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1 Nomenclature

� For an object A, End(A) is the set of endomorphisms on A.

� Exclusive or
XOR or =

� Floor and ceiling functions

bxc = max{m ∈ Z|m ≤ x}, dxe = min{m ∈ Z|m ≥ x}

� Infinity norm for a vector ~x = (x1, · · · , xn).

‖~x‖∞ = max
i
|xi|

� Intervall Ia(b) = {a, a + 1, . . . , b − 1, b} for a, b ∈ Z and the basic arithmetic
operations are defined by acting element-wise, e.g.

Ia(b)/2 =

{
a

2
,
a+ 1

2
, . . . ,

b− 1

2
,
b

2

}
.

� Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
� Permutation π ∈ σ(A) for a finite set A = {a1, a2, · · · an−1, an} and σ(A) the

permutation group on A

π =

(
a1 a2 · · · an−1 an

π(a1) π(a2) · · · π(an−1) π(an)

)
� (n+m)-dimensional space-time has n space dimensions and m time dimensions.

� The trace over a set of sites A written as TrA.

� Unit operator/Identity operator 1

� Visualisation of the parital trace over a subsystem

Tr2

[
U(1,2)

]
= U = U
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2 Introduction

The study of many-body quantum systems is an ongoing field of research [1–5]. However,
for two or higher dimensional systems exact solutions are rare and numerical methods
hit a so-called ”exponential wall” [5]. In [1] a special class of operators, called dual
unitary operators, was introduced in order to further the development of an ergodic
theory for quantum many-body systems. The general setting can be motivated by us-
ing a Trotterisation procedure. This is done in detail in section 3 and will serve as
a gentle start to our journey. The use of dual unitaries as a time-evolution leads to
exactly solvable correlation functions. While this was proven in [1], we will show in
section 4 a slight variation of the proof in order to develop some of the language and
methods, while still in the easy to visualize case of (1 + 1)-dimensional space-time. We
are also going to discuss some general properties of dual unitaries and give a proper def-
inition. In section 5 we will make the jump to (2 + 1)-dimensional space-time. We will
introduce ternary unitary operators that are a canonical extension of the dual unitary
operators. A definition and basic properties will be discussed and finally we are going to
see the computation of exact correlation functions for ternary unitaries. In this section
still, we will walk back a little and think about what exactly leads to these exact solu-
tions by exploring different choices of time-evolutions for (2+1)-dimensional space-time.

Equipped with this knowledge we can continue further. We will generalize the con-
cept and proof to an arbitrary number of spatial dimensions, leading to the definition of
(∆ + 1)-unitary operators in section 6. In all three sections we found some operator val-
ued linear maps My. They are discussed in more detail in [1]. However, that discussion
will be postponed until section 6, since it is very abstract even for (1 + 1)-dimensional
space-time and fairly easy to generalise. In section 7 we explore a little side-route. It
will be even more abstract by analysing the concept behind the different kinds of unitary
definitions. To this extend we make the index splitting of tensors more precise. We find
further extensions and supersets of our (∆ + 1)-unitaries that are already analysed in
the literature and have surprising applications in other fields.

In section 8, the final section introducing new content, we come back from the very
abstract analysis to (1 + 1)-dimensional space-time. Why do we do this? A potential
way to avoid the exponential wall is to use quantum computers, for example by com-
puting tensor networks diagrams. However, the tensor networks in the previous section
include a lot of traces, some of them over time. [6] provides the concept of solvable states,
which allow us to still obtain exact solutions for certain physical quantities. At the same
time, it gets rid of most of the difficult to realise traces. This allows us to convert a
tensor network diagram into a quantum circuit consisting of unitary gates. Since we
know the exact solutions, we could use these quantum circuits to check the accuracy of
our quantum computers, i.e. we can use it as a benchmark. So we will end the journey
with a concrete application of the explored concept of dual and ternary unitaries.
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3 Motivation via Trotterisation

While one could simply define dual unitary operators, one can also motivate them more
thoroughly. Doing so makes the physical interpretation easier. We can start this mo-
tivation with one of the basic characteristics of quantum mechanics. It states that the
time-evolution of a quantum mechanical system can be described using a Hamiltonian H,
which is a hermitian operator. Assuming H does not depend on time, we may describe
the time-evolution explicitly via

U(t) = e−iHt, (1)

where the starting time is assumed to be t0 = 0 [7] and natural units are used. Assume
the Hamiltonian is of the form

H =
∑
j

Hj, (2)

where each Hj is a hermitian operator. We apply a Trotter-decomposition of first order
to (1), i.e.

e−iHt =
∏
j

e−iHjt +O(t2). (3)

The error occurs due to the possible non-commutativity of the Hj [8]. This decomposi-
tion is useful, as we want to examine systems made of smaller subsystems. To be more
explicit assume a 1D-chain consisting of 2L subsystems. Each subsystem x will be in a
state |ψx〉 ∈ Hx, where Hx is a d-dimensional Hilbert space, e.g. Cd. We will enumerate
the different sites as follows:

0 1 2 3
· · ·

2L− 2 2L− 1x . (4)

Restricting ourselves to nearest-neighbour interactions, the Hamiltonian acting on the
state of the complete system |Ψ〉 ∈ H =

⊗
xHx becomes

H =
2L−1∑
x=0

Hx,x+1. (5)

Here periodic boundary conditions were assumed, i.e. H2L−1,2L = H2L−1,0. A simple
example of such a model is the Heisenberg spin-chain model [9] with the Hamiltonian

HHB

(
~J
)

= −
2L−1∑
x=0

(
J1S

1
xS

1
x+1 + J2S

2
xS

2
x+1 + J3S

3
xS

3
x+1

)
. (6)

The Si are the three spin operators for spin-d−1
2

systems. The sum in a Hamiltonian of
the form (5) can be rearranged to

H =
L−1∑
x=0

H2x,2x+1 +
L−1∑
x=0

H2x+1,2x+2 = He +Ho, (7)
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where the indices e and o are short for even and odd respectively. We split our Hamilto-
nian into a sum of two. Note that the terms in each individual sum commute. We can
insert (7) into (3) and by choosing t small enough we obtain

U(t) = e−iHt ≈ e−iHote−iHet = UoUe, (8)

where we define the time-evolutions to be

Ue :=
L−1⊗
x=0

e−itH2x,2x+1 (9)

Uo :=
L−1⊗
x=0

e−itH2x+1,2x+2 . (10)

We can apply multiple time-steps (8) to cover any finite time interval T . This gives us

U(T ) ≈ (UoUe)
T
t =

(
L−1⊗
x=0

e−itH2x+1,2x+2 ·
L−1⊗
x=0

e−itH2x,2x+1

)T
t

. (11)

Our overall time-evolution U(T ) to the final time T is split into T
t

steps. For each step
we have two substeps. In the first we apply a unitary time-evolution to every subsystem
with an even index and the system to its right. The second substep applies the evolution
to every subsystem with an odd index and the system to its right. This is a little hard
to picture, so it is reasonable to develop a good visualisation. We will proceed with that
development in the next section.

4 Dual Unitary Operators

4.1 Visualisation and Definition

There is one thing to note before going into the visualisation as proposed in [1]. While
we assumed U

e and U
o to have the form (9), the discussion later on allows for more

general operators

Ue =
L−1⊗
x=0

U(2x,2x+1) (12)

Uo =
L−1⊗
x=0

U(2x+1,2x+2), (13)

where U(x,y) ∈ End(Hx ⊗Hy) are unitary. Each of the two Hilbert spaces has a basis of
the form {|i〉x | i ∈ I0(dim(Hx)−1)}. Thus we can describe each system using a separate
index. This allows us to express U(x,y) as a 4-tensor with the tensor elements defined as(

U(x,y)

)mn
ij

= 〈m|x ⊗ 〈n|y U |i〉x ⊗ |j〉y. (14)
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To ease notation the indices x and y indicating which subsystems are acted upon are
usually left out unless explicitly required. In common tensor network fashion [10] we
may represent U and U † graphically as

i

m

j

n

= Umn
ij

i

m

j

n

=
(
U †
)mn
ij

= (U ij
mn)

∗
. (15)

Note that, while symmetric symbols were used, the operators need not be symmetric in
any way and the indices are usually left out of the tensor network diagrams. We redefine
U to be exact in terms of Ue and Uo and visualize one time-step (8) as

U = U
o
U
e =

0 1 2 3 4 5 6 7 8 9
x

. (16)

The dotted line represents the periodic boundary conditions, where the subsystem 0 is
equal to the subsystem 2L, in this case L = 5. We can again combine multiple time-steps
to reach later times

U
t =

0 1 2 3 4 5 6 7 8 9 10
x0

1/2

1

3/2

2

5/2

3

7/2

2

t

, (17)

where t is now the number of time steps. We thus have achieved a nice visual represen-
tation of the time-evolution of a 1D-chain of length L2 of quantum mechanical systems
Hx. For simplicity we assume Hx to be the same at every site x. We will later on use
space-time coordinates (x, t) which are quite self-explanatory with respect to the above
visualisation. Whenever we use space- and time-coordinates to describe a position in
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such space-time lattices, we will call them events. When only the spatial component x
is used, we will stick to calling them sites.

After this is out of the way, we can finally get to the definition of dual unitary
operators. Summing up the definitions in [1]:

Def. 1. Let Hloc be a Hilbert space of finite dimension d with basis {|j〉 | j ∈ I0(d− 1)}.
The dual operator Ũ of an operator U ∈ End(H⊗2

loc) is defined via

〈m| ⊗ 〈n|Ũ |i〉 ⊗ |j〉 := 〈j| ⊗ 〈n|U |i〉 ⊗ |m〉. (18)

An operator U is called dual unitary if both U and Ũ are unitary.

For d = 2 we can use an explicit matrix representation and get

U =


u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33



Ũ =


u00 u20 u02 u22

u10 u30 u12 u32

u01 u21 u03 u23

u11 u31 u13 u33

 . (19)

The colours show which elements changed position with each other. Intuitively the
duality exchanges the role of time and space: While the product of two operators U and
V is the following contraction

V U =

U

V

, (20)

the product of their duals corresponds to

Ṽ Ũ = U V . (21)

Note that the tildes in the tensor network diagram were not forgotten, since in the di-
agram the correct multiplication of dual tensors can be achieved by using the original
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tensors and contracting a different combinations of legs compared to the usual multipli-
cation. Assuming time and space are along the same axes as before, we may visualise
the two conditions used for a dual unitary operator U . The usual unitary condition

UU † = U †U = 1 =̂ = = (22)

and the dual unitary condition

Ũ Ũ † = 1 =̂ =

Ũ †Ũ = 1 =̂ = . (23)

Details on the folding of the product of the dual operators and explicit calculations with
indices can be found in the supplementary material of [1]. Before using these newly found
concepts to compute interesting properties, there is one more thing to think about. Do
dual unitary operators actually exist? The answer is yes and here are two examples:

Example 1. For the qubit-case, i.e. d = 2, the SWAP-gate on two qubits is a dual
unitary operator. It is actually self-dual

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 = S̃WAP. (24)

This fact that can easily be seen from its visualisation

SWAP = . (25)

Therefore SWAP2 = 1 implies the dual unitarity.

10



Example 2. We can find a class of dual unitaries using the nearest neighbour inter-
actions of the XXZ-model for d = 2. The model is described by the nearest neighbour
Hamiltonian [11]

H
(j,j+1)
XXZ [J ′, J ] = J ′

(
σxj ⊗ σxj+1 + σyj ⊗ σ

y
j+1

)
+ Jσzj ⊗ σzj+1, (26)

which is a special case of the aforementioned Heisenberg model (6). We can describe the
nearest neighbour interaction by [11]

UXXZ [J ′, J ] = e−iH
(j,j+1)
XXZ [J ′,J ]. (27)

UXXZ [J ′, J ] is dual unitary for J ′ = π
4
. We will see why in a second.

A parametrisation of all dual unitary gates with d = 2 can be used to show the dual
unitarity of our second example. Such a parametrisation was found in [1]:

Property 1. There exists a parametrisation for all dual unitary operators for the qubit
case d = 2. It is given by

U = eiφ(u+ ⊗ u−)V [J ](v− ⊗ v+), (28)

with φ, J ∈ R, u±, v± ∈ SU(2) and

V [J ] = exp
[
−i
(π

4
σx ⊗ σx +

π

4
σy ⊗ σy + Jσz ⊗ σz

)]
. (29)

The proof is detailed in the supplemental material of [1]. We can find the parameters
for our two examples.

1. For the SWAP-gate v±, u± = 1 and φ, J = π
4
. Thus

SWAP = ei
π
4 V

[π
4

]
. (30)

2. By comparing (28) and (27) we can clearly see that [1]

UXXZ

[π
4
, J
]

= V [J ] (31)

and thus it is a dual unitary operator with v±, u± = 1 and φ = 0.+

Let the set of dual unitaries of local dimension d be denoted by DU(d) and shorten
DU := DU(2).

11



4.2 Correlation Functions in 1+1 Dimensions

We will now proceed to a computation that gives a first glimpse at the usefulness of dual
unitary operators. The quantity to be computed is the dynamical correlation function
of local operators in the infinite temperature state. It is defined as

Dαβ(x, y, t) =
1

d2L
Tr[aαxU

−taβyU
t], (32)

with x, y ∈ I0(2L − 1), t ∈ N, and {aαx} being a basis of the space of local operators
at site x. This computation has already been done in [1] and our calculations will be
very similar. However, in the process we will stray away from the visual proof as it is
done in [1] and give more abstract arguments in parallel. This is to aid in the later
sections, where a proper visualisation is harder to achieve and more abstract methods
are necessary. We can visualise (32) as

aβy

aαx

Dαβ(x, y, t) = 1
d2L

. (33)

The first trick is to choose the aα as Hilbert-Schmidt orthonormal Tr[aαaβ] = dδαβ and
a0 = 1. This implies

Tr[aαx ] = dδα,0. (34)

The existence of such a basis follows from the fact that all linear operators on a finite
dimensional Hilbert space are Hilbert-Schmidt operators. More information on those
can be found in [12].

First we look at the easy case with α = 0. This implies

D0β(x, y, t) =
1

d2L
Tr[U−taβyU

t] =
1

d
Tr[aβy ] = δ0,β, (35)
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aβy = aβy
c(y)

= aβy

Figure 1: Visualisation of the method to find LC. The blocked events, i.e. those that
are in LC are marked in green. In each step the usual unitary condition (22)
is used.

where the cyclicity of the trace was used for the second equality. Analogously if β = 0,
we find Dα0(x, y, t) = δα0.

We will now assume α, β 6= 0. One could follow [1] and just use the usual unitary
condition (22) wherever possible to immediately get a light-cone structure. But we will
do this step by step. To do so we want to find the set LC of events that are such that
operators applied on them cannot be contracted with their hermitian conjugate to the
identity via the usual unitary condition (22). Furthermore let LC(τ) be the set of sites
such that for z ∈ LC(τ), (z, τ) ∈ LC. While reading the next few lines, it is helpful to
refer to Fig. 1, where the first three steps of the method are visualised. We begin at time
τ = t, where we apply aβy at site y. Thus for all U(2k+1,2k+2) with y ∈ {2k + 1, 2k + 2}
applied at time τ = t− 1

2
we cannot make use of (22). There is exactly one such k and

it is such that
{2k + 1, 2k + 2} =

{
2
⌈y

2

⌉
− 1, 2

⌈y
2

⌉}
=: c(y). (36)

Thus LC(t − 1
2
) = c(y). Now we continue this to the next time-step, where we cannot

apply the usual unitary condition (22) for U(2k,2k+1) applied at time τ = t−1, if {2k, 2k+
1}∩c(y) 6= ∅. For the next time-step the condition would be {2k+1, 2k+2}∩({min c(y)−
1,max c(y) + 1} ∪ c(y)) 6= ∅. This will continue until we reach τ = 0. Due to our odd-
even-change in the application of the dual unitaries the set LC(τ) of what we may call
blocked sites increases by one to the right and left each for every step we move backwards
in time. This gives us the recursion relation

LC
(
τ − 1

2

)
= LC(τ) ∪

{
z ∈ I0(2L− 1)

∣∣∣ max
ỹ∈LC(τ)

|z − ỹ| = 1

}
, (37)
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with LC
(
τ − 1

2

)
= c(y) as base case. We can solve the recursion and get

LC(τ) =

{
z ∈ I0(2L− 1)

∣∣∣ max
ỹ∈c(y)

|z − ỹ| ≤ (2t− 1)− 2τ

}
. (38)

Thus we find

LC =
⋃

τ∈I0(t−1)/2

LC(τ)

=

{
(z, τ) ∈ I0(2L− 1)× I0(2t− 1)/2

∣∣∣ min
ỹ∈c(y)

|z − ỹ| ≤ (2t− 1)− 2τ

}
, (39)

which has a light-cone-like structure. If we apply (22) to all operators that do not act
on an event in LC, our visual representation (33) changes to

aβy

aαx

1
d4t

. (40)

The events in LC are marked in green. Note that we immediately get the result

Dαβ(x, y, t) ∝ Tr[aαx ] = 0 for min
ỹ∈c(y)

|x− ỹ| > 2t− 1. (41)

Up to now we did not need the dual unitary property and the analysis done is true for
all unitary operators.
From here on we assume that L ≥ 2t. If we further assume |x− y| ≤ 2t− 1, there exists

14



a structure of the form

=

(z, 0)

, (42)

or possibly its mirror image, for z ∈ LC(0) such that |z−y| = 2t−1. So it occurs at one
of the sides of the light-cone. By assumption the single-site operator aαx is not applied
at the event (z, 0). Therefore we can apply the dual unitary condition (23). As we can
see in (42), this results in a similar structure, but at a later time and a site closer to y.
By applying the dual unitary condition 2t− 2 more times, we get

aβy (43)

or its mirror image. We can thus apply the dual unitary condition (23) one last time,
which implies

Dαβ(x, y, t) ∝ Tr
[
aβy
]

= 0. (44)

This leaves us with one remaining position x to examine: |x − y| = 2t and x ∈ LC(0).
As said earlier, in this case we can’t use the iterative application of the dual unitary
condition (23) to get (44) in the end. If we start from the same side as before, the
operator aαx will block the first use of the dual unitary condition. If we start from the
other side, we end up with

aβy (45)

after (2t−1)-many applications of the dual unitary condition (23). Thus aβy will block the
last application of the condition. The visualisation with the last remaining possibility

15



of x looks like

aβy

aαx

1
d4t

. (46)

While we could use the dual unitary condition (23) to proceed, we will make use of the
normal unitary condition (22) once more and find the light cone of aαx . The visualisation
can be shifted for convenience, which is basically making use of the cyclicity of the trace
in (32). Thus the visualization looks like

aαx

aβy

1
d4t

. (47)
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Using the same method as for aβy earlier, we can get the light-cone of aαx as

LC(aαx) =

{
(z, τ) ∈ I0(2L− 1)× I1(2t)/2

∣∣∣ min
x̃∈c(x)

|z − x̃| ≤ 2τ − 1

}
. (48)

Any operator that is not applied to at least one event (z, τ) ∈ (LC(aαx) ∪ {(x, 0)}) will
become the identity with its hermitian conjugate via (22). So let us determine

LC
(
aβy
)

(τ) ∩ LC (aαx) (τ). (49)

We need to find the sites z such that

min
x̃∈c(x)

|z − x̃| ≤ 2τ − 1 and min
ỹ∈c(y)

|z − ỹ| ≤ 2t− 1− 2τ. (50)

For this task let us assume, that x < y. In the case it is not, we reassign the numbering
of our sites. This will be required if and only if y is odd, so we may generalise the
reassignment as

R : I0(2L− 1) → R(I0(2L− 1))

z 7→ (−1)yz. (51)

Now let x̂ and ŷ be such that

ŷ − x̂ = min
x̃∈c(x)
ỹ∈c(y)

ỹ − x̃ = 2t− 2. (52)

These can be found to be given by

x̂ = x+ 1

ŷ = y − 1. (53)

In the case x̂ ≤ z ≤ ŷ, x̂ and ŷ will be the sites in c(x) and c(y) respectively with least
distance to z. Thus we can determine z via a system of inequalities that are implied by
(50) and our assumption on the distance of x and y

z ≤ x̂+ 2τ − 1

z ≥ ŷ − 2t+ 1 + 2τ. (54)

Together with (52) and (53) this results in

z = x+ 2τ. (55)

Due to periodicity in space, the only other case is y ≤ z ≤ x+2L and x and y will be the
sites closest to z in c(x) and c(y) respectively. Combining the assumptions y − x = 2t
and 2t ≤ L as well as the restrictions in (50), we find the inequalities

z ≤ y + 2t− 1− 2τ = x+ 4t− 1− 2τ ≤ x+ 2L− 1− 2τ (56)

z ≥ x+ 2L− 2τ + 1. (57)
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These are clearly contradictory.
Since the above is true for all τ ∈ I1(2t− 1)/2, we find that

LC
(
aβy
)
∩ LC (aαx) =

{
(z, τ) ∈ R(I0(2L− 1))× I1(2t− 1)/2

∣∣∣ z = x+ 2τ
}
. (58)

All operators which are not applied to an event in (LC(aβy ) ∩ LC(aαx)) ∪ {(x, 0)} will
reduce to the identity after applying (22). As R merely changed the assignment, the
visualisation now looks like

aβy

aαx

1
d2t+1 . (59)

Now we can define in analogy to [1]

M(a, y) =
1

d
Tr2

[
SWAPyU †SWAPy(1⊗ a)SWAPyUSWAPy

]
, (60)

to shorten our final result. The SWAP-gates are used to handle the difference between
odd and even sides. Visually we find

aM(a, 2l) = 1
d

(61)
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and

M(a, 2l + 1) = 1
d

a = 1
d
a . (62)

Here the difference between an even and an odd y is easy to spot. Using M we may
write

Dαβ(x, y, t) =
1

d
Tr
[
M2t

(
aβy , y

)
aαx
]
. (63)

While in [1] they explicitly differentiated two different cases, we hid this in the assignment
R and the mod2 of y. This may obscure the light-cone and speed analogy made in [1], but
will prove helpful in higher dimensions. Let’s summarize the results for the correlation
function gained in this section

Dαβ(x, y, t) =


δ0β if α = 0

δα0 if β = 0

0 if x 6= y + (−1)y+12t and α, β 6= 0
1
d
Tr
[
M2t

(
aβy , y

)
aαx
]

if x = y + (−1)y+12t and α, β 6= 0

. (64)

5 Ternary Unitary Operators

5.1 The Set of Ternary Unitaries

At the end of [1] some ideas on generalisations of dual unitary gates and the exact
correlation functions were suggested. One of these was the generalisation to multiple
dimensions. A more precise construction and computation for (2 + 1)-space-time was
made in [13]. However, the gates they used are unitary only in one of the two spacial
directions, so one can still call them dual unitary. The construction allows for exact
results and leads to light-cone-like structures of correlation functions.
We will now take a different approach and look at operators that are unitary along both
space directions. Such operators will need to act on four local systems and we may dub
them ternary unitary operators. In general we can visualise operators acting on a system
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of the form H⊗4
loc as a cube

γ

κ

g
k

β

α

b

a

e1
e2

et

. (65)

This leads us to view the operator U as an 8-tensor. As the name suggests 8-tensors
are described using 8 indices. If {|i〉|i ∈ I0(d− 1)} is a basis of Hloc, we find the tensor
elements to be

Uαβγκ
abgk = 〈αβγκ|U |abgk〉. (66)

Now we can properly define ternary unitary operators.

Def. 2. Let Hloc be a Hilbert space of finite dimension d. An operator U ∈ End(H⊗4
loc )

is called a ternary unitary if and only if∑
αβγκ

Uαβγκ
abgk (U∗)αβγκ

ãb̃g̃k̃
= δabgk,ãb̃g̃k̃ (67)∑

abαβ

Uαβγκ
abgk (U∗)αβγ̃κ̃

abg̃k̃
= δγκ,γ̃κ̃

gk,g̃k̃
(68)

∑
akακ

Uαβγκ
abgk (U∗)αβ̃γ̃κ

ab̃g̃k
= δβγ,β̃γ̃

bg,b̃g̃
. (69)

We denote the set of ternary unitary operators for local dimension d as T U(d).

Each of the three conditions merely describes a unitary condition along one of the
three coordinate axes. The three conditions imply each a unitary condition in direction
opposite to the coordinate axes. Instead of explicitly using tensor elements, we can
define two new operators as follows:

〈gkγκ|Ũ |abαβ〉 = 〈αβγκ|U |abgk〉 (70)

〈bgβγ|Ū |akακ〉 = 〈αβγκ|U |abgk〉. (71)

To define an operator U to be a ternary unitary if and only if U , Ũ and Ū are unitary, is
equivalent to the above definition 2. Note that equation (67) is just the normal unitary
condition along the time direction UU † = 1, which implies U †U = 1. We may visualise
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the two as

= and = , (72)

where U is the red and U † the blue cube. Equation (68) is the unitary condition along the
e1-direction. It is equivalent to the condition Ũ Ũ † = 1. The later implies the condition
Ũ †Ũ = 1. The two can be visualised as

= and = . (73)

Finally equation (69) does the same thing for the e2-direction and for the operator Ū .
The two conditions Ū Ū † = 1 and Ū †Ū = 1 can be visualised as

= and = . (74)

Now that these defining properties are established, we may again ask: do any such
operators exist? Once more the answer is yes:

Example 3. If we look at the case of qubits, i.e. d = 2, and associate a number to each
site in a clockwise fashion, we may consider the permutation

π =

(
1 2 3 4
3 4 1 2

)
. (75)
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We can use such a permutation to define an operator Π ∈ End(H⊗4
loc ). As the matrix-form

would be of size 16× 16, we will only look at the visual representation

Π =

2 3
41

. (76)

Using this representation one can check that Π fulfils all three conditions (72), (73) and
(74) and is thus a ternary unitary operator.

Example 4. A more general set of ternary unitary operators can also be constructed.
Let U, V,W, T ∈ DU(d), then

X(U, V,W, T ) = (W(1,2) ⊗ T(3,4))Π̃
†(V(1,2) ⊗ U(3,4))Π̃ (77)

Y (U, V,W, T ) = Π̃†(W(1,2) ⊗ T(3,4))Π̃(V(1,2) ⊗ U(3,4)), (78)

where Π̃ is the permutation (1, 2, 3, 4) 7→ (4, 1, 2, 3). They are both ternary unitary gates.
To proof this we can again look at the visualisations

X(U, V,W, T ) =

V

U

W T

and Y (U, V,W, T ) =

W

T

V U

. (79)

Using the unitary conditions (22) and (23) of U ,V ,W and T , it is an easy task to proof
that X and Y with the visualisation given fulfil the three conditions (72), (73) and (74).

We can connect both examples: If we choose d = 2 and U, V,W, T = SWAP, we get

X(U, V,W, T ) = Y (U, V,W, T ) = Π. (80)
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Thus we immediately see that
X ∩ Y 6= ∅, (81)

where X and Y are the sets of ternary unitary operators gained via the construction
X and Y respectively. However, an unsolved question is, if X = Y and if all ternary
unitaries can be constructed like this.

5.2 Correlation Functions in 2+1 Dimensions

As we now look at (2+1)-space-time dimensions, our overall system is a two-dimensional
lattice of sites. To each site its own local Hilbert space Hloc of dimension d is associated.
For simplicity we assume both sides of the lattice to consist of 2L-many sites, where
L ∈ N. Each site may be described via two coordinates (i, j) ∈ I0(2L−1)2. Furthermore
US denotes that the local operator U is applied to some finite set of sites S ⊂ I0(2L−1)2

and the identity is applied to all other sites in I0(2L− 1)2. With regard to our ternary
unitaries it is useful to define a plaquette characterised by a site x = (x1, x2) as

p(x) := {(x1, x2), (x1 + 1, x2), (x1, x2 + 1), (x1 + 1, x2 + 1)} . (82)

The setting may be visualised as

L

L

e2

e1
p(1, 0)(0, 0)

. (83)

We will once more need to define how we want to time-evolve our system. Thus we first
define the two operators

Uee =
⊗

(i,j)∈I0(L−1)2

Up(2i,2j) (84)

Uoo =
⊗

(i,j)∈I0(L−1)2

Up(2i+1,2j+1) , (85)

where U ∈ T U(d). Graphically from the top-down perspective:

Uee = Uoo = , (86)
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where the local operators U are marked in red and periodic boundary conditions are
assumed. Now we can define one time step of the time-evolution as

U = UooUee. (87)

Why it is chosen like this will be discussed in detail in section 5.3. The correlation
function is defined as

Dαβ(x, y, t) =
1

d4L2 Tr
[
aαxU

−taαyU
t
]
, (88)

where once more {aαx}α∈I0(d2−1) is a basis of local operators on Hx = Hloc. Using the

same trick as in section 4.2 by choosing a0
x = 1 and Tr

[
aαxa

β
x

]
= dδαβ, we get

Tr [aαx ] = d δα0. (89)

This immediately gives us the same results as in section 4.2:

D0β(x, y, t) = δ0β, (90)

Dα0(x, y, t) = δα0 (91)

for all x, y and t.

Now assume that α 6= 0 and β 6= 0. We could visualise the correlation function with one
single-site operator, then a couple of layers of cubes representing Ut, again a single-site
operator, and finally an equal amount of layers as before representing U−t. Since this
would be rather messy, a different approach will be taken to first simplify the tensor
network. To do so we want to determine which operators making up U

t do not imme-
diately cancel via the usual unitary condition (72) with their hermitian conjugate in
U
−t. This is similar to our procedure in section 4.2. It will turn out to be useful to

find the set of events these operators are applied to. We will denote this set by LC.
Furthermore, LC(τ) will be the set of sites z for which the event (z, τ) is in LC. To
determine LC we will go layer by layer as visualised in Fig. 2. First we look at the layer
at time τ = t. Here, aβy is applied as well as U†oo. At time τ = t− 1

2
, Uoo is applied. Now

using the unitary-condition in time direction (72), most of the unitaries U in Uoo cancel
with their Hermitian conjugate U † in U

†
oo, except for the one applied on the plaquette

pm := p
(
2
⌈
y1

2

⌉
− 1, 2

⌈
y2

2

⌉
− 1
)
. In the next earlier time step τ = t − 1, all unitaries of

Uee that are applied to at least one site in pm will not be trivially connected to their
hermitian conjugates in the layer U†ee, which is applied at time t + 1

2
. We say they are

blocked to cancel with their Hermitian conjugate. These remaining unitaries at time
τ = t−1 in turn block even more sites at earlier times. Due to the odd-even application
of the unitaries, the set of blocked sites will increase in each direction by one row with
each step to earlier times. LC(τ) is precisely the set of blocked sites at time τ . Thus we
obtain the recursion relation

LC(τ) = LC
(
τ +

1

2

)
∪

{
z
∣∣∣ min
ỹ∈LC(τ+ 1

2)
‖z − ỹ‖∞ = 1

}
, (92)
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a)

y

b)

y

c)

pm

d)

Figure 2: A visualisation of the step by step method. The local operators U are marked
in read in each step. a) At time t the operator aβy is applied and blocks the
site y marked in cyan. b) The operators in a Uoo-layer are applied at time
t − 1

2
and connected to a layer U−1

oo . However, on the blocked site they are
not trivially connected. c) After all possible applications of the usual unitary
condition (72), the operator applied to pm at time t− 1

2
remains, blocking all

four sites. Thus operators in the layer Uee applied at time t − 1 and at least
partially on sites in pm are not trivially connected to the corresponding layer
in U−1

ee . d) This increases the set of blocked sites for the next earlier time t− 3
2

further to set LC(t− 3
2
). Here LC(t− 3

2
) is marked in cyan.
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−→

Figure 3: A simplified visualisation of the pyramid-shaped light-cones. As we look at a
trace, we can utilise its cyclic property and shift along the time direction. aβy
could be applied to any of the four sites in the green square, this would be at
the time τ = t. aαx would be applied somewhere in between the bases of the
two pyramids. On the right, we can assign negative times to events that are
part of the blue pyramid.

with the initial condition LC
(
t− 1

2

)
= pm. Any operator at time τ that is applied to

sites in LC(τ) will not cancel with its Hermitian conjugate. We can find a solution to
the relation as

LC(τ) =

{
z
∣∣∣ min
ỹ∈pm
‖z − ỹ‖∞ ≤ 2t− 1− 2τ

}
. (93)

Thus one arrives at a light-cone given by

LC =

{
(z, τ) ∈ I0(2L− 1)2 × I0(2t− 1)/2

∣∣∣ min
ỹ∈pm
‖z − ỹ‖∞ ≤ 2t− 1− 2τ

}
. (94)

This set has a square pyramid shape with a base length of 4t sites. Every unitary U(p,τ)

that is applied to a plaquette p ⊂ LC(τ) of sites at time τ will not cancel with U †(p,2t−τ).
From this we immediately get the result

Dαβ(x, y, t) = 0 if x /∈ LC(0). (95)

So far we have solely used the unitary condition in time and ended up with a light cone
structure resembling two pyramids with flat tops. This is visualised on the left in Fig. 3.
This would be true even if all the U were only standard unitary operators.

Now assume that L ≥ 2t and the remaining operators U are in T U(d). We may char-
acterize the sides of our light-cone by their distance to two sites in pm = {y1, y2, y3, y4}
as

Sij(τ) = Sji(τ) =
{
z ∈ LC(τ) | ‖z − yi‖∞ = ‖z − yj‖∞ = 2t− 2τ

}
. (96)

In a similar way, we can also characterise the corners of the base zi via

|zij − yij| = 2t ∀j ∈ {1, 2}. (97)
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Intuitively, zi is the corner and Sij are the sides furthest away from the site yi in pm.

Now assume that x 6= zi with y = yi. First we make use of the cyclicity of the trace

Tr
[
aαxU

−taβyU
t
]

= Tr
[
aβyU

taαxU
−t] . (98)

Furthermore we relabel the time-coordinate of events the hermitian conjugates are ap-
plied to to be negative, i.e. τ ∈ I−1(−2t)/2. This is visualised on the right of Fig. 3. The
assumption x 6= zi implies, that we can always find a side Sij(0), such that x /∈ Sij(0).
We will now examine the ternary unitaries that are applied to at least one site in Sij(0)
at time 0 and their corresponding hermitian conjugates applied to the same sites but at
time −1

2
. Due to the matrix multiplication in (98) and as x /∈ Sij(0) they are connected

via the identity through the sites in Sij(0) at time 0. Due to the trace in (98) the events(
z, 1

2

)
for z ∈ Sij are connected to the events

(
z,−1

2

)
also via the identity. Thus we can

apply the appropriate unitary condition in space on them, i.e.

· · ·

4t

· · ·

4t− 2

= d2

. (99)

The sites in Sij(0) are marked by the black dots. This will serve as our base case for
the following recursion. For the operators applied at time τ and at least partially on
sites in Sij(0), the corresponding hermitian conjugates will be applied at time −τ − 1

2
.

Due to the trace in (98) any event of the form (z, τ) with z ∈ Sij(τ) is connected to the
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event
(
z,−τ − 1

2

)
via the identity. If the events (z, τ) and (z,−τ) are also connected

via the identity, we can use one of the spatial unitary conditions ,(73) or (74), for the
aforementioned operators and their hermitian conjugates. This will result in an event
of the form

(
z̃, τ + 1

2

)
, with z̃ ∈ Sij

(
τ + 1

2

)
, being connected to the event

(
z̃,−τ − 1

2

)
via the identity, allowing for the same argument again but for operators applied to the
events (z̃, τ + 1

2
). This can in short be visualized by

· · ·

= d2
· · ·

, (100)

where the black dots mark the events
(
z̃, τ + 1

2

)
and

(
z̃,−τ − 1

2

)
for z̃ ∈ Sij

(
τ + 1

2

)
.

In order to reduce cluttering, some of the legs on the operators were left out in both
equations. After iterating this condition 2t− 1 times, including the base case, we have
to stop, since Sij(2t) is not defined. Thus we end up with

∝ ∝ Tr
[
aβy
]

= 0.
(101)

The green dots mark the possible positions of the operator aβy , i.e. the two sites in pm
that are furthest away from the site we started from. Visually, each time we applied the
unitary condition we moved up one step of the pyramid. equation (101) implies that

Dαβ(x, y, t) = 0. (102)

Finally we look at the case x = zi for y = yi. So x is the site in LC(0) furthest away from
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y. While we may still find two sides looking like (99) where we can use the appropriate
unitary condition, the final step (101) cannot be made, as aβy would block the required
site, i.e. it would be applied on one of the two sites not marked in green. However, we
can solve this problem by simplifying the situation further. In the shifted picture, cf.
Fig. 3, it is easy to see that we can once more use the unitary condition in time. In a
similar manner as before, we find the light-cone of aαx to be

LC (aαx) =

{
(z, τ) ∈ I0(2L− 1)2 × I2(2t)/2

∣∣∣min
x̃∈pn
‖z − x̃‖∞ ≤ 2τ − 1

}
, (103)

with the plaquette pn := p
(
2
⌊
x1

2

⌋
, 2
⌊
x2

2

⌋)
. As all the unitary conditions in time can be

applied without one resulting in blocking the other, what remains are operators applied
to events in

C := (LC(aβy ) ∩ LC(aαx)) ∪ {(x, 0)}. (104)

So we once more have to find the intersection of the two light-cones. For that assume
xi < yi for all i ∈ {1, 2}. If that is not true for some i we may relabel the sites. Since
this will be the case if and only if yi is odd, we can generalize the reassignment as

Ri : zi 7→ (−1)yizi. (105)

All this is very familiar already, as Ri is just R from equation (51) for a certain direction
of space. Now let xn and ym be such that they are the closest two sites to the other
plaquette in pn and pm respectively, i.e.

‖xn − ym‖∞ = min
(x̃,ỹ)∈pn×pm

‖x̃− ỹ‖ = 2t− 2. (106)

We can quickly find that

|(xn)i − (ym)i| = 2t− 2 (107)

(xn)i = xi + 1 (108)

(ym)i = yi − 1 (109)

and by assumption
yi − xi = 2t (110)

for all i. Now we can see that in each time direction the same constrictions are true
independently and that they are exactly the same restrictions as given in section 4.2.
Thus by replacing according to

xi → x

yi → y (111)

zi → z,

we can reuse our old results, such that

zi = xi + 2τ (112)
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for all i and τ . Therefore

C =

{
(z, τ) ∈

2⊗
i=1

Ri(I0(2L− 1))× I0(2t− 1)/2
∣∣∣ z = x+

2∑
i=1

2τei

}
. (113)

We also know that only operators applied to events in C do not reduce to the identity
with their hermitian conjugate. The result can be visualised as

aαx

aβy

Dαβ(x, y, t) = 1
d6t+1 . (114)

Similar to section 4.2 we can condense this by defining a new operator as follows:

M(a, y) =
1

d3
Tr(0,1),(1,0),(1,1)[S†(y)U †S†(y)ãS(y)US(y)], (115)

where ã =
⊗1

i,j=0

(
δ(i,j),(1,1)a(1,1) +

(
1− δ(i,j),(1,1)

))
1(i,j)), which means a is always ap-

plied at site (1, 1) whereas the identity is applied to the remaining sites. Furthermore
we define

S(y) =
2∏
i=1

 ⊗
j∈{0,1}2,ji=0

SWAP(
∑2
k=1 jkek,

∑2
k=1 jkek+ei)

yi

. (116)

This time we labelled the grid of four sites as

(0, 0)
(0, 1)

(1, 0)
(1, 1)

e1
e2 . (117)

Intuitively S(y) connects the two sites that are neighbours along the ei direction with a
SWAP-gate if yi is odd. This is used to handle the four possible positions the operator
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aM(a, (2k, 2l + 1)) = 1
d3 = 1

d3

a

Figure 4: A visualisation of the operator valued linear map M(a, y) for y of the form
(2k, 2l + 1) with k, l ∈ N0, i.e. it has an even e1-coordinate and an odd e2-
coordinate. We can see how the SWAP-gates act to account for a different site
position of a.

aβy could be applied to. An example for y = (2k, 2l + 1) is given in figure 4. Note that
M is a linear map over End(Hloc). Using (115), we write the correlation function as

Dαβ(x, y, t) =
1

d
Tr
[
M2t

(
aβy , y

)
aαx
]
. (118)

We again summarise our results as

Dαβ(x, y, t) =


δ0β if α = 0

δα0 if β = 0

0 if x 6= y +
∑2

i=1(−1)yi+1tei and α, β 6= 0
1
d
Tr
[
M t
(
aβy , y

)
aαx
]

if x = y +
∑2

i=1(−1)yi+1tei and α, β 6= 0

,

(119)
which are almost the same as for the 1D-case (64).

5.3 Other Time-Evolutions

As mentioned it is not immediately obvious why we chose (87) as our time-evolution.
The main reason is that it fits with our motivation via Trotterisation discussed in section
3. However, using this as the only argument, there is a more naive choice for a time-
evolution. On the 2D-grid of size 4L2, assuming periodic boundary conditions, every
site has four neighbours. Thus naively we want to split the Hamiltonian for nearest
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neighbour interactions into four parts:

Hnn =
∑
k∼l

Hk,l

=
∑
a,b

(H(2a,b),(2a+1,b) +H(a,2b),(a,2b+1) +H(2a+1,b),(2a+2,b) +H(a,2b+1),(a,2b+2))

= He1 +He2 +Ho1 +Ho2, (120)

where k ∼ l denotes the nearest neighbour relation, i.e. that k and l are nearest neigh-
bours. Now we apply the Trotterisation (3) to get

e−iHnnt ≈ e−iHo2te−iHo1te−iHe2te−iHe1t, (121)

such that we can once more exchange the exponential operators for general unitary
operators and define the time-evolution

U = Uo2Uo1Ue2Ue1, (122)

where the Uij are defined using local unitaries similar to (12), (13), (84) and (85).
However, we can choose

Uee = Ue2Ue1 (123)

Uoo = Uo2Uo1, (124)

as valid operators in the time-evolution (87) of the previous section. This can either
be seen via visualisation or by the fact that Ue2Ue1|p(2k,2l) and Uo2Uo1|p(2k+1,2l+1) for
k, l ∈ I0(L− 1) correspond to an operator in End(H⊗4)) that has the same structure as
the operator in (77) but with general unitary operators and not restricted to those in
DU(d).
Therefore the most naive choice (122) for a time-evolution is already included in our
time-evolution (87). As said before we can justify our choice of (87) as a time-evolution
via a Trotterisation as well. We need to split the Hamiltonian in a different way

Hnn =
∑
k∼l

Hk,l

=
∑
a,b


 ∑
x,y∈p(2a,2b)

x∼y

Hx,y

+

 ∑
x,y∈p(2a+1,2b+1)

x∼y

Hx,y




= Hee +Hoo, (125)

which is admittedly more complicated than (121). If we apply the Trotterisation (3)
to Hnn = Hee + Hoo and repeat the step of replacing exponentials by general unitary
operators, we will precisely end up with our usual time-evolution (87) in two spatial
dimensions.
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Other time-evolutions can be found by defining

Ueo =
⊗

(i,j)∈I0( l
2
−1)2

Up(2i,2j+1) (126)

Uoe =
⊗

(i,j)∈I0( l
2
−1)2

Up(2i+1,2j). (127)

These operators act precisely on the plaquettes that are not acted upon by the operators
Uee and Uoo, cf. the definitions (84) and (85). We can visualize the newly defined
operators via a top-down perspective

Ueo = and Uoe = . (128)

From that we can see that
Ũ = UoeUeo (129)

is equal to (87) for a grid shifted by e2. Thus due to periodic boundary conditions the
two time-evolutions (87) and (129) are equivalent.

Two more classes of time-evolutions are worth mentioning. An example for the first
is

Uall = UoeUooUeoUee. (130)

Here we apply in one time-step four gates in a counter-clockwise way around a site with
odd-odd coordinates. A visualisation is given in Fig. 5. We can still make the initial step
to get a light-cone structure with this time-evolution. But the step where the unitary
conditions in space were used, visualized in (99), is not possible. We can barely use the
spatial unitary conditions (73) and (74) at all, because the operators following right on
top of each other overlap on two sites, rather than one as for the time-evolution (87).
So this time-evolution does not get us anywhere. In fact is also true for any other com-
bination of all four operators. Thus the class of time-evolutions which include all four
operators Uee, Uoo, Uoe and Ueo is not useful to get exact results using ternary unitary
operators.

The other class of time-evolutions contains time-evolutions of the form

Un = Uj1j2Ui1i2 , (131)
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(2k + 1, 2l + 1)

Figure 5: The time-evolution Uall on a 3 × 3-grid. Only the operators applied to sites
that are all inside the grid are shown to avoid cluttering. The different opera-
tors are applied counter-clockwise around the middle site, which has odd-odd
coordinates (2k+1, 2l+1) with k, l ∈ N0. The different colours denote different
gates, to distinguish which sites they are applied to.

where i1, i2, j1, j2 ∈ {e, o} and (i1 = j1) = (i2 = j2). Let ι be the index for which iι = jι
and η the other one. This time-evolution (131) cannot be gained from Hnn via a Trot-
terisation of nearest-neighbour interactions, since we do not allow all nearest neighbours
to interact. However, it is still interesting as it is simple to solve the correlation function
exactly. A visualisation for one time-step and (i1, i2, j1, j2) = (e, e, o, e) is given in Fig. 6.
This kind of time-evolution consists of walls made of operators that stretch in direction
eι over the entire grid-size and have a thickness of two sites in direction eη. These walls
are applied on two rows of sites, where one row of sites means the set of all sites that have
the same eη-coordinate. We call the union of two neighbouring rows that are connected
by operators a ribbon of sites. The different walls are not connected to each other and
therefore do not interact. A correlation function can be defined analogously to (88) as

Dαβ(x, y, t) =
1

d4L2 Tr
[
aαxU

−t
n a

α
yU

t
n

]
. (132)

Clearly it will only be non-zero if x and y lie in the same ribbon. In this case walls ap-
plied to ribbons that do not entail x and y will immediately cancel with their hermitian
conjugate via the unitary condition in time (72). What remains is a single wall for which
we can just recycle the results from section 4.2. We define a new local Hilbert space
H̃loc = H⊗2

loc and new coordinates x̃ = xι and ỹ = yι. Thus one site of the chain is made
up of the two sites neighbouring each other along the eη-direction in the ribbon. For
these results to happen, we actually do not require our operators to be ternary unitary.
It is sufficient for them to be unitary along the eι-direction. Therefore this is a special
case of the time-evolution analysed in [13].
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Figure 6: A visual representation of Un for (i1, i2, j1, j2) = (e, e, o, e) and one time-step
on a 4 × 4-grid with periodic boundary conditions. Uee is represented by red
and Uoe by yellow cubes.

Now we know what characteristics are required for a time-evolution to be useful in
(2 + 1)-dimensional space-time. This will help us to define the correct evolution for an
even greater number of spatial dimensions.

6 Extension to an arbitrary Number of spatial
Dimensions

6.1 Definition and Correlation Functions

We defined a special class of unitary operators for one and two dimensions called dual
unitaries and ternary unitaries respectively. They allowed for exact results and a lot of
the arguments for one dimension were easily adaptable to two dimensions. Therefore
analysing an analogous problem in even higher dimensional space-time can be considered
a reasonable next step. While 3D-lattices are quite standard [14], higher dimensional
lattices seem abstract at first and their usefulness is not obvious. However, 4D-lattices
were found useful analysing a kind of quantum Hall effect [15]. Thus it seems worthwhile
to take a chance at getting results for high dimensional lattices. For the definitions of
the unusual high-dimensional geometric figures one can take a look at [16].

Let {ei|i ∈ I1(∆)} be an orthonormal basis of R∆. We can then define an evenly spaced
∆-dimensional lattice with all sides made up of 2L-sites as{

x =
∆∑
j=1

xjej

∣∣∣xj ∈ I0(2L− 1) ∀j

}
' I0(2L− 1)∆. (133)

Now associate to each site the d-dimensional Hilbert space Hloc = Hx and denote its

basis at site x as Bx = { |r〉x | r ∈ I0(d− 1)}. Let U ∈ End
(
H⊗2∆

loc

)
. It acts on 2∆-many
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sites. We want it to more specifically act on the vertices of a ∆-dimensional hypercube,
which would correspond to the ∆-dimensional lattice {0, 1}∆. On such a lattice we can
enumerate the sites via the map

F : {0, 1}∆ → I0(2∆ − 1) (134)

i =
∆∑
i=1

2jxj. (135)

We will put the enumerating index upstairs xi to avoid confusion with the element of
the vector xj. We can then describe the elements of U via

Uρ
r =

 ⊗
x∈{0,1}∆

〈ρF (x)|

U

 ⊗
x∈{0,1}∆

|rF (x)〉

 , (136)

where |ρF (x)〉, |rF (x)〉 ∈ Bx and r = (r1, · · · , r2∆−1), ρ = (ρ1, · · · , ρ2∆−1). Before getting
into the main definition, let us define the set

Aj =
{
x ∈ {0, 1}∆ |xj = 0

}
. (137)

This set includes all sites on a certain face of our hypercube. To be more precise, of the
two faces orthogonal to ej, it is the one closer to the origin.

Def. 3. An operator U ∈ End
(
H⊗2∆

)
is called a (∆ + 1)-unitary if it is unitary and

for all j ∈ I1(∆) the operator Uj, defined via⊗
x∈Aj

〈ρF (x)|〈rF (x)|

Uj

 ⊗
x∈{0,1}∆\Aj

|rF (x)〉|ρF (x)〉

 = Uα
a , (138)

is unitary, i.e.
UjU

†
j = 1 (139)

for all j ∈ I1(∆).

The demanded unitary conditions (139) are precisely the unitary conditions in the
space directions. By defining a ∆-dimensional hyperplaquette as

P (x) =

{
z ∈ I0(2L− 1)∆

∣∣∣ z = x+
∆∑
j=1

kjej for k ∈ {0, 1}∆

}
, (140)

we can define the operators

Ue =
⊗

α∈I0(L−1)∆

IP (2α) (141)

Uo =
⊗

α∈I0(L−1)∆

IP (2α+1), (142)
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where 2α + 1 =
∑

j∈I1(∆) (2αj + 1) ej. This is from now on implied, whenever we add 1
to a vector. We once more assumed periodic boundary conditions. Now one step of the
time-evolution is defined as

U∆ = UoUe. (143)

From the results in the previous section 5.3 we can conclude that our time-evolution
should fulfil two properties:

1. After one time step, so one application of U∆, every site should be connected to
all of its neighbours via an operator.

2. An operator applied at a time τ should be connected to an operator at time τ±1/2
only via one event.

We can make these statements more rigorous:

1. For every pair of nearest neighbours y ∼ z there should be a site x with either all
even or all odd coordinates, such that y, z are both in the hyperplaquette P (x)
defined by x, i.e. for all (y ∼ z)

∃x ∈
({

2α |α ∈ I0(L− 1)∆
}
∪
{

2α + 1 |α ∈ I0(L− 1)∆
})

: y, z ∈ P (x). (144)

2. For operators following one another, one is applied to a hyperplaquette defined
by a site with all even coordinates and the other by one with all odd coordinates.
Therefore the desired property will be fulfilled if

|P (2α) ∩ P (2β + 1)| ∈ {0, 1} for all α, β ∈ I0(L− 1)∆. (145)

Proof. (1) Let y ∈ I0(2L− 1)∆ be some site in our lattice. Its set of nearest neighbours
is given by

N(y) =
{
y + (−1)kej

∣∣∣ j ∈ I1(∆), k ∈ {0, 1}
}
. (146)

Also ⋃
α∈I0(L−1)∆

P (2α) =
⋃

β∈I0(L−1)∆

P (2β + 1) = I0(L− 1)∆ (147)

implies
∃α, β : y ∈ P (2α) and y ∈ P (2β + 1). (148)

Now we can look in each spatial dimension at two different cases.
First, we assume yj is even. Then (148) and the definition of a hyperplaquette (140)
imply

yj = (2α)j (149)

yj = (2β + 1)j + 1. (150)
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This in turn implies that

y + ej ∈ P (2α) (151)

y − ej ∈ P (2β + 1). (152)

In a similar way we get that for odd yj

y − ej ∈ P (2α) (153)

y + ej ∈ P (2β + 1). (154)

Since this is true for all j we get

N(y) ⊂ P (2α) ∪ P (2β + 1). (155)

Proof. (2) It is immediately clear that the overlap is empty for

‖2α− (2β + 1)‖∞ > 1 (156)

and, since 2α 6= 2β + 1, the statement has to be shown only for

‖2α− (2β + 1)‖∞ = 1. (157)

This immediately implies

|(2α)j − (2β + 1)j| = 1 ∀j ∈ I0(∆) (158)

⇒ 2β + 1 = 2α +
∆∑
j=1

kjej for some k ∈ {−1, 1}∆ (159)

⇒ P (2β + 1) =

{
z
∣∣∣ z = 2α +

∆∑
j=1

(kj + lj)ej with l ∈ {0, 1}∆

}
. (160)

On the other hand

P (2α) =

{
z
∣∣∣ z = 2α +

∑
j

l̃jej with l̃ ∈ {0, 1}∆

}
. (161)

Therefore, z ∈ P (2β + 1) ∩ P (2α) if and only if

k + l ∈ {0, 1}∆ (162)

⇔ kj + lj ∈ {0, 1}. (163)

Thus if z ∈ P (2α) ∩ P (2β + 1)

kj = 1⇒ lj = 0

kj = −1⇒ lj = 1. (164)

As k is fixed by α and β, such an l will be unique, proving the claim.
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Now that this is done we can compute the correlation function

Dαβ(x, y, t) =
1

d(2L)∆ Tr
[
aαxU

−t
∆ aαyU

t
∆

]
. (165)

By once more using the trick of choosing {aαx}α∈I0(d2−1) as a basis of local operators on
Hx and choosing a0

x = 1 and Tr
[
aαxa

β
x

]
= dδαβ, we get again equation (89) which implies

(90). So we may assume α 6= 0 and β 6= 0. In a similar fashion as before we can get a
light-cone, due to the unitary condition in time and the properties (144) and (145), as
follows

LC =

{
(z, τ) ∈ I0(2L− 1)∆ × I0 (2t− 1)/2)

∣∣∣ min
ỹ∈Pm

‖z − ỹ‖∞ ≤ 2t− 1− 2τ

}
, (166)

where Pm = P
(
2
⌈
y
2

⌉
− 1
)
. LC looks like a ∆-dimensional hyperpyramid. Using the

unitary property in time for all operators not applied to events in LC the trace in (165)
reduces to

Tr
[
aαxU

−t
∆ |LC′ a

α
yU

t
∆|LC

]
, (167)

where

LC ′ =
{

(z, τ) ∈ I0(2L− 1)∆ × It (2t− 1)/2)
∣∣∣ min
ỹ∈Pm

‖z − ỹ‖∞ ≤ 2τ − 2t

}
. (168)

So the events on which the hermitian conjugate operators are applied are associated
with the times τ ∈ It(2t − 1/2), i.e. we just continue counting in time direction even
after reaching τ = t.

We can enumerate the sites in Pm, for example via

F̃ : Pm → I0

(
2∆ − 1

)
ỹ 7→ i = F (ỹ − (2dy/2e − 1)). (169)

Again we will put this enumeration index upstairs. Now we may define different bound-
ary hypersurfaces of the light-cone LC(τ) at a time τ as

Si(τ) =
{
z ∈ LC(τ) | ‖z − yik‖∞ = 2t− 2τ ∀k ∈ I1(2∆)

}
, (170)

where i ∈
(
I0

(
2∆ − 1

)
\ (ik = ik′)

)
and (ik = ik′) denotes the set of i ∈ I0

(
2∆ − 1

)
such

that there exist k 6= k′ with ik = ik′ . Note that Si(0) are the sides of the base of our
hyperpyramid.

Now we have to distinguish cases in a similar manner as we did in the sections with
low-dimensional space-time. Let y = yι ∈ Pm with ι ∈ F̃ (Pm) fixed and assume that

x /∈
⋂
ι∈i

Si(0) (171)
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i.e., x does not fulfil
|xj − yj| = 2t ∀j ∈ I1(∆). (172)

Thus there exists i such that x /∈ Si(0) and ι ∈ i. Also assume the lattice size to fulfil
L ≥ 2t. One more thing to define is

Ui(τ) =
{
U(P (U),τ) |P (U) ∩ Si(τ) 6= ∅

}
. (173)

What comes next is not at all trivial, since we are missing any kind of visualisation.
However, if one gets stuck it helps to compare the following to the corresponding part
of section 5.2, since the fundamental ideas are the same.

By definition we know

LC
(
τ +

1

2

)
∩ Si(τ) = ∅ (174)

LC ′
(

2t− τ − 1

2

)
∩ Si(τ) = ∅ (175)

for all τ ∈ I0(t − 1). This implies that events of the form (z, τ + 1/2) with z ∈ Si(τ)
are connected to events (z, 2t− τ − 1/2) via the identity. Now assume that (z, τ) with
z ∈ Si(τ) are all connected to the events (z, 2t−τ) via the identity. Take some z′ ∈ Si(τ)
and define the normalised vector ej as perpendicular to z′ − z for all z ∈ Si(τ) and ej ·
(y−z′) > 0. Basically it should point from the side Si(τ) towards the center of the light-
cone. The connections between certain events allow us to apply the unitary condition
in the direction ej to all U(P (U),τ) ∈ Ui(τ) and their conjugate counterparts. This leads
to (z + ej, τ + 1/2) being connected to (z + ej, 2t − τ − 1/2). As z + ej ∈ Si(τ + 1/2),
we can apply the same reasoning again for operators U(P (U),τ+1/2) ∈ U (τ + 1/2). There
is a suitable base case for this recursion: By definition of the trace, (z, 0) for z ∈ Si is
connected to (z, 2t) via the identity. Thus we can iterate the argument (2t − 1)-times
starting from τ = 0. We have to stop at τ = t − 1, since LC(t) is not defined, so (175)
would be ill-defined. But that is still sufficient to find that every event (z, t− 1/2) with
z ∈ Si(t− 1) is connected to the event (z, t+ 1/2) via the identity. As z ∈ Si ⊂ Pm and
y /∈ Si(t− 1/2) by assumption, only the identity acts on sites (z, t) before U †Pm acts on
them. Thus we can apply the unitary condition in the ej direction one last time causing
events (z, t) with z ∈ Pm\Si(t−1/2) to be connected to themselves. One of these events
is (y, t), on which aβy acts. This implies

Dαβ ∝ Tr
[
aβy
]

= 0. (176)

Now assume x fulfils (172). This implies that we cannot find i such that x /∈ Si,
which is required for the base case to be true, and ι ∈ i, which is required for the last
application of the unitary condition. But we know the position of x relative to y which
allows us to find C as defined in (104). With the same arguments as in section 5.2
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but extended to ∆ dimensions, we can break that computation down to handle each
dimension independently. By using the results gained in section 4.2, we get

C =

{
(z, τ) ∈

∆⊗
j=1

Rj(I0(2L− 1))× I0(2t− 1)/2
∣∣∣ z = x+

∆∑
j=1

2τej

}
. (177)

Thus what remains after applying all possible unitary conditions in time is a string of
operators that are applied to the events in C.
We can once more define a new operator to make the result more precise. Let there be
a ∆-dimensional lattice of size 2 on which we define the new operator

M(a, y) =
1

d2∆−1
Tr{0,1}∆\{0}

[
S†(y)U †S†(y)ãS(y)US(y)

]
, (178)

where 0 is the zero-vector and ã =
⊗

i∈{0,1}∆

(
δi,1̃a1̃ +

(
1− δi,1̃

)
1i

)
, with 1̃ =

∑∆
j=1 ej.

Which means a is always applied at site 1̃ and to the remaining sites the identity is
applied. Furthermore we define

S(y) =
∆∏
j=1

 ⊗
i∈{0,1}∆

: ij=0

SWAP(
∑∆
k=1 ikek,

∑∆
k=1 ikek+ej)


yj

. (179)

Both are just generalised versions of their counterparts in section 5.2. We can then write
the correlation function as

Dαβ(x, y, t) =
1

d
Tr
[
M2t(aβy , y)aαx

]
, (180)

which is exactly the same as (118). Basically copying (119), we can summarize our
results as

Dαβ(x, y, t) =


δ0β if α = 0

δα0 if β = 0

0 if x 6= y +
∑∆

i=1(−1)yi+1tei and α, β 6= 0
1
d
Tr
[
M2t

(
aβy , y

)
aαx
]

if x = y +
∑∆

i=1(−1)yi+1tei and α, β 6= 0

.

(181)

6.2 Properties of the M-Map

In equation (178) and during the earlier sections, we introduced the operator valued
maps My(a) = M(a, y). To be more precise

My : End(Hloc)→ End(Hloc). (182)

In this section we want to proof properties that were stated in [1] for one spatial dimen-
sion for general M -maps. First we require the two definitions
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Def. 4. Let Hloc be a finite d-dimensional Hilbert space. A map Φ : End(Hloc) →
End(Hloc) is called k-unistochastic [17] if there exists a unitary matrix U ∈ End(Hloc⊗
Henv) for some additional finite (dk)-dimensional Hilbert space Henv such that

Φ(ρ) =
1

dk
Trenv[U

†(ρ⊗ 1)U ] , (183)

where k ∈ N.

Def. 5. Let H be a finite dimensional Hilbert space. A map Φ over End(H) is called
bistochastic [18] if it is completely positive, trace preserving and unital, i.e. the identity
is an eigenvector of Φ with eigenvalue λ = 1.

Property 2. My is d2∆−2-unistochastic and linear for all y ∈ Z∆.

Proof. By rewriting

Henv =
∏

i∈({0,1}∆\{0})

Hi = H⊗(2∆−1)
loc

k = d2∆−2

U ′ = S(y)US(y)

ρ = a

and inserting this into the definition (178) of My, My will be of the form (183) and thus

d2∆−2-unistochastic. Clearly the linearity of My follows from its d2∆−2-unistochasticity.

Lemma 1. Every k-unistochastic map is bistochastic.

Proof. Let Φ be a k-unistochastic map and {|i〉}dk−1
i=0 a basis of Henv. We can rewrite

(183) as

Φ(ρ) =
1

dk

∑
i

〈i|U † (ρ⊗ 1)U |i〉. (184)

As ρ being positive implies (ρ⊗ 1) being positive and every map Φ′ of the form

Φ′(ρ) =
∑
i

V †i ρVi (185)

is completely positive [19], Φ is completely positive. As U is unitary, Φ is trace preserv-
ing,

Trloc[Φ(ρ)] =
1

dk
Tr[(ρ⊗ 1)UU †] =

1

dk
Tr[(ρ⊗ 1)] = Trloc[ρ] (186)

and unital

Φ(1) =
1

dk
Trenv[U †U ] = 1. (187)
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Using Lemma 1 we get

Property 3. My is bistochastic for all y ∈ Z∆.

Property 4. The maps My have a spectrum that lies on the complex unit disk and all
eigenvalues on the unit circle have coinciding algebraic and geometric multiplicity.

Proof. The proof given in [1] was done for the maps My with y ∈ {0, 1} in (1 + 1)-
dimensional space-time which are given in (60). That proof trivially extends to our
bistochastic My-maps for an arbitrary number of space-dimensions.

We can now utilise the property 4:
First, we rewrite the trace in the final case of (181) as

Tr
[
M2t

y a
β
ya

α
x

]
=

d−1∑
i,j=0

〈i|M2t
y (aβy )|j〉〈j|aαx |j〉. (188)

Now we may reinterpret the operator aβy as a vector and My as matrix. We can then bring

My into Jordan normal form and denote the eigenvalues as {λν,y}d
2−1
ν=0 . If an eigenvalue

λν,y is not on the unit disk, its Jordan block Jν,y will give rise to a block in M2t
y of the

form

J2t
ν,y =


λ2t
ν,y

(
2t
1

)
λ2t−1
ν,y · · ·

(
2t
n

)
λ2t−n
ν,y

0 λ2t
ν,y · · ·

(
2t
n−1

)
λ2t−n+1
ν,y

...
...

. . .
...

0 0 · · · λ2t
ν,y

 , (189)

where n is the size of the original Jordan block Jν,y [20]. On the other hand, if λν,y is
on the unit circle, the corresponding block of size 1 is given by λ2t

ν,y.
Now we may perform the multiplication M2t

y · aβy in matrix/vector-representation. In-
serting the resulting vector back into the trace in (188), we get

Tr
[
M2t

y

(
aβy
)
aαx
]

=
d2−1∑
ν=1

cαβν,y(t)λ
2t
ν,y, (190)

where the trivial eigenvalue for the eigenvector 1 corresponding to ν = 0 is already
left out, since we assumed 1 to be orthogonal to aβy . In order to get the factor λ2t

ν,y

for each term, some powers of λν,y are absorbed into the coefficient cαβν,y(t), which will
be a polynomial in t. This is the same final result as in [1] for one spatial dimension
and we could use it to simplify rewrite the last case of the correlation function given in
(181). We could now find a classification by ergodicity for all (∆+1)-unitaries, using the
eigenvalues λν,y. The classes would be precisely the same as in [1], so the classification
will be omitted here.

6.3 Examples of the M-Map

We can take some of the examples of (∆+1)-unitaries to construct examples of M -maps.
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6.3.1 (1+1)-dimensional Lattices

We start with a little warm-up and use the SWAP as the dual-unitary to construct M .
We get

M(2l, a) = 1
d

a = a . (191)

Clearly M(2l, a) = M(2l+ 1, a) = a, so M = 1. A more intricate example can be found
when restricting to d = 2 and using the parametrisation (28) of DU . In [1] it was found
using {a0, a1, a2, a3} = {1, σx, σy, σz} as a base, that M -maps take the form

M2l =

(
1 0
0 R[u−]

)
diag[1, sin(2J), sin(2J), 1]

(
1 0
0 R[v−]

)
, (192)

where R[w] is the adjoint representation of SU(2) defined by

R[w](α,β) =
1

2
Tr
[
σαwσβw−1

]
. (193)

For M2l+1 we need only replace − → +.

6.3.2 (2+1)-dimensional Lattices

For the (2 + 1)-dimensional space-time, we had a class of ternary unitaries described in
(77) and (78). We can now compute an example ofM being constructed byX(U, V,W, T ).
We use a visualisation to aid us:

M(a) = 1
d3

V
U

W T

V ∗

U∗

W ∗ T ∗

a = 1
d2

V

T

V ∗

T ∗

a = 1
d2

V

U

U∗

V ∗

a . (194)
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In the first equality we used both the usual (22) and dual unitary condition (23) and in
the second one we merely readjusted the tensors. By enumerating the three sites from
left to right as 1, 2, 3 we get

M(a) = Tr1

[
U †(1,2)Tr3

[(
11 ⊗ V †(2,3)

)
(11 ⊗ 12 ⊗ a)

(
11 ⊗ V(2,3)

)]
U(2,3)

]
= M̂2[U ]

(
M̂2[V ](a)

)
, (195)

where M̂2[U ] denotes the M2-operator of the (1 + 1)-dimensional lattice that is con-
structed from U ∈ DU(d). Clearly the maps for different positions of a and the con-
struction Y instead of X would lead to a similar result.
Thus we see that by constructing the ternary unitaries via the lower dimensional dual
unitaries, the resulting M -maps can also be constructed, using the lower dimensional
M̂ -maps.

7 Unitaries and Index Permutations

We established dual-, ternary- and general (∆ + 1)-unitaries and obtained exact results.
However, examples of (∆ + 1)-unitaries in particular for high dimensions either in space
or of Hloc are few. We can find some by connecting the (∆ + 1)-unitaries with other
classes of unitary operators that were already established in the literature.

Let us start by breaking done the definitions (1), (2) and (3) used in the previous
sections. We defined dual-, ternary- and general (∆ + 1)-dimensional unitaries by inter-
preting them as tensors and demand certain unitary conditions. For that we split their
tensor indices A into two sets A and Ã and viewed the tensors as matrices with A and
Ã defining one index of the matrix each. The two sets were chosen such that the matrix
multiplication would be along a certain space-time direction. Clearly one could define
other sets of matrices by splitting the tensor indices in different ways and demanding the
resulting matrices to be unitary. We will find that some of these classes have surprising
properties and applications. But first we need to introduce some notation:

Def. 6. Let T be an n-tensor, K = {k1, · · · , kn} the set of indices of T , and Hki the di-
dimensional Hilbert space associated to index ki with basis {|ki〉}di−1

ki=0. For π ∈ σ(I1(n))

and s ∈ I1(n− 1), define the (π, s)-matrix T̃ of T via

T̃[kπ(1),··· ,kπ(s)],[kπ(s+1),··· ,kπ(n)] = 〈kπ(1), · · · , kπ(s)|T̃ |kπ(s+1), · · · , kπ(n)〉 = Tk1,··· ,kn . (196)

Sometimes we explicitly write T̃(π,s).

While this notion is very general it is frequently used albeit implicit. One such use is
in combination with the singular value decomposition (SVD) that allows to split tensors
into a tensor network:

Tk1,··· ,kn =
∑
i,j

Ukπ(1),··· ,kπ(s),iS
i
j

(
V †
)j
kπ(s+1),··· ,kπ(n)

, (197)
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T

SVD
=

U S V ∗

Figure 7: The tensor network that results from applying the SVD on a 5-tensor T . The
dashed line shows where we want to ”cut” with the SVD. It is a visual repre-
sentation of our choice of (π, s).

where U , S, and V are the tensors that we get by reorganising the matrices that make up
the SVD of the matrix-representation T̃π,s of T . A visual example for n = 5 is given in
Fig. 7. The SVD is usually sued to allow for useful properties or simplifications later on.
Examples of the procedure include but are in no way limited to the canonical forms of
matrix product states [8], the time-evolution of such states via the iTEBD algorithm [21]
and methods to get efficient algorithms for 2D systems [22, 23]. Going into detail on
each would go beyond the scope of this thesis. Instead we will proceed along this sec-
tion’s motivation and define sets of tensors by properties of their matrix representations.

We start with the most general definition, which is the notion of perfect tensors in-
troduced in [24]:

Def. 7. Let T be an n-tensor with all local dimensions being equal to d and the index
set K = {k1, · · · , kn}. T is called a perfect tensor [24] if for all π ∈ σ(I1(n)) and s
with 2s ≤ n

T̃(π,s)

(
T̃(π,s)

)†
= 1. (198)

We have to restrict the choice of s, since T̃(π,s) is a ds×dn−s-sized matrix. If ds ≥ dn−s,
equation (198) could not be fulfilled and the definition would be useless. In [24] it was
found that perfect tensors give rise to quantum error correcting codes (QECC). The
specific set arising in such a way are called holographic QECCs. These in turn can
be used to study the AdS/CFT correspondence, where the holographic QECCs can be
used as toy models [24]. Once more the details would go beyond the scope of this thesis.
Nevertheless it is worthwhile to look at another nice detail that we can connect to dual
unitaries in the later parts of this section.
It was shown that demanding fewer of the unitary constraints (198) still allows for holo-
graphic QECCs [25]. Thus we might look at all tensors T which fulfil (198) for all cyclic
permutations π, but are not required to do so for other permutations. Such tensors are
called block perfect tensors. Clearly every perfect tensor is a block perfect tensor.
However, generally a block perfect tensor is not a (∆+1)-unitaries, since some of the uni-
tary conditions demanded in the definition (3) are not for cyclic matrix-representations
of the tensor U .
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We can use a different set of unitary conditions. We will find that the resulting class of
unitary operators provides examples for (∆ + 1)-unitaries.

Def. 8. Let T be a 2n-tensor. We call T an n-unitary [26] if

T(π,n)

(
T(π,n)

)†
= 1 (199)

for all π ∈ σ(I1(2n)).

We basically demand the two sets of indices to have the same cardinality n and thus
restrict s, rather than π as for the block perfect tensors. To see that they actually
provide examples for (∆ + 1)-unitaries we must first proof the following:

Lemma 2. Let π, κ ∈ σ(I1(n)) such that their images on {k1, · · · , ks} are equal

π({k1, · · · , ks}) = κ({k1, · · · , ks}) (200)

for some s, n ∈ N with 2s ≤ n. Then for T an n-tensor

T(π,s)(T(π,s))
† = 1 ⇒ T(κ,s)(T(κ,s))

† = 1. (201)

The same is true if π, κ are such that

π({ks+1, · · · , kn}) = κ({ks+1, · · · , kn}). (202)

Proof. It is sufficient to show this for [kπ(1), · · · , kπ(s)] and [kκ(1), · · · , kκ(s)] differing by
an elementary permutation only. Thus we can write

[kκ(1), · · · , kκ(j), · · · kκ(i), · · · , kκ(s)] = [kπ(1), · · · , kπ(i), · · · , kπ(j), · · · , kπ(s)]. (203)

This in turn implies
T(κ,s) = T(π,s)SWAP(kπ(i),kπ(j)). (204)

Which gives the desired result, if inserted in (201). The case for (202) follows immedi-
ately, since (200) is equivalent to (202).

Therefore, only the set of indices we choose to make up the row index of the resulting
matrix matters for the unitary conditions. Thus we have only N =

(
2n
n

)
independent

conditions (199) for a tensor T to be a k-unitary. Basically we choose n different indices
out of the total 2n indices to make up the row index of the resulting matrix. The
number of independent unitary conditions is actually even lower, since for the square
n× n-matrices T(π,2)

T(π,2)(T(π,2))
† = 1 ⇒ (T(π,2))

†T(π,2) = 1. (205)

This further halves the number of unitary conditions for n-unitary tensors.

Lemma 2 is also important, since the same is true for the (∆ + 1)-unitaries: It only
matters that we choose all the systems on one face of the hypercube, i.e. A defined in
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(137), while the order of the tensor products in equation (138) does not matter. Thus we
can connect the n-unitaries to the (∆ + 1)-unitaries by looking at the unitary conditions
used in each definition. In Def. 3 of the (∆ + 1)-unitaries we demanded (∆ + 1)-many
different matrix representations of a 2∆+1-tensor U to be unitary. Each of these matrix
representations corresponds to a (π, 2∆)-matrix of U , each for a different permutation
π ∈ σ

(
I1

(
2∆+1

))
. Since

∆ + 1 <

(
2∆+1

2∆

)
/2 (206)

for ∆ ≥ 1, the number of unitary conditions in Def. 3 is less than in Def. 8 for a 2∆-
unitary. As all unitary conditions required in Def. 3 are also demanded in Def. 8, any
2∆-unitary is a (∆ + 1)-unitary. As examples of the n-unitaries are known, especially
by connecting them to maximally entangled states [26], we have also found examples of
(∆ + 1)-unitaries.

We can find more relationships between the different classes of unitaries. While it is
clear that any perfect 2n-tensor is an n-unitary and in turn any perfect 2∆+1-tensor is
a (∆ + 1)-unitary, this is not generally true for block perfect tensors of the same order.
To be more precise, by looking at the different conditions demanded for each class, we
can see that only in the case of n = 2 a block perfect 2n-tensor is always an n-unitary
tensor. For n > 2 there is no relation between n-unitaries and block perfect 2n-tensors.
However, we can combine the ideas of both definitions to get

Def. 9. Let T be a 2n-tensor. It is called a cyclic n-unitary if for all cyclic permu-
tations π ∈ σ(I1(2n))

T(π,n)(T(π,n))
† = 1. (207)

Clearly all n-unitaries and all block perfect 2n-tensors are cyclic n-unitaries. It turns
out that for n = 2 the dual unitaries and for n = 3 the tri-unitaries introduced in [3]
coincide with cyclic n-unitaries. Both act in only (1 + 1) space-time dimensions. For
the more general (∆ + 1)-unitaries such a fairly one-dimensional concept as the cyclicity
seems insufficient for a classification. A visual summary of the relations established
between the different classes of unitary tensors in this section is shown in Fig. 8. Now
that the background and existence of examples for (∆+1)-unitaries has been established,
we will find in the next section that actually using them for computations is not trivial.
However, for simplicity we will do this for (1 + 1)- and (2 + 1)-dimensional space-times
only.

8 Implementation on a Quantum Computer

8.1 Solvable initial States

Now after these quite abstract sections, let us consider some concepts closer to applica-
tion. While dual unitaries seem to have some nice properties that allow for analytical
results, it is still hard to actually compute dynamics for arbitrary initial states [6]. To
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Figure 8: A visualisation of the different connections made in this section between dif-
ferent kinds of operator sets.

tackle this problem special so-called solvable states were introduced in [6]. They have
to fulfil conditions that allow for an exact computation of the time-evolution of local
observables, correlation functions and entropy of entanglement.
The property that is most important to us is that such states give rise to a tensor net-
work with few traces that connect different times, but still allow for exact solutions. In
this subsection we will define the solvable state and establish their basic properties. For
that we once more study a chain of 2L sites, each associated to a local Hilbert space
Hloc of finite dimension d. On such a chain, a two-site shift-invariant state in the form
of a matrix product state (MPS) [8] is given as

|ΨL(N)〉 =
d∑

i1,j1,···iL,jL=1

Tr
[
N i1j1 · · ·N iLjL

]
|i1, j1 · · · iL, jL〉 , (208)

where N (i,j) ∈ End(Hvirt) describes two systems at the same time and Hvirt is a χ-
dimensional Hilbert space. χ is called bond or virtual dimension. Furthermore, |ΨL(N)〉
is assumed to be normalised for all L. Like any other MPS these states can be represented
by a tensor network diagram:

Tr [N i1j1 · · ·N iLjL ] =
N N N N , (209)

where the red legs correspond to the physical indices ik, jk. To continue we need to
define
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Def. 10. Two classes of two-site shift-invariant MPSs {|ΦL〉}L and {|ΨL〉}L, defined
on increasing system sizes L, are equivalent [6] if

lim
L→∞
〈ΦL|OR|ΦL〉 = lim

L→∞
〈ΨL|OR|ΨL〉 (210)

for all operators that are acting non-trivially only on a finite part of the system. In this
case one might say that two states |ΦL

0 〉 and |ΨL
0 〉 are equivalent (in the thermodynamic

limit).

In [6] it was shown that any solvable state is equivalent to a state |ΨL
0 (N)〉 that is

injective as defined in [27] with the operator N fulfilling

d−1∑
k=0

N ik(N jk)† =
1

d
δij, (211)

which can be visualised as

i

j

N

N∗

= 1
d i

j . (212)

Equation (211) implies
d∑

k=1

(Nki)†Nkj =
1

d
δij , (213)

which can be visualised in a similar manner. Now, let |ΨL
0 (N)〉 be an injective state

fulfilling (211). It was found using (211), that such states can be parametrized using
unitary operators W ∈ End(Hloc ⊗Hvirt). In [6] such a parametrisation of a non-trivial
for the example was found:

Example 5. Let bond dimension χ = 2 and physical dimension d = 2, i.e. qubits. The
four matrices N ij from which we can create the desired injective states |ΨL

0 (N)〉 fulfilling
(211) can be parametrised as

N00 =
v√
2

(
e−iK3 cosK2 0

0 eiK3 cosK1

)
u

N01 =
v√
2

(
0 −ie−iK3 sinK2

−ieiK3 sinK1 0

)
u

N10 =
v√
2

(
0 −ieiK3 sinK1

−ie−iK3 sinK2 0

)
u

N11 =
v√
2

(
eiK3 cosK1 0

0 e−iK3 cosK2

)
u, (214)

where u, v ∈ SU(2) and ~K ∈ R3.

These solvable states are quite useful. To see this and to give some intuition an
example computation will be executed in the next section.
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8.2 Time-Evolution of local Observables

In this subsection we want to do a short computation to find

lim
L→∞
〈ΨL

t |O1|ΨL
t 〉 , (215)

where O1 is a local observable acting non-trivially only on a single site. Furthermore,

|ΨL
t 〉 = UL|ΨL

0 〉 (216)

is the time evolved state, where UL is the usual time-evolution for a chain of length 2L
as given in (16) with dual unitary operators U . However, we have to slightly change the
enumeration scheme of our sites. The new scheme should be clear from the following
visualisation of O1|ΨL

t 〉:

−3 −2 −1 0 1 2 · · ·· · ·
−1/2

0

1/2

1

t− 1/2

t+ 1/2

2t− 1

2t− 1/2

2t

2t+ 1/2

O1 . (217)

Rather than starting from an initial site 0 and increasing our count to the right, we
start with sites −1 and 0 and increase the chain in length in both directions, using both
positive and negative integers. With that scheme, we can now define a kind of transfer
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operator

EO1(t) =

−1/2

0

1/2

1

t− 1/2

t+ 1/2

2t− 1

2t− 1/2

2t

2t+ 1/2

O1
. (218)

We will write E(t) = E1(t). Using (211) and the dual unitary condition (23) it is easy
to see that

|R〉 =
t−1⊗
τ=1

(
1√
d

d∑
j=1

|j〉τ ⊗ |j〉2t+1−τ

)
⊗

(
1
√
χ

χ∑
j=1

|j〉0 ⊗ |j〉2t+1

)
(219)

is a right eigenvector of E(t). Furthermore using (213) and (23) we find that

〈L| = (|R〉)† (220)

is a left eigenvector of E(t). It was then argued in [6] that

lim
L→∞
〈ΨL

t |O1|ΨL
t 〉 = 〈L|EO1(t)|R〉 = Tr[O1]. (221)

The last equation can be seen by using the above visualisation of EO1(t) and once
more the relations (211) and (23). To be able to obtain exact results for an operators
expectation value is very useful, we will expand on this example in the next section.

8.3 Implementation using Unitary Gates

In this section we will get even closer to application. To be more precise, we want to
find a way to compute the quantity

lim
L→∞
〈ΨL

t |OS|ΨL
t 〉. (222)

52



by running a quantum circuit on a quantum computer. The operator OS will be more
general than the operator O1 in the previous section. We will start by establishing
a tensor network that represents the quantity (222) as a tensor network in the next
subsection.

8.3.1 Simplification of a Tensor Network

There is one immediate problem that comes to mind, when we want to establish a tensor
numerically treatable tensor network for the quantity (222). The quantities computed
in [6] were all in the limit L → ∞. However, any realistic quantum computer will be
finite. This in turn means that we can only hope to measure the properties of finitely
extended operators. So we may restrict ourselves to the set of locally applied operators.

Def. 11. An operator OS ∈ End
(⊗

i∈ZHi

)
with S ⊂ Z is called locally applied if

there exist a, b ∈ Z such that S ⊂ Ia(b) and OS acts trivially on sites outside of S.

This restriction allows a proper implementation of (222), since we can now reduce
the entire tensor network representing limL→∞〈ΨL

t |OS|ΨL
t 〉 to a finite tensor network.

We choose a, b ∈ Z with S ⊂ Ia(b) such that a even, b odd and |Ia(b)| minimal. We
further limit the analysis to OS with S = Ia(b). If S were not of such a form, we could
extend OS to a locally applied operator OS′ with S ′ = Ia(b) trivially by including the
unit operators 1 that are applied on the site S ′ \ S. Now the notion of a light-cone
LC (OS) extends easily to operators applied to multiple sites and the new enumerating
system. Using a similar method to that established in section 4.2 one can find

LC (OS) ={
(z, τ) ∈ Z× I0(2t− 1)/2

∣∣∣ min
z′∈{a,b}

|z − z′| ≤ (2t− 1)− 2τ

}
∪ (Ia(b)× I0(2t− 1)/2).

(223)

This is the usual light-cone for the event (a, t) and (b, t) in union with all the events
that have a space-coordinate z ∈ S and a time-coordinate equal to or earlier than t. If
we apply the unitary condition in time (22) for all operators not applied to an event in
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LC (OS), the tensor network simplifies. For example for t = 2

OS · · · OS

= ε (OS, t)

. (224)

Now we have an operator OS(t), everything inside the dashed rectangle, that is locally
applied to the set Izmin

(zmax), where

zmin = a− 2t+ 1

zmax = b+ 2t− 1 (225)

are the minimal and maximal respectively space-coordinate that an event in LC can
have. On the left and right, we have infinitely long chains of the transfer operator T of
N , which is defined as

T α̃β̃αβ =
d−1∑
i,j=0

N ij
αβ(N ij

α̃β̃
)∗ (226)

or via a tensor network diagram

T =

N

N∗

. (227)

The vector

|I 〉 =

χ∑
β=1

|β〉|β〉 =

χ∑
β,β̃=1

δββ̃|β〉|β̃〉 (228)

is an unnormalised left- and right-eigenvector of T with eigenvalue 1. This follows
immediately by applying the conditions (211) and (213) of N :

(T |I 〉)αα̃ =
d−1∑
i,j=0

N ij
αβ(N ij

α̃β)∗ = δαα̃. (229)
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As a tensor network this would be

I

N

N∗

= I , I

N

N∗

= I . (230)

Since we assumed |ΨL〉 to be normalised, 1 will be the eigenvalue with largest norm. For
details refer to [6]. Thus we get

lim
L→∞
〈ΨL

t |OS|ΨL
t 〉 = lim

L→∞
TLε (OS, t)TL =

1

χ
〈I|ε (OS, t) |I 〉. (231)

Where does the factor 1
χ

come from? Since |I 〉 is not normalised, but |ΨL〉 is assumed
to be normalised for all L, we get

1 = lim
L→∞
〈ΨL

t |1|ΨL
t 〉

!
= ν〈I|I 〉 = ν χ, (232)

where ν ∈ R is a constant. Therefore ν = 1
χ
. We will see the benefit in choosing |I〉 to

be unnormalised in the next subsection.

Equation (231) allows us to reduce our tensor network diagram (224) to the following
finite form

OS(t) · · · OS(t) . (233)

We can use this simplified tensor network diagram as a starting point to build an equiv-
alent quantum circuit.

8.3.2 Conversion to a Quantum Circuit

A quantum circuit is a combination of quantum gates. All allowed gates have to be uni-
tary operators along the time axis [28]. Therefore, we have to modify our tensor network
to consist of only unitary matrices that are connected by normal matrix multiplication.
While we did not specify the operator OS, we will assume that an implementation via
unitary gates is known. The dual unitary gates are by definition easy to implement.
So what remains are the N tensors. Their implementation is a little bit more involved,
since we not only have the physical legs to worry about but also the virtual ones. While
the physical indices fit easily into the circuit model of quantum computing, the virtual
indices would flow perpendicular to the time direction in the quantum circuit. To over-
come this problem, we will adapt a method used to implement MPS via unitary gates,
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it is given in detail in [29]. A shorter explanation can be found in the appendix of [30].
In short, we want the tensors N to be included in a larger gate NG. We will do this
assuming we have access to qudits, i.e. systems that have a d-dimensional Hilbert space.
This is the same dimension as for our physical legs. Ways to realise qudit systems and
how to work with them exist, e.g. cf. [31], so this is a reasonable assumption.

We need two qudits to account for the physical legs and n = dlogd χe-many qudits
to act on a big enough state space to include the vertical legs. Therefore let NG be a
gate acting on 2 + dlogd χe qudits. The elements of such a gate NG can be represented
as

NG

|i〉 |j〉 |β1〉

|α1〉 |α2〉 |α3〉

· · · NG

|βn−2〉 |βn−1〉 |βn〉

|αn〉 |p1〉 |p2〉

, (234)

where all the indices take values in I0(d− 1). We define some of these matrix-elements
via

〈i, j, β1 · · · βn|NG|α1 · · · αn, 0, 0〉 = N ij
αβ for α, β ∈ I0(χ− 1), (235)

where α1 · · ·αn is the representation of α − 1 in the numeral system with base d, same
for β. We will from here on write α instead of the full α1 · · ·αn, again the same for β.
Thus the gate visualisation simplifies to

NG

|α〉 |p1〉 |p2〉

|i〉 |j〉 |β〉

. (236)

To get precisely the matrix elements corresponding to the tensor N , we will only need
to ensure the |pk〉 are prepared in the |0〉 state. If χ < dn, the matrix elements with
|p1, p2〉 = |0, 0〉 and β > χ − 1 are not yet defined. We can just set them as 0. Thus,
the column vectors NG|α, 0, 0〉 are defined, but only for α ∈ I0(χ − 1). These have to
be orthonormal for NG to be unitary. Condition (211) provides exactly that orthonor-
mality:

〈α, 0, 0|NG†NG|α̃, 0, 0〉 =
∑
ijβ

N ij
αβ

(
N ij
α̃β

)∗
= δα̃α. (237)
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The only demand we have for the remaining column vectors, for which either p1, p2 6= 0
or α > χ−1, is to form an orthonormal basis together with the column vectors we already
got. We know how to find such vectors. It is equivalent to finding an orthonormal basis
of the kernel of the matrix A = (NG|0, 0, 0〉, · · · ,NG|χ−1, 0, 0〉). For this task we may
use the SVD of A, cf. equation (197). The details can be found e.g. in [32] and the
process can be automated for example using MATLAB [33].
We are almost done. A look at the tensor network (233) after replacing N by NG will
show us, what is left to do:

circinit = OS(t)

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉|α〉

|α̃〉

· · · OS(t)

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

, (238)

where the darker three-qudit gates are NG†. All qudits that would be |p1〉 or |p2〉 are just
set to |0〉. However, to calculate the desired tensor network (233), we need to contract
all indices. Therefore, we have to trace out the first qudit marked by α, i.e.

lim
L→∞
〈ΨL

t |OS|ΨL
t 〉 =

1

χ
〈I|ε (OS, t) |I 〉 =

1

χ
〈0, · · · , 0|Tr1 [circinit] |0, · · · , 0〉. (239)
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The partial trace is most certainly a valid quantum operation [34] or superoperator [35].
However, it is not part of the traditional model of quantum computing [35], i.e. the
circuit model. This means we cannot realise it just using a unitary gate with the number
qudits we have in circinit. Luckily, there is another way. We repeat the method, used
before to get NG, but now with a gate LNG acting on dlogd χe additional qubits:

LNG

|α〉 |i〉 |j〉 |β〉

|p1〉 |p2〉 |p3〉 |p4〉

. (240)

As before we shortened all the qudits making up |α〉 and |β〉 into a single symbol. This
time we define some of the matrix elements as

〈α, i, j, β|LNG|0, 0, 0, 0〉 =
1
√
χ
N ij
αβ. (241)

We can find the remaining matrix elements the same as before: We complete the column
vectors partially defined by the equation (241) with zeros and find the remaining column
vectors using the fact that LNG should be unitary. But why does an additional factor
pop up at this point?
Again the column vectors need to be orthonormal for LNG to be unitary. However, this
time we sum over an additional leg. Using (211) we get

1 = 〈0, 0, 0, 0|LNG†LNG|0, 0, 0, 0〉 !
= ν2

∑
αijβ

N ij
αβ

(
N ij
αβ

)∗
= ν2χ. (242)
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Thus the additional factor ν = 1√
χ

is justified. Our new circuit is then

circ = OS(t)

LNG†

LNG

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

· · · OS(t)

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

, (243)

which can be run on a circuit based quantum computer, such as provided by IBM in the
form of Qiskit and the IBM-Quantum Lab [36]. It also fulfils the desired equation

lim
L→∞
〈ΨL

t |OS|ΨL
t 〉 = 〈0, · · · , 0|circ|0, · · · , 0〉. (244)

We can run the circuit multiple times and measure. By doing so we find the overlap of
the final state circ|0, · · · , 0〉 with |0, · · · , 0〉, which is exactly the quantity that calculates
the original tensor network, as shown by (244).
As a sidenote, we assumed OS to also be a unitary. However, general physical quantities
are given by hermitian operators. Measuring those is possible using an appropriate
quantum simulator as defined in [37]. We would only need to run the first half of our
circuit, i.e. up to the application of OS. At this point the simulator’s state would be
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equivalent to the state after the time-evolution. Rather than running OS as a gate, one
can now measure it directly and obtain the desired physical quantity that way.
Note that only the conventional unitary condition in time direction was used to get to
our end result. However, the important difference between general unitary gates and
dual unitary gates is that for the latter we know an easy and exact solution. Therefore
we can check our results against the exact solution. This could allow us to get benchmark
solutions for quantum computers as well as classical computations for the contraction of
such a tensor network. The results coming from both could show, if quantum computers
have an advantage in calculating such dynamics and thus if they may be used to compute
dynamics using general unitary gates. This is even more useful for a system with more
spatial dimensions.

8.4 Solvable States for two spatial Dimensions

What we did with a solvable MPS on a one-dimensional chain of systems lead to an in-
teresting application. Two-dimensional quantum lattices are even harder to handle both
analytically [13] as well as numerically [5]. In section 5 we already extended the concept
of dual unitaries, which were incremental for the success in the previous subsections on
solvable states, to two spatial dimensions. Thus it seems reasonable to extend the solv-
able states to two space-dimensions. Note that this section is not perfectly worked out
and lacks some of the precision the other sections had, since this is still part of ongoing
research.

There already exists a class of states on a 2D-lattice that would correspond to the
MPS, the so called projected entangled pair states (PEPS) [10]. For such a state, each
individual system is described by a 5-tensor, with four virtual bonds to the four near-
est neighbours and one physical bond. A 2D lattice state |ΨL1,L2〉 for a lattice of size
2L1 × 2L2 in PEPS-form can be represented using a tensor network diagram

|ΨL1,L2〉 =

e1

e2

, (245)

where the red legs represent the physical bonds and we assume periodic boundary condi-
tions. Note that the lattice does not need to be a square and we can choose L1 6= L2 just
as well. Similar to the MPS-chain, we want the PEPS to be two-site shift-invariant, but
this time in both spatial dimensions. Therefore we combine the four tensors describing
a plaquette of systems into a single tensor:

N = = . (246)

Thus N is a 12-tensor. Again, even though we used a symmetric symbol for N , that
does not mean it is symmetric under rotation by multiples of π

2
.
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Figure 9: This is a sketch of the tensor network diagram of the quantity
〈ΨL1,L2(t)|OS|ΨL1,L2(t)〉, therefore no tensor legs are included. We will go
from bottom to top. The gray square at the bottom represents |ΨL1,L2(0)〉,
which is made up of plaquette tensors N . Next comes the red box which cor-
responds to the time-evolution U

t. Somewhere inside the green layer OS is
applied. The blue box represents

(
U
†)t. Finally the top black square repre-

sents |ΨL1,L2(0)〉 consisting of the plaquette tensors N∗.

Furthermore, we will assume that parallel legs have the same dimension. We will denote
the dimension of the virtual bonds parallel to direction e1 and e2 respectively by χ1, χ2.
The physical dimension is as usual denoted by d. |ΨL1,L2(N)〉 will then consist of the
same plaquette tensor N for each plaquette instead of a potentially different 12-tensor
at each plaquette. Usually we will leave the N out of the state expression.
We are now ready to apply a time-evolution to any state, for example the evolution
U consisting of our ternary unitaries as given in (87). The precise application of the
unitaries relative to the plaquettes is important for exact computations, but will not
concern us right now. As before we will assume that |ΨL1,L2(t)〉 = U

t|ΨL1,L2(0)〉 is
normalised for all L1, L2 and times t. This time we want to find the quantity

OS = lim
L2→∞

lim
L1→∞

OS(L1, L2, t) = lim
L2→∞

lim
L1→∞

〈ΨL1,L2(t)|OS|ΨL1,L2(t)〉, (247)

where OS an operator applied to the sites in S. We will see later on that the order of the
limits is important. Due to the same reasoning as before, we restrict ourselves to locally
applied OS. For finite L1, L2 the tensor network diagram associated to OS(L1, L2) looks
like a sandwich. A sketch of it is given in Fig. 9.
We once more need to reduce the infinite tensor network representing OS to a finite one

to compute (247). Since we assumed OS to be locally applied, we may once more use the
light-cone method already used in sections 4.2, 5.2, 6 and to get (223). Just as in the 1D-
case, all unitariy operators in the time-evolution Ut will reduce to the identity, except for
those applied to events in a finite set. As before, we may combine bot the operator OS
and what remains of the time-evolution into a new operator OS(t). This new operator
will be locally applied on a rectangular set S̃ = Ixmin

(xmax)× Iymin
(ymax) ⊃ S. We may
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write
OS(t) = lim

L2→∞
lim
L1→∞

〈ΨL1,L2(0)|OS(t)|ΨL1,L2(0)〉. (248)

To continue, we have to define what a solvable state actually is in two spatial dimensions.
We will have to define desired properties separately for each dimension.

Def. 12. A class of two-site shift-invariant PEPSs
{
|ΨL1,L2(N)〉

}
L1,L2

defined by pla-

quette 12-tensors N is called periodically solvable in direction ei if a chain Ci(L,N)
of L-many N-tensors along direction ej (with j 6= i) fulfils

= 1
d2

(249)

for all L and for periodic boundary conditions on the chain’s ends.

We will assume our class of sets to be periodically solvable in e1-direction. We can
then define a kind of transfer operator

T = . (250)

For any plaquettes describing systems outside of S̃, only this transfer operator will
be left. Specifically for the plaquette operators defined on a plaquette p (x, y) with
x /∈ Ixmin

(xmax), we will have an infinite chain of transfer operators along the e2 direction.
The solvability condition (249) and normalisation of our PEPS imply that C1(L,N) has
a maximum eigenvalue 1 with eigenvector |I〉⊗2L, where |I〉 is defined as in equation
(229). Thus using the same argumentation as in the 1D-case, we can reduce our tensor
network to a finite tensor network in e1-direction

OS(t) = lim
L2→∞

〈I|⊗2Lx
(
〈ΨLx,L2(0)|OS(t)|ΨLx,L2(0)〉

)
|I〉⊗2Lx , (251)

where Lx > xmax − xmin is finite, but large enough to contain S̃.
However, the network still extends infinitely in the e2-direction. Simply demanding (249)
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again will not help, since the boundary conditions of the chains of Lx-many tensors N
along direction e1 are not periodic but rather |I〉⊗2. Visually get for a chain C2(Lx, N)
outside of S̃ the following:

Lx

. (252)

Thus we have a chain of Lx-many transfer operators T for every y /∈ Iymin
(ymax). So we

may define

Def. 13. A class of two-site shift-invariant PEPSs
{
|ΨL1,L2(N)〉

}
L1,L2

defined by plaque-

tte 12-tensors N is called |I〉⊗2-solvable in direction ei if a chain Ci(L,N) of L-many
N-tensors along direction ej (with j 6= i) fulfils

L

= 1
d2

(253)
for all L.

By assuming that our class of states is |I〉⊗2-solvable as well and using an analogous
argument as to get equation (251), we can also reduce our tensor network in e2 direction
to a finite size.

OS(t) = 〈I|⊗4LxLy
(
〈ΨLx,Ly(0)|OS(t)|ΨLx,Ly(0)〉

)
|I〉⊗4LxLy , (254)

where Ly > ymax − ymin. Thus we again managed to get a finite tensor network repre-
senting the desired quantity.
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However, there are two things to note. The arguments to reduce the tensor network’s
size only required that |I〉⊗2 is an eigenvector of T with eigenvalue 1 for every direction.
What we demanded is stronger, so the result (254) will hold already if we only demand
that T has an eigenvector with eigenvalue 1. However, in analogy to the 1D-case, our
assumptions will allow for an exact solution to be computed. Secondly, note that this
process is not symmetric under exchange of directions e1 ↔ e2 and thus the limits in the
initial expression for OS(t) clearly cannot be commuted. We can allow for this by making
even more assumptions, either by demanding our class of states to be both periodically
solvable and |I〉⊗2-solvable in both directions or by making generalising our assumptions
for state class |ΨL1,L2 〉 to all boundary conditions. But clearly these are even stricter
conditions and might be too much to still find a class of states. The undertaking of
finding example states is already hard, except for a simple one:

Example 6. We just assume χ2 = 1. We can also set the bound dimension in e2-
direction inside of N to one. Hence

N = =
. (255)

By demanding the resulting 4-tensors to have the same properties as the 4-tensors making
up the solvable states in one-spatial dimension, we get precisely what was demanded of
N in the definitions 12 and 13. This example might be considered quite trivial since it
solves the problem of different boundary conditions by just discarding one direction.

In analogy to the case of one-spatial dimension in section 8.3.2, one can try to rework
the finite tensor network into a quantum circuit using mostly the same tricks. Further-
more, it will be useful to assume the existence of a two-dimensional quantum computer
to implement this more easily. This is not an unreasonable assumption, cf. [38]. A more
detailed exploration of these kinds of states is still in the making. Especially finding
more examples will turn out to be useful in order to actually use them in a benchmark-
ing method for two-dimensional quantum computers. However, on the analytical side
the exact solutions still need to be worked out precisely to do this. Still, intuitively it
seems clear that those exist.

With this done we arrived where we initially hoped to end up. So let us wrap everything
up.

9 Final Discussion and Outlook

Our journey is almost at the end. First let us recapitulate what we found. We dis-
cussed the concept of dual unitary operators and extended it to two spatial dimensions

64



by defining ternary unitary operators, for which we found examples in the form of the
constructions X and Y given in equations (77) and (78) respectively. We generalised
the idea even further to arbitrary dimensions by defining (∆ + 1)-unitary operators.
By using the methods and language developed in (1 + 1)-dimensional space-time and
abstracting that in (2 + 1)-dimensional space-time using visual aid, we managed to
even find exact results for the correlation function Dαβ(x, y, t) after arbitrary times for
(∆ + 1)-dimensional space-time. We explored these results further by introducing and
analysing the M -maps. Then we had a quick look at the more fundamental origins
of the different classes of unitaries, some of which are examples of (∆ + 1)-unitaries.
A quick overview of the current connections made between them in the literature was
given as well. In the final section we returned to lower dimensions, where we found a
benchmarking possibility for quantum computers. We did so successfully by utilising the
concept of unitary states and manipulation of tensor networks in order to get a usable
finite quantum circuit that can be run on a quantum computer. While we completed
this task for one spatial dimension, we gave only a general plan for the more difficult
two-dimensional problem.

Thus we found quite a lot of nice results during this journey. However, more research
pathways were opened up and questions left unanswered, so one might consider this
end merely a pause. Further exploration and analysis on the topic of (∆ + 1)-unitaries
could include the two subsets of T U(d) that were given in (77) and (78). Do they de-
scribe the entire set of ternary unitaries or merely a subset and can we find a complete
parametrisation of T U(d)? One may use a numerical method similar to the one used
in the estimations in [39] to get an idea of the real parameters required. Or one could
start right away from various general parametrisations of unitary matrices [40,41]. This
might also pave the way to a general parametrisation of (∆ + 1)-unitaries.

A different direction one could take is to extend other properties and settings of dual
unitaries that have been analysed in the literature to higher dimensions, each of which
might give rise to an entire thesis on its own. Examples include a folding of gates to
combine an operator with its hermitian conjugate, to allow for easier computations, the
analysis of operator entanglement [2], entanglement barriers [42] and the behaviour un-
der perturbation by non-dual-unitary operators [4].

Finally, note that we did not run our quantum circuit circ as given in equation (243) on
an actual quantum computer. At the same time one should try to contract the tensor
network in equation (233) on a classical computer and compute the exact result for some
example of dual unitaries and solvable states, examples for the latter are given in [6].
All of this still provides plenty to explore especially in two spatial dimensions. Although
we have arrived at our initial goal, we can see multiple new pathways opening up for
future research.
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