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Abstract
Programmer productivity is significantly affected by long compilation times,
to which the high number of passes in typical compiler back-ends contribute.
TPDE provides an alternative LLVM compiler back-end, which achieves
substantial speedups by reducing the number of passes. However, emission
of debugging information is not yet supported, preventing adoption for
development purposes.
In this thesis, we extend TPDE with support for efficiently emitting
DWARF5 debugging information based on metadata in the input LLVM-IR.
In particular, we derive efficient intermediate data structures and prioritize
fast emission over short encodings.
When compiling SPECint 2017 without optimizations, generating debugging
information slows down TPDE by 45% on average. Compared to LLVM,
TPDE with debugging information compiles SPECint 2017 about 7 times
faster.
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1 Introduction

Typical tasks of a programmer include writing code, building it and testing it. Together,
these tasks form a cycle repeated numerous times during work days. Time is used
productively when writing and testing code, whereas waiting for a build to finish is a
primarily passive activity, which can furthermore distract the programmer if it takes too
long. However, especially when working on larger projects, compilation of source code
can require a considerable amount of time.

One cause of high build times is the compilation process commonly employed in compilers
like GCC [3] and Clang [8], which run passes in which they successively iterate over and
refine intermediate representations of the program. This architecture is also found in
the respective target-specific compiler back-ends: Even if optimizations are disabled, the
number of back-end passes is typically in the order of 70 passes1, of which each contributes
to compilation time.

This is exacerbated by the fact that during development, a programmer usually instructs
the compiler to emit debugging information. In the case of an error needing further
investigation, debugging information aids in finding the cause, because it maps instructions
to source lines, provides information about scopes and types of program entities and
describes the locations of variables in registers and memory. However, maintaining these
pieces of information throughout the execution of numerous passes slows these down.

One approach to reducing compilation times is TPDE [15]: It is a compiler back-end
framework for the x86-64 architecture that reduces the number of passes to only 3. It
reads LLVM IR [10] and can thus be employed as an alternative LLVM [13] back-end,
especially as part of the compiler Clang.

TPDE first places global values in the buffers for the respective object file sections,
so that it can use their addresses during function compilation. Per function, it then
runs following passes: In the first pass, TPDE iterates through LLVM IR to fill lookup
structures and to additionally replace unsupported constructs. Next, it performs loop and
liveness analysis. The results of the analyses are used in the last pass, in which TPDE
performs code generation. This pass combines instruction selection, register allocation and
machine code emission and additionally produces unwinding information for exception
handling. After function compilation, TPDE combines the sections to form an object file
that can be written to the filesystem or executed from memory.

At optimization level O0, TPDE compiles LLVM IR about 10–20 times faster than
LLVM’s back-end, while the runtime performance of generated code is comparable [15].
However, TPDE does not support the generation of debugging information, limiting its
usability in development.

1We measured 73 passes for LLVM 19.1.0-rc2 using llc -O0 -debug-pass=Structure.
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1 Introduction

In this thesis, we extend TPDE with functionality to emit debugging information in the
DWARF [2] format, which is the default format on Unix-like operating systems such as
GNU/Linux. We focus on the C and C++ languages for source files and we prioritize a
low slowdown of the back-end over space-efficient encoding. Our implementation provides
debuggers with line number information, data about scopes and types and with locations
of local variables. Due to the limited scope of this thesis, our implementation is currently
not capable of encoding locations of global variables. Furthermore, we do not extend
TPDE’s existing functionality of generating stack unwinding information.

Key results include that our additions to TPDE slow down compilation by an average
of 45% when compiling the SPECspeed 2017 Integer benchmarks. Thus, the speedup
of TPDE relative to LLVM is only marginally lowered when compiling with debugging
information. While compilation with TPDE increases the size of debugging information
by 22% on average, we cannot name definitive results for variable coverage.

Outline
This thesis is structured as follows: In Chapter 2 we will name different components of
debugging information and point out concepts of LLVM IR and DWARF that are common
to all parts. The next three chapters will be dedicated to the individual components:
In Chapter 3, we will focus on line number information, in Chapter 4 on the graph of
program entities and in Chapter 5, we will concentrate on variable locations. In Chapter 6
we will evaluate our implementation with respect to the impact of our modifications
on compilation time and we will also consider the variable coverage and section sizes of
produced debugging information. Finally, we will summarize the results of this thesis in
Chapter 7.

Contributions
Key contributions of this thesis include:

• A non-exhaustive summary of information required by current debuggers.

• An implementation of a DWARF producer embedded into a three-pass LLVM IR
compiler back-end.
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2 Technical Background

In this section we provide an overview of the parts debugging information is typically
composed of. Later, we name concepts of DWARF and LLVM that are independent of
the different parts we discuss in chapters 3–5.

2.1 Debugging Information
Debuggging information comprises various mappings between entities in a program’s
source and the corresponding elements in the binary.

One such mapping is line number information, which translates instruction addresses
to the locations of statements in the source that produced the instructions. Line number
information is essential for interactive debuggers, which employ it for features like stepping
through program statements and setting breakpoints at source lines.

Another mapping typically found in debugging information links instructions to source-
level scopes. This is needed, for example, when a debugger prints details about the context
of the currently executed statement. In languages like C and C++, scopes are furthermore
closely connected to types. Information about these is required when operating on typed
entities such as constants and variables.

Since the values of the latter are not fixed, a debugger requires descriptions where to
find them. Because of program optimizations, the variable locations may themselves not
be constant during execution. Therefore, their descriptions in debugging information
depend on the instruction currently executed by the program.

Especially in the event of a program crash, a user might want to inspect the local
variables of the function in which the crash occured and those of its callers. For that
purpose, debugging information can provide call frame information that helps to find the
stack frames of calling functions.

2.2 DWARF
DWARF [2] is the predominant debugging information format in Linux and Unix en-
vironments. Typical producers of DWARF are compilers, though we are also aware of
non-compiler producers, such as ghidra2dwarf1, which inserts debugging information ob-
tained by reverse-engineering into an executable. Consumers primarily include interactive
debuggers, in particular the two debuggers GDB [4] and LLDB [12].

DWARF relies on various features of the containing object file format. In particular, it
requires dedicated sections in which it encodes different parts of debugging information.
References between these sections furthermore require relocation during linking. DWARF

1https://github.com/cesena/ghidra2dwarf, accessed 2024-08-27
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2 Technical Background

sections from multiple compilation units are concatenated by the linker, which can lead
to duplicate information.

DWARF is a binary format, which, for the purpose of shorter section sizes, makes
extensive use of variable length encodings, especially of Little-Endian Base 128 (LEB128).
LEB128 encodes integers by splitting them into parts of 7 bits and storing these parts in
separate bytes. The remaining bit of each byte is used to mark the end of an LEB128-
encoded integer. Another common pattern aiming to reduce encoded size is that DWARF
offers multiple encodings for the same value. A DWARF consumer can choose the most
compact encoding for a given set of values.

The DWARF specification [2] is currently available in version 5. To enable consumers
which do not support this version to detect and skip DWARF5 debugging information,
DWARF includes version numbers in object file sections in which the encoding deviates
from the previous versions. Thus, different versions of DWARF can coexist in one object
file.

2.3 LLVM
LLVM2 [13] is a modular compiler infrastructure built around its intermediate representa-
tion LLVM IR [10]. It comprises multiple compiler frontends generating LLVM IR—most
notably the C and C++ compiler Clang [8]—features a collection of analysis and opti-
mization passes as well as back-ends for different targets such as x86-64 and AArch64.

Based on Static Single Assignment (SSA), every function in LLVM IR is represented
as a control flow graph whose nodes are basic blocks. Each basic block is a sequence of
instructions that can only be executed as a whole as long as no exceptions occur.

When in memory, program entities are encoded as structures that are linked together
via pointers. In particular, LLVM IR makes heavy use of linked lists. One example of
such a linked list is the sequence of independently allocated instructions stored for each
basic block. These pointer-heavy structures allow LLVM IR passes to perform insertions
and deletions with low asymptotic complexity at the cost of degraded cache locality.

In addition to its in-memory representation, LLVM IR can also be serialized to bitcode
that allows caching and passing of intermediate representation between tools. Furthermore,
LLVM IR also has a human readable textual form that is useful for debugging. This is
the form chosen for examples in this thesis. As all three forms of LLVM IR are equivalent,
an example shown in the textual form does not mean that LLVM IR is actually serialized.

Debugging information is optional in LLVM IR. When present, entries in the intermediate
representation contain references to specialized metadata nodes and strings. Thus, only
space for one additional pointer is required in LLVM IR structures, which saves space in
the case that no debugging information is provided. In the textual form, references to
metadata nodes can be recognized by a leading exclamation mark, such as in !18 or in
!namedReferenceToNode. The specific locations in LLVM IR where debugging information
is referenced are discussed in the respective chapters of this thesis.

2All results of this thesis related to LLVM and its subprojects Clang and LLDB were obtained using
version 19.1.0-rc2, Url: https://github.com/llvm/llvm-project/tree/llvmorg-19.1.0-rc2, accessed
2024-08-27
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3 Line Table

The line table provides a mapping from instruction addresses to the file locations of
program source entities the instructions originate from. Despite being called line table,
this mapping can also provide additional per-instruction information such as the used
instruction set and aid the consumer in reconstructing the program’s control flow graph.

3.1 Representation in DWARF
The line table is stored in the .debug_line section and is conceptually standalone. It is a
compressed encoding of a matrix that contains one row for each instruction.

3.1.1 Fields

The fields in each row can be grouped as follows: [2]

Reference to the Instruction The field address specifies the location of the instruction
in the program’s address space. The field op_index contains the index of the referred-to
operation in the case of an instruction that encodes multiple operations, like an VLIW
instruction. op_index is not relevant on x86-64 and therefore always set to 0.

Source Location The integer fields file, line and column provide the source code
location of the program statement that the instruction belongs to. file is an index into
an array containing per-file information. This array is also stored in the .debug_line

section. The DWARF producer can choose which per-file information it adds. When
no extensions are used, possible options are the filename, the directory, the time of last
modification, the file’s size and an MD5 checksum. Directory information is encoded as
an index into a directory array containing directory paths. Filenames and directory paths
are stored in a separate string table section, .debug_line_str.

Instruction Set On architectures that support switching between multiple instruction
sets, the integer field isa provides information about the currently used instruction set.
isa is always set to 0 on x86-64.

Breakpoint Hints Via the three boolean flags prologue_end, epilogue_begin and
is_stmt a compiler can hint a debugger where to place breakpoints: An instruction
annotated with prologue_end is the first instruction after a function prologue. When a
user requests to halt the program on entry of a function, inserting a breakpoint at an
instruction marked with prologue_end yields better debugging experience than breaking at

5



3 Line Table

1 #include <stdio.h>
2
3 int sum(int a, int b)
4 {
5 return a + b;
6 }

Listing 3.1: Simple example source file: sum.c

ad
dr
es
s

li
ne

co
lu
mn

fi
le

pr
ol
og
ue
_ e
nd

ep
il
og
ue
_ b
eg
in

is
_ s
tm
t

sum:
push rbp 0x1130 4 0 0 0 0 1
mov rbp,rsp 0x1131 4 0 0 0 0 1
mov DWORD PTR [rbp-0x8], edi 0x1134 4 0 0 0 0 1
mov DWORD PTR [rbp-0x4], esi 0x1137 4 0 0 0 0 1
lea eax,[rdi+rsi*1] 0x113a 5 14 0 1 0 1
pop rbp 0x113d 5 5 0 0 1 0
ret 0x113e 5 5 0 0 0 0

Figure 3.1: x86-64 assembly and corresponding uncompressed line table generated for sum.c using
clang -g -O0. Only fields relevant for x86-64 debuggers are shown. Addresses are not relocated.

the entry label, as the stack frame is already set up and can be inspected. Similarly, when a
user requests a breakpoint before function exit, the debugger can use the epilogue_begin

flag to find suitable breakpoint locations before the stack frame is torn down. is_stmt

denotes that an instruction is a recommended breakpoint location and therefore helps the
compiler to select one of multiple instructions that map to the same source location.

The degree of adoption of these hints varies between different producers and consumers.
For example, the LLVM back-end produces these hints, while GCC 13.1.0 does not emit
them at all. Also, GDB currently1 does not consider prologue_end to skip function
prologues when single-stepping, while it skips prologues based on prologue_end when
setting a breakpoint on a function entry. LLDB, however, follows these hints in both
cases.

Control Flow Information The flag basic_block indicates the beginning of a basic
block and the field discriminator can be filled with arbitrarily chosen values that link
instructions to their basic blocks. These fields help profilers to reconstruct the control
flow of programs. Debuggers usually ignore both fields.

3.1.2 Compression

Figure 3.1 shows an uncompressed line table for the source file in Listing 3.1. Whereas
the full uncompressed matrix describes the semantics of the DWARF line table well, this

1Commit: 46b6ba96, https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=46b6ba96, ac-
cessed 2024-08-29
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3.1 Representation in DWARF

ad
dr
es
s

li
ne

co
lu
mn

fi
le

pr
ol
og
ue
_ e
nd

ep
il
og
ue
_ b
eg
in

is
_ s
tm
t

0x1130 4 0 0 0 0 1
0x113a 5 14 0 1 0 1
0x113d 5 5 0 0 1 0
0x113f - - - - - -

Figure 3.2: Line table from Figure 3.1 with-
out redundant rows. The last row is a sen-
tinel row.

1 DW_LNS_set_file 0
2 DW_LNE_set_address 0x1130
3 special: address += 0, line += 3
4 DW_LNS_set_column 14
5 DW_LNS_set_prologue_end
6 special: address += 10, line += 1
7 DW_LNS_set_column 5
8 DW_LNS_negate_stmt
9 DW_LNS_set_epilogue_begin

10 special: address += 3, line += 0
11 DW_LNS_advance_pc: address += 2
12 DW_LNE_end_sequence

Listing 3.2: Line number program
generating Figure 3.2

form of the line table is not used for storage as its size would be a multiple of the code
section size.

Instead, for each contiguous sequence of instructions, the corresponding rows of the
matrix are grouped together and sorted by ascending address and op_index values. Then,
all rows that only differ from the previous row in that they refer to a different instruction,
are dropped if none of basic_block, prologue_end or epilogue_begin are set. As rows
now refer to instruction ranges, the end of each continuous instruction sequence has to be
marked with a sentinel row.

While GDB and LLDB use an in-memory representation similar to this reduced matrix,
the line table still has low entropy and therefore undergoes additional compression when
serialized to disk. For this purpose, the DWARF standard specifies an encoding for line
number programs that produce the reduced matrix when executed by a state machine that
has a register for each of the fields. Instead of the matrix, the line number program is
stored in the .debug_line section.

Line number programs consist of operations that can modify register values, flush the
current state of the registers into a new row or mark the end of an instruction sequence.
The lengths of opcodes vary between operations. Operations that are expected to appear
frequently have a one-byte encoding. Additionally, a major part of the one-byte opcode
space is assigned to special opcodes that increment the instruction reference, modify the
line number and emit a new row in one operation. The range of possible values for the
increments and offsets can be adjusted by the DWARF producer, which allows a tradeoff
between being able to efficiently encode larger address increments or larger line offsets.

Figure 3.2 contains the reduced matrix equivalent to Figure 3.1. As the rows in the
uncompressed line table are already sorted by address and as there is only one contiguous
sequence of instructions, no reordering is needed in this example.

In the line number program in Listing 3.2, address is only set at the beginning
of the sequence and then incremented between each row using special opcodes and
DW_LNS_advance_pc. That is because increments not only have a more efficient encoding
but also they do not require a relocation in contrast to DW_LNS_set_address. It can can
also be seen that the flags prologue_end and epilogue_begin are automatically reset
after each row.
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3 Line Table

1 define i32 @sum(i32 %a, i32 %b) !dbg !2 {
2 entry:
3 %a.addr = alloca i32, align 4
4 %b.addr = alloca i32, align 4
5 store i32 %a, ptr %a.addr, align 4
6 store i32 %b, ptr %b.addr, align 4
7 %0 = load i32, ptr %a.addr, align 4, !dbg !3
8 %1 = load i32, ptr %b.addr, align 4, !dbg !4
9 %add = add nsw i32 %0, %1, !dbg !5

10 ret i32 %add, !dbg !6
11 }

(a) Function sum. Attributes and debug records
have been removed for simplicity.

12 !1 = !DIFile(filename: "sum.c", directory: "/tmp",
checksumkind: CSK_MD5, checksum: "363
a6746a516c2b5b3a1da30b11a5285")

13 !2 = distinct !DISubprogram(name: "sum", scope: !1,
file: !1, line: 3, scopeLine: 4, [...])

14 !3 = !DILocation(line: 5, column: 12, scope: !2)
15 !4 = !DILocation(line: 5, column: 16, scope: !2)
16 !5 = !DILocation(line: 5, column: 14, scope: !2)
17 !6 = !DILocation(line: 5, column: 5, scope: !2)

(b) Corresponding metadata nodes carrying source lo-
cation information. Additional fields in DISubprogram
are omitted.

Figure 3.4: LLVM IR for sum.c (Listing 3.1) generated by clang -g -O0

DWARF defines further operations that are not mentioned in this section. We refer the
reader to the standard [2] for further information.

3.2 Encoding in LLVM IR

Instructions that have an associated source code location contain a reference to a
DILocation metadata node. In the assembly form, these references can be recognized by
their !dbg prefix, as shown in Figure 3.4a. Each DILocation node provides information
for the in-file location via the fields line and column.

The file itself is given indirectly via a reference to the containing scope of the program
statement that generated the instruction. The type of the scope node can be any one of
the DILocalScope subclasses, of which DISubprogram and DILexicalBlock are the most
common. The former describes a function or method and the latter provides information
about a block within a function or method. Like all metadata nodes representing scopes,
these nodes contain a file field that references a DIFile node, which provides the filename
and directory and optionally also a checksum.

Figure 3.4b shows that the scope nodes also feature a line field. This field is not relevant
for the line table as it describes, where the function was defined, which is not necessarily
a location of a statement that generated an instruction. However, the scopeLine value
provided by DISubprogram is an appropriate choice for a line number to assign to the
function prologue, because it marks the beginning of the function’s scope.

3.3 Implementation in TPDE

In TPDE, we generate and serialize the line number program directly from LLVM metadata
and from instruction addresses without any previous transformations. The line table is
produced together with the machine code in the last compiler pass. We only generate
values for the fields that are relevant to x86-64 debuggers and we do not generate is_stmt

hints since these are not directly obtainable from LLVM IR. Our approach exploits
following two properties of TPDE:

8



3.3 Implementation in TPDE

First, TPDE sequentially emits machine code into a memory buffer and never reorders
or moves already generated instructions. Although there are situations, in which TPDE
needs to update constant operands of already written instructions or replace instructions
in function prologues and epilogues, this does not affect instruction addresses relevant for
the line table.

Second, since source location information is provided by LLVM instructions, that
information cannot change in between two machine code instructions that are result of
the same LLVM instruction.

This enables us to hypothetically generate a reduced matrix as defined in 3.1 by recording
a row each time before compiling an LLVM instruction. The address of the next machine
instruction is obtained from the write pointer offset in the code buffer and the source
location fields are read from the next LLVM instruction.

In order to directly generate the line number program, we do not record a row each
time, but instead simulate the state machine’s registers. Whenever a new row for the
reduced matrix would be emitted, we assign its values to the simulated registers and check
if any of these except address have changed. Only in the case of changed values we emit
opcodes that update the registers of the consumer’s state machine and produce a new
row.

To provide line number information for prologues and epilogues, we also emit a row
before each prologue and set the prologue_end and epilogue_begin flags after compiling
prologues and before compiling epilogues respectively.

Per-File Information TPDE transfers the information provided in DIFile nodes into
the per-file information array found in the .debug_line section. Because LLVM does
not provide file sizes and access times, these attributes are also not provided by TPDE.
Furthermore, TPDE does not copy MD5 checksums, even when they are provided by
LLVM. That is, because these checksums are optional and not reliably provided by
LLVM IR producers, whereas DWARF only offers to to either provide checksums for all
files or for none.

Although duplicate file entries are not forbidden by the DWARF standard, the increased
section size would be impractical, if per-file information were duplicated for each row.
TPDE must therefore remember which DIFile nodes it has already added to the array.

For this purpose, we added a hash map that translates the DIFile pointer to its
corresponding array index if it was already seen. To accelerate the map lookup in the
common case that two consecutive instructions refer to the same file, TPDE also remembers
the pointer used for the most recent lookup and the lookup result. We use a similar pattern
with the metadata string pointer as key to prevent duplicate entries in the directory name
array.

9





4 Scopes and Types

Program entities relevant for debuggers are connected to other entities because of relations
defined by the source language semantics. This results in a graph that the debugging
information format has to define an encoding for.

In the C and C++ programming languages, two ubiquitous relations are the scope
hierarchy and the connections between types. Most scopes have no dedicated definition.
Instead, these scopes are implicitly provided by program entities such as functions and
classes. Scopes can be nested and thus form a tree that is rooted at global scope.

In contrast, the relation between types is not a tree. This is due to the fact that there
are instances in which types are derived from multiple base or member types. For example,
C++ allows multiple inheritance. Also, structures and unions can have multiple members
of different types. Because these member types can in turn be derived from or be pointers
or references to the structure or union type, the type relation can also contain cycles.

4.1 Representation in DWARF

DWARF stores the graph of program entities and their attributes in the .debug_info

section. All other debugging information except acceleration tables is referenced from
.debug_info. The .debug_info section thus acts as the entry for a debugger when parsing
DWARF. [2]

4.1.1 Tree of Debugging Information Entries

The contents of the .debug_info section are organized as an ordered tree of Debugging
Information Entries (DIEs). Each DIE describes a program entity and its attributes.
The tree models ownership: A parent DIE owns its child DIEs. This ownership relation
contains the scope relation, which means that any DIE describing a scope owns all DIEs
which describe program entities contained in that scope. DWARF does not impose any
restriction on the order of these child DIEs.

Furthermore, if the parent DIE describes an entity composed of parts, then these parts
are described by child DIEs whose order is the same as that of the parts. One example of
such a composed program entity are structure types: The member types of a structure
are provided by dedicated child DIEs, as seen in Figure 4.1, in which the member types of
struct list_node reference DIEs that encode the types int and struct list_node*.

Thus, the ownership relation additionally includes parts of the type relation. The
remaining connections between types as well as the other relations within the graph of
program entities are provided by references that are stored as attributes in the DIEs.
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1 #include <stddef.h>
2
3 struct list_node {
4 int value;
5 struct list_node* next;
6 };
7
8 int count_nodes(struct list_node* list) {
9 int result = 0;

10 while(list != NULL) {
11 list = list->next;
12 result++;
13 }
14 return result;
15 }

Compile Unit: name="list.c"

Pointer Type

Structure Type: name="list_node"

Member: name="value"

Member: name="next"

Subprogram: name="count_nodes"

Variable: name="result"

Formal Parameter: name="list"

Base Type: name="int"

type type

type

type

type

Figure 4.1: Exemplary source file and corresponding tree of DIEs as generated by TPDE. References
are visualized as dotted lines. Attributes except name and type are omitted.

The program in Figure 4.1 additionally features a cycle in the type relation: The
structure type list_node contains a pointer to itself. It also shows that DIEs encoding
entities without a scope are owned by the root node, which describes the compile unit.

4.1.2 Attributes and Tags

Apart from its child DIEs, each DIE comprises a tag and a set of attributes with their
corresponding values. The tag is an integer that defines the kind of the described program
entity and thus also the set of applicable attributes and their meanings. Attributes are
provided as key-value pairs. The keys are integers and possible classes for the values
include, among others, integers, boolean flags, strings and references to other DIEs or to
contents of other sections.

Allowed values for tags and attribute keys are defined by the DWARF standard. Their
symbolic constants start with DW_TAG_ and DW_AT_ respectively. Not all of these are
relevant to C and C++ compilers since the DWARF standard also covers other languages
to varying degrees. Vendors can define additional tags and attributes.

DWARF does not specify the meaning for every possible combination of tags and
attributes. Combinations not described by the standard may be emitted by producers, but
have an increased likelihood of providing no additional information to the consumer, which
is required to ignore attributes it does not understand. Below, we provide an overview of
a selection of attributes that have a defined meaning across multiple different tags.

Names The names of program entities can be provided via DW_AT_name. The absence
of names can be encoded either by providing an empty string or by not providing the
attribute DW_AT_name at all. In cases in which the name provided by the source code and
the name as visible to the linker are not the same, the source-level name is that encoded
by DW_AT_name and the linkage name is provided via an additional DW_AT_linkage_name

12
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attribute. This is for example relevant for C++, which relies on mangled linkage names
to distinguish entites that have the same name but differ in types or scopes.

Declaration Coordinates By providing one or multiple of the attributes
DW_AT_decl_file, DW_AT_decl_line and DW_AT_decl_column, a producer can de-
scribe the location of an entity’s declaration in the source code. The attributes have
the same meanings as the fields file, line and column of the line table respectively.
In particular, DW_AT_decl_file always encodes an index into the file array in the
.debug_line section, although Section 2.14 of the DWARF standard requests that the
value zero for DW_AT_decl_file encode the absence of file information. However, this
inconsistency with the definition of the file field was erroneously copied from the fourth
DWARF version, where value zero in the line table’s file field also represents missing file
information. In the upcoming sixth DWARF version, this issue will be fixed 1. Clang
relies on debuggers to interprete zero as a valid index into the file array, while GCC 13.1.0
avoids the issue by duplicating the first entry in the file array so that it can use the index
one to refer to that file.

Program Counter Ranges When describing entities which produced machine code, such
as compilation units, functions and and scopes within functions, DWARF producers can
append information about the range of the instruction’s addresses to the DIE. Contiguous
ranges can be provided using the DW_AT_low_pc and DW_AT_high_pc attributes. These
attributes encode the addresses of the first instruction within and the first instruction past
the range respectively. Discontiguous ranges require the use of the DW_AT_ranges attribute,
whose value is a reference to a range list contained in the .debug_rnglists section. Each
range list describes multiple contiguous ranges that together form a discontiguous range.

Types DIEs describing typed entities such as variables, formal function parameters,
constants and members of composed types have a DW_AT_type attribute which references
another DIE describing the type. Furthermore, the DW_AT_type attribute is also used in
DIEs that describe a derived type to provide a reference to the base type. Possible derived
types include, among others, pointer and reference types, const-qualified types, and arrays
types.

In Figure 4.1, the tree’s root is a DIE describing the compilation unit. This DIE has
the tag DW_TAG_compile_unit. A DWARF producer can also generate contributions
to the .debug_line section whose roots contain different tags. This is however only
possible if the producer employs mechanisms to reuse types information or descriptions of
imported modules or mechanisms to store debugging information outside of the object
file or executable. As we do not implement any of these mechanisms in TPDE and do
not instruct other compilers to enable these features, we assume that every root DIE is a
DW_TAG_compile_unit DIE in the remainder of this thesis.

The compilation unit DIE serves multiple purposes: Its attributes provide information
about the compilation, such as the name and the programming language of the source

1See https://dwarfstd.org/issues/210713.1.html, Accessed: 2024-08-13
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file, the directory the compile command was executed in, and the name of the producer.
Additionally they provide data needed to decode other attributes of the compile unit DIE
and its child DIEs. That information can include the encoding of strings and relocated
offsets to the contributions to other sections that contain referenced content. Furthermore,
the compile unit DIE acts as DIE that describes global scope and it also contains DIEs of
entities that neither a part of another program entity have a scope.

As shown in Figure 4.1, one example of such DIEs are DIEs describing basic types.
These DIEs have the tag DW_TAG_base_type and contain attributes describing the size
and encoding of the basic type, where encoding refers to the particular kind of basic type.
Available encodings include signed and unsigned integers, floating point numbers and
characters of various character sets.

Other DIEs that encode type information include those with the tags DW_AT_class_type,
DW_AT_structure_type and DW_AT_union_type, which are used to describe the C and
C++ composed type constructs class, struct and union respectively. In addition to their
child DIEs that provide the data member types, they may also contain DIEs representing
member functions, static variables and inherited types. The order of the member and
inheritance child DIEs relative to each other has to match that of their declarations in
the source file. The other child DIEs can however be ordered freely, which also includes
positions between member and inheritane DIEs.

4.1.3 Functions and Inlining

DIEs with the tag DW_TAG_subprogram describe functions and member functions. Since
functions contribute to the generated machine code, a program counter range can be
specified using the attributes described in Section 4.1.2.

Although DWARF provides means to encode function types via
DW_TAG_subroutine_type DIEs—these are used for example for function pointers—the
DW_AT_type attribute in subprogram DIEs only refers to the return type of the described
function. The absence of a return value, which corresponds to return type void in C and
C++, is represented by the absence of the DW_AT_type attribute.

The argument types, including this for C++ member functions, are indirectly referenced
via child DIEs of tag DW_TAG_formal_parameter. Each subprogram DIE contains one
of these DIEs for each formal parameter, which also provides the name. Similar to the
members of composed types, only the order of the formal parameter DIEs relative to each
other has to match the order of the function’s formal parameters.

Subscopes of functions are encoded as DW_TAG_lexical_block DIEs. All DIEs represent-
ing a function’s scopes, including the subroutine DIE itself, can contain DW_TAG_variable

DIEs, which then describe local variables and contain a set of attributes similar to that of
formal parameters.

In addition to the already mentioned tags and attributes related to functions, information
about inlined function calls can be provided. If it is omitted, and a debugger pauses
program execution at an instruction that belongs to an inlined function call, the debugger
erroneously assumes that the variables of the caller are in scope, even if it displays the
correct location of the program counter in terms of source code. This leads do dissatisfying
debugging experience.
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DW_TAG_compile_unit: DW_AT_name="add.c"

DW_TAG_subprogram: DW_AT_name="add2"

DW_TAG_inlined_subroutine

DW_TAG_formal_parameter

DW_TAG_inlined_subroutine

DW_TAG_formal_parameter

DW_TAG_formal_parameter: DW_AT_name="val"

DW_TAG_subprogram: DW_AT_name="add1"

DW_TAG_formal_parameter: DW_AT_name="arg"

DW_TAG_subprogram

DW_TAG_formal_parameter

DW_TAG_base_type: DW_AT_name="int"

DW_AT_abstract_origin

DW_AT_type

inlined

inlined

abstract

out-of-line

1 int add1(int arg) {
2 return arg+1;
3 }
4
5 int add2(int val) {
6 return add1(add1(val));
7 }

Figure 4.2: A tree of DIEs that contains abstract and concrete instance trees. Each instance tree
is colored differently. The tree was generated from the source on the left using clang -g -O2 with
the TPDE back-end. All attributes except DW_AT_name, DW_AT_type and DW_AT_abstract_origin
are omitted.

Inlined function calls in DWARF are encoded as concrete inlined instance trees. These are
subtrees starting at DIEs with the tag DW_TAG_inlined_subroutine that are owned by the
DIEs that describe the scopes in which the calls occur. Via the DW_AT_abstract_origin

attribute, each inlined subroutine DIE points to a DW_TAG_subroutine node, which is
marked as the root node of an abstract instance tree. An abstract instance tree differs from
regular subtrees of subroutine DIEs in that its DIEs do not feature attributes that are
specific to any compiled instance of the subroutine. That means that attributes such as
DW_AT_name are provided in abstract instance trees, while attributes such as DW_AT_ranges
are not. The structure of a concrete inlined instance tree mirrors that of its abstract
counterpart. It can, however, contain additional DIEs if there is information which is only
relevant for this particular inline expansion of the function, and it can omit DIEs if they
would not provide additional information relative to their abstract counterpart. Each
node in a concrete inlined instance tree which has an equivalent in the abstract instance
tree references it as its abstract origin and omits attributes already defined in the abstract
DIE.

When non-inlined code is generated for a function that is also inlined in another function,
then an additional concrete out-of-line instance tree describes this non-inlined instance of
the function. The only differences between concrete out-of-line instance trees and concrete
inlined instance trees are that the former’s root node has the tag DW_TAG_subprogram and
is not owned by a DIE representing a local scope.

Figure 4.2 shows an example of inlining: The function add1 is inlined twice in add2.
Thus, the DW_TAG_subprogram DIE for add2 contains two concrete inlined instance trees,
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whose DIEs share their counterparts in the abstract instance tree. Additionally, there is a
concrete out-of-line instance tree that in this example—that order is however not required—
succeeds the abstract instance tree. The DIEs in the concrete instance trees do not provide
the DW_AT_type attribute as it is indirectly obtainable via DW_AT_abstract_origin.

4.1.4 Encoding
Since different DIEs with the same tag often share their set of attribute keys and datatypes,
only the attribute values are encoded per-DIE. The keys and datatypes are stored out-of-
line in in the .debug_abbrev section.

.debug_abbrev section Each contribution to .debug_abbrev contains a sequence of
abbreviations, each starting with a unique LEB128-encoded abbreviation code. The codes
can be any positive integers and the standard does not require the abbreviations be sorted
by their codes. Following the abbreviation code, each abbreviation stores the tag that is
common to the DIEs that reference this abbreviation. The next byte is a boolean flag
indicating whether the DIEs can have children. The remaining parts of the abbreviation
are pairs of LEB128-encoded attribute keys and forms.

Forms are integers that define both the class and the encoding of a value. For example,
values of the form DW_FORM_strp are strings that are provided as an offset into the
.debug_str section, whereas DW_FORM_str is used for strings that are provided directly in
the DIE. Another example are the two forms for boolean flags: DWARF consumers consider
boolean attributes that are not included in DIEs as false. Therefore the value of a flag can
be encoded as the presence of the attribute, in which case the form DW_FORM_flag_present

must be used. This form describes a boolean flag that is always true and whose value
encoding does not occupy any space in the DIE. Alternatively, flags can also be provided
as one-byte values of the form DW_AT_flag, in which case the value 0 encodes false. The
set of forms is fixed by DWARF. No further forms can be added by compatible extensions
to ensure that consumers can always skip attributes they do not understand.

The sequence of attribute keys and forms is terminated by a sentinel pair which consists
of two zeros. Analogously, the sequence of abbreviations is terminated by a zero byte.
The order of attribute keys has no semantic meaning in DWARF.

.debug_info section Every contribution to the .debug_info section starts with a header,
whose fields include, among others, the length of the contribution and the DWARF version.
The header is followed by the encoding of the tree, which is serialized in pre-order. Thus,
the first encoded DIE is the root DIE followed by its children.

Each DIE starts with a LEB128-encoded abbreviation code linking it to the DIE’s
abbreviation. Next, the encodings for the attribute values are appended in the order
of their attribute keys in the abbreviation. Table 4.1 shows a possible encoding of a
DW_TAG_base_type DIE which represents a four-byte signed integer.

If the abbreviation of a DIE states that the DIE can contain children, then its encoding
is followed by the encodings of its children, which appear in the same order as in the tree.
The sequence of child DIE encodings is terminated by a zero byte. This zero byte can also
be interpreted as a DIE with abbreviation code zero, which is reserved for this purpose.
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Table 4.1: Encoding of a DW_TAG_base_type DIE showing the bytes of the abbreviation on the
left and the bytes stored in the .debug_info section on the right in hexadecimal format. We note
that in this example LEB128 encoding always results in a single byte, because the values of the
abbreviation code, the tag and all attribute keys and forms are less than 128. The name string is
represented as an offset into the .debug_str section and thus requires a relocation. In the example,
the offset is a four-byte little endian value.

.debug_abbrev Interpretation .debug_info

04 Abbreviation Code: 4 04

24 Tag: base_type

00 DIE has no children

Attribute Form Value

03 0e name strp String at .debug_str+7 07 00 00 00

3e 0b encoding data1 DW_ATE_signed 05

0b 0b byte_size data1 4 04

Because the number of encoded bytes for each attribute value depends on the form, a
consumer has to consider the abbreviation to find the boundaries between attribute values.
Furthermore, the length of an attribute value can also depend on the value itself in the
case of variable length data. Thus, a consumer has to process all preceding attributes and
DIEs to read a specific attribute of a DIE. A producer can optionally provide a reference to
the next non-descendant DIE via the DW_AT_sibling attribute, which offers the consumer
a means to skip subtrees when reading. Because of the additional space required, this
attribute can also degrade debugging experience. LLVM thus does not emit it at all [19].2

References to other DIEs which are part of the same contribution to .debug_info are
encoded as offsets relative to the beginning of the contribution’s header. References to
contents of other sections are either indices into arrays or offsets into the corresponding
sections. Offsets can be absolute, in which case they require relocation, or relative to an
absolute offset provided by an attribute of the compile unit DIE. Because of the saved
relocations, relative offsets are preferred over absolute offsets where feasible.

.debug_rnglists section Producers of DWARF version 5 debugging information can
choose between multiple encodings for the ranges in .debug_rnglists. The used encoding
is specified individually for each entry of a range list in the entry’s fist byte. DWARF
provides encodings, which are based on address-sized integers that require relocation or on
indices into an .debug_addr section. This section contains an array of addresses that also
need to be relocated but allow reusing, which can save relocations. Other encodings utilize
offsets that are relative to a base address, which is either the DW_AT_low_pc attribute of
the compile unit or a value provided in a preceeding entry of range list. Each range list
entry that is not used to mark the end of a list or to provide a base address contains
either encodings for the start and end or for the start and length of the range. The ranges
in the range list do not have to be sorted, but they may not intersect.

2Also mentioned in https://reviews.llvm.org/D43439, accessed 2024-08-17
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4.2 Encoding in LLVM IR

All debugging information metadata nodes which correspond to a DIE in the .debug_info

section are instances of the DINode class. There are various subclasses of DINode. In this
section, we will cover those that are relevant to the scope of this thesis. [10]

4.2.1 Scopes

All debugging information metadata nodes describing scoped program entities feature a
scope field. This field points to a node whose type is a subtype of DIScope. All DIScope
nodes describe scoped entities themselves and therefore they also feature the scope field.
DIScope nodes of types DIFile and DICompileUnit respresent the global scope. Addi-

tionally, if scope is a null reference, this also indicates that the described entity has global
scope. Thus, the scope relation in LLVM metadata nodes forms a forest instead of a tree.

4.2.2 Types

LLVM IR metadata encodes the type relation as a graph of DIType nodes. All DIType
nodes contain fields that can be filled with the type’s bit-size, alignment, name and
declaration coordinates. There are five subclasses of DIType: (1) DIBasicType contains
an encoding field that has the same meaning as the DWARF DW_AT_encoding attribute.
A DIBasicType node can thus be trivially translated into a DW_TAG_base_type DIE.
(2) DIDerivedType nodes contain a base_type field which links to another DIType node
and a tag field that specifies the tag of an equivalent DWARF DIE. Depending on the
tag, there are two possible meanings a DIDerivedType can convey. First, it can describe
a type derived from the base_type, such as a type alias, a reference or pointer to the
base type, or a const-qualified version of it. The kind of derived type is provided via the
tag. Second, DIDerivedType nodes are also used to describe members of composite types.
These members can be data members, friend types, inherited types and static variables.
The member kind can be obtained via the tag. (3) The composite types are described
by DICompositeType, which provides an elements field that points to an array which
includes references to its members described by DIDerivedType nodes and also nodes
encoding declarations for member functions. (4) DISubroutineType nodes encode the type
of a function and contain a types field that links to a type array. The array’s first element
is a reference to the return type of the respective function and the remaining elements are
references to the types of the parameters. (5) The last subtype, DIStringType is used for
Fortran programs only and therefore not within the scope of this thesis.

Although DIType is a subclass of DIScope, only nodes of DICompositeType act as scopes.
Also, the scope fields of DIBasicType and DISubroutineType are always set to a null
reference and DIDerivedType provides a scope only for type aliases.

The absence of a type is encoded as a null reference. Thus, LLVM IR producers describe
the C pointer type void* as a DIDerivedType with tag set to DW_TAG_pointer_type and
base_type set to null. Also, the return type of a function returning void should be
provided as null in the type array of DISubroutineType. Contrary to the description of
DISubroutineType in the LLVM Language Reference Manual [10], we found that there are
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also instances, in which Clang omits the return type null from type arrays for functions
that do not have parameters and return void.

4.2.3 Parameters and Variables

If the intermediate representation for a function in LLVM provides debugging information,
the function instance references a DISubprogram node, which is also an instance of a
DIScope node. As mentioned in Section 3.2, DISubprogram nodes contain file and line

fields. These specify the declaration coordinates. A column is not provided, though.
Additionally, a DISubprogram node provides the name and linkage name of the function.

The type of the function can be obtained in two ways: First, each DISubprogram

has a type field that links to a DISubroutineType. Second, for each parameter, a
DILocalVariable node exists that provides the type reference via its type field. The
DILocalVariable node additionally provides the name and declaration coordinates of
the parameter. DILocalVariable nodes are also used to describe the attributes of local
variables that are not parameters. The two cases can be distinguished by the arg field,
which is zero for non-parameter variables and positive for parameters. In the latter
case it describes the one-indexed position in the parameter list of the subprogram. The
subprogram can be reached from the DILocalVariable by dereferencing scope. The
reverse direction is not always possible: Although in the description of DILocalVariable,
the LLVM Language Reference Manual [10] requests that all nodes describing parameters be
included in the retainedNodes array field of their corresponding DISubprogram, our tests
showed that consumers cannot rely on that behavior, as Clang does not add parameters
to retainedNodes in unoptimized builds. Apart from the retained nodes, DISubprogram
nodes do not feature references to their formal parameters.

4.2.4 Inlining

Instructions that are result of inlined function calls feature a non-null inlinedAt field
in their attached DILocation. inlinedAt references another DILocation that describes
where the inlined call occures. This DILocation may in turn also feature a non-null
inlinedAt field, if an inlined call occurres within an inlined function. Figure 4.3 shows
such an example of nested inlining. The scope where the outermost inlined call occurred
is reachable by repeatedly following inlinedAt until it is a null reference and then
dereferencing scope.

For each inlined call, only one node exists that describes its location. Also, if two
inlined calls occur at exactly the same source location—that means in the same file and at
the same line and column—and are part of the same function or inlined function, LLVM
does not combine their DILocation nodes despite them sharing the same content. Thus,
inlined calls can be identified by their DILocation node.

4.3 Implementation in TPDE
In contrast to the line table, we perform the construction and serialization of the tree of
DWARF DIEs in two separate steps. The following properties of the DWARF encoding
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DILocation

line = 2

column = 14

DILocation

line = 6

column = 12

DILocation

line = 10

column = 12

DILocation

line = 10

column = 5

DISubprogram

name = "mul"
...

DISubprogram

name = "wrap"
...

DISubprogram

name = "prod"
...

inlinedAt

inlinedAt

scope

scope

scope

sc
op
e

1 int mul(int a, int b) {
2 return a * b;
3 }
4
5 int wrap(int a, int b) {
6 return mul(a, b);
7 }
8
9 int prod(int a, int b) {

10 return wrap(a, b);
11 }

1 define i32 @prod(i32 %a, i32 %b) !dbg !29 {
2 entry:
3 %add = mul i32 %b, %a, !dbg !38
4 ret i32 %add, !dbg !39
5 }

Figure 4.3: Simplified LLVM IR featuring nested inlining produced by clang -g -O2 for the source
on the left. Metadata nodes are displayed as graph. For clarity, all nodes except DILocation and
DISubprogram nodes are removed. The inlined call to function wrap in prod inlines a call to mul.
The multiplication instruction therefore references a DILocation whose scope is the DISubprogram
mul and the scope of the outermost inlined call is prod.

hinder direct emission of the tree: (1) Adding a DIE into an already serialized tree would
require moving all DIEs that succeed the inserted DIE in pre-order traversal. (2) The
encoded length of a DIE is not fixed, because it may be altered when adding and removing
attributes and, in the case of variable-length encodings, changing their values. Thus, also
modifications of DIEs can require moving other DIEs.

Since these moves within memory can occur a significant runtime penalty for larger
trees, we consider direct emission of DWARF DIEs only feasible for producers which do
not have to modify any parts of the tree once generated. We do, however, note that
direct emission could still be employed for a subset of the tree which the producer knows
of that it does not change during further compilation. For TPDE, we do not use this
optimization.

4.3.1 Tree Data Structure

During the compiler passes, we construct an intermediate tree, which is an own data
structure that resembles the DWARF tree of DIEs. Then, after all functions have been
compiled, the intermediate tree is serialized into a tree of DIEs.

The nodes of the intermediate tree are bump-allocated within a dynamic-sized byte-array.
If needed for alignment, they are preceded by padding bytes. The size of each node depends
on its payload. The one-byte payload type specifies the kind of the payload. It also implies
the DWARF tag of the resulting DIE and specifies whether the DIE can have children.
The reverse does not hold: Multiple DIEs with the same tag can result from nodes with
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different payload types. For example, DIEs with tag DW_TAG_formal_parameter are both
used for the formal parameters of functions and of function types. In the former case
they are children of DW_TAG_subprogram DIEs and in the latter case they are children
of DW_TAG_subroutine_type DIEs and contain only a DW_AT_type attribute. To save
memory in the latter case, we use a different payload that only contains a field for the
type reference.

In contrast to encoded DIEs, the fields in the payloads have a fixed size. While this
enables TPDE to change attributes of nodes after creation, it also imposes limits on the
range of their values. The sizes of the fields are chosen to meet realistic use cases; for
extreme values, our choices can be adjusted via template parameters.

In addition to their payloads and payload types, all nodes also feature two references to
other nodes. The references are realized as indices into the byte-array which contains the
intermediate tree. The first reference links a node to its directly succeeding sibling. If
there is no such sibling, then the offset is zero. Although zero is also a valid offset to a
node, there is no conflict, because TPDE ensures that the node at offset zero is always
the root node, which cannot be a sibling of another node. The second reference links a
node to its first child node if it has children. The first child node thus acts as the head of
a linked list of all children, which is formed by the references to the sibling nodes.

While this data structure offers trivial pre-order traversal of the tree, which is needed
for the serialization, it only allows insertion of new nodes in constant time at the beginning
of a child list. We avoid this problem by performing insertions of child nodes in reverse
order for all child nodes that have ordering requirements, such as formal parameters and
data members of composite types. Once emplaced into the byte-array, nodes are not freed
until the end of compilation. Also, nodes are never reparented: Once a node has been
added to the child list of its parent node, it remains part of this list. The data structure
does not provide any means to obtain a reference to the parent node from a child node.

4.3.2 Tree Construction

Before starting the compilation, TPDE emplaces the root node describing the compilation
unit at offset zero in the byte-array. It uses information it obtains from a DICompileUnit

node that is referenced by the LLVM IR Module object. There are following additional
locations in LLVM IR, where TPDE finds references to debugging information metadata:
(1) Instructions can contain references to a DILocation as described in Sections 3.2
and 4.2.4, (2) Functions can link to a DISubprogram and (3) there are debug records,
which appear interleaved with instructions and contain references to DILocalVariable

and DILocation nodes to provide information about the variable’s values. All other
debugging information metadata is indirectly accessed via these references.

During compilation, TPDE appends a corresponding node to the intermediate tree
whenever it first encounters a DINode. Additionally, TPDE adds an entry into a hash
map that links from the DINode’s address to the offset of the created node. There are
multiple maps for different subtypes of DINode. The maps are used to prevent duplicate
generation of nodes for the same entity and to obtain offsets of already generated nodes.

The latter use case is especially relevant for scopes: After emplacing a node generated
from a DINode that features a scope field, the newly emplaced node must be added to
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the tree by putting it into its parent’s child list. The parent is the node generated from
the DINode linked to by scope or the root node if scope refers to global scope. It is not
guaranteed that the parent node already exists. Thus, the pointer provided by scope is
first used to look up the offset of a possibly existing node. If the loookup succeeds, the
obtained offset is used. Otherwise, a function is called that translates the DIScope node
to a corresponding node in the intermediate tree.

Offsets to other nodes also need to be known when constructing nodes that contain
references to other nodes. These references are encoded in the same way as the references
to siblings and the first child. The most common are type references, as found for example
in derived types, variables, and, for the return type, in subprogram nodes.

When creating a node that references another node, the referenced node is in most
cases looked up or generated before the referring node is emplaced. However, to break
recursive call cycles resulting from cycles in the type relation, we added cases in which
TPDE first emplaces the referring node with a placeholder reference. TPDE later replaces
the placeholder with the correct reference after registering the referring node in the
corresponding map.

Apart from resolving references, the translation of DINode s primarily consists of copying
contents of relevant field to the nodes in the intermediate tree. This also includes the
simultaneous construction of the .debug_str section: Strings are directly copied into that
section and—similar to DW_FORM_strp—only the string’s offset is saved in the intermediate
node. We do not take any measures to prevent duplicate entries in .debug_str.

Nodes of type DICompositeType require additional processing as the nodes referenced
in their elements field have to be translated, too, and must be appended as child nodes
in reverse order. Another type of node that requires additional care is DISubprogram. Its
formal paramters must be appended in reverse order. Thus, it is not sufficient to append
these on first encounter. Also, the DILocalVariable nodes for formal parameters are
not always referenced in the retainedNodes array, which furthermore does not guarantee
any order. Since we cannot obtain references to the formal parameters in correct order,
we instead rely on the information from the subroutine’s DISubroutineType. Thus,
TPDE creates a formal parameter node for each parameter type in the types array
with placeholders for all fields except the type reference. Later, when TPDE encounters
the DILocalVariable node for the parameter, it fills the missing information. Because
TPDE always translates the DISubprogram node before it compiles the corresponding
function, it never encounters a DILocalVariable for a parameter node before it creates
the intermediate node.

However, we found examples, in which Clang generates nodes for formal parameters
whose types are not included in the types array of the corresponding DISubroutineType.
Because this affects only one specific compiler-generated function, we assume that this
behavior is not intended. We reported this issue to the LLVM developers3 and applied a
temporary fix in our evaluation builds.

Because there are no nodes for inlined instances of DILocalScope and DILocalVariable,
TPDE identifies these by a pair of addresses. The first address is that of the DILocalScope

or DILocalVariable and the second is that of the DILocation corresponding to the inlined

3https://github.com/llvm/llvm-project/issues/104765, accessed 2024-08-20
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function call. Additional maps exist that use these pairs as keys. Whenever TPDE
encounters a DILocation with a non-null inlinedAt reference, it looks up or recursively
creates nodes for both the inlined scope and the scope it is inlined at.

When TPDE compiles a function, it does not yet know whether it will later encounter
an inlined instance of that function. Thus, we decided not to encode abstract instance
trees in the intermediate tree. Instead, we store both the information for abstract DIEs
and the out-of-line DIEs in regular subprogram nodes. These regular nodes are referenced
by inlined instances of the function via abstract_origin. Whenever TPDE encounters
an inlined instance of a function, it flags the node of the original function as containing
both the abstract and the out-of-line instance.

4.3.3 Ranges

The local scope nodes for inlined and non-inlined lexical blocks and for inlined subroutine
calls features an offset into an array containing multiple range lists. These are organized
as circular singly-linked lists of entries each containing a start and an end address. The
lists are circular so that one reference in the local scope node provides fast access to both
the beginning and the end of the list.

During compilation, TPDE remembers the values of scope and inlinedAt of the
DILocation linked by the last LLVM instruction. Whenever these values are different for
the next instruction, TPDE finishes the current range and starts a new one. Starting
a range only means saving the address of the next machine code instruction. When
TPDE finishes a range, it looks up the node for the scope described by the saved scope

and inlinedAt fields. Then it traverses the node and its parent nodes until it reaches
a non-local scope node. For this purpose, the payloads of local scope nodes feature a
reference to their parent nodes. For each of the visited nodes, TPDE appends a range
entry to the nodes range list with the saved start address and with the current address of
the next machine instruction as end address. TPDE coalesces the new range entry with
the previous last range entry, if there is no gap in between them.

After compiling a function, TPDE traverses the subtree rooted at the function’s subpro-
gram node. For each local scope node, it serializes its range list into the .debug_rnglists

section. It then replaces the offset into the range list array used during construction
with the offset of the serialized range list in the .debug_rnglists section. This offset
constitutes the value for the DW_AT_ranges attribute. Afterwards, the contents in the
range list array are not needed anymore and the array can thus be reused when compiling
the next function.

The program counter range that belongs to a DISubprogram is also tracked, but in a
more simple manner: Because it is guaranteed to be contiguous, it is sufficient to record
the write pointer offset in the code buffer before and after compiling the function. The
resulting values are used for the DW_AT_low_pc and DW_AT_high_pc attributes, respectively.

4.3.4 Tree Serialization

After the last compiler pass has run for the last function and its range list is serialized,
TPDE serializes the intermediate tree into the .debug_info section. For that, it uses the
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references to the siblings and to the first children to traverse the tree in pre-order. When
serializing a node, TPDE saves the offset of the resulting DIE in the .debug_info section
in the header of the node. This saved offset is used as the value for references of other
DIEs to this DIEs. When the serialized offset of a referred to DIE is already known during
serialization of a node, this offset is directly written into the buffer for the .debug_info

section. All occurences of forward references to not-yet serialized DIEs are saved and the
references are filled with a placeholder value. Because reference offsets have a fixed size,
patching them after tree serialization is possible. The references to siblings and the first
children are not serialized as their informational content is conveyed via the layout of the
DIEs in the .debug_info section.

When TPDE encounters a subprogram node that is flagged as representing both an
abstract and out-of-line instance, the subtree starting at that node is serialized twice. In
the first traversal of the subtree, only the attributes relevant for the abstract instance tree
are included. In the second traversal, the set of attributes is inverted and an additional
DW_AT_abstract_origin attribute is emitted. The value of this attribue is DIE’s serialized
offset as saved in the previous traversal. The second traversal does not overwrite the
saved serialized offsets, so that all nodes in inlined instances link to the abstract DIEs as
opposed to out-of-line DIEs.

TPDE generates abbreviations when these are needed to serialize a specific node. Using
template programming, we created one function for each payload type that serializes
suitable abbreviations. The boolean conditions in nodes that influence the generation of
abbreviations are extracted via dedicated functions and together with the payload type
they form a payload key. This payload key uniquely identifies an abbreviation. It is
used as an index into an array that contains the abbreviation code of each abbreviation
that is already serialized. Thus, for every node that is serialized, the abbreviation key is
generated and used to look up the abbreviation code. If the lookup returns zero, then
TPDE generates the corresponding abbreviation and saves the resulting code in the array.

In the course of our work, it showed that cases in which there are multiple possible
abbreviations for one payload type can almost entirely be avoided, except for following
nodes: First, nodes referring to types which can be void need one abbreviation with
DW_AT_type and one without the attribute. Second, base types nodes contain a size
description which can either be in bytes or in bits. Because debuggers refused to treat bit-
sizes that were multiples of eight in the same manner as corresponding byte sizes, we emit
DW_AT_byte_size when the bit-size is a multiple of eight and otherwise DW_AT_bit_size.
With reasonable effort, we could use different payload types for void and non-void variants
of nodes as well as bit-sized and byte-sized variants. Then we could use the payload type
directly instead of the abbreviation key for the lookup.

Additionally, we could hardcode the complete .debug_abbrev section, and use abbre-
viation keys or payload types directly as abbreviation codes. However, because TPDE
can currently only generate 60 different abbreviations, we do not expect that these
optimizations would significantly improve performance.
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4.4 Limitations
Due to the limited scope of this thesis, we do not handle all information available to
TPDE that can be encoded in the .debug_info section. In particular, we do not read the
field templateParams of DISubprogram nodes and thus do not emit template information.
Also, our current version of TPDE does not create DIEs describing the positions of labels,
which it could obtain from LLVM IR through #dbg_label records.

In addition, both DWARF and LLVM feature mechanisms to link from one compilation
unit to contents of another. However, TPDE only supports references within compilation
units and does not read the imports field of DICompileUnit nodes. Furthermore, we do
not emit call site information except for inlined calls. Call site information can be used
by debuggers to locate function calls and obtain their attributes if the debugger cannot
derive these from the machine instruction sequence.
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Debuggers not only provide the possibility to track control flow by showing the program
counter’s position in terms of source code. They also allow users to inspect the state of
the program when it is paused. This state primarily consists of the contents of registers
and memory. Debugging information formats can provide descriptions that map the state
of registers and memory to values of source-level variables.

5.1 Representation in DWARF
DWARF provides variable location information through location descriptions, which are
implemented as expressions and location lists.

5.1.1 Expressions

Each expression provides the value of a variable or its location in memory and registers. An
expression consists of a sequence of byte-code operations preceded by an LEB128-encoded
number specifying the length of the sequence in bytes. A DWARF consumer evaluates it
by executing it on a stack machine.

Each operation consists of a one-byte opcode followed by operands. In the following,
we provide an overview of operations that are defined by DWARF. Our list only includes
operations relevant to this thesis. For an exhaustive enumeration, we refer the reader to
the fifth version of the standard [2].

Constants Various operations push constants onto the stack. The operations differ in
the encodings of their operands. There are dedicated operations that push small integer
values and only occupy one byte.

Stack Operations DWARF defines operations that add, remove or reorder elements
on the stack. Examples include DW_OP_dup, which duplicates the top of the stack and
DW_OP_swap, which swaps the topmost two elements of the stack.

Memory and Register Access The operations DW_OP_breg0 to DW_OP_breg31 load the
contents from the register with the respective number, add an offset and push the result onto
the stack. The numbering of the registers is defined externally by the Application Binary
Interface (ABI) of the architecture. For x86-64 platforms that adhere to the System V
ABI, the register number mapping can be found in [6]. In addition, DWARF defines
DW_OP_fbreg, which loads the base address of the stack frame instead of a register value.
The value or location of the stack frame base address is encoded in the DW_AT_frame_base
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attribute of the subroutine DIE which describes the function the stack frame belongs to.
Memory access works through DW_OP_deref, which loads an address-sized value from the
memory location specified by the top of the stack. It then replaces the top of the stack
with the loaded value.

Memory and Register Locations By default, expressions provide memory locations.
Thus, a DWARF consumer interpretes the top of the stack after expression evaluation as
the address of the variable’s value in memory. A typical example for memory locations are
that on the program’s stack. They can be specified using only one DW_OP_fbreg operation,
which pushes a variable’s absolute address onto the DWARF stack when the frame offset
of the variable is given as operand. An expression terminated by DW_OP_stack_value

describes the variable’s value instead of its address.
Register locations are encoded using the operations DW_OP_reg0 to DW_OP_reg31. There

is a difference between specifying a location and providing an expression that evaluates
to the contents of that location: In both cases, the debugger can access the value of the
variable by fetching the respective register and memory contents. However, expressions
that specify locations additionally enable the debugger to modify the values and, in the
case of memory locations, provide the address of a variable to the user. For example,
on x86-64, a producer can describe a value located in register RSI, which has number 4,
either with DW_OP_reg4 or DW_OP_breg4 0, DW_OP_stack_value. The former additionally
describes a location and should therefore be preferred.

Arithmetic and Logical Operations DWARF defines unary and binary operations
that operate on the topmost stack entries. Two of the most common are DW_OP_plus

and DW_OP_and. The former is particularly useful to calculate a pointer as a sum of
a base address and a relative offset, such as the offset of a field within its structure
type. DW_OP_and is frequently used to limit the size a value obtained by DW_OP_deref by
applying a bit mask.

Control Flow Expressions can also contain jumps and branches to both previous and
subsequent operations. Thus, conditional execution and loops are possible, which allows for
arbitrary computation. Oakley [7] demonstrated this capability for DWARF expressions
employed in stack unwinding information that certain implementations of exception
handling depend on.

Types Starting with DWARF version 5, stack entries can also contain values whose types
are different from the type of memory addresses. There are variations of other operations
which additionally require an operand that is a reference to a base type DIE specifying
the result type. Furthermore, stack entries can be converted between different types
using dedicated operations. The types not only influence the size of values loaded from
memory via the encoding attribute of the base type DIE, they also affect the semantics
of arithmetic operations. Thus, DW_OP_plus performs an integer addition if executed on
two integers and a floating point addition if executed on floating point values.
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Composite Locations When a variable’s value is split into mutliple pieces, the location
of each piece can be specified independently. A producer describes such composite
locations by appending DW_OP_piece or DW_OP_bit_piece operations to the ends of
the expressions that describe the values or locations of the pieces. The first operand
of DW_OP_piece and DW_OP_bit_piece provides the size of the piece in bytes or bits,
respectively. DW_OP_bit_piece additionally takes a second operand, which specifies the
position of the piece inside the value described by the expression. The resuling operation
sequences of all pieces are then concatenated in the order of the pieces. Thus, on
little-endian architecures, the piece containing the least significant byte appears first
in a composite location description. Following expression illustrates the semantics of
DW_OP_piece:

DW_OP_reg0, DW_OP_piece 8, DW_OP_constu 0xdeadbeef, DW_OP_piece 4

On x86-64, this expression encodes that the lower 8 bytes of a 12-byte variable are located
in register 0, which is RAX, and the remaining bytes have the constant value 0xdeadbeef.

Variables are linked to their location descriptions via the attribute DW_AT_location. In
combination with the form DW_FORM_exprloc, expressions can be used directly as values of
DW_AT_location. Empty expressions encode the absence of location and value information.

5.1.2 Location Lists

When variables are held in registers, the register allocations are typically subject to change
since the amount of available physical registers is limited and the set of variables used
for computation changes during program execution. Thus, the variable locations can
depend on the program counter. However, DWARF expressions provide no means to read
the program counter. Instead, DWARF offers location lists. These lists are similar to
range lists, but additionally provide an expression per range entry. Using location lists, a
DWARF producer can specify multiple locations or values per variable. Each expression
is only valid within its associated program counter range.

The location lists are stored in the .debug_loclists section. Each contribution to
.debug_loclists starts with a header that indicates the length of the contribution and
provides additional information needed for decoding. The header is followed by the
encodings for the location lists, which are sequences of location list entries. Each location
list entry either provides a program counter range with an expression, a base address used
for relative encodings of subsequent ranges or a default expression without an associated
range. A default expression describes the location of a variable for positions in the program
that are not covered by any of the other entries. Each list is terminated by an end-of-list
entry. Table 5.1 shows that the entries in location lists do not have to be sorted by their
range. As opposed to the ranges of range list entries, those of location list entries may
intersect, in which case the entries supply the debugger with multiple simulataneous
locations.

The encoding of a list entry starts with a one-byte value indicating the entry’s kind
and—if applicable—the encoding of the range. The options for the encoding are similar
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Table 5.1: Example of a location list. The variable is stored in the registers with numbers 4 and 0,
respectively, when the program counter is within ranges [0, 10) and [20, 25). Otherwise, the variable
is located on the stack.

Entry Kind Range Expression

Range with expression [20,25) DW_OP_reg0

Default location - DW_OP_fbreg 8

Range with expression [0,10) DW_OP_reg4

End of list - -

to those offered for range lists. If the entry contains a range, the encoding of the range
follows the start byte, and if it features an expression, the expression encoding comes last.

If a location list is used for a variable, then the value of its DW_AT_location attribute
is the offset of the location list within the .debug_loclists section. Alternatively,
DWARF provides the option to store the offsets of the location lists in an array after
the .debug_loclists section header. This enables producers to provide the location list
reference as an index into that array, which the producer indicates by using a dedicated
form.

5.2 Encoding in LLVM IR

The final locations of local variables are an artifact of code generation. Thus, they are
not part of LLVM IR, which is used to describe functions before instruction selection and
thus also prior to register allocation. LLVM IR therefore describes variable locations in
terms of SSA values. [11]

Within each basic block, SSA values do not change their contents. A static mapping
from SSA values to variable values would transfer this property to the latter. However,
variables in imperative languages such as C and C++ are a stateful concept. Even within a
part of source code that results in one single basic block, there can be multiple assignments
to one variable.

Classically, producers of SSA-based intermediate representation thus employ variable
renaming: Each assignment to a variable in the source code results in an assignment to a
new SSA value in the intermediate representation, so that each value is only assigned to
once. [14]

Because of the memory access instructions, frontends generating LLVM IR do not have
to implement variable renaming themselves. Instead, they can allocate stack space for
local variables in the entry block of a function and describe assignments to variables as
store instructions. However, store instructions complicate optimizations because of their
side effect in memory. Thus, there is the LLVM pass mem2reg that performs a task similar
to variable renaming: Instead of assignments to source-level variables, it tracks stores to
locations on the stack and creates corresponding SSA values1.

1Source: lib/Transforms/Utils/PromoteMemoryToRegister.cpp
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5.2.1 Debug Records

LLVM IR provides the relationship between variables and SSA values through debug
records. These appear interleaved with instructions in basic blocks. Each debug record used
to describe variable locations features a reference to the corresponding DILocalVariable

metadata node of the variable. Furthermore, debug records can also contain a reference
to a DILocation node. This reference is particularly relevant in the context of inlined
functions: When the DILocation’s inlinedAt field is non-null, the debug record describes
the location of the inlined instance of the variable described by DILocalVariable. There
are no separate DILocalVariable nodes for inlined variable instances.

To describe the relationship between a variable and its location in memory, LLVM
features the #dbg_declare record. It references an llvm::Value, which provides the
address of the variable. The llvm::Value is either a constant, an SSA value or a function
argument. In #dbg_declare records, it is typically produced by an alloca instruction in
the entry block which allocates the space for the variable on the stack. In these cases,
the #dbg_declare record often appears in the entry block. For each concrete instance
of a variable, all #dbg_declare records must describe the same location [11]. Thus,
#dbg_declare records describe a static relationship between variables and SSA values.
This is sufficient for local variables statically allocated on the stack: Since assignments
are performed through store, the value seen by the debugger is automatically updated
when the value changes in the program, even though the location remains the same.

However, there is not always a one-to-one relationship between a variable and a single
storage location in memory. For example after mem2reg, different SSA values represent
the value of a variable at different points in the program. Such cases are expressed with
#dbg_value records, which associate an llvm::Value with a variable at one point in the
program. There can be multiple #dbg_value records that link the same concrete variable
instance to different values. Although #dbg_value records describe the variable’s values,
their usage does not imply the emission of DWARF expressions which do not provide
variable locations. The location information is implicitly provided in #dbg_value: The
location of the variable is the same as the location of the llvm::Value as determined by
register allocation.

Conceptually, a #dbg_value record can be seen as an assignment to an imaginary
register that tracks the llvm::Value of the referenced variable. This assignment is always
performed before the instruction below the record is executed. Because any instruction in
a basic block is only executed after all preceding instructions have been executed, one
can infer the variable’s current llvm::Value for each instruction by finding the closest
preceding #dbg_value record that matches the variable. If there is, however, no such
#dbg_value record, the value depends on the control flow of the program, which is not
fully known during compile time. An example for this situation is depicted in Figure 5.2.

In addition to #dbg_value and #dbg_declare, recent releases of LLVM starting with
version 17.0.1 also feature an experimental #dbg_assign record2. Where possible, this
record describes both the address and the value of a variable. Hence, a #dbg_assign

record features the fields of both other mentioned record types. Furthermore, it links to a
2First proposed in https://discourse.llvm.org/t/rfc-assignment-tracking-a-better-way-of-

specifying-variable-locations-in-ir/62367, accessed 2024-08-28
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1 int abs(int n) {
2 int res = 0;
3 if (n < 0) {
4 n = -n;
5 res = n;
6 } else {
7 res = n;
8 }
9 return n;

10 }

(a) Source

DILocation

line = 0
...

DILocalVariable

name = "n"
arg = 1
...

DILocalVariable

name = "res"
...

!loc:

!n:

!res:

(b) Metadata nodes

1 define i32 @abs(i32 %n) {
2 entry:
3 #dbg_value(i32 %n, !n, !DIExpression(), !loc)
4 #dbg_value(i32 0, !res, !DIExpression(), !loc)
5 %cmp = icmp slt i32 %n, 0
6 br i1 %cmp, label %then, label %else

7 then:
8 %sub = sub nsw i32 0, %n
9 #dbg_value(i32 %sub, !n, !DIExpression(), !loc)

10 #dbg_value(i32 %sub, !res, !DIExpression(), !loc)
11 br label %end

12 else:
13 #dbg_value(i32 %n, !res, !DIExpression(), !loc)
14 br label %end

15 end:
16 %n.end = phi i32 [ %sub, %then ], [ %n, %else ]
17 #dbg_value(i32 %n.end, !n, !DIExpression(), !loc)
18 ret i32 %n.end
19 }

(c) Basic blocks

Figure 5.2: Simplified LLVM IR showing #dbg_value semantics. In block else, variable !n is
known to have llvm::Value %n because the only predecessor, entry, provides it via #dbg_value.
In contrast, the llvm::Value of !res in end is unknown at compile time since then and else
assign different values to !res. We note that in this particular example, a possible optimization is
to make !res an alias of !n. Then, a #dbg_value assigning %n.end to !res can actually provide
a value for !res. The LLVM IR was obtained by compiling the source with clang -g -O0 and
applying the mem2reg pass.

metadata node of type DIAssignID, which does not contain any content but has a distinct
pointer and can thus be used to identify the source-level assignment which lead to the
change of the variable’s value. Instructions like store also link to the same DIAssignID if
they are result of the same source-level assignment. A #dbg_assign record is only valid as
long as the assignment it describes is still present in the intermediate representation. [9]

5.2.2 Expressions

To handle cases in which the value of a variable cannot directly be described by an
llvm::Value, #dbg_value also references an expression that transforms the value. Analo-
gously, also #dbg_declare records feature expressions, which transform the addresses.

The expressions are implemented as DIExpression metadata nodes, each of which
comprises an operation sequence whose instruction set is derived from that of DWARF
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expressions [10]. Not all of the DWARF operations can occur in these nodes: While
they support memory access instructions, register access is not possible. Furthermore,
DIExpression nodes do not support all of the arithmetic and stack instructions and connot
contain control flow operations. While DIExpression nodes do not support the DWARF
type conversion instructions, LLVM provides a custom DW_OP_LLVM_convert operation, in
which the reference to the base type DIE is replaced by operands that contain the values
for size and encoding.

Also, the operations DW_OP_piece and DW_OP_bit_piece are not part of the
DIExpression vocabulary. LLVM IR instead describes variable values composed of
multiple pieces by multiple debug records. The expression in each such record ends with a
DW_OP_LLVM_fragment operation that specifies the offset and size of the piece within the
variable’s value.

Expressions also allow location descriptions derived from multiple llvm::Values. If
a debug record only references one value, it is implicitely pushed onto the stack before
the—possibly empty—expression is executed. If it contains references to multiple values,
then these are instead explicitely retrieved via DW_OP_LLVM_arg.

5.3 Implementation in TPDE

TPDE performs register allocation in conjunction with instruction selection and code
emission. It keeps all necessary state in data structures that are cleared after each function.
Additionally, the register assignment is stored in arrays that only reflect the current state.
Thus, there are no means to reconstruct the location of an SSA value if it is not traced
during the last compiler pass. Therefore, we also integrated the generation of variable
location information into this compiler pass.

5.3.1 Location List Data Structure

Due to the limited scope of this thesis, we always provide variable locations through
DWARF location lists. Our location lists do not contain entries that specify a default
location or a base address for relative range encodings. Thus, all entries except of the
end-of-list entries feature a range and an expression.

The location lists are constructed in a dedicated dynamic-sized byte array. For each
location list entry, a header is bump-allocated in the byte array, preceded by padding
if necessary for alignment. The header contains the start address of the range and the
length of the expression’s encoded instruction sequence, which follows the header in the
byte array. Additionally, it contains an offset that points to the header of the next entry.
Via this offset, the headers form a circular linked list for each location list similar to the
data structure which encodes range lists. Each local variable or parameter node in the
intermediate tree stores a reference to one such circular linked list.

The headers do not provide the end addresses of their respective ranges. However, we
enforce that entries are ordered by their start address and that there are no gaps between
the ranges. Thus, the end address equals the start address of the next entry’s range.
If there is no next entry, the end address is that of the containing function’s program
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counter range. To prevent gaps, we handle ranges without location information by storing
a header with an empty operation sequence.

After compilation of a function is finished, TPDE serializes the location lists for each
variable or parameter into the .debug_loclists section. For that it serializes the range
and expression length for each header and copies the encoded operation sequence. It skips
all headers that specify an empty range or expression. After serialization, the location
list reference in the intermediate node is modified to provide the offset of the serialized
location list within the .debug_loclists section.

5.3.2 Location List Construction
To infer the final locations of variables, the information provided in debug records has to
be combined with the locations of SSA values, which are found in the register assignment
array and in further data structures TPDE uses. This task primarily consists of two
subtasks: (1) We have to identify when our sources of information change. This means
that we have to find instants in which the location of an SSA value changes or a debug
record supersedes a previous record. (2) After each detected change, we must update the
affected location lists accordingly.

Identification of Changes For each variable instance, TPDE keeps a reference to the last
matching debug record. This reference is updated whenever TPDE encounters a debug
record referencing the variable. TPDE appends a new entry to the location list when that
reference changes. Additionally, TPDE tracks the set of SSA values that the debug record
depends on so that it can also append a location list entry when any location of such an
SSA value changes.

For this purpose, TPDE maintains a mapping from SSA values to the dependent
variables. We exploit that existing code in TPDE assigns indices to SSA values, which
eliminates the need for hashing. Our mapping is an array that contains a list head for
each SSA value at its respective index. The remaining list nodes follow after the sequence
of list heads. When an entry of a list is removed, its corresponding list node is marked
as invalid, but remains part of the list. Our design is based on the observation that the
number of debug records referencing one single SSA value is typically low and most of the
time zero or one. Thus, most lists only comprise their head node.

Within the functions of TPDE that compile single LLVM instructions, we only added
few calls to functions related to debugging information. One such call occurs whenever
an SSA value’s location changes: Our function then looks up all affected variables in the
aforementioned mapping and generates new location list entries. Because this call occurs
for all SSA values regardless of whether variable locations depend on them, it is important
that our mapping offers fast lookup.

Generation of Location List Entries Whenever TPDE has identified the necessity to
append an entry to the location list, it first emplaces a header in the byte-array with the
start address set to the address of the next machine code instruction. It then successively
translates the debug record into the DWARF operation sequence following the header,
resizing the byte-array as needed. Currently, TPDE does not support DW_OP_LLVM_arg,

34
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hence the translation process always starts with the generation of a description for the
referenced llvm::Value.

Depending on the kind of debug record, TPDE either produces a description of the
value or the location of the llvm::Value. For #dbg_declare it emits a description of
the value, because the value of the variable’s address is the location of the variable. For
a #dbg_value, TPDE appends a description of the llvm::Value’s location. If, however,
the DIExpression of the debug record is non-empty, TPDE instead emits a description
for the value, because DWARF operations cannot operate on location descriptions. In
this case, TPDE has to append DW_OP_stack_value before finishing the translation of
the debug record to prevent the DWARF consumer from interpreting the result as the
variable’s address.

Currently, TPDE does not include functionality to track whether DIAssignIDs are
referenced from instructions. Thus, TPDE does not encode locations of variables described
by #dbg_assign records as it cannot infer the validity of the latter. If we knew, however,
which #dbg_assign records are valid, the way we handle them would depend on the
information they provide. If they provided an address, we would process them similarly
to #dbg_declare and otherwise like #dbg_value.

Following the operations generated for the llvm::Value, the encodings of the oper-
ations in the DIExpression are appended. Because of the limited scope of this thesis,
we only implemented support for those operations that are defined by DWARF. When-
ever TPDE encounters an instruction defined by LLVM, such as DW_OP_LLVM_convert,
DW_OP_LLVM_fragment or DW_OP_LLVM_arg, TPDE aborts an expression. That means that
it stops the translation of the debug record and sets the expression length in the location
list entry’s header to zero. This discards all operations already translated and thus ensures
that no partial—and therefore wrong—expression is emitted.

In addition to unsupported operations in DIExpression, there are also unsupported
kinds of llvm::Values. This particularly includes constants which require relocation, such
as pointers to global variables. Expressions are also aborted when TPDE cannot provide
locations for llvm::Values. This typically occurs when the lifetime of an llvm::Value

has ended, which means that it is no longer used in the program.

5.3.3 Propagation of Debug Records

The approach we described in Section 5.3.2 is still incomplete and results in incorrect
variable locations as it does not consider the propagation of #dbg_value records between
basic blocks. In the following, we describe the rationale and the algorithm of an additional
pass we added to TPDE to simulate the propagation.

In Section 5.2.1, we explained that #dbg_value records provide a dynamic mapping
between variables and llvm::Values that conceptually depends on the control flow of
the executed program. In the remainder of this section, we call a debug record which
describes a variable at one specific point in program execution the active record for the
variable. In addition, we call the set of active records of all variables at the beginning and
at the end of a basic block the initial and final record configurations, respectively. Our
definitions are illustrated in Figure 5.3.
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entry:
#dbg_value(%val1, !varA, ...)
#dbg_value(%val2, !varB, ...)
#dbg_value(%val3, !varC, ...)

<instructions>

!varA !varB !varC
1 - -
1 2 -
1 2 3

1 2 3

example:
<instructions>
#dbg_value(%val4, !varA, ...)

<instructions>
#dbg_value(%val5, !varB, ...)

<instructions>
#dbg_value(%val6, !varA, ...)

<instructions>

!varA !varB !varC
1 2 3

4 2 3

4 2 3

4 5 3

4 5 3

6 5 3

6 5 3

1

2

3

4

5

6

initial record
configuration

final record
configuration

Figure 5.3: A made-up example of two blocks with known control flow. Instructions are omitted.
The corresponding active records for each variable are shown on the right.

From any initial record configuration of a basic block, the compiler can derive the final
record configuration by successively updating the configuration with the records found in
the block. Thus, each basic block forms a transfer function for record configurations. We
note that we do not distinguish between the different debug record kinds at this point,
because all kinds have in common that they are active after their occurrence.

The initial record configuration of the entry block is trivially empty since control flow
cannot yet have reached any debug record. For any basic block which has only one direct
predecessor—such as example in Figure 5.3—the initial record configuration is the final
record configuration of the predecessor. If a block has multiple predecessors—such as end

in Figure 5.2, the initial record configuration depends on which predecessor transferred
control flow. However, that is not known at compile time and furthermore not fixed during
execution. Hence, the active record of a variable it only known, if the record configurations
of all predecessors agree on the same active record.

We define a combination function which calculates the known subset of the initial record
configuration of a basic block. This subset is the intersection of the known subsets of the
final record configurations of all direct predecessors.

The transfer functions of the basic blocks and the combination function form an instance
of a flow analysis problem. Our pass solves it using fixed-point iteration as outlined in [5]:
Starting at the entry block, the pass computes the final record configuration for each block,
visiting a block whenever its initial record configuration was updated. The combination
function is used to update the inital record configurations of successors after evaluation
of a block’s transfer function. The pass terminates as soon as no record configurations
change anymore when recomputed.

We split the implementation of the pass into three subpasses, which are executed
prior to the former first compiler pass. In the first subpass, TPDE iterates over all
debug records that belong to the current function to count the number of local variable
instances and parameters. This is needed as we use data structures of fixed size in the
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entry:
<instructions>
#dbg_value(%val1, !varA, ...)

<instructions>
#dbg_value(%val2, !varB, ...)

<instructions>
#dbg_value(%val3, !varC, ...)

<instructions>

block1:
<instructions>
#dbg_value(%val4, !varA, ...)

<instructions>

block2:
<instructions>
#dbg_value(%val5, !varB, ...)

<instructions>

block3:
<instructions>
#dbg_value(%val6, !varC, ...)

<instructions>
#dbg_value(%val7, !varC, ...)

<instructions>

1

2

3

4

5

6

(a) LLVM IR

Block !varA !varB !varC

entry 1 2 3
block1 4 null null

block2 null 5 null

block3 null null 6

(b) Transfer functions matrix

Block !varA !varB !varC

entry 1 2 3
block1 4 2 3
block3 4 2 6
block2 4 5 3
block1 4 null 3
block3 4 null 6
block2 4 5 3

(c) Possible iteration order showing final
record configurations calculated in each step

Block !varA !varB !varC

entry null null null

block1 1 null 3
block2 4 null 3
block3 4 null 3

(d) Result: Initial record configurations

Figure 5.4: LLVM IR example that includes a loop. If in the third subpass, block2 is always
pushed before block3, then block3 is always handled directly after block1 resulting in the iteration
order shown in (c).

next two passes. As a side effect, the first subpass also generates intermediate nodes
for DILocalVariable nodes and their scopes. That is, because in this subpass, TPDE
encounters DILocalVariable nodes for the first time if they were not referenced before
by inlined instances of the function.

In the second subpass, TPDE extracts the transfer functions from the basic blocks. It
encodes all transfer functions in a matrix which has a row for each block and a column
for each variable. Each cell contains a pointer to the last debug record appearing in the
corresponding block that references the respective variable. If the block does not contain
a matching debug record, the cell stores a null pointer instead. Figure 5.4b shows the
transfer matrix computed in the second pass for the blocks in Figure 5.4a.

In the last subpass, TPDE performs the propagation simulation. It maintains a stack
to track the indices of the blocks whose final record configurations have to be recomputed.
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Also, it utilizes an additional matrix which stores the initial record configurations. It
has the same size and layout as the matrix storing the transfer functions. Variables that
have no known active record at the beginning of a block are encoded as cells containing
null pointers. Whenever TPDE has computed a final record configuration, it updates
the initial record configurations of all its successors and, if it detects changes, pushes the
successor’s indices onto the stack if they not yet contained.

Updates of the initial record configuration of a successor are performed as follows: If the
initial record configuration of the successor has not been computed before, the final record
configuration is copied. Otherwise, the existing initial record configuration of the successor
and the newly computed final record configuration are compared elementwise: In each
column in which there are different pointers to debug records, the updated configuration
receives a null pointer. Thus, after the first computation of an initial record configuration,
the number of contained debug records can only decrease in subsequent computations.

One such situation in which an element of an initial record configuration is replaced with
a null pointer is depicted in Figure 5.4c: After calculating the final record configuration of
block2, the pass has to revisit block1, because the final record configurations of block2

and entry differ in !varB. Thus, the second time block2 is visited, its initial record
configuration contains a null pointer for !varB, which in turn leads to revisiting of other
blocks.

The matrix containing the initial record configurations—for our example it is displayed
in Figure 5.4d—is the result of the propagation simulation pass. It is used during the last
compiler pass: When TPDE begins compiling a block, it updates the saved references to
the last debug records matching variables with the corresponding pointers found in the
matrix.

In fact, we only perform the propagation simulation to detect where we have to drop
variable location information. If LLVM IR featured information that specifies for each
block, which variable locations are ambiguous due to different locations in the predecessors,
we could avoid the propagation simulation pass. Instead, we would save the final record
configuration after each compilation of a block. When starting the compilation of any
block, we would reuse the saved configuration of an already compiled predecessor and
drop all ambiguous locations. The compilation order of blocks guarantees that for each
block except the entry block, at least one predecessor is compiled earlier.
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In the previous chapters we described the different parts we added to the TPDE compiler
back-end to enable generation of DWARF debugging information from LLVM IR. We will
evaluate the quality of our implementation by comparing its output and runtime to that
of LLVM’s native back-end.

The choice of LLVM’s back-end as a baseline is motivated by two factors: First, LLVM’s
back-end also consumes LLVM IR. Thus, we can ensure that deviations in our results are
not caused by differences in the intermediate representation. Second, the LLVM back-end
is natively supported by Clang, which allows us to use C and C++ programs as samples.

We will use a modified version of Clang that features TPDE as an alternative back-end
and compile the C and C++ programs contained in the SPECspeed 2017 Integer [16]
benchmarking suite. The measurement of variable location coverage will be performed on
the git codebase.

Although compiling optimized LLVM IR is not an application the code generation of
TPDE is designed for, we will perform our evaluation both for optimization levels -O0

and -O2. This will enable us to also measure the impact of LLVM IR features that are
primarily found in optimized code. We note that at -O2, Clang not only optimizes the
intermediate representation, but also instructs the LLVM back-end to perform optimized
code generation. We will not compile x264 and leela at -O2, because the resulting LLVM IR
utilizes features, such as floating point intrinsics that TPDE cannot generate code for.

We will start with a measurement of the variable location coverage and discuss the results.
Next, a comparison of the impact of producing debugging information on compilation
times will follow. We will finish with an examination of the DWARF section sizes in the
produced binaries.

6.1 Local Variable Coverage

Local variable location coverage is an indicator of the quality of produced debugging
information. Generally, it describes the fraction of the program for which information
about variable locations is available. There are various metrics which define the fraction
of the program differently.

LLVM includes the tool llvm-dwarfdump, which not only provides means to inspect
DWARF debugging information contained in binaries, but also prints statistics including
variable coverage when called with --statistics.1 For each variable, llvm-dwarfdump’s
metric measures the length of the covered range in bytes relative to the range of the
variable’s scope. Thus, it depends on the characteristics of the generated machine code,

1See https://llvm.org/docs/CommandGuide/llvm-dwarfdump.html, accessed 2024-08-29
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Figure 6.1: Coverage results. For each compilation, the variables are sorted independently by
their source line coverage.

which makes it unsuitable for comparing different compilers. This is especially a problem
when comparing LLVM and TPDE since the latter emits longer function prologues.

A metric that solves the issue of limited comparability between compilers was proposed
in [17]. It counts source lines at which variables are described by debugging information
and compares the result to the number of lines at which the variable has a defined value in
the program. We applied this metric both to LLVM and TPDE. Like the authors of [17],
we measured and visualized the local variable coverage for the git codebase2 using their
provided tools [18].

Figure 6.1 shows the results. While the differences in slope between -O0 and -O2 are
similar for TPDE and LLVM, the curves corresponding to TPDE show that the major
part of the variables is not covered at all. Because of the following observations, we
assume that Figure 6.1 misses variables that are actually covered by TPDE’s debugging
information and we consider some kind of incompatibility between TPDE and the tools
from [18] the reason of unreliable results.

• The program used to create Figure 6.1 emitted warnings about 25655 variable names
at -O0 and 17573 at -O2 that are present in LLVM but not in TPDE.

• We picked three sample variables which were missing from the TPDE -O0 curve
according to indermediate files we produced during generation of Figure 6.1 and
we manually inspected their locations via llvm-dwarfdump. All three variables had
corresponding DIEs in the .debug_info section featuring non-empty location lists
each of which covered the whole variable scope except for the function prologue.

• It is unlikely that TPDE can cover variables at -O2 that it cannot describe at -O0.
2Commit bd5df96, Url: https://git.kernel.org/pub/scm/git/git.git/commit/?id=bd5df96, ac-

cessed 2024-08-29
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6.1 Local Variable Coverage

block1:
<instructions>
#dbg_value(0, !varA, !DIExpression(), !loc1)
#dbg_value(%valB, !varB, !DIExpression(), !loc1)
#dbg_value(%valC1, !varC, !DIExpression(), !loc1)

<instructions>

block2:
<instructions>
#dbg_value(0, !varA, !DIExpression(), !loc2)
#dbg_value(%valB, !varB, !DIExpression(), !loc2)
#dbg_value(%valC2, !varC, !DIExpression(), !loc2)

<instructions>

block3:
<instructions>

Figure 6.2: Example in which the propagation simulation pass removes location information
despite (possibly) identical locations in the predecessors.

We expect the real coverage to be higher. While we do not know of particular reasons
why TPDE would perform significantly worse than LLVM in the absence of #dbg_value,
we anticipate a considerable loss of coverage when compiling optimized LLVM IR because
of following reasons:

Aborted Expressions Due to the limited scope of this thesis, TPDE currently cannot
handle all features of debug records. When it encounters unsupported constructs, it
resorts to aborting the expression, which leads to a gap in coverage.

Value Lifetime Whenever the lifetime of an SSA value ends, TPDE terminates the
ranges of all location list entries which depend on the value. However, values often remain
at their last locations until these are reused. TPDE does not exploit this possibility to
achieve higher coverage.

Pointer Comparison in Propagation Simulation When updating initial record config-
urations, the propagation simulation pass compares only the pointers of debug records.
It thus also drops location information if the final record configurations of predecessor
blocks contain different debug records providing the same value and expression. Two
examples of this situation are shown in Figure 6.2: For both variables !varA and !varB,
there are #dbg_value records in both predecessors, which assign the same value. While
TPDE drops the variable locations at the beginning of block3, LLVM does not.

Additionally, the LiveDebugValues pass, which we can consider LLVM’s counterpart
of TPDE’s propagation pass, is run after register allocation. Thus, it has access to the
locations of variables in terms of physical registers and memory and can therefore even
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provide variable locations for the variable !varC in Figure 6.2 if the two values %valC1

and %valC2 share the same location. [11]

6.2 Compilation Time

In the following, we analyze the slowdown introduced by our changes to TPDE and compare
it to the performance impact that debugging information has on LLVM’s back-end.

6.2.1 Setup

We recorded the time Clang spent in the back-end for each compilation unit. For that
we used Clang’s -ftime-trace [1] functionality, which measures the execution time for
various parts of the compiler. We note that this measurement introduces a small amount
of overhead, which might be insignificantly higher for LLVM’s back-end because it also
records the timings of individual passes within the back-end.

We performed compilations for both mentioned optimization levels with and without
the -g command line flag, which enables emission of debugging information. Because our
modified version of TPDE can only be used in combination with the -g flag, we used the
original TPDE version for compilations without the flag.

This resulted in eight different types of compilations per benchmark that we each
repeated nine times. For each type of compilation and benchmark we removed the smallest
and the largest compile time to compute a truncated arithmetic mean.

We obtained our results on a system with two Intel XEON E5-2690 v3 processors
and 96 gigabytes of memory running Ubuntu 24.04 LTS. We did not execute multiple
compilations in parallel and ensured that each process only allocated memory that belongs
to the processor it was executed on.

6.2.2 Results and Discussion

In our results, which are depicted in Figure 6.3, the overhead of generating debugging
information in TPDE for code at optimization level -O0 ranges from 41% to 65% depending
on the program. deepsjeng is an outlier that only features an overhead of 11%. On average,
generating debugging information at -O0 introduces an overhead of 45%.

The slowdowns at optimization level -O0 are comparable to those of LLVM’s back-
end, which are also shown in Figure 6.3. In contrast, at -O2, the slowdown relative
to compilations without debugging information is significantly higher in TPDE than in
LLVM’s back-end. On average, the time spent in the back-end nearly doubles.

We consider the following differences of LLVM IR generated by clang -O2 relative to
LLVM IR from clang -O0 to be the primary causes of increased slowdown at -O2:

• Reordered instructions: Optimization passes can reorder instructions which link
to DILocation nodes. This can lead to gaps in program counter ranges, resulting in
longer range lists and additional lookups in hash maps.
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Figure 6.3: Slowdown of the back-end when generating debugging information relative to corre-
sponding compilations without debugging information.

• Inlinined functions: At -O2, Clang performs inlining of functions. For each inlined
instance of a function, an additional inlined instance tree has to be constructed and
serialized.

• Variables promoted to SSA values: Near the beginning of the optimization
pipeline, Clang executes the mem2reg pass, after which the locations of most variables
are described by #dbg_value instead of #dbg_declare. Thus, the order of magnitude
of debug records increases from one record per variable to one record per assignment.
As a consequence, more location list entries have to be emitted. Our propagation
simulation pass is also affected even though it does not distinguish between different
kinds of debug records. While the complexity of the transfer function and the
combining function does not depend on the number of debug records, the number of
visits for each block is lower when there is only one debug record for each variable.

Reordered instructions and inlined functions also affect LLVM’s back-end. The addi-
tional slowdown is, however, not visible in Figure 6.3 because code generation in LLVM
also slows down when using -O2, whereas code generation in TPDE is slightly faster when
-O2 is used. The reason is that at -O2, due to our measuring setup, LLVM’s back-end
performs further target-specific optimizations, whereas TPDE does not. The relative
compile time at -O2 compared to -O0 is shown in Figure 6.4.

In Figure 6.5, we show the speedup of TPDE relative to LLVM only at -O0 for the
aforementioned reason. We again notice an outlier, deepsjeng, which TPDE only compiles
1.6 times faster than LLVM for builds without debugging information. We consider this
the reason for the reduced slowdown shown for deepsjeng in Figure 6.3.

On average, TPDE achieved a speedup of 7.1 relative to LLVM when debugging
information was enabled. Compared to the average speedup of 7.6 we measured when
compiling without debugging information, this indicates that not only the code generation
of TPDE, but also our additions perform considerably faster than their counterparts
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Figure 6.5: Speedup of TPDE compared to LLVM at -O0.

in LLVM. After inspecting parts of LLVM’s sources, we assume that following factors
substantially slow down LLVM’s back-end relative to TPDE:

DIE Data Structure Similar to TPDE, the objects used in LLVM to represent DIEs
prior to serialization are bump-allocated3. Unlike our intermediate nodes, which—since
the fields are hardcoded—only store values, LLVM stores attributes with their forms and
values as linked lists4, which occupy more memory. This design is more flexible than that
of TPDE, because it allows addition and removal of attributes at runtime.

Due to the small set of available abbreviations in TPDE, we were able to implement a
mapping from intermediate nodes to matching abbreviations based on a array lookup. Due
to the dynamic design of LLVM’s data structure, an array based mapping is not applicable.
LLVM therefore maintains a hash set containing unique abbreviations.5 For each DIE,
the set of attributes with forms as well as the tag and the flag specifying whether the
DIE has children together serve as the key for lookup. Hashing a list is typically a costly
operation.

Precomputation of Offsets Before LLVM serializes the DIEs, it computes their sizes to
derive the offsets for references.6 Thus, LLVM iterates at least twice through its tree of
DIEs. In contrast, TPDE directly serializes DIEs in one pass and later patches forward
references.

Machine IR Passes After instruction selection, LLVM executes further passes on Machine
IR. Similar to debug records in LLVM IR, Machine IR features machine pseudo-instructions,
which also appear interleaved with instructions. We can divide the back-end passes into

3Source: llvm/include/llvm/CodeGen/DIE.h:849
4Source: llvm/include/llvm/CodeGen/DIE.h:674
5Source: llvm/include/llvm/CodeGen/DIE.h:140
6Source: llvm/include/llvm/CodeGen/DIE.h:899
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three categories: There are passes which are dedicated to debugging information, passes
which read or modify debugging machine pseudo-instructions as a side effect and passes
which do not interact with debugging information. Even the passes from the last category
can be slowed down by debugging information since these passes have to skip machine
pseudo-instructions when iterating over Machine IR. [11]

6.3 Section Sizes
To evaluate the space-efficiency of our chosen encodings, we compiled the benchmarks and
extracted the section sizes from the fully-linked binaries. This measuring method has an
impact on the results in the following ways: First, it only considers the DWARF sections
themselves without their corresponding relocation sections, which are only present in
relocatable object files. Second, the linker removes duplicate items in .debug_str and
.debug_line_str.

Our results depicted in Figure 6.6 show only minor discrepancies in the .debug_str

section sizes. Because of the deduplication performed by the linker, the smaller sections
in TPDE’s binaries indicate that named DIEs generated by LLVM were not emitted
by TPDE. This meets our expectations as we do not translate all information found in
LLVM IR to DWARF as outlined in Section 4.4.

In addition, also the sizes of the .debug_line sections are comparable. Nevertheless,
TPDE produces DWARF debugging information at -O0 that is on average 22% larger
than that of LLVM. While this is primarily a result of the increased .debug_info section
size, other differences largely balance each other out.

For example, the TPDE binaries do not feature the .debug_str_offsets and
.debug_addr sections, which provide mechanisms that allow reusing relocated section
offsets. Furthermore, there is an upper bound in TPDE for the maximum size of the
.debug_abbrev section in object files, which results from the limited number of possible
abbreviations. Because the linker concatenates the abbreviation tables of all object files,
the size of .debug_abbrev in the linked binary mainly depends on the number of compila-
tion units. In all our results, .debug_abbrev sections generated by TPDE are smaller than
those from LLVM. Another visible difference is that TPDE also emits .debug_loclists,
while LLVM does not. That is because of our choice, to encode locations for all variables
in location lists even if the variables have a fixed position on the stack. Analogously,
the .debug_rnglists sections generated by TPDE are also larger than those by LLVM
because we chose to represent all ranges in range lists, no matter whether they are
contiguous or not.

The increase in .debug_info section size results from our design prioritizing a low
number of encoding variants for each payload type over space-efficient encoding. In
particular, we preferred to emit an empty value where feasible instead of omitting an
attribute. An example for this are DW_AT_name attributes providing empty strings whenever
a name is not provided in LLVM IR. Also, we avoided LEB128-encoding where possible
and do not let TPDE choose the sizes of integer encodings based on the values.
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Figure 6.6: Encoded size of DWARF information produced by TPDE relative to LLVM broken
down to the different sections. The total size of debugging information produced by LLVM is
normalized to 1 for each benchmark.
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7 Summary

The productivity of programmers can be increased by shortening compilation times. TPDE,
an alternative LLVM compiler back-end, achieves this by reducing the number of passes
from about 70 in typical compilers to 3. However, to be a viable tool for development,
TPDE requires support for the emission of debugging information, which it was lacking
prior to our work.

In this thesis, we implemented an emitter for DWARF version 5 debugging information
that we integrated into TPDE. Our design focuses on a low impact on compilation
time. Thus, we reused existing compiler passes for our purposes where possible. This
in particular applies to the last pass, which in addition to instruction selection, register
allocation, machine code emission and generation of stack unwinding information now
also performs the synthesis of the line table and tracks further per-instruction information
such scope ranges and variable locations. Although TPDE is primarily designed for the
compilation of unoptimized code, our emitter can also handle features such as inlined
functions and register-allocated variables that are more likely to be found in optimized
LLVM IR. We evaluated our implementation by measuring the slowdown introduced by
our emitter and we compared the size of the generated debugging information to that of
LLVM.

Our additions to TPDE slow it down by 41%–65% when compiling unoptimized
LLVM IR, which is a marginally higher slowdown than that which LLVM incurs when
compiling with debugging information. At optimization level -O0, TPDE produces debug-
ging information which is 22% larger than its LLVM counterpart. We also measured the
variable coverage for both -O0 and -O2, but the results showed inconsistencies.

Thus, we conclude that a reduced number of back-end passes not only speeds up code
generation but also emission of debugging information. Our modified version of TPDE
is largely usable, however further work is needed to evaluate the quality of its output
quantitatively.
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Acronyms

ABI Application Binary Interface.

DIE Debugging Information Entry.

LEB128 Little-Endian Base 128.

SSA Static Single Assignment.
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