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Abstract
The optimization of control systems under the presence of safety constraints
and input constraints frequently involves the decomposition into a sequence
of quadratic programs (QPs) facilitated by the utilization of high-order control
barrier function (HOCBF). When the safety constraint conflicts with the input
constraint, however, it leads to infeasibility within the QPs. In this article, a
feasibility-guaranteed QP is proposed to tackle the challenge posed by the con-
flict between HOCBF constraint and input constraint. Firstly, the classical QP
is added with a feasibility constraint which is derived from input constraint
and HOCBF constraint, where the parameter of feasibility constraint is updated
via a new QP obtained by control sharing property. Then, Type-2 HOCBF is
investigated for the system with multiple HOCBF constraints, which effectively
confines the system within a single HOCBF at the current time step. Finally,
the efficacy of this approach is demonstrated through the application of obstacle
avoidance in a 3-DOF robot system.
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1 INTRODUCTION

With the growing complexity of systems, guaranteeing safety properties becomes paramount in controller design.1 Appli-
cations such as autonomous driving and industrial robotics underscore the significance of synthesizing controllers that
prioritize safety. Among the various approaches, optimization-based techniques like model predictive control (MPC)2 are
an appealing choices for designing safety-critical controller. However, it is challenging to solve the optimization problem
in real-time. Recently, the adoption of control barrier functions (CBFs) to ensure forward invariance of safe sets has
received increasing attention.3,4

Control barrier function (CBF) is first defined for safety constraint with relative degree one in Reference 5, which
serves as a mechanism to transform state-based constraints into constraints that are expressed in terms of control inputs.
Moreover, some methods are also developed to handle the constraints with high relative degree. A backstepping approach
is developed in Reference 6 for relative degree two. An exponential CBF (ECBF) is investigated for constraints with arbi-
trarily high relative degree using tools from linear control theory in Reference 7. The creation of ECBF is based on pole
placement, but the choice of pole location requires care as it depends on the initial condition. In this case, the high order
CBF (HOCBF) is developed,8 which is both more general and simpler to employ when dealing with constraints of high
relative degree compared to ECBF.
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Most of the existing works uses the framework combining CBF with control Lyapunov function (CLF)9 through
quadratic programming (QP) to enforce safety and stability.10 In this framework, the time domain is discretized based on
the assumption that the control input and state are constant over each time step.11 However, this approach may encounter
QP infeasibility issues. Specifically, when a constant control input is maintained across two adjacent control steps, it
can lead to incompatible constraints, rendering the QP infeasible in the subsequent control interval. For instance, if the
control objective falls outside the safe set defined by the safety constraint, the conflicting CLF and CBF constraints can
render the QP infeasible. For safety-critical systems, the CLF constraints are relaxed as soft constraints, while the CBF
constraints remain unchanged as hard constraints on the QP. In this way, QP becomes feasible because both security and
stability do not need to be satisfied.

Moreover, the CBF constraint may be incompatible with the control input bound. To address this issue, various
approaches such as the penalty method12 and adaptive CBF13 have been developed to ensure the feasibility of QP. How-
ever, since no closed-form solutions are derived and the penalties are tuned via numerical techniques, those methods
are difficult to further study the performance of system in constrained optimal control problems. Reference 14 proposes
an optimal-decay form for safety-critical control wherein the decay rate of the CBF is optimized point-wise in time so as
to guarantee point-wise feasibility when the state lies inside the safe set. The decay-rate relaxing technique is general-
ized for MPC with discrete-time high-order control barrier function (DHOCBF) in Reference 15. It presented a method
to enhance the feasibility of iterative optimization subject to linearized DHOCBF by relaxing the decay rate in each con-
straint. However, when the states reach the boundary of safe set, the feasibility of optimization cannot be guaranteed
by the decay-rate relaxing method. The backup CBF is proposed as a tractable formulation that guarantees the feasi-
bility of QP via an implicitly defined control invariant set in Reference16. The control invariant set is based on a fixed
backup policy and evaluated online by forward integrating the dynamics under the backup policy. However, this method
substantially increases the computational complexity of the optimization problem and a good backup policy is very com-
plicated for complex systems. In Reference 17, sufficient conditions are first captured by a CBF constraint and added to
the QP to guarantee feasibility. However, how to find the candidate function that satisfies the sufficient conditions is still
a problem.

Addressing the feasibility problem in the presence of multiple safety constraints and control bounds is notably chal-
lenging, as it necessitates the avoidance of conflicts among all these constraints. Unfortunately, little work has been
investigated on handling multiple safety constraints and input constraints simultaneously. Reference 18 investigates a
method for handling the multiple CBFs with input constraints, but it requires some model knowledge, including Lips-
chitz constants and dynamics bounds. A robust multiple CBFs framework is proposed for the passivity-based system with
input constraints in Reference 19. In addition, Breeden and Panagou20 guarantees the feasibility of QP subject to multi-
ple CBF constraint and input constraint by providing tools to decouple the design of multiple CBF, so that a CBF can be
designed for each constraint function independently of other constraints, and ensure that the set composed from all the
CBFs together is a viability domain. However, the methods in References 19 and 20 are applicable exclusively to systems
with a relative degree of one.

In this article, a novel safety-critical method is proposed based on HOCBF, aiming to solve the problem that
a safety constraint may conflict with input constraint and make QP infeasible. To mitigate this issue, a feasi-
bility constraint is introduced into the QP formulation. This constraint is derived from both a safety constraint
and an input constraint, taking the form of a CBF constraint with a relative degree of one. The parameter
of feasibility constraint is updated by using a new QP, which leverages the control sharing property to ensure
compatibility among all constraints. Moreover, if the system has multiple safety constraints, a Type-2 HOCBF
is designed to transform multiple safety constraints into a single safety constraint, thereby simplifying the pro-
cess of ensuring QP feasibility. Finally, numerical simulation is performed on a 3-DOF plane robot to verify the
method.

1.1 Notations

Rn denotes the n-dimensional Euclidean space and Rn×n denotes a space of real matrices with n rows and m columns.
|| ⋅ || denotes the 2-norm of the vector. | ⋅ | denotes the absolute value. For an n-dimensional vector x = [x1, … , xn], xi(i =
1, 2, … ,n) represents the ith element of x. Lf b(x) denotes the Lie derivative of b(x) along f at x, and Lf b(x) = 𝜕b(x)

𝜕x
f (x).

Lm
f b(x) denotes the m-order Lie derivative of b(x) along f at x. q, q̇ and q̈ denote the joint position, velocity and acceleration

of robotic system, respectively.
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2 PRELIMINARIES

Consider the affine control system

ẋ = f (x) + g(x)u, (1)

where x ∈ Rn, f ∶ Rn → Rn and g ∶ Rn → Rn×q are locally Lipschitz, and u ∈ U ⊂ Rq is the control input. U denotes the
input constraint set and satisfies

U = {u ∈ R
q ∶ umin ≤ u ≤ umax}. (2)

The closed set C defined by a continuously differentiable function b(x) ∶ Rn → R is given as follows:

C = {x ∈ R
n ∶ b(x) ≥ 0}, (3)

Int(C) = {x ∈ R
n ∶ b(x) > 0}, (4)

𝜕C = {x ∈ R
n ∶ b(x) = 0}, (5)

It is assumed that C is nonempty and has no isolated point. When the set C is forward invariant, the system (1) is safe and
the set C is called safe set. The definition of forward invariant is given below.

Definition 1 (Forward Invariant21). The set C ⊂ Rn is forward invariant for system (1) if its solution starting
at any x(0) ∈ C satisfies x(t) ∈ C for all t ≥ 0.

To ensure set invariance, the CBF method is derived. Firstly, some important definitions are introduced.

Definition 2 (Class Function22). A continuous function 𝛼 ∶ [0, a) → [0,∞), a > 0, is a class function if
it is strictly increasing and 𝛼(0) = 0.

Definition 3 (Relative degree22). For a continuously differentiable function b(x) ∶ Rn → R with respect to
system (1), the relative degree is the number of times it needs to be differentiated along its dynamics until the
control input explicitly shows in the corresponding derivative.

Suppose that the relative degree of function b(x) is m, and the inequality b(x) ≥ 0 is used as a constraint with the
relative degree of m. If m = 1, then the definition of CBF is given as below.

Definition 4 (Control Barrier Function7). Given a set C as in (3), b(x) is a CBF for system (1) if there exists
a class function 𝛼 such that

sup
u∈Rq

[Lf b(x) + Lgb(x)u + 𝛼(b(x))] ≥ 0, ∀x ∈ C, (6)

where Lf and Lg denote the Lie derivatives along f and g, respectively.

If m > 1, then the CBF can not be used to guarantee the forward invariance of set since the control input u is no longer
exhibited in (6). So, the HOCBF is proposed. A sequence of functions 𝜓i(x) ∶ Rn → R, i ∈ {0, … ,m} are first defined as

𝜓0(x) = b(x),
𝜓i(x) = 𝜓̇ i−1(x) + 𝛼i(𝜓i−1(x)), i ∈ {1, … ,m}, (7)

where 𝛼i(⋅) denotes (m − i)th order differentiable-class function. A sequence of sets Ci, i ∈ {1, … ,m} are then defined
in the form of

Ci = {x ∈ R
n ∶ 𝜓i−1(x) ≥ 0}, i ∈ {1, … ,m}. (8)

Then, the definition of high-order control barrier function (HOCBF) is given as below.

Definition 5 (HOCBF12). A function b(x) ∶ Rn → R is a High Order Control Barrier Function (HOCBF) of
relative degree m for system (1) if there exist (m − i)th order differentiable class  functions 𝛼i, i ∈ {1, … ,
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3428 ZHANG et al.

m − 1}, and a class functions 𝛼m such that

sup
u∈Rq

[Lm
f b(x) + LgLm−1

f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x))] ≥ 0, (9)

for all x ∈ C1 ∩ · · · ∩ Cm. Lm
f denotes m-order Lie derivative along f in the system (1). S(bi(x)) denotes the

remaining Lie derivative along f with degree less than or equal to m − 1, that is,

S(bi(x)) =
m−1∑

i=1
Li

f (𝛼m−i◦𝜓m−i−1)(x). (10)

Lemma 1 (12). The set C1 ∩ · · · ∩ Cm is forward invariant for system (1), if x(0) ∈ C1 ∩ · · · ∩ Cm and b(x) is a
HOCBF. The Lipschitz continuous control input u belongs to the set

Ks(x) = {u ∈ R
q ∶ −LgLm−1

f b(x)u

≤ Lm
f b(x) + S(b(x)) + 𝛼m(𝜓m−1(x))}. (11)

To find a control policy for system (1), the most existing works form an optimal control problem by combining HOCBF
with quadratic costs in control u as below.

J(u(t)) =
∫

T

0
||u(t) − unom(t)||2dt

s.t.
Lm

f b(x) + LgLm−1
f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x)) ≥ 0,

umin ≤ u ≤ umax, (12)

where || ⋅ || denotes the 2-norm of a vector, unom is a nominal feedback controller. When unom ∉ Kcbf (x), the CBF constraint
will minimally modify the nominal controller to ensure safety. The optimal control problem is usually solved point-wise,
where the time interval [0,T] is divided into a finite number of intervals [tk, tk+1), k = 0, 1, 2 … n. Besides, the constraint is
linear in control and the states are fixed at each interval, so that the optimization problem eventually becomes a quadratic
programming (QP) as follows:

u∗ = arg min
u

||u − unom||
2

s.t.
Lm

f b(x) + LgLm−1
f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x)) ≥ 0,

umin ≤ u ≤ umax. (13)

Therefore, the optimal control input is obtained by solving a QP at each interval, updating states through dynamics
(1), and then repeating the procedures.

Remark 1. Most existing work on implementing safety-critical control with HOCBF solves the QP (13) in
each interval using the above method. This conversion is first applied in Reference 4, which proves the control
input from QP is locally Lipschitz continuous and a closed-form expression can be given for control input. It
is important to note that this method is computationally efficient, but continuous safety may not be satisfied
between time intervals. To address this issue,23,24 present improved methods by bounding the time derivative
of the CBF between time intervals. Given that the above solution is complicated and is out of the main focus
of this article, the proposed framework only sets the time intervals to be small to avoid this problem.

3 FEASIBILITY- GUARANTEED QP

For the system with input constraint, if the safety constraint is incompatible with the input constraint, the QP becomes
infeasible. This section presents a feasibility-guaranteed method for the QP and designs the safety-critical controller.

 10991239, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7141 by T

echnische U
niversitat M

unchen, W
iley O

nline L
ibrary on [16/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHANG et al. 3429

3.1 Feasibility constraint

For system (1), the QP subject to HOCBF and input constraint can be written as (13). The HOCBF condition enforces
that the system always satisfies safety constraint b(x) ≥ 0. Also, the input constraint should always be satisfied. When the
safety constraint conflicts with input constraint, the QP (13) is infeasible, making it impossible to obtain control input.
To get the control input that satisfies safety constraint and input constraint, the feasibility constraint is investigated.

Definition 6 (Feasibility Constraint17). Suppose that the QP (13) is feasible at the current state x(t),
t ∈ [tk, tk+1). For constraint bF(x) ∶ Rn → R, bF(x) ≥ 0 is a feasibility constraint if it makes the QP (13)
corresponding to the next time interval [tk+1, tk+2) feasible.

The feasibility constraint bF(x) ≥ 0 should satisfy two requirements to guarantee the feasibility of QP (13) at next time
interval. Firstly, it should ensure that the safety constraint and input constraint do not conflict. Second, the feasibility
constraint cannot conflict with both safety constraint and input constraint at the same time. How to obtain the CBF
constraint will be given later.

The analysis for the feasibility constraint depends on two sets defined by these constraints in terms of u. The first set
is shown in (11), where the control input multiplies the vector −LgLm−1

f b(x) = [−LgLm−1
f b(x)1, · · · ,−LgLm−1

f b(x)q]. The
second set is based on (2) by multiplying the vector −LgLm−1

f b(x), that is,

Uc = {u ∈ R
q ∶ ul(x) ≤ −LgLm−1

f b(x)u ≤ ud(x)}, (14)

ul(x) =
q∑

i=1
min(−LgLm−1

f b(x)iumin,i,−LgLm−1
f b(x)iumax,i), (15)

ud(x) =
q∑

i=1
max(−LgLm−1

f b(x)iumin,i,−LgLm−1
f b(x)iumax,i). (16)

It is obvious that U ⊂ Uc. The following lemma shows that the relaxation of U has no negative effect on the
compatibility of safety constraint and input constraint.

Lemma 2. 17 If the intersection of the two sets in (11) and (14) is non-empty, then the intersection of the two sets
in (11) and (2) is non-empty for all x.

Therefore, the condition that the intersection of two sets Ks(x) and Uc is non-empty for all x guarantees no-conflict
of safety constraint and input constraint. According to the definitions of Ks(x) in (11) and Uc in (14), the condition
is ensured if

Lm
f b(x) + S(b(x)) + 𝛼m(𝜓m−1(x)) ≥ ul(x). (17)

(17) can be seen as a feasibility constraint for the QP (13), which is designed to be a CBF bF(x) to guarantee the satisfactory
of constraint (17). The relative degree of bF(x) is one with respect to dynamics (1).

bF(x) = Lm
f b(x) + S(b(x)) + 𝛼m(𝜓m−1(x)) − ul(x) ≥ 0. (18)

Then, if bF(x0) ≥ 0, then the following controller KF(x) can guarantee the free conflict between HOCBF constraint (9)
and input constraint.

KF(x) = {u ∈ Rq ∶ Lf bF(x) + LgbF(x)u + kF𝛼F(bF(x)) ≥ 0}, (19)

where 𝛼F(bF(x)) is a-class function and kF is a positive constant.
By adding the feasibility constraint of bF(x) into QP (13), the QP is then written as follows:

u∗ = arg min
u

||u − unom||
2

s.t.
Lm

f b(x) + LgLm−1
f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x)) ≥ 0,

Lf bF(x) + LgbF(x)u + kF𝛼F(bF(x)) ≥ 0,
umin ≤ u ≤ umax, (20)
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3430 ZHANG et al.

To guarantee the feasibility of the QP (20), it is need to be satisfied that all constraints in QP (20) are compliant with
each other. In this regard, similar to Reference 25, the control sharing property is used.

Definition 7 (Control Sharing Property25). For system (1), the CBFs bi(x) ∶ Rn → R with relative degree ri
are said to have control sharing property, if there exists control input u ∈ U such that the following condition
holds for all i = 1, … , q:

Lri
f bi(x) + LgLri−1

f bi(x)u + S(bi(x)) + 𝛼i
ri
(𝜓ri−1(x)) ≥ 0. (21)

The feasibility of (20) requires that the feasibility constraint and safety constraint should have control sharing property.
According to the derivation process that the condition of control sharing property in,25 the condition that makes all
constraints compliant with each other is summarized in the following theorem.

Theorem 1. Given the QP (20), when bF(x) > 0, if kF is obtained by solving the following QP for all i ∈ {k ∈
R ∶ LgbF(x)kLgLm−1

f b(x)k ≠ 0},

k∗F = arg min
kF

||kF − kF0||
2

s.t.
kF ≥ 0
(

1 − sgn(LgbF(x)i)sgn(LgLm−1
f b(x)i)

)
(

kF𝛼F(bF(x)) + Lf bF(x) −
LgbF(x)i(Lm

f b(x) + S(b(x)) + 𝛼m(𝜓m−1(x)))

LgLm−1
f b(x)i

)

≥ 0,

kF𝛼F(bF(x)) + Lf bF(x) −
q∑

k=1
min(−LgbF(x)kumin,k,−LgbF(x)kumax,k) ≥ 0 (22)

then the QP (20) is feasible. kF0 is the initial value of kF . LgbF(x)k is the kth component of LgbF(x).

Proof. To prove the feasibility of QP (20), it is necessary to prove that all constraints in QP (20) are compliant
with each other, that is, the Ks(x) ∩ KF(x) ∩ U ≠ ∅. Noted that the set KF(x) and Ks(x) formulate two half spaces
and the boundaries of sets are hyperplanes. Firstly, for the feasibility constraint, the hyperplane of half space
formed by KF(x) can be decided via intercepts lj *, j ∈ {k ∈ R ∶ LgbF(x)k ≠ 0},

lj =
Lf bF(x) + kF𝛼F(bF(x))

−LgbF(x)j
. (23)

The feasibility constraint makes control input satisfy the following condition:

{
uj ≥ lj, if − LgbF(x)j < 0,
uj ≤ lj, if − LgbF(x)j > 0.

(24)

According to the derivation of feasibility constraint, the last constraint in QP (22) make KF(x) ∩ U ≠ ∅.
Secondly, for the safety constraint, the hyperplane of half space formed by Ks(x) can be decided via

intercepts dj, j ∈ {k ∈ R ∶ LgLm−1
f b(x)k ≠ 0} (e.g., in Figure 1).

dj =
Lm

f b(x) + S(b(x)) + 𝛼m(𝜓m−1(x))

−LgLm−1
f b(x)j

. (25)

The safety constraint makes control input satisfy the following condition:

{
uj ≥ dj, if − LgLm−1

f b(x)j < 0,

uj ≤ dj, if − LgLm−1
f b(x)j > 0.

(26)

The feasibility constraint makes Ks(x) ∩ U ≠ ∅.
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ZHANG et al. 3431

Based on the above conditions, when all components of LgbF(x) and LgLm−1
f b(x) satisfy

sgn(LgbF(x)i)sgn(LgLm−1
f b(x)i) = 1 (e.g., in Figure 1a), the last constraint in QP (22) make at least

the control input u = [0, … ,min(di, li,umax,i), … , 0] belong to Ks(x) ∩ KF(x) ∩ U for LgbF(x)i < 0 and
u = [0, … ,max(di, li,umin,i), … , 0] belong to Ks(x) ∩ KF(x) ∩ U for LgbF(x)i > 0. So, Ks(x) ∩ KF(x) ∩ U ≠ ∅ is
guaranteed in this case.

When sgn(LgbF(x)i)sgn(LgLm−1
f b(x)i) = −1 (e.g., in Figure 1b), the feasibility constraint and safety

constraint is conflict-free, if all intercepts di satisfy

{
di ≤ li, if − LgLm−1

f b(x)i < 0,−LgbF(x)i > 0,

di ≥ li, if − LgLm−1
f b(x)i > 0,−LgbF(x)i < 0.

(27)

The condition (27) is equal to the second constraint in QP (22). In this case, at least the control input u =
[0, … ,ûi, … ,0] fall into Ks(x) ∩ KF(x) ∩ U, where ûi is

{
max(di,umin,i) ≤ ûi ≤ min(li,umax,i), if − LgLm−1

f b(x)i < 0,−LgbF(x)i > 0,

max(li,umin,i) ≤ ûi ≤ min(di,umax,i), if − LgLm−1
f b(x)i > 0,−LgbF(x)i < 0.

(28)

That is Ks(x) ∩ KF(x) ∩ U ≠ ∅ is guaranteed in this case.
In summary, the QP (22) can make all constraints conflict-free at the same time, that is, Ks(x) ∩ KF(x) ∩ U ≠

∅, because at least the control input [0, … ,uz, … , 0] ∈ Ks(x) ∩ KF(x) ∩ U, z ∈ [1, … , q] can be found by QP
(22). The control component uz is

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

uz = ûz, if sgn(LgbF(x)z)sgn(LgLm−1
f b(x)z) = −1,

uz = min(dz, lz,umax,z), if LgLm−1
f b(x)z < 0,LgbF(x)z < 0,

uz = max(dz, lz,umin,z), if LgLm−1
f b(x)z > 0,LgbF(x)z > 0,

uz = min(dz,umax,z), if LgbF(x)z = 0,LgLm−1
f b(x)z < 0,

uz = max(dz,umin,z), if LgbF(x)z = 0,LgLm−1
f b(x)z > 0,

uz = min(lz,umax,z), if LgLm−1
f b(x)z = 0,LgbF(x)z < 0,

uz = max(lz,umin,z), if LgLm−1
f b(x)z = 0,LgbF(x)z > 0.

(29)

▪

(A) (B)

F I G U R E 1 The relationship between HOCBF constraint hyperplanes and feasibility constraint hyperplanes in the case of a two
dimensional control u = [u1,u2]. (a) All components of LgbF(x) and LgLm−1

f b(x) satisfy sgn(LgbF(x)i)sgn(LgLm−1
f b(x)i) = 1. (b) There exits a

component of LgbF(x) and LgLm−1
f b(x) satisfy sgn(LgbF(x)i)sgn(LgLm−1

f b(x)i) = −1.
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3432 ZHANG et al.

F I G U R E 2 The process of solving the safety-critical control problem with feasibility-guaranteed method.

Remark 2. The QP (20) enforces bF(x) ≥ 0. When bF(x) > 0, all constraints in QP (22) are the form of kF ≥
a

𝛼F (bF (x))
, a ∈ R so that all constraints compliant with each other. Therefore, the QP (22) is always feasible.

However, when bF(x) = 0, the QP (22) is invalid such that the feasibility of QP (20) can not be guaranteed. Then, it
can make bF(x) > 0 by changing the class function in HOCBF as follows:

Lm
f b(x) + LgLm−1

f b(x)u + S(b(x)) + 𝛿𝛼m(𝜓m−1(x)) ≥ 0, (30)

where 𝛿 > 1 if bF(x) = 0. If 𝜓m−1(x) ≠ 0, bF(x) > 0 since 𝛿𝛼m(𝜓m−1(x)) > 𝛼m(𝜓m−1(x)). Meanwhile, consider that the func-
tion 𝜓m−1(x) may be 0, it can make bF(x) > 0 by changing the class  functions in function 𝜓i(x), i = [1, … ,m − 1] as
follows:

𝜓i(x) = 𝜓̇ i−1(x) + 𝛿i𝛼i(𝜓i−1(x)), (31)

when the vector [𝜓m−1(x), 𝛼̇m−1(𝜓m−2), … , 𝛼̇i+1(𝜓i)] = 0. If 𝛼̇i(𝜓i−1) > 0, 𝛿i > 1, otherwise, 0 < 𝛿i < 1. Then the condition
bF(x) > 0 is satisfied such that the QP (22) can be used to guarantee the feasibility of QP (20).

Now, the feasibility problem of QP (20) is solved by Theorem 1. The process of solving the safety-critical control
problem with feasibility-guaranteed method is shown in Figure 2.

Remark 3. Compared to14 and17, this method has two advantages. Firstly, it remains effective even when
b(x) = 0, whereas the approach presented in Reference 14 may not guarantee feasibility through alterations
in the decay rate within the HOCBF constraint. Secondly, the feasibility constraint in our method is readily
obtained and can be directly incorporated into QP (20), eliminating the need to seek a candidate function as
required in Reference 17

3.2 Feasibility of QP with multiple HOCBFs

When the system has multiple safety constraints, it is challenging to guarantee the feasibility of QP with multiple HOCBF
constraints in advance. It requires that all constraints cannot conflict with each other, nor can these constraints conflict
with input constraint. To guarantee the feasibility of QP, the Type-2 HOCBF is proposed, which has less restrictive than
HOCBF. It effectively simplifies the QP with multiple HOCBF constraints by consolidating them into a single HOCBF
constraint.

Generally, the HOCBF condition should hold for x ∈ C1, while the Type-2 HOCBF condition only needs hold for
x ∈ A ⊂ C1. To give the definition of Type-2 HOCBF, the associated set A for Type-2 HOCBF is defined.

A = {x ∈ Rn ∶ 0 ≤ b(x) ≤ a}, (32)

Then, the definition of Type-2 HOCBF is given as below.
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ZHANG et al. 3433

Definition 8. A function b(x) ∶ Rn → R is a Type-2 High Order Control Barrier Function (HOCBF) of rela-
tive degree m for system (1), if there exist (m − i)-order differentiable class functions 𝛼i, i ∈ {1, … ,m − 1},
a class functions 𝛼m and a set A such that

sup
u∈Rq

[Lm
f b(x) + LgLm−1

f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x))] ≥ 0, ∀x ∈ A. (33)

If b(x) is a Type-2 HOCBF, then the set of control input can be defined as

Ks(x) = {u ∈ R
q ∶ if x ∈ A, then (33) holds}. (34)

Then, it holds the following conclusion.

Theorem 2. For system (1) and the continuously differentiable function b(x) ∶ Rn → R, assume that b(x) is a
Type-2 HOCBF for a given set A defined by (32). If there exists a locally Lipschitz continuous control input u ∈ Ks
and x(0) ∈ C1 ∩ · · · ∩ Cm, then the set C1 ∩ · · · ∩ Cm is forward invariant for system (1).

Proof. Firstly, there exists a control u satisfying (33), so Ks is non-empty. For x(0) ∈ C1 ∩ · · · ∩ Cm, there are
two cases.

Case 1: If x(0) ∈ A ∩ C2 ∩ · · · ∩ Cm, then b(x) is a Type-2 HOCBF. So, 𝜓m(x) ≥ 0 holds on the boundary
of Cm, that is, 𝜓̇m−1(x) + 𝛼m(𝜓m−1(x)) ≥ 0. Since x(0) ∈ Cm, the Brezis’ Theorem (see,26 Theorem 1) ensures
that 𝜓m−1(x) ≥ 0 and the states are always in the set Cm. The conditions 𝜓m−1(x) ≥ 0 and x(0) ∈ Cm−1 enforce
the states x ∈ Cm−1 for all time and 𝜓m−2(x) ≥ 0. Iteratively, x ∈ Ci,∀i ∈ [1, … ,m], so the set C1 ∩ · · · ∩ Cm is
forward invariant.

Case 2: If x(0) ∈ ā ∩ C2 ∩ · · · ∩ Cm, then ā = {x ∈ Rn ∶ b(x) > a}, b(x) is not a Type-2 HOCBF. If state x
always satisfies b(x) > a with the help of control input, then the set C1 ∩ · · · ∩ Cm is forward invariant. How-
ever, if the state satisfies b(x) ∈ A at current time t by control input, then b(x) is a Type-2 HOCBF. It transforms
to Case 1, which thus gets the forward invariance of C1 ∩ · · · ∩ Cm. ▪

When the system has N safety constraints, for example, bi(x) ∶ Rn → R, i ∈ [1, … ,N], the associated set for each
Type-2 HOCBF can be defined as follows:

Ci
j = {x ∈ R

n ∶ 𝜓 i
j−1(x) ≥ 0}, j = {1, … ,m}, (35)

Ai = {x ∈ R
n ∶ 0 ≤ bi(x) ≤ ai}, (36)

sup
u∈Rq

[Lm
f bi(x) + LgLm−1

f bi(x)u + S(bi(x)) + 𝛼i
m(𝜓 i

m−1(x))] ≥ 0, ∀x ∈ Ai, (37)

and the sets of control input satisfying (37) are

Ki
s(x) = {u ∈ R

q ∶ if x ∈ Ai, then (37) holds}. (38)

For multiple Type-2 HOCBFs, assume that Ai does not overlap for every i ∈ [1, … ,N]. Then, a control law can be
given to address the multiple security constraints of the system independently. If the state x ∉ Ai, the control input is
u = unom. When the state x enters any set Ai, the follow QP is implemented for the associated bi(x).

u∗ = arg min
u

||u − unom||
2 (39)

s.t.
Lm

f bi(x) + LgLm−1
f bi(x)u + S(bi(x)) + 𝛼i

m(𝜓 i(m − 1)(x)) ≥ 0, (40)

Lf bi
F(x) + Lgbi

F(x)u + ki
Fbi

F(x) ≥ 0, (41)
umin ≤ u ≤ umax. (42)

This control input makes the set Ci
1 ∩ · · · ∩ Ci

m forward invariant.
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3434 ZHANG et al.

F I G U R E 3 The process of safety-critical control with multiple HOCBF constraints.

In (39)-(42), a feasible constraint bi
F(x) is added in QP. According to Theorem 1, the parameter ki

F should be updated
by QP (22) to guarantee the feasibility. The process of safety-critical control with multiple HOCBF constraints is shown
in Figure 3.

Remark 4. ai, i ∈ [1, … ,N], can be different from each other. ai in Ai should be small to reduce the
interference of unom. Noting that if ai is too small, the controller may be sensitive to noise.

Theorem 3. Given the N continuously differentiable functions bi(x) ∶ Rn → R, i ∈ [1, … ,N] for system (1),
suppose that unom ⊂ U is locally Lipschitz continuous, and u = unom if x ∉ Ai. If each bi(x) is a Type-2 HOCBF
with associated u from (39)-(42), and for any j, k ∈ [1, … ,N], j ≠ k, Aj ∩ Ak = ∅, then x(0) ∈ C1 ∩ · · · ∩ CN ,
then u ensures that the system is safe.
Proof. Since for any j, k ∈ [1, … ,N], j ≠ k, Aj ∩ Ak = ∅, there exists a unique i for which x ∈ Ai, when x ∈ Ai,
according to Theorems 1 and 2, the control input obtained by QP (39) subject to (39)-(42) ensures that the
system is safe. When x leaves Ai, for bi(x) > ai, the u = unom still guarantees safety. ▪

4 APPLICATION TO 3-DOF PLANE ROBOT

The obstacle avoidance task of a 3-DOF plane robot is used to verify the effectiveness of the proposed method. In this
section, the dynamic model of the robot is introduced, followed by the process of how to get a feasibility constraint.

The 3-DOF robot is shown in Figure 4, where the vector of generalized coordinates q =
[
q1, q2, q3

]T represents the
joint angle, m1, m2, and m3 are the mass of three links, Lc1, Lc2, Lc3 are the distance from the respective joint axes to the
centers of mass, L1, L2, and L3 are the lengths of three links, and J1, J2, and J3 are the moment of inertia of three links.
The Euler–Lagrangian dynamics is given as follows:

M(q)q̈ + C(q, q̇)q̇ = u, (43)

where q ∈ R3, M(q) ∈ R3×3, C(q, q̇) ∈ R3×3 are inertia matrix and Coriolis-centrifugal matrix, respectively. M(q) is
symmetric and positive-definite.27 u = [𝜏1, 𝜏2, 𝜏3] ∈ U is the control input.

Assuming that the robot needs to complete a trajectory while avoiding a circular obstacle located at (x0, y0), the
end-effector must be at least a radius r away from the obstacle. Thus, the safety constraint is described by a continuously
differentiable function b(q) ∶ R3 → R as follows:

b(q) = (x(q) − x0)2 + (y(q) − y0)2 − r2
≥ 0, (44)

where x(q), y(q) are the coordinates of end-effector in form of

x(q) = −L3 sin(q1 + q2 − q3) − L2 sin(q1 + q2) − L1 sin q1,

y(q) = L3 cos(q1 + q2 − q3) + L2 cos(q1 + q2) + L1 cos q1. (45)
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ZHANG et al. 3435

F I G U R E 4 Figure shows a 3-DOF plane robotic system.

The associated safety set is defined by

S = {q ∈ R
3 ∶ b(q) ≥ 0}. (46)

Obviously, the relative degree of b(q) is 2, so the HOCBF is used to ensure the safety of system. Define the
class  functions 𝛼i(𝜓i−1(q)) = ki𝜓i−1(q) for i = 1, 2. Then, the following controller Ks(q, q̇) guarantees the forward
invariance of S

Ks(q, q̇) = {u ∈ R
3 ∶ L2

f b(q) + LgLf b(q)u

+ (k1 + k2)Lf b(q) + k1k2b(q) ≥ 0}. (47)

The feasibility constraint b∗F(q) ∶ R3 → R can be derived from HOCBF constraint and input constraint, that is,

b∗F(q) = L2
f b(q) + (k1 + k2)Lf b(q) + k1k2b(q)

−
3∑

i=1
min(−LgLf b(q)iumin,i,−LgLf b(q)iumax,i) ≥ 0. (48)

Then, QP (20) is constructed to solve the optimal control, in which the Lie derivative of b∗F(q) along (43) needs to
calculate the derivative of M(q)−1. M(q) is decided by the structural parameters of the robot, but the form of M(q)−1

is hard to get. So, the energy-based safety constraint bD(q, q̇) is used instead of safety constraint b(q) to solve the
problem.

Definition 9 (28). Given a safety constraint b(q) ∶ R3 → R, and the corresponding safe set S,
the associated energy-based safety constraint and corresponding energy-based safe set are defined
as follows:

bD(q, q̇) = −
1
2

q̇TM(q)q̇ + 𝛼eb(q), (49)

SD = {(q, q̇) ∈ R
3 ×R

3 ∶ bD(q, q̇) ≥ 0} (50)

where 𝛼e > 0.
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3436 ZHANG et al.

According to Proposition 1 in Reference 28, S and SD satisfy

SD ⊂ S, Int(S) ⊂ lim
𝛼e→∞

SD ⊂ S, (51)

where S is the limit of SD when 𝛼e is sufficiently large. So, the safety-critical controller only needs to ensure SD is forward
invariant.

Remark 5. The velocity term in bD(q, q̇) acts to moderate the speed at which the system approaches the bound-
ary of S. If the systems with low inertia can approach the boundary at higher speeds, they can be slowed down
more easily.

According to the fact that ̇M(q) − 2C(q, q̇) is skew-symmetric, q̇T( ̇M(q) − 2C(q, q̇))q̇ = 0 can be get. The Lie derivative
of bD(q, q̇) along (43) is

Lf bD(q, q̇) + LgbD(q, q̇)u = −q̇TM(q)q̈ − 1
2

q̇T
̇M(q)q̇ + 𝛼e ̇b(q)

= −q̇Tu − 1
2
[q̇T( ̇M(q) − 2C(q, q̇))q̇] + 𝛼e ̇b(q)

= 𝛼eLf b(q) − q̇Tu (52)

When bD(q, q̇) is the safety constraint, the controller KD(q, q̇) makes the set SD forward invariant.

KD(q, q̇) = {u ∈ R3 ∶ Lf bD(q, q̇) + LgbD(q, q̇)u + 𝛼(bD(q, q̇)) ≥ 0}. (53)

Then, the corresponding feasibility constraint bF(q, q̇) is

bF(q, q̇) = 𝛼eLf b(q) + 𝛼(bD(q, q̇)) +
3∑

i=1
min(q̇iumin,i, q̇iumax,i), (54)

whose relative degree is one and Lie derivative is easy to get. Finally, the following QP is used to get the control input at
current time.

u∗ = arg min
u

||u − unom||
2

s.t.
L2

f b(q) + LgLf b(q)u + (k1 + k2)Lf b(q) + k1k2b(q) ≥ 0,

Lf bF(q, q̇) + LgbF(q, q̇)u + kF𝛼F(bF(q, q̇)) ≥ 0,
umin ≤ u ≤ umax, (55)

In order to guarantee the feasibility of (55), the kF in 𝛼F(bF(q, q̇)) is updated by (22).

Remark 6. It is obvious that the safety constraint using b(q) ≥ 0 is less conservative than using bD(q, q̇). Since
SD ⊂ S leads to KD(q, q̇) ⊂ Ks(q, q̇) and the feasibility constraint bF(q, q̇) guarantees KD(q, q̇) ∩ U ≠ ∅, the fea-
sibility constraint bF(q, q̇) is derived from bD(q, q̇). It still guarantees that b(q) ≥ 0 does not conflict with the
control constraint.

If there are multiple circular obstacles centered at (xi, yi), i ∈ {1, … ,N} on the trajectory and the obstacles do not
overlap, then the system has N safety constraints. Then, Type-2 HOCBF is used to enforce the safety. For the ith safety
constraint, the Type-2 HOCBF and associated safety sets are defined as follows:

bi(q) = (x(q) − xi)2 + (y(q) − yi)2 − r2
i , (56)

Ai =
{

q ∈ R
3 ∶ bi(q) ∈

[

0, 1
2

q̇TM(q)q̇
]}

. (57)

where ri is the radius of ith obstacle. Then, the feasibility constraints bi
F(q, q̇) are decided by the energy-based safety

constraint bi
D(q, q̇).
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ZHANG et al. 3437

bi
D(q, q̇) = −

1
2

q̇TM(q)q̇ + 𝛼i
ebi(q, q̇), (58)

bi
F(q, q̇) = 𝛼

i
eLf bi(q) + 𝛼i(bi

D(q, q̇)) +
3∑

i=1
min(q̇iumin,i, q̇iumax,i). (59)

If the state q ∉ Ai, u = unom. Otherwise, the control input is obtained by following QP and its feasibility is guaranteed
by updating ki

F .

u∗ = arg min
u

||u − unom||
2

s.t.
L2

f bi(q) + LgLf bi(q)u + (ki
1 + ki

2)Lf bi(q) + ki
1ki

2b(q) ≥ 0,

Lf bi
F(q, q̇) + Lgbi

F(q, q̇)u + ki
F𝛼

i
F(bF(q, q̇)) ≥ 0,

umin ≤ u ≤ umax, (60)

The proposed control law has two advantages. Firstly, it guarantees that multiple safety constraints and input con-
straint are met simultaneously. Secondly, through the transformation of the QP to include a single safety constraint using
Type-2 HOCBF, the computational efficiency of the QP remains unaffected even as the number of safety constraints
increases.

5 NUMERICAL RESULTS

In this section, the simulation results are given. Two cases are included in the simulation studies: Case 1—there is one
obstacle on the desired trajectory, Case 2—there are two obstacles on the desired trajectory.

The structural parameters of the robot are shown in Table 1. The nominal controller is a PID controller. The control
input u is bounded by umin = [−5,−5,−5]Nm and umax = [5, 5, 5]Nm, q(0) = [0.05, 0, 0]rad. The quadprog is used to solve
the QPs.

In the first case, the obstacle is centered at (−1, 2)with the radius r = 0.1, 𝛼e = 1, kF0 = 1.85, and the class function
in safety constraint is k1 = 14, k2 = 4. In the second case, the obstacles are respectively centered at (−1, 2) and (−0.6, 2.2)
with the radius r1 = r2 = 0.1. The parameters of energy-based safety constraints are 𝛼1

e = 1, 𝛼2
e = 2. k1

F0 = 1.85, k2
F0 = 1,

and the class functions in the two safety constraints are chosen as k1
1 = 14, k1

2 = 4, k2
1 = 15, k2

2 = 1.5.
The trajectory tracking performance is shown in Figure 5. Figure 5a,b give the trajectories of

robots end-effector with and without safety constraint, respectively. As shown in Figure 5, the robot
with safety constraints control avoids obstacle area. Figure 6 shows the response curves of function
bi(x) and 𝜓 i

1(x), which are all greater than 0, indicating the forward invariance of the set Ci
1 ∩ Ci

2, i ∈ {1, 2}. The control
input with single safety constraint is shown in Figure 7. As shown in Figure 7a, QPs are feasible with the proposed
method. As a comparison, from Figure 7b, if there is no feasibility constraint, QPs become infeasible. It is in accordance
with the analysis of Theorem 1. Figure 8 shows the control inputs with two obstacles on the desired trajectory.

To demonstrate the adaptability of the proposed method with multiple safety constraints to various input constraints,
another four comparison studies are also given, which correspond to case-umin = −5, case-umin = −4, case-umin = −3, and
the case-time-varying input constraint. The results are presented in Figure 9, revealing that in all four cases, the robot
effectively avoids obstacles, and QPs remain feasible.

T A B L E 1 Structural parameters of robot.

Joint i mi∕(kg) Li∕(m) Lci∕(m) Ji∕(kg ⋅m2)

1 1.0 1.0 0.5 0.0833

2 0.8 0.8 0.4 0.0427

3 0.6 0.6 0.3 0.0180
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3438 ZHANG et al.
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desired trajectory
actual trajectory

(b)

F I G U R E 5 Trajectories of robot end-effector. (a) One-obstacle case. (b) Two-obstacle case.

(A) (B)

F I G U R E 6 Response curves of b(x) and 𝜓1(x). (a) b1(x) and b2(x). (b) 𝜓1
1 (x) and 𝜓2

1 (x).

(A) (B)

F I G U R E 7 Control inputs with one obstacle on the desired trajectory. (a) Control inputs of the proposed method. (b) Control inputs
without feasibility constraint.
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(A) (B)

F I G U R E 8 Control inputs with two obstacles on the desired trajectory. (a) Control inputs of the proposed method. (b) Control inputs
without feasibility constraint.

(A) (B)

(C)

F I G U R E 9 Control performance of the proposed method under different input constraints. (a) Trajectories of the robot end effector.
(b) Control signals with fixed input constraints. (c) Control signals with time-varying input constraint.
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6 CONCLUSION

In this article, a feasibility-guaranteed QPs is proposed. Firstly, the QP is added with a feasibility constraint defined by the
input constraint and the HOCBF constraint. Then, the parameter of feasibility constraint is updated by a new QP, which is
obtained by using the control sharing property. The proposed method enforces all constraints not in conflict such that the
feasibility of QP guaranteed. Moreover, when the system has multiple HOCBF constraints, the Type-2 HOCBF is proposed,
which makes the system constrained by a single HOCBF at current time step. Finally, the safety-critical controller is
derived by using the proposed feasibility-guaranteed QP. The effectiveness is demonstrated on obstacle avoidance of a
3-DOF plane robot. The future work is to find a less conservative method for specific systems and guarantee the feasibility
of QP subject to multiple intersecting constraints.
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