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Abstract
Usually, it is difficult to build accurate dynamic models for real robots, which
makes safety-critical control a challenge. In this regard, this article proposes
a double-level framework to design safety-critical controller for robotic sys-
tems with uncertain dynamics. The high level planner plans a safe trajectory
for low level tracker based on the control barrier function (CBF). First, the
high level planning is done independently of the dynamic model by quadratic
programs subject to CBF constraint. Afterward, a novel method is proposed to
learn the uncertainty of drift term and input gain in nonlinear affine-control
system by a data-driven Gaussian process (GP) approach, in which the learn-
ing result of uncertainty in input gain is associated with CBF. Then, a Gaussian
processes-based control barrier function (GP-CBF) is designed to guarantee the
tracking safety with a lower bound on the probability for the low level tracker.
Finally, the effectiveness of the proposed framework is verified by the numerical
simulation of UR3 robot.
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1 INTRODUCTION

Robots in real-world applications often work in complex environments, for example, the collaborative robots in industrial
scenarios1,2 and aerial robots in reconnaissance.3 For the successful applications of these robots in different scenarios,
safety is one of the most fundamental prerequisites.4 To guarantee the safety of dynamic systems, several approaches have
been investigated. A common technique for robotic manipulators to achieve real-time obstacle avoidance is the artificial
potential field method.5 Optimization-based methods with safety constraints are also used for designing safety-critical
controller, such as model predictive control (MPC).6 In addition, the control barrier function (CBF) proposed in Reference
7 has also been widely applied to ensure the safety of dynamic system in the optimal control framework. Many CBF works
have been developed for systems with accurate models, low relative degree and without disturbances, see References
8-10. Considering that some robotic systems are high-relative-degree, such as bipedal and car-like robots, the exponential
control barrier function (ECBF) and high order control barrier function (HOCBF) are developed,11,12 which still only
work with known dynamics. However, in complex environments, the dynamic models of robots are not exactly known
due to parametric uncertainty and disturbances.13 The presence of model uncertainty will not only degrade the control
performance, but also lead to the inability to guarantee the safety of system.14,15 It is a challenge to design a safety-critical
controller for robots in the presence of model uncertainty.
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In the presence of model uncertainty, the dynamic model of the systems can be seen as a combination of an estimating
component and an uncertain part. The uncertain part quantifies the difference between the real system and the esti-
mating component. When the uncertain part is caused by disturbance, References 16 and 17 applies robust CBF to
guarantee the safety of system, where the disturbance is bounded to 𝜀-ball in some norm form. For the system with
structured parametric uncertainty in model, adaptive control strategy is used.18 Meanwhile, adaptive control is also
combined with CBF to guarantee safety. In Reference 19, adaptive CBF (aCBF) is developed to ensure the forward
invariance of a safe set for systems with structured parametric uncertainty through parameter adaptation. Due to the
conservatism caused by the strongly restrictive condition of aCBF, robust adaptive CBF (RaCBF) is developed in Refer-
ence 20. It incorporates set membership identification (SMID)21 to estimate the model uncertainty. Although RaCBFs
is less restrictive than aCBFs, RaCBFs can still be conservative if the maximum parameter error is large. Further-
more, aCBFs and RaCBFs can be applied to system where the structured parametric uncertainty only affects the drift
term of dynamic model. Reference 22 proposes an adaptive quadratic program-based control Lyapunov-barrier func-
tion (QP-CLBF) approach for nonlinear systems with uncertain drift term and unknown control coefficient, in which a
filtering-based concurrent learning (FCL) adaptive technique is used to guarantee simultaneous exponential convergence
of uncertain parameters in drift term and control coefficient. However, it requires that the unknown model can be linearly
parameterized.

As a way to deal with model uncertainty, learning-based methods have also been developed in recent years.23,24 In
Reference 25, extreme learning machines technique is used to learn the drift term of dynamic model and barrier certificate
to ensure safety. For safety-critical control of systems with additive stochastic disturbances, Reference 26 develops an
adaptive control framework, namely the leveraging stochastic control Lyapunov function (CLF) and stochastic CBF27

along with tractable Bayesian model learning, in which the performances of Gaussian process (GP) regression,28 dropout
neural networks29 and ALPaCA30 are compared. However, the above methods only consider the uncertainty of drift term
in nonlinear affine-control system. Reference 31 models the uncertain parts of drift term and input gain as a union of
convex hulls that are learned via GP, which is utilized in quadratic program-based control barrier function (QP-CBF)
for long-term autonomy applications. However, the estimation method for uncertainty in input gain is not universal.
Reference 32 employs a matrix variate Gaussian process regression to learn both the drift term and the input gain terms of
nonlinear control-affine system at the same time, where the probabilistic CBF-based self-triggered controller obtained by
a deterministic second order cone program (SOCP) is used to ensure safety of systems. Although this method can estimate
the unknown dynamics for systems with arbitrary relative degree, the sample is complicated for high-relative-degree
systems. Moreover, the probabilistic safety constraints can only be used in conjunction with ECBF for high-relative-degree
systems at present.

In this article, a double-level safety-critical control framework is proposed for the robotic system with uncertain model.
First, the high level planner plans a safe trajectory based on CBF, which is used as the reference input of low level tracker.
Second, in low level tracker, the uncertainty parts of drift term and input gain in dynamic model are estimated by GP.
After getting the estimations, the CBF is generalized as Gaussian process-based CBF (GP-CBF) to guarantee the safety
constraint with a lower bound on the probability. Finally, the effectiveness of proposed method is verified via the obstacle
avoidance simulation of UR3 robot.

The main contributions of this article are summarized as follows.

1. The proposed framework combines the high level planning and low level tracking to achieve safety-critical control. To
guarantee the constraints satisfied for the double-level framework, four sufficient conditions are investigated.

2. A novel GP method is proposed to learn the uncertain parts of drift term and input gain in affine control system.
3. Gaussian process-based control barrier function (GP-CBF) is proposed for the system with uncertain model to ensure

safety with high probability. Meanwhile, it can be easily generalized to Gaussian process-based high order control
barrier function (GP-HOCBF) for high-relative-degree systems.

4. The control-synthesis procedure using CBF and the proposed GP-CBF is specialized to robots for simulated applica-
tion.

The article is structured as follows. Section 2 revisits some preliminaries about CBF, HOCBF and the optimal problem
with CBF for dynamic system. Section 3 presents the problem statement. Section 4 provides the control framework, learn-
ing method for model uncertainty and the concept of GP-CBF. Section 5 introduces the controller synthesis for robotic
system. The effectiveness of the proposed control method is demonstrated by simulations in Section 6. Finally, conclusions
are given in Section 7.
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Notations: Rn denotes the n-dimensional Euclidean space and Rn×n denotes a space of real matrices with n rows
and m columns. (𝜇, 𝜔) denotes the multivariate normal distribution with mean vector 𝜇 ∈ Rn and covariance matrix
𝜔 ∈ Rn×n. || ⋅ || denotes the 2-norm of the vector. | ⋅ | denotes the absolute value. Lf b(x) denotes the Lie derivation of b(x)
along f at x, and Lf b(x) = 𝜕b(x)

𝜕x
f (x). Lm

f b(x) denotes the m-order Lie derivation of b(x) along f at x. q, q̇, and q̈ denote the joint
position, velocity and acceleration of robotic system, respectively. f0 and g0 denote the drift term and input gain of nominal
model of robotic system respectively. Da and Dm denote the uncertain part of drift term and input gain respectively. 𝜇a

d and
𝜎

a
d denote the mean and standard-deviation predictions for the uncertain part of drift term respectively. 𝜇𝛿d and 𝜎𝛿d denote

the mean and standard-deviation predictions for the uncertain part Δ(x,u) respectively. Q and R denote the prediction
boundaries of 𝜕b(x)

𝜕x
Dm.

2 PRELIMINARIES

2.1 Control barrier function

Consider an affine control system

ẋ = f (x) + g(x)u, (1)

where x ∈ Rn, the drift term f ∶ Rn → Rn and the input gain g ∶ Rn → Rn×n are locally Lipschitz continuous functions.
For any initial state x(t0) ∈ Rn, x(t) is the unique solution to system (1) on a maximum time interval I(x0) = [t0, 𝜏max).
u ∈ U ⊂ Rn is the control input. U denotes the input constraint set and satisfies

U = {u ∈ R
n ∶ umin ≤ u ≤ umax}. (2)

Given a closed set C defined by a continuous differentiable function b(x) ∶ Rn → R as

C = {x ∈ R
n ∶ b(x) ≥ 0}, (3)

Int(C) = {x ∈ R
n ∶ b(x) > 0}, (4)

𝜕C = {x ∈ R
n ∶ b(x) = 0}, (5)

It is assumed that C is nonempty and has no isolated point. If for every x0 ∈ C, the state x(t) always stays in the set C for
t ∈ I(x0), the set C is called forward invariant.33 Then the safety of system (1) is guaranteed and the set C is called safe set.

To ensure set invariance, the CBF is derived. First, some important definitions are introduced.

Definition 1 (Class function34). A continuous function 𝛼 ∶ [0, a) → [0,∞) , a > 0, is a class function if it is strictly
increasing and 𝛼(0) = 0.

Definition 2 (Relative degree34). For a continuous differentiable function b(x) ∶ Rn → R with respect to system (1),
the relative degree is the number of times it needs to be differentiated along with its dynamics until the control input
explicitly shows in the corresponding derivative.

Suppose that the relative degree of function b(x) is m, and the inequality b(x) ≥ 0 is used as a constraint with the
relative degree of m. If m = 1, the definition of CBF is given.

Definition 3 (Control barrier function). Given a set C as in (3), b(x) is a CBF for system (1) if there exists a class 
function 𝛼(⋅) such that

sup
u∈U

[Lf b(x) + Lgb(x)u + 𝛼(b(x))] ≥ 0,∀x ∈ C. (6)

If b(x) is a CBF, the admission set of control input is defined as

Kcbf(x) = {u ∈ U ∶ Lf b(x) + Lgb(x)u + 𝛼(b(x)) ≥ 0}. (7)

The following lemma guarantees the set C is forward invariant.
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3664 ZHANG et al.

Lemma 1. Given the set C is defined by (3) for a continuous differentiable function b(x), if b(x) is a CBF, then Lipschitz
continuous control input u(t) ∈ Kcbf(x) renders the set C forward invariant.

2.2 High order control barrier function

If the relative degree of b(x) satisfies m > 1, the CBF can not be used to guarantee the forward invariance of set since the
control input u is no longer exhibited in (6). Therefore, the HOCBF is proposed. A sequence of functions 𝜓i(x) ∶ Rn → R,
i ∈ {0, … ,m} is first defined as

𝜓0(x) = b(x),
𝜓i(x) = 𝜓̇ i−1(x) + 𝛼i(𝜓i−1(x)), i ∈ {1, … ,m}, (8)

where 𝛼i(⋅) denotes (m − i)th order differentiable class function. A sequence of sets Ci, i ∈ {1, … ,m} are then defined
in the form of

Ci = {x ∈ R
n ∶ 𝜓i−1(x) ≥ 0}, i ∈ {1, … ,m}. (9)

Given the functions 𝜓i(x) ∶ Rn → R, i ∈ {0, … ,m}, the definition of HOCBF is as below.

Definition 4 (HOCBF12). A function b(x) ∶ Rn → R is a HOCBF of relative degree m for system (1) if there exist (m − i)th
order differentiable class functions 𝛼i, i ∈ {1, … ,m − 1}, and a class function 𝛼m such that

sup
u∈U

[Lm
f b(x) + LgLm−1

f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x))] ≥ 0, (10)

for all x ∈ C1 ∩ · · · ∩ Cm. The Equation (10) equals to 𝜓m(x) ≥ 0. S(bi(x)) denotes the remaining Lie derivative along f
with degree less than or equal to m − 1, that is,

S(bi(x)) =
m−1∑

i=1
Li

f (𝛼m−i◦𝜓m−i−1)(x). (11)

Similar to Lemma 1, the following result also guarantees the forward invariance of set C.

Lemma 2 (12). The set C1 ∩ · · · ∩ Cm is forward invariant for system (1) if x(0) ∈ C1 ∩ · · · ∩ Cm and b(x) is a HOCBF. The
Lipschitz continuous control input u belongs to the set

Ks(x) =
{

u ∈ U ∶ Lm
f b(x) + LgLm−1

f b(x)u + S(b(x)) + 𝛼m(𝜓m−1(x)) ≥ 0
}
. (12)

2.3 Optimal control with CBF

To find a control policy for system (1), the optimal control problem is considered by combining CBF constraint with
quadratic costs in control u.

J(u(t)) =
∫

T

0
||u(t) − unom(t)||2dt

s.t. Lf b(x) + Lgb(x)u + 𝛼(b(x)) ≥ 0
umin ≤ u ≤ umax, (13)

where unom is a nominal feedback controller. When unom ∉ Kcbf(x), the CBF constraint will minimally modify the nominal
controller to ensure safety. Replacing CBF condition with HOCBF condition can handle a constraint of high relative
degree.

The optimal control problem is usually solved point-wise, where the time interval [0,T] is divided into a finite number
of intervals [tk, tk+1), k = 0, 1, 2 … n. Besides, the constraint is linear in control and the states are fixed at each interval,
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F I G U R E 1 Flowchart for solving a CBF constrained optimal control problem.

so that the optimization problem eventually becomes a quadratic programming (QP) as

u∗ = arg min
u

||u − unom||
2

s.t. Lf b(x) + Lgb(x)u + 𝛼(b(x)) ≥ 0,
umin ≤ u ≤ umax, (14)

Then, the optimal control input is obtained by solving a QP at each interval, and updating states through dynamics
(1). The whole process of solving the optimal control problem with CBF constraint to guarantee the safety is shown in
Figure 1.

Remark 1. Most existing work on implementing safety-critical control with CBF solves the QP (14) in each interval using
the above method.4,12 This conversion is first applied in Reference 35, which proves the control input from QP is locally
Lipschitz continuous and a closed-form expression can be given for control input. It is important to note that this method is
computationally efficient, but continuous safety may not be satisfied between time intervals. For this problem, References
36 and 37 present improved methods by bounding the time derivative of the CBF between time intervals. Given that the
above solution is complicated and is out of the main focus of this article, the proposed framework only sets the time
intervals to be small to avoid this problem.

Remark 2. Noted that this method works conditioned on the fact that the QP (14) at every time interval is feasible. Some
methods can be used to guarantee the feasibility of QP (14). The penalty method is proposed in Reference 12 to guarantee
the feasibility of QP by adding penalty coefficient in class  function. Reference 38 introduces adaptive CBF to resolve
the conflict between CBF constraint and input constraint by introducing penalty functions in the definition of CBF and
defining auxiliary dynamics for these penalty functions. Reference 39 provides a method to find sufficient conditions to
guarantee the feasibility of QP subject to CBF constraint and input constraint. Based on the above methods, the feasibility
of QP (14) can be guaranteed. Noted that, the above methods are easily implemented in QP (14). In this case, given that
the feasibility of QP is not the main focus of this article, we will not analyze the feasibility of this part in depth to present
our proposed control framework as concisely as possible.

As the dynamic model (1) appears in the CBF constraint to enforce safety, this optimal control method works under
the condition that the dynamics model is accurate. However, this is not guaranteed for practical robotics system. So this
article shows how to ensure safety under uncertain dynamic models.

3 PROBLEM FORMULATION

This section provides assumptions on the model uncertainty of robotic systems, and formulates the safety-related
dynamics learning problem.
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3666 ZHANG et al.

Consider the Euler–Lagrangian dynamics of a robotic system in the form of

M(q)q̈ + C(q, q̇)q̇ + G(q) = u, (15)

where q ∈ Rn, M(q) ∈ Rn×n, C(q, q̇) ∈ Rn×n, and G(q) ∈ Rn are the inertia matrix, Coriolis-centrifugal matrix and
gravitational term respectively. M(q) is symmetric and positive-definite.40 u = [𝜏1, 𝜏2, … , 𝜏n]T ∈ U is the control torque.

Due to the existence of model uncertainty caused by parametric error and disturbances, the matrices M(q), C(q, q̇)
and G(q) are not precisely known. So, control synthesis is done by estimating those unknown matrices to approximate
the true dynamics.

M̂(q)q̈ + ̂C(q, q̇)q̇ + ̂G(q) + Δd(q, q̇, q̈) = u, (16)

where M̂(q), ̂C(q, q̇), and ̂G(q) represent the nominal parts of the matrices M(q), C(q, q̇), and G(q), respectively.Δd(q, q̇, q̈)
is total uncertainties. The uncertain dynamics will manifest in the CBF constraint, which makes it impossible to verify
that a given control input satisfies the inequality in (6) and lead to unsafe behavior.

In order to formulate the problem, some assumptions on the uncertainties are given.

Assumption 1 (41). The uncertain dynamicΔd(q, q̇, q̈) has low complexity under the reproducing kernel Hilbert space
(RKHS) norm, and it has bounded RKHS norm with respect to know kernel k, that is, ||Δdi ||k <∞, for all i = 1, 2, … n.

Assumption 2. The measurements q and q̇ are accessed, and the uncertainty Δd with additive noise 𝜔∽ (0, 𝛿𝜔) is
obtained through measurements q, q̇, and u.

In addition, the nominal dynamic model in (16) satisfies the following assumption.

Assumption 3. The relative degrees of CBF for the nominal dynamic model and uncertainty part in (16) are the same
as that of the true system (15). And the matrix M̂(q) is symmetric positive-definite.

Remark 3. Intuitively, it is required that a set in the state space to be safe for the true model of the system as well as for
the uncertain model, which is equivalent to Assumption 3.42 Proposition 2 in Reference 43 shows that Assumption 3 is
tenable.

Based on the above assumptions, the main safety-critical control synthesis problem in this article is formally defined
next.

Consider an affine system with uncertain part as

ẋ = f0(x) + g0(x)u + Δ(x,u), (17)

where x ∈ Rn, f0 ∶ Rn → Rn, and g0 ∶ Rn → Rn×n are locally Lipschitz and known, Δ(x,u) is uncertain part.
For the robotic system (16) satisfying Assumptions 1 and 3, the dynamic model can be formulated as the form of (17),

in which x = [q, q̇]T , f0(x) = [q̇,−M̂(q)−1( ̂C(q, q̇)q̇ + ̂G(q))]T , g0(x) = [0, M̂(q)−1]T . The form of uncertain part in (16) is

Δd(q, q̇, q̈) = (M(q) − M̂(q))q̈ + (C(q, q̇) − ̂C(q, q̇))q̇ + (G(q) − ̂G(q)), (18)

where the acceleration q̈ depends on the control input u as shown in (15). Therefore, the uncertain part in (16) is
transformed as the form of Δ(x,u) via (15), which is derived as

Δ(x,u) = Da(x) + Dm(x)u, (19)

where Da(x) = [0,−M(q)−1(C(q, q̇)q̇ + G(q)) + M̂(q)−1( ̂C(q, q̇)q̇ + ̂G(q))]T is the uncertain part of drift term, Dm(x) =
[0,M(q)−1 − M̂(q)−1]T is the uncertain part of input gain.

The aim is to find a control policy to make sure that the robotic system can track trajectories while being subjected to
certain safety constraints. The safety of robotic system is described by the superlevel set of a continuously differentiable
function b(q) ∶ Rn → R as

S = {q ∈ R
n ∶ b(q) ≥ 0}. (20)
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ZHANG et al. 3667

F I G U R E 2 Double-level safety-critical control framework.

Due to the uncertain dynamics, it is often difficult to find an solution to above problem. Therefore, this article provides
a double-level framework to solve this problem, which will be introduced in the next section.

4 DOUBLE-LEVEL SAFETY- CRITICAL FRAMEWORK

In this section, four properties associated with the high level trajectory planner and low level safety tracker are inves-
tigated. Gaussian process is used to model the unknown dynamics and a notion of GP-CBF is also developed, which
depends on the learning models to guarantee safety.

4.1 Double-level framework and its associated properties

First, a double-level framework is proposed as shown in Figure 2, in which high level design plans a safe trajectory planner
to get the safe joint angel qsafe as the reference input of low level controller. The low level tracker is a tracking controller
to track the safe trajectory in the presence of model uncertainty. For the high level planner, let the desired trajectory of
robotic end-effector be P(t) ∈ Rn, then the tracking error is defined as

e = T(q) − P(t), (21)

ė = Jy(q)q̇ − Ṗ(t), (22)

where T(q) ∈ Rn is the position of end-effector, Jy(q) is the Jacobian matrix. High level planner needs to satisfy the
following properties to plan a safe trajectory via q̇.

Property 1 (High level safety). The high level planner adds a constraint on q̇ to guarantee the safety, that is, if the initial
position q(0) ∈ S, then the constrained q̇ makes joint angle q(t) ∈ S for all t > 0.

Property 2 (High level tracking). The high level planner gets the safe joint angle qsafe(t) ∈ S on the basis of ensuring
safety and also makes the tracking error e converge to 0.

The low level tracker guarantees that the planned trajectory can be safely tracked by the true system through controller
u. And the following properties are required.

Property 3 (Low level safety). The low level tracker adds a constraint on control input u to guarantee the control safety,
that is, if the initial position q(0) ∈ S, then the control u makes joint angle q(t) ∈ S for all t > 0.

Property 4 (Low level tracking). The low level tracker gets the control input u on the basis of ensuring safety and also
makes the tracking error q(t) − qsafe(t) → 0.

4.2 Gaussian process regression

Since the low level tracker depends on the dynamic model, the unmodeled dynamicsΔ(x,u)may lead to unsafe. To solve
this problem, Gaussian process (GP) is used for estimating Da(x) and Dm(x). GP is a kernel-based regression method for
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3668 ZHANG et al.

estimating the functions from data. Compared to other regression methods, GP is data efficient, which can obtain an
approximate estimation of the unmodeled dynamics using a small number of data-points. GP is dentally introduced in
the following.

Given training data  = {z(i), r(i)}N
i=1, where z(i) is the ith input data, and r(i) is the ith output data with measure-

ment noise as shown in Assumption 2. The objective of GP is to describe the model of the uncertain dynamics as
r∽ (𝜇d(z), 𝜎2

d(z)), where 𝜇d(z) is the mean and 𝜎2
d(z) is the covariance. The mean and covariance are parameterized by a

kernel function k(z(i), z(j)), which describes the similarity between two data points z(i), z(j). Based on the training data and
Assumption 2, the posterior distribution of unmodeled dynamics at a query point z∗ by mean and covariance as

𝜇d(z∗) = k
T
(z∗)(K + 𝛿𝜔)−1g, (23)

𝜎
2
d(z

∗) = k(z∗, z∗) − k
T
(z∗)(K + 𝛿𝜔)−1k(z∗), (24)

where k = [k(z(1), z∗), k(z(2), z∗), … , k(z(N), z∗)]T ∈ RN and the kernel matrix K ∈ RN×N is defined as

K =
⎡
⎢
⎢
⎢
⎣

k(z(1), z(1)) · · · k(z(1), z(N))
⋮ ⋱ ⋮

k(z(N), z(1)) · · · k(z(N), z(N))

⎤
⎥
⎥
⎥
⎦

.

On the basis of Assumption 1, the difference between the unmodeled dynamics Δ(z∗) and the mean 𝜇d(z∗) can be
bounded on the function

𝜇d(z∗) − k𝛿𝜎d(z∗) ≤ Δ(z∗) ≤ 𝜇d(z∗) + k𝛿𝜎d(z∗), (25)

by probability (1 − 𝛿), where k𝛿 is a design parameter that determines 𝛿.

Remark 4. The training of GP becomes problematic as the amount of data increases, because the complexity of computing
the matrix inverse in (23) and (24) is (N3). This problem can be overcome by batch training the GP model with random
sample data points.

4.3 Gaussian process-based control barrier function

According to the definition of CBF, the CBF condition for safety-critical control of system (17) is the form as

𝜕b(x)
𝜕x

(f0(x) + g0(x)u + Da(x) + Dm(x)u) + 𝛼(b(x)) ≥ 0, (26)

where Da(x) and Dm(x) need to be estimated by GP.
The training data = {z(i), r(i)}N

i=1 for Da(x) is sampled with input signal u = 0, in which z(i) = [q, q̇] ∈ R2×n is the input
data and r(i) = Da(z(i)) + 𝜔 ∈ Rn is the output data. The estimation of uncertain part in drift term for a query point x∗ is

𝜇
a
d(x

∗) − k𝛿𝜎a
d(x

∗) ≤ Da(x∗) ≤ 𝜇a
d(x

∗) + k𝛿𝜎a
d(x

∗), (27)

where 𝜇a
d(x

∗) and 𝜎a
d(x

∗) are the mean and standard-deviation predictions for query point x∗.
Note that in contrast to Da(x), Dm(x) is a matrix in Rn×n. It poses a difficulty in building the dataset since the output

data r(i) = Dm(z(i)) cannot be obtained directly. To this end, an indirect method is proposed to estimate 𝜕b(x)
𝜕x

Dm(x) ∈ Rn.
First, the uncertain partΔ(x,u) is estimated by GP. The training data = {z(i), r(i)}N

i=1 forΔ(x,u) is sampled with nom-
inal controller, in which z(i) = [x,u] ∈ R2n is the input data and r(i) = Δ(z(i)) + 𝜔 ∈ Rn is the output data. The estimation
of Δ(x,u) for a query point z∗ = [x∗,u∗] is

𝜇
𝛿

d(z
∗) − k𝛿𝜎𝛿d(z

∗) ≤ Δ(z∗) ≤ 𝜇𝛿d(z
∗) + k𝛿𝜎𝛿d(z

∗), (28)

where 𝜇𝛿d(z
∗) and 𝜎𝛿d(z

∗) are the mean and standard-deviation predictions for query point z∗.
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ZHANG et al. 3669

According to (27) and (28), Dm(x∗)u∗ can be bounded as

𝜇
𝛿

d(z
∗) − 𝜇a

d(x
∗) − k𝛿

[
𝜎
𝛿

d(z
∗) + 𝜎a

d(x
∗)
]
≤ Dm(x∗)u∗ ≤ 𝜇𝛿d(z

∗) − 𝜇a
d(x

∗) + k𝛿
[
𝜎
𝛿

d(z
∗) + 𝜎a

d(x
∗)
]

(29)

with probability 1 − 𝛿.
Then, 𝜕b(x)

𝜕x
Dm(x∗)u∗ can be bounded as

𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗) − 𝜇a

d(x
∗)
)
− k𝛿

|
|
|
|

𝜕b(x)
𝜕x

|
|
|
|
[𝜎𝛿d(z

∗) + 𝜎a
d(x

∗)] ≤ 𝜕b(x)
𝜕x

Dm(x∗)u∗

≤
𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗) − 𝜇a

d(x
∗)
)
+ k𝛿

|
|
|
|

𝜕b(x)
𝜕x

|
|
|
|

[
𝜎
𝛿

d(z
∗) + 𝜎a

d(x
∗)
]
. (30)

If there exist query points z∗j = [x
∗
,u∗j ], where j = 1, … ,n, u∗j = [0, … , cj, … , 0] and cj ≠ 0, the estimation of

𝜕b(x)
𝜕x

Dm(x∗) can be bounded as

Q ≤ 𝜕b(x)
𝜕x

Dm(x∗) ≤ R, (31)

where Q,R ∈ Rn. For cj > 0, the jth component of Q and R are

Qj =
𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗
j ) − 𝜇

a
d(x

∗)
)
− k𝛿||

𝜕b(x)
𝜕x

|
|

[
𝜎
𝛿

d(z
∗
j ) + 𝜎

a
d(x

∗)
]

cj
,

Rj =
𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗
j ) − 𝜇

a
d(x

∗)
)
+ k𝛿||

𝜕b(x)
𝜕x

|
|

[
𝜎
𝛿

d(z
∗
j ) + 𝜎

a
d(x

∗)
]

cj
.

For cj < 0, the jth component of Q and R are

Qj =
𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗
j ) − 𝜇

a
d(x

∗)
)
+ k𝛿||

𝜕b(x)
𝜕x

|
|

[
𝜎
𝛿

d(z
∗
j ) + 𝜎

a
d(x

∗)
]

cj
,

Rj =
𝜕b(x)
𝜕x

(
𝜇
𝛿

d(z
∗
j ) − 𝜇

a
d(x

∗)
)
− k𝛿||

𝜕b(x)
𝜕x

|
|

[
𝜎
𝛿

d(z
∗
j ) + 𝜎

a
d(x

∗)
]

cj
.

After Da(x) and 𝜕b(x)
𝜕x

Dm(x) are estimated by GP, the GP-based control barrier function (GP-CBF) can be defined as
following.

Definition 5. If the given set C is the superlevel set of a continuously differentiable function b(x) as defined in (3), and
the uncertain part in system (17) is estimated by (27) and (31), then the function b(x) is a GP-based control barrier function
(GP-CBF) if there exists class function 𝛼(⋅) such that

sup
u∈U

[

Lf0 b(x) + Lg0 b(x)u + L𝜇a
d
b(x) − k𝛿

|
|
|
|

𝜕b(x)
𝜕x

|
|
|
|
𝜎

a
d(x) +min(Qu,Ru) + 𝛼(b(x))

]

≥ 0, ∀x ∈ C. (32)

An admissible set of control input is obtained by GP-CBF:

Kgp-cbf(x) =
{

u ∈ U ∶ Lf0 b(x) + Lg0 b(x)u + L𝜇a
d(x)b(x)

− k𝛿
|
|
|
|

𝜕b(x)
𝜕x

|
|
|
|
𝜎

a
d(x) +min(Qu,Ru) + 𝛼(b(x)) ≥ 0

}

. (33)

The next result provides a probabilistic guarantee for the forward invariance of set C.

Theorem 1. If b(x) is a GP-CBF, the Lipschitz continuous control input u(t) ∈ Kgp-cbf(x) renders set C forward invariant
with probability at least 1 − 𝛿.
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3670 ZHANG et al.

Proof. From (27) and (31), the following probability can be obtained.

P =
{

∀x ∈ X ,∃u ∈ U ∶ 𝜕b(x)
𝜕x

(f0(x) + g0(x)u + Da(x) + Dm(x)u) + 𝛼(b(x)) ≥ 0
}

= 1 − 𝛿, (34)

where Da(x) and Dm(x) satisfy (27) and (31), respectively.
Define the events A1, … ,A4, where A1 means that there exists u satisfying (32) for all states, A2 represents that there

exists u satisfying

𝜕b(x)
𝜕x

(f0(x) + g0(x)u + Da(x) + Dm(x)u) + 𝛼(b(x)) ≥ 0, (35)

for all states, A3 represents that there exists u satisfying (6) for all states, and A4 represents that the set C is forward
invariant.

Since the events A2 → A3 and A3 → A4 are mutually independent, the relationship of events is P{A1 → A4} ≥
P{A2 → A4} = P{A2 → A3}P{A3 → A4}. The probability P{A3 → A4} = 1 is obtained from Lemma 1, and P{A2 → A3}
is shown in (34). Thus, the GP-CBF b(x) renders set C forward invariant with probability at least 1 − 𝛿. ▪

5 CONTROLLER SYNTHESIS

In this section, how to synthesize safe controller satisfying Properties 1–4 for uncertain system by GP will be discussed.
First, CBF is used to plan a safe trajectory in high level loop. Then, GP estimates the uncertain part of dynamic model,
and a GP-CBF based controller is designed to track the safe trajectory in low lever loop.

For robotic systems, the high level planner plans a safe trajectory, which is determined by safe velocity q̇safe. In order
to satisfy Property 1, CBF b(q) is used to ensure the forward invariance of safety set defined in (20), and it adds a constraint
on velocity q̇ as

𝜕b(q)
𝜕q

q̇ + 𝛼(b(q)) ≥ 0. (36)

For Property 2, the trajectory errors are described by (21) and (22). If q̇ satisfies Jy(q)q̇ = Ṗ − 𝛾e for 𝛾 > 0, ė = −𝛾e ⇒
e(t) = exp(−𝛾t)e(0). Therefore, by picking

q̇d = Jy(q)†(Ṗ − 𝛾e(t)), (37)

where Jy(q)† = Jy(q)T(Jy(q)Jy(q)T)−1, it holds e → 0, then Property 2 is satisfied.
According to the above analysis, a QP-CBF is formulated unifying (36), (37) and physical limits on velocity to obtain

the safe velocity q̇safe.

q̇safe = arg min
q̇

||q̇ − q̇d||
2

s.t.
𝜕b(q)
𝜕q

q̇ + 𝛼(b(q)) ≥ 0

q̇min ≤ q̇ ≤ q̇max. (38)

The low level tracker satisfying the Properties 3 and 4 is designed to track the safe velocity q̇safe based on dynamic
model. A nominal controller and the GP-CBF condition (32) are designed for Properties 3 and 4, respectively. The
schematic of controller-synthesis framework in low level loop is depicted in Figure 3, where a feedback control loop
between the GP, GP-CBF and the dynamic model is created.

Remark 5. The nominal controller in low level tracking loop should ensure that the robot can track the safe trajectory.
For robotic systems with uncertain dynamic model, many works have been proposed to guarantee the tracking perfor-
mance,44,45 among which PID controller is one of the most convenient control methods to implement. Therefore, in this
article, a PID controller is designed as the nominal controller.
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ZHANG et al. 3671

F I G U R E 3 Schematic diagram of the proposed controller-synthesis framework using GP-CBF in low level tracker loop.

(A) (B)

F I G U R E 4 Trajectories of robot end-effector. (A) The planning safe trajectory. (B) The tracking trajectory with different controllers.

Obviously, the relative degree of b(q) is two for the robotic system. The GP-CBF needs to be expanded to Gaussian
process-based HOCBF (GP-HOCBF) to guarantee the safety of robotic system.

For a continuous differentiable function b(x) ∶ Rn → R, a sequence of functions 𝜓i(x) ∶ Rn → R, i ∈ {0, … ,m − 1}
are first defined as

𝜓0(x) = b(x)

𝜓i(x) =
𝜕𝜓i−1(x)
𝜕x

(
f0(x) + 𝜇a

d(x)
)
− k𝛿

|
|
|
|

𝜕𝜓i−1(x)
𝜕x

|
|
|
|
𝜎

a
d(x) + 𝛼i(𝜓i−1(x)), (39)

where 𝛼i(⋅) is the (m − i)th order differentiable class  function. A sequence of sets Ci, i ∈ {1, … ,m} are shown in (9).
Then the GP-HOCBF can be defined as:

Definition 6 (GP-HOCBF). A function b(x) ∶ Rn → R is a Gaussian process-based HOCBF (GP-HOCBF) of relative
degree m for system (17), if there exist (m − i)th order differentiable class  functions 𝛼i, i ∈ {1, … ,m}, and a class 
function 𝛼m such that

𝜕𝜓m−1(x)
𝜕x

(
f0(x) + 𝜇a

d(x) + g0(x)u
)
− k𝛿

|
|
|
|

𝜕𝜓m−1(x)
𝜕x

|
|
|
|
𝜎

a
d(x)

+min(Qu,Ru) + 𝛼m(𝜓m−1(x)) ≥ 0, (40)

for all x ∈ C1 ∩ · · · ∩ Cm.
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3672 ZHANG et al.

The controller for tracking the safe velocity is designed through a QP subject to GP-HOCBF as

usafe = arg min
u

||u − unom||
2

s.t. L2
f0

b(q) + Lg0 Lf0 b(q)u +
𝜕b(q)
𝜕q

𝜇
a
d − k𝛿

|
|
|
|

𝜕b(q)
𝜕q

|
|
|
|
𝜎

a
d

+min(Qu,Ru) + (k1 + k2)Lf0 b(q) + k1k2b(q) ≥ 0,
umin ≤ u ≤ umax, (41)

where k1 > 0 and k2 > 0 are parameters of the class functions.
Lastly, as the controllers in high level loop and low level loop are designed respectively, the safety of robotic system

with uncertain dynamics is guaranteed. The double-level safety-critical control framework is summarized in Algorithm 1.

Algorithm 1. Double-level safety-critical control framework

Input: The desired trajectory P, CBF b(q), the estimated matrix M̂(q), ̂C(q, q̇), and ̂G(q), the parameters in the QP 𝛾 , k1,
k2, the parameters of nominal controller kp, kd, ki

Output: The training dataa andm, the safe controller usafe
 = ∅
for t = ti, i = 1, 2,… ,N do

Solve the QP (38) get q̇safe(t)
Update the qsafe(ti) = qsafe(ti−1) + q̇safe(t)

end for
for t = ti, i = 1, 2,… ,N do

get x(ti) = [q(ti), q̇(ti)] and Da(x(ti)) with u = 0
get x(ti) and Δ(x(ti),unom(ti)) with u = unom(ti)
a

i ← ([x(ti)],Da(x(ti))),m
i ← ([x(ti),unom(ti)],Δ(x(ti),unom(ti))

a = a ∪a
i ,m = m ∪m

i
end for
for t = ti, i = 1, 2,… ,N do

train GP models by sampling random froma,m

predict the 𝜇a
d and 𝜎a

d for Da(q(ti), q̇(ti))
predict the Q and R for 𝜕b(q)

𝜕q
Dm(q(ti), q̇(ti))

solve the QP (41) get usafe(ti);
update the states to get q(ti+1), q̇(ti+1)

end for

Remark 6. In learning process, a very important property is that the data has to be independently and identically
distributed. However, the training data sampled along the safe trajectory with the nominal controller violates this
property. Similar to Reference 46, randomizing the samples can solve the problem and reduce the variance of the
updates.

6 SIMULATION

In this section, to verify the effectiveness of the proposed framework, it is simulated on a virtual robot UR3 located in the
scene designed in Coppeliasim. The end-effector of UR3 robot is required to achieve an obstacle avoidance task.

The safety constraint is described by a continuously differentiable function b(q) ∶ R6 → R as:

b(q) = (x(q) − x0)2 + (y(q) − y0)2 + (z(q) − z0)2 − r2 ≥ 0, (42)

where x(q), y(q), and z(q) are the coordinates of end-effector. x0, y0, and z0 are the coordinates of circular obstacle.
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ZHANG et al. 3673

F I G U R E 5 Response curves of b(q) and 𝜓1(q, q̇).
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F I G U R E 6 Estimates of each dimension of Da(x) and the 95% confidence interval

The nominal model of UR3 manipulator is set as

⎧
⎪
⎨
⎪
⎩

M̂(q) = 0.8M(q)
̂C(q, q̇) = 0.9C(q, q̇)
̂G(q) = 0,

(43)

where M(q), C(q, q̇), and G(q) are given in Reference 40.

Remark 7. Noted that the model uncertainty is greater than 10% of the nominal model, which is a relatively large uncer-
tainty in engineering practice. Therefore, it is convincing to use the above nominal model in simulation to verify the
effectiveness of the proposed framework.
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3674 ZHANG et al.

F I G U R E 7 Estimates of each dimension of Δ(x,u) and the 95% confidence interval

For the obstacle-avoiding task, the circular obstacle area is centered at (−0.2, 0, 0.51) with the radius r = 0.03. Both
the initial and final joint angles are [0, 0, 0, 0, 0, 0]deg. The motion range of each joint of the UR3 manipulator is set as
(−𝜋, 𝜋). The planning trajectory is completed with the parameter 𝛾 = 10 and class function 𝛼(b(q)) = 10b(q). Then the
uncertain part of dynamic model is learned by GPML toolbox. To track safe trajectory, the class  functions of GP-CBF
set as 𝛼1(b(q)) = 10b(q) and 𝛼2(𝜓1(q, q̇)) = 30𝜓1(q, q̇).

The planned and tracked safe trajectories are illustrated in Figure 4. In Figure 4B, the tracking trajectory is obtained
by using the controller that does not consider the uncertainty of dynamic model (see the pink dotted line). Obviously, it
does not avoid the obstacle. In contrast, the end effector controlled using GP-CBF successfully avoids the obstacle (see
the solid blue line), which reveals the importance of safe control with learning model. Figure 5 shows the response curves
of function b(q) and 𝜓1(q, q̇) under the GP-CBF condition, both of which satisfy the constraints. Figures 6 and 7 are the
estimates of the uncertain parts Da(x) and Δ(x,u), respectively. As shown in the plots, most of the true uncertainties
(see the red lines) fall within the 95% confidence interval (see the gray fill) formed by the estimates, indicating that the
estimations approximately capture the true uncertainties.

7 CONCLUSIONS

In this article, a double-level control framework is developed for robotic systems to deal with safety-critical control with
the uncertain dynamics. First, the high level planer loop plans a safe trajectory via CBF, which is used as the reference
input in low level tracker loop. Afterward, the uncertainty of dynamic model is learned by GP regression method. On this
basis, GP-CBF is proposed in low level tracker loop to achieve safe tracking. Then, the controller-synthesis procedure that
satisfies the necessary properties of double-level safety-critical framework is investigated. Finally, the method is applied
to a simulated UR3 robot to demonstrate the effectiveness.
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