determined very accurately. The accuracy of the
band gaps calculated with HSE has an average absolute error of ∼ 0.2 eV compared
to band gaps from experiments [48]. Thus the assumption that mixing Fock exchange

7In connection with HSE, 𝜔 is often referred to as the screening parameter, while 𝜔 is referred to
as the range-separation parameter in connection with SRSH.
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and GGA exchange in one functional, as in the case of HSE, provides more accurate
electronic band gaps compared to DFT-PBE or HF is indeed true [23, 49]. Note that
the gained accuracy in band gaps calculated with HSE, requires more computational
effort compared to the use of PBE, because of the non-locality in the Fock exchange.
However, on the one hand HSE is based on fixed parameters 𝑎 and 𝜔 to precisely
describe electronic properties, which means that HSE is non-empirical. On the other
hand, the question arises whether these fixed parameters in screened hybrids provide
accurate values for all properties of semiconducting systems [50].

2.2.5. Screened hybrid functional - SRSH
In order to describe the asymptotic decay correctly, since in an interacting electron
system the electron density decays asymptotically, a fraction of the Fock exchange
must be present in the LR region in comparison to the HSE functional [51]. The
idea is as in conventional screened hybrid functionals to keep the mixing of Fock
and semilocal exchange along the electron distance of the system, but with tunable
fractions [52]. This can be achieved by a range-separation parameter, which is no
longer a universal constant and is calculated from first principles for every system.
Thereby, the calculation of the parameter obeys the ionization potential theorem,
which states for the exact functional the assignment of the KS-VBM and KS-CBM
to the opposite of the ionization potential and electron affinity, respectively [51]. This
leads to the class of screened range-separated hybrid functionals (SRSH)8 based on
the generalized Kohn-Sham theory [51, 53, 52].
As in the case for conventional screened hybrid functionals, SRSH uses the splitting
of the Coulomb potential into a SR and LR region with the help of the range-
separation parameter. To control the amount of Fock exchange in the LR region, a
tuning parameter 𝛽 is introduced. The parameter 𝛽 works in two ways: the fraction
that 𝛽 subtracts from the Fock exchange is added to the GGA exchange, and vice
versa in principle. Note that 𝛽 in [1] only has negative values and therefore subtracts
from the Fock exchange. The Coulomb potential is split into the following form
using the error function

1
𝑟
=
𝛼 + 𝛽 erf(𝛾𝑟)

𝑟
+ 1 − [𝛼 + 𝛽 erf(𝛾𝑟)]

𝑟
. (2.62)

Here, the Fock exchange is assigned to the first and the GGA exchange to the last
term of the right-hand side. Table 2.1 shows an overview and description of the
three SRSH parameters 𝛼, 𝛽 and 𝛾.
To easily recognize the effect of the tuning parameter 𝛽 the split Coulomb potential
can be rewritten as follows

1
𝑟
=
𝛼 + 𝛽 erf(𝛾𝑟)

𝑟︸           ︷︷           ︸
EXX

+ (1 − 𝛼) − 𝛽 erf(𝛾𝑟)
𝑟︸                   ︷︷                   ︸

GGA

. (2.63)

8In addition to the term SRSH for screened range-separated hybrid functionals, the term optimally
tuned range-separated hybrid functionals (OTRSH) is also frequently used.
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Table 2.1. List and description of the SRSH parameters. Note that 𝛼 and 𝛽 are unitless,
whereas 𝛾 has the unit of Å−1.

Parameter Description
𝛼 amount of exact-exchange
𝛽 tuning parameter
𝛾 range-separation (screening) parameter

Using the split Coulomb potential, the SRSH functional including exchange and
unscreened correlation energy can be written as follows

𝐸SRSH
XC = 𝛼𝐸

EXX,SR
X + (1 − 𝛼)𝐸GGA,SR

X

+ (𝛼 + 𝛽)𝐸EXX,LR
X + [(1 − 𝛼) − 𝛽]𝐸GGA,LR

X + 𝐸GGA
C .

(2.64)

The novel idea of the SRSH functional is that the dielectric constant 𝜖 should
correctly describe the asymptotic decay of the screened exchange energy along the
distance r of the electrons [52, 53]. For this reason, the parameters 𝛼 and 𝛽 are
mapped to the dielectric constant 𝜖 using the following equation:

𝛼 + 𝛽 =
1
𝜖
. (2.65)

Consequently, 𝛼 and 𝛽 determine physically correct the LR exchange (see (2.64)).
In particular for bulk materials, the tunable form of SRSH provides the correct
asymptotic decay by screening the exchange interaction as:

1
𝜖 𝑟

for 𝑟 −→ ∞. (2.66)

Note that the numerical range of the tuning parameter 𝛽 is limited to [52]:

−𝛼 ≤ 𝛽 ≤ 1 − 𝛼. (2.67)

To illustrate the effect of the range separation parameter 𝛾, which determines the tran-
sition between SR and LR and together with 𝛽 the proportions of the EXX and GGA
exchange, standard semiconductors are taken into account. For semiconductors, as
analysed in [1], the tuning parameter 𝛽 is always negative

𝛽 < 0. (2.68)

Accordingly, the exchange of the SRSH functional can be written as follows:

𝐸SRSH
X =


SR, 𝑟 = 0 : 𝛼𝐸EXX

X + (1 − 𝛼)𝐸GGA
X ,

LR, 𝑟 ≠ 0 :
(
𝛼−|𝛽 |erf(𝛾𝑟)

)
𝑟

𝐸EXX
X +

(
1−𝛼+|𝛽 |erf(𝛾𝑟)

)
𝑟

𝐸GGA
X .

(2.69)

Fig. 2.6 shows the effect of different values of 𝛾 and illustrates the portioning of EXX
and GGA exchange along the distance. The area below the coloured lines shows the
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Figure 2.6. Schematic illustration of the drop in EXX exchange with increasing distance r
for different values of the range-separation parameter 𝛾. The other parameters are 𝛼 = 0.25
and 𝛽 = −0.15 for the orange and red lines and 𝛼 = −𝛽 = 0.25 for the blue line to obtain
HSE. The figure above shows the function 𝑓 (𝑟) = 𝛼 + 𝛽 erf(𝑟 𝛾). For 𝑟 = 0, the function
tends to the EXX fraction of 𝛼, which is the same for all three cases, and for large distances
r to the EXX fraction of 𝛼 + 𝛽. The figure below shows the same function, but multiplied
by 1

𝑟
. The following applies to both figures: the area below the colored lines indicates the

fraction of EXX exchange, while the area above indicates the fraction of GGA. The blue
line (HSE) shows that the fraction of EXX exchange decreases more rapidly with increasing
distance r than the orange and red lines (SRSH), which retain a fraction of EXX exchange
even at large distances.
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amount of EXX exchange and the area above the coloured lines shows the amount
of GGA exchange. If one compares the blue line (HSE) with the red line (SRSH), it
is clear that SRSH retains a fraction of EXX in the LR range.
Furthermore, SRSH can be understood as a generalisation of functionals that can
represent other functional types for a suitable choice of parameters. Table 2.2 shows
some of the limit cases of parameters.

Table 2.2. Limit cases of the SRSH parameters that reproduce other types of functionals

Limiting case Effect
𝛽 = 0 range-separation is turned off

(SRSH becomes PBE0)
𝛼 + 𝛽 = 1 full EXX in LR, no GGA in LR
𝛼 = −𝛽 SRSH becomes HSE (if 𝛾 = 0.2 Å−1)
𝛼 = 𝛽 = 0 SRSH becomes PBE

In general, many physical quantities can be precisely determined by varying the
SRSH parameters. The question that arises from tuning the parameters is whether
the precise fixing of SRSH towards one quantity worsens the description of other
quantities. In the case of Wing et al. [27], the parameter 𝛼 is set constant to the
𝛼 value of HSE, the parameter 𝛽 is chosen to reproduce the dielectric constant 𝜖
according to equation (2.65) and 𝛾 is varied to fix the electronic band gap to the band
gap value from GW calculations. Note that the GW theory can predict the electronic
band gap very accurately, which, however, is associated with high computational
costs. Since both parameters, 𝛽 and 𝛾, are tuned to theoretical results, i.e. both the
theoretical dielectric constant 𝜖 and the band gap are calculated by the GW theory,
SRSH can be understood as an experimental parameter-free functional. In addition
to this way of tuning the SRSH functional, which makes SRSH a semi-empirical
functional, there is also a non-empirical way of tuning using localized Wannier
functions [54].
To summarize, the SRSH functional offers more flexibility by tuning compared
to other rigid conventional hybrid functionals and, therefore, also includes Fock
exchange in the LR region with variable proportion. In particular, the correct
asymptotic decay 1

𝜖 𝑟
in the LR limit is guaranteed, which is an important difference to

existing functionals relying on more than three parameters, such as (CAM-)B3LPY
[55, 56]. Once SRSH is tuned, it can describe not only very accurate electronic
properties such as the band gap, but also accurate optical absorption quantities
such as spectra of standard semiconductors [27, 28]. This coexistence of accurate
electronic and optical properties by using SRSH is the main advantage of it, which
does not exist in conventional DFT.
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2.2.6. Plane waves, energy cut-off and pseudo potentials
Since solids are usually approximated as periodic crystals modeled by repeating a
unit-cell, translational symmetry plays an important role. In a periodic crystal, the
potential also exhibits periodicity and can be expressed as a periodic potential:

𝑉 (r) = 𝑉 (r + R), (2.70)

where R is an arbitrary translation vector. Therefore the periodic potential shows
translational invariance. Furthermore, the foundation for the use of plane waves as
a basis set for solids is provided by the Bloch theorem. The Bloch theorem states
that the solution of the Schrödinger equation 𝜓𝑛k(r) in a periodic potential consists
of periodic functions and plane waves [57]:

𝜓𝑛k(r) = 𝑢𝑛k(r)𝑒𝑖kr, (2.71)

with the periodic function
𝑢𝑛k(r + R) = 𝑢𝑛k(r). (2.72)

Consequently, the solutions 𝜓𝑛k(r) are translationally invariant with the help of
plane waves:

𝜓𝑛k(r + R) = 𝜓𝑛k(r)𝑒𝑖kR. (2.73)

This justifies the choice of plane waves as a basis set for the expansion of the KS
solutions. Note that the vector k is referred to as the Bloch vector, which is restricted
to the first Brillouin zone, and the band index n refers to the number of electrons
in the unit-cell. In conjunction with a Fourier transform, the periodic functions are
expanded with the help of plane waves:

𝜓𝑛k(r) =
1
√
Ω

∑︁
G
𝐶G𝑛k𝑒

𝑖(G+k)r,

𝑢𝑛k(r) =
1
√
Ω

∑︁
G
𝐶G𝑛k𝑒

𝑖Gr,

where 𝐶G𝑛k are expansion coefficients. Note that G is a reciprocal lattice vector and
Ω is the unit-cell volume. In addition, the Fourier transform guarantees efficient
switching between real and reciprocal space by means of plane waves.
The number of plane waves, i.e. the number of basis functions, corresponding to a
specific k-point can be controlled by the kinetic energy relationship:

𝐸cut−off =
ℏ2

2𝑚
𝐺2

cut−off with |G + k| < 𝐺cut−off . (2.74)

On the one hand, the higher the energy value 𝐸cut−off for a specific k-point, the more
reciprocal G-vectors are allowed, and consequently the number of plane waves in the
basis set increases. On the other hand, specifying the value for 𝐸cut−off, i.e. defining
a cut-off energy 𝐸cut−off, is equivalent to truncate the basis set. If the k-point changes,
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the number of suitable G-vectors changes accordingly to fulfil equation (2.74).
Note that with a larger number of G-vectors, which are equivalent to G-grid points
spanning the fast Fourier transform (FFT) grid, a denser FFT grid can be achieved. In
principle, the cut-off energy 𝐸cut−off is selected so that the FFT grid is fine enough to
calculate converged quantities such as the total energy. Plane waves also offer other
technical advantages, for example they are suitable for parallelizing the calculation
in computer codes.
However, physical and chemical quantities are often determined by valence electrons
and not by inner core electrons. For this reason, it would make sense to treat valence
and core electrons differently in DFT. The grid potential 𝑉𝑛(r) in the Kohn-Sham
equation (2.31), which results from the ions, takes into account the nuclei and only
the inner core electrons. This means, that the solutions of the Kohn-Sham equa-
tion (2.31) represent only the valence electrons as fictitious wave functions. As a
consequence, the effective number of orbitals calculated by DFT is only the number
of valence orbitals. In order to find an explicit expression for the ionic core poten-
tial 𝑉𝑛(r), DFT uses the pseudo-potential approach, i.e. pseudo-potentials replace
𝑉𝑛(r). In addition, pseudo-potentials are often based on the frozen-core approxima-
tion (FCA), where the core electrons and the nuclei are considered rigid [58].
In general, there are three variants of pseudo-potentials: norm-conserving, ultra-
soft and projector-augmented wave (PAW) pseudo-potentials. To provide a simple
insight into the functionality of pseudo-potentials, the first type is briefly explained.
Norm-conserving pseudo-potentials are in principle an approach to correctly de-
scribe the charge density distribution of the ions and between them.
Following physical conditions for solids form the basis for the development of the
norm-conserving pseudo-potential approach [58, 59, 60, 61]: first, the orbitals de-
scribing the inner core electrons are more localized than the orbitals describing
the valence electrons and therefore exhibit less overlap with the orbitals of neigh-
bouring atoms, and second, the part of the orbital close to the nucleus tends to
oscillate strongly, while the part of the orbital away from the nucleus has a smooth
structure (see Fig. 2.7). Consequently, outside the core region the choice for plane
waves as a basis set is suitable. However, near the core region many plane waves
would be needed to expand the oscillating part of the orbitals, which is technically
laborious. This leads to the introduction of a so-called cut-off radius 𝑟𝑐, which
divides the description of the real wave function into two parts, namely the strongly
oscillating part near the core region (𝑟 < 𝑟𝑐) and the slowly varying part outside
the core region (𝑟 > 𝑟𝑐). A division of the radial part of the wave function into
two parts together with the corresponding potential is shown in Fig. 2.7. Outside
𝑟𝑐, the pseudo-potential follows the real Coulomb potential in order to reproduce
a conformity of the wave functions 𝜓real and 𝜓pseudo. Inside 𝑟𝑐, the pseudo wave
function is constructed to be smooth and nodeless unlike the real wave function.
The smoothness of the pseudo wave function guarantees that fewer plane waves are
needed in the expansion. Choosing the pseudo wave function to be nodeless allows
to find the shape of the pseudo-potential by simply inverting the radial part of the
Schrödinger equation.
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Figure 2.7. The blue dashed lines indicate the real all-electron wave function (upper line) in
the external Coulomb potential of the core (bottom line). The red continuous lines indicate
the pseudo wave function (upper line) in the pseudo potential (bottom line). Outside the core
region 𝑟𝑐 the real and pseudo wave function coincide with each other. Inside the core region
𝑟𝑐 the real wave function shows strong oscillations, whereas the pseudo wave function shows
smooth and nodeless character. Figure from [62].

However, replacing the potential by a pseudo-potential, i.e. modifying the potential
inside 𝑟𝑐 without affecting the shape of the wave function outside 𝑟𝑐, is only justified,
if the pseudo-potential exhibits transferability, which is explained next. Transfer-
ability is defined by two criteria: first, the logarithmic derivatives and the first energy
derivatives of the real and pseudo wave functions have to coincide outside 𝑟𝑐, i.e. for
𝑟 > 𝑟𝑐, and second, the real and pseudo charge densities have to be the same [59].
Another characteristic of pseudo-potentials is softness, which refers to the smallest
possible number of plane waves used to describe the pseudo wave function. Both
characteristics, transferability and softness, are associated with the determination of
the cut-off radius 𝑟𝑐. Note that an easily understandable upper limit for the cut-off
radius 𝑟𝑐 is therefore half the atomic distance to the neighbouring atom.
Consequently, norm-conserving pseudo-potentials guarantee that the charge density
within 𝑟𝑐 has to be the same for the real and the pseudo wave function:∫ 𝑟𝑐

0
|𝜓real(r) |2 𝑑3𝑟

!
=

∫ 𝑟𝑐

0
|𝜓pseudo(r) |2 𝑑3𝑟. (2.75)

Outside 𝑟𝑐, norm conservation is already given by the conformity of the two wave
functions 𝜓real and 𝜓pseudo. This ensures an overall identical charge density between
real and pseudo wave functions for the full wave function (𝜓 = 𝜓<𝑟𝑐 + 𝜓>𝑟𝑐), which
substantiates the replacement of the ionic grid potential𝑉𝑛(r) by a pseudo-potential.
To summarise, the pseudo-potential has two tasks: firstly, it describes the core
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Figure 2.8. Schematic representation of a two-dimensional BZ in reciprocal space after the
coordinate transformation of the corresponding two-dimensional unit-cell in real space. 𝑏1
and 𝑏2 are reciprocal lattice vectors. The BZ is sampled by k-points denoted as light green
dots. The purple shaded area denote the irreducible BZ. Due to symmetry the total number
of 16 k-points can be reduced to 3 k-points: 𝑘1, 𝑘2 and 𝑘3.

electrons with the ionic core potential and secondly, it also describes the part of the
valence electron wave function close to the nucleus.

2.2.7. K-point sampling
Following section is mainly based on [63]. The primitive unit-cell in reciprocal space
is called the Brillouin zone (BZ). In order to calculate quantities such as the charge
density, the density of states and others, an integration over the BZ is required. Since
the analytical form is typically not known for those quantities one has to numerically
solve the integral. For this purpose, a k-point mesh provides the finite sampling of
the BZ and for a computational approach, the integrals are replaced by weighted
sums over all k-points:

1
ΩBZ

∫
BZ

−→
∑︁

k
𝜔k𝑖

. (2.76)

Here, ΩBZ is the volume of the BZ and 𝜔k𝑖
is the weight of the k-point k𝑖. Fig. 2.8

shows the example of a two-dimensional cell in reciprocal space, which is sampled
with a total of 16 k points. The total number of sample points can be reduced by
symmetry, which means that k-points of the same symmetry only need to be calcu-
lated once and instead the weight of the equivalent k-points is multiplied accordingly.
The symmetry-reduced k-point mesh therefore lies in the irreducible BZ9. In this

9The irreducible BZ is derived from the first BZ taking into account all symmetries of the lattice.
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particular example of Fig. 2.8 the k-point k1 occurs 4 times and the corresponding
weight is 𝜔1 = 4

16 , which avoids multiple counting. The following applies to the
other weights in this example:

𝜔1 =
1
4
, 𝜔2 =

1
4
, 𝜔3 =

2
4
. (2.77)

Note that the sum of all weights is 1:∑︁
k𝑖

𝜔k𝑖
= 1. (2.78)

The integral of any quantity F can therefore be written as:

1
ΩBZ

∫
BZ
𝐹 (k) 𝑑3𝑘 −→

∑︁
k𝑖

𝜔k𝑖
𝐹 (k𝑖) =

1
4
𝐹 (k1) +

1
4
𝐹 (k2) +

2
4
𝐹 (k3). (2.79)

As an example of a function F, consider the energy 𝜖𝑖 of the i-th Kohn-Sham state.
The integration takes place over the continuous band-energy surface in the BZ and
calculates the total energy of this specific state:

𝐸total,𝑖 =
1

ΩBZ

∫
BZ
𝜖𝑖 (k) 𝑑3𝑘. (2.80)

Note that doubling the unit-cell in real space, i.e. forming a supercell, halves the cell
size in reciprocal space and therefore fewer k-points are required to sample the BZ.
This goes hand in hand with the back folding of the zone boundary to the center of
the BZ, which is the Γ-point.
In the previous chapter it was shown that the value of the energy cut-off controls the
number of G-vectors based on the relation (2.74) and thus determines the number of
plane waves available at each k-point. Consequently, the number of plane waves can
vary for different k-points. As an analogy: the G-vectors form the G-grid and the
k-points form the k-grid. In order to achieve convergence, e.g. a smoother volume
energy surface, sufficiently dense k- and G-grids must be used.
In general, different quantities converge at different rates, for example energy dif-
ferences converge faster than total energies with respect to the number of k-points.
Furthermore, convergence does not necessarily have to be achieved monotonically.
This means, that for some grids, for example, the integral in equation (2.80) is under-
estimated, i.e. the energy is too low, and for other grids the integral is overestimated,
i.e. the energy is too high.

2.2.8. Van der Waals interaction
The Van der Waals (VdW) interaction describes a small contribution to the binding
energy between atoms or molecules, caused by the motion of the electrons [57].
These instantaneous electron movements lead to the formation of temporal dipole
moments. The interaction between dipole moments from different atoms is called
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VdW interaction and can be described by a dispersion correction term. The corre-
sponding interaction potential is weakly attractive with a 𝑅6 dependence

𝑉Disp(R) ≈ − 1
𝑅6 . (2.81)

Here, R denotes the connection vector between two atoms. Exchange-correlation
functionals applied in DFT, such as semilocal or hybrid functionals, do not adequately
account for the VdW interaction. Therefore, to achieve a more accurate description
of the total energy, a dispersion correction energy 𝐸Disp is added to the Kohn-Sham
total energy:

𝐸
KS-DFT-Disp
tot = 𝐸KS-DFT

tot + 𝐸Disp. (2.82)

Note that there are several types of dispersion corrections and when added to the total
energy, they inherently correct interatomic forces and stress tensors. In addition,
dispersion corrections can also be included in calculations such as MD or vibrational
calculations using finite displacements. An empirical ansatz for the dispersion
correction energy can be written as follows [64, 65]:

𝐸Disp(R) = −𝐶6
𝑓𝑑 (R, 𝑅𝐴, 𝑅𝐵)

𝑅6 , (2.83)

which is a pairwise interatomic correction term. Here, R is the distance between two
atoms, 𝑅𝐴 and 𝑅𝐵 are the VdW radii of atom A and B, 𝑓𝑑 is the damping function
and 𝐶6 is the pair interaction coefficient determined by the atoms.
An extension of (2.83) is the parameter-free Tkatchenko-Scheffler (TS) method [66],
which takes into account the spatially dependent charge density dependence of 𝐶6
and 𝑓𝑑:

𝛼𝑖 = 𝜈𝑖 𝛼
free
𝑖 ,

𝐶6𝑖𝑖 = 𝜈
2
𝑖 𝐶

free
6𝑖𝑖 ,

𝑅0𝑖 =

(
𝛼𝑖

𝛼free
𝑖

) 1
3

𝑅free
0𝑖 .

Here, 𝛼 is the frequency-dependent polarizability and the modified 𝐶6 coefficient is
also 𝛼-dependent, i.e. 𝐶 (𝛼). The index i runs over all atoms and the term "free"
refers to the atom in vacuum. The effective atomic volume 𝜈𝑖 of atom i, which
depends on the charge density 𝑛(r), is given by

𝜈𝑖 (r) =
∫
𝑑3𝑟 𝑟3 𝑤𝑖 (r) 𝑛(r)∫
𝑑3𝑟 𝑟3 𝑛free

𝑖
(r)

. (2.84)

Here, 𝑤𝑖 (r) denotes the Hirshfeld weight

𝑤𝑖 (r) =
𝑛free
𝑖

(r)∑𝑁
𝑗=1 𝑛

free
𝑗

(r)
, (2.85)
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where N is the total number of atoms. Note that 𝑤𝑖 (r) can be interpreted as a relative
charge density for atom i.
A further development of the TS method, which does not calculate the structure and
energy of ionic solids with satisfactory accuracy, is the inclusion of the Hirshfeld
partitioning. The method is therefore referred to as the Tkatchenko-Scheffler method
with iterative Hirshfeld partitioning (TS-IH) [67, 68]. The concept behind this is
to replace the conventional Hirshfeld weights by an iterative Hirshfeld partitioning.
The partitioning is calculated self-consistently with fractional charges of the ions
instead of neutral reference atoms compared to the TS method. The self-consistent
procedure begins with updating the Hirshfeld weight. The updated Hirshfeld weight
is then used to update the number of electrons per atom. After that the updated
electron number is used to update the new charge density, which in turn is used to
update the Hirshfeld weight. The algorithm starts with densities from neutral atoms,
and the weight of the iteration step k is given by :

𝑤𝑘𝑖 (r) =
𝑛𝑘
𝑖
(r)∑𝑁

𝑗=1 𝑛
𝑘
𝑗
(r)
. (2.86)

In general, the inclusion of the dispersion correction is important for the theoretical
description of lead-halide organic-inorganic perovskites [69]. This holds in par-
ticular for structural properties such as relaxations based on energy-volume curves
or direct optimizations via a stress tensor [70] (reference used TS method). For
example, the inclusion of the dispersion correction in structure optimization affects
the orientation of the methylammonium cation associated with distortions of the
inorganic lead-halide framework in methylammonium lead iodide (MAPbI3) in a
specific direction [71]. However, the inclusion of VdW is also important for com-
mon inorganic semiconductors when it concerns structural properties such as lattice
constants and bulk moduli or cohesive energies [72] (reference used TS method).
Note that in the result section 4, the TS method is used for the Monte-Carlo cal-
culations, while the TS-IH method is used for MD calculations. On the one hand,
the consideration of the VdW interaction influences the structural properties and,
via these, also the electronic properties. On the other hand, the DFT band gap,
for example, does not change when calculated with or without VdW for the same
geometry, since the KS-eigenvalues are not VdW-corrected.

2.2.9. Hellmann-Feynman theorem
The Hellmann-Feynman theorem is a fundamental theorem from quantum mechan-
ics that connects the derivative with respect to a parameter of a time-independent
Hamilton operator with the corresponding ground state energy. In DFT, this theorem
can be applied to the ground state energy of the Kohn-Sham Hamilton operator (2.31)
to calculate the forces acting on the ions. In the Born-Oppenheimer approximation,
the positions of the ions R𝐼 are only included as parameters in the Kohn-Sham
Hamilton operator, i.e. �̂�R𝐼 . Note that the ground state energy 𝐸R𝐼

0 and the wave
functions 𝜓R𝐼 also depend on R𝐼 only as a parameter. Thus the force acting on an
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ion I at position R𝐼 can be written as (for reasons of clarity, the parameter R𝐼 is in
the following equation neglected) [73, 36]:

𝐹𝐼 = −∇𝐼𝐸0

= − 𝜕

𝜕R𝐼

⟨𝜓0 |�̂� |𝜓0⟩

= −
(
⟨∇𝐼𝜓0 |�̂� |𝜓0⟩ + ⟨𝜓0 |∇𝐼 �̂� |𝜓0⟩ + ⟨𝜓0 |�̂� |∇𝐼𝜓0⟩

)
= −⟨𝜓0 |∇𝐼 �̂� |𝜓0⟩.

(2.87)

The first and third terms of the third line vanish due to the variation principle
applied to the ground state. As a result, the force acting on ion I is given by the
expectation value of the ground state wave function and the derivative of the Kohn-
Sham Hamilton operator with respect to the ion position R𝐼 . Furthermore, the acting
force is only determined by the external potential 𝑉ext, and for local potentials the
expression is reduced to [74]:

𝐹𝐼 = −⟨𝜓0 |
𝜕

𝜕R𝐼

𝑉ext |𝜓0⟩

= −
∫

𝑑𝑟3 𝑛(r) 𝜕

𝜕R𝐼

𝑉ext.

(2.88)

Note that the first line also holds for non-local potentials, i.e. 𝑉ext(R,R′). Specific
examples of the application of the Hellmann-Feynman theorem are MD calculations
using Newton’s equation of motion, phonon frequency calculations by displacing the
atoms from their equilibrium positions, relaxation calculations by moving the atoms
according to the forces acting on the ions, and calculations of the stress tensor.

2.3. Spin-Orbit coupling
The relativistic extension of the Schrödinger equation is the Dirac equation, which
can be derived from the relativistic classical energy relation for a free electron [75]:

𝐸2 = 𝑐2p2 + 𝑚2𝑐4. (2.89)

This is achieved by the same correspondence rules for the substitution of classical
quantities by differential operators as in the derivation of the Schrödinger equation.
The relativistic classical energy relation guarantees the same power of space via
𝑝2 with 𝑝 −→ 𝜕

𝜕𝑥
and time via 𝐸2 with 𝐸 −→ 𝜕

𝜕𝑡
, which is not the case in the

Schrödinger equation, but is necessary for Lorentz invariance. In addition, the
solutions of the Dirac equation are four-component spinors.
In the semi-classical model of angular momentum, i.e., the vectorial description of
angular momentum, both the modulus and the z-component are discrete or quantized.
This also holds for the orbit angular momentum L and the intrinsic spin S of the
electron. It is known from the normal Zeeman-effect that an external magnetic field
B𝑒𝑥𝑡 interacts with the orbital angular momentum L in the following way:

�̂�Zeeman ∝ L̂ · B̂ext. (2.90)



2. Theory

38

A similar relation can be derived for the electron spin S and the induced internal
magnetic field 𝐵int by the electron-nucleus motion:

�̂�SOC ∝ Ŝ · B̂int. (2.91)

Regardless of which coordinate system is taken into account, that of the nucleus or
the electron, moving charge generates a magnetic field Bint. On the one hand, from
the perspective of the electron, the nucleus is circling around and the moving charge
of the nucleus generates a magnetic field at the position of the electron. On the
other hand, this magnetic field Bint can be expressed in terms of the orbit angular
momentum L of the electron and at the same time interacts with the spin S of the
electron. That is why it is called spin-orbit coupling (SOC).
When considering the different inertial systems, it should be noted that the relative
velocities v of the electrons become high for heavy atoms and so does the Lorentz
factor:

𝛾 =
1√︃

1 −
(
𝑣
𝑐

)2
. (2.92)

As the Lorentz factor increases, the SOC contribution also becomes large.
However, this relativistic effect can be included in the Kohn-Sham equation (2.31) by
adding the 2 × 2 SOC Hamilton operator. Note that the wave-functions then change
to a two-component spinor with ↑, ↓ denoting the spin-up or spin-down orientation.
The SOC Hamilton operator is proportional to

�̂�SOC ∝ Ŝ · L̂. (2.93)

Here, Ŝ involves the Pauli matrices �̂�. For the sake of clarity, it should be taken
into account in a relativistic calculation that the motion of the electron is accelerated
by the transition to the system of the nucleus (back transformation). Based on this
idea, the magnetic field Bint or the angular momentum L in equation (2.93) in the
rest frame of the electron can be expressed by the electric field ∇𝑉 and the electron
momentum p [36]:

�̂�SOC =
𝑒ℏ

4𝑚2𝑐2 (p̂ × ∇𝑉) · �̂�. (2.94)

For the general case that the spin orientation has no preferred direction such as the
z-direction, a non-collinear spin description must be used. This can be achieved by
using the spin density matrix to describe mixed spin states [36]:

𝜌𝛼𝛽 (r) =
∑︁
𝑛,k

𝑓𝑛k �̃�
𝛼∗
𝑛k (r)�̃�

𝛽

𝑛k(r). (2.95)

In the case of solids, the dominant contribution of SOC comes from the core region
of the atoms, where the gradient of the potential ∇𝑉 is large. Thus, the gradient
can be reduced to the radial derivative r̂ 𝜕

𝜕r , which is used, for example, for the SOC
implementation in the Vienna Ab initio Simulation Package (VASP) [76].
The implementation uses the framework of the PAW method, which introduces a
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basis set of projector functions 𝑝𝑖. In analogy to the cut-off radius 𝑟𝑐 in chapter 2.2.6,
the PAW sphere divides the core region into an inner and an outer region, in which the
pseudo orbitals �̃� are projected onto the projector functions 𝑝𝑖 and are expressed with
the all-electron partial waves 𝜙𝑖 (inside the PAW sphere). Assuming that the SOC
contribution is large only in the core region and has negligible contribution outside
the PAW sphere, the Hamilton operator expressed with the projector functions form
the PAW Hamilton operator [76]:

ˆ̃𝐻SOC =
∑︁
𝑖 𝑗

|𝑝𝑖⟩⟨𝜙𝑖 |�̂�𝛼𝛽

SOC |𝜙 𝑗⟩⟨𝑝 𝑗 |. (2.96)

Note that the PAW Hamilton operator is reduced to the all-electron one-center
contribution. Using the spin density matrix (2.95), the SOC energy contribution can
be expressed as follows [76]:

𝐸
𝑖 𝑗

SOC = 𝛿R𝑖 ,R 𝑗
𝛿𝑙𝑖 ,𝑙 𝑗

∑︁
𝑛,k
𝑤k 𝑓𝑛k

∑︁
𝛼,𝛽

⟨�̃�𝛼𝑛k |𝑝𝑖⟩⟨𝜙𝑖 |�̂�
𝛼𝛽

SOC |𝜙 𝑗⟩⟨𝑝 𝑗 |�̃�
𝛽

𝑛k⟩, (2.97)

where the all-electron partial waves 𝜙𝑖 (r) = 𝑅𝑖 ( |r − R𝑖 |)𝑌𝑙𝑖𝑚𝑖
(𝜃, 𝜙) located at R𝑖

include the radial function 𝑅𝑖 ( |r−R𝑖 |) and the spherical harmonics 𝑌𝑙𝑖𝑚𝑖
(𝜃, 𝜙). The

latter contains the corresponding quantum numbers 𝑙𝑖 and 𝑚𝑖. This local basis set
𝜙𝑖 (r) disappears outside the PAW sphere, so that the pseudo-orbital �̃�𝛼

𝑛k corresponds
to the true one-electron orbital 𝜓𝛼

𝑛k (outside the PAW sphere). Furthermore, 𝛼 =↑
or ↓ accounts for the spin-component of the two-component spinor, which is needed
for the non-collinear description of the magnetism. The remaining variables are
the band index n, the k-point weight 𝑤k and the Fermi weight 𝑓𝑛k. It is obvious
that the first Kronecker symbol in (2.97) shows that the effect of SOC is limited
within one nucleus, but for different orbitals. However, by adding 𝐻SOC to the
Kohn-Sham Hamilton operator, the Kohn-Sham equation is still a non-relativistic
equation compared to the Dirac equation, but the equation becomes two-component
(↑, ↓).
It is known that the SOC effect has a strong influence on the static band structure
of materials such as perovskites, which is due to the large atomic number Z and,
thus, due to the large mass of the constituting atoms. In general, the SOC effect can
be understood as a kind of renormalization of the band gap, which minimizes the
band gap. Note that perovskites crystallize in the typical perovskite structure ABX3,
where B is the metal atom such as lead or tin. This leads to a magnitude of the
SOC effect of ≈1 eV for lead-based HaPs and of ≈0.3 eV for tin-based HaPs [77]. In
addition, it is interesting to see whether there is an influence between the inclusion
of temperature in the DFT theory and the SOC effect. This will be discussed in
chapter 4. For example, a recent study showed for some III-V semiconductors
and telluride semiconductors that first-principle calculations using the Allen-Heine-
Cardona theory lead to a tiny reduction in the zero-point renormalization when SOC
is included [78]. Note that the Allen-Heine-Cardona theory as well as the zero-point
renormalization are explained in chapter 2.6.
In addition to the strong effect on the electronic structure for HaPs, the SOC effect is
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Figure 2.9. Left-hand side: a schematic representation of a degenerate non-splitted CBM
(black line). Right-hand side: a schematic representation of a Rashba splitted CBM (blue
lines). In this case, the initial band gap indicated at the R-point of the BZ is no longer
well-defined. The label "shift" denotes the horizontal shift of the CBM.

also responsible for lifting the degeneracy of the electronic bands. For example, SOC
involves the splitting of the CBM for HaPs on the one hand [79, 80] and the splitting
of the VBM for standard semiconductors on the other hand [81]. Furthermore,
the SOC effect is associated with the rarer Rashba effect of spin coupling [82].
Basically, the Rashba effect occurs in materials with a massive SOC contribution
in combination with low inversion symmetry or symmetry breaking. As a result
of these two effects, an intrinsic magnetic field occurs to which the spin states are
exposed, leading to spin state splitting. In some cases, a slight horizontal shift of the
CBM shifts the band gap away from the high symmetry point (see Fig. 2.9) [82].

2.4. Bulk properties

2.4.1. Lattice constant and bulk modulus
The equilibrium lattice constant of a material can be calculated using the energy-
volume curve 𝐸 (𝑉). To generate the energy-volume curve, the total energy 𝐸 must
be calculated for some test volumes 𝑉 around the expected unit-cell volume given
by the experimental lattice constant. For example, test volumes between 91% and
109% of the experimental volume at intervals of 3% are suitable. After calculating
the total energies for the test volumes, the energy-volume curve 𝐸 (𝑉) can be fitted
using the Birch-Murnaghan equation of state [83, 84, 85]:

𝐸 (𝑉) = 𝐸0 +
𝐵0𝑉

𝐵
′
0

(
(𝑉0/𝑉)𝐵

′
0

𝐵
′
0 − 1

+ 1
)
− 𝑉0𝐵0

𝐵
′
0 − 1

. (2.98)

Here, 𝐸0 is the total energy at the equilibrium volume 𝑉0, 𝐵0 is the bulk modulus
and 𝐵

′

0 is the derivative of the bulk modulus with respect to the pressure. Note
that the bulk modulus is a by-product of the Birch-Murnaghan equation, which is
specified as a fitting parameter. Fig. 2.10 shows a schematic representation of an
energy-volume curve for determining the theoretical equilibrium lattice constant.
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Figure 2.10. Schematic representation of a energy-volume curve 𝐸 (𝑉). The black circles
denote unit-cell volumes around the unit-cell volume given by the experimental lattice
constant. The experimental volume is denoted by the light-blue area including the lower and
higher limit of experimental values. The thin blue line denotes the minimum of the fitted
Birch-Murnaghan equation of state. The minimum volume provides the theoretical lattice
constant via𝑉0 = 1

4𝑎
3
0, which holds for materials crystallized in the face-centered cubic (fcc)

structure, i.e. the rock-salt structure.

2.4.2. Atomization energy
The atomization energy (AE) or cohesive energy is the energy difference between a
single atom in the vacuum and an atom bound in the crystal. Figuratively speaking,
it is the energy that has to be used to break down the crystal into its individual atoms.
The free atom or the atom in the vacuum can be simulated by just one atom in the
supercell. Consequently, the AE can be expressed as follows:

𝐸AE(𝑀) = 1
𝑁

[ ∑︁
atoms

𝐸0(𝑋) − 𝐸0(𝑀)
]
. (2.99)

Here, M denotes the crystal, for example a semiconductor, and X the individual
constituent atoms. Accordingly, 𝐸0(𝑀) is the total energy of the crystal and 𝐸0(𝑋)
is the energy of the individual atom. The sum runs over all atoms N in the supercell.
The AE is related to the Coulomb interaction of the atoms in the crystal, and its
magnitude is a measure of the strength of the crystal. Note that materials with a high
AE tend to crystallise in the fcc structure [81].

2.4.3. Phonon dispersion relations
In principle, there are several methods for calculating phonon properties such as
phonon frequencies of solids. Two common approaches are density functional
perturbation theory (DFPT) and the finite-difference method. The first method,
DFPT, has the disadvantage that most implementations in electronic structure codes
are only available for non-hybrid or GGA functionals. However, one advantage
is that the linear response theory (DFPT) does not require the knowledge of the
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size of the specific finite displacement, which is essential in the finite-difference
method. In addition, the finite-difference method requires large supercells of the
size of the phonon wavelength, whereas DFPT simply uses unit-cells. In any case,
each method must determine the second order force constant matrix in order to
calculate the phonon frequencies. Since the DFPT method is limited to non-hybrid
functionals and in order to compare phonon frequencies from hybrid as well as GGA
functionals, the focus here is on the finite-difference method.
As discussed in chapter 2.1.4, the interatomic force constant matrix is given by the
second derivative of the potential with respect to the nuclear displacements and can
be expressed with the same meaning of the indices as in chapter 2.1.4 as follows

𝐶𝑝𝜅𝛼,𝑝′𝜅′𝛼′ =
𝜕2𝑈

𝜕𝜏𝑝𝜅𝛼𝜕𝜏𝑝′𝜅′𝛼′
= −

𝜕𝐹𝑝𝜅𝛼

𝜕𝜏𝑝′𝜅′𝛼′
. (2.100)

The finite-difference method, as implemented in Phonopy [86], approximates the
force constant matrix with the help of finite displacements Δ𝜏:

𝐶𝑝𝜅𝛼,𝑝′𝜅′𝛼′ ≈
𝐹𝑝𝜅𝛼 (𝝉0

𝑝𝜅, 𝝉
0
𝑝′𝜅′ + Δ𝝉𝑝′𝜅′) − 𝐹𝑝𝜅𝛼 (𝝉0

𝑝𝜅, 𝝉
0
𝑝′𝜅′)

Δ𝝉𝑝′𝜅′
. (2.101)

Here, 𝐹𝑝𝜅𝛼 is the force acting on the 𝜅-th nucleus in the p-th unit-cell at position 𝝉0
𝑝𝜅

induced by a shifted nucleus at position 𝝉0
𝑝′𝜅′ + Δ𝝉𝑝′𝜅′ . Since phonon calculations

require relaxed supercells, the last term in the equation above can be set to zero, i.e.

𝐹𝑝𝜅𝛼 (𝝉0
𝑝𝜅, 𝝉

0
𝑝′𝜅′) = 0. (2.102)

The remaining expression for the force can be calculated using the Hellmann-
Feynman theorem, as described in chapter 2.2.9. With this method, phonon fre-
quencies 𝜔q𝜈 are calculated by solving the following eigenvalue equation containing
the dynamical matrix:∑︁

𝑝′𝜅′𝛼′

1
√
𝑀𝜅𝑀𝜅′

𝐶0𝜅𝛼,𝑝′𝜅′𝛼′ exp(𝑖q · R𝑝′) 𝑒𝜅′𝛼′,𝜈 (q) = 𝜔2
q𝜈 𝑒𝜅𝛼,𝜈 (q). (2.103)

Note that the phonon frequencies are calculated in the harmonic approximation and
without temperature effects.
In order to take into account the phonon branch splitting of the optical phonon fre-
quencies, the non-analytical term correction (NAC) must be applied [87]. This leads
to the splitting into longitudinal optical (LO) and transverse optical (TO) modes.
However, the splitting only occurs in a narrow region close to the Γ-point at the
BZ center and accounts for large wave vectors [88]. A direct consequence of the
splitting is a partial cancellation of the degeneracy of the optical phonon frequencies.
In general, the optical phonon branch splits into two energetically lower TO modes,
which are still doubly degenerate, and one energetically higher LO mode.
LO/TO splitting only occurs in materials with a poly-atomic basis such as the semi-
conductor GaAs, while it does not occur in materials with a mono-atomic basis such
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as silicon (Si) (see Fig. 2.11). The driving mechanism behind this is the symmetry
breaking induced by the poly-atomic basis, which leads to the effect of distinguish-
able atoms in the unit-cell [32]. Consequently, in a unit-cell with a mono-atomic
basis, the atoms are indistinguishable and the splitting is not relevant. Note that
materials with unit-cells containing only one atom, which corresponds to a mono-
atomic basis, exhibit only acoustic modes. In addition, one property of acoustic
phonons is that they obey the acoustic sum rule10. This means that the acoustic
phonons tend towards zero for long phonon wave vectors due to the charge neutrality
or the associated "effective charge neutrality" of the system [87].
In the case of the 𝑋-point at the BZ boundary, the degeneracy of the phonons is
different. For a mono-atomic basis such as in Si, the optical and acoustic frequen-
cies are degenerate at the 𝑋-point (see upper panel of Fig. 2.11). In contrast, for a
poly-atomic basis such as in GaAs, the optical and acoustic branches do not coincide
and are therefore not degenerate at the 𝑋-point (see lower panel of Fig. 2.11).
However, the distinguishable atoms differ in their atomic mass as well as in their
long-range Coulomb interaction. This results in different kinetic energies and dif-
ferent harmonic motions. Note that the atoms of a poly-atomic basis are exposed to
the same interatomic potential. The difference in mass of the atoms causes symme-
try breaking, which can be demonstrated by simulating oscillations with massless
springs. For a poly-atomic linear chain consisting of a basis of two different atoms
with masses 𝑀1 and 𝑀2, the solutions of the eigenvalue equation under the assump-
tion of only nearest-neighbour interaction are as follows [32]:

𝜔2 =
𝐾

𝑀1𝑀2

(
𝑀1 + 𝑀2 ±

√︃
𝑀2

1 + 𝑀2
2 + 2𝑀1𝑀2 cos(𝑞𝑎)

)
. (2.104)

Here, K is the spring constant, 𝑎 is the lattice constant and q is the q-vector. There
are two special cases at the BZ boundary for 𝑞 = 𝜋

𝑎
, which show the connection

between degenerate phonon branches and different atom masses:
1. Case 𝑀1 = 𝑀2:

𝜔2 =
𝐾

𝑀2

(
2𝑀 ±

√︃
2𝑀2 + 2𝑀2 cos(𝑞𝑎)

)
𝑞 −→ 𝜋

𝑎
: 𝜔2

± =
2𝐾
𝑀

(2.105)

If the masses are equal, there is a degeneracy of optical and acoustic branches at
the BZ boundary. This case corresponds to the case of Si with degeneracy at the
𝑋-point (see Fig. 2.11 upper panel, red rectangle on the right).

10Note that a uniform translation of the full crystal implies no forces on atoms.
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Figure 2.11. The upper panel shows the phonon dispersion relation for the semiconductor
Si, which has a mono-atomic basis. The lower panel shows the phonon dispersion relation
for the semiconductor GaAs, which has a poly-atomic basis. Both dispersion relations are
calculated using the PBE functional. Each red rectangle on the left side enclosing the Γ-point
emphasises that there is no LO/TO splitting for Si (upper panel), while LO/TO splitting is
present for GaAs (lower panel). Each red rectangle on the right side enclosing the 𝑋-point
at the BZ boundary shows degenerate acoustic and optical frequencies for Si (upper panel),
while for GaAs (lower panel) the acoustic and optical frequencies are not degenerate.
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2. Case 𝑀1 ≠ 𝑀2:

𝑞 −→ 𝜋

𝑎
: 𝜔2 =

𝐾

𝑀1𝑀2

(
𝑀1 + 𝑀2 ± (𝑀1 − 𝑀2)

)
𝜔2
+ =

2𝐾
𝑀2

𝜔2
− =

2𝐾
𝑀1

(2.106)

The different masses lift the degeneracy at the BZ boundary. This case corresponds
to the case of GaAs without degeneracy at the 𝑋-point (see Fig. 2.11 lower panel,
red rectangle on the right).

Dynamical matrix including NAC:

The aim of Pick et al. [87] was to derive an expression for the force constant matrix
that also takes into account the long-range Coulomb forces. However, the conven-
tional expression of the force constant matrix is restricted to a finite range, which
means that such long-range effects are not considered. The conventional expression
leads to an appropriate description for metals and non-ionic insulators. However,
ionic crystals exhibit long-range Coulomb forces, which have to be included in the
force constant matrix. Therefore, the long-range Coulomb forces are taken into ac-
count with the help of effective charges, also called Born effective charges, which are
described by a charge tensor 𝑍 . In principle, the Born effective charges consider all
effects of the charge polarization that act in the long-range. Additionally, the force
constant matrix containing the Born effective charges leads to LO/TO splitting.
In order to obtain a microscopic expression for the force constant matrix, which
provides an adequate description for ionic materials, the inverse of the dielectric
function 𝜖−1 of the electrons must be included in addition to the Born effective
charges. Note that the derivation of the force constant matrix by Pick et al. is based
only on the Born-Oppenheimer and harmonic approximation. The 𝜖−1 dependence
of the force constant matrix ensures a correct description of the disappearance of
the acoustic frequencies for long phonon wavelengths. In this context, the static
dielectric tensor 𝜖 describes the response of the nuclei in the static long-wavelength
range. To take into account the Born effective charges, the NAC term has to be added
to the dynamical matrix near the Γ-point [87, 89]:

𝐷𝛼𝛽 ( 𝑗 𝑗 ′, q → 0) = 𝐷𝛼𝛽 ( 𝑗 𝑗 ′, q = 0)︸              ︷︷              ︸
A term

+ 1√︁
𝑀 𝑗𝑀 𝑗 ′

4𝜋
Ω0

[∑
𝛾 𝑞𝛾𝑍

𝛾𝛼

𝑗

] [∑
𝛾′ 𝑞𝛾′𝑍

𝛾′𝛽
𝑗 ′

]∑
𝛼𝛽 𝑞𝛼𝜖

∞
𝛼𝛽
𝑞𝛽︸                                               ︷︷                                               ︸

NAC term

.

(2.107)
Here, the Greek indices 𝛼, 𝛽, 𝛾 are running over the Cartesian coordinates 𝑥, 𝑦, 𝑧,
while the index 𝑗 is running over the different atoms in the unit-cell. In addition,
Ω0 is the unit-cell volume, 𝑀 𝑗 is the mass of the j-th atom in the unit-cell, 𝑞𝛼 is the
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𝛼-th component of the phonon wave vector q and 𝑍𝛼𝛽
𝑗

is the effective charge tensor,
i.e. the Born effective charges. The electronic dielectric function 𝜖0 is formed by a
tensor 𝜖∞

𝛼𝛽
and can be written as follows:

𝜖0(q) =
∑︁
𝛼,𝛽

𝑞𝛼𝜖
∞
𝛼𝛽𝑞𝛽. (2.108)

Note that the dielectric function 𝜖0 is valid at both macroscopic and microscopic
levels. The main difference between the two terms on the right-hand side of the
dynamical matrix in equation (2.107) is the analytical behavior with respect to the
q wave vector at q = 0. The A term in equation (2.107) is analytical in contrast to
the NAC term, which includes the effective charges and is discontinuous for q = 0.
Moreover, the original dynamical matrix (A term) would be sufficient to describe
metals and non-ionic insulators, whose interaction has a finite range. Additionally,
the NAC term is needed to capture all long-range Coulomb interactions present in
ionic crystals in conjunction with a poly-atomic basis.
In order to rationalize the NAC term, some important conditions for 𝑍 are illustrated.
In analogy to the conventional charge neutrality of the system, which enables the
Fourier transform of the Coulomb potential at zero [87]:

𝑉Coulomb(q) =
{

4𝜋𝑍𝑒2

𝑞2 for 𝑞 ≠ 0,
0 for 𝑞 = 0,

the effective charge neutrality is defined as a well-defined tensor:

𝑍
𝛼𝛽

𝑗
= lim

q→0
𝑍
𝛼𝛽

𝑗
(q). (2.109)

In particular, 𝑍𝛼𝛽
𝑗

shows the independence of the direction of q. The corresponding
necessary effective charge neutrality, which is a requirement of the system, can be
written as follows: ∑︁

𝑗

𝑍
𝛼𝛽

𝑗
= 0. (2.110)

Note that the effective charge neutrality is generally not identical to the conventional
charge neutrality, but is implied by it here. Consequently, the effective charge
neutrality ensures the acoustic sum rule when considering long phonon wavelengths,
i.e. all frequencies of the acoustic modes disappear for q → 0.
Next, the Born effective charges can be linked to the macroscopic electric field 𝐸𝛼𝛽

𝑗

using the microscopic expression for 𝑍𝛼𝛽
𝑗

[87]:

lim
q→0

𝜖−1
0 (q)

∑︁
𝛼

𝑞𝛼𝑍
𝛼𝛽

𝑗
|𝑒 | = Ω0

4𝜋
lim
q→0

∑︁
𝛼

𝑞𝛼𝐸
𝛼𝛽

𝑗
. (2.111)

This means that the charge 𝑍𝛼𝛽
𝑗
|𝑒 | is screened in a macroscopic way and reveals

the specific macroscopic electric field. Conversely, this is equivalent to keeping



2.4. Bulk properties

47

the macroscopic electric field 𝐸𝛼𝛽
𝑗

constant, which provides information about the
intrinsic polarization caused by the system itself. With the help of the polarisation
𝑃𝛼 per unit-cell, the Born effective charges are defined as follows [36]:

𝑍
𝛼𝛽

𝑗
|𝑒 | = 𝜕𝑃𝛼

𝜕𝜏𝑗 𝛽

����
𝐸macroscopic

. (2.112)

Here, 𝜏𝑗 𝛽 is a displacement of the 𝑗-th nucleus. Note that the Born effective charges
are non-zero for ionic crystals consisting of a poly-atomic basis, even in the absence
of a macroscopic electric field [90].
To summarize, the intrinsic lattice polarization, as described by the Born effective
charges 𝑍 , must be considered to account for long-range Coulomb forces. This leads
to an additional term, the NAC term, which must be added to the interatomic force
constant𝐶 when the phonon wave vectors become small, as is the case at the Γ-point
(schematic representation of the formula):

𝐶 = 𝐶analytical + 𝐶non-analytical correction(𝑍). (2.113)

The inclusion of the NAC term leads to the splitting of the optical branch into LO
and TO branches at the BZ center for a material with a poly-atomic basis.

Imaginary phonon frequencies

If the eigenvalue equation of the dynamical matrix (2.21) provides also negative
eigenvalues

𝜔2
q𝜈 = −|𝜆q𝜈 |, (2.114)

the corresponding frequencies are referred to as imaginary frequencies

𝜔q𝜈 = 𝑖
√︃
|𝜆q𝜈 |. (2.115)

In general, imaginary frequencies provide indications of instabilities in the structure
or geometry [14, 91]. They indicate that there is an ion configuration that corresponds
to a negative potential, which is in contradiction to the assumption that the potential
is in equilibrium or at its minimum [32]. Note that displacing the nuclei along a
specific imaginary mode means that the structure becomes unstable or results in a
structure of lower energy.
On the one hand for very harmonic materials such as Si (see chapter 3), theories
like the finite-difference method provide an accurate phonon description that do not
lead to imaginary frequencies. On the other hand, the finite-difference method also
provides imaginary frequencies for anharmonic materials such as the HaP CsPbBr3
(see Fig. 2.12). Phonon modes that belong to imaginary frequencies are also referred
to as soft phonon modes. These soft phonon modes induced by anharmonicity are
responsible for the octahedral tilting in materials such as HaPs [14, 92, 8]. Therefore,
cubic HaP structures, which exhibit octahedral tilting, show a lower energy than
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Figure 2.12. Phonon dispersion relation of cubic CsPbBr3 calculated using the finite-
difference method (blue line) without taking temperature into account and calculated with
the help of MD (orange line) at finite-temperature 𝑇 = 425 K. The finite-difference method
works purely in the harmonic approximation and shows strong imaginary frequencies at the
𝑀- and 𝑅-point at the BZ boundary. The MD calculation also accounts for anharmonicity
and therefore imaginary frequencies are not present. Reprinted with permission from [93],
published under a CC BY 4.0 license.
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the corresponding cubic high-symmetry structure, where the tilting is not present.
However, in order to include soft phonon modes, the theory must take anharmonicity
into account, as is the case in MD (see Fig. 2.12).
In addition to structural instabilities, numerical problems can also cause imaginary
frequencies. These numerical issues can be circumvented by increasing the energy
cut-off, but this cannot be regarded as a general solution for eliminating them.
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Figure 2.13. Left-hand side: cubic high-symmetry structure (Pm3m) of CsPbBr3, which
can only be seen as an average. Right-hand side: arbitrary MD snapshot of the trajectory of
CsPbBr3. The thermal motion leads to disorder, which can be seen as tilting of the octahedra
and displacements of the atoms (discussed in more detail in chapter 4).

2.5. Modeling of thermal and dynamical properties

2.5.1. Molecular dynamics

Molecular dynamics (MD) is based on the ergodic hypothesis, which states that the
ensemble and time average of an observable 𝐴 are equal:

⟨𝐴⟩ =
∫∫

𝑑q 𝑑p 𝐴(q, p)𝜌(q, p)︸                            ︷︷                            ︸
ensemble average

= lim
𝑡→∞

1
𝑡

∫ 𝑡

0
𝑑𝑡′𝐴(q(𝑡′), p(𝑡′))︸                               ︷︷                               ︸

time average

. (2.116)

Here, 𝜌 is the phase-space density and q, p are the generalized coordinates and
conjugate generalized momenta of an observable 𝐴. The expression on the right-
hand side of the ergodic hypothesis (2.116) denotes the time average of the phase-
space trajectory and is calculated with the help of the MD trajectory. In addition,
the time evolution in MD simultaneously includes temperature and, therefore, leads
to finite-temperature DFT. This is achieved by incorporating the thermal motion of a
system, which leads to a change in structure due to displaced atoms. Over time, the
thermal motion induces disorder in an initially ordered structure (see Fig. 2.13).
However, the inclusion of the thermal motion is based on a classical approach in
which the motion of the nuclei is given by a macroscopic equation of motion, i.e.
Newton’s equations of motion. Note that tunneling effects or zero point vibrations
are not considered in the classical equation of motion and, therefore, cannot be
described by MD. If the motion of the nuclei is given by Newton’s equation of
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motion and the force acting on the nuclei can be expressed by a conservative force
field 𝑉 , the following can be written:

𝑀𝐼

𝑑2

𝑑𝑡2
R𝐼 (𝑡) = −∇𝐼𝑉 ({R𝐼}). (2.117)

Here, 𝑀𝐼 is the mass of the 𝐼-th nucleus and {R𝐼} denotes the set of nuclei positions.
In general, there are two approaches to solve this equation: the first one is called force
field MD, in which a complex parametrization of the potential force field𝑉𝐹𝐹 ({R𝐼})
is applied, and the second one is called ab-initio MD, in which the forces 𝐹𝐼 acting
on the nuclei are calculated using first-principles electronic structure methods, such
as DFT. Note that the ab-initio MD is also referred to as first-principle MD and can
be considered as parameter-free. The focus here is on ab-initio MD.
The ab-initio MD itself can be provided by either the Car-Parrinello MD or the
Born-Oppenheimer MD. The main difference between these two approaches is the
fact that Car-Parrinello MD [94] does not have to refer to the electronic ground state
at every simulation step. However, the Born-Oppenheimer MD is implemented in
VASP, and is therefore discussed in more detail here.
In order to be able to apply the Hellmann-Feynman theorem (see chapter 2.2.9), two
requirements must be fulfilled: the first is given by the BO approximation, which
states that the electrons remain in their ground state 𝜓0 while the nuclei move, and
the second is given by the fact that the positions of the nuclei 𝑅𝐼 are only included
as parameters in the Kohn-Sham Hamilton operator. Therefore, the forces acting on
the nuclei can be expressed using the Hellmann-Feynman theorem as follows:

F𝑡𝐼 = −∇𝐼 min
{𝜓𝑖}

⟨𝜓𝑖 |𝐻KS |𝜓𝑖⟩. (2.118)

Furthermore, the Hellmann-Feynam theorem can only be applied to time-indepen-
dent Hamilton operators, such as the Kohn-Sham Hamilton operator, and thus the
time 𝑡 only appears as a parameter, denoted by F𝑡

𝐼
. Applying the variation principle

to the ground state 𝜓0 simplifies the above equation to

F𝑡𝐼 = −⟨𝜓0 |∇𝐼𝐻KS |𝜓0⟩. (2.119)

This equation is used by DFT to calculate the forces at a specific time 𝑡 and a specific
position 𝑅𝑡

𝐼
with respect to the ground state.

However, the Verlet algorithm is used to take into account the time evolution of the
system, i.e. to update the positions of the nuclei over time [95]. Here, the trajectory
develops in discrete time steps of the size Δ𝑡. The new position at time 𝑡 + Δ𝑡 and
the previous position at time 𝑡 − Δ𝑡 can be expressed as follows:

R𝑡+Δ𝑡
𝐼 = R𝑡

𝐼 + Δ𝑡 v𝑡𝐼 +
1
2
Δ𝑡2 a𝑡𝐼 ,

R𝑡−Δ𝑡
𝐼 = R𝑡

𝐼 − Δ𝑡 v𝑡𝐼 +
1
2
Δ𝑡2 a𝑡𝐼 .

(2.120)

By summing up these equations, it is shown that only the information of the current
position R𝑡

𝐼
at time 𝑡, the current acceleration a𝑡

𝐼
at time 𝑡 and the information of the
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previous position R𝑡−Δ𝑡
𝐼

at time 𝑡 − Δ𝑡 is used to determine the new position R𝑡+Δ𝑡
𝐼

at
time 𝑡 + Δ𝑡:

R𝑡+Δ𝑡
𝐼 = 2R𝑡

𝐼 − R𝑡−Δ𝑡
𝐼 + Δ𝑡2 a𝑡𝐼 . (2.121)

The acceleration can be expressed explicitly by the force:

R𝑡+Δ𝑡
𝐼 = 2R𝑡

𝐼 − R𝑡−Δ𝑡
𝐼 + Δ𝑡2

1
𝑀𝐼

F𝑡𝐼 . (2.122)

This equation is used to calculate the new positions of the nuclei for each time step
of the trajectory. Note that the investigated MD simulation time or the length of the
trajectory consists of a sequence of discrete time steps.
This point raises two important questions: Firstly, how large must a time step Δ𝑡 be,
and secondly, how long must the simulation time be? In general, the time step is a
very important parameter in an MD simulation and depends on the material itself
and on the investigated observable. The upper limit is determined by the oscillation
period of the atoms in the crystal, which means that one time step may only sample
once per oscillation period. As a rule of thumb, the time step must be 10 to 100 times
smaller than the oscillation period of vibrations in order to capture the dynamics
correctly [96]. If the material consists of heavy and light atoms, the faster vibrating
light atom determines the time step. However, the lower limit is given quantitatively
by the available computer resources or by the fact that small time steps lead to long
runtimes in MD simulations. This leads to the second question, namely the length
of the trajectory or the simulation time.
In principle, the trajectory consists of an equilibration run and a production run. The
former is completed when the initial velocities of the atoms are Maxwell-Boltzmann
distributed, as in a classical particle system. Note that the Maxwell-Boltzmann dis-
tributed velocities are later a requirement for the definition of a constant temperature,
which guarantees the validity of the equipartition theorem (2.123)). The production
run must last until the investigated observable is statistically converged. For instance,
the vibrational density of states (VDOS) of a material converges relatively fast when
the phonon frequencies are high. But for a material with low phonon frequencies,
long MD trajectories are required to achieve a converged VDOS. Thus, the length
of the trajectory, as well as the size of the time step, are determined by both, the
observable and the material.
Since MD describes the thermal motion at a specific temperature, a suitable defini-
tion of temperature must first be found. For this purpose, the equipartition theorem
of energy is used to define the temperature. The equipartition theorem states that
in thermal equilibrium the energy is equally distributed over all degrees of freedom.
It follows that the average kinetic energy, distributed over all degrees of freedom,
which occur quadratically in the Hamilton operator of the system, can be written as
follows [97]:

⟨1
2
𝑀𝐼v2

𝐼 ⟩ =
1
2
𝑘B𝑇. (2.123)
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For a system consisting of N particles and 𝑁f degrees of freedom, the total kinetic
energy defines the macroscopic temperature at time t [97]:

𝑇 (𝑡) = 1
𝑁f

2
𝑘B

𝑁∑︁
𝑖=𝐼

1
2
𝑀𝐼v𝐼 (𝑡)2. (2.124)

Since the velocities or the kinetic energy show a fluctuating behavior, there is
consequently also a fluctuating temperature from time step to time step. Note
that the temperature fluctuates along the trajectory around a predefined equilibrium
temperature.
In addition, a requirement for the application of the Hellmann-Feynamic theorem in
(2.118) is the time independence of the Hamilton operator, which leads to a vanishing
total time derivative

𝑑𝐻

𝑑𝑡
= 0 ⇔ 𝐸 = constant. (2.125)

This means that the total energy 𝐸 of the system is conserved. Consequently, the
system is in the microcanonical ensemble as an NVE ensemble, since so far the
particle number and the cell parameters are not dynamic variables, i.e. N and V are
also constant.
In order to control the temperature in (2.124), one possible approach would be to
rescale the masses 𝑀𝐼 or the velocities v𝐼 . However, this would lead to inaccuracies
or unphysical behavior in the MD simulation with respect to the nuclear positions,
which is a disadvantage. A more precise method to control the temperature is to use
a thermostat, which avoids these inaccuracies caused by the rescaling approach. This
leads to the canonical ensemble or NVT ensemble, in which the temperature 𝑇 is
kept constant instead of the total energy 𝐸 . In the NVT ensemble, the system is em-
bedded in a heat bath that allows for energy fluctuations, while the MD temperature
fluctuates according to the kinetic energy of the ions. In principle, several variants
of thermostats are available for the VASP-MD simulation, such as the Nosé-Hoover
thermostat [98, 99].
The basic idea of isothermal-isochore MD using the Nosé-Hoover thermostat is to
introduce an additional degree of freedom, denoted by 𝑠, which leads to additional
terms in the Hamilton operator. The extension of the Hamilton operator11 introduces
artificial coordinates and momenta, so that a momentum 𝑝𝑠 is assigned to the addi-
tional degree of freedom 𝑠. The connection between real and artificial variables is
given by the following transformation, where real variables are denoted by a prime
[97]:

R′
𝐼 = R𝐼 ,

P′
𝐼 =

1
𝑠

P𝐼 ,

𝑠′ = 𝑠,

Δ𝑡′ =
1
𝑠
Δ𝑡.

(2.126)

11Note that the original derivation of an extended Hamilton operator is based on an extended
Lagrangian.
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As this transformation also performs time scaling, there are variations in the time
intervals. This leads to a time stretch of the artificial time interval, i.e. Δ𝑡 = 𝑠Δ𝑡′.
In order to avoid this undesirable effect in the MD simulation, a later transformation
back to the real variables is necessary. However, with the help of the transformation,
the Nosé-Hamilton operator for a system with N atoms can be written as follows:

𝐻Nosé =

𝑁∑︁
𝐼=1

p2
𝐼

2𝑀𝐼 𝑠
2 +𝑉 ({R𝐼}) +

𝑝2
𝑠

2𝑄
+ 𝐿𝑘B𝑇 ln(𝑠) (2.127)

Note that 𝑠 is dimensionless and 𝑄 has the role of a hypothetical effective mass12

corresponding to 𝑠. Furthermore, 𝐿 is a factor that must be set to 3N for the real-
variable description. The logarithmic term ln(𝑠) ensures that the time is scaled
correctly to obtain the NVT ensemble. The equations of motion can be derived from
the Nosé-Hamilton operator using the Hamilton formalism:

𝑑p𝐼
𝑑𝑡

= −𝜕𝐻Nosé
𝜕R𝐼

. (2.128)

After transforming back to the real variables, the following equation is obtained for
the momentum:

𝑑

𝑑𝑡
p𝐼 = −∇𝐼𝑉 ({R𝐼}) −

𝑠𝑝𝑠

𝑄
P𝐼 . (2.129)

Here, all variables are real, i.e. they are actually labeled with a prime sign, but for
reasons of clarity all prime signs are neglected. With the exception of the last term
on the right-hand side of the equation (2.129), this equation is identical to (2.117).
The additional term 𝜁 has the meaning of a thermodynamic friction or "viscosity"
term

𝜁 =
𝑠𝑝𝑠

𝑄
. (2.130)

With the help of the complete friction term in (2.129), which is proportional to the
velocity v𝐼 via the momentum, the kinetic energy can be controlled and thus the
temperature as defined in equation (2.124). In addition, the hypothetical mass𝑄 is a
measure of the coupling strength between the real system and the heat bath. Between
the individual MD snapshots calculated for each time step, temperature fluctuations
occur around the predetermined equilibrium temperature due to the instantaneous
kinetic energies of the ions. Note that the ensemble is still an NVT ensemble, with
energy fluctuations between the real system and the heat bath, while maintaining the
energy of the combined system.
A similar derivation using an extension of the Hamilton operator can be applied to
achieve an isothermal-isobaric MD simulation. In this MD simulation the system
is an NPT ensemble with constant pressure P instead of constant volume V as in
the NVT ensemble. In addition, a barostat is used to control the pressure. NPT
MD is particularly essential for a correct description of phase transitions. However,
computationally intensive optimisation processes of the dynamic lattice parameters
12Note that, mathematically speaking, 𝑄 is the partition function.
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are unavoidable for each MD step in the NPT simulation.
Note that the MD method inherently takes into account anharmonicity, which is
discussed in more detail in the chapter 2.5.3.

2.5.2. Monte-Carlo method

In addition to the MD method, the Monte-Carlo (MC) method is another first-
principles approach to statistically access the thermal evolution of an observable,
e.g. the band gap. In general, MC methods are used when no analytical solutions
are possible and the information of the system can be predicted by repeating random
executions using probability theory. However, the statistical prediction of an event
is only justified on the basis of the law of large numbers. Here, the number to be
maximised is the number of supercells, which is used to obtain converged results for
the observable of interest.
A simple example to understand MC is to estimate the value of 𝜋 by calculating
a quarter of a circular area. The interesting question in this example is how to
distribute or randomly generate the sampling points within the square surrounding
the quarter circle. This task is transferred to the Markov chain, which cannot always
be constructed trivially. In general, the mathematical phase space is often too large
to perform the summation completely. However, the Markov chain specifies after
which summand the summation over the states can be truncated. In addition, the
Markov chain assigns different probability weights to the individual states in the
summation. If a Markov chain can be found or constructed, one can speak of an
importance sampling. It is particularly important that the Markov chain must cover
the entire phase space and not just parts of it in order to take ergodicity into account.
In the case of ergodicity, the expectation value of an observable 𝐴 can simply be
written as the arithmetic mean of the observable

⟨𝐴⟩ = 1
𝑛

𝑛∑︁
𝑖=1

𝐴(𝑥𝑖), (2.131)

where 𝑥𝑖 denotes a probability-weighted state occurring in the Markov chain and 𝑛
is the number of used samples.
The MC variant developed by Zacharias et al. [100], which is based on importance
sampling MC [101], takes thermal motion into account and, therefore, incorporates
temperature in DFT. These first-principles calculations involve lattice vibrations by
sampling the displacements according to a temperature-dependent Markov chain.
In particular, the atoms in the supercell are displaced by temperature-dependent
displacements along the phonon eigenmodes, which generates thermally perturbed
atomic configurations. For example, the MC method can calculate the temperature-
renormalized band structure as a statistical average from the set of thermally per-
turbed supercells. Note that the MC method can also calculate the zero-point
renormalization compared to MD, which is explained in chapter 2.6.
Here, the temperature-dependent electronic band gap 𝐴 is investigated and can be
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written as the arithmetic mean of band gaps calculated from the set of thermally
perturbed structures 𝑥MC

𝑖
:

⟨𝐴(𝑇)⟩ = 1
𝑛

𝑛∑︁
𝑖=1

𝐴(𝑥MC
𝑖 (𝑇)). (2.132)

Furthermore, the distorted structures generated from the importance sampling MC
method are based on the quantum-harmonic oscillator, and therefore this specific MC
approach uses the framework of the harmonic approximation [102]. The magnitude
of the displacements is determined by a Gaussian probability distribution whose
width is given by the mean square-displacement of the harmonic oscillator. The
mean-square displacement can be written as follows:

⟨𝑢2
𝜈𝜅⟩ =

ℏ

2𝑀𝜅𝜔𝜈
coth

ℏ𝜔𝜈

2𝑘B𝑇
, (2.133)

where 𝑀𝜅 is the mass of the 𝜅-th atom in the supercell and 𝜔𝜈 is the phonon
eigenfrequency of the 𝜈-th phonon mode. Using the temperature-dependent mean-
square displacement, the Gaussian probability distribution can be formulated as
follows:

𝑑𝑊𝜈 (𝜅, 𝑇) =
1

2𝜋⟨𝑢2
𝜈𝜅⟩
𝑒
− 𝜅2

2⟨𝑢2
𝜈𝜅 ⟩ 𝑑𝜅, (2.134)

where 𝜅 is a multi-index that takes into account the Cartesian coordinates as well as
the atom number in the supercell. Note that the probability distribution indicates the
probability of an atom being located in the coordinate range 𝜅 + 𝑑𝜅.
Each sample of displacements or distorted structure is generated by adding tempera-
ture-dependent displacements Δ𝜏MC

𝑖
to the equilibrium structure:

𝑥MC
𝑖 (𝑇) = 𝑥equilibrium + Δ𝜏MC

𝑖 (𝑇), (2.135)

where the specific form of the displacement is given by

Δ𝜏MC
𝑖 (𝑇) =

√︂
1
𝑀𝜅

3(𝑁−1)∑︁
𝜈

𝜖𝜅𝜈 𝑃(𝑇). (2.136)

The direction of the displacement is along the phonon eigenmode vector 𝜖𝜅𝜈 with
a magnitude corresponding to a normal-distributed random variable 𝑃(𝑇) based on
𝑑𝑊𝜈 (𝜅, 𝑇) of the equation (2.134). Furthermore, 𝑃(𝑇) also allows to select between
the Bose-Einstein or the Maxwell-Boltzmann statistics when generating the random
structures. Displacements according to acoustic modes are trivially excluded in the
summation, i.e. translational modes are skipped. In the same way, phonon modes
with negative or imaginary frequencies do not contribute to the set of displacements.
The MC method shows a correlation in the convergence behavior of the temperature-
dependent band gap between the required number of samples 𝑛 and the size of the
supercells. The larger the size of the supercell, the fewer samples 𝑛 are required
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to achieve convergence. This fact led to the development of the One-Shot method
(OS), in which the entire thermal information is contained in just one single distorted
structure [103, 102]. The specific displacement in the OS method is given by:

Δ𝜏OS =

√︂
1
𝑀𝜅

3(𝑁−1)∑︁
𝜈

(−1)𝜈−1𝜖𝜅𝜈𝜎𝜈 (𝑇), (2.137)

where 𝜎𝜈 determines the magnitude of the displacements:

𝜎𝜈 (𝑇) =

√︄
ℏ

2𝜔𝜈
(2𝑛𝜈 (𝑇) + 1). (2.138)

Here, the occupation number 𝑛𝜈 is given by the Bose-Einstein statistics of the
equation (2.142) and the summation over 𝜈 runs from the lowest to the highest phonon
eigenfrequency, i.e. in ascending order. Using the OS method, the arithmetic mean
of the temperature-dependent band gap is given by a single calculation:

⟨𝐴(𝑇)⟩ = 𝐴(𝑥OS(𝑇)). (2.139)

In principle, the results of the OS method and converged MC method tend to be
equal, if the size of the supercell is increased towards infinity [103].
In addition, in statistical approaches based on distorted structures such as MD or
MC, the temperature-dependent band gap is not only an average value over the
number of supercells used, but also an average value of the contributing valence or
conduction bands. For example, in diamond the VBM is threefold and the CBM
is sixfold degenerate in the case of a unit-cell or non-displaced supercell. If the
distorted structures are generated, as in MD or MC, the degeneracy of the VBM and
CBM is lifted. Thus, in the case of diamond one would average over the three VBM
and six CBM bands to obtain the actual VBM and CBM bands that contribute to the
band gap. Note that the electronic bands remain degenerate in perturbative methods
such as the Allen-Heine-Cardona theory, which is discussed in chapter 2.6.1.

2.5.3. Anharmonicity: The difference between molecular
dynamics and Monte Carlo

Both first-principles methods, MD and MC, incorporate temperature by generating
thermally distorted structures and thus go beyond static DFT calculations. However,
the way in which MD and MC take thermal motions into account is completely
different. The former, MD, calculates the positions of the atoms by solving New-
ton’s classical equation of motion. The latter, MC, calculates phonons within the
harmonic approximation and displaces atoms along the phonon modes using a Gaus-
sian probability distribution based on the harmonic oscillator (HO). The principle
of the harmonic approximation is the expansion of the nuclear potential around the
equilibrium up to second order with respect to the nuclear displacements. This
leads to a parabolic potential in which MC calculates the phonons. If the validity of
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small phonon energies, which is the requirement for the harmonic approximation,
is violated, a parabolic potential is no longer sufficient to sample thermal motions.
Therefore, vibrational anharmonicity must be included in the description, which is
achieved by considering all terms beyond the second order:

𝑈 = 𝑈0 + 1
2!

∑︁
𝑥 𝑥′

𝜕2𝑈

𝜕𝜏𝑥𝜕𝜏𝑥′
Δ𝜏𝑥Δ𝜏𝑥′ + 1

3!

∑︁
𝑥 𝑥′ 𝑥′′

𝜕3𝑈

𝜕𝜏𝑥𝜕𝜏𝑥′𝜕𝜏𝑥′′
Δ𝜏𝑥Δ𝜏𝑥′Δ𝜏𝑥′′ + . . .︸                                                ︷︷                                                ︸

Anharmonicity

,

(2.140)
where the notation is the same as in chapter 2.1.4, with 𝑥 having the meaning of
𝑥 = (𝑝𝜅𝛼). Therefore, MC cannot go beyond the independent phonon picture de-
scribed by decoupled HO and neglects anharmonicity.
Especially for anharmonic materials such as HaPs, the anharmonicity strongly in-
fluences the description of phonons, as can be seen in Figure 2.12. Soft modes or
imaginary phonon modes, which are a sign for an unstable structure, are an indi-
cation that a description in the harmonic approximation is insufficient and that the
inclusion of anharmonicity is required.
In contrast to MC, MD takes into account all types of atomic motions, particularly
anharmonic structural fluctuations. This is reflected in the fact that dynamics such as
octahedral tilting or large atomic displacements, which are typical for anharmonicity
[104, 105], occur in structures generated from MD but not from MC. A schematic
diagram of the impact on the band gap resulting from different microscopic dis-
placements, harmonically perturbed (MC) or including the anharmonic dynamics
(MD), is shown in Fig. 1.1. For HaPs, however, there are different deviations from
the static band gap, resulting from the average cubic high-symmetry structure, to the
average band gap from samples generated by various dynamic [2, 7, 13] or quasistatic
calculations [10].
In addition, these anharmonic dynamics are important, for example, to properly
describe the temperature-dependent electronic band gap in comparison to the exper-
iment [2]. Other examples where anharmonicity plays an important role for HaPs
are the description of temperature-induced phase transitions [106], the calculation
of short phonon lifetimes [93] and the calculation of Raman spectra [107, 108].
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Figure 2.14. Diagrammatic representation of a second order interaction term or vertex from
a Taylor expansion of the Hamilton operator with respect to nuclear displacements. The
solid line denotes a electron with momentum k and the spiral line denotes a phonon with
momentum q in the scattering event. 𝜆 is the phonon branch index and the quantities after the
scattering event are labeled with a prime. Note that a single line denotes only a propagator in
the diagrammatic approach. Reprinted figure with permission from [110]. Copyright (2015)
by the American Physical Society.

2.6. Electron-phonon coupling
The standard DFT theory is often referred to as a ground state theory at zero Kelvin,
which can be somewhat misleadingly interpreted as if the DFT describes physics
at zero Kelvin. A more appropriate interpretation would be that DFT calculates
the ground state density of a system without taking any temperature into account.
The thermal evolution of electronic eigenvalues can be described within DFT using
methods such as MD and MC or by calculating the electron-phonon coupling (EPC),
taking into account the equivalence of phonons as lattice vibrations [109]. In the
conventional Kohn-Sham DFT, the interaction between dynamic lattice vibrations
and electrons is per se not present. Note that the term of the lattice potential 𝑉ext in
the Kohn-Sham equation (2.31) accounts for a static potential from the nuclei. In
principle, the interaction of electrons and phonons can be described by a Hamilton
operator as discussed in equation (2.13). From a perturbative ansatz, a Taylor
expansion of the Hamilton operator with respect to the nuclear displacements leads
to explicit expressions for higher-order interaction terms of electrons and phonons.
For example, Fig. 2.14 shows a second order interaction vertex in the diagrammatic
representation.
In general, two physical effects are responsible for the temperature dependence of the
electronic band structure: the first is the thermal occupation of phonons, which can
have a large influence, while the second, the thermal expansion of the lattice, makes
a rather small contribution [111, 112]. Under the condition of constant pressure, the
two effects causing the temperature dependence of the electronic eigenvalues can be
written as follows [113]:(

𝜕𝜖𝑖k
𝜕𝑇

)
𝑃

=

(
𝜕𝜖𝑖k
𝜕𝑇

)
𝑉︸   ︷︷   ︸

Constant Volume

+
(
𝜕𝜖𝑖k
𝜕𝑙𝑛𝑉

)
𝑇︸     ︷︷     ︸

Constant Temperature

(
𝜕𝑙𝑛𝑉

𝜕𝑇

)
𝑃︸     ︷︷     ︸

Thermal Expansion

. (2.141)
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The first term on the right-hand side of the equation takes into account the phonon
population at constant volume, while the second term takes into account the thermal
expansion at constant temperature.
The thermal occupation of the phonons follows the Bose-Einstein distribution

𝑛𝜈 (𝑇) =
1

𝑒
ℏ𝜔𝜈
𝑘B𝑇 − 1

, (2.142)

where T is the temperature, 𝑘B is the Boltzmann constant and𝜔𝜈 is the corresponding
phonon frequency of branch 𝜈. Assuming that the energy of the lattice vibration is
small compared to the electronic excitation energy, the thermal contribution to the
electronic eigenvalue can be written as follows [114]:

𝜖𝑖k(𝑇) = 𝜖𝑖k(0) +
1
𝑁

∑︁
𝜈

𝜕𝜖𝑖k
𝜕𝑛𝜈

(
𝑛𝜈 (𝑇) +

1
2

)
, (2.143)

where 𝜖𝑖k(0) is the static electronic eigenvalue calculated with the equilibrium ge-
ometry, N is the total number of phonon vectors, 𝜕𝜖𝑖k

𝜕𝑛𝜈
is the EPC energy and 𝑛𝜈 is

the phonon occupation number.
The EPC energy at zero temperature is understood as zero-point renormalization
(ZPR), i.e. as a contribution to the electronic energy at temperature 𝑇 = 0 K, while
phonons are not occupied or present. Specifically, the ZPR is the band gap difference
between the static DFT gap calculated without temperature and the band gap that
includes the calculation of the EPC energy at𝑇 = 0 K. This can be illustrated by con-
sidering independent or decoupled harmonic oscillators (HO) in second-quantized
form [111]:

𝐻HO
𝑗q = ℏ𝜔 𝑗q

(
𝑎
†
𝑗q𝑎 𝑗q +

1
2

)
. (2.144)

Here, q denotes the phonon wave vector and j the phonon branch index. Taking the
ensemble average at finite-temperature T provides the electronic eigenenergies or
averaged thermal energies:

𝐸HO
𝑗q = ℏ𝜔 𝑗q

(
𝑛 𝑗 +

1
2

)
. (2.145)

In the case that phonons are not occupied, the eigenenergy of each oscillator becomes
a remaining energy contribution, i.e. the zero-point energy or zero-point oscillation:

𝐸HO
0q =

1
2
ℏ𝜔0q. (2.146)

Note that this energy contribution is purely quantum mechanical, because the ZPR
disappears when the atomic mass becomes large, i.e. 𝑚 −→ ∞, with 𝜔 ∝ 𝑚− 1

2

[111]. Furthermore, the ZPR is difficult to measure in experiments. However,
for conventional semiconductors the contribution of the ZPR and the temperature
dependence of the electronic band structure generally have the effect of reducing the
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band gap, i.e. the energy contribution to the static band gap is negative. Conversely,
the inclusion of temperature in HaPs leads to an opening of the band gap, while the
effect of ZPR also reduces the band gap.
There are various methods such as statistical or perturbation-based approaches that
can describe the thermal evolution of electronic eigenvalues. Each method has its
advantages and disadvantages and provides results with varying accuracy compared
to the experiment. In the following chapters, the Allen-Heine-Cardona theory and
the frozen-phonon method are discussed.

2.6.1. Allen-Heine-Cardona theory
Another theory for calculating temperature effects with the help of DFT is the Allen-
Heine-Cardona theory (AHC) [115, 116, 117], which is a purely perturbation-based
many-body approach. In general, AHC calculates the electron-phonon self-energy,
which is composed of two first-order and one second-order electron-phonon coupling
vertices in the diagrammatic approach13. The two first order vertices provide the
dynamical Fan self-energy and the second-order vertex provides the static Debye-
Waller self-energy.
A general scheme of perturbation theory is as follows

𝐻 (𝜆) = 𝐻 (0) + 𝜆𝐻 (1) + 𝜆2𝐻 (2) + 𝜆3𝐻 (3) + . . . , (2.147)

where H is the Hamilton operator and 𝜆 is a perturbation parameter. The AHC
theory is based on 2nd order perturbation theory, which means that the expansion
of the Hamilton operator with respect to the nuclear displacements is truncated after
the second order. The terms 𝐻 (1) and 𝐻 (2) cannot be treated separately, but together
they provide the second-order energy correction 𝜖 (2)𝑛 and form the Debye-Waller and
the Fan terms [118]:

𝜖
(2)
𝑛 = ⟨𝜙(0)𝑛 |𝐻 (2) |𝜙(0)𝑛 ⟩︸              ︷︷              ︸

Debye-Waller

+ 1
2
(
⟨𝜙(0)𝑛 |𝐻 (1) |𝜙(1)𝑛 ⟩ + c.c.

)︸                           ︷︷                           ︸
Fan

. (2.148)

Using the rigid-ion approximation, which states that the potential is rigidly shifted
according to a shifted nucleus from its equilibrium position, the Debye-Waller term
can be expressed in first order coupling terms. This means that the second-order
change of the Hamilton operator 𝐻 (2) due to nuclear displacements is approximated
by first order derivatives. Consequently, the calculation of the remaining first order
coupling terms is suitable for linear response, i.e. DFPT.
The EPC energy contribution resulting from the frequency-dependent Fan self-
energy, which renormalizes the 𝑛-th eigenvalue at the Γ-point here, is proportional
to [113, 119]:

𝜕𝜖Fan
Γ𝑛

𝜕𝑛q 𝑗
∝ 1
𝜔q 𝑗

Re
∑︁
𝜏𝛼𝜏′𝛼′

∑︁
𝑛′

⟨𝜙Γ𝑛 |∇𝜏𝛼𝐻𝜏 |𝜙q𝑛′⟩⟨𝜙q𝑛′ |∇𝜏′𝛼′𝐻𝜏′ |𝜙Γ𝑛⟩
𝜖Γ𝑛 − 𝜖q𝑛′

, (2.149)

13For a detailed explanation of the diagrammatic approach, see Giustino [15].
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where 𝑗 is the phonon branch index, q is a specific 𝑞-point and 𝑛q 𝑗 is the phonon
occupation number. Note that the eigenfrequencies 𝜔q 𝑗 and the eigenmodes, which
are not listed in the equation (2.149), used for the Fan self-energy are calculated
in the harmonic approximation. Therefore, the AHC method, like the MC method,
refers to the harmonic approximation.
Figure 2.15 shows the EPC contributions to the Γ15𝑐 and Γ′

25𝑣 states of the indirect
gap of diamond resulting from a specific path in the BZ. The EPC contributions
are calculated using both the AHC method and the frozen-phonon method, which is
explained in the next chapter 2.6.2. Note that the AHC method relies on a fine q-point
sampling of the BZ, which must be dense enough for converged EPC energies. An
integration over all q-points or phonon wave vectors in the BZ gives the full EPC
contribution to a specific electronic eigenvalue (see further details in the description
of Fig. 2.15).
Since AHC works with small unit-cells, this first-principle perturbative method
offers a quick starting point in the research of the temperature-dependent band gaps.
However, it has been shown for HaPs, for example, that statistical methods such
as MC can predict the temperature trend of the band gap better than perturbative
methods such as AHC [16]. This is due to the fact that the AHC method truncates the
Taylor expansion of the Hamilton operator with respect to the nuclear displacements
after the second order, whereas the MC method retains the higher order terms.
Note that the truncation of the full Hamilton operator after the second order can in
principle also be seen in the equation (2.13) using the second quantization formalism.
More precisely, the missing higher-order terms in AHC lead to an overestimation of
the temperature-dependent band gap for HaPs, while MC can correctly predict the
slope (see chapter 4.7). However, in the case of HaPs, both methods, AHC and MC,
cannot predict absolute band gap values, which are close to the experimental band
gap values. This also applies if the SOC effect and the DFT-PBE band gap problem
are taken into account.

2.6.2. Frozen-phonon method

In principle, the frozen-phonon method (FP) is based on the displacement of atoms
along phonon modes [120] and is therefore also known as the finite-difference or
finite-displacement method. In addition, the FP method includes the temperature
via the Bose-Einstein phonon occupation number 𝑛𝜈 (𝑇).
The displacements are generated with the help of generic displacements, which are
added to the equilibrium positions of the atoms [119, 113]. Here, 𝑧u denotes a
generic displacement set with 𝑧u = {𝑧e𝜅,𝜈}, where e𝜅,𝜈 denotes the eigenvector of the
phonon mode 𝜈 of the 𝜅-th atom and z is the spatial displacement corresponding to
the eigenvector. In the harmonic approximation with decoupled phonon modes, the
temperature-dependent eigenenergy 𝜖𝑖k(𝑇) can be expressed as the thermal average
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Figure 2.15. The electronic band structure of diamond is shown in the top panel, with
the dashed lines indicating the energy levels of the conduction band minimum Γ15𝑐 and the
valence band maximum Γ′

25𝑣 . The notations Γ15𝑐 and Γ′
25𝑣 denote the character table of the

diamond wave functions at the Γ point, which belong to the symmetry operations of the
five classes of the diamond point group (further information is provided in the Table 2.16
of [81]). The purple closed line indicates EPC energies to the Γ15𝑐 state (middle panel) and
Γ′

25𝑣 state (lower panel) from a specific path through the BZ, which are calculated with the
AHC theory using DFPT. The yellow filled dots indicate the same meaning of EPC energies,
but calculated with the frozen-phonon method, which is explained in the next chapter 2.6.2.
Both approaches show good agreement with the exception of the Γ-point, where the AHC
method shows strong divergences due to the denominator, as can be seen in the Fan self-
energy in equation (2.149). Apart from the fact that most of the divergences cancel out
after a full integration over the phonon wave vectors in the BZ, a small imaginary energy
contribution is added to the denominator to resolve the divergence when the energies come
close to the Γ-point energy (further details of smoothing the denominator are provided in
[119]). Reprinted figure with permission from [114]. Copyright (2014) by the American
Physical Society.
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of the set of position-dependent eigenenergies 𝜖𝑖k(𝑧u), which can be written as
follows [119, 113]:

𝜖𝑖k(𝑇) ≡ ⟨𝜖𝑖k(𝑧u)⟩(𝑇)

=

3𝑁∑︁
𝜈

1
𝑍𝜈

∑︁
𝑛𝜈

exp
−𝐸𝑛𝜈
𝑘B𝑇

⟨𝜒𝜈,𝑛𝜈 |𝜖𝑖k(𝑧u) |𝜒𝜈,𝑛𝜈⟩.
(2.150)

Here, 𝐸𝑛𝜈 = ℏ𝜔𝜈 (𝑛𝜈 + 1
2) and |𝜒𝜈,𝑛𝜈⟩ are the eigenenergy and the eigenstate of the

HO and 𝑍𝜈 =
∑
𝑛𝜈

exp −𝐸𝑛𝜈

𝑘B𝑇
is the mode-partition function. In addition, 𝜈 runs over

all the phonon modes and 𝑛𝜈 is the integer phonon occupation number of the mode
𝜈. The expansion of the eigenenergies 𝜖𝑖k(𝑧u) in the harmonic approximation up to
the second order in 𝑧 can be written as follows:

𝜖𝑖k(𝑧u) = 𝜖𝑖k(0) + 𝜕𝜖𝑖k(𝑧u)
𝜕𝑧

����
𝑧=0

𝑧︸            ︷︷            ︸
=0

+ 1
2
𝜕2𝜖𝑖k(𝑧u)
𝜕2𝑧

����
𝑧=0
𝑧2. (2.151)

In principle, the thermal average of the terms in the expansion (2.151) are linked to
the expectation values of the HO. Therefore, the first-order term vanishes, as it is an
odd function:

⟨𝜒𝜈,𝑛𝜈 |𝑧 |𝜒𝜈,𝑛𝜈⟩ = 0. (2.152)

The expectation value of the mean square displacement of the HO can be calculated
using the second quantization formalism as follows:

⟨𝜒𝜈,𝑛𝜈 |𝑧2 |𝜒𝜈,𝑛𝜈⟩ =
ℏ

𝑚𝜔𝜈

(
𝑛𝜈 (𝑇) +

1
2

)
. (2.153)

If the expansion (2.151) is inserted into (2.150) and the results of the expectation
values are used, the result is

𝜖𝑖k(𝑇) = 𝜖𝑖k(0) +
3𝑁∑︁
𝜈

1
𝑍𝜈

ℏ

2𝑚𝜔𝜈
𝜕2𝜖𝑖k(𝑧u)
𝜕2𝑧

����
𝑧=0
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exp
−𝐸𝑛𝜈
𝑘B𝑇

(
𝑛𝜈 (𝑇) +

1
2

)
. (2.154)

Using the geometric series to calculate the sum over 𝑛𝜈 (see details in [119]), the
above equation is simplified to

Δ𝜖𝑖k(𝑇) := 𝜖𝑖k(𝑇) − 𝜖𝑖k(0) =
3𝑁∑︁
𝜈

ℏ

2𝑚𝜔𝜈
𝜕2𝜖𝑖k(𝑧u)
𝜕2𝑧

����
𝑧=0

(
𝑛𝜈 (𝑇) +

1
2

)
. (2.155)

If one takes the partial derivative with respect to the phonon occupation number

𝜕𝜖𝑖k
𝜕𝑛𝜈

:=
𝜕𝜖𝑖k(𝑇)
𝜕𝑛𝜈 (𝑇)

=
ℏ

2𝑚𝜔𝜈
𝜕2𝜖𝑖,k(𝑧u)
𝜕2𝑧

����
𝑧=0
, (2.156)
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and since the phonon occupation number can be regarded as an independent variable,
the equation of the temperature-dependent electronic eigenvalue can be written as
follows:

Δ𝜖𝑖k(𝑇) =
3𝑁∑︁
𝜈

𝜕𝜖𝑖k
𝜕𝑛𝜈

(
𝑛𝜈 (𝑇) +

1
2

)
. (2.157)

Taking into account the number of q-points 𝑁𝑞 that sample the BZ for a discretization
of the integral, the expression can be written as follows

Δ𝜖𝑖k(𝑇) =
1
𝑁𝑞

∑︁
q

3𝑁∑︁
𝜈

𝜕𝜖𝑖k
𝜕𝑛𝜈q

(
𝑛𝜈q(𝑇) +

1
2

)
. (2.158)

This expression is the renormalization of the electronic band structure due to thermal
motion in the FP method. However, the EPC energies only refer to the derivative
𝜕𝜖𝑖k
𝜕𝑛𝜈q

. Note that the renormalization in the FP method is only valid for small phonon
energies compared to electronic excitation energies.
Figure 2.15 shows the EPC contributions to the Γ15𝑐 and Γ′

25𝑣 states of diamond
calculated with the FP method for some selected k-points in the BZ. The advantage
of the FP method is that, compared to the AHC method, it does not rely on the
rigid-ion approximation, but requires large supercells to capture the full phonon
wavelength. In order to obtain the full EPC contribution to one state, the method
is somewhat laborious, as the contribution can only be calculated point by point,
i.e. without integration. In practice, the second-order derivatives in the FP or finite-
displacement method are approximated, for example, by two- or five-point stencil
formulas, where the displacements along the phonon modes provide the auxiliary
points.

2.7. Further details on calculations
Structure relaxations

In order to perform phonon calculations, e.g. to obtain phonon dispersion relations
or phonon frequencies, the initial geometry must be relaxed. In practice, this means
that the forces acting on the atoms must be zero or at least below a certain threshold
value. Structure relaxations can be carried out by using VASP [121] or the GADGET
interface [122], for example.
However, for HaPs an instructive consistency check is to displace the atoms of the cu-
bic high-symmetry structure by adding random, appropriately small displacements.
A following structure relaxation with GADGET shows the tilting of the octahedron
when the forces are minimised.

Phonon dispersion relations

The usual approach for calculating a phonon dispersion relation with Phonopy [86]
is as follows: First, the atoms of the unit-cell are displaced within the supercell by
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a default value of 0.1Å for VASP. Symmetry is taken into account and reduces the
number of displaced supercells required to obtain the phonon dispersion relation.
Then, DFT calculations must be performed for each individual displaced supercell
in order to determine the forces resulting from the displacements. Afterwards,
Phonopy collects the forces to calculate the force constant matrix. After generating
the dynamical matrix from the force constant matrix, Phonopy calculates the phonon
frequencies and modes, i.e. the eigenvalues and eigenvectors for selected q-points. In
the case of a full path through the BZ, the phonon dispersion relations are calculated
by interpolation to finite q-points according to the method of Wang et al. [123, 124].
Due to numerical inaccuracies, the force constant matrix does not provide exact zero
frequencies for the acoustic phonons at the Γ-point. To solve this problem, the plane
wave energy cut-off in the DFT calculations can be increased, or the force threshold
for the structure relaxation can be decreased. Note that these numerical issues would
violate the acoustic sum rule and, therefore, need to be addressed.
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3. Results and discussion:
common inorganic
semiconductors

3.1. Introduction to semiconductors
From the perspective of solid-state energy materials, there are three classes of
materials distinguished by one of the most discussed quantity in condensed matter,
namely the fundamental band gap. In the context of DFT, the fundamental band gap
is given by the energy difference between the valence band (VB), i.e. the highest
occupied band, and the conduction band (CB), i.e. the lowest unoccupied band. In
the case of insulators, this energy barrier extends to infinity. If the fundamental
band gap cannot be identified or does simply not exist, materials belong to the class
of metals. The intermediate class of materials exhibit a fundamental band gap of
several electron volts between 0 and 4 eV and form the class of semiconductors,
which play an important role in photovoltaic or electronic devices, for example.
Apart from the role of dividing the materials into classes, the fundamental band gap
also characterizes the electronic response when the material is exposed to external
effects, for example doping [125].
The most common inorganic semiconductors are composed from group IV of the
periodic table or a combination of elements from groups III and V. This set of
common inorganic semiconductors shows a distinction between direct and indirect
semiconductors, which means that the fundamental band gap can be either direct
as in gallium-arsenide (GaAs) or indirect as in silicon (Si). In the case of III-V
compounds or group IV semiconductors the direct band gap is at the Γ-point of the
BZ and the indirect band gap is at the Γ-point and along the Γ-X or the Γ-L direction
[126].
Here, the specific set of investigated semiconductors is: AlAs, AlP, AlSb, GaAs,
GaP, InP, and Si (the choice of this set is explained later). Si crystallizes in the
cubic diamond structure belonging to the Fd3̄m space group (227), whereas all the
remaining semiconductors crystallize in the zincblende structure belonging to the
F4̄3m space group (216). Both structures rely on two nested face-centered cubic
(fcc) Bravais lattices, which only differ in the packing density factor with a higher
value for the zincblende than for the cubic diamond structure. The primitive vectors
spanning up the fcc lattice are given by

a1 =
𝑎

2
(0 1 1), a2 =

𝑎

2
(1 0 1), a3 =

𝑎

2
(1 1 0) (3.1)
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(a) Conventional Cell (b) Primitive Cell

Figure 3.1. (a) A conventional fcc cell containing one sort of atom and including the
primitive cell, which contains only one atom (the primitive cell is shown in violet). (b)
Primitive cell of a two-atomic basis resulting from two nested fcc lattices, i.e. including two
different atoms as in the case of GaAs with Ga (red) and As (grey). Note that the number of
atoms in the primitive cell of GaAs is calculated as 8 times 1/8 Ga atoms and 1 As atom.
The crystal structure of the semiconductors considered here consist of two nested fcc lattices
featuring the diamond cubic or zincblende structure.

and enclose an angle of 60◦ . Fig. 3.1 shows a conventional fcc cell on the left-hand
side including a primitive cell containing one type of atom and on the right-hand
side a primitive cell with a two-atomic basis. In this chapter, all investigated semi-
conductors contain two different atoms in the primitive cell, except for Si.
In the field of solar cell applications, Si reaches an energy conversion efficiency of
up to 36% in recently investigated silicon-based multi-junction solar cells [5] or 26%
in conventional crystalline Si solar cells [4]. Most likely Si is the best understood
common inorganic semiconductor, which is certainly also due to the fact that Si is
one of the pioneering materials in applying the concept of electronic band structure
[127].
The standard workhorse nowadays to calculate static as well as dynamic elec-
tronic band structures is DFT (see chapter 2.2), which inherently applies exchange-
correlation functionals (see chapter 2.2.2). The (semi-)local class of functionals
such as LDA [40] or PBE [21] are very successful in the overall description of semi-
conductors, but generally suffer from an underestimation of the electronic band gap,
which is often referred to as the DFT band gap problem [41]. This issue has been
addressed by using hybrid functionals, which include a fraction of exact exchange.
One of the most important examples from the screened hybrid functionals is HSE
[22, 23], which showed well-founded results not only for electronic [128, 129] but
also for other bulk properties [26, 130, 131, 132]. Especially in comparison to
PBE, HSE provides more precise electronic band structures and, thus, also more
accurate band gaps at the expense of computation time [23, 133]. The electronic
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Figure 3.2. Electronic band structure of Si, which crystallizes in the diamond cubic structure,
calculated with DFT using three different functionals: the GGA-type PBE functional (black
line), the screened hybrid functional HSE (blue line) and the screened range-separated hybrid
functional SRSH (orange line). The DFT calculation does not include SOC. The indirect
band gap is given by the VBM located at the Γ-point and the CBM detected along the Γ-X
direction.

band structure of Si is shown in Fig. 3.2, for example. Here the CB calculated with
HSE (blue line) is higher in energy than the band calculated with PBE (black line)1.
This shift in energy changes the band gap values accordingly. Specifically, as listed
in Table 3.1, the Si PBE indirect band gap is 0.57 eV, the HSE indirect gap is 1.15
eV and the experimental optical gap is 1.12 eV. Thus, the calculation of the band
gap using HSE is more than half an electron volt closer to experiment than using
PBE. As a side note, SOC has only a minor influence on the Si band structure. For
example, the difference between the PBE direct gap without SOC and with SOC is
only 0.04 eV. This fact of small SOC contribution also holds for all III-V and IV
semiconductors.
Moreover, the entire mean absolute deviation (MAD) for the band gaps of the set of
seven semiconductors (see Table 3.1) is 35% for PBE and 5% for HSE compared to
experiment, reinforcing the higher accuracy of screened hybrid functionals due to
the incorporation of exact exchange. This seems overwhelming at first glance, but
on the second view it is less surprising, since the two parameters, which dictate the
HSE functional, namely 𝛼 and 𝛾, have been chosen to provide accurate electronic
band structures [22, 23].
In summary, an accurate description of the electronic band structure is only possible
by the inclusion of exact exchange. A relatively recently developed class of function-
als, so-called SRSH functionals were introduced, which still keep a portion of exact

1Note that the Fermi-level corresponds to the highest occupied state in VASP. Consequently, all
VBs calculated with the three functionals coincide at the Γ-point.
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Table 3.1. Direct and - where available - indirect fundamental band gaps of the set of
standard semiconductors. In order to avoid error propagation, stemming from different
structures provided by different functionals, impacting the band gaps and to guarantee
a consistent comparison, the experimental lattice constant was used throughout for each
material. The calculation of the band gaps used the PBE, HSE and SRSH functional. The
MAD is calculated as the mean absolute deviation from experimental optical gaps, which
were taken from [134] and [135] for the Si direct gap only. The specific MAD values for
the direct band gaps of all semiconductors are 0.76 eV for PBE, 0.14 eV for HSE and 0.22
eV for SRSH. Reprinted table with permission from [1]. Copyright (2021) by the American
Physical Society.

Direct fund. gap Direct opt. gap
PBE HSE SRSH Expt.

Name E𝑔 (eV) Deviation (%) E𝑔 (eV) Deviation (%) E𝑔 (eV) Deviation (%) E𝑔 (eV)
AlAs 2.06 -32.0 2.93 -3.3 2.80 -7.6 3.03
AlP 3.30 -9.1 4.23 +16.5 4.26 +17.4 3.63
AlSb 1.60 -30.4 2.39 +3.9 2.30 +0.0 2.30
GaAs 0.53 -62.7 1.43 +0.7 1.09 -23.2 1.42
GaP 1.83 -34.4 2.80 +0.4 2.58 -7.5 2.79
InP 0.68 -49.3 1.47 +9.7 1.29 -3.7 1.34
Si 2.56 -23.6 3.33 -0.6 3.23 -3.6 3.35
MAD(%) 34.5 5.0 9.0

Indirect fund. gap Indirect opt. gap
AlAs 1.43 -33.5 2.10 -2.3 2.07 -3.7 2.15
AlP 1.58 -35.5 2.29 -6.5 2.40 -2.0 2.45
AlSb 1.19 -26.5 1.80 +11.1 1.78 +9.9 1.62
GaP 1.59 -30.0 2.27 +0.0 2.20 -3.1 2.27
Si 0.57 -49.1 1.15 +2.7 1.10 -1.8 1.12
MAD(%) 34.9 4.5 4.1

exchange also in the long-range region compared to HSE. This class of functionals
was initially designed for molecules with reasonable results [51] and later extended
to semiconductors. In the latter case, two ideas determine the form of the SRSH
functional: first, the HSE parameter 𝛼 is used for the SR, and second, the dielectric
constant 𝜖 dictates the long range behavior by introducing another parameter 𝛽.
Note that the dielectric constant 𝜖 is material-dependent and therefore SRSH does
not offer a universal set of parameters.
Since SRSH provides more flexibility in splitting EXX and GGA over SR and LR, it
also describes the asymptotic decay of 1

𝜖𝑟
correctly in comparison to HSE. Because

of its tuning nature, the parameters 𝛼, 𝛽 and 𝛾 can be adjusted in a way to fix the
SRSH band gap value to the band gap value calculated with the higher-level GW
theory. In this work, the values for the parameters 𝛼, 𝛽 and 𝛾 reported by Wing et
al. [27] were used. In their work, Wing et al. set 𝛼 = 0.25 and 𝛼 + 𝛽 = 1

𝜖
theory
∞

, while
tuning 𝛾 to reproduce the GW band gap [136] for each of the seven semiconductors.
Hence, the focus is on properties of these seven semiconductors in this work. Note
that the choice for the value of 𝛼 = 0.25 in SRSH is the same as in HSE. An explicit
list of the tuned parameters is shown in Table 3.2. Therefore, it makes sense that
the MAD of the band gaps calculated with SRSH is similarly low as the MAD of
HSE for the set of selected semiconductors. Specifically, as shown in Table 3.1, the
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Table 3.2. The SRSH parameters 𝛼, 𝛽 and 𝛾 as well as the theoretical dielectric constant
𝜖

theory
∞ are listed here for the investigated prototypical set of semiconductors. Reprinted table

with permission from [1]. Copyright (2021) by the American Physical Society.

Name 𝜖
theory
∞ 𝛼 𝛽 𝛾 (Å−1)

AlAs 8.2 0.25 -0.13 1.25
AlP 7.3 0.25 -0.11 0.80
AlSb 9.8 0.25 -0.15 0.63
GaAs 10.5 0.25 -0.15 2.50
GaP 8.9 0.25 -0.14 1.15
InP 8.9 0.25 -0.14 1.30
Si 11.3 0.25 -0.16 0.62

MAD of SRSH for the indirect band gaps is 4.1% in comparison with the MAD of
HSE, which is 4.5%. This behavior of equal accuracy between SRSH and HSE can
also be seen in the band structure of Si depicted in Fig. 3.2, where the orange line
(SRSH) is almost congruent with the blue line (HSE).
In summary, SRSH as well as HSE perform equally well in band structure calcula-
tions for semiconductors, with the SRSH parameters being tuned compared to the
universal HSE parameters. Both functionals are superior in comparison to PBE.
Also for other bulk properties, such as lattice dynamics, the class of hybrid func-
tionals like HSE provided reasonable results [137, 138]. Especially for phonon
dispersion relations of group IV semiconductors such as Si, it is known that HSE
provides also more accurate dispersion relations in comparison to the semilocal PBE
functional, which showed an underestimation of phonon frequencies compared to
experiment [137]. But on the other hand, the power of having a constant fraction
of exact exchange as in popular hybrid functionals, does not lead to accurate results
in all variants of semiconductors [50]. In view of all the above findings on the
performance of semilocal and hybrid functionals, it would be useful to test the per-
formance of the SRSH functional developed later. The flexibility of varying GGA
and EXX as well as the general tuning ability of SRSH already showed proper results
for semiconductors not only in electronic structure, but also in optical-absorption
properties [28]. Simultaneous accuracy in electronic structure and phonon frequen-
cies is required, when calculating electron-phonon coupling energies, which are a
fundamental quantity in understanding thermal activity, such as the temperature-
dependent band gap of semiconductors. Therefore, it is interesting to investigate
whether or not the accurate results of SRSH in the electronic band structure come at
the expense of lower accuracy in the calculation of other bulk properties. This is the
purpose of this research conducted here. Specifically, results for lattice constants,
bulk moduli, atomization energies and phonon dispersion relations of the set of
semiconductors using the SRSH functional are benchmarked against results from
the well-established PBE and HSE functionals.
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3.2. Computational parameters
DFT calculations to assess the accuracy of the SRSH functional were performed with
the VASP code, which includes an implementation of SRSH. The pseudo potentials
were provided via the projector-augmented wave (PAW) method with extra semicore
d states for Ga and In, in order to be consistent with existing results from literature.
The overall convergence criterion for the total energy is 2 meV per atom and was
initially tested with the PBE functional. This leads to energy cutoffs (Ecut) listed
in Table 3.3 for the calculation of lattice constants, bulk moduli and atomization
energies. In order to handle some numerical instabilities in phonon band structure
calculations at the Γ-point, a slight higher energy cutoff has to be chosen for some
materials. The energy cutoff (Eph

cut) for phonons is also listed in Table 3.3. To achieve
converged k-point grids, a Γ-centered Monkhorst-Pack grid with 8 × 8 × 8 k-points
for AlAs, AlP, AlSb, InP and 9 × 9 × 9 k-points for GaAs, GaP, Si is used. In the
case of phonon calculations, the unit-cell size is increased to a 4 × 4 × 4 supercell
size and the k-point grid is reduced accordingly to a 2 × 2 × 2 k-point grid.

Table 3.3. In order to calculate equilibrium lattice constants, bulk moduli and atomization
energies a plane-wave energy cutoff Ecut is used (middle column). In some cases, a higher
energy cutoff Eph

cut has to be used for phonon dispersions (right column). Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

Name Ecut (eV) Eph
cut (eV)

AlAs 220 220
AlP 245 245
AlSb 190 240
GaAs 280 380
GaP 300 350
InP 255 355
Si 270 270

3.3. Lattice constant and bulk modulus
Table 3.4 lists in detail the results of the respective lattice constants for the seven
semiconductors calculated with the PBE, HSE and SRSH functionals (see chap-
ter 2.4.1). In addition, the experimental values of the lattice constants are listed as
well. The MAD, given in %, for each functional results from the average of the
deviations between the theoretical and experimental lattice constants of all seven
semiconductors. Despite the fact that the theoretical lattice constants are calculated
without temperature effects and that the experimental lattice constants are measured
at finite temperatures (e.g., room temperature), there is an overall good agreement
between both. This can be clearly seen in Fig. 3.3, as no outliers can be detected
and the PBE functional yields a maximum MAD value of 1.3%. In general, all
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Table 3.4. Theoretical lattice constants 𝑎(Å) computed with the PBE, HSE and SRSH
functionals in comparison to experimental lattice constants measured at room temperature.
The deviation is given with respect to experimental data, which is taken for all semiconductors
from [126]. The MAD is the mean absolute deviation from experiment. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
Name 𝑎 (Å) Deviation (%) 𝑎 (Å) Deviation (%) 𝑎 (Å) Deviation (%) 𝑎 (Å)
AlAs 5.74 1.4 5.68 0.4 5.70 0.7 5.66
AlP 5.51 0.9 5.47 0.2 5.48 0.4 5.46
AlSb 6.24 1.6 6.15 0.2 6.18 0.7 6.14
GaAs 5.75 1.8 5.68 0.5 5.72 1.2 5.65
GaP 5.51 1.1 5.46 0.2 5.48 0.6 5.45
InP 5.96 1.5 5.90 0.5 5.93 1.0 5.87
Si 5.47 0.7 5.44 0.2 5.45 0.4 5.43
MAD(%) 1.3 0.3 0.7

three functionals tend to slightly overestimate the experimental lattice constants in
a consistent way, as indicated by values above the red line (line through origin with
a gradient of one) in Fig. 3.3. Thereby, the theoretical lattice constants are arranged
in such a way that the x-coordinate corresponds to the experimental value. Further-
more, the MAD of HSE is 0.3% and the one of SRSH 0.7%.
The absolute values of the MAD for the three functionals are 0.07 Å for PBE, 0.02 Å
for HSE, 0.04 Å for SRSH and the maximum deviation (MD) to experiment are
0.10 Å for PBE, 0.03 Å for HSE and 0.07 Å for SRSH. The overall trend towards
shorter lattice constants by HSE in comparison to PBE is consistent with previous
literature [139, 140, 141]. Furthermore, one can conclude that lattice constants
provided by SRSH are more accurate than lattice constants by PBE, but slightly less
accurate than lattice constants by HSE. Finally, based on the fact that the maximum
deviation is only 0.04 Å (in the case of GaAs) between SRSH and HSE for the set
of semiconductors, SRSH is of equal accuracy in providing lattice constants for
semiconductors.
Note that the theoretical lattice constants are calculated here without temperature
effects and experimental lattice constants are measured at room temperature. How-
ever, the validity of the high consensus between theoretical and experimental lattice
constants is justified since thermal expansion of the lattice is a rather small effect.
In the case of Si, for example, there is a small positive thermal expansion above
200 K [142]. So, on the one hand, if one interprets DFT at 0 K, i.e., the theoretical
lattice constants are provided at 0 K, together with the overestimation of the lattice
constants throughout all functionals, the MAD is expected to grow slightly, if one
includes thermal expansion. On the other hand, this would ensure a more objective
comparison of the theoretical and experimentally measured lattice constants at the
same temperatures.
Furthermore, the effect of dispersion corrections, such as van der Waals interactions,
were not taken into account here. Apart from the additional computational cost of
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Figure 3.3. Left-hand side: theoretical lattice constants calculated with the PBE, HSE and
SRSH functionals. The experimental values are indicated on the line (red crosses). Right-
hand side: the corresponding MAD in %.

including van der Waals interactions, the main motivation for their exclusion in this
study was the fact, that DFT dispersion contributions seem to be dependent on the
choice of the exchange-correlation functional [72]. Thus, to guarantee a proper
comparison between each functional, van der Waals interactions were neglected.
However, considering that the three functionals generally overestimate the lattice
constants, there are indications that the inclusion of van der Waals would lead to
lower theoretical lattice constants on the one hand and to higher atomization energies
for semiconductors on the other hand [72].

Table 3.5. Theoretical bulk moduli 𝐵(GPa) computed with the PBE, HSE and SRSH
functionals in comparison to experimental bulk moduli. Reprinted table with permission
from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
Name 𝐵 Dev. (%) 𝐵 Dev. (%) 𝐵 Dev. (%) 𝐵

AlAs 67 -11 76 +1 72 -5 74-77 [143, 134]
AlP 81 -7 89 +2 90 +3 86-88 [144, 145]
AlSb 49 -13 58 +3 55 -3 55-58 [145, 146, 147]
GaAs 60 -21 72 -5 66 -13 75-76 [148, 149]
GaP 78 -11 88 +1 84 -4 87-88 [150, 134]
InP 62 -14 71 -1 67 -7 71-73 [151, 134]
Si 89 -10 98 -1 95 -4 98-99 [148, 134]
MAD(%) 12 2 5
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Figure 3.4. Left-hand side: theoretical bulk moduli calculated with the PBE, HSE and
SRSH functionals. The experimental values are indicated on the line (red crosses). Right-
hand side: the corresponding MAD in %.

Whereas the theoretical lattice constants are overestimated by the three functionals,
the theoretical bulk moduli tend to be somewhat underestimated. Table 3.5 lists the
bulk moduli calculated with PBE, HSE and SRSH functionals for the set of the seven
semiconductors. Experimental values for the bulk moduli are provided using an ex-
perimental range reported in literature. The MAD as well as the MD values refer
to the theoretical bulk moduli and to the arithmetic mean of the experimental range.
For clarity, the results of the bulk moduli are visualized like the results of the lattice
constants in Fig. 3.4 where the experimental values are the ones on the red line. A
clear trend of underestimation of the bulk moduli is given by the PBE functional and
thus, together with the overestimation in lattice constants, is consistent to previous
studies [130]. The trend of highly accurate lattice constants from HSE continues
here as well and provides the most accurate bulk moduli of the three functionals
with a MAD of 2%. The SRSH functional provides slightly underestimated bulk
moduli throughout all semiconductors with one outlier for AlP. But in general, bulk
moduli from SRSH are more accurate than bulk moduli from PBE, which is clearly
demonstrated by the MAD of 5% for SRSH and 12% for PBE. The absolute values
of the MAD in GPa for the three functionals are 10 GPa for PBE, 1 GPa for HSE
and 4 GPa for SRSH. Furthermore, the MDs are given by 16 GPa for PBE, 4 GPa
for HSE and 10 GPa for SRSH.
In summary, the accuracy provided by the three functionals for the theoretical bulk
moduli follows the trend of the theoretical lattice constants, with an underestimation
for the former and an overestimation for the latter. Note that the bulk modulus is the
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reciprocal of the compressibility and the results therefore show the relation between
increasing volume and decreasing pressure. However, the trend of high accuracy ap-
plies in particular to the HSE lattice constants and HSE bulk moduli with deviations
that are well below the experimental range for most of the seven semiconductors.
Finally, compared to HSE, SRSH can maintain the accurate results for the lattice
constants as well as the bulk moduli, while PBE is slightly worse.

3.4. Atomization energies
Table 3.6 shows the atomization energies for the set of prototypical semiconductors
calculated with the PBE, HSE and SRSH functionals (see chapter 2.4.2). In general,
all functionals perform reasonably accurate, which is reflected in deviations less than
10%. To be more precise, the comparison of the theoretical and the experimental
values reveals that all functionals tend to underestimate the atomization energies. In
order to better visualize the performance of the functionals, the results are also shown
in Fig. 3.5. There, the underestimation of the atomization energies by the functionals
is easy to see, since all values are below the red line. In this context, PBE shows
the best agreement to experiment with a MAD of 2.7% followed by HSE with 3.1%
and finally SRSH with 3.8%. The MAD in absolute values is 0.10 eV for PBE, 0.11
eV for HSE and 0.14 eV for SRSH, which confirms the overall good performance.
Note that the theoretical results of the atomization energies strongly depend on the
material, which can be seen by the wide range of the relative deviations. This range
lies between −0.4% for Si PBE and −9.0% for InP SRSH. It is worth noting that
zero-point corrections are not included in the DFT calculations. But there is evidence
that their inclusion would further lower the theoretical atomization energies [130].

Table 3.6. Theoretical atomization energies 𝐸AE (eV/atom) computed with the PBE, HSE
and SRSH functionals in comparison to experimental atomization energies. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
Name 𝐸AE Dev. (%) 𝐸AE Dev. (%) 𝐸AE Dev. (%) 𝐸AE
AlAs 3.73 -1.3 3.70 -2.1 3.68 -2.6 3.78 [152]
AlP 4.13 -3.1 4.10 -3.8 4.08 -4.2 4.26 [152]
AlSb 3.28 -0.9 3.28 -0.9 3.27 -1.2 3.31 [153]
GaAs 3.18 -3.9 3.16 -4.5 3.13 -5.4 3.31 [26]
GaP 3.52 -1.1 3.51 -1.4 3.47 -2.5 3.56 [152]
InP 3.16 -7.9 3.15 -8.2 3.12 -9.0 3.43 [154]
Si 4.60 -0.4 4.58 -0.9 4.56 -1.3 4.62 [155]
MAD(%) 2.7 3.1 3.8



3.5. Phonon dispersion relations

77

Figure 3.5. Left-hand side: theoretical atomization energies calculated with the PBE, HSE
and SRSH functionals. The experimental values are indicated on the line (red crosses).
Right-hand side: the corresponding MAD in %.

3.5. Phonon dispersion relations
In order to compare the phonon band structures, calculated with the three functionals
(see chapter 2.4.3), a specific path through the BZ was chosen for all semiconductors.
The path Γ −𝐾 −X− Γ −L−X−W−L is depicted and explained in more detail in
Fig. 3.6. Note that the Γ-point occurring in the middle of the entire path is the end
point of the path Γ −𝐾 −X− Γ, i.e. the Γ-point from the neighbored BZ (see figure
on top in Fig. 3.6), and the starting point of the path Γ − L − X − W − L in only one
BZ. The choice of this path allows comparison to existing results from theory and
experiment found in the literature.
Furthermore, the phonon dispersion relations are calculated in two ways for each
semiconductor. First, the calculation for each functional uses the theoretical equilib-
rium lattice constant calculated with the corresponding functional. The used lattice
constants are the ones listed in Table 3.4. Second, the same experimental lattice con-
stant for each material was used for all of the three functionals. The latter approach
is a standard procedure as reported in [158] and prevents error propagation of the
functionals by using the respective lattice constants, which would include the error
of the lattice constant caused by the functional.
The phonon dispersion relations of GaAs and Si are shown in Fig. 3.8 and Fig. 3.9.
All other phonon dispersion relations for the remaining five semiconductors are
shown in the appendix A.2 for reasons explained later. Furthermore, a list of ex-
plicit phonon frequencies calculated with the three functionals for GaAs and Si are
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Figure 3.6. Both figures show the first BZ of a fcc lattice with high symmetry points and
wave vector directions labeled with capital letters. The figure on top shows two neighboured
BZs showing following path through both zones: Γ− (Δ) −X− (Σ) −Γ− (Λ) −L−X− (Z) −
W − (Q) − L. This path, including six wave vector directions, consists of two parts, namely
of Γ− (Δ) −X− (Σ) −Γ across two BZs and of Γ− (Λ) −L−X− (Z) −W− (Q) −L in only
one BZ. The figure on the bottom shows only one BZ with also labeling the 𝐾-point at the
intersection to the neighboured BZ. Here, the same path is used for the phonon dispersion
relations calculated with the three functionals. Neglecting the labeling of the wave vector
directions the path is denoted as Γ − 𝐾 − X − Γ − L − X − W − L. Top figure: Used with
permission of IOP Publishing, Ltd, from [156]; permission conveyed through Copyright
Clearance Center, Inc.; Bottom figure: Reprinted with permission from [157], released into
the public domain.
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Figure 3.7. The MAD (in %) calculated for selected high symmetry points, where experi-
mental data is available, for all semiconductors. On the left, there is the MAD resulting from
PBE, HSE and SRSH using the respective theoretical lattice constant. On the right, there is
the corresponding MAD using the experimental lattice constant for all three functionals.

shown in Table 3.7 and 3.8. The frequencies are shown together with experimental
frequencies for selected high symmetry points, where data is available. Explicit
frequencies for the remaining five semiconductors can be found in the appendix A.3.
The overall MAD of the phonon dispersion relations, which is calculated by collect-
ing the single MADs of the seven semiconductors and taking the average, is shown
in Fig. 3.7. Comparing the overall MADs in Fig. 3.7 for phonon dispersions by using
the theoretical lattice constants (left-hand side) and experimental lattice constants
(right-hand side), reveals that the accuracy of the phonon calculations using the three
functionals strongly depends on the accuracy of the respective equilibrium lattice
constant.
Specifically, the MADs using the theoretical lattice constants for the frequencies are
5.6% for PBE, 2.3% for HSE and 2.8% for SRHS. This is consistent with the find-
ings for the equilibrium lattice constants in Fig. 3.3, namely that the largest deviation
in the lattice constants results in the largest deviation in the phonon frequencies.
Thus, the trend in this scenario is given by PBE, SRSH and HSE with ascending
accuracy. In general, PBE tends to underestimate the phonon frequencies, regardless
of the choice of the lattice constants. Furthermore, the frequencies obtained by PBE
are always lower than the frequencies produced by HSE and SRSH. There is no
overall trend that using overestimated lattice constants results in an underestimation
of phonon band structures. This can be seen in the dispersion relations of GaAs
(Fig. 3.8) and Si (Fig. 3.9), where the former are underestimated and the latter over-
estimated in the scenario of hybrid functionals using overestimated lattice constants.
In summary, a consistent underestimation of phonon frequencies is only given by
the PBE functional and no clear trend is seen in the case of HSE and SRSH.
The MADs using the experimental lattice constants (see right-hand side of Fig. 3.3)
are 3.5% for PBE, 2.2% for HSE, and 2.2% for SRHS. Basically, all three functionals
provide similarly accurate phonon band structures, when using the same experimen-
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tal lattice constant for each semiconductor. Especially the two hybrid functionals,
HSE and SRSH, perform at the same level of accuracy, followed by the less accurate
PBE functional.
In the expectation that the largest deviation of the theoretical lattice constant from the
experiment also results in the largest deviation of the phonon frequencies and vice
versa, the materials GaAs and Si are selected for further detailed discussion. Note
that the theoretical lattice constant of GaAs has the largest and the theoretical lattice
constant of Si the smallest deviation compared to the respective experimental lattice
constant (see Table 3.4). In the following detailed discussion, GaAs is described
first, then Si, using first the theoretical and then the experimental lattice constant for
each material.

GaAs phonon frequencies using theoretical lattice constants:
Indeed, for the GaAs phonon band structure using the respective theoretical lattice
constant, a clear trend between overestimation in the lattice constant and an under-
estimation in the frequencies can be seen (see upper panel of Fig. 3.8). The closer
the theoretical lattice constant, obtained from a specific functional, is to the experi-
mental one, the closer are the phonon frequencies to the experimental frequencies.
Since all theoretical lattice constants are overestimated, all phonon frequencies are
underestimated in the case of GaAs. In this observation, the order in providing the
most accurate results in both quantities has not changed, i.e. HSE is followed by
SRSH and PBE with decreasing accuracy. Note that a distinction in the accuracy
between acoustic and optical phonons is not required because all functionals yield a
similar behavior for acoustic and optical phonons.

GaAs phonon frequencies using experimental lattice constants:
The overall observation, when using the same GaAs experimental lattice constant
for the calculation of the phonon band structure, is the reduction of the deviation
between the results obtained with the three functionals (see lower panel of Fig. 3.8).
Taking into account the LO phonon energy at the Γ-point (ΓLO), one sees from
Table 3.7 that the spread is almost halved from 0.7 THz for the theoretical to 0.4 THz
for the experimental lattice constant. Thus, in the case of GaAs, all three functionals
provide proper phonon frequencies and are in the same level of accuracy. For a
more detailed discussion it is helpful to distinguish between optical and acoustic
phonons. The accuracy depends on the choice of the phonon branch. For acoustic
phonons, especially far away from the Γ-point, HSE provides frequencies closest
to experiment, followed by frequencies from SRSH and from PBE. In the case of
the optical phonons, far away from the Γ-point all three functionals provide very
accurate description. However, in the area around the Γ-point SRSH is most accu-
rate, whereas HSE provides slightly overestimated and PBE slightly underestimated
phonon frequencies.

Si phonon frequencies using theoretical lattice constants:
For Si, already in the case of the theoretical lattice constants, a reduction of the fre-
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Figure 3.8. The upper panel shows the phonon dispersion relation of fcc-structured GaAs
using the theoretical lattice constants calculated with the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from [156]. Note that experimental data was measured at 12 K. The lower panel shows
the phonon dispersion relation for only using the experimental lattice constant throughout
the three functionals. Reprinted figure with permission from [1]. Copyright (2021) by the
American Physical Society.
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Table 3.7. Phonon frequencies calculated with PBE, HSE and SRSH functionals for GaAs.
Each left sub-column denotes frequencies resulting from the theoretical lattice constant, 𝑎theo,
and each right sub-column from the experimental lattice constant, 𝑎exp. The deviationΔ refers
to experimental values at specific high-symmetry points, where available. Classification of
phonons and experimental values are from [156]. Reprinted table with permission from [1].
Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝐿TA 1.8 -5.3 1.6 -15.8 1.9 0.0 2.2 15.8 1.9 0.0 1.9 0.0 1.9
𝑋TA 2.2 -12.0 2.1 -16.0 2.4 -4.0 2.4 -4.0 2.3 -8.0 2.3 -8.0 2.5
𝐿LA 5.9 -6.3 6.1 -3.2 6.3 0.0 6.3 0.0 6.1 -3.2 6.2 -1.6 6.3
𝑋LA 6.1 -10.3 6.6 -2.9 6.7 -1.5 6.8 0.0 6.4 -5.9 6.7 -1.5 6.8
𝐿LO 6.6 -8.3 7.2 0.0 7.1 -1.4 7.3 1.4 6.8 -5.6 7.2 0.0 7.2
𝑋LO 6.7 -6.9 7.1 -1.4 7.1 -1.4 7.3 1.4 6.9 -4.2 7.2 0.0 7.2
𝑋TO 7.0 -9.1 7.7 0.0 7.5 -2.6 7.7 0.0 7.2 -6.5 7.7 0.0 7.7
𝐿TO 7.3 -7.6 7.9 0.0 7.8 -1.3 8.0 1.3 7.5 -5.1 7.9 0.0 7.9
ΓTO 7.6 -7.3 8.1 -1.2 8.0 -2.4 8.2 0.0 7.8 -4.9 8.1 -1.2 8.2
ΓLO 8.1 -8.0 8.6 -2.3 8.8 0.0 9.0 2.3 8.5 -3.4 8.8 0.0 8.8
MAD(%) 8.1 4.3 1.5 2.6 4.7 1.2

quency spread by the three functionals is expected, as the theoretical lattice constants
hardly deviate from each other (see again Table 3.4). However, this is not the case.
The frequency spread is 0.7 THz for optical phonons at the Γ-point (see Table 3.8).
Going into more detail, using the slight different theoretical lattice constants (see
upper panel in Fig. 3.9), the acoustic phonons are equally accurate described by
all three functionals. For the optical phonons around the Γ-point (see the inset
of the upper panel in Fig. 3.9) a clear trend can be observed: the PBE-calculated
frequencies are slightly underestimated in comparison to experimental frequencies,
HSE-calculated ones are slightly overestimated and SRSH-calculated ones are the
most accurate. This trend also applies to a lesser extent to the optical phonons away
from the Γ-point. Note that in the case of GaAs the most accurate theoretical lattice
constant provides the most accurate phonon dispersion relation. This does not hold
for the case of Si due to a smaller variation among the theoretical lattice constants
of Si.

Si phonon frequencies using experimental lattice constants:
The Si phonon band structure calculated with the same experimental lattice constant
for the three functionals (see lower panel in Fig. 3.9) provides a frequency spread of
0.5 THz for the optical phonons at the Γ-point (see Table 3.8). Thus, the reduction
of the frequency spread is slightly less than in the case of GaAs, when going from
the theoretical to the experimental lattice constant. Overall, both hybrid functionals,
HSE and SRSH, slightly overestimate the phonon frequencies for optical as well as
acoustic frequencies. Furthermore, the difference between frequencies from HSE
and SRSH is negligible. PBE, in general, slightly underestimates the frequencies in
this scenario. In comparison to frequencies from HSE and SRSH the observation
is as follows: the optical phonons are described most accurately by PBE compared
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to the experiment, but the acoustic phonons are better described by the two hybrid
functionals. However, in the case of the experimental lattice constant of Si, all
three functionals provide very accurate phonon frequencies, so that the differences
between them are minor.

Experimental phonon frequencies measured at different temperatures:
Note that the experimental data of GaAs was measured at a temperature of 12 K,
whereas the data of Si at 300 K. All the experimental lattice constants were measured
at room temperature. Since, for the phonon dispersion relations obtained using ex-
perimental lattice constants, somehow all results from DFT are close to experimental
data regardless of the functional, it is expected that the temperature difference of
288 K in measuring experimental frequencies plays a minor role.

Table 3.8. Phonon frequencies calculated with PBE, HSE and SRSH functionals for Si. Each
left sub-column denotes frequencies resulting from the theoretical lattice constant, 𝑎theo, and
each right sub-column from the experimental lattice constant, 𝑎exp. The deviation Δ refers
to experimental values at specific high-symmetry points, where available. Classification of
phonons and experimental values are from [159] and [160]. Reprinted table with permission
from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝐿TA 3.3 -5.7 3.2 -8.6 3.6 2.9 3.5 0.0 3.8 8.6 3.4 -2.9 3.5
𝑋TA 4.4 -2.2 4.2 -6.7 4.3 -4.4 4.7 4.4 4.4 -2.2 4.6 2.2 4.5
𝐿LA 11.1 -1.8 11.2 -0.9 11.7 3.5 11.7 3.5 11.5 1.8 11.5 1.8 11.3
𝑋LA/LO 12.0 -1.6 12.3 0.8 12.6 3.3 12.7 4.1 12.4 1.6 12.6 3.3 12.2
𝐿LO 12.1 -4.0 12.5 -0.8 12.5 -0.8 12.7 0.8 12.4 -1.6 12.6 0.0 12.6
𝐿TO 14.3 -2.7 14.7 0.0 15.0 2.0 15.1 2.7 14.8 0.7 15.0 2.0 14.7
ΓLO/TO 15.1 -2.6 15.4 -0.6 15.8 1.9 15.9 2.6 15.6 0.6 15.8 1.9 15.5
MAD(%) 2.9 2.6 2.7 2.6 2.4 2.0

3.6. Discussion of bulk properties
The overarching task of this chapter is to benchmark the performance of the SRSH
functional for static as well as dynamic bulk properties. It is known that SRSH is
accurate in predicting electronic and optical properties of semiconductors due to its
tuning nature. Therefore, it is interesting to see if the tuning procedures reduce the
accuracy in predicting other bulk properties. The information used to tune the pa-
rameters, e.g. the band gap calculated by GW, makes SRSH an empirical functional,
while PBE and also HSE with a universal screening parameter can be understood as
non-empirical functionals. The most important finding is that SRSH can compete
with well-established functionals such as PBE and HSE. Especially, for the related
quantities of lattice constants and bulk moduli, SRSH is more accurate than PBE
and maintains the accuracy of HSE as seen in Fig. 3.3 and Fig. 3.4. This also holds
when computing phonon dispersion relations as demonstrated with the MADs seen
in Fig. 3.7. In the calculation of atomization energies (see Fig. 3.5), the PBE func-
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Figure 3.9. The upper panel shows the phonon dispersion relation of cubic diamond
structured Si using the theoretical lattice constants calculated with the PBE, HSE and SRSH
functionals (solid colored lines) as well as experimental data (open black circles), which
was extracted from [159] and [160]. Note that experimental data was measured at 300 K.
The lower panel shows the phonon dispersion relation for only using the experimental
lattice constant throughout the three functionals. Reprinted figure with permission from [1].
Copyright (2021) by the American Physical Society.
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tional is superior compared to the two hybrid functionals, which contain not only
GGA but also EXX exchange with variable fractions along the interaction distance
𝑟 .
Based on the performance of the functionals there are two ways of a general explana-
tion: the first argument aims at the total amount of the GGA exchange in a functional,
for instance 100% as in PBE or only 75% as in HSE, and the second argument aims
at the construction of the GGA exchange itself, as there are adjustable parameters.
The latter is directly linked to the reduced density gradient inherent in GGA func-
tionals. In principle, the amount of the reduced density gradient determines whether
structural properties like lattice constants or atomization energies are accurately
described. Recalling the specific from of the spin-unpolarized exchange energy
in equation 2.42, the enhancement factor 𝐹𝑥 (𝑠) depends on the density gradient 𝑠,
which reads

𝑠(𝑛) = 1
2𝑘𝐹 (𝑛)

|∇𝑛|
𝑛
. (3.2)

The gradient expansion of the enhancement factor guarantees the uniform gas limit
for small 𝑠 [161]:

𝐹𝑥 (𝑠) = 1 + 𝜇𝑠2 + ... (𝑠 → 0). (3.3)

The amount of the density gradient 𝑠 is dictated by the parameter 𝜇, which was mo-
tivated for PBE for other, non-empirical, reasons than generating accurate exchange
energies for neutral atoms. In a similar expansion procedure for the correlation
energy, the parameter 𝜈 dictates the amount of 𝑠 (in the correlation energy).
The impact of the density gradients 𝜇𝑠 and 𝜈𝑠 can be seen by comparing results from
the PBE and PBEsol functional [161]. Both functionals belong to the type of GGA
functionals, but with different amount of the reduced density gradients. PBEsol can
simply be derived from PBE by changing the amounts of the parameters 𝜇 and 𝜈. In
order to gain proper exchange energies of atoms, which is especially important for
atomization energies in solids, the GGA functional has to reject the gradient expan-
sion in the case of almost constant densities by increasing the parameter 𝜇 [162].
Note that the PBE and PBEsol functionals differ, for example, in the parameter 𝜇 by
a factor of 2, i.e. 𝜇PBE = 2𝜇PBEsol. As a consequence, the nonlocality given by the 𝑠
dependence of the GGA functional is reduced from PBE to PBEsol by tweaking 𝜇
and 𝜈. Whereas PBEsol is more accurate in describing lattice constants, it worsens
the atomization energies in comparison to PBE due to being less dependent on the
density gradient than PBE [139].
As with the reduction of the impact of the density gradient via a parameter, one
can state that hybrid functionals further extenuate the influence of the density gra-
dient by replacing a fraction of GGA by EXX. Specifically, SRSH and HSE use
only a fraction of 75% of GGA exchange in the short range. Thus, on the one
hand, hybrid functionals worsen the description of atomization energies and, on the
other hand, simultaneously increase the accuracy of the lattice constant. In view of
the attenuation of the density gradient, it is not surprising that SRSH provides the
lowest accuracy for atomization energies in comparison to PBE and HSE as seen
in Table 3.6, because of the still existing EXX in the long range. In other words,
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HSE has full influence of the density gradient in the long range and, thus, is slightly
superior in the atomization energies to SRSH. This is supported by Fig. 2.6, which
illustrates the range-separation parameter and the variation of the GGA fraction by
𝛾 along the interaction distance 𝑟 . In principle, it would be also possible for solids
or isolated molecules to tune the SRSH parameter 𝛾 towards proper atomization
energies. Needless to say, a comparison of total energies stemming from different
𝛾 parameters is somehow nonsensical and therefore a calculation of atomization in
this way is unreasonable [163].
The calculation of phonon dispersion relations showed that all three functionals pro-
vide accurate results compared to experiment. When the frequencies are calculated
for each functional with the respective theoretical geometry, an error propagation
exists due to the deviation of the theoretical lattice constants. Thus, the differences
in the phonon frequencies of the various functionals are somewhat larger in this
scenario. But when using the same experimental lattice constant throughout testing
each functional, these differences become smaller (see Fig. 3.7). In particular, re-
sults from SRSH and HSE become more equal and both are slightly more accurate
than results from PBE. In principle, the calculation of phonon frequencies can be
traced back to the calculation of forces obtained from displaced atoms. It seems
that the portioning between the Hartree-Fock exchange and the generalized gradient
approximation using a density gradient does not impact the calculation of forces in
the short range much.
Note that when testing SRHS the range-separation parameter 𝛾 varies from 0.62
for Si up to 2.50 for GaAs, which is roughly a variation by a factor of four. In
principle, there is no correlation between the magnitude of 𝛾 and the error of bulk
properties calculated with SRSH. In Fig. 3.10, the deviation of the theoretical lattice
constant compared to experiment is shown as a function of 𝛾. Since PBE is not
range-separated and HSE has a universal 𝛾, the error behavior of these two function-
als demonstrate the absence of a correlation between 𝛾 and the accuracy of SRSH.
This means that a slight change of the 𝛾 parameter will change the band gap a little,
but will not fully destroy the accuracy of SRSH in the description of bulk properties.

Note that the accuracy of the two hybrid functionals with respect to band gaps and,
where applicable, bulk properties is accompanied by an increase in computational
cost in comparison to the PBE functional. A list of computation times as well as a
ratio factor can be seen in Table A.1 of the appendix. Furthermore, additional effects
such as zero-point corrections, which require an enormous computational effort, and
the already mentioned dispersion corrections such as the van der Waals corrections
were not taken into account.
In addition to the previous research about SRSH [27, 28], benchmarking of bulk
properties calculated with SRHS [1] complements the idea of tuning the band gap
towards a GW band gap and letting the dielectric constant describe the long-range
behavior. It was demonstrated that the accuracy of SRSH for electronic and optical
properties of common inorganic semiconductors does not deteriorate the calculation
of bulk quantities. Furthermore, SRSH can reproduce accurate results from the
established PBE and HSE functionals.
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Figure 3.10. Deviation Δ (in %) of the theoretical from the experimental lattice constant as
a function of the range-separation parameter 𝛾(Å−1). Only the SRSH functional depends on
𝛾, which is different for each material. The materials are labeled as insets and the explicit 𝛾
values can be seen in Table 3.2. Note that the HSE functional has a constant range-separation
parameter 𝛾 = 0.2 Å−1 and the PBE functional is not range-separated.

3.7. Impact of the EXX amount on the
temperature-dependent band gap

The temperature-dependent band gap of diamond and Si is calculated for further
investigations regarding the influence of the proportions of EXX and GGA in the
short range. In order to access the temperature dependency of the aforementioned
materials the Monte-Carlo or One-Shot methods, as introduced in the section 2.5.2,
were applied. These methods rely on phonon-distorted structures in calculating the
electron-phonon coupling energies responsible for the temperature dependence. For
testing the influence of the EXX amount, the EXX amount of the HSE functional
is varied. This is achieved by variations of the parameter 𝛼, dictating the amount
of EXX in the SR, and the range-separation parameter 𝛾, dictating the separation
between short and long range, by reasonable amounts. Fig. 2.6 illustrates the effect
of 𝛼 and 𝛾. The specific variations of 𝛼 and 𝛾 are listed in Table 3.9 and for each
calculation only one parameter is varied. In the case of diamond the temperature-
dependent band gap is calculated using the LDA, PBE, HSE and variations of the
HSE functional, in order to test whether there is a difference between conventional
and hybrid functionals. The overall observation for diamond is that the change of
the band gap with temperature seems to be insensitive regarding to the choice of the
functional. A similar trend can also be observed for Si.
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Table 3.9. The left-hand multi-column shows the HSE parameters with varied values for
𝛼, which determine the fraction of EXX in the SR. The right-hand multi-column shows the
HSE parameters with varied values for 𝛾, which specify the range separation in SR and LR.
Note that the original HSE is determined by 𝛼 = 0.25 and 𝛾 = 0.2.

HSE(𝛼) HSE(𝛾)
𝛼 𝛾(Å−1) 𝛼 𝛾(Å−1)

0.05 0.2 0.25 0.1
0.25 0.2 0.25 0.2
0.45 0.2 0.25 0.3

All calculations applied a 4× 4× 4 supercell with 128 atoms using the experimental
lattice constant for each material. The energy cutoff and number of k-points are
converged separately. Note that in order to calculate the band gap for diamond or
Si, the stated gap values are averaged over degenerate bands, i.e. averaged over the
sixfold degeneration of the CBM close to the 𝑋-point and the threefold degeneration
of the VBM at the Γ-point. The temperature dependence is calculated beginning
from 0 K up to 700 K in steps of 100 K, where results from literature are available.

Temperature-dependent band gap of diamond:
Starting with diamond, first, the zero-point renormalization is calculated using the
PBE and HSE functional (see Table 3.10). No significant difference can be observed

Table 3.10. Calculated zero-point renormalization energies for the diamond indirect band
gap applying the PBE and HSE functionals. The calculation used a 4 × 4 × 4 supercell
containing 128 atoms and applied the full MC method. Note that the ZPR energy is negative
and its inclusion to the static band gap value lowers or closes the band gap. The experimental
ZPR is taken from [111] via extrapolation of the temperature dependence towards 0 K. In
addition, ZPR energies resulting from selected phonon modes were calculated with the help
of the AHC method as implemented in ABINIT, verifying results from [114].

PBE HSE Exp
ZPR (eV) 0.368 0.375 0.370

in the ZPR values resulting from a pure GGA or hybrid functional. Overall, there
is good agreement of ZPR to experiment. Next, the change of the temperature-
dependent band gap is calculated using the PBE and HSE functional, as well as
two variations of HSE by varying 𝛼 (0.05 and 0.45), as seen in Fig. 3.11. The
already known fact that the MC method can correctly predict the temperature trend
for semiconductors is also demonstrated. One observes that there is no significant
difference between the results from the different functionals, even when the amount
of EXX is varied. Furthermore, the LDA functional is also tested with no visible
difference to the other functionals. Therefore, LDA is not depicted in Fig. 3.11. In
order to demonstrate the similarity between the accuracy of the MC and OS method,
one value is calculated at 600 K using the full MC method with the PBE functional.
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Figure 3.11. Change of the temperature-dependent band gap of diamond from 0 K up
to 700 K. The plot shows the indirect band gap change including the effect of ZPR. All
calculations applied the OS method and only one single calculation at 600 K applied the full
MC method. All deviations Δ have been calculated with respect to the the static band gap
resulting from the respective functional. Note that all four functionals provide very similar
results so that the four lines coincide. The functional variants with 𝛼 = 0.05 and 𝛼 = 0.45
are functionals of the type HSE with accordingly varied 𝛼. Experimental data (open black
circles) were extracted from [164] and the experimental fit is denoted as a thin black line.
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Figure 3.12. Description of the figure is the same as in Fig. 3.11, except that the functional
variants of HSE have varied range-separation parameter to 𝛾 = 0.1 Å−1 and 𝛾 = 0.3 Å−1,
instead of varied amount of exact-exchange via 𝛼.

Next, the portioning of EXX and GGA is investigated along the interaction distance 𝑟
by varying the range-separation parameter 𝛾 of the HSE functional. Fig. 3.12 shows
the variation of 𝛾 together with results from PBE and HSE. Also in this scenario,
the temperature dependent changes of the indirect band gap are very similar for the
different functionals. It can be assumed that the similarity of the results from all
functionals also applies to other energy differences in the BZ. Note that in diamond
the band gap change of the direct gap increases faster with temperature than the band
gap change of the indirect gap [165, 166]. Overall, the results calculated here agree
with results from literature, i.e. the band gap closing of approximately 80 meV for
the diamond indirect band gap across the temperature range is consistent with the
band gap closing of approximately 80 meV from [102]. Also, the results of the ZPR
at the indirect gap of 368 meV for PBE and 375 meV for HSE coincide with the ZPR
of 363 meV for PBE from [102]. Note that [114] stated approximately 90 meV gap
closing for the direct gap using DFPT. Furthermore, [167] stated somewhat larger
values for the direct gap closing of approximately 190 meV as well as for the ZPR
of 600 meV, both values calculated with GW applying a scissor operator correction2.
Furthermore, the inclusion of thermal expansion in the calculation of the temperature-
dependent band gap remedies the difference between theory and experiment (see
Fig. 3.13). In principle, including volume effects can be achieved by increasing the
lattice constant with reasonable values from experimental thermal expansion. Here,
the volume effects are incorporated via quasi-harmonic (QH) calculations [102].

2The authors of [102] mention that these large values are probably a misunderstanding resulting
from the unique case of the direct band gap of diamond and the 200 meV larger results for the
ZPR from 𝐺0𝑊0 than from DFT.
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Figure 3.13. Description of the figure is the same as in Fig. 3.11, except that only the
PBE functional was tested using the constant experimental lattice constant (closed green
line) and the experimental lattice constant including thermal expansion (dashed green line).
The thermal expansion or volume effects is achieved via quasi-harmonic calculations of the
temperature-dependent lattice constants.

Temperature-dependent band gap of Si:
First, the ZPR for Si was calculated as listed in Table 3.11. The ZPR value of

Table 3.11. Zero-point renormalization energies for the Si indirect band gap appling the
PBE, PBE0 and HSE functionals. The calculation used a 4 × 4 × 4 supercell containing
128 atoms and applied the full MC method. Note that the ZPR energy is negative and its
inclusion to the static band gap value lowers or even closes the band gap. The value of
the ZPR calculated with PBE0 is taken from [102] and the experimental ZPR is taken from
[111] via extrapolation from the temperature dependence up to 0 K.

PBE PBE0 HSE Exp
ZPR (eV) 0.057 0.064 0.062 0.064

57 meV for PBE and 62 meV for HSE coincide with the 64 meV for PBE0 reported
in literature [102]. Furthermore there is a good agreement to the experimental ZPR
of 64 meV [111]. However, the difference between values from PBE and HSE are
of a single-digit order of magnitude (5 meV) and thus not significant. Next, the
temperature-dependent change of the indirect band gap of Si was calculated as seen
in Fig. 3.14. Only the functionals PBE and HSE are tested to find out whether there
is a difference between GGA and hybrid functionals. The largest deviation between
the two results is roughly 10 meV at 700 K. The overall magnitude of the band gap
closing is approximately 100 meV on a temperature range of 700 K, which is slightly
less than the band gap change of 100 meV already reached at 500 K in [103]. This
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Figure 3.14. Change of the temperature-dependent band gap of Si from 0 K up to 700 K. The
plot shows the indirect band gap change including the effect of zero-point renormalization.
All deviations Δ have been calculated with respect to the the static band gap resulting from
the respective functional. Experimental data (open black circles) were extracted from [168]
and the experimental fit is denoted as a thin black line.

difference can be attributed to the different supercell sizes. The calculations in [103]
used a 8 × 8 × 8 supercell, whereas this study used a 4 × 4 × 4 supercell.

Conclusion:
On the one hand, the ZPR for diamond is large (a few hundred meV) and the change
in the temperature-dependent band gap is small in comparison (only one hundred
meV) over a temperature range from 0 K to 700 K. For Si, on the other hand, the
ZPR (60 meV) is smaller than the temperature-dependent change (100 meV) in the
band gap. However, both materials demonstrate that the ZPR as well as the band gap
change according to temperature do not strongly depend on the choice of functional,
if at all.
Additionally, it can be assumed that the AHC method can also describe the temper-
ature curve of the band gap for semiconductors with the correct gradient. It seems
that a quadratic theory in the EPC terms is sufficient for harmonic materials where
the effect of anharmonicity is not pronounced.
Initially, it was assumed that the choice of functional influences the magnitude of
the EPC energy and thus also the temperature dependence of the band gap. Particu-
larly, the formulation of the EPC energy in the frozen-phonon method (see equation
2.156) motivated this assumption. The EPC energy given by this approach depends
explicitly on electronic eigenvalues and phonon frequencies. Thus, it is reasonable
to assume that more precise values, as provided by hybrid functionals, could lead
to more precise EPC values. However, since the EPC energy seems to be almost
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insensitive of the choice of functional, whether GGA or hybrid, the strategy of ex-
ploiting the accuracy provided by SRSH, i.e. being accurate in both, electronic and
frequency eigenvalues, has become somewhat obsolete. When going deeper into
detail, taking into account the electron-phonon coupling matrix elements, regardless
of first or second order, the matrix elements are mainly dictated by the wave func-
tions. In the framework of perturbative methods in DFT, a general definition of the
electron-phonon matrix element can be written as follows [15]:

𝑔𝑚𝑛k,𝜈q = ⟨𝜓𝑚k+q |𝜕𝜈q�̂� |𝜓𝑛k⟩. (3.4)

Therefore, if the calculation of the wave function is independent of the amount of
EXX, it is obvious that the electron-phonon coupling matrix elements are insensitive
to the choice of the functional, be it the generalized gradient approximation or the
hybrid functional.
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4. Results and discussion: halide
perovskites

Note that the results discussed in chapter 4 are based on [2] and are the outcome of
the collaboration with Xiangzhou Zhu (equal contributions).

4.1. Introduction to halide perovskites
A new class of energy materials, known as HaPs, has attracted great interest in
semiconductor research, as the energy conversion efficiency of HaP-based solar
cells is increasing rapidly. In particular, the rapidly increasing efficiency compared
to conventional inorganic semiconductors is outstanding. For Si, for example, it
took several decades to reach an efficiency of 26.1% for crystalline Si cells (non-
concentrator, single crystal) [4]. In contrast, emerging photovoltaics (PV) including
perovskite cells have already achieved an efficiency of 26.1% in only the last decade
[4]. In addition, emerging PV using perovskite-silicon tandem (monolithic) solar
cells have achieved an outstanding efficiency of 33.9% since its introduction in 2017
[4].
However, the bottleneck of the new energy material HaPs is that the material is
unstable, or exhibits only short-term stability. This structural instability must be
overcome, if HaPs are to be considered for solar cell applications. The typical
perovskite structure has the form ABX3, whereby in the case of halide perovskites
the X-site anion is a halide of group VII. Typical halides in HaPs are the elements
chlorine (Cl), bromine (Br) and iodine (I). In the case of all-inorganic HaPs, the
A-site cation can be an alkali metal, such as the caesium atom (Cs) from group
I. In another case of organic-inorganic HaPs, the A-site cation can be an organic
molecule, such as the methylammonium (MA) or the slightly larger formamidinium
(FA), where MA=CH3NH3 and FA=CH-(NH2)+2 . In general, if A is an organic
molecule, it is a rather small molecule, and if A is an inorganic atom, it is a rather
large atom1. In addition, the B-site cation in lead halide perovskites is formed by
the metallic element lead (Pb). Two paradigmatic examples in the research of HaPs
are the all-inorganic CsPbBr3 and the hybrid organic-inorganic MAPbI3.
Furthermore, the characteristic structure in HaPs is given by the B and X atoms,
which form the inorganic lead-halide structure of a BX6 octahedra, with the metallic
atom B in the center and surrounded by the six halide atoms X. An A-site cation is
located between eight corner and halide-sharing octahedra. An example of a cubic

1Note that for the mentioned cations following size relation holds: Cs < MA < FA.
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ABX3 perovskite structure is shown in Fig. 4.1.

Figure 4.1. Schematic structural representation of the typical ABX3 structure for cubic
HaPs. Together with six halide anions X, the metal cation B forms the BX6 octahedra, which
is shown as gray shaded area. The eight shown octahedra enclose the inorganic cation A.
In CsPbBr3, for example, the cubic unit-cell consists of only 5 atoms. In organic-inorganic
HaPs, the inorganic cation (cyan) is replaced by an organic molecule, such as in MAPbI3.
Note that the atoms shown on the right-hand side are not drawn to scale.

In contrast to common inorganic semiconductors, which can have a direct or indirect
band gap (see chapter 3), the band gap of HaPs is always direct [169], when disre-
garding the Rashba effect in the inclusion of SOC. For cubic HaPs, for example, the
direct band gap is located at the 𝑅-point, i.e. the edge of the BZ. This can be seen
by means of the static band structure without SOC for cubic CsPbBr3, as shown in
Fig. 4.2. Since solar materials are used approximately at room temperature, it is of
utmost importance to go beyond the static description and to understand the influence
of thermal effects on the band gap. While the band gap of inorganic semiconductors
decreases with increasing temperature, which is known as the "Varshni effect" [15]

𝐸Gap(𝑇) = 𝐸Static
Gap − |Δ𝐸ZPR

Gap |
(
1 + 2𝑛

(
ℏ𝜔𝑜

𝑘B𝑇

))
, (4.1)

the band gap of HaPs increases with increasing temperature [170, 16]. The opening
of the band gap due to thermal effects is schematically shown in Fig. 4.2 by the thick
light-blue lines.
However, the dominant contribution that leads to the opening of the band gap of
HaPs due to thermal effects remains to be discussed. Remarkably, the band-gap
value calculated from the static cubic high-symmetry structure, which is considered
only as an average crystal structure, can differ enormously from a band-gap value av-
eraged over structural samples from HaPs. This holds for samples from quasistatic
calculations [8, 10, 171] as well as for samples from fully dynamic calculations
[7, 13]. In general, the thermal effects in HaPs that affect the band gap are the lattice
expansion [92] and phononic vibrations [172, 8]. Both together are reflected in
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Figure 4.2. Static DFT band structure for cubic CsPbBr3 calculated with PBE and without
SOC (shown as thin blue line). The direct band gap is located at the 𝑅-point at the BZ
boundary. A schematic representation of the opening of the band gap due to the inclusion
of thermal effects is shown by the thick light-blue lines.

structural fluctuations associated with the unusual anharmonic motions that domi-
nate HaPs. Indications of anharmonicity in HaPs are octahedral tilting (see Fig. 2.13)
and atomic displacements with a large amplitude [8, 173, 174, 175, 105, 176].
For optoelectronic properties of HaPs, it is of particular interest to rationalize these
structural fluctuations induced by vibrational anharmonicity, since they inherently
determine the HaP atomic structure. In order to capture the full anharmonic pic-
ture, it is not adequate to remain in the harmonic approximation, when considering
structural fluctuations at finite temperature. In particular, the interaction of the
thermal phonon coupling is not taken into account in the harmonic approximation,
in which the phonon modes are completely decoupled. In principle, the ther-
mal atomic displacements calculated in harmonic approximation strictly follow a
quadratic potential-energy surface (see also Fig. 4.10). But in HaPs, the atomic
displacements due to anharmonic thermal vibrations go beyond a quadratic shape.
Typical for HaPs is a potential-energy surface that enables dynamic symmetry break-
ing, as offered by the double-well potential, schematically shown in Fig. 4.3. Such a
double-well potential can be verified by using a Boltzmann inversion, as explained
in chapter 4.5, of specific atomic displacements in HaPs. In CsPbBr3, for example,
atomic displacements, which reveal reminiscently a double-well potential, are Br
displacements in a plane perpendicular to the Pb-Br-Pb bonding axis [105]. Such a
potential-energy surface is considered dynamic because, for a given temperature, all
phonon modes contribute to the vibrational anharmonicity, not just selected modes.
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Figure 4.3. Schematic double-well potential characterizing the potential-energy surface of
HaPs. Note that the local maximum corresponds to the cubic high-symmetry structure. At
sufficiently high temperatures, the atoms can overcome the potential barrier of the local
maximum, i.e. the double-well is smeared out so that the atoms have access to the entire
potential-energy surface.

Also the large atomic displacements of Br perpendicular to Pb–Br–Pb bonding axis
inherently show vibrational anharmonicity, which is accompanied by a rapid increase
in the joint density of states [177]. Furthermore, non-Gaussian distributed Cs and
Br displacements with respect to the highly symmetric cubic structure prove anhar-
monicity in the instantaneous perovskite structure [105]. In addition, both types of
HaPs, hybrid organic-inorganic such as MAPbI3 and all-inorganic such as CsPbBr3,
show unusual anharmonic behavior [174]. Note that in hybrid HaPs, rotations of the
organic molecules occur [11], which are also responsible for anharmonicity [174].
In this research, however, the focus is on combining the unusual structural dynamics
with the temperature-dependent band gap, which enables a microscopic understand-
ing of vibrational anharmonicity in HaPs.
Additionally, anharmonicity is also linked to some extent to the calculation of
electron-phonon interaction. This can be recognized in the calculation of the ther-
mal band gap for HaPs and common inorganic semiconductors with and without
higher-order EPC terms. For the harmonic semiconductor Si, for example, the in-
clusion or neglect of higher-order EPC terms shows no significant difference in the
calculation of the temperature-dependent band gap (see chapter 4.2). In contrast to
harmonic Si, anharmonic HaPs require the inclusion of higher-order EPC terms to
correctly predict the slope of the temperature-dependent band gap, while neglecting
higher-order EPC terms strongly overestimates the slope [16, 178]. Therefore, for
harmonic materials, higher order EPC terms are not relevant, whereas for anhar-
monic materials, higher order EPC terms must be considered when investigating the
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thermal band gap (see chapter 4.7).
HaPs in general occur in three phases, namely the orthorhombic, tetragonal and
cubic phase. The prototypical HaP CsPbBr3, for example, experiences two phase
transitions at the temperature 361 K for the orthorhombic-to-tetragonal phase and
at 403 K for the tetragonal-to-cubic phase [179, 180]. Fig. 4.4 shows structures
of the orthorhombic and cubic phase of CsPbBr3, since only these two phases are
the subject of this investigation. The mere fact that the static band gaps of the

Figure 4.4. Schematic representation of the structures of the orthorhombic (a) and cubic
(b) phase of CsPbBr3. The panels on the bottom show the bird’s eye view of the structures.
Note that the phase transitions occur at following temperatures: orthorhombic-tetragonal at
361 K and tetragonal-cubic at 403 K.

orthorhombic and cubic structures differ greatly from each other raises the need for
further investigations. Specifically, the static PBE-DFT band gap including SOC is
0.6 eV for the cubic phase [80] and 1.3 eV for the orthorhombic phase of CsPbBr3
[181], a difference of 0.7 eV. A further task of this research is, therefore, to find
out how the inclusion of thermal effects can overcome the jump in the band gap
caused by two different phases. Note that the temperature range of the intermediate
tetragonal phase is only 40 K and from experiments is known that the band gap is
continuous across phase transitions [17].
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Next, some additional features of HaPs are listed below. Apart from the fact that Pb
is toxic, which is unfavorable for use as a solar material, the Pb atom is also very
heavy due to its high nuclear charge. In the case of CsPbBr3, the atomic masses are
133 u for Cs, 207 u for Pb and 80 u for Br. Due to the large mass of the Pb atom, the
SOC contribution is generally dominant in lead-based HaPs and must therefore be
taken into account. Note that the SOC contribution in CsPbBr3 and MAPbI3 lowers
the static DFT band gap by hundreds of meV (see chapter 4.6). Another contribution
that has an indirect effect on the band gap via a changed structure are dispersive
corrections such as the long-range VdW interaction (see chapter 2.2.8). Compared
to conventional inorganic semiconductors, where the inclusion of VdW interaction
only slightly influences the structure2 [72], the inclusion of VdW in HaPs leads to
more precise structures. For MAPbI3, for example, the inclusion of the pair-wise
VdW interaction showed a reduction of the unit-cell volume and thus a lowering
of the theoretical lattice parameters3, which leads to a better agreement with the
experiment [70]. In general, both the SOC effect and the VdW interaction do not
influence each other, but must be taken into account in an appropriate description of
HaPs [70].
However, the connection between anharmonic structural fluctuations and their effect
on the band gap of HaPs has not yet been sufficiently discussed. Apart from the effect
on the band gap, it is known that quantities like charge-carrier mobilities [182, 183],
defect energetics [184], Urbach energies [93, 177] and exciton properties [185] are
also influenced by the anharmonic lattice vibration present in HaPs. A profound
understanding of vibrational anharmonicity, achieved by comparing theories exclud-
ing (MC) and including anharmonicity (MD), helps to further explain the impact on
optoelectronic properties such as the electronic band gap. It will be demonstrated,
how the inclusion of anharmonic fluctuations closes the band-gap difference from
the static structures at the different phases of CsPbBr3. This leads to an appropriate
comparison to a continuous thermal band gap from the experiment. In addition, this
research also aims to provide further insight into the unusual structural properties of
HaPs caused by vibrational anharmonicity. In particular, the study determines band
gap values averaged from structural samples of the statistical MC and MD methods
and compares the results with each other and to experimental data. It will be agreed
that anharmonicity can be understood as the difference that results from subtracting
the results from MC and MD.

2In the case of Si, the difference between the PBE and PBE+VdW lattice parameters is 0.03 Å [72].
3In the case of MAPbI3, the difference between the PBE and PBE+VdW lattice parameter is 0.13 Å

[70].
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4.2. Temperature-dependent band gap for
harmonic materials

Computational details for Si:
In principle, the calculation of the temperature-dependent band gap with MD and
MC consists of two parts. First, distorted structures are generated as samples, either
from an MD trajectory or an MC calculation. Then the band-gap value is calculated
as an average of the individual band gaps from the samples.
The following computational parameters are the same for the MD and MC method:
All calculations are performed with VASP and use the PBE functional. A 4 ×
4 × 4 supercell built out of the Si fcc unit-cell containing 2 atoms is used, which
results in a total of 128 atoms. The lattice parameter is the experimental Si lattice
constant of 5.43 Å. Converged results are achieved with an energy cutoff of 270 eV
and a k-point grid of one single k-point at the Γ-point. The explicit temperature-
dependent band-gap values are calculated as an average out of 500 band gaps from
MD snapshots or distorted MC structures for selected temperatures of 100 K, 300 K
and 700 K. The individual band-gap calculations to determine the average value use
an energy convergence threshold of 10−4 eV. Note that the indirect gap shown here
refers to the band gap of the supercell at the Γ-point, which is not rigorously the
indirect band gap of Si after the back-folding of the bands. However, this fact is
insignificant if only the temperature evolution is studied. In addition, the band-gap
values are calculated without the SOC contribution, which is negligible for common
inorganic semiconductors. Moreover, the band-gap values from MD and MC are
not only averaged over the sample structures, but also over the originally degenerate
bands. Since the distorted structures lift the degeneracy, the individual band-gap
values are averaged over the originally sixfold degenerate CBM and the originally
threefold degenerate VBM. In contrast, the band-gap value calculated from AHC is
not averaged over bands as the bands are still degenerate.
The distinct computational parameters referring to the first part of the calculation
are: The MC calculations use an energy convergence threshold of 10−4 eV, which is
sufficient to achieve converged phonon frequencies and modes for Si. Additionally,
the MC method uses the Bose-Einstein statistics to create random structures. The
MD calculations use a slightly more stringent energy convergence threshold of
10−5 eV, a total runtime of 18 ps and a time step of 2 fs.

Results for Si:
In order to rationalize the influence of anharmonicity on the temperature-dependent
band gap, a comparison of the results from MC and MD is informative when
anharmonicity initially plays a minor role. Using harmonic materials, it can be
shown that the results calculated with MD, which inherently takes anharmonicity
into account, and the MC method do not differ significantly from each other. This
is illustrated in Fig. 4.5 by the band-gap distributions for Si calculated with MD and
MC, together with the result from the AHC method (see chapter 2.6 for explanations
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of all three methods). The averaged band-gap values at the temperature of 700 K
are 549 meV for MD, 537 meV for MC and 520 meV for AHC. This leads to a band-
gap difference of 12 meV between the averaged band gaps from MD and MC, and
to a band-gap difference of 17 meV between the band gaps from AHC and MC.
Consequently, the band-gap values calculated with all three methods hardly differ
from each other.

Figure 4.5. Temperature-dependent indirect band gap for Si calculated at 700 K. The
averaged band-gap values are 536.5 meV for MC (blue vertical line) and 548.5 meV for MD
(red vertical line) and differ by only 12 meV. The band-gap value determined with the AHC
method is 520 meV (violet vertical line) and differs by only 16.5 meV to the band-gap value
from MC. Note that the AHC band-gap change is calculated within the non-adiabatic AHC
method and is taken from Ponce et al. [119]. The AHC band-gap change is 178.5 meV for the
temperature range of 700 K and is subtracted from the static band-gap value of 698.5 meV.
The temperature-dependent band-gap values are calculated with the LDA functional in the
case of AHC and with the PBE functional in the case of MC and MD. Note that the choice of
functional has negligible effects on the calculation of the temperature-dependent band gap
(see chapter 3.7).
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In particular, the statistically calculated band-gap values show that MD and MC
provide almost equivalent results for the temperature-dependent band gap when
anharmonic effects are negligible. In addition, the statistical approaches provide
also similar results, in the case of harmonic Si, to the result from the perturbative
AHC method applying the DFPT framework. This implies that higher-order EPC
terms, as considered in MC and neglected in AHC, do not contribute much for
harmonic materials, such as Si, while they are required for anharmonic materials
(see chapter 4.7). Therefore, higher order EPC terms are connected to anharmonicity
in the sense that they are relevant for anharmonic materials but play a less important
role for harmonic materials. Note that the corresponding static band gap in Fig. 4.5
is 699 meV, which shows that the inclusion of temperature leads to a reduction in the
band gap as expected for common inorganic semiconductors.
Furthermore, Fig. 4.6 shows the Si temperature-dependent band gap calculated with
MD and MC for the temperatures 100 K, 300 K and 700 K. The corresponding
band-gap distributions are depicted in the appendix A.4. In general, the band-gap
distributions from MC are Gaussian distributed, since the probability distribution
for the generation of the displacements is also Gaussian distributed (see details in
chapter 2.5.2). In addition, the effect of a temperature-induced broadening of the
distribution can be observed in both band-gap distributions from MD and MC4. To
summarize, the example of harmonic Si shows that the results from MD and MC
above room temperature are very similar, if anharmonicity is a small effect.

Figure 4.6. Temperature-dependent indirect band gap for Si calculated with the MC method
(blue-dashed line) and MD (red line) for 100 K, 300 K and 700 K. Note that the band-gap
values are calculated as an average over structures from MC and MD. Reprinted figure with
permission from [2]. Copyright (2023) by the American Physical Society.

4It would be interesting to compare the shapes of the MD band-gap distributions for common
inorganic semiconductors, where the band-gap decreases with increasing temperature, with the
shapes of the MD band-gap distributions for HaPs, where the band-gap increases with increasing
temperature.
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4.3. Temperature-dependent reflectance
measurements of CsPbBr3

To classify the results from MD and MC for CsPbBr3, it is important to refer to
experimental data as a benchmark. Therefore, not only the absolute values of the
experimental band gap for some selected finite temperatures are essential, but also
the temperature evolution of the band gap over a larger temperature range including
the phase transitions.

Figure 4.7. Reflectance measurements of single crystal CsPbBr3 in a temperature range
from 300 K to 560 K measured in intervals of 20 K. The color bar (right side) indicates the
specific temperature for each measured spectra and the horizontal white lines in the inset
denote the temperatures of the phase-transitions. Reprinted figure with permission from [2].
Copyright (2023) by the American Physical Society.

Therefore, reflectance measurements of single crystal CsPbBr3 [2] are shown in
Fig. 4.75. The measured spectra extend over a temperature range from 300 K to
560 K including the orthorhombic-to-tetragonal phase transition at 361 K and the
tetragonal-to-cubic phase transition at 403 K [179, 180]. The spectra are measured
in steps of 20 K. The reflectance measurements show a pronounced peak at ≈2.4 eV,
which corresponds to the excitonic absorption [186]. Due to a small exciton binding
energy for CsPbBr3 of ≈26 meV [187], the slight right shift of the pronounced peak

5The experimental data were measured by Guy Reuveni, Sigalit Aharon and Omer Yaffe.
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(see Fig. 4.7) with increasing temperature can be rationalized as the temperature
dependency of the band gap. Note that the exciton binding energy of CsPbBr3 at
room temperature is in the order of magnitude of the thermal energy given by 𝑘B𝑇
and can therefore be considered small [187].
A Tauc plot6 is used to estimate the temperature-dependent band gap as the intersec-
tion point from the linear fit with the x-axis of the corresponding absorption spectra.
The estimated temperature-dependent band-gap values of CsPbBr3 are shown in
Fig. 4.8. Increasing the temperature leaves the band gap almost unchanged, which
can be seen by only mild changes in the gap across the investigated temperature
range. The experimental data also show no strong fluctuations in the band gap at the
phase transition temperatures. Notably, no discontinuity is observed in comparison
to the band gap difference of 0.7 eV from the orthorhombic and cubic static gap.
Thus phase transitions have minor impact on the band gap of CsPbBr3. In addition,
the experimental results presented in Fig. 4.7 are consistent with the experimental
data available in the literature [17]. For further explanations of the experimental
measurements, the reader is referred to appendix B: "Experimental methods" in
Seidl et al. [2].

Figure 4.8. Temperature-dependent band gap for CsPbBr3 corresponding to the reflectance
measurement of Fig. 4.7. The color scheme of the band gaps corresponds to the color bar of
Fig. 4.7. The band gap is given as an estimate by the intersection point of the linear fit using
a Tauc plot and the x-axis of the absorption spectra. The thin vertical lines indicate the three
phases of CsPbBr3: orthorhombic (O), tetragonal (T) and cubic (C) [179].

6A detailed explanation of a Tauc plot can be found in Ref. [188].
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4.4. Temperature-dependent fundamental band gap
of CsPbBr3

Computational details for CsPbBr3:
All DFT calculations for the MD and MC method, as well as the standard band-gap
calculations are performed with VASP in conjunction with the PBE functional. A
PAW pseudo-potential is applied for the core-valence interactions including semi-
core Pb-6s, Cs-5p and Cs-6s states as valence electrons. The orthorhombic structure
of CsPbBr3 is used for the temperatures 275 K, 325 K and 375 K and the cubic for
425 K, 475 K and 525 K (see chapter 4.1 for details of the corresponding structure).
For both phases, supercells with 160 atoms are used, which are formed for the or-
thorhombic phase by a 2 × 2 × 2 supercell and for the cubic phase by a 4 × 4 × 2
supercell. The corresponding unit-cells are first relaxed before the supercells are
created. Therefore, relaxation calculations are performed with following parame-
ters: an energy cutoff of 400 eV, an energy convergence threshold of 10−6, a 8×8×8
Γ-centered k-grid for the cubic structure, a 6 × 4 × 6 Γ-centered k-grid for the or-
thorhombic structure and a convergence threshold of 5×10−3 eV / Å for the maximum
residual forces on the atoms. Note that the unit-cell relaxations are executed with
the dispersive corrections of the Tkatchenko-Scheffler method with and without the
iterative Hirshfeld partitioning (see chapter 2.2.8).
A Nosé hoover thermostat is used for the MD calculations to define the temperature
in the canonical NVT ensemble (see chapter 2.5.1). Note that thermal expansion is
not included in the NVT ensemble. The Tkatchenko-Scheffler method with iterative
Hirshfeld partitioning (TS-IH) is used for the dispersive corrections in the MD (see
chapter 2.2.8). The CsPbBr3 supercells for MD are created out of the orthorhombic
𝑃𝑏𝑛𝑚 unit-cell with the lattice parameters of 8.61 Å, 11.76 Å and 7.94 Å and out
of the cubic 𝑃𝑚3̄𝑚 unit-cell with the lattice parameter of 5.94 Å for each direction
(both relaxed with TS-IH). The orthorhombic supercell is sampled with one single
k-point at the Γ-point and the cubic supercell with a 1 × 1 × 2 Γ-centered k-grid
according to the size of the supercell. In addition, a kinetic-energy cutoff of 300 eV
and a energy convergence threshold of 10−6 eV are used for both phases. The MD
time step to capture the oscillation period of the atoms is set to 8 fs. The equilibration
run for each phase is 8 ps, followed by a 42-ps long production run. Snapshots to
calculate separately the average band-gap values for each temperature are taken from
the first 16 ps of the production run in equidistant time intervals. The averaged band-
gap values are converged with only 100 gaps from different snapshots. Note that
tests of using different time intervals for the snapshot selection from the 42-ps long
trajectory do not show any difference in the convergence behavior of the averaged
band-gap value.
MC calculations require a slightly more stringent parameter setting to accurately cal-
culate the phonon frequencies and modes at the Γ-point (see chapter 2.5.2). There-
fore, an energy cutoff of 400 eV and an energy convergence threshold of 10−8 eV
are used for both phases. The Tkatchenko-Scheffler method (TS) is used for the
dispersive corrections in MC (see chapter 2.2.8). The CsPbBr3 supercells for MC
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are created out of the orthorhombic 𝑃𝑏𝑛𝑚 unit-cell with the lattice parameters of
8.43 Å, 11.85 Å and 7.65 Å and out of the cubic 𝑃𝑚3̄𝑚 unit-cell with the lattice
parameter of 5.81 Å for each direction (both relaxed with TS). The orthorhombic
supercell is sampled with a 3 × 2 × 3 k-grid and the cubic with a 2 × 2 × 4 k-grid,
which are both Γ-centered. Note that in the MD and MC calculations the applied
dispersive corrections using the Tkatchenko-Scheffler method differ by the iterative
Hirshfeld partitioning, because the corresponding dispersive correction improved
the numerical stability for the respective method.
In all statistical calculations of the band-gap average for each temperature, 100 MD
snapshots or distorted MC structures are used for convergence. The standard band-
gap calculations use an energy cutoff of 300 eV and an energy convergence threshold
of 10−4 eV throughout the different phases. A Γ-centered 2× 2× 4 k-grid is used for
the cubic phase and a Γ-centered 3× 2× 3 k-grid for the orthorhombic phase. In the
orthorhombic phase of CsPbBr3 the direct gap is located at the Γ-point. In contrast,
the cubic phase of CsPbBr3 has the direct gap located at the 𝑅-point. Due to the
back-folding of the bands in the calculation for the cubic supercell, the band gap is
also specified at the Γ-point. In addition, the SOC effect is included in the average
band-gap values for each temperature.

Results for CsPbBr3:
The research of the thermal evolution of the CsPbBr3 band gap is interesting not only
due to the lack of complete understanding of the anharmonic fluctuations, but also
due to the strong differences between experiment and theory. From experimental data
of CsPbBr3, as easily recognizable in Fig. 4.8, a continuous temperature-dependent
band gap across phase transitions is observed. Interestingly, the experimental band-
gap values range from absolute values of ≈2.4 to ≈2.5 eV and show a slight opening
of the band gap of ≈100 meV in the temperature range from 300 K to 560 K. These
observations from experiment are in contradiction to theoretical static DFT calcu-
lations. For example, the band-gap value calculated using the static orthorhombic
structure with PBE and including SOC, shows a difference of about 1 eV compared
to experiment. This discrepancy is even more pronounced when considering the
static cubic structure with a band-gap value of 0.6 eV (PBE+SOC). Although weak-
ening the underestimation of the band gap by PBE when using HSE, which leads
to a band gap-value of 1.2 eV (HSE+SOC) for the static cubic structure, a large
difference to the experiment remains. These experiment-theory differences require
a more detailed discussion, whereby the description of thermal effects from MD and
MC give insight. It is also important to clarify how the difference between the static
orthorhombic and cubic band gap of 0.7 eV is affected when temperature is taken
into account.
Therefore, the temperature-dependent fundamental band gap is calculated for tem-
peratures of the orthorhombic and cubic phase of CsPbBr3 using the MD and MC
methods. The statistical band-gap values include the SOC effect and are presented
in Fig. 4.9. Note that the detailed computational parameters are described below.
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The corresponding PBE band-gap values, as well as the values without SOC, are
presented in Table 4.1. The intermediate tetragonal phase is neglected in the inves-
tigations, as it only occurs in a narrow temperature range.

Figure 4.9. DFT-based calculations show the fundamental band of CsPbBr3 calculated for
following selected temperatures: 275 K, 325 K and 375 K for the orthorhombic phase and
425 K, 475 K and 525 K for the cubic phase. All bang-gap values are calculated as the
average of 100 gaps from MD snapshots (red lines) or distorted MC structures (blue dashed
lines). Note that the bang-gap values include the SOC effect and are calculated with the PBE
functional. The thin vertical lines indicate the three phases of CsPbBr3: orthorhombic (O),
tetragonal (T) and cubic (C) [179]. Reprinted figure with permission from [2]. Copyright
(2023) by the American Physical Society.

Table 4.1. Temperature-dependent band-gap values calculated without (upper row) and with
(lower row) SOC for the orthorhombic and cubic phase of CsPbBr3. Further details can be
found in the description of Fig. 4.9. Reprinted table with permission from [2]. Copyright
(2023) by the American Physical Society.

Orthorhombic Cubic
Temperature (K) 275 325 375 425 475 525

without SOC EMD
𝑔 (eV) 2.187 2.186 2.189 2.149 2.150 2.130

EMC
𝑔 (eV) 2.094 2.098 2.100 1.775 1.791 1.804

SOC EMD
𝑔 (eV) 1.362 1.372 1.383 1.308 1.331 1.322

EMC
𝑔 (eV) 1.258 1.273 1.286 0.863 0.898 0.929

At first glance, the results from MC show that a continuous description of the band
gap across the phase transitions, as observed in the experiment, is not possible (see
Fig. 4.9). The corresponding band-gap values of 1.27 eV at 325 K and 0.86 eV at
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425 K show a decrease of 0.41 eV between the orthorhombic and cubic phase. This
means that the phonon-induced gap renormalization by MC can attenuate the band
gap difference between the static cubic and orthorhombic structures by 0.3 eV, but
still leaves a significant jump. Even if the band-gap underestimation by PBE is
taken into account, the MC method relying on the average crystal structure cannot
provide band-gap values, which are approximately comparable with the values from
experiment (≈2.4 to ≈2.5 eV). In the orthorhombic phase the MC method shows
a band-gap opening of 28 meV and in the cubic phase of 66 meV (see Table 4.1),
which together results in a band gap opening of ≈100 meV in a temperature range
of 200 K. This is a slight overestimation compared to the experimentally observed
band-gap opening of ≈100 meV in a temperature range of 260 K (see Fig. 4.8). Thus,
the thermal samples of MC, generated by phonon-displaced atoms in the harmonic
approximation, can predict the temperature trend correctly, which is remarkable, but
fail when comparing the absolute values with the experiment. Also, they cannot
explain a phase transition and therefore leave a significant jump in the thermal evo-
lution of the band gap.
In the case of results from MD, one can see that the band-gap values are consistently
above 1.3 eV (see Fig. 4.9). In addition, the discrepancy of ≈0.7 eV between the
static orthorhombic and cubic structure is almost resolved by MD. This is confirmed
by the corresponding band-gap values of 1.372 eV at 325 K and 1.308 eV at 425 K,
resulting in a band-gap difference of only ≈60 meV. However, an entire continu-
ous thermal evolution of the band gap, as observed in the reflection spectrum (see
Fig. 4.8), cannot be determined with NVT MD. Next, results from MD show a mild
band-gap opening of 21 meV in the orthorhombic phase and 14 meV in the cubic
phase (see Table 4.1). This leads to a band-gap opening of ≈40 meV in a temper-
ature range of 200 K, which is lower than the band-gap opening of ≈100 meV in a
temperature range of 260 K in the experiment.
The most significant difference between results from MD and MC is the large jump
at the phase transition by MC. The discontinuity from MC (≈0.4 eV) is almost seven
times larger than the discontinuity from MD (≈0.06 eV). Consequently, MD resolves
with more success the band-gap difference from the static orthorhombic and cubic
structures of CsPbBr3. The overall largest band-gap difference is observed in the cu-
bic phase at 425 K, where the band-gap values from MD and MC differ by 445 meV.
This difference decreases with increasing temperature in the cubic phase. In the
case of the orthorhombic phase the band-gap difference from MD and MC remains
somehow equidistant and is ≈100 meV for the selected temperatures.
In chapter 4.2 it was demonstrated that for harmonic bulk Si, results between MC,
which is a phonon-based method in the harmonic approximation, and MD, which
includes vibrational anharmonicity to full extent, are very similar. For anharmonic
materials, such as CsPbBr3, MD captures also dynamic structure fluctuations beyond
harmonic motions and therefore provides results, which are closer to experiment than
results from MC. This is particularly apparent by the large difference of ≈0.4 eV be-
tween band gaps from MD and MC throughout the entire cubic phase. This difference
can be attributed to a contribution from anharmonicity, which is described by the
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semiclassical description of structure fluctuations in MD. To summarize, the spe-
cific band-gap values from experiment and theory at the temperature of 425 K are:
≈2.4 eV from experiment, ≈1.3 eV from MD and ≈0.9 eV from MC. Since all theo-
retical band-gap values are generally too small due to the band-gap underestimation
by PBE, the use of hybrid functionals, such as the HSE functional, can increase the
band gap of CsPbBr3 by ≈0.7 eV (see chapter 4.6). Consequently, the results from
MD in the cubic phase are twice as close to the experimental range as those from
MC, when considering the improvement due to HSE. This emphasizes the impor-
tance of anharmonic effects for the electronic structure, which are not included in
pure-phonon contributions based in the harmonic approximation.
In addition, the SOC contribution calculated by using MD structures is ≈0.8 eV
throughout the two phases, whereas the SOC contribution from distorted MC struc-
tures is ≈0.8 eV for the orthorhombic and ≈0.9 eV for the cubic phase. A further
discussion of the influence of the SOC effect on the temperature-dependent band
gap of CsPbBr3 is provided in chapter 4.6.
Here, it is only qualitatively mentioned that changes in the lattice constants result
in changes of the band gap. In CsPbBr3, for example, a cubic lattice constant of
5.81 Å exhibits a smaller static band gap than a lattice constant of 5.94 Å. However,
with regard to the various dispersive corrections, the relaxed cubic lattice constant
of 5.81 Å must be used for MC calculations and 5.94 Å for MD calculations. The
same applies to the orthorhombic lattice constant.

4.5. Role of Br dynamics
Several studies have reported a strong influence of octahedral-tilting motions associ-
ated with Br or other halide displacements on the HaP electronic structure [8, 7, 13,
11, 189]. Therefore, the atomic motions are analyzed in more detail. Specifically,
transversal Br motions perpendicular to the Pb-Br-Pb bond axis are connected to
octahedral-tilting motions [105, 177]. In order to investigate the connection between
the thermal Br dynamics and the temperature-dependent band gap, the free energy
is examined as a function of the transverse Br displacements. Therefore, a Boltz-
mann inversion of histograms of transversal Br displacements from MD trajectories
and MC-distorted structures yields changes in the free energy (see Fig. 4.10 (a) for
the results and see next paragraph for the description of the Boltzmann inversion).
As a result, relatively small thermal Br displacements from MD are observed in
the orthorhombic phase at 325 K and the free energy behaves almost harmonically.
Moreover, the change of the free energy from MC-distorted structures at 425 K is
intrinsically harmonic and the thermal Br displacements are larger than from MD in
the orthorhombic phase at 325 K. In contrast, the free energy from MD in the cubic
phase at 425 K is anharmonic with the largest Br displacements and a flat potential
shape, which is far from harmonic.
Note that after applying the Boltzmann inversion, the change in free energy is deter-
mined by

𝐸 (𝛿𝑟1, 𝛿𝑟2, 𝛿𝑟3) ∝ − ln[𝑛(𝛿𝑟1, 𝛿𝑟2, 𝛿𝑟3)] · 𝑘b𝑇 (4.2)
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Figure 4.10. (a) Changes of the free energy according to transversal Br dynamics in the
plane perpendicular to the Pb-Br-Pb bond axis in CsPbBr3. The changes are calculated with
a Boltzmann inversion using structures from the orthorhombic MD trajectory at 325 K (red
disks), from the cubic MD trajectory at 425 K (red circles) and from cubic MC-distorted
structures at 425 K (blue crosses). Data from orthorhombic MD at 325 K and cubic MC at
425 K are fitted to a quadratic function (red closed and blue dashed line). Data from cubic
MD at 425 K is fitted to a double-well similar function, i.e. 𝑎𝑥4 + 𝑏𝑥2 (red short-dashed
line). The origin of the graph, i.e. zero displaced Br atoms, indicates that the Br atoms are
at the position of the cubic-high symmetry or static orthorhombic structure. Note that the
selected transversal Br displacements are not equally spaced, i.e. they are selected to best
represent the potential shape. (b) Band-gap change Δ𝐸g induced by specific transversal Br
displacements according to a octahedral-tilting mode, i.e. imaginary phonon mode. The
change is calculated using a sufficient large number of structures, where the Br atoms are
displaced along the projection of the imaginary phonon mode on the plane perpendicular
to the Pb-Br-Pb bond axis. The specific imaginary phonon mode is located at the 𝑀-point
(see appendix A.7). Reprinted figure with permission from [2]. Copyright (2023) by the
American Physical Society.



4. Results and discussion: halide perovskites

112

with the displacement histogram 𝑛(𝛿𝑟1, 𝛿𝑟2, 𝛿𝑟3) and the displacements 𝛿𝑟𝑖 with
𝑖 = 𝑥, 𝑦, 𝑧, which are only considered as transversal displacements. The potential
shape is presented as a one dimensional graph, which is determined by averaging
over the two directions spanning the x-z-plane perpendicular to the Pb-Br-Pb bond
axis, i.e. 𝐸 (𝑟) = 𝐸 (𝛿𝑟, 0, 0) + 𝐸 (0, 0, 𝛿𝑟))/2. The broadening of the potential
shape is determined solely by the different transversal Br motions, i.e. harmonic
or anharmonic motions, while the temperature or 𝑘b𝑇 can be interpreted as a tiny
scaling factor. For example, the order of magnitude of the scaling factor 𝑘b𝑇 for
100 K is ≈10 meV and can lead to overcoming the potential barrier induced by the
double-well potential. This scenario is also mentioned in the description of Fig. 4.3
or can be seen in Fig. A.8 in the appendix, where the potential shape is calculated for
cubic structures from MD at different temperatures. In contrast, almost congruent
potential shapes occur for orthorhombic structures from MD at different tempera-
tures, as can be seen in Fig. A.8 of the appendix. This means, that the difference of
𝑘b𝑇 for different temperatures is compensated by different displacement histograms
in the orthorhombic phase, but not in the cubic phase. However, the similarity of the
potential shapes in the orthorhombic phase of CsPbBr3 can be associated with the
mild changing thermal band gap in the orthorhombic phase (see Fig. 4.8). Addition-
ally, potential shapes from MC-distorted structures of the cubic and orthorhombic
phase are shown together in one figure (see Fig. A.7 in the appendix), which shows
the expected harmonic shape in both phases and that larger temperatures result in
larger transversal Br displacements.
Notably, comparing the free-energy changes from MD and MC in the orthorhombic
phase at the temperature of 325 K, as presented in Fig. 4.11, substantiates the simi-
larity of the slopes of the thermal band gaps from MD and MC in the orthorhombic
phase (see Fig. 4.9). It is expected that the free-energy changes from MD and MC
for the other temperatures at 275 K and 375 K are also similarly close as for the
temperature at 325 K presented in Fig. 4.11.
The most significant result of Fig. 4.10 (a) is that the changes in the free energy
from transversal Br motions in MD structures in the orthorhombic and cubic phase
of CsPbBr3 are very different. This is in contrast to a band gap that hardly changes
across the various phases in the experiment. There is evidence that the instantaneous
structures from MD in the cubic phase are of lower symmetry and differ strongly from
the cubic high-symmetry structure [7, 8, 13, 189]. In addition, the instantaneous
structures also temporarily exhibit dynamic octahedral tiltings similar to the average
structure of the orthorhombic phase (see Fig. A.11 in the appendix). This substan-
tiates the barely changing band gap of CsPbBr3 across the investigated temperature
range including the phase transitions, since the instantaneous lower-symmetry struc-
tures emerge on timescales of thermal effects in the HaP band structure.
To relate the vibrational anharmonicity, which affects the temperature-dependent
band gap especially in the cubic phase of CsPbBr3, to octahedral tiltings, it is in-
structive to investigate the structural distortions due to one single phonon mode. This
artificially distorted structure can be used to estimate the contribution of this specific
phonon mode to the band gap. On the first view, this deliberately simplistic model is
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Figure 4.11. Changes of the free energy associated with structures in the orthorhombic
phase at 325 K from MD (red disks) and from MC (blue circles). Further description of
the figure as in Fig. 4.10 (a). Note that the transversal Br displacements are chosen to be
equidistant.

reminiscent to the picture of decoupled oscillators in the harmonic approximation.
However, the focus here lies on specific octahedral-tilting modes responsible for
anharmonicity. These modes are known as soft modes or imaginary modes in the
cubic phase, which appear in lattice dynamics calculations based on the harmonic
approximation. In addition, imaginary modes are responsible for lowering the crys-
tal symmetry [8] when considered in dynamic structure calculations such as MD.
In contrast, pure harmonic modes, as used in MC, do not capture anharmonicity,
but only the tilting modes. Note that the MC method explicitly excludes imaginary
modes.
However, MD is able to account for all types of modes, but it is in general not a trivial
task to link thermal band-gap changes to specific modes. In addition, the simplistic
one-phonon model does not take into account the interactions between the phonon
modes, i.e. the interactions of the selected tilting mode with other vibrational modes.
In order to calculate the band-gap change from only one specific tilting mode of cubic
CsPbBr3, the PHONOPY interface is used to extract the imaginary phonon mode at
the M-point (see Fig. A.10 in the appendix). Next, a set of structures is generated,
where Br atoms are displaced along this specific mode in the plane perpendicular
to the Pb-Br-Pb bond axis. With the help of DFT, the band-gap change Δ𝐸g(𝑥) is
calculated as a function of these transversal Br displacements, 𝑥, and presented in
Fig. 4.10 (b). The corresponding band-gap change can be classically integrated by
using a thermal integration with a free-energy potential shape according to MC or
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MD structures, such as shown in Fig. 4.10 (a). The integration is determined as
follows

Δ𝐸 tot-transvesal
g (𝑇) = 1

𝑍

∫
𝑑𝑥 Δ𝐸g(𝑥) exp

[
−𝑉𝑖 (𝑥)
𝑘b𝑇

]
, (4.3)

with the partition function, 𝑍 =
∫
𝑑𝑥 exp[−𝑉𝑖 (𝑥)/𝑘b𝑇], and the index 𝑖 referring

to the MD or MC free-energy potential shape at 425 K. Note that the integration
assumes that all transversal Br displacements along this specific tilting mode follow
the same free-energy potential shape, i.e. optionally the one from MD or MC,
where the latter is calculated from structures not considering tilting modes. The
simplistic one-phonon model results in a transversal band-gap change of 0.17 eV
for the MC-shape and 0.28 eV for the MD-shape of the potential energy surface.
This substantiates that a harmonic free-energy potential shape cannot induce large
changes in the temperature-dependent band gap due to the lack of anharmonic struc-
ture fluctuations, which in contrast are covered in anharmonic potential shapes from
MD. Consequently, MD takes into account not only large anharmonic displace-
ments but also vibrational interactions of phonon modes. Both effects are reflected
in slow octahedral-tilting motions, which are mainly responsible for anharmonic
contributions to the band gap.

4.6. Discussion
Differences between room-temperature experiments and static theory calculations
prompt to rationalize the thermal effects in the finite-temperature electronic structure
for HaPs. Therefore, investigations of thermal lattice vibrations provide a deeper
insight of the thermal evolution of the electronic band gap using a prototypical HaP
semiconductors, such as CsPbBr3. To analyze the effects of different lattice vibra-
tions, i.e. harmonic or anharmonic vibrations, the averaged band gaps calculated
with MD and MC are compared. Consequently, in the cubic phase of CsPbBr3 at
425 K the largest difference between the band gaps calculated with distorted struc-
tures from purely harmonic phonons (MC) and from anharmonic phonons (MD) is
≈450 meV. Note that both methods provide band-gap contributions that lead to an
increase of the band gap, but the increase from MD is ≈450 meV higher.
In order to classify the contribution of anharmonicity (≈0.5 eV), other contribu-
tions to the band gap, such as SOC (≈0.8 eV) or the band-gap correction by hybrid
exchange-correlation (≈0.7 eV), can be considered. The comparison of these mag-
nitudes supports the importance of vibrational anharmonicity. Furthermore, the
inclusion of thermal anharmonic fluctuations as in MD can almost compensate the
discrepancy of 0.7 eV between the static band gaps of the orthorhombic and cubic
structure, leading to a more consistent description of the phase transition than in
MC. This can be explained by the instantaneously cubic structure leaving the cubic
high-symmetry structure and adopting structures of lower symmetry and of lower
total energy [190], which results in an increase in the band gap. This underlines the
fact that the band gap of the average structure does not correspond to the average band
gap of transient structures. In conjunction with the instantaneously lower-symmetry
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Figure 4.12. Influence of SOC on the temperature-dependent band gap for cubic CsPbBr3
shown as the difference between the band gaps with and without SOC. The corresponding
band-gap values are listed in Table 4.1. The difference between the band-gap values from MC
(blue-dashed line) and MD (red line) is almost constant at ≈70 meV across the temperatures.

structures, the anharmonic atomic displacements, as considered in MD, are charac-
terized by octahedral tilting (see Fig. A.11 in the appendix). Consequently, distorted
cubic structures from MD show temporally octahedral tiltings, which are reminiscent
to the orthorhombic average structure, and therefore lead to an insignificant change
in the band gap when it comes to phase transitions as reported from experiment.
In addition, non-quadratic potential wells for transversal Br displacements in the cu-
bic phase from MD, are key to understand the lower-symmetry structures containing
the octahedral tiltings. In contrast, MC does not consider soft modes, which are
responsible for octahedral tilting, and transversal Br displacements in MC-structures
show harmonic potential wells that do not account for vibrationl anharmonicity.
The impact of vibrational anharmonicity on the thermal band gap can be further
evidenced by the simplistic one-phonon model when using the potential shape from
MD or MC. Since anharmonic fluctuations are not as pronounced in the orthorhom-
bic phase than in the cubic phase, also transversal Br displacements from MD result
in quadratic potential shapes, which are nearly congruent for different temperatures.
This explains the almost constant evolution of the temperature-dependent band gap
in the orthorhombic phase of CsPbBr3.
Next, the SOC effect is investigated, whereby a slightly temperature-dependent SOC
contribution is observed in addition to the known reduction in the band gap. Specifi-
cally, the SOC contribution leads to a band-gap opening with increasing temperature,
which holds for the orthorhombic as well as for the cubic phase of CsPbBr3. The
corresponding band-gap opening in the cubic phase is presented in Fig. 4.12, which
can be recognized by the decreasing difference Δ𝐸g(eV). Note that the difference
Δ𝐸g(eV) is calculated as the modulus from the difference between the band gap with
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and without SOC. The influence of SOC on the temperature-dependent band gap is
on the order of some tens of meV for the cubic phase, i.e. ≈35 meV for band gaps
from MC as well as MD. Interestingly, the difference between the SOC contributions
in Fig. 4.12 from MC (blue-dashed line) and MD (red line) is ≈70 meV for the se-
lected temperatures and remains constant through the temperatures. This means that
the SOC contribution has larger effects on structures from MC in the cubic phase
that do not contain octahedral tiltings. In contrast, the difference between the SOC
contributions from MC and MD in the orthorhombic phase is less pronounced and
has a constant value of only ≈10 meV for the selected temperatures (see Fig. A.9
in the appendix). In addition, the SOC-induced temperature-dependent band gap
opening in the orthorhombic phase is similar to the one in the cubic phase. For
clarity, the differences of the SOC contributions between MC and MD as well as the
magnitudes of the band-gap opening due to SOC are shown in Table 4.2 for both
phases.

Table 4.2. Comparison of the SOC contributions calculated with structures from MC and
MD in the orthorhombic and cubic phase of CsPbBr3. ΔSOC

𝑇
: Band-gap opening due to

SOC as the difference between the band gap at the lowest and highest temperature of one
phase. Note that the temperature-dependent band-gap opening due to SOC, i.e. ΔSOC

𝑇
, is

approximately the same for MC and MD. ΔSOC
MC-MD: Almost constant difference between the

SOC contributions from MC and MD across the temperatures of one phase.

Orthorhombic Cubic
ΔSOC

T (meV) 20 35
ΔSOC

MC-MD (meV) 10 70

Thus, there is evidence that vibrational anharmonicity associated with octahedral
tilting has influence on the SOC contribution. Existing results from Amat et al. [190]
show that the SOC contribution is dependent on the octahedral tilting angle. This
explains the negligible SOC difference ΔSOC

MC-MD of ≈10 meV between MD and MC
in the orthorhombic phase, since octahedral tiltings already characterize the static
orthorhombic structure. Explaining the SOC difference, ΔSOC

MC-MD, between MC and
MD in the cubic phase, one could argue that slightly different lattice constants, as
used in MC and MD, influence the SOC contribution7. This is disproved because the
SOC difference ΔSOC

MC-MD is negligible in the orthorhombic phase, where the lattice
parameters are also slightly different in MC and MD calculations. It seems, that
MC-distorted structures, which are based on the cubic-high symmetry structure and
with thermal displacements according to a Gaussian probability distribution, are
more sensitive to the SOC effect. Note that when calculating the average band-gap
values including SOC, as shown in section 4.4, the Rashba effect (see section 2.3)
occurred together with the splitting of the CBM.
Furthermore, the influence of hybrid exchange-correlation functionals on the tem-
perature-dependent band gap of CsPbBr3 is investigated using the example of HSE.

7The lattice constants are slightly different due to different dispersive corrections in the relaxation
as mentioned in section 4.4.
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Figure 4.13. DFT-based calculations show the fundamental band for cubic CsPbBr3 cal-
culated as an average using the same 100 structures from MD at 425 K and 475 K as in
Fig. 4.9. The temperature-dependent band gap is calculated without SOC for the PBE
(green line) and HSE (blue-dashed line) functional. The difference between the band gaps
is 704 meV at 425 K and 687 meV at 475 K. Note that the computational parameters differ
in the Γ-centered 1 × 1 × 3 k-point grid and in the energy cutoff of 240 eV to the parameters
in Fig. 4.9. Reprinted figure with permission from [2]. Copyright (2023) by the American
Physical Society.

Fig. 4.13 shows the fundamental band gap of cubic CsPbBr3 calculated with MD
structures at 425 K and 475 K using the PBE and HSE functional. The HSE func-
tional increases the fundamental band gap by ≈0.7 eV and therefore reduces the
DFT band-gap problem caused by PBE, as expected. However, there is no strong
influence of the exact-exchange, as a part of the HSE functional, on the slope of
the temperature-dependent band gap. The difference of ≈20 meV between the band
gaps from HSE at 425 K and 475 K can be attributed to statistical fluctuation, which
is caused by averaging the band gap over randomly selected structures. As tested in
chapter 3.7 for common inorganic semiconductors, the influence of hybrid function-
als on the temperature-dependent band gap is negligible.
Thinking outside the box, the above findings are also relevant for other types of HaPs
that follow the same order of phase transitions in conjunction with structures going
from lower-to-higher symmetry at the phase transition. Remaining in the class of Br-
halide HaPs and replacing the inorganic Cs cation with the organic MA molecule,
one obtains MAPbBr3 as a prototypical organic-inorganic HaPs, which shows its
phase transition from the orthorhombic-to-tetragonal phase at ≈150 K and from the
tetragonal-to-cubic at ≈240 K [191]. As far as the thermal evolution of the band gap
at the phase transitions is concerned, a small decrease of the optical transition en-
ergy by about 10 meV at the lower transition and a continuous behavior at the upper
transition is observed in the experiment [17]. From a theoretical point of view, the
band gaps calculated with DFT show a strong decrease of 0.6 eV between the tetrag-
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onal and cubic static structure of MAPbBr3 [192]. The principle that anharmonic
fluctuations play an important role in the thermal evolution of the electronic band
structure of CsPbBr3, such as a mild change of the band gap across the phase tran-
sition, can therefore also apply to MAPbBr3. Anharmonic fluctuations are expected
to be responsible for the continuous band gap across the tetragonal-to-cubic phase
transition for MAPbBr3, which would be consistent with the continuous band gap
for the related MAPbI3 HaP found in existing theoretical [7] and experimental [108]
results. Corresponding to the transition from the orthorhombic-to-tetragonal phase,
the anharmonic fluctuations are not as dominant, and probably a tiny jump in the
band gap remains when the average structure transitions to the picture of the instanta-
neous structures, analogous to the effect reported in previous research by templating
cations [190, 193].
To conclude, the investigation of the different phases, in which the structures change
from a lower to a higher symmetry with increasing temperature, shows that the av-
erage crystal symmetry cannot describe the thermal characteristics of the band gap
of CsPbBr3. Consequently, the inclusion of vibrational anharmonicity is necessary
for an in-depth understanding of the electronic band structure at finite temperature.
The present results show that anharmonic fluctuations in the cubic phase of CsPbBr3
have the largest influence, as shown in the chapter 4.4 and chapter 4.5, while the or-
thorhombic phase exhibits octahedral tiltings in its average structure and therefore the
vibrational anharmonicity is less pronounced. Specifically, the values for the thermal
band gap calculated from MD are overall larger than 1.3 eV and, taking into account
the increase in the band-gap values by ≈0.7 eV due to HSE, they are close to val-
ues from experimental reflectance measurement of CsPbBr3. In contrast, band-gap
values from MC remain far from the experimental range and therefore MD, which
inherently accounts for vibrational anharmonicity, significantly outperforms MC.
Finally, the mechanism of vibrational anharmonicity, showing HaP-characteristic
unusual displacements, can be relevant for anharmonic semiconductors in general.

4.7. AHC applied to CsPbBr3

To demonstrate the effect of higher order EPC terms on the slope of the thermal
band gap, the temperature-dependent band gap is calculated using the AHC and MC
method, as described in chapter 2.6.1 and in chapter 2.5.2 respectively. It is known
that the AHC method is a perturbative method, which terminates the expansion of the
nuclear displacements after the second order and thus does not consider higher-order
EPC terms. In addition, the temperature-dependent band gap of MAPbI3 calculated
with AHC strongly overestimates the slope [16]. In contrast, the MC method also
considers higher-order EPC terms and therefore correctly describes the increase of
the temperature-dependent band gap for MAPbI3 [16] compared to the experiment.
However, both the MC and AHC methods do not provide absolute band-gap values
that are close to the experimental range of MAPbI3. Up to now, the AHC and
MC methods have not yet been applied to CsPbBr3 and compared with each other.
Furthermore, these investigations contribute to the understanding of the thermal
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band gap of CsPbBr3, also with regard to the results from MD.
Therefore, the temperature-dependent band gap of cubic CsPbBr3 is calculated using
the AHC method as implemented in ABINIT [194]. The results are shown together
with the averaged band gaps calculated with MC in Fig. 4.14. The AHC method

Figure 4.14. Temperature-dependent fundamental band gap for CsPbBr3, calculated with
the AHC method (purple line) for 400 K and 500 K, and with the MC method (blue line) for
425 K and 525 K. The band-gap values are calculated with the PBE functional and without
SOC. The vertical line indicates the phase transition from the tetragonal-to-cubic phase.
Note that the AHC calculations are not converged with respect to the q-point grid, but this
does not affect the significance of the figure.

calculates an increase of the band gap of ≈140 meV per 100 K. In contrast, the
increase of the band gap calculated with MC is ≈30 meV between the temperature
range of 425 K and 525 K. In comparison, the experimental increase of the thermal
band gap (see Fig. 4.8) between 420 K and 520 K is ≈50 meV. If only the slopes
of the thermal band gaps are compared, the MC method can closely reproduce the
experimental slope, while the AHC completely overestimates the slope. Note that
the band gaps from AHC and MC are calculated without SOC and using the PBE
functional. Due to cancelation of errors, the AHC method yields band-gap values
that are quite close to the experimental range of ≈2.3 eV for CsPbBr3. This also
applies if the SOC effect, which reduces the band gap by ≈0.8 eV, and the hybrid
functional HSE, which increases the band gap by ≈0.7 eV, are taken into account.
The reason for this agreement is that the AHC method increases the band gap linearly,
which leads to an increase of the band gap by ≈140 meV per 100 K, starting from
a static band-gap value of ≈1.4 eV. Note that the static band gaps of structures used
for the AHC or MC method differ by 15 meV, which is due to the separately relaxed
structures with ABINIT and VASP, respectively. To summarize, it is also shown for
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CsPbBr3 that missing higher-order EPC terms lead to an overestimated increase of
the temperature-dependent band gap.
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5. Conclusions and Outlook
Probably the most discussed quantity of an energy material is its fundamental band
gap, which is often compared with the optical band gap from the experiment. The
DFT theory accesses the fundamental band gap as an eigenvalue difference, using
exchange-correlation functionals. It is known that semilocal or exact exchange of
a functional influences the band-gap value strongly, as well as the mixing of both
exchange energy terms. The development of functionals is an ongoing challenge,
especially when the functional is designed in such a way that it accurately predicts
electronic and optical properties at the same time. The recently developed SRSH
functional offers this advantage. However, the question of whether this simultaneous
accuracy is accompanied by a deterioration in the prediction of bulk properties of
common inorganic semiconductors has not yet been answered. This task was dis-
cussed in chapter 3.
Furthermore, a novel class of energy materials are HaPs, which attract increasing
attention in semiconductor research due to the rapidly increasing energy conver-
sion efficiency of HaP-based solar cells. HaPs are characterized by their unusual
structural dynamics, such as octahedral tilting, in conjunction with vibrational an-
harmonicity, which can explain their remarkable optoelectronic properties. Here,
various first-principles methods, such as MD and MC, were applied to determine the
thermal evolution of the band gap for the prototypical HaP CsPbBr3. A comparison
of the calculated band-gap values at finite temperature with the experimental range
of the band gap quantified the anharmonic contribution to the band gap. Specifically,
thermal samples from both theories allowed to rationalize the limitations of a har-
monically perturbed average crystal structure compared to structures containing all
types of atomic motions, in particular anharmonic motions. This task was discussed
in chapter 4.

The recently developed functional, SRSH, which belongs to the class of screened
range-separated hybrid functionals, incorporates the feature of optimally tuning.
This means that the individual parameters of the functional can be adjusted to accu-
rately calculate a specific quantity. For instance, when SRSH is tuned to reproduce
accurate band-gap values calculated using the GW theory for a set of common in-
organic semiconductors, the electronic and optical properties can also be calculated
accurately. [52, 27]. However, the accuracy of bulk properties has not yet been
tested for the tuned SRSH parameters. In chapter 3, bulk properties, such as lattice
constants, bulk moduli, atomization energies and phonon dispersion relations, are
calculated for common inorganic semiconductors with the help of the tuned SRSH
functional. These results are compared with the results of other well-established
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functionals, such as PBE and HSE, as well as with experimental results.
The lattice constants calculated with SRSH for a set of common inorganic semicon-
ductors are more accurate than the lattice constants of PBE and slightly less accurate
than the lattice constants of HSE compared to the experiment. Consequently, the
associated bulk moduli follow the trend of the lattice constants. While all three func-
tionals overestimate the lattice constants, almost all bulk moduli are underestimated.
In terms of atomization energies, the results of SRSH are the least accurate, followed
by the results of HSE and then PBE. The high accuracy offered by PBE can be at-
tributed to the greater density gradient dependence of the functional than in HSE and
SRSH. However, the atomization energies calculated with all three functionals show
underbinding. With regard to phonon dispersion relations, a general distinction must
be made between two cases: Phonon dispersion relations that are calculated with the
theoretical or the experimental lattice constant. Using the theoretical lattice constant
implies the error propagation from the theoretical lattice constant. This leads to the
most accurate phonon dispersion relations for HSE, followed by phonon dispersion
relations from SRSH and then from PBE. Using the experimental lattice constant
for all three functionals shows that the phonon dispersion relations calculated with
SRSH and HSE are equally accurate, and both are more accurate than PBE. In gen-
eral, independent of the use of the experimental or the theoretical lattice constants,
phonon dispersion relations from all functionals provide respectable accuracy.
To summarize, the results for the bulk properties of the set of common inorganic
semiconductors calculated with SRSH show that SRSH can compete with the accu-
racy of PBE and HSE. This demonstrates that SRSH cannot only accurately calculate
the electronic-structure and optical properties of common inorganic semiconductors,
but also their bulk properties. In particular, the inclusion of EXX also in the long-
range region of SRSH, while it is absent in HSE, ensures the correct asymptotic
decay given by the dielectric constant. In addition, a universal choice of the screen-
ing parameter, such as for HSE, may not apply to all types of materials. The empirical
tuning of SRSH, in order to implement the theoretical dielectric constant and, for
example, the direct band gap at the Γ-point calculated by the GW theory, determine
the three parameters 𝛼, 𝛽 and 𝛾. Hence, the flexibility of SRSH represents a major
advance in the development of functionals and the search for the perfect universal
functional. This is probably achieved without the aspect of overfitting a functional.
However, the continuous improvement of exchange-correlation functionals in the last
decades, thereby gaining more and more accuracy, comes along with an increasing
amount of empiricism. Therefore, a further level of sophistication of SRSH was
developed by Wing et al. [54] that provides a non-empirical way to tune SRSH 1.
However, evaluating this approach for the bulk properties of conventional semicon-
ductors is out of the scope of this work.

In order to incorporate temperature into the investigation of common inorganic semi-

1In principle, this approach captures the tendency of delocalized orbitals for solids by involving an
orbital-localization procedure that provides chemical bonds, which are comparable to those of
molecules.
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conductors, the MC method was used with the aim to investigate the influence of
different functionals on the temperature-dependent band gap. Therefore, the pa-
rameters of the HSE functional were varied to recognize the impact of EXX on the
thermal band gap. While the choice of functional or variations of the functional
parameters strongly influenced the static band gap, the thermal band-gap change
remained unaffected. This result is not easily recognizable in the MC method. How-
ever, when considering the electron-phonon coupling matrix elements as expressed
in DFPT, one can argue that the matrix elements depend only on the wave functions
of the system, which are independent of the choice of the functional.

While thermal effects or lattice dynamics for common inorganic semiconductors
can be adequately described with the harmonic approximation, as can be seen from
quantities such as phonon dispersion relations or thermal band gaps, this approxima-
tion is insufficient for anharmonic materials. HaPs are promising energy materials
and exhibit strong anharmonicity, which can be seen, for example, in large atomic
displacements or unusual atomic movements. A characteristic of HaPs is that they
occur in three different phases with corresponding phase transitions over a short
temperature range. Interestingly, the static band gaps of CsPbBr3, a prototypical
full-inorganic HaP, differ strongly for the reference structures of the different phases,
while the experimental band gap shows smoothness across the corresponding tem-
perature range. In chapter 4, first-principles MD simulations are applied to CsPbBr3
in order to investigate vibrational anharmonicity. The advantage of MD is that all
types of atomic motions, i.e. harmonic and anharmonic motions, are taken into ac-
count, since MD does not rely on truncating the Taylor expansion of the nuclear
potential energy in the displacements after the second order. To elaborate the impact
of anharmonicity, the temperature-dependent band gap is calculated using MD and
MC, where the latter does not consider anharmonic fluctuations and is based on the
harmonic approximation. This is valid because the equality of MD and MC has been
shown for harmonic materials.
From an experimental point of view, reflectance measurements performed by col-
laborators showed a continuous and slightly increasing temperature-dependent band
gap of CsPbBr3 across the phase transitions. Disregarding the intermediate tetrag-
onal phase, which only occurs in a narrow temperature range, the thermal band
gap investigated with MD and MC shows a discontinuity between the orthorhombic
and cubic phase. While the discontinuity in the case of MD is much smaller than
0.1 eV, the discontinuity in the case of MC is greater than 0.4 eV. Consequently, the
average high-symmetry structure as the initial structure for the MC theory thermally
perturbed by harmonic phonons cannot explain the band-gap value from experiment.
In contrast, using the same structure as starting point for MD leads to a trajectory of
instantaneous structures with lower symmetry that contain anharmonic fluctuations
and can explain the smoothness of the experimental band gap. Overall, MD can
fairly account for the experimental band gap, both in the orthorhombic and cubic
phase, when considering the band gap underestimation by DFT. However, the largest
band-gap difference between MD and MC, as located at the cubic phase transition,
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can be assigned to anharmonic fluctuations. A schematic contribution of the impact
of anharmonicity is presented in Fig. 5.1.

Figure 5.1. Schematic diagram of the magnitude of the band gaps from the static cubic
high-symmetry structure (middle), distorted MC structure (left) and distorted MD structure
(right). Note that the atomic motions described by MD lead to a tilting of the octahedra
(red arrows), while the atomic motions of MC do not (blue arrows). The magnitude of the
band gaps is denoted on the y-axis. The difference between the MC and MD band gap is
contributed to anharmonicity.

In Pb-based HaPs, due to the heaviness of the lead element, the inclusion of SOC
is essential. Apart from the known decrease of the band gap for HaPs, the SOC
contribution for CsPbBr3 leads to a slight opening of the band gap with increasing
temperature. Thereby, the mere band gap opening across the temperature range is
similar for structures from MC and MD. However, the SOC contributions calcu-
lated from MC and MD structures differ between the orthorhombic and cubic phase.
While the difference in the orthorhombic phase is negligible, the difference in the
cubic phase is more pronounced and amounts to some tens of meV. Thus, the role of
octahedral tilting, which is present in structures from MD and absent in structures
from MC, affects the amount of SOC and requires further discussion. It appears that
instantaneous structures of lower symmetry from MD, which inherently contain an-
harmonic disorder, account for some magnitude of the SOC contribution compared
to structures from MC [190].
Thermal expansion tests were performed for cubic CsPbBr3 by increasing and de-
creasing the equilibrium lattice constant for higher and lower temperatures, respec-
tively, to investigate the effect on the thermal band gap as well as to control the
external pressure. Suppression of volume expansion, as in NVT MD, leads to the
hypothesis that MD averages with higher temperature more and more towards the
picture of non-tilted octahedra in the cubic phase. This could be recognized with
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the help of the potential energy surfaces, which change from a double-well shape
to a parabolic shape in conjunction with lowering the band gap. Consequently, the
averaged band gap of the instantaneous structures of lower symmetry for higher tem-
peratures tend to the smaller band gap value of the cubic-high symmetry structure.
Note that the band gap of the average structure is not necessarily the average value of
the band gaps of the instantaneous structures. While for harmonic Si, for example,
the reference structures denotes a minimum, the cubic-high symmetry structure, as it
exists as an average structure for HaPs, denotes a saddle point or a local maximum of
the potential energy surface. In the MC method, which neglects imaginary phonon
modes responsible for octahedral tilting, the magnitude of harmonic thermal dis-
placements increases with increasing temperature, so that the cubic-high symmetry
structure is increasingly abandoned. Since the imaginary phonon modes charac-
terize the shape of the double-well potential, the potential shape for MC-distorted
structures is parabolic. Therefore, it would be interesting to include phonons in
the MC theory, which are calculated beyond the harmonic approximation, and to
investigate the influence on the thermal band gap. This model would also account
for imaginary phonon modes as they occur in harmonic phonon calculations, while
the phonon-phonon interactions are probably difficult to consider.
Neither MC nor MD in the NVT ensemble is expected to provide continuity in
the thermal band gap across phase transitions, as the instantaneous structures cannot
transform from the initial orthorhombic reference structure into a cubic-like structure
when the temperature is increased. The same applies to the initial cubic reference
structure when the temperature is lowered in one of the theories.
The halide motions in HaPs, for example in CsPbBr3, whether transversal to the
Pb-Br-Pb or Cs-Br-Cs axis, are considered to be of particular importance. There is
evidence that transversal Br displacements of the Pb-Br-Pb bond axis contribute sig-
nificantly to octahedral rotations [105]. Non-symmetric pair distribution functions
of Pb-Br or Cs-Br distances are also characteristic for HaPs. These observations of
vibrational anharmonicity in conjunction with tilting modes are absent in structures
perturbed in a harmonic phonon picture based on decoupled phonon modes. Note
that a revealing consistency check would be to examine pair distribution functions or
2D displacement histograms of Br atoms from MC structures to identify Gaussian
behavior. Furthermore, to quantify the impact of anharmonic effects a simplistic
one-phonon model is constructed, which creates a set of distorted structures with Br
atoms displaced along one specific tilting mode. A subsequent classical thermal in-
tegration, using either the harmonic energy surface from MC or the double-well-like
energy surface from MD, shows that the contribution from transversal Br displace-
ments to the band gap is much lager for the energy surface from MD than from MC.
The transferability of the findings obtained here to other variants of HaPs is highly
probable if the phase transitions are in conjunction with changes from lower-
symmetry structures to higher-symmetry structures. Experiments show orthorhombic-
to-tetragonal and tetragonal-to-cubic phase transitions with a similar continuous
thermal band gap for hybrid organic-inorganic HaPs, such as MAPbX3, where X
denotes the halide ion [17, 195, 196]. In contrast, static band-gap values from DFT
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show a pronounced decrease at the phase transition, when the reference structure
changes from lower symmetry to higher symmetry [192]. Consequently, anharmonic
structure fluctuations can also help to explain the thermal evolution of the band gap
in hybrid HaPs, which exhibit only minor changes in the band gap during phase
transitions. Here, the effect of vibrational anharmonicity is less dominant in the low
temperature phases.
The replacement of toxic lead can be achieved by considering elements such as tin
or germanium, which are simply listed above lead in the periodic table, or bismuth.
The question of why tin is not used straight away is answered by the fact that only
lead-based perovskite cells could achieve high energy conversion efficiencies com-
parable to or even higher than those of Si. Tin, on the other hand, shows a rapid
decrease of the efficiency in conjunction with oxidation. Thus, the substitution of
lead offers plenty of future research, also with regard how the substitution affects
the halide motion transversal to the atom-halogen-atom bond axis. A recent study
has shown that the choice of the metallic cation, such as in CsPbBr3 or CsSnBr3,
which differ in the octahedral cation electron configuration, has no influence on
the pronounced anharmonicity or low-frequency lattice dynamics for HaPs [107].
The new tailoring of the chemical composition of perovskites also investigates the
embedding of organic groups, such as phenethylammonium-chloride molecules, to
screen tin for oxidation, which leads to 2D perovskites. In addition, the doping
of solar materials, as in conventional semiconductors, can also be important for
HaPs. Also vacancies, such as halide vacancies in CsPbBr3, influence the structural
dynamics of neighbouring metallic cations, resulting in energy level fluctuations,
which cannot be explained in a static picture [184]. All these considerations support
the future design of perovskites.
Despite the drastic underestimation of the band gap by PBE-DFT, the interesting
physics shows up in the trend rather than in absolute values, which is why DFT
calculations are often very useful. The development of hybrids, such as SRSH, rep-
resents a major advancement in the direction of a universal functional. The inclusion
of lattice dynamics for solar materials is essential and can be achieved by methods
such as MC and MD. Remaining in the harmonic approximation is sufficient for
common inorganic semiconductors where MC and MD are fairly equal. However,
new energy materials, such as HaPs, need the inclusion of vibrational anharmonicity
as captured in MD, since anharmonic atomic motions govern the electronic band
gap.
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A. Appendix

A.1. Computing time for the standard
semiconductor Si

Table A.1. DFT computation time of Si for a unit-cell (2 atoms) and a 4×4×4 supercell (128
atoms). The time is given as averaged real time for one DFT self-consistency step of each
functional. In order to estimate the run time differences among the three functionals, the
factor F provides the ratio of computation time of hybrid functionals over the computation
time of the PBE functional. Reprinted table with permission from [1]. Copyright (2021) by
the American Physical Society.

unit-cell supercell
time (s) F time (s) F

PBE 0.015 1 10.840 1
HSE 3.690 246 995.158 92
SRSH 3.339 223 976.650 90

A.2. Phonon dispersion relations for AlAs, AlP,
AlSb, GaP and InP
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Figure A.1. The upper panel shows the phonon dispersion relation of fcc-structured AlAs
using the theoretical lattice constant calculated using the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from reference [197] and [198]. The lower panel shows respectively the phonon dispersion
relation for only using the experimental lattice constant throughout the three functionals.
Reprinted figure with permission from [1]. Copyright (2021) by the American Physical
Society.
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Figure A.2. The upper panel shows the phonon dispersion relation of fcc-structured AlP
using the theoretical lattice constant calculated using the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from reference [197]. The lower panel shows respectively the phonon dispersion relation
for only using the experimental lattice constant throughout the three functionals. Reprinted
figure with permission from [1]. Copyright (2021) by the American Physical Society.



A. Appendix

130

Figure A.3. The upper panel shows the phonon dispersion relation of fcc-structured AlSb
using the theoretical lattice constant calculated using the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from reference [199]. The lower panel shows respectively the phonon dispersion relation
for only using the experimental lattice constant throughout the three functionals. Reprinted
figure with permission from [1]. Copyright (2021) by the American Physical Society.
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Figure A.4. The upper panel shows the phonon dispersion relation of fcc-structured GaP
using the theoretical lattice constant calculated using the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from reference [200]. The lower panel shows respectively the phonon dispersion relation
for only using the experimental lattice constant throughout the three functionals. Reprinted
figure with permission from [1]. Copyright (2021) by the American Physical Society.
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Figure A.5. The upper panel shows the phonon dispersion relation of fcc-structured InP
using the theoretical lattice constant calculated using the PBE, HSE and SRSH functionals
(solid colored lines) as well as experimental data (open black circles), which was extracted
from reference [201]. The lower panel shows respectively the phonon dispersion relation
for only using the experimental lattice constant throughout the three functionals. Reprinted
figure with permission from [1]. Copyright (2021) by the American Physical Society.
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A.3. Phonon frequencies at high-symmetry points
for common standard semiconductors

Table A.2. Phonon frequencies calculated with PBE, HSE and SRSH for AlAs. Each left
sub-column denotes frequencies resulting from the theoretical lattice constant, 𝑎theo, and
each right sub-column from the experimental lattice constant, 𝑎exp. The deviation Δ refers
to experimental values at specific high-symmetry points, where available. Classification of
phonons and experimental values are from reference [197] and [198]. Reprinted table with
permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝑋TA 2.9 -12.0 2.7 -18.2 3.2 -3.0 3.1 -6.1 3.1 -6.1 2.9 -12.1 3.3
𝑋LA 6.2 -7.5 6.5 -3.0 6.6 -1.5 6.6 -1.5 6.4 -4.5 6.6 -1.5 6.7
𝑋TO 9.4 -6.9 10.1 0.0 9.9 -2.0 10.1 0.0 9.8 -3.0 10.1 0.0 10.1
ΓTO 10.4 -5.5 10.9 -0.9 10.9 -0.9 11.0 0.0 10.7 -2.7 10.9 -0.9 11.0
𝑋LO 11.2 -8.2 11.7 -4.1 11.8 -3.3 11.9 -2.5 11.6 -4.9 11.8 -3.3 12.2
ΓLO 11.4 -6.6 11.9 -2.5 12.1 -0.8 12.2 0.0 11.8 -3.3 12.1 -0.8 12.2
MAD(%) 7.8 4.8 1.9 1.7 4.1 3.1

Table A.3. Phonon frequencies of AlP with description of the table like in Table A.2.
Classification of phonons and experimental values are from reference [197]. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

ΓTO 12.8 -3.0 13.2 0.0 13.3 0.8 13.4 1.5 13.2 0.0 13.4 1.5 13.2
ΓLO 14.4 -4.0 14.8 -1.3 15.2 1.3 15.2 1.3 15.0 0.0 15.2 1.3 15.0
MAD(%) 3.5 0.7 1.0 1.4 0.0 1.4

Table A.4. Phonon frequencies of AlSb with description of the table like in Table A.2.
Classification of phonons and experimental values are from reference [199]. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝐿TA 1.5 -6.3 1.4 -12.5 1.7 6.3 1.6 0.0 1.5 -6.3 1.5 -6.3 1.6
𝑋TA 2.0 -4.8 1.8 -14.3 2.2 4.8 2.1 0.0 2.2 4.8 2.0 -4.8 2.1
𝐿LA 4.3 -2.3 4.5 2.3 4.6 4.5 4.7 6.8 4.6 4.5 4.6 4.5 4.4
𝑋LA 4.4 -6.4 4.7 0.0 4.8 2.1 4.8 2.1 4.7 0.0 4.7 0.0 4.7
𝑋LO 8.3 -5.7 8.9 1.1 8.9 1.1 8.9 1.1 8.7 -1.1 8.9 1.1 8.8
𝐿LO 8.8 -4.3 9.4 2.2 9.3 1.1 9.4 2.2 9.2 0.0 9.4 2.2 9.2
ΓTO 9.2 -3.2 9.6 1.1 9.7 2.1 9.7 2.1 9.5 0.0 9.7 2.1 9.5
𝐿TO 9.3 -3.1 9.9 3.1 10.0 4.2 10.0 4.2 9.7 1.0 10.0 4.2 9.6
ΓLO 9.7 0.0 10.1 4.1 10.3 6.2 10.4 7.2 10.1 4.1 10.3 6.2 9.7
𝑋TO 9.8 -4.9 10.3 0.0 10.5 1.9 10.5 1.9 10.3 0.0 10.5 1.9 10.3
MAD(%) 4.1 4.1 3.4 2.8 2.2 3.3
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Table A.5. Phonon frequencies of GaP with description of the table like in Table A.2.
Classification of phonons and experimental values are from reference [200]. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝐿TA 2.4 -4.0 2.3 -8.0 2.2 -12.0 2.3 -8.0 2.3 -8.0 2.4 -4.0 2.5
𝑋TA 3.0 -9.1 2.9 -12.1 3.2 -3.0 3.1 -6.1 3.3 0.0 3.0 -9.1 3.3
𝑋LA 7.2 -5.3 7.4 -2.6 7.6 0.0 7.7 1.3 7.5 -1.3 7.6 0.0 7.6
𝑋TO 10.2 -3.8 10.7 0.9 10.8 1.9 10.9 2.8 10.6 0.0 10.8 1.9 10.6
𝐿TO 10.2 -5.6 10.7 -0.9 10.8 0.0 10.9 0.9 10.6 -1.9 10.8 0.0 10.8
ΓTO 10.3 -7.2 10.7 -3.6 10.9 -1.8 11.0 -0.9 10.6 -4.5 10.8 -2.7 11.1
𝑋LO 10.3 -7.2 10.8 -2.7 11.1 0.0 11.2 0.9 10.9 -1.8 11.0 -0.9 11.1
𝐿LO 10.5 -6.3 11.0 -1.8 11.2 0.0 11.3 0.9 10.9 -2.7 11.2 0.0 11.2
ΓLO 11.3 -6.6 11.7 -3.3 12.1 0.0 12.2 0.8 11.8 -2.5 12.0 -0.8 12.1
MAD(%) 6.1 4.0 2.1 2.5 2.5 2.2

Table A.6. Phonon frequencies of InP with description of the table like in Table A.2.
Classification of phonons and experimental values are from reference [201]. Reprinted table
with permission from [1]. Copyright (2021) by the American Physical Society.

PBE HSE SRSH Expt.
𝑎theo 𝑎exp 𝑎theo 𝑎exp 𝑎theo 𝑎exp

(THz) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔 Δ (%) 𝜔

𝐿TA 1.6 0.0 1.5 -6.3 1.7 6.3 1.6 0.0 1.6 0.0 1.5 -6.3 1.6
𝑋TA 1.9 -5.0 1.8 -10.0 2.1 5.0 2.1 5.0 2.0 0.0 2.0 0.0 2.0
𝐿LA 4.7 -4.1 4.9 0.0 5.0 2.0 5.1 4.1 4.9 0.0 5.0 2.0 4.9
𝑋LA 5.1 -12.1 5.4 -6.9 5.4 -6.9 5.5 -5.2 5.3 -8.6 5.4 -6.9 5.8
𝐿TO 8.7 -8.4 9.3 -2.1 9.2 -3.2 9.4 -1.1 8.9 -6.3 9.4 -1.1 9.5
𝑋TO 9.0 -7.2 9.6 -1.0 9.5 -2.1 9.8 1.0 9.3 -4.1 9.7 0.0 9.7
𝑋LO 9.2 -8.0 9.7 -3.0 9.8 -2.0 10.0 0.0 9.5 -5.0 9.9 -1.0 10.0
𝐿LO 9.3 -8.8 9.9 -2.9 10.0 -2.0 10.2 0.0 9.7 -4.9 10.1 -1.0 10.2
MAD(%) 6.7 4.0 3.7 2.0 3.6 2.3
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A.4. Temperature-dependent band gap for Si

Figure A.6. Temperature-dependent indirect band gap distributions of Si calculated with the
MC method and MD for 100 K, 300 K and 700 K. The average band-gap values are depicted
as vertical thin lines. The thin black line depicts the static band-gap value.
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A.5. Changes of the free energy for CsPbBr3

Figure A.7. Changes of the free energy according to transversal Br dynamics in the plane
perpendicular to the Pb-Br-Pb bond axis in CsPbBr3. The changes are calculated using a
Boltzmann inversion of the orthorhombic MC-distorted structures at 325 K (green disks) and
of cubic MC-distorted structures at 425 K (blue circles). Data from the Boltzmann inversion
are fitted to a quadratic function (closed and dashed lines). Note that the origin (zero
displaced Br atom) denotes the Br atom at the cubic-high symmetry or static orthorhombic
structure.
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Figure A.8. The description of the figure is the same as in Fig. A.7, apart from the fact that the
structures are all from the MD. The temperatures 275 K, 325 K and 375 K correspond to the
orthorhombic phase of CsPbBr3 and the temperatures 425 K, 475 K and 525 K correspond to
the cubic phase. Note that the results from the Boltzmann inversion of the Br displacements
are not converged with respect to the length of the MD trajectory.
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A.6. Influence of SOC for orthorhombic CsPbBr3

Figure A.9. Influence of SOC on the temperature-dependent band gap of orthorhombic
CsPbBr3 depicted as the difference between the band gap with and without SOC. The
corresponding band-gap values are listed in Table 4.1. The difference between data points
from MC (blue-dashed line) and MD (red line) is almost constant of ≈10 meV throughout
the temperatures.
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A.7. Phonon dispersion relation for cubic CsPbBr3

Figure A.10. Phonon dispersion relation for cubic CsPbBr3 calculated with Phonopy using
DFT. The red disk indicates the imaginary mode at the 𝑀-point. This mode is used to
generate transversely displaced Br structures in order to investigate changes in the band gap
(see chapter 4.5). Note that the imaginary modes correspond to the octahedral-tilting modes,
which are included in MD and excluded in MC. Reprinted figure with permission from [2].
Copyright (2023) by the American Physical Society.
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A.8. Orthorhombic and cubic schematic structures
as average from MD snapshots for CsPbBr3

Figure A.11. (a) The black arrow indicates the MD trajectory at 375 K for orthorhombic
CsPbBr3, from which time intervals of 1 ps are considered, shown as rectangles. The struc-
tures within the rectangles denote the corresponding time-averaged structures. An overlay
of the individual time-averaged structures is shown on the right. (b) Similar description as
in (a), but for the MD trajectory at 425 K for cubic CsPbBr3. Note that the thermal atomic
motions are smaller in the orthorhombic than in the cubic phase of CsPbBr3 with respect to
the static structures and that instantaneous octahedral tiltings occur in the individual cubic
structures as in the static orthorhombic structure.
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