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Abstract—For practical robots, obtaining precise dy-
namic models and states is a challenge, which presents
difficulty in achieving safety-critical control. When faced
with an uncertain dynamic model of the robotic system and
the absence of measurements for joint velocity, this paper
proposes a method by combining extended state observer
(ESO) and control barrier function (CBF) for safety-critical
control. Firstly, an ESO is used to estimate the model
and states in real time. Then, according to the estimation
error, the ESO-based CBF (ESO-CBF) is proposed, and a
quadratic programming (QP) subject to ESO-CBF is con-
structed to calculate the control input for robotic systems.
In addition, input delay is also considered for robotic sys-
tems with uncertain models. In cases involving input delay,
a predictive ESO is designed to estimate the model, and
the corresponding estimation error boundary is derived.
Based on the estimation error, ESO-CBF is constructed to
ensure the safety constraint. Finally, the effectiveness of
the proposed method is verified by the obstacle avoidance
task of Franka Emika Panda manipulator.

Index Terms—Robotic systems, uncertainty, input delay,
extended states observer, control barrier function.

I. INTRODUCTION

THE use of robotic systems, including industrial robots
and UAVs, has become widespread in both production

and daily life [1]. One crucial aspect of these applications is
ensuring safety, especially in scenarios involving human-robot
interaction or navigating within multi-robot systems to prevent
collisions. Therefore, the design of a dependable safety-critical
controller has paramount significance.

In the field of control systems, safety is typically approached
by formulating it as a problem of set forward invariance, which
requires the system’s states to remain within a safe set at all
times. A solution to this problem is proposed in [2] through the
theory of CBF, which has been extensively studied for dynamic
systems with accurate models and measurable states [3]–
[6]. However, obtaining accurate dynamic models for robotic
systems can be difficult, and joint velocity sensors may be
absent in many industrial robotic systems, with added velocity
sensors being prone to errors due to noise [7]. Additionally,
uncertain factors like communication delays can result in
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delays in control input execution [8], which can negatively
impact both control performance and safety guarantees [9]. To
address these challenges, this paper aims to achieve safety-
critical control of robotic systems in the presence of model
uncertainty, unmeasured joint velocity, and input delay.

For systems with uncertain models, various methods have
been proposed to guarantee safety using CBF. In [10], robust
CBF provides robustness against uncertainty and is suitable for
cases where the model uncertainty is independent of the con-
trol input, and the boundaries of uncertainty are known. Adap-
tive CBF and Robust adaptive CBF are proposed in [11] and
[12] for safety-critical control of systems with unknown model
parameters. In addition to these model-based approaches, data-
driven methods such as Gaussian process [13] and neural
network [14] have been used to learn the uncertainty in
systems. The CBF conditions are then constructed based on
the learned model to ensure safety. However, these methods
typically require access to perfect state information, which is
often not available in practical systems. In most instances, the
true system state is unknown and must be reconstructed using
measurements from sensors, which may introduce noise. The
utilization of imperfect state information can potentially lead
to safety violations.

Recently, there has been increased attention given to the im-
portant problem of ensuring safety in systems with imperfect
state information. In [15], measuring robust CBF is proposed
for guaranteeing safety in output-feedback, in the context of
vision-based control. The authors make assumptions about
noiseless sensors and the availability of an imperfect inverse of
the measurement map. Consequently, from a single measure-
ment, a ball enclosing the true state can be determined. How-
ever, the applicability of this method is constrained by the chal-
lenge of obtaining the Lipschitz constant of the system model,
which is a prerequisite for its implementation. Furthermore, it
is common practice to design full-state feedback controllers
and subsequently replace the state with an estimate provided
by an observer in system designs. Consequently, observers-
based CBF emerges as an alternative to ensuring safety. In
[16], a safety-critical controller is proposed for stochastic
systems, offering a probabilistic assurance of safety. The
authors consider linear measurement maps, additive Gaussian
disturbances, and specifically employ the extended Kalman
filter as the observer. This work is further extended in [17] to
encompass a broader class of control-affine systems, enabling
probabilistic safety guarantees over a finite forward interval.
Nevertheless, establishing safety deterministically remains a



challenging task. [18] proposes two approaches to synthesize
observer-controller interconnections to deterministically guar-
antee safety. The first approach utilizes Input-to-State Stable
observers, and the second uses Bounded Error observers. By
using the boundary of observation error and the Lipschitz
constant of the safety constraint, two observer-based CBF
methods are constructed. However, obtaining the Lipschitz
constant of the safety constraint can pose difficulties in certain
cases, limiting the practicality of this method. In [19], the
authors introduce a robust CBF by altering the conditions
related to the Lipschitz constant of a CBF in [18] to be
based on the boundary of the safety constraint’s derivative.
However, determining this boundary becomes challenging,
particularly when dealing with complex constrained functions
and high-dimensional states in robotic systems. In this paper,
an observer-based CBF is proposed to deterministically guar-
antee safety in robotic systems with uncertainty and partially
available state information. This method relies solely on the
estimation error, providing a means to ensure safety in robotic
systems.

Moreover, recent literature has witnessed a growing empha-
sis on ensuring the safety of input delay systems. Specifically,
[20] and [21] have proposed safety-critical control methods for
linear and nonlinear continuous-time systems with input delay,
while [22] has studied discrete-time control systems with
input delays. However, these approaches rely on predicting
future states, thereby introducing the potential for errors and
violations of safety constraints when the system model is
uncertain. To address this limitation, [23] introduced a robust
method against prediction errors. Nevertheless, this approach
requires knowledge of the boundary of prediction error and
the Lipschitz constant of the system model, which can prove
challenging to acquire in the context of robotic systems
characterized by uncertain models. To overcome this issue,
a predictive observer is presented in this paper to account for
both model uncertainty and input delay. Furthermore, CBF
is improved based on the estimation error to ensure safety.
By incorporating the predictive observer and considering the
estimation error, this method provides a more reliable approach
to guarantee safety in robotic systems with uncertain models
and input delays.

Given the popularity of the extended state observer (ESO)
in designing control systems for uncertain systems, as it
allows for real-time estimation of states, external disturbances,
and nonlinear uncertain dynamics [24], this paper focuses
on an ESO-based estimation method for unknown dynamic
models and joint velocities of robotic systems. A safety-critical
controller is then developed based on this approach. The main
contributions of this paper are summarized as follows:

1) The paper presents the concept of ESO-CBF, a safety-
critical control approach specifically designed for robotic
systems with model uncertainty and unmeasured states.
This approach relies solely on the estimation error of
ESO, making it a more reliable solution for ensuring
safety in such systems.

2) A predictive ESO (PESO) is designed to estimate the
model uncertainty for robotic systems with input delay.
Based on the boundary of estimation error, ESO-CBF is

constructed to achieve safety-critical control.
3) The effectiveness of this approach is verified through the

obstacle avoidance experiment of a Franka Emika Panda
manipulator.

II. PRELIMINARIES

A. Control barrier function

Consider an affine control system

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, the drift term f : Rn → Rn and the input gain
g : Rn → Rn×p are locally Lipschitz continuous functions.
For any initial state x(t0) ∈ Rn, x(t) is the unique solution to
system (1) on a maximum time interval I(x0) = [t0, Tmax).
u ∈ U ⊂ Rp is the control input. U denotes the input
constraint set and satisfies

U = {u ∈ Rp : umin ≤ u ≤ umax}. (2)

Given a closed set C defined by a continuous differentiable
function h(x) : Rn → R as

C = {x ∈ Rn : h(x) ≥ 0}. (3)

It is assumed that C is nonempty and has no isolated point. If
for every x0 ∈ C, the state x(t) always stays in the set C for
t ∈ I(x0), the set C is forward invariant [25]. Then the safety
of system (1) is guaranteed and the set C is called safe set.

To ensure set invariance, the control barrier function (CBF)
is derived. Firstly, some important definitions are introduced.

Definition 1: [26] A continuous function α : [0, a) →
[0,∞) , a > 0, is a class K function if it is strictly increasing
and α(0) = 0.

Definition 2: [26] For a continuous differentiable function
h(x) : Rn → R with respect to system (1), the relative degree
is the number of times it needs to be differentiated along with
its dynamics until the control input explicitly shows in the
corresponding derivative.

Suppose that the relative degree of function h(x) is m, and
the inequality h(x) ≥ 0 is used as a constraint with the relative
degree of m. If m = 1, the definition of CBF is given.

Definition 3: Given a set C as in (3), h(x) is a control
barrier function (CBF) for system (1) if there exists a class K
function α(·) such that

sup
u∈U

[Lfh(x) + Lgh(x)u+ α(h(x))] ≥ 0,∀x ∈ C. (4)

If h(x) is a CBF, the admission set of control input is
defined as Kcbf (x) = {u ∈ U : Lfh(x) + Lgh(x)u +
α(h(x)) ≥ 0}. The following lemma guarantees the set C
is forward invariant.

Lemma 1: [4] Given the set C defined by (3) for a
continuous differentiable function h(x), if h(x) is a CBF, then
Lipschitz continuous control input u(t) ∈ Kcbf (x) renders the
set C forward invariant.



B. High order control barrier function
If the relative degree of h(x) satisfies m > 1, the CBF can

not be used to guarantee the forward invariance of set since
the control input u is no longer exhibited in (4). Therefore, the
high order control barrier function (HOCBF) is proposed. A
sequence of functions ψi(x) : Rn → R, i ∈ {0, ...,m} is first
defined as ψ0(x) = h(x), ψi(x) = ψ̇i−1(x)+αi(ψi−1(x)) for
i ∈ {1, ...,m}, where αi(·) denotes (m− i)th order differen-
tiable class K function. A sequence of sets Ci, i ∈ {1, ...,m}
is then defined in the form of Ci = {x ∈ Rn : ψi−1(x) ≥
0}, i ∈ {1, ...,m}. Given the functions ψi(x) : Rn → R,
i ∈ {0, ...,m}, the definition of high order control barrier
function (HOCBF) is as below.

Definition 4: [27] A function h(x) : Rn → R is a high
order control barrier function (HOCBF) of relative degree m
for system (1) if there exist (m−i)th order differentiable class
K functions αi, i ∈ {1, ...,m−1}, and a class K function αm
such that

sup
u∈U

[ψ̇m−1(x) + αm(ψm−1(x))] ≥ 0, (5)

for all x ∈ C1∩· · ·∩Cm. The equation (5) equals to ψm(x) ≥
0.

Similar to Lemma 1, the following result also guarantees
the forward invariance of set C.

Lemma 2: [27] The set C1 ∩ · · · ∩ Cm is forward invariant
for system (1) if x(0) ∈ C1∩· · ·∩Cm and h(x) is a HOCBF.

C. Optimal control with CBF
For system (1) with states constraint, the control input

is usually solved point-wise, where the time interval [0, T ]
is divided into a finite number of intervals [tk, tk+1), k =
0, 1, 2...n. Besides, the constraint is linear in control and
the states are fixed at each interval, so that a quadratic
programming (QP) as follows is constructed to get the control
input at each interval.

u∗ = arg min
u
‖u− unom‖2

s.t. Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0,

umin ≤ u ≤ umax,
(6)

where unom is a nominal feedback controller. When unom /∈
Kcbf (x), the CBF constraint will minimally modify the nom-
inal controller to ensure safety. The whole process of solving
the optimal control problem with CBF constraint to guarantee
the safety is shown in Fig.1.

Remark 1: Noted that this method works conditioned on the
fact that the QP (6) at every time interval is feasible. Some
methods can be used to guarantee the feasibility of QP (6).
[28] introduces adaptive CBF to resolve the conflict between
CBF constraint and input constraint by introducing penalty
functions in the definition of CBF and defining auxiliary
dynamics for these penalty functions. [29] provides a method
to find sufficient conditions to guarantee the feasibility of QP
subject to CBF constraint and input constraint. Based on the
above methods, the feasibility of QP (6) can be guaranteed.
Moreover, they are also easily implemented in QP (6). In this
case, given that the feasibility of QP is not the focus of this
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Fig. 1. Flowchart for solving a CBF constrained optimal control problem.

paper, it will not be analyzed in depth to present proposed
control framework as concisely as possible.

III. PROBLEM STATEMENT

In practical robot applications, meeting the necessary con-
ditions for ensuring the safety guarantee provided by the CBF-
QP (6) control input u∗ can be challenging. The challenges
involve: 1) Perfect state information: It can be difficult to
obtain precise and whole states in practical scenarios. While
joint angle measurements are feasible, velocity sensors may be
lacking in some commercial robots, leading to inaccuracies in
states. 2) Precise model of the system: The dynamic model
of the robotic system can be subject to uncertainty due to
unknown structural parameters or the presence of disturbances.
This uncertainty further complicates the safety assurance. 3)
Implementing the control input perfectly: Actuator limitations
always exists in practice. Moreover, when the controller is
interconnected with the robotic system via communication net-
works, communication delays may arise, affecting the overall
system performance.

To address these challenges and ensure the safety of the
robotic system, this section introduces some assumptions and
mathematical descriptions of these problems.

For a rigid n-link robotic system, the true dynamic model
is expressed as

M(q)q̈ + C(q, q̇)q̇ +G(q) + fdis = u, (7)

where q, q̇, q̈ ∈ Rn denote the angle, velocity and acceleration
of joint respectively. M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n and
G(q) ∈ Rn are inertia matrix, Coriolis-centrifugal matrix and
gravitational term respectively. fdis denotes the bounded and
continuous differentiable external disturbances. The system (7)
possesses the following properties [30].

Property 1: The matrix M(q) is uniformly positive definite
and there exist two positive constants µ1, µ2 such that 0 <
µ1In ≤M(q) ≤ µ2In, where In is an identity matrix.

Property 2: ∃gb, cb ∈ R+ such that ‖G(q)‖ ≤ gb and
‖C(q, q̇)‖ ≤ cb‖q̇‖.

Due to the existence of external disturbances, the dynamic
model is not precisely known. Define x = [qT , q̇T ]T , when q̇
is unmeasured, (7) is expressed as

ẋ =

[
In
0n

]
x+

[
0n

M(q)−1

]
u+

[
0

∆d

]
, (8)



where 0n is a zero matrix, and ∆d = M−1(q)(−C(q, q̇)q̇ −
G(q)−fdis) is the uncertainty of model, 0 is a n dimensional
zero vector.

When input delay and uncertainty are presented in robotic
systems, (7) can be expressed as

ẋ =

[
In
0n

]
x+

[
0n

M(q)−1

]
u(t− lp) +

[
0

∆d

]
, (9)

where lp > 0 is the delay time. When t ≤ lp, u(t− lp) = 0.
Remark 2: For the above two systems (8) and (9), the term

M−1(q)G(q) is known, but it is included in ∆d. The reason
is that q needs to be predicted in the subsequent design of
the ESO for system (9) with input delay, and errors will
be generated in calculating M−1(q) and G(q) through the
predicted value of q. In order to avoid calculating the boundary
of errors and ensure the consistency of the uncertainty terms
in the two systems, this term is put in the uncertainty term.

For the uncertainty term, it satisfies the following assump-
tion.

Assumption 1: ∆d is bounded, and it has a bounded first
derivative d(t) = d

dt∆d, i.e. ∃δ ≥ 0, δd ≥ 0, |∆d| ≤ δ, |d(t)| ≤
δd, where δ is known and δd is unknown.

Remark 3: This assumption is a basic premise for ESO-
based control and has been applied in [31]–[33]. The bound-
edness assumption concerning ∆̇d implies that there exists a
limitation on the rate of change of the total dynamics’ effects,
and the change is not instantaneous. When the magnitude
of ∆̇d is quite large, it requires the observer bandwidth to
be sufficiently large for an accurate estimate of ∆d. In the
absence of this boundedness assumption, the rate of change
in ∆d would be unlimited, which would make ∆d difficult
to estimate. Fortunately, for robotic systems, this assumption
is reasonable since C(q, q̇) and G(q) are continuous differen-
tiable functions. However, δd as the boundary of ∆̇d is difficult
to get. So, δd is assumed to be unknown in Assumption 1.

Based on the above systems and assumptions, the problems
that will be studied in this paper is stated as follows.

Problem 1: For the robot system (8) with dynamic un-
certainty and unmeasured velocity, design a controller that
renders the safety set C forward invariant.

Problem 2: For the robot system (9) with dynamic uncer-
tainty and input delay, design a controller that renders the
safety set C forward invariant.

IV. CONTROLLER DESIGN FOR UNCERTAIN ROBOTIC
SYSTEMS

This section presents a solution for Problem 1. A linear
ESO is designed to estimate the dynamic model. According
to estimation error, ESO-based CBF (ESO-CBF) is proposed
and applied to the safety-critical control for robotic systems.

A. ESO design for robotic systems
In accordance with the essence of CBF, the fulfillment of

constraint conditions is heavily reliant upon the states and
model of the system. However, in the context of a robotic
system featuring an uncertain model and unmeasured state q̇,
there exists a potential challenge in utilizing CBF to ensure

the satisfaction of safety constraints. To address this issue, an
ESO is designed to estimate both the uncertain component of
the model and q̇.

Define z1 = q, z2 = q̇, z3 = ∆d, the model (8) can be
transformed into extended state equation as follow.

ż1 = z2

ż2 = M(q)−1u+ z3

ż3 = d(t)

(10)

For system (10), an ESO is constructed as
z̃1 = z1 − ẑ1

˙̂z1 = ẑ2 + β1ωz̃1

˙̂z2 = M(z1)−1u+ ẑ3 + β2ω
2z̃1

˙̂z3 = β3ω
3z̃1

(11)

where ẑi represents the estimated value of zi, i = 1, 2, 3,
ω > 0 is observer gain, βi > 0(i = 1, 2, 3) satisfies following
Hurwitz matrix.

β =

 −β1 ∗ In In 0n
−β2 ∗ In 0n In
−β3 ∗ In 0n 0n

 (12)

For ESO (11), the estimation error is defined as z̃ =
[z̃T1 , z̃

T
2 , z̃

T
3 ]T by

˙̃z1 = ż1 − ˙̂z1 = z̃2 − β1ωz̃1

˙̃z2 = ż2 − ˙̂z2 = z̃3 − β2ω
2z̃1

˙̃z3 = ż3 − ˙̂z3 = d(t)− β3ω
3z̃1

(13)

Define εi = z̃i
ωi−1 ∈ Rn, i = 1, 2, 3, the estimation

error can be rewritten as ε̇ = ωβε + ηd(t)
ω2 , where η =

[0n, 0n, In]T . Solving the estimation error as ε = eωβtε(0) +∫ t
0
eωβ(t−ϑ) ηd(t)

ω2 dϑ.
According to [34], the estimation error is convergent and

can be bounded as below for k = 1, . . . , 3n.

|εk| ≤ φ(k, t) = |[eωβtε(0)]k|+
δ

ω2
|[eωβtη]k|. (14)

Since β is a Hurwitz matrix, there exists a finite time
Td > 0 such that estimation error converge to |εk| ≤

1
ω3n+1

∑3n
k=1 |εk(0)|+ δ

ω3n+3 .
Remark 4: For estimating the uncertainty and unavailable

states, various forms of ESO have been previously proposed
such as classic nonlinear ESO, adaptive ESO [24]. Compared
to these ESO methods, linear ESO is one of the most con-
venient methods for implementation, and it requires fewer
parameters to design. In addition, the real-time estimation error
is required for the following design of ESO-CBF, and the
estimation error of linear ESO is easier to derive than other
ESO methods from the above procedure. Thus, the simpler
linear ESO is used to estimate states and uncertainty.

Remark 5: Evidently, the boundary of observation error
exhibits an inverse relationship with ω. Excessive amplification
can diminish the estimation error, but at the expense of
expanding the observation bandwidth and introducing high-
frequency noise. Conversely, a minute gain amplification can
increase the estimation error. Therefore, the selection of ω
should balance the noise resistance ability and estimation error
according to the actual situation.



B. ESO-based CBF
Although the estimated states x̂ = [ẑT1 , ẑ

T
2 ]T are acquired

through the utilization of ESO (11), the estimation error can
potentially result in a breach of safety constraints. Therefore,
the ensuing discussion will focus on elucidating the method
employed to ensure the forward invariance of the safe set C
by leveraging the estimated states and model.

In accordance with (14), it is apparent that the estimation
error is confined within the limits of a non-increasing function,
which is related to δ. Consequently, the estimation error can be
represented as ‖x− x̂‖ ≤ γ(δ, t). Based on this condition, the
ESO-based CBF is formulated to ensure the forward invariance
of the safe set C.

Drawing inspiration from Lemma 4 presented in [16], the
ESO-based CBF is defined as follows.

Definition 5: A continuous differentiable function h(x) is
ESO-based CBF for uncertain system (8) with an ESO (11)
of estimation bound γ(δ, t), if there exists a class K function
α(·) such that

Lf̄ ĥ(x̂) + Lḡĥ(x̂)u+ α(ĥ(x̂)) ≥ 0, (15)

where ĥ(x̂) = h(x̂)− h̄γ(t), h̄γ(t) = sup{h(x) : ‖x− x0‖ ≤
γ(δ, t), x0 ∈ h−1({0})}, Lf̄ ĥ(x̂) and Lḡĥ(x̂) denote the
Lie derivations of ĥ(x̂) along f̄ and ḡ as shown in below,
respectively.

f̄ =

[
ẑ2 + β1ωz̃1

ẑ3 + β2ω
2z̃1

]
, ḡ =

[
0n

M(z1)−1

]
The subsequent theorem illustrates the utilization of ESO-

CBF to ensure the safety of a system with uncertain model.
Theorem 1: Given a continuous differentiable function h(x)

and a corresponding set C defined as (3), if h(x) is an ESO-
CBF, and the initial state x̂0 satisfies ĥ(x̂0) > 0, then the
following Lipschitz continuous control input renders set C
forward invariant.

u ∈ {u ∈ U : Lf̄ ĥ(x̂) + Lḡĥ(x̂)u+ α(ĥ(x̂)) ≥ 0} (16)

Proof: As h(x) is an ESO-CBF, it follows that (15) is
satisfied. According to the definition of CBF, when (15) holds,
the function ĥ(x̂) is a CBF. In addition, the initial state x̂0

satisfies ĥ(x̂0) > 0. Thus, the set Cγ = {x̂ : ĥ(x̂) ≥ 0} is
rendered forward invariant based on Lemma 1, i.e., h(x̂) ≥
h̄γ(t) holds for all t > 0. The forward invariance of safe set C
can be proven through contradiction. Suppose that x /∈ C for
some t. Given the continuity of x, there must exist a moment
tτ ∈ [0, t] where h(xτ ) = 0 holds, and at the subsequent
moment t+τ ∈ [0, t], h(x+

τ ) < 0 holds. The state xτ , x+
τ satisfy

‖xτ − x̂τ‖ ≤ γ(δ, tτ ) and ‖x+
τ − x̂+

τ ‖ ≤ γ(δ, t+τ ), respectively.
Since xτ ∈ h−1(0), the following inequality arises.

h(x̂τ ) ≤ sup {h(x) : ‖x− xτ‖ ≤ γ(δ, tτ )} (17)

≤ sup
{
h(x) : ‖x− x0‖ ≤ γ(δ, tτ ) for some x0 ∈ h−1(0)

}
For x+

τ , the following inequality exists.1

h(x̂+
τ ) ≤ sup

{
h(x) : ‖x− x+

τ ‖ ≤ γ(δ, t+τ )
}

(18)

< sup
{
h(x) : ‖x− x0‖ ≤ γ(δ, t+τ ) for some x0 ∈ h−1(0)

}
1An example of a two dimensional x = [x1, x2]T is shown in Fig. 2.

Based on above inequalities, if x /∈ C, the case h(x̂) < h̄γ(t)
exists, which contradicts the condition h(x̂) ≥ h̄γ(tτ ) for all
t > 0. Therefore, x ∈ C for all t. The forward invariance of
safe set C is proved.
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When the relative degree of ĥ(x̂) is m > 1, the ESO-CBF
is extended to ESO-HOCBF. First, a sequence of functions
ψ̂i(x̂)(i = 0, 1, ...,m) are defined as ψ̂0(x̂) = ĥ(x̂) and
ψ̂i(x̂) =

˙̂
ψi−1(x̂) + αi(ψ̂i−1(x̂)), i ∈ {1, ...,m}, where αi(·)

denotes (m − i)th order differentiable class K function. The
corresponding sets of above functions are

Ĉi = {x̂ ∈ Rn : ψ̂i−1(x̂) ≥ 0}, i ∈ {1, ...,m}. (19)

Based on the above functions and sets, ESO-HOCBF is defined
as follow

Definition 6: For the system (8) with relative degree m
and the corresponding estimate model (11), h(x) is an ESO-
HOCBF for system (8), if there exist (m − i)th order differ-
entiable class K functions αi, i ∈ {1, ...,m − 1}, and a class
K function αm such that ψ̂m(x̂) ≥ 0.

According to Theorem 1 and Lemma 2, if initial states x̂0 ∈
Ĉ1 ∩ · · · ∩ Ĉm and h(x) is an ESO-HOCBF, the Lipschitz
continuous control input u ∈ Ks(x̂) = {u ∈ U : ψ̂m(x̂) ≥ 0}
renders the set C forward invariant.

C. ESO-CBF-based control police for robotic systems
To address Problem 1, the proposed ESO-CBF is applied

to the robotic system with uncertain model for safety-critical
control. Taking into account the dynamics model of the robot
(8) and the designed ESO (11), when the safety constraint is
defined as h(q) ≥ 0, it becomes feasible to construct a QP to
realize safety-critical control.

Firstly, a new safety constraint is constructed based on the
estimation error of ESO. The estimation error is expressed as

‖x− x̂‖ ≤

√√√√ n∑
k=1

φ(k, t)2 + ω2

2n∑
k=n+1

φ(k, t)2. (20)

Let γ(δ, t) =
√∑n

k=1 φ(k, t)2 + ω2
∑2n
k=n+1 φ(k, t)2, the

new safety constraint is constructed as ĥ(ẑ1) = h(ẑ1)− h̄γ .



Remark 6: γ(δ, t) is related to ε(0) = [z̃1(0), z̃2(0)/ω,
z̃3(0)/ω2]T . For robotic system, the initial value of q̇ usually
is 0, and the uncertain part is bounded by δ. So z̃1(0) =
q(0)−ẑ1(0), z̃2(0) = −ẑ2(0) and z̃3(0) ≤ [δ+ẑ3(0)1, . . . , δ+
ẑ3(0)n]T .

It is evident that the relative degree of ĥ(ẑ1) is 2, indicating
that ESO-HOCBF is employed to ensure the satisfaction of
the constraint h(q) ≥ 0. To achieve this, two functions are
defined as ψ̂1 =

˙̂
h(ẑ1) +k1ĥ(ẑ1) and ψ̂2 =

˙̂
ψ1 +k2ψ̂1, where

k1 > 0 and k2 > 0 are parameters of the class K functions.
Subsequently, the following QP subject to ESO-HOCBF is
utilized to accomplish safety-critical control.

u∗ = arg min
u
‖u− unom‖2

s.t.L2
f̄ ĥ(ẑ1) + LḡLf̄ ĥ(ẑ1)u+ (k1 + k2)Lf̄ ĥ(ẑ1)

+ k1k2ĥ(ẑ1) ≥ 0,

umin ≤ u ≤ umax,

(21)

Remark 7: The design of the nominal controller remains
unaffected by safety constraints, emphasizing its primary
objective of achieving precise tracking of the predefined
trajectory. Numerous research studies have been conducted
to address the tracking performance of robotic systems with
uncertain dynamic models. Among these approaches, the PID
controller stands out as a convenient and widely used method
for implementation. Therefore, in this paper, a PID controller
is employed as the nominal controller.
The control input derived from solving the aforementioned
QP ensures the fulfillment of the safety constraint h(q) ≥ 0
for all t ≥ 0. Consequently, Problem 1, has been effectively
addressed and resolved.

V. CONTROLLER DESIGN FOR UNCERTAIN ROBOTIC
SYSTEMS WITH INPUT DELAY

In this section, a solution is proposed for Problem 2. Firstly,
ESO with a predictor is designed and the estimation error
boundary is derived. Then, based on the estimation error, ESO-
CBF is used to construct QP to obtain the control input and
realize the safety-critical control.

A. Predictive ESO design for robotic systems
For the robotic system (9) with input delay, if the ESO

(11) is still used to estimate the model, there will exist a time
mismatch in the real states and estimated states. Specifically,
when solving for the control input at time t, the estimated
state ẑ1(t) from the ESO (11) should correspond to the real
state q(t + lp). However, the value of q(t + lp) cannot be
directly obtained at time t. To address this issue, a predictor
is employed to estimate q(t+lp), and the predicted value zp(t)
is obtained as zp(t) = q(t) +

∫ t
t−lp

˙̂z1(ϑ)dϑ.
Following the prediction of the system states, an ESO based

on zp(t) is designed as follows
z̄1 = zp(t)− ẑ1

˙̂z1 = ẑ2 + β1ωz̄1

˙̂z2 = M(zp)
−1u+ ẑ3 + β2ω

2z̄1

˙̂z3 = β3ω
3z̄1

(22)

The corresponding estimation error is shown as follows.
˙̃z1 = z̃2 − β1ω(z̃1 − ξ(t))
˙̃z2 = (M(z1)−1 −M(zp)

−1)u+ z̃3 − β2ω
2(z̃1 − ξ(t))

˙̃z3 = d(t)− β3ω
3(z̃1 − ξ(t))

(23)
where ξ(t) represents the error between the predicted value
zp(t) and the real state q(t + lp). It is expressed as ξ(t) =
q(t+ lp)− zp(t) = z̃1(t)− z̃1(t− lp).

The following theorem is presented to demonstrate the
convergence of the PESO and establish the boundary of the
estimation error:

Theorem 2: There exists observer gain ω > 0 such that the
estimation error shown by (23) converges and the boundary
of estimation error satisfies following for all t ≥ Td

‖z̃‖ ≤ 2λmax(Q)((δd + M̄δω)/ω2 + ωβm‖ε(0)‖)
ω(1− λmax(Q)βm)

√
λmax(Q)

λmin(Q)
,

where βm = max(β1, β2, β3), Q is a positive matrix and
satisfies βQ + QβT = −I , λmax(Q)βm < 1, M̄δ = ( 1

µ1
−

1
µ2

) max(‖umax‖, ‖umin‖).
Proof: Define εi = z̃i

ωi−1 , i = 1, 2, 3, Mδ = (M(z1)−1 −
M(zp)

−1), (23) can be rewritten as

ε̇ = ωβε+ ωβ̄ξ + ηd(t)/ω2 + η2Mδu/ω, (24)

where β̄ = [β1∗In, β2∗In, β3∗In]T , η2 = [0n, In, 0n]T Define
a positive definite function V (ε) = εTQε, which satisfies
λmin(Q)‖ε‖2 ≤ V (ε) ≤ λmax(Q)‖ε‖2. The derivative of
V (ε) is

V̇ (ε) = −ωεT ε+ 2ωεTQβ̄ξ +
2εTQ(ηd(t) + η2Mδω)

ω2
.

(25)

Then according to ‖d(t)‖ ≤ δd and Property 1,

‖εTQβ̄ξ‖ ≤ λmax(Q)βm‖ε‖(‖ε‖+ ‖ε(t− lp)‖),
‖εTQηd(t)‖ ≤ ‖ε‖‖Q‖‖η‖ ≤ λmax(Q)‖ε‖δd,

‖Mδu‖ ≤ M̄δ = (
1

µ1
− 1

µ2
) max(‖umax‖, ‖umin‖).

Substituting the above two inequalities into (25)

V̇ (ε) ≤W (‖ε‖)
= 2λmax(Q)‖ε‖

[
ωβm‖ε(t− lp)‖

+ (δd + M̄δω)/ω2
]
− (ω − ωλmax(Q)βm)‖ε‖2,

When the following inequalities, W (‖ε‖) < 0.

λmax(Q)βm < 1,

‖ε‖ ≥ ρ =
2λmax(Q)

[
(δd + M̄δω)/ω2 + ωβm‖ε(t− lp)‖

]
ω − ωλmax(Q)βm

According to Lyapunov-like theorem for uniform boundedness
and ultimate boundedness (see [26], Theorem 4.18), there
exists a finite time Td such that ‖z̃‖ decreasing before time
to Td. When t ≥ Td, ‖z̃‖ ≤ ‖ε‖ ≤ κ−1

1 (κ2(ρ)) ≤
2λmax(Q)((δd+M̄δω)/ω2+ωβm‖ε0‖)

ω(1−λmax(Q)βm)

√
λmax(Q)
λmin(Q) .



B. Controller synthesis for robotic systems

When input-delayed robotic system (9) has constraint
h(q) ≥ 0, a QP subject to ESO-CBF is constructed for safety-
critical control.

The estimation error of states can be obtained by solving
(24)

ε = eωβtε(0) +

∫ t

0

eωβ(t−ϑ)(
ηd(t)

ω2
+
η2Mδ

ω
+ ωβ̄ξ(ϑ))dϑ

According to Theorem 2, the estimation error is convergent.
So, ‖ξ‖ ≤ ‖ε(t)‖+‖ε(t−lp)‖ ≤ 2‖ε(0)‖. Then, the estimation
error can be bounded as

|εk| ≤ φp(k, t) = |[eωβtε(0)]k| (26)

+
1

ω2
|[eωβt(δη +Mδωη2)]k|+ 2‖ε(0)‖|[eωβtβ̄]k|

for k = 1, . . . , 3n. According to Assumption 1, the initial
estimation error of PESO is related to delay time lp and can
be bounded as

z̃1(0) ≤ q(0) + [ 1
2δl

2
p − ẑ1(0), . . . , 1

2δl
2
p − ẑ1(0)n]T

z̃2(0) ≤ [δlp − ẑ2(0)1, . . . , δlp − ẑ2(0)n]T

z̃3(0) ≤ [δ + ẑ3(0)1, . . . , δ + ẑ3(0)n]T

Remark 8: In accordance with Theorem 1, the safety
of robotic systems with input delay can be assured if the
constraint ĥ(ẑ1) = h(ẑ1) − h̄γ ≥ 0 holds for all t ≥
0. By (26), the estimation error is bounded as γ(δ, t) =√∑n

k=1 φp(k, t)
2 + ω2

∑2n
k=n+1 φp(k, t)

2. Subsequently, the
control input is determined by solving QP (21) at each interval.
Through this approach, the implementation of safety-critical
control for robotic systems with input delay is accomplished.

Remark 9: It should be noted that ĥ(ẑ1) is influenced by the
estimation error of the PESO, which is directly proportional
to the delay lp. Consequently, a longer delay leads to a larger
estimation error, thereby resulting in a more conservative
safety constraint defined by ĥ(ẑ1). In the case of robotic
systems, input delays typically range in the milliseconds [35],
and the conservatism introduced by this delay in the safety
constraint ĥ(ẑ1) is generally acceptable. However, for robotic
systems with significantly longer delays, future research will
investigate modifications to the PESO design to mitigate the
estimation error and reduce the conservatism of the safety
constraint.

VI. EXPERIMENT ON FRANKA EMIKA ROBOT

This section presents a physical experiment designed to
validate the proposed framework, including a 7-DOF Franka
Emika Panda manipulator and a spherical obstacle with a
radius of 2cm, as depicted in Fig. 3. The experiment is exe-
cuted utilizing the Franka Control Interface (FCI) facilitated
by libfranka on the Ubuntu 20.04 LTS operating system.

To provide further clarity, the experiment designs a specific
task: achieving obstacle avoidance with the manipulator’s end-
effector while tracking a predetermined trajectory. The obsta-
cle is positioned at (0.295, 0.038, 0.458) in the base frame,

Fig. 3. Experiment platform: a Franka Emika Panda manipulator with an
obstacle.

allowing the obstacle avoidance constraint to be characterized
by a continuous differentiable function h(q) : R7 → R.

h(q) = (x(q)−0.295)2+(y(q)−0.038)2+(z(q)−0.458)2−r2,
(27)

where x(q), y(q) and z(q) are the coordinates of end-effector.
The real-time position information of end-effector can be
directly accessed by FCI. The associated videos for demon-
stration can be found at https://youtu.be/o5szROzJbTk.

The initial joint states are given by q(0) = [0,−π/4, 0,
−3π/4, 0, 3π/4, π/4]T rad. The external disturbances is
fdis = [6, 6, 6, 6, 2, 2, 2]. In accordance with the parame-
ter specification of the Franka Emika robot, the joint ac-
celerations are constrained within the limits of q̈max =
−q̈min = [15, 7.5, 10, 12.5, 15, 20, 20]rad/s2. Moreover, the
joint torques are subject to the constraints that umax =
−umin = [87, 87, 87, 87, 12, 12, 12]TNm, and sampling time
is tk+1 − tk = 0.001s. If the aforementioned limitations are
not satisfied, the manipulator’s motion will be terminated. Due
to ∆d = q̈ −M(q)−1u, the boundary of model uncertainty δ
can be calculated as δ = ‖1/µ1umax + q̈max‖, where µ1 = 1.

For the robotic system without input delay, the parameters
of ESO are set as β1 = 3, β2 = 3, β3 = 1. In order to evaluate
the impact ω on estimation error, four distinct values of ω are
set as 

ω1 = [20, 10, 20, 10, 5, 5, 5]T

ω2 = [25, 15, 25, 15, 10, 10, 10]T

ω3 = [30, 20, 30, 20, 15, 15, 15]T

ω4 = [35, 25, 35, 25, 20, 20, 20]T

Fig.4(a)-Fig.4(c) respectively depict the estimation error of q,
q̇ and ∆d under the influence of ω1. It is discernible that
the error gradually converges and remains confined within
a delimited range. Fig.4(d) presents the fourth component
of the uncertainty estimation error across varying values of
ω. Although only one component of the estimation error is
showcased due to page constraint, it sufficiently illustrates
the impact of ω on estimation error. Fig.4 (d) suggests that
augmenting ω can expedite the speed of error convergence,
but excessively large ω values will amplify the fluctuation of
the estimation result.
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Fig. 4. The estimation error of states by ESO. (a) The estimation error
of q. (b) The estimation error of q̇. (c) The estimation error of ∆d. (d) The
fourth component of estimation error of ∆d with different ω.

In order to accomplish the obstacle avoidance task, a new
constraint function ĥ(ẑ1) is formulated based on the estimation
error.

ĥ(ẑ1) =(x(ẑ1)− 0.295)2 + (y(ẑ1)− 0.038)2

+ (z(ẑ1)− 0.0458)2 − (r + γ(δ, t))2 ≥ 0,
(28)

where γ(δ, t) is calculated as (20). The parameters of HOCBF
are set as k1 = 10 and k2 = 5.

As ĥ(ẑ1) is related to δ, four different values of δ are
assigned as δ1 = 203, δ2 = 189, δ3 = 178, δ4 = 167 to
evaluate the impact of δ on performance of the proposed
control method. These different values of δ are determined
by selecting diverse control input constraints. To achieve the
aforementioned δ values, four sets of control input constraints
are established.

u1
max = [87, 87, 87, 87, 12, 12, 12]Nm

u2
max = [80, 80, 80, 80, 10, 10, 10]Nm

u3
max = [75, 75, 75, 75, 8, 8, 8]Nm

u4
max = [70, 70, 70, 70, 5, 5, 5]Nm

Fig.5(a) presents the control input obtained from QP (21) for
δ1. The response curves of ĥ(ẑ1) and ψ1(ẑ1) are depicted in
Fig.5(b), demonstrating that both satisfy constraints. Moreover,
Fig.5(c) exhibits the trajectory of the robot driven by the
proposed control method across varying values of δ. As shown
in (20), an increase in δ leads to a corresponding increase
in γ(δ, t). Notably, elevated values of γ(δ, t) tend to induce
a more conservative control performance. This aligns with
the observation in Fig.5(c) where the control performance
exhibits increased conservatism with higher δ. However, when
confronted with larger δ, the conservatism can be alleviated
by increasing ω. Fig. 5(d) illustrates the robot’s trajectory for

different ω settings when δ = δ1. Obviously, the depicted tra-
jectories showcase a reduction in conservatism as ω increases.
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Fig. 5. The control input, constraint functions and trajectories of end-
effector. (a) The control input solved by QP (21). (b) The curves of ĥ(ẑ1)
and ψ1(ẑ1). (c) The preset trajectory and actual trajectory of robot end-
effector with different δ. (d) The preset trajectory and actual trajectory of
robot end-effector with different ω.
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Fig. 6. The estimation error of states by PESO. (a) The estimation error
of q. (b) The estimation error of q̇. (c) The estimation error of ∆d. (d)The
sixth component of estimation error of ∆d under different ω.

For the robotic system with input delay, the parameters of
PESO are set as β1 = 3, β2 = 3, β1 = 1. In order to evaluate



the impact ω on estimation error, four different ω values are
set as 

ω1 = [20, 10, 20, 5, 5, 10, 10]T

ω2 = [25, 15, 25, 10, 10, 15, 15]T

ω3 = [30, 20, 30, 15, 15, 20, 20]T

ω4 = [35, 25, 35, 20, 20, 25, 25]T

The estimation errors of q, q̇, and ∆d with a delay of lp =
0.015s and ω1 are depicted in Fig.6(a)-Fig.6(c). These plots
reveal that the estimation errors converge and maintain their
bounds. Additionally, Fig.6(d) illustrates the sixth component
of the uncertainty estimation error across various values of
ω. Notably, the outcome bears resemblance to the findings
observed in the ESO estimation error across different ω values.

With a delay of lp = 0.015s and ω = ω1, Fig. 7(a)
showcases the control input derived from QP (21), while Fig.
7(b) displays the response curves of ĥ(ẑ1) and ψ1(ẑ1), both
satisfying the imposed constraints. Fig.7(c) depicts the trajec-
tories of robot with varying delay conditions. As the delay
increase, the level of constraint becomes more conservative,
which aligns with the concept discussed in Remark 9 where
the definition of ĥ(ẑ1) is directly proportional to the delay.
With a delay of lp = 0.015s, Fig. 7(d) illustrates the robot’s
trajectories with different δ values to assess the impact of
δ on the performance of the proposed control method. As
δ increases, the control performance becomes increasingly
conservative. When δ = δ1, the trajectories are shown in Fig.
7(e) with different ω settings. Notably, the conservatism can be
mitigated by appropriately increasing ω when δ is excessively
large.

VII. CONCLUSION

To address the challenges posed by dynamic uncertainty and
unmeasured joint velocity in robotic systems, a safety-critical
control framework is proposed by integrating the concepts of
ESO and CBF. A linear ESO is utilized to get the estimation
of system uncertainties and states, and ESO-CBF is proposed
based on the estimation error to guarantee the safety constraint.
Additionally, when the robotic system encounters input delays,
an ESO with a predictor is introduced to estimate the model,
providing the boundary for estimation error. Consequently, the
proposed ESO-CBF approach can be employed to execute
safety-critical control. The efficacy of this method is validated
through experiments conducted on the Franka Emika Panda
manipulator.
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