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Abstract

Wavelength-routed optical networks-on-chip (WRONoCs) are known for providing high band-
width, low latency, and low power communication, making them suitable for the growing
demands of modern computing and communication environments. It switches signals through
microring resonators (MRRs) coupled to different wavelengths, thereby preventing data colli-
sions between optical signals. In WRONoCs, each transmitter and receiver pair has a dedicated
data transmission path to ensure collision-free communication simultaneously without arbitra-
tion. Various topologies have been proposed to efficiently connect optical signals in WRONoCs.
However, as communication demands in WRONoCs continuously grow and the number of cores
in multi-core systems increases, the size of a topology becomes larger, which results in a sig-
nificant increase in the numbers of MRRs, leading to higher maximum insertion loss and an
increase in the used number of wavelengths.

In this work, I propose to divide the communication graph of a network into several sub-graphs
and use multiple small-scale topologies to support the communications within a sub-graph or
among all sub-graphs. To this end, I propose a power-aware and scalable multi-topology design
method. To evaluate the performance of my method, I first compared it to a conventional
approach, which applies a large topology for the network. The experimental results show that
for a 26-core application, my method can reduce wavelength usage and the maximum insertion
loss by 54.16% and 52.63%, respectively, compared to the conventional approach. Moreover, I
have implemented and compared two typical partitioning methods to my method. My method
outperforms the two typical partitioning methods in power efficiency and scalability by reducing
the wavelength usage and maximum insertion loss.



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Prof. Dr.-Ing. Ulf Schlicht-
mann and M.Sc. Zhidan Zheng from the Technical University of Munich, for their responsible
guidance and encouragement while writing this thesis.

I am especially grateful to my supervisor, M.Sc. Zhidan Zheng: Her meticulous guidance and
patient explanations helped me to complete all the work smoothly. Her dedication to guidance
time, early responses, and feedback to my questions greatly encouraged and provided my
motivation and confidence. Furthermore, I am deeply thankful for the research opportunity
she provided me and her trust in me, which allowed me to learn a lot of state-of-the-art
academic ideas that are difficult to encounter during regular studies. Her organizational skills
and personal abilities have inspired me to learn from her, motivating me to advance further.

Finally, I would like to thank my family for their support. During the period when I focused
on writing my thesis, they provided me with immense emotional support and care. Their con-
siderable concern and understanding gave me substantial motivation for my studies, enabling
me to fully dedicate myself to my academic life. Additionally, I would like to thank Taylor
Swift for her enchanting music, which added great vitality to my life during the thesis writing
process. Having such an outstanding woman as a role model has inspired me to improve myself
further.

3



Contents

1. Introduction 8

2. Background 11
2.1. Introduction of a typical WRONoC environmental setting . . . . . . . . . . . . 11
2.2. Optical switching elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3. Introduction of GWOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5. Typical partitioning methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1. Kernighan-Lin Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2. Stoer-Wagner Minimum Cut Algorithms . . . . . . . . . . . . . . . . . . 18

3. Preliminaries 19
3.1. Calculation of insertion loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Insertion loss within different clusters . . . . . . . . . . . . . . . . . . . . . . . 23

4. Methodology 27
4.1. Clustering Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2. Node-Pairing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1. Exhausted Searching Method . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2. Random Shuffling Method . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. Results 33
5.1. Comparison to a conventional method . . . . . . . . . . . . . . . . . . . . . . . 33
5.2. Comparison to typical partitioning algorithms . . . . . . . . . . . . . . . . . . . 34
5.3. Discussion: different methods for node pairing . . . . . . . . . . . . . . . . . . . 37

6. Conclusion 39

A. Appendix 40

Bibliography 48

4



List of Figures

1.1. (a) VOPD core graph, (b) Insertion loss and wavelength assignment with a
single GWOR topology. The number on each node is the relative input and
output ports of the single GWOR. Arrows between two nodes indicate signal
communication between the relative cores. The number and λx on each edge
are the insertion loss and the wavelength assignment of each signal path. x is
an integer representing the index of wavelength. . . . . . . . . . . . . . . . . . 9

1.2. Insertion loss and wavelength assignment with multiple GWOR topologies. . . 10

2.1. PSE working mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2. 90◦ turns in CSEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. 270◦ turns in CSEs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. CSE working mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5. 4× 4 GWOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6. A CSE with two MRRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7. 6× 6 GWOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8. 7× 7 GWOR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Signal path from I0 to O6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2. Signal path from I2 to O5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. PIP core graph. Each node represents a core. . . . . . . . . . . . . . . . . . . . 24
3.4. Intra- and inter-clusters communication graph of PIP core graph. The numbers

of each node are the input and output ports’ index of the topologies supporting
the clusters. The red sections and the blue section represent the intra-clusters
and the inter-cluster. The blue lines represent the inter-cluster’s signal communi-
cation. The gray MRRs indicate the MRRs required for connecting inter-cluster
signals, and the green arrows represent waveguides. . . . . . . . . . . . . . . . . 25

3.5. Connections between the intra- and inter-clusters of the topologies. . . . . . . . 26

4.1. MPEG4 core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2. (a) Merge node E with node B. (b) Merge node E with node B. . . . . . . . . 29
4.3. Insertion loss and wavelength assignment of PIP communication graph with

pairing the node randomly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4. Insertion loss and wavelength assignment of PIP communication graph with

node pairing minimizing the maximum insertion loss. . . . . . . . . . . . . . . . 31

5.1. Partitioning results of PIP core graph using (a) Kernighan-Lin, (b) Stoer-Wagner
minimum cut, and (c) My method . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. Partitioning results of MPEG4 core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method . . . . . . . . . . . . . . . . . . . . . 35

5



List of Figures

5.3. Partitioning results of VOPD core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method. . . . . . . . . . . . . . . . . . . . . 35

5.4. Partitioning results of MWD core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method. . . . . . . . . . . . . . . . . . . . . 36

5.5. Partitioning results of D-26-media core graph using (a) Kernighan-Lin, (b)
Stoer-Wagner minimum cut, and (c) My method. . . . . . . . . . . . . . . . . . 36

A.1. PIP core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.2. MPEG4 core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
A.3. VOPD core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.4. MWD core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.5. D-26-media core graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.6. Insertion loss assignment of PIP core graph using node-pairing method. . . . . 43
A.7. Insertion loss assignment of MPEG4 core graph using node-pairing method. . . 44
A.8. Insertion loss assignment of VOPD core graph using node-pairing method. . . . 45
A.9. Insertion loss assignment of MWD core graph using node-pairing method. . . . 46
A.10.D-26-media clustered core graph using node-pairing method. . . . . . . . . . . 47

6



List of Tables

1.1. Comparison of maximum insertion loss and wavelength usage. . . . . . . . . . . 10

2.1. 6× 6 GWOR wavelength assignment. . . . . . . . . . . . . . . . . . . . . . . . 14
2.2. 7× 7 GWOR wavelength assignment. . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. 12× 12 GWOR wavelength assignment. . . . . . . . . . . . . . . . . . . . . . . 17
2.4. 12× 12 GWOR insertion loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1. Insertion loss coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. 7× 7 GWOR insertion loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. 16× 16 GWOR insertion loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Comparison of maximum insertion loss of two different dimension GWOR. . . . 23

4.1. Comparison of maximum insertion loss and wavelength usage of PIP core graph. 31

5.1. Wavelength usage results for various applications. . . . . . . . . . . . . . . . . . 33
5.2. Maximum insertion loss results for various applications. . . . . . . . . . . . . . 34
5.3. Comparison of exhausted searching method and random shuffling method with

different clustered core graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4. Average running time, insertion loss wavelength and usage of random shuffling

method with a 26-core graph(D-26-media core graph). . . . . . . . . . . . . . . 38

A.1. 8× 8 GWOR insertion loss. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7



1. Introduction

With the rapid advancement of silicon photonics technology, optical networks-on-chip (ONoCs)
have emerged to meet the increasing communication demand of multi-core systems. ONoC
converts electrical signals into optical signals of different wavelengths and transmits them from
a transmitter to a receiver through optical waveguides. ONoC consumes much less power
and offers significantly wider bandwidth than current electronic interconnects (P. Grani 2017)
(M. Briere 2007).

Wavelength-routed ONoCs (WRONoCs), a specific type of ONoCs, support on-chip com-
munication based on different wavelengths. WRONoCs select and route optical signals with
different wavelengths by microring resonators (MRRs). When an optical input signal traverses
an MRR, if the wavelength of the input signal matches the resonant wavelength of the MRR,
the input signal will be coupled to the MRR and change the transmission direction; otherwise,
the input signal will maintain the original direction through the MRR (C. Manolatou 2002).
Signal communication in WRONoCs is contention-free and requires no arbitration. Each core
on WRONoCs can be either a transmitter or a receiver, and the paths between them are
unique, enabling simultaneous communication between transmitters and receivers using differ-
ent wavelengths (T. Tseng 2019).

Different topologies have been developed to reduce resource waste by reusing MRRs effi-
ciently in WRONoCs, such as GWOR (X. Tan 2011). GWOR can be scaled to support various
network sizes and has full communication capability. The connection of GWOR can efficiently
reuse MRRs, which reduces the usage of MRRs. Its low power consumption and low latency
benefit it for applying on WRONoCs.

However, as the communication demands on WRONoCs increase, the number of required
cores in multi-core systems also grows. If the entire WRONoC continues to be supported
with a single topology, the size of the required topology will become increasingly significant.
As the topology expands, on the one hand, the usage of MRRs will rise, leading to higher
insertion loss (L. Duong 2014). On the other hand, the usage of wavelengths will also surge,
significantly increasing the power required by the laser source to drive the entire network
(M. Ort́ın-Obón 2017).

To reduce the insertion loss in the topology and the total usage of wavelengths, an approach
proposed in this work is to divide large-scale core graphs, i.e., a communication network with
many cores, of WRONoCs into multiple small-scale clusters and support every intra-/inter-
cluster with small-scale topologies. From one perspective, the wavelength assignment of the
intra-clusters is mutually independent, which implies that wavelengths in intra-clusters can be
reused, significantly reducing the overall usage of wavelengths. From the other perspective, as
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Figure 1.1.: (a) VOPD core graph, (b) Insertion loss and wavelength assignment with a single
GWOR topology. The number on each node is the relative input and output ports
of the single GWOR. Arrows between two nodes indicate signal communication
between the relative cores. The number and λx on each edge are the insertion loss
and the wavelength assignment of each signal path. x is an integer representing
the index of wavelength.

the size of the topology decreases, the number of MRRs that the input signal passes through
from the transmitter to the receiver also decreases, leading to lower insertion loss.

A scalable multi-topology design clustering-based method is proposed in this work to divide
the core graphs of WRONoCs. After clustering the network with my method, the following
example compares supporting an entire network with a single topology and supporting each
cluster separately with small-scale topologies. The Video Object Plane Decoder(VOPD) is
an application of video processing (D. Bertozzi 2005), and its core graph in Figure 1.1(a) is
mapped onto 12 cores. Nodes of the core graph connect with the input and output pairs in
a single 12× 12 GWOR. Figure 1.1(b) shows each signal path’s insertion loss and wavelength
assignment of the VOPD core graph connected with a single GWOR. For example, node A is
paired with port 0, which represents the input and output pairs of the 12 × 12 GWOR, and
node B is paired with port 1; the insertion loss of signal path from port 0 to port 1 is 0.6 dB; the
assigned wavelength is λ1. Figure 1.2 shows each signal path’s insertion loss and wavelength
assignment of inter- and intra-clusters in the VOPD core graph clustered by my method.
The comparison of the maximum insertion loss and wavelength usage with a single GWOR
topology and with multiple GWOR topologies is shown in Tablet 1.1. The experimental results
show that the maximum insertion loss for the VOPD core graph is reduced by 0.7 dB, and
wavelength usage is reduced by 5. Dividing the network into multiple clusters and supporting
with multiple small-scale topologies can improve the network’s insertion loss and wavelength
usage and reduce the power consumption.

To evaluate the performance of my clustering method, I applied it to multiple core graphs
and compared the results to the conventional approach, which applies a large topology for the
network. Furthermore, I have implemented and compared two typical partitioning methods
to my method. The results demonstrate that using my method significantly improves the

9
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Figure 1.2.: Insertion loss and wavelength assignment with multiple GWOR topologies.

Maximum Insertion Loss Wavelength Usage

A single GWOR topology 1.3 dB 9

Multiple GWOR topologies 0.6 dB 4

Table 1.1.: Comparison of maximum insertion loss and wavelength usage.

network’s maximum insertion loss and wavelength usage. For example, the wavelength usage
and maximum insertion loss of a 12-core application, Video Object Plane Decoder (VOPD),
reduce respectively 55.55% and 57.14%. Additionally, I implemented two typical partitioning
algorithms: the Kernighan-Lin algorithm and the Stoer-Wagner minimum cut algorithm and
compared them to my method. Besides, I proposed two node-pairing methods for pairing
the nodes of core graphs and the input and output pairs of topologies. Both node-pairing
approaches can effectively reduce the maximum insertion loss in the clustered network.

10



2. Background

2.1. Introduction of a typical WRONoC environmental setting

One of the most widespread environmental settings of WRONoCs consists of an electronic
layer and an optical layer stacked perpendicularly to each other. The electronic layer typically
houses most electronic circuits, while the optical layer accommodates MRR, digital circuits,
photodetectors, and other components. An array of off-chip continuous wave laser sources
drives the optical layer, which uses different wavelengths to route throughout the entire optical
layer (M. Ort́ın-Obón 2017) (Z. Zheng 2021b).

2.2. Optical switching elements

Optical switching elements are formed by waveguides and MRRs. An MRR is an optical
component. When the wavelength of a signal matches the resonant wavelength of the MRR,
the signal is coupled to the MRR and switched to the corresponding waveguide. Otherwise,
the signal keeps its original path. The radius of the MRR determines its resonant wavelength
(C. Manolatou 2002).

MRR features two coupling mechanisms: the parallel switching element (PSE) and the cross-
ing switch element (CSE). PSE places an MRR between a pair of parallel waveguides, which
accepts the rotated 180◦ waveguide direction, as shown in Figure 2.1. CSE positions an MRR
at a pair of crossing waveguides. It can accept both the clockwise rotated 90◦ or 270◦ waveguide
direction. Figure 2.4 shows the schematic diagram of two CSE working mechanisms. According
to the structure of topologies, most topologies prefer the CSE with 90◦ signal path because
270◦ signal path produces more insertion loss (Z. Zheng 2021a). The coupling mechanisms give
rise to various topological structures.

2.3. Introduction of GWOR

Most topologies widely researched are based on the CSE 90◦ drop coupling mechanism, such as
GWOR (X. Tan 2011). GWOR is scalable to support diverse network sizes and supports full
communication, meaning any core can communicate with others except itself. The connection
of GWOR can reuse MRRs efficiently, which reduces the usage of MRRs. Meanwhile, its low

11



2. Background

MRR

λoff
λon

λoff
λon

Figure 2.1.: PSE working mechanism.

MRR

λoffλon

Figure 2.2.: 90◦ turns in CSEs.

λoff
λon

MRR

Figure 2.3.: 270◦ turns in CSEs.

Figure 2.4.: CSE working mechanism

power consumption and low latency characteristics make it highly suitable for application in
WRONoCs.

Each input and output of GWOR is connected via specific waveguide channels. The smallest
dimension of a GWOR topology is 4× 4 in Figure 2.5, which consists of four CSEs. Its basic
structure consists of a CSE with two identical MRRs, as shown in Figure 2.6. The even and
odd wavelength assignment formulas for GWOR are as follows:

C(i, j)even =



− i = j

λN−1 i+ j = N − 1, i ̸= j

λmod(2j,N−1) i = N − 1, 0 < j < N − 1

λmod(N−1−2i,N−1) j = 0, 0 < i < N − 1

λmod(j−i,N−1) others

(2.1)
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Figure 2.5.: 4× 4 GWOR.

λon

MRR

MRR

λoff
λoff
λon

Figure 2.6.: A CSE with two MRRs.

C(i, j)odd =

{
− i = j

λmod(j−i,N) others
(2.2)

These formulas can refer to a wavelength assignment table for GWOR of any dimension
(X. Tan 2011). For example, the topological structures of an even-dimension 6×6 GWOR and
an odd-dimension 7× 7 GWOR are shown in Figure 2.7, and Figure 2.8, and their wavelength
assignment tables are shown in Table 2.1 and Table 2.2.
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Figure 2.7.: 6× 6 GWOR.

O0 O1 O2 O3 O4 O5

I0 - λ1 λ2 λ3 λ4 λ5

I1 λ3 - λ1 λ2 λ5 λ4

I2 λ1 λ4 - λ5 λ2 λ3

I3 λ4 λ3 λ5 - λ1 λ2

I4 λ2 λ5 λ3 λ4 - λ1

I5 λ5 λ2 λ4 λ1 λ3 -

Table 2.1.: 6× 6 GWOR wavelength assignment.
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Figure 2.8.: 7× 7 GWOR.

O0 O1 O2 O3 O4 O5 O6

I0 - λ1 λ2 λ3 λ4 λ5 λ6

I1 λ6 - λ1 λ2 λ3 λ4 λ5

I2 λ5 λ6 - λ1 λ2 λ3 λ4

I3 λ4 λ5 λ6 - λ1 λ2 λ3

I4 λ3 λ4 λ5 λ6 - λ1 λ2

I5 λ2 λ3 λ4 λ5 λ6 - λ1

I6 λ1 λ2 λ3 λ4 λ5 λ6 -

Table 2.2.: 7× 7 GWOR wavelength assignment.
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2. Background

2.4. Related work

M. Ort́ın et al. proposed strategies to partition a system and concurrently utilize multiple
applications, emphasizing reusing wavelengths within each partition. Their experiments show
that the strategies can effectively reduce static power consumption, the power of laser sources
and improves power efficiency for photonically integrated systems (M. Ortin 2015). However,
the strategy has three disadvantages:

First, the strategy still adopts a single topology, whose size is equal to the number of cores in
the WRONoCs without reducing the size of the topology. The topology’s dimensions determine
the maximum usable wavelengths, and the insertion loss of a large-scale topology is higher than
that of a small-scale one.

Second, the strategies do not consider insertion loss, a critical performance factor. Reducing
wavelengths does not necessarily imply a reduction in insertion loss. When analyzing the
insertion loss of each signal path in the topology, the insertion loss varies between the identical
wavelengths. For example, in a 12× 12 GWOR, the path wavelength assignment and insertion
loss assignment are shown in Figure 2.3 and Figure 2.4. The insertion loss of wavelength
λ1 from I0 to O1 is 0.6 dB. However, the insertion loss of wavelength λ1 from I2 to O3 is 1
dB. Reusing a wavelength without considering the increase in insertion loss can lead to high
insertion loss, which increases the power consumption of the entire WRONoCs.
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2. Background

O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

I0 - 1 2 3 4 5 6 7 8 9 10 11

I1 9 - 1 2 3 4 5 6 7 8 11 10

I2 7 10 - 1 2 3 4 5 6 11 8 9

I3 5 9 10 - 1 2 3 4 11 6 7 8

I4 3 8 9 10 - 1 2 11 4 5 6 7

I5 1 7 8 9 10 - 11 2 3 4 5 6

I6 10 6 7 8 9 11 - 1 2 3 4 5

I7 8 5 6 7 11 9 10 - 1 2 3 4

I8 6 4 5 11 7 8 9 10 - 1 2 3

I9 4 3 11 5 6 7 8 9 10 - 1 2

I10 2 11 3 4 5 6 7 8 9 10 - 1

I11 11 2 4 6 8 10 1 3 5 7 9 -

Table 2.3.: 12× 12 GWOR wavelength assignment.

(dB) O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11

I0 - 0.6 0.7 0.8 0.9 1 1.3 1.2 1.1 1 0.9 0.5

I1 0.5 - 0.8 0.9 1 1.1 1.2 1.1 1 0.9 0.5 1

I2 0.6 0.7 - 1 1.1 1.2 1.1 1 0.9 0.5 1 0.9

I3 0.7 0.8 0.9 - 1.2 1.3 1 0.9 0.5 1 0.9 0.8

I4 0.8 0.9 1 1.1 - 1.4 0.9 0.5 1 0.9 0.8 0.7

I5 0.9 1 1.1 1.2 1.3 - 0.5 1 0.9 0.8 0.7 0.6

I6 1.4 1.3 1.2 1.1 1 0.5 - 0.5 0.6 0.7 0.8 0.9

I7 1.3 1.2 1.1 1 0.5 0.9 0.6 - 0.7 0.8 0.9 1

I8 1.2 1.1 1 0.5 0.9 0.8 0.7 0.8 - 0.9 1 1.1

I9 1.1 1 0.5 0.9 0.8 0.7 0.8 0.9 1 - 1.1 1.2

I10 1 0.5 0.9 0.8 0.7 0.6 0.9 1 1.1 1.2 - 1.3

I11 0.5 0.9 0.8 0.7 0.6 0.5 1 1.1 1.2 1.3 1.4 -

Table 2.4.: 12× 12 GWOR insertion loss.
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2.5. Typical partitioning methods

Two classical partitioning methods will be introduced, which can fit the demands of reducing
the communication between partitions and minimizing the maximum partition size during
WRONoCs partitioning.

2.5.1. Kernighan-Lin Algorithm

The Kernighan-Lin algorithm, often used to minimize inter-board connections in electronic
circuits, can also partition ONoC’s communication. This algorithm offers two methods: even
partitioning and uneven partitioning.

First, the even partitioning problem can evenly divide the input graph into two equal-sized
subsets while minimizing the total edge weight between the two subsets. The method requires
that the number of nodes in the graph be even to ensure a fundamental equal division.

The second method involves uneven partitioning. The method requires the sizes of the two
subsets in advance. By continuously exchanging nodes between the two subsets until all nodes
have been exchanged once, two subsets with the minimum total edge weight between them are
obtained (B. W. Kernighan 1970).

The Kernighan-Lin algorithm can halve the maximum topology size in WRONoCs and min-
imize the edges between partitions, meaning fewer communications are inter-partitions. The
topology size of inter-partitions can also be effectively controlled. However, for the algorithm of
evenly dividing into two subsets, the size of the topology must be even to partition. Predefined
partition sizes are necessary for uneven partitioning, which can limit the algorithm’s flexibil-
ity and practical applicability. A characteristic of both methods is that they can only divide
the graph into two sub-graphs but not into multiple sub-graphs. Therefore, these methods
are highly effective in decreasing the maximal partitions’ size with small-scale graphs but less
effective for large-scale graphs.

2.5.2. Stoer-Wagner Minimum Cut Algorithms

The Stoer-Wagner minimum cut algorithm aims to divide a graph into two parts so that the
total weight of the cut is minimized. The Stoer-Wagner minimum cut algorithm finds the
minimum cut by contracting vertices in phases (F. Wagner 1997).

The Stoer-Wagner minimum cut algorithm effectively controls the inter-partition cut’s size
and ensures reduced communication between the partitions. However, while the minimum cut
algorithm can minimize the cut, but it can not control the size of the partitions, which often
results in significant size disparities between partitions.
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The maximum insertion loss generated on the signal paths and the overall number of wave-
lengths used significantly influence the total laser power (M. Ort́ın-Obón 2017). These two
parameters will be essential reference variables in the subsequent work.

3.1. Calculation of insertion loss

The insertion loss for each signal path can be calculated based on the number of MRRs each
signal passes through and the number of resonances that occur.

When an input signal passes through an MRR without being coupled to the MRR, it gen-
erates a through signal loss(Lt). When the signal is coupled to the MRR, a drop loss(Ld) is
generated. A crossing loss(Lc) is incurred when a signal passes through a waveguide crossing.
Tablet 3.1 shows the insertion loss coefficients of them (M. Nikdast 2015). The physical struc-
ture of the GWOR leads to variations in the number of MRRs each signal path traverses and
the instances of resonance. Using a GWOR with a dimension of 7 as an example in Figure
2.8, analyze the insertion loss on the path from I0 to I6 in Figure 3.1 and from I2 to O5 in
Figure 3.2. By calculating the number of MRRs each signal path passes through (NThrough),
the number of CSE passes through (NCrossing), the number of resonances (NDrop, which is 1
or 0 in GWOR) occurred on the signal path, the insertion loss generated on these two paths
can be caculated.

First, Figure 3.2 shows an example where the input signal starts from I0, and for each
MRR it passes through, NThrough increases by one, resulting in NThrough being 10. Similarly,
NCrossing increases by one for each crossing, resulting in NCrossing being 5. By referring to
the wavelength assignment Tablet 2.2, the resonance wavelength of the signal from I0 to O6 is
λ6. However, no MRR on the path with a resonance wavelength is λ6, NDrop is 0. The total
insertion losses can be calculated according to Formula 3.1. The insertion loss of the signal
from I0 to O6 is calculated as follows:

IL = |Lt| ×NThrough + |Lc| ×NCrossing + |Ld| ×NDrop (3.1)

Through loss (Lt) Drop loss (Ld) Crossing loss (Lc)

0.005 dB 0.5 dB 0.04 dB

Table 3.1.: Insertion loss coefficients.
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Figure 3.1.: Signal path from I0 to O6.

LossI0→O6 = 0.005×NThrough + 0.04×NCrossing + 0.5×NDrop

= 0.005× 10 + 0.04× 5 + 0.5× 0

= 0.25

Second, for another example, the resonance wavelength from I2 to O5 is λ3. When the
signal encounters the MRR with resonance wavelength of λ3, it passes with a 90◦ transmission
change, and NDrop is 1. For the remaining MRRs and CSEs, NThrough is 10, and NCrossing is
5. The insertion loss of the signal from I2 to O5 is calculated as follows:

LossI2→O5 = 0.005×NThrough + 0.04×NCrossing + 0.5×NDrop

= 0.005× 10 + 0.04× 5 + 0.5× 1

= 0.75

Following the same process, a table for the insertion loss of a 7 × 7 GWOR, as shown in
Tablet 3.2, can be caculated.

With the method described above, the insertion loss of the physical topology of the GWOR
in odd dimensions can be derived. Equation 3.3 shows the number of crossings that pass
through on each path, where N is the dimension of GWOR, i is the input port number, and j
is the output port number. For GWORs of even dimensions, calculate and analyze the signal
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Figure 3.2.: Signal path from I2 to O5.

path insertion loss similarly. The number of crossings that pass through on each path for the
GWOR in the even dimension is presented in Equation 3.2.

The relationship between the number of crossings and the number of MRRs a signal passes
through is given by Equation 3.4. The number of resonances occurring on the signal path is
shown in Equation 3.5.

(dB) O0 O1 O2 O3 O4 O5 O6

I0 - 0.6 0.7 0.9 0.75 0.65 0.25

I1 0.5 - 0.8 0.8 0.65 0.25 0.75

I2 0.6 0.7 - 0.7 0.25 0.75 0.65

I3 0.7 0.8 0.9 - 0.75 0.65 0.55

I4 0.85 0.75 0.25 0.55 - 0.6 0.7

I5 0.75 0.25 0.65 0.65 0.7 - 0.8

I6 0.25 0.65 0.55 0.75 0.8 0.9 -

Table 3.2.: 7× 7 GWOR insertion loss.
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Ncrossing odd(i, j) =



0 i = j

N − 2 i+ j = N − 1, i ̸= j

2(N − 3)− 2i j = N−1
2 , 0 ≤ i < N−1

2

2i−N j = N−1
2 , N−1

2 < i < N

2(i− 1) + 2j 0 < i ≤ N−1
2 , i > j

2(i+ j) 0 < j < N−1
2 , i < j

(3N − 8)− 2(i+ j) N−1
2 < j < N, i+ j < N − 1

(3N − 2)− 2(i+ j) 0 < i ≤ N−1
2 , i+ j > N − 1

(3N − 6)− 2(i+ j) N−1
2 < i < N − 1, i+ j < N − 1

(3N − 4)− 2(i+ j) 0 < j < N−1
2 , i+ j > N − 1

2(i+ j)− 2N N−1
2 < j < N − 1, i > j

2(i+ j)− 2(N + 1) N−1
2 < i < N − 1, i < j

(3.2)

Ncrossing even(i, j) =



0 i = j

N − 2 i+ j = N − 1, i ̸= j

2(i− N
2 )

N
2 < i < N, j = N

2

2(i− 1) + 2j 0 < i < N
2 , i > j

2(i+ j) 0 < j < N
2 , i < j

(3N − 8)− 2(i+ j) N
2 ≤ j < N, i+ j < N − 1

(3N − 2)− 2(i+ j) 0 < i < N
2 , i+ j > N − 1

(3N − 6)− 2(i+ j) N
2 ≤ i < N − 1, i+ j < N − 1

(3N − 4)− 2(i+ j) 0 < j < N
2 , i+ j > N − 1

2(i+ j)− 2N N
2 < j < N, i > j

2(i+ j)− 2(N − 1) N
2 ≤ i < N, i < j

(3.3)

Nthrough(i, j) = 2×Ncrossing(i, j) (3.4)

Ndrop(i, j) =


0 i = j

0 i+ j = N − 1, i ̸= j

1 others

(3.5)
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(dB) O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15

I0 - 0.6 0.7 0.8 0.9 1 1.1 1.2 1.7 1.6 1.5 1.4 1.3 1.2 1.1 0.7

I1 0.5 - 0.8 0.9 1 1.1 1.2 1.3 1.6 1.5 1.4 1.3 1.2 1.1 0.7 1.2

I2 0.6 0.7 - 1 1.1 1.2 1.3 1.4 1.5 1.4 1.3 1.2 1.1 0.7 1.2 1.1

I3 0.7 0.8 0.9 - 1.2 1.3 1.4 1.5 1.4 1.3 1.2 1.1 0.7 1.2 1.1 1

I4 0.8 0.9 1 1.1 - 1.4 1.5 1.6 1.3 1.2 1.1 0.7 1.2 1.1 1 0.9

I5 0.9 1 1.1 1.2 1.3 - 1.6 1.7 1.2 1.1 0.7 1.2 1.1 1 0.9 0.8

I6 1 1.1 1.2 1.3 1.4 1.5 - 1.8 1.1 0.7 1.2 1.1 1 0.9 0.8 0.7

I7 1.1 1.2 1.3 1.4 1.5 1.6 1.7 - 0.7 1.2 1.1 1 0.9 0.8 0.7 0.6

I8 1.8 1.7 1.6 1.5 1.4 1.3 1.2 0.7 - 0.5 0.6 0.7 0.8 0.9 1 1.1

I9 1.7 1.6 1.5 1.4 1.3 1.2 0.7 1.1 0.6 - 0.7 0.8 0.9 1 1.1 1.2

I10 1.6 1.5 1.4 1.3 1.2 0.7 1.1 1 0.7 0.8 - 0.9 1 1.1 1.2 1.3

I11 1.5 1.4 1.3 1.2 0.7 1.1 1 0.9 0.8 0.9 1 - 1.1 1.2 1.3 1.4

I12 1.4 1.3 1.2 0.7 1.1 1 0.9 0.8 0.9 1 1.1 1.2 - 1.3 1.4 1.5

I13 1.3 1.2 0.7 1.1 1 0.9 0.8 0.7 1 1.1 1.2 1.3 1.4 - 1.5 1.6

I14 1.2 0.7 1.1 1 0.9 0.8 0.7 0.6 1.1 1.2 1.3 1.4 1.5 1.6 - 1.7

I15 0.7 1.1 1 0.9 0.8 0.7 0.6 0.5 1.2 1.3 1.4 1.5 1.6 1.7 1.8 -

Table 3.3.: 16× 16 GWOR insertion loss.

Dimension 7 16

Maximum Insertion Loss 0.9 dB 1.8 dB

Minimum Insertion Loss 0.25 dB 0.5 dB

Table 3.4.: Comparison of maximum insertion loss of two different dimension GWOR.

Based on the aforementioned formula, the insertion loss of any size GWOR is scalable.

After calculating the insertion loss for a 16 × 16 GWOR topology, as shown in Table 3.3,
compare the maximum and minimum insertion loss for a 16-dimensional GWOR with a 7-
dimensional GWOR in Table 2.2. According to the results in Table 3.4, it can be inferred that
the maximum insertion loss increases with the increase of topology dimension.

3.2. Insertion loss within different clusters

Dividing a core graph, i.e., a communication network with many cores, into different clusters
needs an additional topology to enable communication between clusters. The clustering method
will be introduced in the next section. This section will introduce how to achieve inter-cluster
communication and how to calculate the corresponding insertion loss.

The signal inter-clusters cannot be directly supported like the nodes inside the clusters by
a topology; instead, an additional MRR is necessary to connect the communication of each
node to the topology, which is dedicated to supporting inter-cluster communication. The core
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Figure 3.3.: PIP core graph. Each node represents a core.

graph of Picture− In−Picture (PIP), which is a video processing application on NetChip, is
mapped onto 8 cores and shown in Figure 3.3 (D. Bertozzi 2005). To analyze the connection
inter-clusters, I cluster the PIP core graph with my method and support each cluster with the
corresponding dimensional topology. Figure 3.4 presents the communications of the intra- and
inter-clusters in the PIP core graph. The connections between the intra-clusters and inter-
cluster of their topologies are illustrated in Figure 3.5. The topological connections in the
figure correspond to the clustering and topology pairing depicted in Figure 3.4. Figure 3.5
shows three 4× 4 GWOR topologies corresponding to intra-cluster 1, intra-cluster 2, and the
inter-cluster topology.

Therefore, for the topology of inter-cluster, except the insertion loss that generates inside
the topology, an additional drop loss (Ld) generated by the additional MRR must be added
to obtain the total insertion loss produced by the inter-cluster’s topology. Given that 0.5
dB is two orders of magnitude greater than Lt and one order of magnitude greater than Lc,
appropriately control the number of inter-cluster cores during clustering to prevent excessive
dimensions and insertion loss in the topology.
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Figure 3.4.: Intra- and inter-clusters communication graph of PIP core graph. The numbers of
each node are the input and output ports’ index of the topologies supporting the
clusters. The red sections and the blue section represent the intra-clusters and the
inter-cluster. The blue lines represent the inter-cluster’s signal communication.
The gray MRRs indicate the MRRs required for connecting inter-cluster signals,
and the green arrows represent waveguides.
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4.1. Clustering Method

Most partitioning algorithms struggle to divide a directed graph into more than two partitions.
Some partitioning algorithms that support multiple partitions still require a predefined number
of partitions. Predicting the number of partitions needed to minimize the maximum insertion
loss of the entire network is challenging. This work proposes a clustering-based algorithm that
relies on the inherent connectivity between nodes in the directed graph to address the issue of
predefining the number of partitions.

To simplify the analysis of communication networks on WRONoCs, transform the commu-
nication networks into directed graphs based on concepts from graph theory, referred to in this
work as the core graph. Each node on the core graph represents a core. The neighbors of a
core represent its adjacent nodes. The edges of a core are the connections between the core
and its neighbors. The degree of a core represents the number of edges of the core.

My clustering algorithm begins by selecting a node with the highest degree as the starting
node and merges it with its lower-degree neighbors. A high-degree node indicates that the node
has many neighbors. Low-degree neighbors of the high-degree node imply that the connections
between the high-degree node and its lower-degree neighbors are relatively tighter than others
with higher-degree neighbors. For example, the core graph for a video processing application
MPEG4 is shown in Figure 4.1 (D. Bertozzi 2005). Node E with the highest degree in the core
graph has a degree of 14 and has 7 neighbors. The neighbors with the lowest degree are nodes
A, B, and I, while those with the highest degree are nodes C, D, J , and K. Unlike node A,
node C, besides being closely connected to node E, is also closely related to node F . If node
E merges with its lower-degree neighbors, the degree of the new cluster will reduce compared
to the unmerged cluster. For instance, when node E is merged with the lowest-degree node B,
the merged cluster has 12 degrees. However, if node E merges with a higher-degree node like
node C, the degree of the merged cluster is still 14. The process is shown in Figure 4.2(a) and
Figure 4.2(b).

The choice of stopping conditions greatly affects the final results, and stopping conditions
can be adjusted according to different evaluation conditions. Set a variable L to assess cluster
quality, where

L = 0.5 ·NWL + 5 · ILmax
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Figure 4.1.: MPEG4 core graph.

NWL represents the number of wavelengths and ILmax represents the maximum insertion loss.
The coefficient for NWL was set to 0.5, and the coefficient for ILmax was chosen as 5 to balance
the values of these two metrics based on their magnitudes. However, in practical applications,
the coefficients can be adjusted according to the relative weight of each parameter. A threshold
N is introduced to prevent the process from stopping prematurely due to a temporary increase
in L or the edges of inter-cluster when the number of nodes in a cluster increases.

The clustering algorithm has three main steps:

Input: core graph, threshold N

1. Identify the node with the highest degree in the graph:

a. If there is only one node, select it as the start node.

b. If there are multiple nodes with the highest degree, select the node with the
smallest sum of the degrees of its neighbors.

c. If multiple nodes have the same highest degree and the identical sum of neighbor
degrees, select the smallest cluster/node.
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Figure 4.2.: (a) Merge node E with node B. (b) Merge node E with node B.

d. Otherwise, choose the candidate nodes randomly

2. Merge this start node with its neighbor, treating the entire cluster as a merged clus-
ter/node:

a. Only one neighbor that results in the largest reduction in the degree of the
merged cluster/node.

b. Multiple neighbors that each result in the largest reduction in the degree. Select
the one with the lowest degree.

c. Multiple neighbors that each result in the largest reduction in the degree. If
their degrees are the same, choose the one with the smallest cluster size.

d. Multiple neighbors each result in the largest reduction in the degree; if the
degrees are the same and the size of clusters are the same, select the neighbor with
the smallest sum of the degrees of its neighbors.

e. Otherwise, choose the candidate nodes randomly

3. After each merging, calculate the core graph’s maximum insertion loss and wavelength
usage. If the stopping condition is not reached, return to step one.

Based on the previous analysis of the factors influencing the WRONoCs, I established the
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following stopping conditions:

a. Stop after the total edges of the inter-cluster increase by N times, where N is
the threshold for times of the inter-cluster edges increase.

b. Stop after L increases N times, where L is the evaluation value of the entire
clustered network.

Output: The final result is the clustering method that results in the minimum L throughout
the process.

4.2. Node-Pairing Methods

To support all the cores on WRONoCs with topology, each node on the core graph must be
paired with the topology’s input and output ports. A reasonable node pairing can significantly
improve the maximum insertion loss of the entire network. For example, using an 8-core
graph as an example, the PIP core graph in Figure 3.3, the maximum insertion loss and
wavelength assignment are different with the same topology, but with a different node pairing
sequence. The 8×8 insertion loss assignment of each path is shown in Tablet A.1 in appendix.
Figure 4.3 shows the maximum insertion loss and wavelength assignment of the PIP core
graph with randomly paired nodes. In contrast, Figure 4.4 displays the insertion loss and
wavelength assignment after minimizing the maximum insertion loss of the entire network.
Node’s numbers on the node in the figure represent the pairing topology’s input and output
ports. The comparison in Table 4.1 demonstrates that the maximum insertion loss of the PIP
core graph is decreased by 0.3 dB.

To minimize the maximum insertion loss of WRONoCs, selecting paths with minimal inser-
tion loss is crucial when pairing nodes. When selecting paths, the rules that all input signals
from a core must have different wavelengths and that all output signals must also have differ-
ent wavelengths should strictly follow. The following sections will introduce two node-pairing
methods.
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Figure 4.3.: Insertion loss and wavelength assignment of PIP communication graph with pairing
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Figure 4.4.: Insertion loss and wavelength assignment of PIP communication graph with node
pairing minimizing the maximum insertion loss.

Maximum Insertion Loss

Pairing nodes randomly 0.9 dB

Pairing nodes with minimizing the maximum insertion loss 0.6 dB

Table 4.1.: Comparison of maximum insertion loss and wavelength usage of PIP core graph.

4.2.1. Exhausted Searching Method

The exhausted searching method is the most straightforward approach, as it involves pairing
every node in the core graph with each input and output port in the topology and finding
the pairing that minimizes the maximum insertion loss. However, it has a high computational
complexity and long execution time, exspecifically when the topology dimension is large. The
computational workload grows factorially with the sizes of core graphs. Nevertheless, as the
method is guaranteed to find the optimal node pairing, it remains effective when the number
of nodes within a partition is relatively small.
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4.2.2. Random Shuffling Method

Randomly shuffle all possible node-pairing scenarios and select the first Nsample for insertion
loss evaluation. Nsample represents the sample size, and its value depends on the topology size
and the acceptable execution time. The output is the node pairing scenario, resulting in the
minimal maximum insertion loss within the samples. This method can find a relatively small
maximum insertion loss. However, when the dimension of core graphs is large, this method
will likely find only a relatively local minimum value rather than the global minimum value.
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I compared the clustering methods mentioned above with several applications to analyze the
clustering methods. All core graphs used in this study are shown in the appendix in Figures
3.3, 4.1, 1.1(a), A.4 (D. Bertozzi 2005), and A.5 (C. Seiculescu 2009). I implemented my
clustering method and the other approaches in Python. The Python scripts utilized standard
libraries, such as NumPy for numerical computations, NetworkX for graph operations, etc. The
experiments were conducted on a Laptop equipped with an AMD Ryzen 7 6800H CPU running
at 3201 MHz. The comparison below analyzes the maximum insertion loss and wavelength
usage between my clustering method and conventional methods, as well as between the two
partitioning methods. After clustering, I discussed the computation times of the two node-
pairing methods and their performance in reducing insertion loss and wavelength usage.

5.1. Comparison to a conventional method

As shown in Figures 5.1, 5.2, 5.3, 5.4, and 5.5 illustrate all core graphs after applying all three
clustering methods for dividing effectively the PIP core graph, the MPEG4 core graph, the
VOPD core graph, the MWD core graph and the D-26-media core graph, into multiple sub-
graphs. Tablet 5.1 and Tablet 5.2 respectively show the wavelength usage and the maximum
insertion loss of all the core graphs.

Specifically, compared to the other core graphs, the PIP core graph using a single GWOR has
lower insertion loss and wavelength usage than after clustering. Because the PIP core graph
only has eight cores, and for an 8 × 8 GWOR, the maximum insertion loss is 1 dB, shown
in Tablet A.1 in the appendix. The minimum dimension for GWOR is 4, with a maximum
insertion loss of 0.6 dB. However, after clustering the 8-core graph, the maximum inter-cluster
insertion loss increases by 0.5 dB due to the additional MRRs. Therefore, the maximum
insertion loss after clustering into two clusters easily exceeds 1 dB. Based on this example, it
can be inferred that when the number of cores is less than or equal to eight, using a single
topology for routing is more optical than clustering.

Nwavelength PIP MPEG4 VOPD MWD D-26-media

A single topology 3 10 9 6 19

Kernighan-Lin 3 8 3 6 8

Stoer-Wagner minimum cut 4 11 10 6 17

My method 3 8 4 3 9

Table 5.1.: Wavelength usage results for various applications.
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ILmax (dB) PIP MPEG4 VOPD MWD D-26-media

A single topology 1 1.3 1.4 1.3 2.4

Kernighan-Lin 0.6 1.1 1.1 1.1 1.4

Stoer-Wagner minimum cut 1 1.1 1.3 1.2 2.7

My method 0.6 1.1 0.6 0.65 1.1

Table 5.2.: Maximum insertion loss results for various applications.

5.2. Comparison to typical partitioning algorithms

According the results in Tablet 5.1 and Tablet 5.2, Kernighan-Lin algorithm can reduce wave-
length usage and maximum insertion loss compared to the conventional method. However, the
Kernighan-Lin algorithm results in some nodes in intra-partitions having no communication
with other nodes. Take the VOPD core graph 5.3(a) as an example: it is evident that node A
and node B were forced into the red partition to balance the partition sizes, which compromises
the partition quality, leading to higher insertion loss than my method.

The Stoer-Wagner minimum cut algorithm easily partitioned cores with only one neighbor
into a single partition due to the lack of constraints over the sizes of the two partitions. For
example, the single node H in Figure 5.3(b) is a partition. The Stoer-Wagner minimum
cut algorithm only minimizes the cut between the inter-partitions. However, the scale of
the maximal partition is still significant. This results in higher maximum insertion loss and
wavelength usage than my method and the Kernighan-Lin algorithm.

Since the Kernighan-Lin algorithm and the Stoer-Wagner minimum cut algorithm can only
divide the network into two partitions, they can not effectively reduce the largest partition size
for relatively large-scale graphs. Compared with it, my method does not constrain the number
of clusters. The core graph’s connectivity and stop conditions primarily determine my method’s
clustering. For example, with the VOPD core graph in Figure 5.3(c), my method divided the
core graph into three clusters of size 4. The VOPD core graph in Figure 5.3(a) is divided into
two clusters of size 6. The size of the maximal cluster divided by my method in the VOPD core
graph is smaller than that of the Kernighan-Lin algorithm and the Stoer-Wagner minimum
cut algorithm, which also reduces the maximum insertion loss and wavelength usage.
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Figure 5.1.: Partitioning results of PIP core graph using (a) Kernighan-Lin, (b) Stoer-Wagner
minimum cut, and (c) My method
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Figure 5.2.: Partitioning results of MPEG4 core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method
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Figure 5.3.: Partitioning results of VOPD core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method.
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Figure 5.4.: Partitioning results of MWD core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method.

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W

X Y Z

(a)

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W

X Y Z

(b)

A B C D

E F G H

I J K L

M N O P

Q R S T

U V W

X Y Z

(c)

Figure 5.5.: Partitioning results of D-26-media core graph using (a) Kernighan-Lin, (b) Stoer-
Wagner minimum cut, and (c) My method.
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5.3. Discussion: different methods for node pairing

All the insertion loss assignments of the core graphs clustered by my method are shown in
Figure A.6, Figure A.7, Figure A.8, Figure A.9 and Figure A.10 in the appendix. To compare
the performance of two node pairing methods for clustered core graphs with my method,
Nsample of the random shuffling method is set to 1000. I compare and present the maximum
insertion loss, wavelength usage, and computation time in Table 5.3. The results show that
the wavelength usage of the MWD core graph with the random shuffling method increases
compared with the exhausted searching method because Nsample is set to 1000. One cluster of
the MWD core graph has a dimension of 7. 7 factorial is 5040, which is larger than 1000; the
sample size of the random shuffling method is insufficient to find the optimal solution. The
clustered D-26-media core graph using the exhausted searching method does not have results
because it has a 12-core cluster and a 14-core cluster; the computational load on the processor
becomes excessive, and the computation time is longer than 3 hours. The exhausted searching
method always has a shorter computation time and optimal results for the core graphs with
relatively small-scale clusters. For core graphs with large-scale clusters, the random shuffling
method results in shorter computation times but at the cost of losing accuracy.

Due to the factorial growth in computational complexity of the exhausted searching method
with the dimension of the core graph, it becomes impractical to find the minimal maximum
insertion loss of the network when the core graph scale is large. Using the heuristic method
becomes relatively advantageous regarding time efficiency in this condition. Since the random
shuffling method randomly selects samples from all pairing scenarios, the setting of Nsample

largely determines its computation results and running time. Therefore, setting an acceptable
Nsample size for large-scale core graphs can achieve a local minimum of the maximum insertion
loss. For example, for a 26-core graph, the D-26-media core graph, I computed the maximum
insertion loss, the wavelength usage, and the computation time for different orders of Nsample.
According to the results in Table 5.4, when Nsample is set within an acceptable range for
computation time, both the maximum insertion loss and the number of wavelengths used can
be improved and calculated in a short time.
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Exhausted Searching Method Random Shuffling Method
ILmax NWL T (s) ILmax NWL T (s)

PIP 0.6 3 0.003 0.6 3 0.057

MPEG4 1.1 8 0.033 1.1 8 0.043

VOPD 0.6 4 0.005 0.6 4 0.034

MWD 0.65 3 0.015 0.65 4 0.012

D-26-media - - - 1.2 12 0.043

Table 5.3.: Comparison of exhausted searching method and random shuffling method with
different clustered core graphs.

Nsample 103 104 105 106 107

Time(s) 0.0413 0.356 2.932 28.022 298.7

ILmax (dB) 1.2 1.1 1.1 1.1 1.1

NWavelength 12 11 9 9 9

Table 5.4.: Average running time, insertion loss wavelength and usage of random shuffling
method with a 26-core graph(D-26-media core graph).
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6. Conclusion

This work primarily proposed a method based on a clustering method for partitioning the
communication of WRONoCs and two methods for node pairing after partitioning and com-
pared two partitioning algorithms, Kernighan-Lin algorithm and Stoer-Wagner minimum cut
algorithm, with the method proposed in this work. Furthermore, when pairing the cores on
WRONoCs with topologies’ ports, employing node-pairing methods can also significantly re-
duce the maximum insertion loss of the entire network.

Experimental comparisons showed that compared to supporting the entire WRONoCs with a
single topology, separating the core graph of WRONoCs with the method proposed in this work
and supporting the clusters with smaller-scale topologies can effectively reduce the network’s
maximum insertion loss and wavelength usage. Using the power-aware and scalable method can
improve power efficiency and significantly enhance the performance of large-scale WRONoCs.
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Figure A.5.: D-26-media core graph.
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(dB) O0 O1 O2 O3 O4 O5 O6 O7

I0 - 0.6 0.7 0.8 0.9 0.8 0.7 0.3

I1 0.5 - 0.8 0.9 0.8 0.7 0.3 0.8

I2 0.6 0.7 - 1 0.7 0.3 0.8 0.7

I3 0.7 0.8 0.9 - 0.3 0.8 0.7 0.6

I4 1 0.9 0.8 0.3 - 0.5 0.6 0.7

I5 0.9 0.8 0.3 0.7 0.6 - 0.7 0.8

I6 0.8 0.3 0.7 0.6 0.7 0.8 - 0.9

I7 0.3 0.7 0.6 0.5 0.8 0.9 1 -

Table A.1.: 8× 8 GWOR insertion loss.
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