
Accepted: 19 June 2024
© The Author(s) 2024

Communicated by Sven Apel.

	
 Halimeh Agh
halimeh.agh@iste.uni-stuttgart.de

	
 Aidin Azamnouri
aidin.azamnouri@iste.uni-stuttgart.de

	
 Stefan Wagner
stefan.wagner@tum.de

1	 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
2	 TUM School of Communication, Information and Technology, Technical University of

Munich, Heilbronn, Germany

Software product line testing: a systematic literature review

Halimeh Agh1 · Aidin Azamnouri1 · Stefan Wagner1,2

Empirical Software Engineering (2024) 29:146
https://doi.org/10.1007/s10664-024-10516-x

Abstract
A Software Product Line (SPL) is a software development paradigm in which a family of
software products shares a set of core assets. Testing has a vital role in both single-system
development and SPL development in identifying potential faults by examining the be-
havior of a product or products, but it is especially challenging in SPL. There have been
many research contributions in the SPL testing field; therefore, assessing the current state
of research and practice is necessary to understand the progress in testing practices and to
identify the gap between required techniques and existing approaches. This paper aims to
survey existing research on SPL testing to provide researchers and practitioners with up-
to-date evidence and issues that enable further development of the field. To this end, we
conducted a Systematic Literature Review (SLR) with seven research questions in which
we identified and analyzed 118 studies dating from 2003 to 2022. The results indicate that
the literature proposes many techniques for specific aspects (e.g., controlling cost/effort in
SPL testing); however, other elements (e.g., regression testing and non-functional testing)
still need to be covered by existing research. Furthermore, most approaches are evaluated
by only one empirical method, most of which are academic evaluations. This may jeopar-
dize the adoption of approaches in industry. The results of this study can help identify gaps
in SPL testing since specific points of SPL Engineering still need to be addressed entirely.

Keywords  Software product lines · Software testing · Software quality · Systematic
literature review

1 3

http://orcid.org/0000-0003-0272-9092
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10516-x&domain=pdf&date_stamp=2024-8-29

Empirical Software Engineering (2024) 29:146

1  Introduction

Software Product Line (SPL) engineering has proven to be an efficient and effective strategy
to decrease implementation costs, reduce time to market, and improve the quality of derived
products (Denger and Kolb 2006; Northrop et al. 2007). SPLs and Configurable Systems
(Alves Pereira et al. 2020) are two approaches used in software engineering to manage
and create software with varying levels of customization and flexibility. While both SPLs
and configurable systems share the goal of offering flexibility and customization, they dif-
fer in their core approach. SPLs primarily emphasize the systematic reuse of components,
architectures, and design patterns across a range of related software products. In contrast,
configurable systems are single software products designed to be adaptable, enabling users
to configure them to meet their unique requirements. We decided to limit the scope on SPL
to keep the review focused.

Testing is an essential part of SPL Engineering (SPLE) to identify potential faults (Pohl
and Metzger 2006). This activity examines core assets shared among many products, prod-
uct-specific parts, and the interaction among them (McGregor 2001). Therefore, SPL testing
includes activities from the validation of initial requirements to the acceptance testing of a
specific product by customers (Da Mota Silveira Neto et al. 2011).

As the adoption of the SPL approach by companies has grown (Weiss 2008), many
researchers have made contributions in the SPL testing field to provide efficient and effec-
tive approaches that can satisfy specific needs of the industry (e.g., controlling the cost/
effort of SPL testing). This resulted in many publications on different aspects of SPL testing.
Therefore, analyzing research conducted in this field using well-known empirical methods
is required to provide an overview of state-of-the-art testing practices and assess the effec-
tiveness of the proposed approaches. To this end, Systematic Literature Reviews (SLR) and
Systematic Mapping Studies (SMS) were conducted on SPL testing, but the most recent
one dates back to 2014 (do Carmo Machado et al. 2014). While some recent research has
focused on reviewing specific aspects of SPL testing, such as model-based testing of SPLs
(Petry et al. 2020), test case prioritization for SPL (Kumar 2016), and combinatorial interac-
tion testing for software product lines (Lopez-Herrejon et al. 2015), there has not been an
SLR or SMS since 2014 that provides a comprehensive overview of the current state of SPL
testing in a general context. Therefore, there is a need to update existing literature reviews
(Mendes et al. 2020) to identify up-to-date evidence and issues that enable further develop-
ment of the SPL testing field.

This paper presents an SLR to analyze interesting aspects of SPL testing that are formal-
ized as research questions. An SLR is a rigorous and systematic method to identify, evalu-
ate, and interpret all available research relevant to a particular research question, topic area,
or phenomenon of interest (Cruzes and Dybä 2011). The specific aspects based on which we
analyzed relevant studies are:

	● Characteristics of the studies focused on SPL testing.
	● Test levels executed throughout the SPL lifecycle.
	● Creating test assets by considering commonalities and variabilities.
	● Dealing with configuration-aware software testing.
	● Preserving traceability between test assets and other artifacts.
	● Testing non-functional requirements in an SPL.

1 3

 146   Page 2 of 61

Empirical Software Engineering (2024) 29:146

	● Controlling cost/effort of SPL testing.

The SLR process was conducted from June 2022 to the end of 2022. While some of the find-
ings derived from this SLR align with the conclusions of previous SLRs, such as the identi-
fication of existing gaps in non-functional testing for SPLs and the necessity for more robust
and user-friendly testing tools, our review uncovered specific insights and unaddressed gaps
in this domain that were not fully explored in prior SLRs. These include:

1.	 Variability control, referring to the disciplined management and regulation of feature
variations within SPLs, alongside modeling and tracing, presents persistent challenges
that require attention throughout the testing process. Variability control involves imple-
menting strategies, such as configuration and change management, to ensure consis-
tency and predictability in the diverse configurations of products derived from the SPL.

2.	 Novel approaches are needed for regression test selection, prioritization, and minimiza-
tion, along with architecture-based regression testing, to effectively manage regression
testing in SPLs.

3.	 Promoting the adoption of SPL testing practices in industrial settings necessitates
addressing practical challenges, such as offering guidance for industry-specific SPL
testing, and conducting industrial evaluations.

4.	 Exploring the details of test levels across the SPL lifecycle and highlighting the conse-
quences of neglecting a particular test level can offer valuable insights for practitioners.

5.	 Studies focusing on testing SPLs rarely address traceability explicitly. Considering fea-
ture variability and configuration management, more efficient methods for modeling
and representing traceability relationships are required.

The remainder of this paper is organized as follows: Sect. 2 provides background informa-
tion required to understand SPL and SPL testing concepts; Sect. 3 describes how the SLR
methodology has been applied; the results of the SLR are reported in Sect. 4; potential
threats to the validity of this study and the strategies employed to mitigate them are dis-
cussed in Sect. 5; Sect. 6 presents a summary of the research and examines the main find-
ings; Sect. 7 provides a survey of the related research; Sect. 8 presents concluding remarks
and further research.

2  Background

This section provides a concise background on the SPL development process, variability
management, and testing approaches and levels as a basis for the remainder of this article.

2.1  SPL development process

SPL is a software development paradigm to achieve economies of scale and scope by ana-
lyzing product commonalities and variabilities. As this paradigm has specific benefits such
as substantial cost savings, reduction of time to market, and high productivity, many orga-
nizations, including Philips, Nokia, Cummins, and Hewlett-Packard, have adopted it (Cle-
ments and Northrop 2002). In SPL, a set of core assets (e.g., reference architecture and

1 3

Page 3 of 61  146

Empirical Software Engineering (2024) 29:146

reusable components) is first developed. Specific products are then built by configuring
and composing the core assets in a prescribed way with product-specific features to satisfy
particular market segments (Clements and Northrop 2002).

The SPL development process/lifecycle can be divided into two distinct phases: Domain
Engineering and Application Engineering. According to Czarnecki and Eisenecker (2000, p.
20), Domain Engineering is “the activity of collecting, organizing, and storing experience in
building systems or parts of systems in a particular domain in the form of reusable assets, as
well as providing an adequate means for reusing these assets when building new systems.”
Application Engineering is focused on deriving specific products from the core assets cre-
ated during Domain Engineering; in this phase, specifics of the products are added to com-
mon parts to satisfy the particular needs of a product (Clements and Northrop 2002). Of
these two phases, Domain Engineering demands significant resources and time. If not man-
aged effectively, it can lead to the failure of the entire SPL (Pohl et al. 2005, p. 9–10). Three
common approaches are employed for constructing an SPL, and each of these approaches
directly influences the implementation of Domain Engineering (Apel et al. 2013):

	● Proactive approaches start with a comprehensive and thorough scoping of the domain
to anticipate all requirements. Subsequently, all these requirements are implemented as
assets, and SPL experts typically carry out this task.

	● Extractive approaches follow an automated process, utilizing a set of existing product
variants as input. The SPL is constructed by extracting features from these variants.
Features are identified and retrieved through feature location techniques (AL-Msie’deen
et al. 2013; Rubin and Chechik 2013).

	● Reactive approaches follow an incremental process. They take as input an existing SPL
version (SPLi) and a set of new requirements about a new product. This process results
in the creation of SPLi+1, which can produce the new product.

2.2  Variability Management in SPL

In SPL engineering, variability mechanisms are fundamental for managing diversities across
products. These mechanisms, as classified by Apel et al. (2013), include annotative mecha-
nisms, transformative mechanisms (delta-oriented), and feature-oriented mechanisms.
Annotative mechanisms involve marking or annotating code to denote variability points,
while transformative mechanisms, such as delta-oriented programming, describe changes
required to transform one product variant into another. Feature-oriented mechanisms orga-
nize variability around features and their interactions. These variability mechanisms can be
applied across all stages of the software lifecycle.

A Feature Model is commonly used in Domain Engineering to present different com-
binations of features. A feature model is a formal representation and graphical notation
that describes the variability and relationships among features in an SPL. Feature models
typically consist of features (functionalities or characteristics), feature hierarchies (repre-
senting parent-child relationships between features), and constraints (rules governing the
valid combinations of features) (Pohl et al. 2005). Due to the presence of numerous optional
features, the configuration space in feature models may exponentially increase (reaching 2n
possible configurations, where n represents the number of optional features without further

1 3

 146   Page 4 of 61

Empirical Software Engineering (2024) 29:146

constraints) (Chen and Babar 2011). A specific product can be derived once a complete
feature configuration is established.

Although proactive approaches emphasize systematic upfront planning, modeling vari-
abilities with feature and configuration models, and high asset reusability, reactive methods
can also use feature models to represent variabilities introduced by new requirements. Con-
figuration files or mechanisms are often used in reactive approaches to specifying how vari-
abilities are configured in reaction to new requirements (Ghanam et al. 2010). Furthermore,
extractive approaches may employ feature models to represent and visualize variabilities
discovered in existing products. Configuration scripts or files may be used to document and
manage variabilities found in the codebase (Parra et al. 2012).

2.3  Testing approaches and levels

There exist diverse approaches to software testing, including (Luo 2001; Jorgensen 2013):

	● Manual testing: Testers create and execute test cases manually to evaluate the behavior
of a software application or system without using automated testing tools or scripts.

	● Automated Testing: Specialized testing tools and scripts are used to automate the ex-
ecution of test cases and the verification of software applications or systems.

	● Functional testing: Focuses on verifying software functions according to specified re-
quirements. This approach includes different levels of testing, including:

	– Unit Testing is conducted at the lowest level, focusing on the fundamental unit of
software, referred to interchangeably as “unit,” “module,” or “component.“

	– Integration Testing takes place when two or more tested units are integrated into
a larger structure. This testing assesses the interactions between components and
evaluates the quality of the overall structure when the properties cannot be deter-
mined solely from its individual components.

	– System Testing aims to validate the comprehensive quality of the entire system,
covering end-to-end functionality. This type of testing typically aligns with the
functional and requirement specifications of the system. Additionally, it assesses
non-functional quality attributes like reliability, security, and maintainability.

	– Acceptance Testing occurs when the developers deliver the completed system to
the customers or users. The primary goal of acceptance testing is to give confidence
that the system functions correctly rather than to uncover errors.

	● Non-functional testing: Focuses on evaluating the attributes of a software system that
are not directly related to its functional behavior. Instead, non-functional testing as-
sesses the system’s performance, reliability, scalability, security, usability, and other
qualities that impact the overall user experience and the system’s ability to meet non-
functional requirements.

	● Regression testing: Focuses on verifying that recent changes or updates to a software
application have not introduced new defects or negatively affected existing functional-
ity.

	● Model-based testing: Test cases are derived from models representing the software’s
expected behavior. Different models can be used to generate test cases systematically,

1 3

Page 5 of 61  146

Empirical Software Engineering (2024) 29:146

including graphical representations, mathematical models, or formal notations.

SPL testing is an essential activity in SPLE to identify potential faults (Pohl and Metzger
2006). Exhaustive testing in SPL is usually infeasible due to a combinatorial explosion in
the number of products. Following Tevanlinna et al. (2004), Reuys et al. (2005), Käköla and
Dueñas (2006), there are specific differences between single-system testing and SPL testing:

1)	 Testing is a part of both phases: Domain Engineering and Application Engineering.
Domain testing is focused on testing domain artifacts (e.g., requirements, features, and
source code); however, as domain artifacts include variability, completely testing the
domain artifacts in domain testing is impossible. Application testing aims to detect
remaining faults in a derived product mainly caused by unexpected interactions.

2)	 Test assets created in Domain Engineering (e.g., test cases, test scenarios, test results,
and test data) are reused in Application Engineering to test instantiated products. To this
end, test assets should be created by considering variability, which we call variant-rich
test assets.

3  Systematic literature review methodology

To carry out this SLR, we followed guidelines for performing SLRs in software engineering
(Kitchenham and Charters 2007). The steps followed in conducting this SLR are developing
a review protocol, conducting the review, analyzing the results, reporting the results, and
discussing the findings. The review protocol used in this SLR is explained in the follow-
ing subsections. The protocol includes the formulation of research questions to achieve the
objective (Sect. 3.1), identification of sources to extract the research papers, the search cri-
teria and principles for selecting the relevant studies (Sect. 3.2), specifying a set of criteria
to assess the quality of each study remained for data extraction (Sect. 3.3), and developing
the template used for extracting data (Sect. 3.4).

3.1  Research questions

As previously stated, this study aims to investigate how the existing approaches deal with
testing in SPL. To formulate research questions, we examined topics addressed by previous
research on SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da Mota Silveira
Neto et al. 2011; do Carmo Machado et al. 2014). Some of the research questions were com-
pletely reused from previous research – i.e., RQ1, RQ2, RQ3, RQ6, and RQ7 – and some of
them were formulated by analyzing specific aspects that have not been investigated in detail
in previous research – i.e., RQ4 and RQ5.

We reuse RQs to contrast and compare the newer research contributions with the results
of previous SLRs. Yet, we identified two unique, interesting aspects: Because testing every
potential configuration of an SPL is often impractical, it becomes essential to employ spe-
cific approaches for identifying valid and invalid configurations. We have examined the
techniques utilized or proposed in RQ4 to address this issue. Maintaining traceability
between test assets and other SPL artifacts offers substantial advantages, including enhanced

1 3

 146   Page 6 of 61

Empirical Software Engineering (2024) 29:146

reusability, impact analysis, and change management. Consequently, we designed RQ5 to
investigate the techniques employed for preserving traceability. Answering these questions
led to a detailed investigation of the identified studies to specify practical and research
issues regarding SPL testing; therefore, the results of this study can support both industrial
and academic activities. The research questions are as follows:

	● RQ1. How is the research on SPL testing characterized? This question intends to
discuss the bibliometrics of the primary studies and the evidence available to adopt the
proposed approaches.

	● RQ2. What levels of tests are usually executed throughout the SPL lifecycle (i.e.,
Domain Engineering and Application Engineering)? There are different levels of
tests, and each level is associated with a specific development phase, including unit,
integration, system, and acceptance tests (Ammann and Offutt 2008; Jaring et al. 2008).
This question aims to specify different test levels usually executed throughout the SPL
lifecycle.

	● RQ3. How are test assets created by considering commonalities and variabilities?
The large number of variation points and variants in an SPL increases the number of
possible testing combinations. Creating test assets for all combinations of functionality
is almost impossible in practice; therefore, test assets must be created by considering
commonality and variability so that they can be reused as much as possible. Further-
more, an undetected error in common core assets of an SPL can be spread to all instanc-
es depending on those assets (Pohl and Metzger 2006); therefore, creating test assets by
considering commonalities and variabilities and testing common aspects as early as pos-
sible is essential. Answering this question led to investigating how testing approaches
handle commonality and variability throughout creating/executing test assets.

	● RQ4. How do SPL approaches deal with configuration-aware software testing?
Testing all functionality combinations in an SPL is impossible and unnecessary since
some combinations are invalid based on the constraints defined between configuration
parameters. This question is intended to specify ways/techniques to detect valid and
invalid combinations of configuration parameters.

	● RQ5. How is the traceability between test assets and other artifacts of SPL pre-
served throughout the SPL lifecycle? The reusability of test assets is essential to man-
age the complexity of SPL testing; preserving traceability between test assets and re-
quirements/implementation can enhance the reusability of test assets. In this sense, this
question is intended to identify specific ways/techniques to achieve traceability between
test assets and other artifacts throughout the SPL lifecycle.

	● RQ6. How are Non-Functional Requirements (NFRs) tested in SPL? NFRs such as
security, reliability, and performance are very important for SPLs, and ignoring these
requirements can lead to negative results (e.g., economic loss) (Nguyen 2009). There-
fore, systematically testing NFRs by considering commonalities and variabilities is an
important aspect of SPLE. This question is intended to investigate how tests of NFRs
are performed in an SPL.

	● RQ7. What mechanisms have been used for controlling cost/effort of SPL testing?
As SPL testing is more expensive than single-system testing, identifying specific tech-
niques to reduce effort can provide the reader with an initial list of techniques identi-
fied by analyzing the selected studies. The specified list can be enriched regarding new

1 3

Page 7 of 61  146

Empirical Software Engineering (2024) 29:146

publications about SPL testing.

3.2  Identification of relevant literature

The process of gathering and selecting primary studies has been performed in three
stages: in the first stage, we investigated previously published literature reviews on
SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da Mota Silveira Neto
et al. 2011; do Carmo Machado et al. 2014) to identify the initial set of papers that
have been published up to 2013. In the second stage, we updated the list of papers
by searching for new papers published between 2013 and 2022; in this stage, we
performed forward and backward snowballing (Webster and Watson 2002) to identify
missing relevant papers. In the third stage, we applied inclusion and exclusion criteria
to each potential primary study identified through stages one and two. Each of the
three stages is explained in detail in the following subsections. We must note that we
chose studies that could address at least one of the RQs while selecting primary stud-
ies. For instance, certain studies focusing on SPL verification were included because
they could provide insights relevant to questions such as RQ4. An Excel file was cre-
ated to be shared among the authors to document the various steps of the SLR process.
This file1 contains all the details about how we gathered and selected primary studies
and how we extracted data from the chosen studies.

3.2.1  Analysis of existing reviews

By searching for existing SLRs or Systematic Mapping Studies (SMSs) on SPL test-
ing, we found four SLRs (Engström and Runeson 2011; Da Mota Silveira Neto et
al. 2011, Pérez et al. 2009; do Carmo Machado et al. 2014). Engström and Runeson
(2011) conducted an SMS to identify useful approaches and needs for future research;
in this study, 64 papers published up to 2008 were surveyed. Da Mota Silveira Neto
et al. (2011) performed an SMS to investigate state-of-the-art testing practices in SPL
testing; this study analyzed a set of 45 publications from 1993 to 2009. Pérez et al.
(2009) conducted an SLR to identify experience reports and initiatives carried out
in the SPL testing area; in this study, 23 primary studies published up to 2009 were
analyzed. do Carmo Machado et al. (2014) conducted an SLR by analyzing 49 studies
published up to 2013. As the four studies followed a systematic process to gather and
select the primary studies, we are confident that they covered all the primary studies
in the SPL testing field published up to 2013.
Using the list of primary studies in the four SLR/SMS, a set of 181 potentially rel-
evant papers was identified, shown as stage 1.1 in Fig. 1. By reading the titles and
abstracts of the publications, papers that addressed none of the research questions
were excluded. Furthermore, duplicated papers were removed, i.e., those included

1  Replication package available on https://zenodo.org/doi/https://doi.org/10.5281/zenodo.10018266.

1 3

 146   Page 8 of 61

https://doi.org/10.5281/zenodo.10018266

Empirical Software Engineering (2024) 29:146

in more than one literature review. At the end of this stage, 97 studies were finally
selected, shown as stage 1.2 in Fig. 1.

3.2.2  Gathering recent publications

In the second stage of the search process, we updated the list of primary studies by analyzing
papers published between 2013 and 2022 using the following databases: IEEE Xplore, Sco-
pus, ACM DL, Springer, and Wiley online library. To answer the stated research questions,
we identified the keywords that had to be used in the search process. Variants of the terms
“software product line”, “software product family”, and “software testing” were applied to
compose the search query, as follows:

Fig. 1  The process of gathering and selecting primary studies

1 3

Page 9 of 61  146

Empirical Software Engineering (2024) 29:146

(Software Product Line OR Software Product Lines OR Software Product Family OR
Software Product Families) AND (Test OR Testing).

To evaluate the search string, we first performed a limited manual search to see whether
the results of that search were among the results obtained by running the search string.
The search string was adapted based on the syntax requirements of each data source used.
Table 13 in Appendix A shows the forms of search strings applied to different engines and
the number of papers extracted from each data source.

We obtained a set of 2,608 papers by running the search string on the search engines,
shown as stage 2.1 in Fig. 1. We excluded 161 papers as duplicates since they were retrieved
from multiple search engines. Furthermore, by reading the titles and abstracts of the remain-
ing papers, a set of 2,125 papers was identified as irrelevant since they considered testing
from a single-system development perspective, not an SPL point of view. At the end of this
step, we had 322 papers, shown as stage 2.2 in Fig. 1.

In the next step, we conducted both backward and forward snowballing by examining
the reference lists of all the identified papers and exploring the papers that have cited these
identified papers, respectively. Following this step, 70 additional papers (20 via backward
snowballing and 50 via forward snowballing) were added to the previously identified set of
papers, shown as stage 2.3 in Fig. 1. At the end of stage 2, we had a set of 392 new publica-
tions, shown in Fig. 1 as stage 2.4.

3.2.3  Primary study selection strategy

By merging the results of the two previous stages, a set of 477 papers was composed, shown
as stage 3.1 in Fig. 1. Throughout the merging process, we identified 12 papers as duplicates
because the year 2013 was considered in both the SLR conducted by do Carmo Machado
et al. (2014) and in the automated search stage. We defined a set of inclusion and exclusion
criteria to assess each potential primary study; the criteria are presented in Table 1. These
criteria were applied to the titles and abstracts of the identified papers. The first author
performed this stage. However, to reduce the researcher bias, the results of this stage were
validated by the second and third authors of this paper.

At this stage, we initially applied inclusion criteria to select papers meeting all of the
specified criteria for inclusion. Following this, we applied exclusion criteria to exclude
papers that met one or more of the specified exclusion criteria. We included only papers
evaluated via at least one empirical method, including Case study, Survey, Experiment, and
Observational study (Wohlin et al. 2003; Sjoberg et al. 2007; Zhang et al. 2018). At the end
of this stage, a set of 161 papers were selected to be subject to full-text reading, depicted in
Fig. 1 as stage 3.2. The analysis results of the papers, conducted based on the inclusion and
exclusion criteria, are accessible within the replication package.

3.3  Quality assessment

Quality assessment of candidate studies is recommended to be performed to ensure that
studies are impartially assessed for quality (Kitchenham et al. 2016). To this end, we used
a set of quality criteria to examine the studies, shown in Table 14 in Appendix B. These
criteria were reused from the criteria proposed by Dybå and Dingsøyr (2008) and cover four
main aspects related to quality, including:

1 3

 146   Page 10 of 61

Empirical Software Engineering (2024) 29:146

	● Reporting: Reporting of the study’s rationale, aims, and context.
	● Rigor: Has a thorough and appropriate approach been applied to key research methods

in the study?
	● Credibility: Are the findings well-presented and meaningful?
	● Relevance: How useful are the findings to the software industry and the research com-

munity?

We used a weighting approach to examine the candidate studies in which two optional
answers with their respective score were given for each question: “Yes” = 1, and “No” = 0.
Then, we assigned a quality assessment score to each study by summing up the scores given
to all the questions; the total quality score for each study ranged from 0 (very poor) to 11
(very good). The two authors assessed the papers, and any discrepancies were resolved by
holding sessions with all the authors.

The first three criteria shown in Table 14 in Appendix B were used as the minimum qual-
ity threshold of the review to exclude non-empirical research papers. To this end, if question
1, or both of questions 2 and 3, received a “0” response, we did not continue the quality
assessment process, and the paper was excluded. The results of the quality assessment for
each paper are available in the replication package. Consequently, 43 papers were excluded,
and 118 were selected as primary studies, shown in Fig. 1 as stage 3.3. The list of primary
studies is presented in Table 15 in Appendix C.

The analysis of the studies based on quality assessment criteria is explained in more
detail in Appendix E. In summary, concerning Reporting, most of the studies performed
well. While the context description could be better in some studies, approximately 82%
have clear research objectives, and all studies are based on research. On average, the studies

Type Criteria
Inclusion
criteria

Papers written in English
Papers that present an approach for SPL testing and/
or answer at least one of the RQs
Papers that have been evaluated by at least one
empirical evaluation method

Exclusion
criteria

Secondary studies (these papers are presented in the
Related Work section)
Extended studies (only the most complete version of
a study is kept and the others is excluded)
Papers available only in the form of abstracts or
PowerPoint presentations
Technical reports and white papers
Graduation projects, Master’s theses and PhD
dissertations
Textbooks, both print and electronic
Papers published in doctoral symposia
Comparative studies, with no additional contribution
Position or philosophical papers that only present an
anecdotal evidence of SPL testing
Papers available only in the form of abstracts or
PowerPoint presentations
Papers that do not directly address testing, instead
they generally consider SPL

Table 1  Inclusion and exclusion
criteria

1 3

Page 11 of 61  146

Empirical Software Engineering (2024) 29:146

performed reasonably well in terms of Rigor. Researchers have justified the research design
in almost 62% of studies to accomplish the research’s goals. A base approach has been com-
pared with the proposed approach in around 60% of studies, with the researchers attempting
to prove that the selected controls reflect a defined population. Despite these promising
findings, 32% of the studies fail in rigor. According to the credibility issue, around 95% of
the studies discuss the results in relation to the research questions and highlight the study’s
limitations. Most studies, however, need to establish relationships between the researcher
and participants and the data collection that addresses the research problem. Regarding
Relevance, about 97% of studies explicitly discuss SPL testing and how it contributes to
existing knowledge, identifies new areas for research, and explains how the results can be
used. Nevertheless, practitioner-based guidelines are present in about 15% of cases, indicat-
ing that more practical guidance is needed to strengthen industry adoption of SPL testing.

3.4  Data extraction and analysis

Data was extracted from each of the 118 primary studies during this stage. To this end, we
used a predefined extraction form that enabled us to record the full details of the studies and
be specific in answering research questions. The extraction form is shown in Table 2. The
first two authors conducted the process of reading and completing the extraction form; the
data were extracted and stored in a spreadsheet after reading each paper and shared with
all the authors. We followed the content structuring / theme analysis approach of Mayring
(2014) to analyze the data. The types of extracted data from the extraction form already
provided us with a list of themes and the corresponding extracted data for these themes.
This step was deductive. In the next step, we inductively created categories in the themes to
summarize them. All the authors held multiple sessions to discuss the intermediate results
and resolve any potential discrepancies.

4  Results

In the following sections, the data extracted from the primary studies is used to answer the
research questions. An overview of the primary studies is first provided in Sect. 4.1. Then,
we answer each RQ via the extracted data.

4.1  Characteristics of the studies (RQ1)

This section discusses the bibliometrics of the primary studies, the evidence available to
adopt the proposed approaches, and the results of the evaluations conducted based on the
quality assessment criteria.

4.1.1  Bibliometrics

In this section, we analyze annual trends and distribution per venue type of the studies
selected.

1 3

 146   Page 12 of 61

Empirical Software Engineering (2024) 29:146

Extracted item Type of data
General
information

Author(s) Free text
Year of publication Free text
Venue Free text
Publication type Predefined list of venues,

including Journal article,
conference proceeding,
symposiums, workshop,
and book chapter

Complete reference Free text
Empirical
evaluation
method

The type of em-
pirical evaluation
method(s) used to
validate the proposed
approach

Predefined list of existing
methods for empirical
evaluation, including Case
study, Survey, Experi-
ment, and Observational
study (Wohlin et al. 2003;
Sjoberg et al. 2007; Zhang
et al. 2018)

RQ1 Characteristics of the
primary studies

Predefined list of char-
acteristics including the
bibliometrics of the studies
and the evidence available
to adopt the proposed
approaches

RQ2 Level of tests usually
executed throughout
the SPL lifecycle

Predefined list of test lev-
els, including unit, integra-
tion, system and acceptance
tests (Ammann and Offutt
2008; Jaring et al. 2008)

RQ3 Mechanisms/tech-
niques used to create
test assets by consid-
ering commonality
and variability

List of mechanisms/tech-
niques gradually completed
by studying primary studies

RQ4 Mechanisms/
techniques used to
configuration-aware
software testing

List of mechanisms/tech-
niques gradually completed
by studying primary studies

RQ5 Mechanisms/tech-
niques used to pre-
serve the traceability
between test assets
and other artifacts
of SPL

List of mechanisms/tech-
niques gradually completed
by studying primary studies

RQ6 Mechanisms/
techniques used to
test non-functional
requirements in SPL

List of mechanisms/tech-
niques gradually completed
by studying primary studies

RQ7 Mechanisms/tech-
niques used to con-
trol the cost/effort of
SPL testing

List of mechanisms/tech-
niques gradually completed
by studying primary studies

Table 2  Data extraction template

1 3

Page 13 of 61  146

Empirical Software Engineering (2024) 29:146

Annual trend:  The distribution of the primary studies according to publication year is shown
in Fig. 2. No publication prior to 2003 focuses on SPL testing. However, after 2003, there
was at least one paper per year, except for 2004. As seen in Fig. 2, the number of published
papers in this field has generally increased over time (2003–2019). This indicates that the
SPL Testing field has attracted the attention of many researchers in the last few years. Fur-
thermore, it shows increasing attention to the use of empirical methods to assess the value of
proposed approaches since we only included empirically evaluated studies in our review. As
we excluded some of the papers based on the quality assessment criteria, there is no primary
study published in 2004 that satisfies the minimum quality threshold of the review. Further-
more, the number of papers published in some years (e.g., 2013) was actually higher than
the ones presented in Fig. 2; however, some of those papers were excluded throughout the
assessment of quality criteria. It is worth mentioning that many studies might not be made
available by search engines until the time the search was performed (August 2022), and
thus, we did not consider these studies in this study. We have specified these studies in the
replication package. The overall trend that the number of publications increases is quantified
by all entries in DBLP for each year, as shown in Fig. 2 for comparison. As we see in this
figure, the trend in SPL testing is well above in several years (2014, 2016, 2017, and 2019).
However, this trend has been decreasing in recent years.

Distribution per venue:  Most of the primary studies were published in conferences; of 65
conference papers, 17 papers (∼ 26%) were published in SPLC2, which is the most repre-
sentative conference for the SPL engineering area. This indicates that SPLC is an important

2  SPLC stands for Software Product Line Conference.

Fig. 2  Distribution of primary studies by year

1 3

 146   Page 14 of 61

Empirical Software Engineering (2024) 29:146

venue for SPL research, and most primary studies in this field are presented in SPLC. Also,
31% of studies were published in journals, 7% in symposiums, and 5% in workshops.

4.1.2  Analyzing the evidence available to adopt the proposed approaches

As reported in the title or the text of the studies, case studies, experiments, and expert sur-
veys are the specific methods that have been used for evaluating primary studies. Most of
the primary studies were evaluated by conducting an experiment (∼ 58%). It is worth men-
tioning that five studies applied more than one evaluation method, including case study and
expert survey (Bucaioni et al. 2022), case study and experiment (Akbari et al. 2017; Fragal
et al. 2019), experiment and expert survey (Hervieu et al. 2016), and case study, experiment,
and expert survey (Wang et al. 2017). Table 3 shows the primary studies that have used each
type of evaluation method.

Although the studies reported that their proposed approaches were evaluated by using the
mentioned empirical methods, we need to analyze the strength of the evidence available to
adopt the proposed approaches. The results of this analysis can help researchers to find new
topics for empirical studies, and practitioners to assess the maturity of a proposed approach.
Kitchenham and Charters (2007) classified the study design into five levels, based on the
evidence presented in medical research.

Alves et al. (2010) revised the classification to be applicable in their study; the revised
classification is fully applicable in our review. The following hierarchy is used in our study
(from weakest to strongest):

1.	 No evidence.
2.	 Evidence obtained from demonstration or working out toy examples.
3.	 Evidence obtained from expert opinions or observations.
4.	 Evidence obtained from academic studies, e.g., controlled lab experiments.
5.	 Evidence obtained from industrial studies, e.g., causal case studies.
6.	 Evidence obtained from industrial practice.

Based on the evidence evaluation scheme explained, the results of the evaluation on how
much evidence is available to adopt the proposed approaches are presented in Table 16 in
Appendix D. All the studies have been evaluated by one kind of evaluation method. Aca-
demic studies (Lev4) are the most used evaluation method (60%), where open-source repos-
itories are usually utilized to assess the proposed approaches. Following is Demonstration
(Lev2) (∼ 17%). Only a small number of studies have been evaluated by using industrial
systems or real data sets (∼ 16%) (Industrial studies, Lev5), or by applying the proposed
methods to industrial settings and by involving industrial professionals (∼ 13%) (Industrial
practice, Lev6). This analysis shows an overall low level of evidence in the SPL testing field
that is in line with the results of the SLR conducted by do Carmo Machado et al. (2014).

Evaluation method Studies
Experiment S1-S64, S111, S112, S114, S115, S117, S118
Case study S33, S48, S64-S110, S113, S116
Expert survey S61, S64, S85

Table 3  Distribution of primary
studies by the type of evaluation
method

1 3

Page 15 of 61  146

Empirical Software Engineering (2024) 29:146

4.2  Test levels executed throughout the SPL lifecycle (RQ2)

We divided SPL testing according to the two common phases of SPLE: Domain Engineer-
ing and Application Engineering. Based on the analysis of the studies, there are two types of
testing activities that are performed during Domain Engineering: (1) developing test assets
so they can be instantiated in Application Engineering, (2) applying tests to assets produced
during Domain Engineering to detect faults in common core assets as soon as possible. By
analyzing studies that are focused on the second activity, we identified two levels of tests
usually performed in Domain Engineering; distribution of studies based on the test levels
is shown in Table 4:

	● Unit testing: Out of 118 studies, three studies are only focused on this level of testing
(Jaring et al. 2008; Kim et al. 2011, 2012). Jaring et al. (2008) classified test levels based
on the binding time of variabilities. Based on this study, unit tests are performed before
variant binding; therefore, we included this study in this classification since Application
Engineering is the phase in which variabilities are bounded to derive a specific product.
Kim et al. (2011) and Kim et al. (2012) proposed specific methods in which analysis on
the code level is performed to generate test suits for testing common parts of an SPL in
Domain Engineering.

	● Integration testing: Execution of integration tests in Domain Engineering are exam-
ined in the studies by Reis et al. (2007), Neto et al. (2010) and Akbari et al. (2017).
Reis et al. (2007) proposed a model-based, automated technique for integration testing
in Domain Engineering. In the proposed technique, integration test case scenarios are
generated to support the test of interactions between the components of an integrated
sub-system; placeholders are also created for necessary variable parts and all compo-
nents that are not part of the integrated sub-system. Neto et al. (2010) presented a regres-
sion testing approach for SPL architectures to maintain the correctness and reliability
of the architecture after modifications; as the main purpose of the approach is to verify
the integration among modules and components that compose the SPL architecture, we
included this study in this classification. Akbari et al. (2017) proposed a method for
prioritized selection and execution of integration test cases in both Domain Engineering
and Application Engineering.

Phase Studies
Domain
Engineering

Unit testing S6, S16, S66
Integration
testing

S2, S10, S48

Application
Engineering

Unit testing S23, S54, S62, S99, S106, S113
Integration
testing

S3, S9, S11, S13, S23, S33, S38,
S40, S43, S46, S47, S48, S58, S62,
S65, S66, S71, S74, S87, S88, S90,
S93, S94, S96, S99, S110, S113

System/
Acceptance
testing

S1, S20, S32, S43, S46, S47, S49,
S65, S66, S67, S68, S69, S70, S71,
S72, S74, S79, S80, S81, S82, S83,
S84, S85, S86, S89, S90, S102,
S112

Table 4  Distribution of primary
studies by the testing level

1 3

 146   Page 16 of 61

Empirical Software Engineering (2024) 29:146

Specific testing activities that are conducted in Application Engineering are: Creating spe-
cific product test assets by selecting and instantiating domain test assets, designing addi-
tional product-specific tests, and executing tests (Da Mota Silveira Neto et al. 2011). It is
worth mentioning that some of the studies are focused on reducing the number of products
that need to be tested by using specific techniques like pairwise testing (e.g., Matnei et al.
2016). In addition, some studies are focused on product prioritization to enhance the effi-
ciency of SPL testing (e.g., Parejo et al. 2016). Once a set of configurations/products are
selected/prioritized for testing, their behavior needs to be tested using a specific mechanism,
e.g. executable unit tests (Parejo et al. 2016). Studies that are focused only on the first step
(selecting/prioritizing configurations) do not usually consider a specific level of test. The
testing levels usually performed in Application Engineering, as shown in Table 4, are as
follows:

	● Unit testing: Some of the studies considered executing unit tests in Application En-
gineering (Bürdek et al. 2015; Li et al. 2018; Souto and d’Amorim 2018; Jung et al.
2019, 2020; Lochau et al. 2014). Bürdek et al. (2015) proposed a white-box test-suit
derivation mechanism for SPLs, specifically for unit testing, in which test specifica-
tions are extended with a presence condition. A presence condition constrains the set of
configurations for which a specific test case is valid; this information is used for testing
configurations in Application Engineering. Li et al. (2018) investigated test cases gen-
erated for one product that are reused for another product of the SPL by applying two
categories of structure-based criteria, control-flow and data-flow. Souto and d’Amorim
(2018), Jung et al. (2019) and Jung et al. (2020) identify unit test cases to be selected
for regression testing.

	● Integration testing: As shown in Table 4, this level of testing has been considered in
a greater number of studies (27 studies). Some studies have not explicitly mentioned
this level of testing; however, they mentioned that the untested parts of the framework
are tested during Application Engineering (Scheidemann 2006; Al-Dallal and Sorenson
2008; Jaring et al. 2008). Some of the studies consider the selection of integration test
cases during Application Engineering (e.g., Jung et al. 2019).

	● System /Acceptance testing: This level of testing has also been considered in a greater
number of studies (28 studies), as shown in Table 4. In most studies, test models de-
signed throughout Domain Engineering are instantiated to derive specific system test
cases (e.g., Olimpiew and Gomaa 2009). Arrieta et al. (2015) split the lifecycle of cyber-
physical systems product lines into three phases: Domain Engineering, Application En-
gineering, and Simulation phases. Execution of system test cases are performed in the
simulation phase; however, as we classified SPL lifecycle into Domain Engineering and
Application Engineering, we included this study in this category.

4.3  Creating test assets by considering commonalities and variabilities (RQ3)

Creating test assets by considering commonality and variability to enhance their reusability
and to reduce the probability of undetected errors in common core assets by testing them as
early as possible is essential in SPL testing. Out of 118 papers, 25 primary studies (∼ 21%)
provide contributions to handle variability in a range of different manners. We conducted

1 3

Page 17 of 61  146

Empirical Software Engineering (2024) 29:146

an exploratory analysis to identify shared characteristics among the approaches and subse-
quently categorized them. We identified three categories of approaches, including model-,
specification-, and requirements-based approaches. The distribution of studies based on
these categories is shown in Table 5.

	● Model-based approaches: In model-based approaches, a set of techniques is used to
design and execute tests for SPLs by leveraging formal or semi-formal models of the
SPL’s variability. In the examined studies, the subsequent methods are employed to
incorporate variability into test models:

	– Adaptation of UML models or integrating them with the feature model to pro-
duce test models including variability: In studies (Reuys et al. 2005, 2006; Reis
et al. 2007; Olimpiew and Gomaa 2009), activity diagrams are extended using spe-
cific mechanisms (e.g., stereotyping specific elements) to contain variabilities and
then used as test models to create domain test case scenarios. Ebert et al. (2019)
developed a common platform in Domain Engineering that contains all elements
required for producing products. This study uses the SMArDT methodology (Drave
et al. 2019) to elaborate each functionality defined in the platform via an extended
version of activity diagram; generic test cases are then created for each functionality
based on the SMArDT methodology. Reis et al. (2006) propose the ScenTED-PT
technique in which the requirements and the architecture of the system are specified
by UML models supplemented with performance requirements; then, they create a
test model from which performance test case scenarios are derived.

Lochau et al. (2012a) and Lackner et al. (2014) proposed to use the statechart mod-
eling approach as a basis for capturing commonalities and variabilities of product
implementations in an SPL; a 150% statechart model and the feature model is inte-
grated to produce a reusable test model. The 150% statechart model is a model that
contains the behavioral specification fragments of every feature without considering
constraints between features, and the 100% statechart model is a specific instantia-
tion of the 150% model by considering the dependencies and constraints (Lochau
et al. 2012a).

	– Using/defining different modeling notations to capture variabilities and using
them to produce test assets: In this category of model-based approaches, specific
modeling notations have been used or defined to create variant-rich test models.
Tuglular et al. (2019) introduced Featured Event Sequence Graphs (FESGs) to
explicitly capture behavioral variability in SPLs. Gebizli and Sözer (2016) used
hierarchical Markov chains to model system usage; as this model captures all

Approaches Studies
Model-based S2, S32, S33, S46, S47,

S68, S70, S71, S72, S74,
S76, S81, S84, S85, S90,
S94, S95, S113

Specification-based S12, S69
Requirement-based S1, S49, S67, S80, S102

Table 5  Distribution of primary
studies to answer RQ3

1 3

 146   Page 18 of 61

Empirical Software Engineering (2024) 29:146

possible usage scenarios for a family of systems, it is considered as a reference test
model. Bucaioni et al. (2022) define specific metamodels and languages to cap-
ture test variabilities, including SPL metamodel (SPLmm), Products metamodel
(Pmm), Weaving metamodel (Wmm) to link features and signals in Pmm to those in
SPLmm, Test case DSL (TcDSL), and Test Script generation Transformation (TsT).
Fragal et al. (2019) use Featured Finite State Machines (FFSMs) to represent the
abstract behavior of an SPL; in this study, the HSI method (Luo et al. 1995) has
been extended to generate a single configurable test suite for an SPL. Luthmann et
al. (2019a) extended the concept of Timed Automata (TA) by feature constraints
and configurable parameters to facilitate efficient verification of real-time proper-
ties for SPLs. Lochau et al. 2012b), Lachmann et al. (2016), and Lity et al. (2019)
apply the principles of delta modeling (Schaefer et al. 2010) to state machine test
models to explicitly capture behavioral commonality and variability between prod-
uct variants and then their test assets. In delta-oriented testing techniques, a product
is considered as a base product and delta modules specify changes that should be
applied to the base product to produce new ones (Schaefer et al. 2010). Beohar and
Mousavi (2016) introduce the concept of Input-Output Featured Transition Systems
(IOFTSs); IOFTSs are labeled transition systems with logical constraints on the
presence or absence of features and are used as test models. In the work by Lochau
et al. (2014), they introduced delta-oriented architecture test modeling as a means to
systematically reuse common component and integration test elements across vari-
ous system variants. They employed delta-oriented test artifact reuse and regression
test planning to facilitate the systematic evolution of variable test elements among
incrementally tested versions and/or variants of a software system.

	● Specification-based approaches: In these approaches, specific links are defined be-
tween different configurations of an SPL and, therefore, between test cases designed for
both shared and variable components of the products. Mishra (2006) uses the process
algebraic specification language CSP-CASL (Roggenbach 2006) to formally specify
the system; then, enhancement relationships are established between the specifications
of products. In this way, test cases generated for the common parts are reused between
products, and new test cases are generated for the differences in the specification. Uzun-
caova et al. (2010) describe properties of features as first-order logic formulas in Alloy
(Jackson 2012); by considering a product as a base, test cases are generated for the base
product using Alloy Analyzer. For each new product, the test cases from previous prod-
ucts are reused/refined based on the differences in the specifications.

	● Requirement-based approaches: In these approaches, variability is considered as
early as possible so that it can be used to design test cases. In several primary stud-
ies, use case modeling is the approach used for representing requirements (Nebut et al.
2006; Araújo et al. 2017; Hajri et al. 2020). Nebut et al. (2006) enhance use cases with
parameters and contracts used for presenting variability at the level of requirements;
test-related artifacts (e.g., test objectives, test scenarios, and behavioral test patterns)
are produced based on the enhanced use cases. Araújo et al. (2017) express use case
specifications in a controlled natural language by considering variabilities; the specifica-
tions are then used for generating test procedures and their input and output. Hajri et al.
(2020) propose to use the Product line Use case modeling Method (PUM) that supports

1 3

Page 19 of 61  146

Empirical Software Engineering (2024) 29:146

variability modeling in use case diagrams; by using the requirement traceability mecha-
nism, test cases for a new product are generated by reusing/adapting existing test cases
or by defining new test cases.

Kang et al. (2015) propose a method called Systematic Software Product Line Test -
Data (SSPLT-D) in which a set of platform test requirements are first defined throughout
Domain Engineering and then platform test scenarios, platform test cases, and platform
test data are created based on test requirements. Nebut et al. (2003) propose to derive a
set of behavioral test patterns from the requirement model and then use them to produce
product-specific test cases.

4.4  Dealing with configuration-aware software testing (RQ4)

Dealing with configuration-aware software testing, i.e., detecting valid and invalid com-
binations of configuration parameters, is paramount in SPL approaches because testing all
combinations of SPL functionalities would be impossible and unnecessary. In our investiga-
tion, 41 out of 118 papers (∼ 35%) have addressed this. These papers have employed three
methods to distinguish between valid and invalid configurations; distribution of studies
based on these methods is shown in Table 6:

	● Using/proposing specific approaches/algorithms/tools to produce valid configu-
rations: Some studies utilize constraint programming, which is used for solving and
modeling constraint satisfaction problems, to generate configurations that satisfy all
cross-tree constraints imposed by the feature model (Hervieu et al. 2011; Marijan et al.
2013). In the same way, Kim et al. (2013) and Akbari et al. (2017) propose a constraint
handling approach to produce valid configurations; as an example, an algorithm called
SPLat is proposed in study (Kim et al. 2013) that dynamically prunes irrelevant configu-
rations by handling constraints.

Using formal methods to check cross-tree constraints defined in feature models to check
the relations between features is another way to find and produce valid configurations
(Lackner et al. 2014; Lopez-Herrejon et al. 2014; Beohar and Mousavi 2016; Parejo et
al. 2016; Ferrer et al. 2017, 2021; Akimoto et al. 2019; Arrieta et al. 2019; Jakubovski
Filho et al. 2019; Luthmann et al. 2019b; Ibias et al. 2022). For example, Lackner et
al. (2014) transform a feature model into propositional formulas so that any variable
assignment that satisfies the formula is a valid configuration for the product line.

Approaches Studies
Specific methods/algorithms S4, S7, S14, S15, S17,

S25, S29, S32, S33, S34,
S39, S41, S45, S46, S48,
S51, S52, S53, S56, S57,
S58, S61, S74, S77, S79,
S91, S95, S100, S101,
S103, S106, S108, S112,
S117, S118

Runtime analysis S71, S111, S113, S114
Manual analysis S72, S73

Table 6  Distribution of primary
studies to answer RQ4

1 3

 146   Page 20 of 61

Empirical Software Engineering (2024) 29:146

Several studies suggest the utilization of sampling algorithms and techniques to gener-
ate valid configurations (Oster et al. 2010; Lochau et al. 2012a; Patel et al. 2013; Yu
et al. 2014; Al-Hajjaji et al. 2016, 2019; Lee and Hwang 2019). Combinatorial Inter-
action Testing (CIT) is among the commonly used sampling algorithms to exclude
invalid interactions between features; in CIT, design-time decisions for variability are
considered to exclude invalid interactions between features. For example, Oster et al.
(2010) and Lochau et al. (2012a) propose a pairwise algorithm in which dependencies
and constraints between each pair of features are considered to generate all possible
products that cover all valid pairs of features and their potential interactions. In a study
conducted by Saini et al. (2022), they introduced a distance-based method for recog-
nizing invalid configurations. This approach involves an initial phase where specific
CIT algorithms are employed to generate real configurations. Following that, desired
configurations are created, considering the availability of features in the configurations.
The approach distinguishes valid from invalid configurations by applying a comparison
technique to assess the differences between the actual and desired configurations.
Additionally, several studies proposed tool support for their specific approaches. They
used SAT solvers to generate configurations to satisfy the feature model constraints
which, in turn, reduces the configuration space to be tested (Henard et al. 2013, 2014a,
b; Galindo et al. 2016; Hervieu et al. 2016; Souto and d’Amorim 2016; Fragal et al.
2019; Luthmann et al. 2019a; Krieter et al. 2020; Xiang et al. 2022). Using or imple-
menting a tool or toolkit to produce valid configurations has been proposed by Ensan
et al. (2012), Al-Hajjaji et al. (2016), Arrieta et al. (2016), Al-Hajjaji et al. (2019) and
Arrieta et al. (2019). For example, FeatureIDE has been used in studies by Al-Hajjaji
et al. (2016), Arrieta et al. (2016), Al-Hajjaji et al. (2019), and Arrieta et al. (2019); this
tool can generate valid configurations manually and automatically.

	● Runtime analysis: An alternative category of methods employs runtime analysis to
differentiate intended from unintended interactions. In these methodologies, rather than
relying on pre-established specifications to detect interactions, they examine runtime
data to distinguish valid and invalid interactions (Reuys et al. 2006; Lochau et al. 2014;
Rocha et al. 2020; Vidal Silva et al. 2020). As an example, in a study by Rocha et al.
(2020), they introduced an iterative technique called VarXplorer to inspect interactions
as they emerge. When provided with a test case consisting of system inputs, VarXplorer
generates a Feature Interaction Graph (FIG), which is a concise representation of all
pairwise interactions among features. This FIG offers a visual depiction of the features
that interact, the contextual data, and the relationships between features, including cases
where one feature suppresses another. By employing an iterative approach to interaction
detection, developers and testers can thoroughly analyze the FIG derived from all the
test cases within a test suite.

It is worth mentioning that some studies only stated that the feature model is manually
analyzed to consider feature dependencies and feature grouping constraints (Olimpiew and
Gomaa 2009; Cabral et al. 2010).

1 3

Page 21 of 61  146

Empirical Software Engineering (2024) 29:146

4.5  Preserving traceability between test assets and other artifacts (RQ5)

One of the essential factors in SPL testing is the preservation of the traceability between test
assets and other artifacts throughout the SPL lifecycle. This is due to enhancing the reus-
ability of test assets for managing the SPL testing complexity. However, in this regard, a few
papers take preserving traceability into account, only 14 out of 118 (∼ 12%). We categorized
these papers according to the type of the artifacts linked to test assets; distribution of studies
based on this classification is shown in Table 7:

	● Preserving traceability between requirements and test assets: In the majority of the
studies, traceability is established between requirements, often represented using UML
models (primarily use cases), and various test assets. These papers have utilized vari-
ous methods, encompassing the gradually refinement of UML models into test models,
direct mapping of requirements to test assets, annotation-based traceability, and the ap-
plication of specific tools for automated tracing.

Reuys et al. (2005), Nebut et al. (2006), Reis et al. (2007) and Olimpiew and Gomaa
(2009) use UML models to preserve the traceability between requirements and test case
scenarios. In the same way, Reuys et al. (2006) enabled the traceability between dif-
ferent artifacts (use cases, use case scenarios, architecture scenarios, and test case sce-
narios) by refining use case scenarios into test case scenarios.
The manual definition of links between use cases and system test cases was mentioned
by Hajri et al. (2020). Lackner et al. (2014), Gebizli and Sözer (2016) and Wang et
al. (2017) created mapping relationships between variabilities modeled via the feature
model and the test model to preserve traceability between requirements and test assets.
Bucaioni et al. (2022) employed a metamodel to create a link between the product mod-
els and the SPL model. In this approach, the shared functionalities of the SPL are repre-
sented through a class diagram, and test cases are generated explicitly for these shared
functionalities.
Adding annotations to test assets to specify their relationship with other artifacts is the
approach proposed by Marijan et al. (2017); in this approach, test cases were manually
annotated using tags and related to one or more test requirements; this traceability infor-
mation is then used to assess the quality of test cases with respect to the requirements
coverage.
In some studies, specific tools are used for automated tracing (Reis et al. 2006; Lochau
et al. 2012a). Reis et al. (2006) use a tool named Mercury TestDirector to preserve the
traceability between requirements specification, domain performance test case scenar-
ios, and application performance test case scenarios. Lochau et al. (2012a) employed
Rhapsody ATG to enable traceability between requirement models and test artifacts in
an automated manner.

Approaches Studies
Traceability between Requirements and Test Assets S1, S2, S32,

S64, S68, S70,
S71, S72, S74,
S84, S85,
S102, S110

Traceability between Configurations and Test Assets S69

Table 7  Distribution of primary
studies to answer RQ5

1 3

 146   Page 22 of 61

Empirical Software Engineering (2024) 29:146

	● Preserving traceability between configurations and test assets: The solution pro-
posed by Mishra (2006) is the definition of enhancement relationships between specifi-
cations of systems (different configurations of the SPL) and, therefore, their test cases.

It is also worth mentioning that some studies have emphasized the importance of preserving
traceability between test assets and other artifacts, but they provide no mechanism in this
regard (Kang et al. 2015; Aduni Sulaiman et al. 2019).

4.6  Testing non-functional requirements in SPL (RQ6)

In addition to functional requirements, there are non-functional requirements which should
be tested in SPL, but only 3 out of 118 studies consider them. Various categories of NFRs
have been addressed in these studies, including load testing and performance profiling (Reis
et al. 2006), NFRs at the hardware-in-the-loop level (Arrieta et al. 2016), and real-time
properties (Luthmann et al. 2019a).

Reis et al. (2006) propose a technique which concentrates on load testing and perfor-
mance profiling. They employ the Object Management Group’s UML Profile (Fomel 2002)
to model performance aspects. Testing NFRs as a critical aspect of cyber-physical systems
is investigated at the hardware-in-the-loop level by Arrieta et al. (2016); these requirements
(e.g., the usage of memory and CPU) are modeled via the feature model and their cover-
age is considered by using selected test cases and the simulation process. Luthmann et al.
(2019a) present configurable parametric timed automata to extend the expressiveness of
featured timed automata to enable efficient family-based verification of real-time proper-
ties (e.g., synchronization and execution time behaviors); the proposed modeling formalism
aims to represent the behavioral variability of time-critical product lines and consider the
minimum/maximum delay coverage.

4.7  Controlling cost/effort of SPL testing (RQ7)

As the cost/effort of SPL testing remains a significant concern within SPLE, numerous stud-
ies have proposed various techniques to address this issue. However, the lack of a standard-
ized classification for these techniques has made it challenging to analyze them effectively.
One notable exception is the extensive research conducted on product sampling techniques,
which has been categorized into specific sub-techniques, including automatic selection,
semi-automatic selection, and coverage (Varshosaz et al. 2018). In our analysis, we utilized
these established categories to organize the diverse range of techniques proposed in the
literature.

While reviewing the papers, we identified other approaches that offer potential solutions
to managing the cost and effort associated with SPL testing. These approaches were catego-
rized based on their primary contributions and grouped into distinct categories. Some of the
identified approaches focus on the reuse of test assets, either from a core asset base or from
previously tested products. Others provide varying degrees of automation, ranging from
the implementation or utilization of specialized tools to the automation of specific testing
processes, such as specification-based approaches.

Additionally, a subset of studies explored strategies for prioritizing the execution order of
SPL configurations or products and the associated test cases. Another category of research

1 3

Page 23 of 61  146

Empirical Software Engineering (2024) 29:146

aimed to minimize the size of the test suite required for testing a particular product, thereby
reducing overall testing effort.

It is important to note that these techniques can often be combined. For example, test
prioritization and minimization techniques can be used with sampling techniques to further
optimize the cost and effort associated with SPL testing. Furthermore, the list of techniques
can be enriched concerning new publications regarding SPL testing. In the rest of this sec-
tion, the details of these five techniques are provided:

	● Reusing test assets: Based on the analysis of studies, test assets (e.g., test cases and test
results) are reused in two ways, including:

	– Reusing test assets from a core asset base: In some studies, domain test scenarios
containing variabilities are created in Domain Engineering; some of these scenarios
are reused, and some of them are adapted based on the application requirements
(Nebut et al. 2003; Reuys et al. 2005, 2006; Reis et al. 2006). Some other studies
are focused on reusing test cases by selecting them from a repository based on the
application requirements (Arrieta et al. 2016; Wang et al. 2017; Lima et al. 2020)
or by binding variabilities defined in abstract test cases based on specific criteria
(e.g., coverage criteria) (Al-Dallal and Sorenson 2008; Olimpiew and Gomaa 2009;
Lackner et al. 2014; Bürdek et al. 2015; Kang et al. 2015; Ebert et al. 2019; Fragal
et al. 2019; Luthmann et al. 2019a).

	– Reusing test assets between products: In some studies, test assets are reused
between products by analyzing differences between the current product and pre-
viously tested products (Mishra 2006; Uzuncaova et al. 2010; Neto et al. 2010;
Lochau et al. 2012b, 2014; Xu et al. 2013; Lachmann et al. 2015, 2016; Beohar and
Mousavi 2016; Fragal et al. 2017; Li et al. 2018; Ebert et al. 2019; Lity et al. 2019;
Luthmann et al. 2019a; Tuglular et al. 2019; Hajri et al. 2020). The technique usu-
ally used in these studies is the delta-oriented testing technique, based on regression
testing principles and delta modeling concepts. By considering delta modules, test
cases and test results from previously tested products can be reused and adapted for
the new product.

	● Providing a specific level of automation: We found two ways by which the studies
provide a particular level of automation:

	– Implementing/using a specific tool(s): In 49 studies, authors claimed that their
proposed approach is automatically performed using specific tools. However, the
majority of these studies fail to provide any details regarding the specific tools
employed for this purpose (e.g., Reis et al. 2006; Olimpiew and Gomaa 2009; Cal-
vagna et al. 2013; Li et al. 2018; Safdar et al. 2021). Table 8 shows that only 19
of these studies have provided online access to their tools. It is worth noting that
most of these tools are in the form of research prototypes. Instead of developing
a novel tool tailored to their proposed approach, some studies utilize a set of pre-
existing tools at various stages of their approach. For instance, in the case of Parejo
et al. (2016), the Combinatorial tool and Feature Model Testing System (FMTS),

1 3

 146   Page 24 of 61

Empirical Software Engineering (2024) 29:146

Study Name of
the tool
implemented

Link License Year of
publication

Con-
tinued

S3 JFramework
Re-Tester

NA* NA 2008 NA

S4 PACOGEN http://people.rennes.inria.fr/Arnaud.Gotlieb/
resources/Pacogen/Pacogen.html

CeCI-
LL-C

2011 NA

S17 SPLat NA NA 2013 NA
S18 VANE https://github.com/ViViD-DiverSE/VANE None** 2014 No***

SRTST https://github.com/psjung/
SRTST_experiments

None 2019 No

S25 LOOKUP NA NA 2014 NA
S32 SPLTestbench NA NA 2014 NA
S33 ConFTGen https://github.com/vhfragal/ConFTGen-tool None 2017 No
S38 FORMAT https://github.com/brcoztn/

AgileSWDevelopment
None 2017 No

S41 FeatureIDE
(extended)

https://featureide.github.io/ L-GPL 2020 NA

S46 CoPTA https://www.es.tu-darmstadt.de/es/team/
lars-luthmann/copta-analysis

NA 2019 No

S47 IMoTEP http://www.dfg-spp1593.de/imotep/ NA 2019 NA
S49 CARNAUbA https://sites.google.com/site/

use2testswithcnl/
NA 2017 No

S51 FeatureIDE
(extended)

https://github.com/FeatureIDE/FeatureIDE/
tree/develop/plugins/de.ovgu.featureide.
fm.core

L-GPL 2016 NA

S54 CPA/TIGER https://www.sosy-lab.org/research/cpa-tiger/ NA 2015 No
S55 Flower/C NA NA 2016 NA
S61 PACOGEN

(extended)
http://people.rennes.inria.fr/Arnaud.Gotlieb/
resources/Pacogen/Pacogen.html

CeCI-
LL-C

2016 NA

S62 CPLTE NA NA 2020 NA
S63 FMTS NA NA 2017 NA
S64 IPT NA NA 2017 NA
S68 ScenTED-

DTCD
NA NA 2005 NA

S78 CIA Tool
Suite

https://cloud.tu-braunschweig.de/s/
fl-fiEgKYFwPAnciei651aGBg5A

NA 2020 No

S83 SPL-AT-Gher-
kin Feature
File Generator

https://github.com/esg4aspl MIT 2020 No

S96 DELTARX NA NA 2015 NA
S101 CoPTA

(extended)
https://www.es.tu-darmstadt.de/es/team/
lars-luthmann/copta-analysis

NA 2019 No

S102 PUMConf https://sntsvv.github.io/PUMconf/ None 2016 No
S104 TEMSA NA NA 2015 NA
S108 FeatureIDE

(extended)
https://featureide.github.io/ L-GPL 2019 NA

S109 VIBeS https://projects.info.unamur.be/vibes/ NA 2017 NA

Table 8  The list of tools implemented in the studies (last accessed October 2023)

1 3

Page 25 of 61  146

http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
https://github.com/ViViD-DiverSE/VANE
https://github.com/psjung/SRTST_experiments
https://github.com/psjung/SRTST_experiments
https://github.com/vhfragal/ConFTGen-tool
https://github.com/brcoztn/AgileSWDevelopment
https://github.com/brcoztn/AgileSWDevelopment
https://featureide.github.io/
https://www.es.tu-darmstadt.de/es/team/lars-luthmann/copta-analysis
https://www.es.tu-darmstadt.de/es/team/lars-luthmann/copta-analysis
http://www.dfg-spp1593.de/imotep/
https://sites.google.com/site/use2testswithcnl/
https://sites.google.com/site/use2testswithcnl/
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.fm.core
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.fm.core
https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.featureide.fm.core
https://www.sosy-lab.org/research/cpa-tiger/
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
http://people.rennes.inria.fr/Arnaud.Gotlieb/resources/Pacogen/Pacogen.html
https://cloud.tu-braunschweig.de/s/fl-fiEgKYFwPAnciei651aGBg5A
https://cloud.tu-braunschweig.de/s/fl-fiEgKYFwPAnciei651aGBg5A
https://github.com/esg4aspl
https://www.es.tu-darmstadt.de/es/team/lars-luthmann/copta-analysis
https://www.es.tu-darmstadt.de/es/team/lars-luthmann/copta-analysis
https://sntsvv.github.io/PUMconf/
https://featureide.github.io/
https://projects.info.unamur.be/vibes/

Empirical Software Engineering (2024) 29:146

as introduced by Ferreira et al. (2013), were employed to derive pairs and calculate
solution fitness, respectively.

	– Using specific techniques that help automate the testing process. Specification-
based testing was used in some studies (e.g., Mishra 2006) as an appropriate step in
automating the testing process because of its precise nature in describing the desired
properties of the system under test by using a formal language. Model-based testing
is another approach that helps automate the testing process. For example, Bucaioni
et al. (2022) introduced a model-based approach in which test scripts are generated
from shared SPL features by model transformation.

	● Handling the selection of products to test: Testing all possible combinations of fea-
tures is almost impossible in terms of resources and execution time (Cohen et al. 2006).
Specific approaches have been proposed to determine a minimal set of configurations so
that the correctness of the entire family can be inferred by successful verification of this
set. Through our examination of the studies, we have identified diverse techniques for
choosing a subset of products. These techniques have been categorized according to the
provided categories for product sampling in study (Varshosaz et al. 2018). Distribution
of studies based on these techniques are shown in Table 9:

	– Automatic selection: There are two general types of automatic selection tech-
niques, including Greedy and Meta-heuristic search:

	– Greedy: Greedy algorithms (Vazirani 2001) are focused on finding an optimal
solution by an iterative approach. In the context of SPLs, the optimal solu-
tion is the configuration most close to the optimum. Specific measures are used

Studies
Automatic
selection

Greedy S24, S51, S65, S73, S101, S105
Meta-
heuristic
search

S14, S15, S21, S25, S27, S28, S35,
S37, S42, S45, S50, S52, S53, S55,
S59, S60

Semi-automatic selection S19, S58, S61, S100, S117
Coverage S4, S5, S6, S7, S8, S18, S29, S31,

S32, S39, S41, S44, S56, S72, S73,
S74, S75, S77, S87, S97, S115, S116

Table 9  Distribution of primary
studies based on the techniques
used for product sampling

Study Name of
the tool
implemented

Link License Year of
publication

Con-
tinued

S110 TITAN NA NA 2017 NA
S115 FeatureIDE

(extended)
https://featureide.github.io/ L-GPL 2022 NA

* Unidentified; no information was found
** The license has been designated as “none” on GitHub
*** Discontinued

Table 8  (continued)

1 3

 146   Page 26 of 61

https://featureide.github.io/

Empirical Software Engineering (2024) 29:146

to determine a configuration as an optimum solution in each iteration (e.g.,
requirements/feature coverage).

	– Meta-heuristic search: In this category, the problem of identifying a subset of
products is considered as an optimization problem. Meta-heuristic algorithms
are designed to target this problem by employing computational search within
the configuration space to find an optimal subset of products (Varshosaz et al.
2018). Some studies have applied Evolutionary Algorithm, Random Search,
and Genetic Algorithm by using an aggregation function of different objectives
such as cost, number of products, number of revealed faults, pairwise cover-
age, and mutation score (e.g., Ensan et al. 2012). Some other studies propose to
use multi-objective algorithms (e.g., Matnei et al. 2016). Hyper-heuristics are
another category of approaches that have been explored in some studies to solve
the problem of product sampling (e.g., Strickler et al. 2016). A hyper-heuristic
is a methodology that can help automate configuration of heuristic algorithms
and determine low-level heuristics (Jakubovski Filho et al. 2018). To consider
user preferences throughout the selection of products as well as to make use
of benefits of hyper-heuristic approaches, a preference-based hyper-heuristic
approach has been proposed by Jakubovski Filho et al. (2018); this approach is
an example of algorithms proposed in the field called Preference and Search-
Based Software Engineering (PSBSE) (Ferreira et al. 2017b).

	– Semi-automatic selection: In semi-automated selection, various factors are con-
sidered, including the desired number of generated products, the allocated sampling
time, and the level of coverage, such as coverage of feature interactions. Moreover,
the complete sample set or an initial set produced by other sampling techniques
may serve as a starting point for the sampling process (Varshosaz et al. 2018). As an
example, Reuling et al. (2015) propose a framework for fault-based (re-)generation
of configuration samples based on feature-diagram mutation. The underlying ratio-
nale for this approach is rooted in the recognition that subsets of products generated
by CIT approaches can often contain numerous redundant or less significant feature
combinations. Furthermore, these approaches may overlook crucial or error-prone
combinations beyond t-wise, primarily due to their black-box nature, which typi-
cally lacks consideration of domain-specific knowledge, including the fault history
associated with feature combinations. The authors argue that the integration of their
proposed approach with pairwise CIT sampling can potentially enhance the effi-
ciency and effectiveness of SPL testing.

	– Coverage: Coverage criteria are frequently employed to ensure the quality of prod-
uct sampling. One commonly utilized criterion is the coverage of feature interactions
(Varshosaz et al. 2018). CIT techniques are focused on the interactions between dif-
ferent features or configuration options, as these interactions often lead to defects in
software systems. These techniques are classified as greedy by Cohen et al. (2007)
since they are focused on selecting a subset of configurations where each configura-
tion covers as many uncovered combinations as possible. However, it is categorized
separately in some other studies (e.g., Cmyrev and Reissing 2014). We also prefer to
separate this category of techniques from greedy algorithms since they are specially

1 3

Page 27 of 61  146

Empirical Software Engineering (2024) 29:146

focused on covering feature interactions. The studies that provide details of either a
process or an algorithm for CIT are shown in Table 9.

The most popular kind of CIT is pairwise testing (2-wise), a specialized notion of
t-wise coverage; in t-wise testing, configurations are selected in a way that guarantees
that all combinations of t features are tested. Kuhn et al. (2004) showed that 80% of
bugs can be revealed by investigating interaction between two variables. Furthermore,
for solving problems of large complexity, pairwise has proven to be most effective
since finding inconsistencies in a model including only two features might be easier
than investigating all combinations of features at once (do Carmo Machado et al.
2014). However, Steffens et al. (2012) revealed that the interaction of three or more
features usually occurs in the SPL testing field; therefore, considering the combination
of high-strength can have an important role in revealing faults. To this end, some stud-
ies claimed that their proposed approach for t-wise coverage can work with any value
of t (e.g., Krieter et al. 2020). However, high-strength (t > 3) feature interaction can
lead to a large number of valid configurations and therefore complicate the problem of
t-wise coverage (Qian et al. 2018). Therefore, selecting a specific value for t is usually
a trade-off between cost and efficiency to reveal faults.

	● Prioritizing configurations/test cases: Test case prioritization is focused on defining
the execution order of test cases that attempts to increase their effectiveness at meeting
some performance goals (Li et al. 2007; Catal and Mishra 2012). By investigating stud-
ies, we found two categories of studies in this regard:

	– Several studies propose approaches for prioritizing SPL configurations/products to
be tested; these approaches are usually used as a complement for product selection/
sampling techniques. In some of these studies, one or more objectives are defined
for configuration prioritization (e.g., high failure rate and high overall requirement
coverage) (Scheidemann 2006; Sánchez et al. 2014; Wang et al. 2014; Galindo et al.
2016; Parejo et al. 2016; Akimoto et al. 2019; Hierons et al. 2020; Pett et al. 2020;
Ferrer et al. 2021); results of the evaluations conducted by Parejo et al. (2016) indi-
cate that multi-objective prioritization typically leads to faster fault detection than
mono-objective prioritization. In another category of studies, similarity between
configurations with respect to feature selections is considered as a criterion for prod-
uct prioritization (similarity-based prioritization) (Arrieta et al. 2015; Al-Hajjaji et
al. 2017a, 2019). In these approaches, configurations are prioritized based on the
dissimilarity between them so that the configuration that has the lowest value of
similarity compared to previously selected configurations in terms of feature selec-
tions is chosen. Al-Hajjaji et al. (2017b) propose a delta-oriented product prioritiza-
tion method as similarity-based prioritization techniques do not consider all actual
differences between products; in this approach, instead of comparing products to
select features, delta-modeling artifacts (Clarke et al. 2010) are used to prioritize
products.

	– Some studies are focused on prioritizing test cases for products. Lima et al. (2020)
propose a learning-based approach is proposed to prioritize test cases in the Con-
tinuous Integration (CI) cycles of Highly Configurable Systems (HCI). Arrieta et

1 3

 146   Page 28 of 61

Empirical Software Engineering (2024) 29:146

al. (2015), Marijan et al. (2017), Markiegi et al. (2017), Arrieta et al. (2019) and
Hajri et al. (2020) use specific criteria to prioritize the test cases (e.g., Fault detec-
tion capability, Test execution time, or Test case appearance frequency). In another
category of studies, similarity-based approaches are proposed to prioritize test cases
(e.g., Devroey et al. 2017; Lachmann et al. 2015; Lachmann et al. 2016). As an
example, Devroey et al. (2017) propose an algorithm to generate and sort dissimi-
lar tests to achieve good fault finding; to this end, a distance function is calculated
based on the actions executed by the test case. Furthermore, to provide a good cov-
erage of a large number of products, prioritizing test cases is also performed based
on the products that may execute a test case.

	● Minimizing test suite: This technique is focused on minimizing the test suite size for
testing a product, while preserving fault detection capability and testing coverage of
the original test suite. Al-Dallal and Sorenson (2008), Stricker et al. (2010), Kim et al.
(2012) and Beohar and Mousavi (2016) discuss approaches in which test cases already
covered during Domain Engineering or test cases related to common parts that have
already been executed in previous products are ignored. Other studies propose specific
approaches to reduce redundant test executions for SPL regression testing by pruning
tests that are not impacted by changes (Lachmann et al. 2016; Jung et al. 2019, 2020,
2022; Souto and d’Amorim 2018).

There are studies focused on improving test generation process to produce minimal set
of test cases while achieving specific objectives (e.g., coverage and cost/time) (Patel et
al. 2013; Wang et al. 2015; Gebizli and Sözer 2016; Akbari et al. 2017; Marijan et al.
2017; Aduni Sulaiman et al. 2019; Markiegi et al. 2019; Rocha et al. 2020). As an exam-
ple, Akbari et al. (2017) propose a method in which features in feature model are priori-
tized based on the domain engineer’s decisions and the constraints that exist between
features; integration test cases are then produced by considering specified priorities.
Furthermore, there are approaches that are not directly focused on test suit minimiza-
tion; however, they help reduce redundant execution of tests for unnecessary configura-
tions (Kim et al. 2013; Souto and d’Amorim 2018). These approaches are focused on
removing the valid configurations that are unnecessary for the execution of each test.
The distribution of studies based on the identified techniques is presented in Table 10.
As observed, the majority of the studies (∼ 62%) are focused on proposing a specific
level of automation. However, many of these studies do not offer details regarding
the specific tools utilized for this purpose. The second most researched category of
approaches pertains to handling the selection of products to test (∼ 39%). Following
this are techniques involving reusing test assets (∼ 25%), prioritizing configurations/test
cases (∼ 18%), and minimizing test suite size (∼ 15%).

1 3

Page 29 of 61  146

Empirical Software Engineering (2024) 29:146

5  Threats to validity

In this section, we discuss the main threats associated with the validation of this study,
classified according to the categorization proposed by Ampatzoglou et al. (2019). These
particular threats are categorized into three categories: study selection validity, data validity,
and research validity.

5.1  Study selection validity

One of the main threats to any secondary study is its inability to guarantee the inclusion of
all relevant articles in the field. To mitigate this threat, a meeting involving all researchers
was conducted to discuss and refine the search scope and keywords. Then, we evaluated the
validity of the search string by conducting a limited manual search to see whether the results
of that manual search show up in the results obtained by running the search string.

To ensure the comprehensive identification of all relevant studies in our search process,
we rigorously followed the guidelines provided by Kitchenham and Charters (2007). We
conducted a bibliographic search of published literature reviews in the SPL testing field.
We updated the list of studies by applying a search string to multiple digital libraries and
performed the backward and forward snowballing process. Therefore, we are confident that
we have provided good coverage of studies in the SPL testing field.

During the primary study selection process, to minimize potential bias in applying inclu-
sion/exclusion criteria, these criteria were clearly defined and regularly updated in our
protocol. The first author applied inclusion and exclusion criteria. However, to reduce the
researcher bias, the results of this stage were validated by the second and third authors of
this paper.

Regarding quality assessment, we used a set of quality criteria to examine the studies.
These criteria were reused from those proposed by Dybå and Dingsøyr (2008). Two research-

Approaches Studies
Reusing test
assets

S3, S10, S12, S13, S22, S32, S33, S40, S46, S47,
S54, S64, S67-S72, S76, S79, S80, S81, S90,
S94, S95, S96, S99, S102, S113

Providing a
specific level of
automation

S1, S3-S8, S11, S12, S14, S17, S18, S19, S21,
S23, S25, S26, S27, S32, S33, S37, S38, S41,
S42, S45, S46, S47, S49, S50, S51, S53, S54,
S55, S57, S59, S61, S62, S63, S64, S67, S68,
S69, S70, S72, S74, S75, S76, S77, S78, S82,
S83, S85, S86, S87, S89, S93-S104, S108, S109,
S110, S112, S113, S115

Handling the
selection of prod-
ucts to test

S4-S8, S14, S15, S18, S19, S21, S24, S25, S27,
S28, S29, S31, S32, S35, S37, S39, S41, S42,
S44, S45, S50, S51, S52, S53, S55, S56, S58,
S59, S60, S61, S65, S72, S73, S74, S75, S77,
S87, S97, S100, S101, S105, S115, S116, S117

Prioritizing
configurations/
test cases

S20, S26, S30, S34, S36, S39, S40, S42, S57,
S65, S78, S94, S96, S98, S100, S102, S103,
S107, S108, S109, S110

Minimizing test
suite

S3, S11, S16, S17, S23, S43, S48, S62, S84, S88,
S92, S94, S95, S104, S106, S110, S111, S112

Table 10  Distribution of primary
studies to answer RQ7

1 3

 146   Page 30 of 61

Empirical Software Engineering (2024) 29:146

ers participated in the application of quality assessment criteria. We also conducted regular
meetings to address and resolve any conflicts that arose during the process effectively.

5.2  Data validity

One of the main threats regarding data validity is data extraction bias. Subjective bias during
the data extraction process has the potential to lead to an inconsistent interpretation of the
extracted data by researchers. To mitigate this risk, two researchers collaborate during the
data extraction phase, conducting resolution sessions to address any emerging ambiguities.
Nevertheless, due to certain studies needing more explicit details on specific aspects of SPL
testing, such as test levels, we had to make subjective interpretations based on information
scattered throughout these studies.

Subjective bias may also lead to the misclassification of data in response to RQ3–RQ7.
Since no predefined categories were available, we adopted an exploratory approach, scru-
tinizing the extracted data and identifying pertinent categories. To mitigate this potential
issue, we introduced a structured data extraction form, conducted quality assessments on
the chosen studies, and maintained ongoing discussions to ensure consistency in the data
extraction process and category definitions. However, it is essential to acknowledge the
potential influence of researcher bias on data extraction and presentation within this study.

5.3  Research validity

Research validity encompasses threats identified at all stages of our SLR.
We extensively searched secondary studies, as detailed in Sect. 3.2. This approach

enabled us to identify research gaps, consider the scope and definition of RQs, and gain
insights into the current state-of-the-art within the domain of SPL testing.

In our exploration of potential threats to the repeatability of this SLR, we acknowledge
the complexity inherent in replicating research. Specifically, we highlight the concern that
other researchers may not repeat the SLR with precisely the same results. To mitigate this
threat, we provided the details of the SLR methodology so that other researchers can rep-
licate the study; furthermore, we have made all the data collected during the SLR process
available online. However, as subjectivity in the studies analysis is one major issue in con-
ducting a literature review, we cannot guarantee that researchers can achieve exactly the
same results.

One serious threat to the validity of the SLR is the inability to generalize the study’s
results to other scenarios and application domains. We included only the studies empirically
evaluated in our analysis to handle this threat. However, as most evaluations do not refer to
real-world practice, the results and classifications presented in this study may not fully apply
to practical settings. Moreover, our SLR intentionally focused exclusively on SPLs. This
deliberate choice was made to answer specific questions tailored for SPL testing. While this
focus enhances the depth of our insights into SPL testing practices, it inevitably limits the
applicability of our findings to the broader context of configurable systems. The decision not
to include configurable systems was strategic, considering the extensive body of literature
on configurable system testing, which would have required substantial additional time and
effort for comprehensive analysis.

1 3

Page 31 of 61  146

Empirical Software Engineering (2024) 29:146

6  Discussion

In this study, we presented a systematic review of testing approaches proposed in the SPLE
field. We have investigated seven RQs:

	● RQ1: How is the research on SPL testing characterized?

The analysis indicates that the SPL testing field has attracted significant attention from
researchers in recent years, with an increase in empirically evaluated studies. Although
the overall number of publications has grown, recent years have seen a decline. Most
primary studies are published in conferences, with case studies, experiments, and expert
surveys being the common evaluation methods. However, the strength of evidence sup-
porting the proposed approaches varies, with academic studies (60%) being the most
common, followed by demonstrations (17%). Only a small number of studies involve
industrial systems or real data sets (16%) or industrial practice (13%), indicating an
overall low level of evidence in the field.

	● RQ2. What levels of tests are usually executed throughout the SPL lifecycle (i.e.,
Domain Engineering and Application Engineering)?

In Domain Engineering, testing activities include developing test assets for later use and
testing assets to detect faults early. In Application Engineering, activities involve creat-
ing specific product test assets, designing additional product-specific tests, and execut-
ing tests. Some studies focus on reducing the number of products tested or prioritizing
products to enhance testing efficiency. The distribution of studies based on test levels
shows that in Application Engineering, integration testing and system/acceptance test-
ing are the most commonly reported levels. In contrast, unit testing is less frequently
reported in both phases. This indicates a strong focus on higher levels of testing in the
SPL testing field, particularly in the Application Engineering phase.

	● RQ3. How are test assets created by considering commonalities and variabilities?

Creating test assets to address commonality and variability in SPL testing is cru-
cial for enhancing reusability and minimizing faults in core assets. Our analysis cat-
egorized these approaches into three groups: model-based, specification-based, and
requirement-based.
Model-based approaches utilize formal or semi-formal models of SPL variability to
design and execute tests. Specification-based approaches define specific links between
different SPL configurations and test cases. Requirement-based approaches prioritize
considering variability early in test case design. The distribution of studies across these
categories indicates that model-based techniques are the most commonly used in the
examined studies.

	● RQ4. How do SPL approaches deal with configuration-aware software testing?

1 3

 146   Page 32 of 61

Empirical Software Engineering (2024) 29:146

Dealing with configuration-aware software testing, particularly in distinguishing valid
and invalid combinations of configuration parameters, is crucial in SPL approaches.
Testing all possible combinations of SPL functionalities is not only impractical but also
unnecessary. The studies have employed three main methods to distinguish between
valid and invalid configurations: Using/proposing specific approaches, algorithms, or
tools, runtime analysis, and manual analysis. The distribution of studies across these
methods indicates that the majority of the studies have either proposed specific methods
or algorithms or have utilized already available tools.

	● RQ5. How is the traceability between test assets and other artifacts of SPL pre-
served throughout the SPL lifecycle?

Preservation of traceability between test assets and other artifacts is a crucial factor in
SPL testing as it enhances the reusability of test assets and manages the complexity of
SPL testing. However, only a few papers consider preserving traceability throughout
the SPL lifecycle. The papers are categorized based on the types of artifacts associated
with test assets, focusing on preserving traceability between requirements and test assets
as well as between configurations and test assets. The distribution of primary studies
addressing this aspect highlights that most of the studies focus on preserving traceability
between requirements and test assets.

	● RQ6. How are Non-Functional Requirements (NFRs) tested in SPL?

Testing NFRs in SPLs has been rarely examined by researchers, with only three studies
addressing this aspect. These studies cover various categories of NFRs, such as load
testing, performance profiling, NFRs at the hardware-in-the-loop level, and real-time
properties.

	● RQ7. What mechanisms have been used for controlling cost/effort of SPL testing?

Various techniques have been proposed to manage the cost and effort associated with
SPL testing. However, the lack of a standardized classification for these techniques has
made their analysis challenging. Notably, research on product sampling techniques has
been extensively categorized into sub-techniques such as automatic selection, semi-
automatic selection, and coverage. Beyond sampling techniques, other approaches have
emerged, categorized based on their primary contributions, including reusing test assets,
providing different levels of automation, handling product selection for testing, priori-
tizing configurations/test cases, and minimizing the test suite size.
These techniques are often combinable, as seen in the use of test prioritization and mini-
mization techniques alongside sampling techniques to optimize testing cost and effort
further. Moreover, the list of techniques continues to evolve with new publications on
SPL testing. The distribution of studies reveals that the majority focus on proposing a
specific level of automation (∼ 62%). However, many studies lack details on the specific
tools used for this purpose. The second most researched category involves handling the
selection of products to test (∼ 39%). Additionally, techniques related to reusing test

1 3

Page 33 of 61  146

Empirical Software Engineering (2024) 29:146

assets (∼ 25%), prioritizing configurations/test cases (∼ 18%), and minimizing test suite
size (∼ 15%) are also explored.

We only included studies empirically evaluated in our analysis. In this discussion, we
emphasize the maturity of evaluations conducted in these studies, highlight the contribu-
tions of the studies in addressing the research questions, present the main findings, and
propose research directions to address identified gaps. It is important to note that our SLR
intentionally focused exclusively on SPLs. We deliberately excluded the broader context of
configurable systems from our analysis to have a clear focus for our article. Therefore, all
the findings and research gaps reported in this section are based on our analysis within the
SPL testing area. We acknowledge that this might lead to missing synergies with contribu-
tions from the broader field of configurable systems. Still, we hope this SLR can be the basis
for exploring these aspects in future work.

6.1  Overview of evaluation maturity and studies’ contributions

Proposed approaches have been evaluated using three types of evaluation methods, including
case studies, experiments, and expert surveys. However, there is variation in the scope and
type of SPLs employed in these evaluations. Different types of SPLs have been employed in
the evaluations, representing diverse application domains, such as embedded systems (e.g.,
automotive and medical systems), web-based systems, banking systems, and smartphone
and vendor machine SPLs. We categorized the scope of applications employed in the evalu-
ations into three main groups: Industrial systems with real data sets, SPLs sourced from
online repositories (e.g., SPLOT repository) or extracted from existing sources, and the
development of a demonstrator. It is important to note that some studies utilized more than
one category of applications, for instance, both industrial SPLs and SPLs available online.
Approximately 60% of the studies (71 studies) conducted evaluations using SPLs available
online or derived from prior research. Around 17% (20 studies) involved the development
of a demonstrator for assessing the proposed approach. Only 29% (34 studies) utilized an
industrial-scale SPL (Industrial study or Industrial practice) for evaluating their approach.
This issue may jeopardize the adoption of the proposed approaches in industry; therefore,
proposed approaches for SPL testing need to improve from their evaluation perspective.

Discussing threats to validity is crucial in research since it helps researchers and read-
ers understand the limitations and potential challenges associated with the study. However,
an analysis of the included studies reveals that only 32 primary studies (∼ 27%) exten-
sively discussed threats to validity. In approximately 42 studies (∼ 36%), the examination
of threats to validity was brief. Notably, 44 studies (∼ 37%) entirely neglected to address
this crucial aspect.

Another aspect that is worth analyzing is the distribution of the studies based on their
contribution to the research questions. Figure 3 represents the frequencies of studies accord-
ing to the research questions addressed by them. It should be mentioned that some studies
covered more than one topic; therefore, the total amount shown in Fig. 3 exceeds the total
number of studies selected for final analysis. As seen in Fig. 3, most studies address the
questions RQ7 (Controlling cost/effort of SPL testing) and RQ2 (Test levels in SPL test-
ing). Moreover, there is notable research interest in the area of configuration-aware testing
(RQ4), followed by a substantial focus on variability-aware creation of test assets (RQ3).
However, some aspects of SPL testing have rarely been considered and, therefore, need

1 3

 146   Page 34 of 61

Empirical Software Engineering (2024) 29:146

new solutions, including RQ5 (Traceability between test assets and other artifacts) and RQ6
(Non-functional testing).

6.2  Main findings

We analyzed the data based on the content structuring/theme analysis approach of Mayring
(2014). Initially, the data extracted from the extraction form provided us with a list of key
challenges and sub-themes. In the next step, we inductively created categories within the
themes to summarize them (analytical themes). The results of this analysis are shown in
Table 11. In the rest of this section, we present various gaps and concerns that necessitate
further exploration and attention from both researchers and practitioners:

	● Variability management: Effective variability management in SPLs is crucial, yet it
introduces complexities that can pose challenges to testing (Sect. 4.3). One facet that
needs further exploration is the challenges associated with variability control. It de-
mands a more in-depth investigation to identify and analyze challenges arising from
the diverse features and configurations inherent in SPLs. These challenges encompass
the complexities introduced by numerous potential combinations and the possibility of
unforeseen interactions among variable elements. While this aspect has been previously
examined, the key concern lies in the applicability of the proposed solutions and ap-
proaches in real-world scenarios. For example, one of the most investigated solutions
involves selecting a subset of products for testing. However, the potential for unseen
interactions between features in new products to result in faults raises doubts. Further-
more, many of the proposed approaches have only been evaluated at a proof-of-concept
level, necessitating a more in-depth investigation into their suitability for industrial SPL

Fig. 3  Distribution of studies by the contribution to the research questions

1 3

Page 35 of 61  146

Empirical Software Engineering (2024) 29:146

applications.

Another crucial aspect involves examining variability modeling. This includes an
analysis of the current state of variability modeling in SPL testing and an exploration
of opportunities to enhance modeling techniques to address testing challenges. While
model-based approaches, commonly used to create variant-rich test assets, have shown

Key Challenges Sub-themes/
challenges
(Descriptive
themes)

Analytical themes (Insights)

Testing types Non-functional
testing

– Diverse nature of non-func-
tional requirements (e.g., S70)
– Impact on testing strategies
(e.g., S79)
– Resource intensiveness (e.g.,
S79)
– Integration with functional
testing (e.g., S46)

Regression
testing

– Impact of SPL evolution on re-
gression testing (e.g., S10, S78)
– Efficiency gains through
automated regression testing
(e.g., S23)
– Traceability challenges in
regression testing (e.g., S23)
– Selective regression testing
strategies (e.g., S10, S13, S78)

Tool support
and empirical
evaluations

Tool support – Effectiveness and efficiency of
SPL testing tools
– Adaptability to evolving SPL
configurations (e.g., S3)
– User experience and usability
of testing tools

Industrial
evaluations

– Industrial evaluations for the
proposed approaches
– Providing guidance for
industry-specific SPL testing

SPL lifecycle
and testing

Test levels
throughout
SPL lifecycle

– Integration of test levels across
SPL phases (S20)
– Impact of product line vari-
abilities on test levels (S1, S23)
– Adaptation of test Levels to
changing requirements (e.g.,
S1, S10)

Preserving
traceability

– Challenges in traceability
across configurations in SPL
testing (e.g., S69)
– Automated traceability tools in
SPL testing (e.g., S1)

Variability
management

– Variability control challenges
(e.g., S74)
– Modeling variability for test-
ing (e.g., S71)
– Improving model-based ap-
proaches (e.g., S1, S74)

Table 11  The results of the
analysis based on qualitative
content analysis

1 3

 146   Page 36 of 61

Empirical Software Engineering (2024) 29:146

promise in SPL testing, there is still room for improvement in automating the genera-
tion of test cases and ensuring comprehensive coverage based on variability models.
Utilizing model-based approaches can automate the process of transforming high-level
test assets (e.g., test scenarios) and generating low-level test assets (e.g., test cases and
test data).

	● Non-functional testing: Despite the fact that functional testing of SPLs has been exten-
sively investigated, non-functional testing aspects need greater focus and specific meth-
odologies (Sect. 4.6). This particular gap has already been acknowledged in previous
literature reviews. Non-functional requirements encompass diverse dimensions, includ-
ing but not limited to performance, security, usability, and scalability. While some stud-
ies have explored aspects such as real-time behaviors and performance, there remains a
need for further research to comprehensively address diverse facets within this domain.
Moreover, the inherent nature of non-functional requirements significantly shapes test-
ing strategies. Considering their distinct characteristics and evaluation criteria, it is cru-
cial to investigate how distinct testing approaches are essential for various aspects like
performance testing, security testing, and usability testing.

Non-functional testing, particularly in critical areas such as performance and secu-
rity, poses challenges due to its resource-intensive nature. Investigating the challenges
associated with acquiring and allocating resources for thorough non-functional testing
throughout the SPL lifecycle is crucial for effective quality assurance.
The complexities of seamlessly integrating non-functional testing with functional test-
ing necessitate further exploration. Examining how the interplay between these two test-
ing dimensions influences the overall quality assurance process will contribute valuable
insights to the field.

	● Tool support: Given the substantial testing effort required for SPLs, the availability
of tools specifically designed for SPL testing is crucial (Sect. 4.7). The analysis of the
studies with respect to automation provided by the tools indicates that most of the tool
implementations are proof-of-concept prototypes developed for validating the proposed
approach. Therefore, developing more robust and user-friendly tools can significantly
help practitioners in their testing efforts. This particular challenge has previously been
discussed in prior literature reviews.

Some specific areas need further exploration. Evaluating the effectiveness and efficiency
of existing SPL testing tools explores capabilities, limitations, and areas for improve-
ment in tools designed for various testing activities within the SPL lifecycle. Analyzing
how well testing tools adapt to changes in SPL configurations includes investigating
their ability to accommodate evolving feature sets, configurations, and architectural
variations, ensuring continued effectiveness. Assessing the user experience and usabil-
ity of SPL testing tools explores how user-friendly and accessible tools are for practi-
tioners involved in SPL testing, considering factors such as ease of use, learning curve,
and user satisfaction.

	● Regression testing: Effectively handling regression testing in SPLs, where modifica-

1 3

Page 37 of 61  146

Empirical Software Engineering (2024) 29:146

tions to one product can affect others, presents an intricate challenge (Sect. 4.7). Regres-
sion test selection/prioritization/minimization and architecture-based regression testing
are potential points for future research. Test case selection is focused on choosing a
set of relevant test cases to test the modified version of the system, and the aim of test
minimization is to remove the redundant/irrelevant test cases from the existing test suit.
Test case prioritization aims at ordering and ranking test cases based on specific criteria
such as importance and likelihood of failure. All these techniques aim to reduce the
cost/effort of SPL testing after applying any change to products or the SPL architecture.

An important aspect is analyzing how changes and evolutions in the SPL architecture
impact regression testing strategies. This investigation includes understanding the chal-
lenges of maintaining test suites across evolving SPL configurations and the need for
adaptive regression testing approaches.
Additionally, exploring the benefits and challenges of implementing automated regres-
sion testing within the SPL context is crucial. This requires an analysis of efficiency
gains, potential pitfalls, and strategies to optimize the effectiveness of automated regres-
sion testing in SPL scenarios.
Moreover, investigating challenges related to maintaining traceability between evolving
codebase versions and regression test suites is critical. This requires exploring strategies
to preserve traceability links, ensuring that regression testing aligns with the dynamic
nature of SPL development.

	● Industrial evaluations: Encouraging the adoption of SPL testing practices in indus-
trial settings requires addressing practical challenges (Sect. 3.3 and 4.1). This includes
offering guidance tailored for industry-specific SPL testing and conducting industrial
evaluations.

To enhance the industry adoption of SPL approaches, offering practical insights and rec-
ommendations is essential. This involves providing tailored guidance to help organiza-
tions navigate the unique challenges and requirements of adopting SPL testing methods
in their specific industry domains. Additionally, there is a need to move beyond proof-
of-concept evaluations and conduct practical assessments to verify the feasibility, scal-
ability, and effectiveness of proposed SPL testing methods in diverse industrial contexts.

	● Test levels throughout the SPL lifecycle: Exploring the details of a test level through-
out the SPL lifecycle and illustrating the challenges associated with neglecting a par-
ticular test level would provide valuable insights for practitioners (Sect. 4.2). Two lev-
els of tests are commonly executed throughout Domain Engineering: Unit testing and
Integration testing. Although testing common core assets of an SPL is vital to detect
faults as soon as possible, a few studies have considered the execution of tests in domain
engineering. Therefore, it would be useful to conduct further investigations regarding
how to execute a specific level of test in Domain Engineering and the consequences of
not performing it. In Application Engineering, three levels of tests are usually executed:
Unit testing, Integration testing, and System/acceptance testing. The two last levels have
been investigated in most of the studies. It is worth mentioning that Unit testing has
been investigated as a level of test in Application Engineering in a few studies published

1 3

 146   Page 38 of 61

Empirical Software Engineering (2024) 29:146

in recent years. In contrast, previous literature reviews have not reported this level of
test in Application Engineering (e.g., Pérez et al. 2009). This indicates no consensus on
the test levels executed during Domain Engineering and Application Engineering.

Another aspect that needs further exploration involves examining the influence of vari-
abilities inherent in SPLs on different test levels. This requires understanding how the
presence of variable features across products affects test activities, including planning,
design, and execution at each testing level. Additionally, there is a need to investigate
how test levels adapt to requirements and feature set changes throughout the SPL life-
cycle. This requires exploring the challenges and opportunities associated with main-
taining effective testing strategies in response to the dynamic nature of evolving product
configurations.

	● Preserving the traceability between test assets and development artifacts: Preserv-
ing traceability between test assets and development artifacts in SPLs is particularly
challenging due to the complex relationships between product variants and the shared
assets (Sect. 4.5). Studies that target testing SPLs (very) rarely consider traceability
explicitly. Examining the challenges associated with preserving traceability is crucial,
especially when dealing with evolving product configurations within the SPL testing en-
vironment. While researchers have proposed certain methods, such as Reis et al. (2007)
which preserved the traceability between requirements and test case scenarios using
UML models and by refining use case scenarios into test case scenarios, Reuys et al.
(2006) enabled traceability between artifacts, there remains a necessity to investigate
more efficient approaches for modeling and representing traceability relationships, con-
sidering feature variability and configuration management. Furthermore, exploring the
creation of automated tools and techniques for establishing and consistently updating
traceability links in response to the evolving nature of SPLs presents an engaging area
for future research.

To compare findings with previous SLRs, Table 12 presents a summary of the findings from
both the current study and prior literature reviews (Pérez et al. 2009; Engström and Runeson
2011; Da Mota Silveira Neto et al. 2011; do Carmo Machado et al. 2014).

7  Related work

This research aims to provide researchers and practitioners with an overview of state-of-the-
art testing practices applied to SPL and identify the gaps between required techniques and
existing approaches. Accordingly, we conducted an SLR to analyze existing approaches to
SPL testing. Therefore, SLRs and SMSs on SPL testing can be considered as works related
to this research. To the best of our knowledge, four papers have systematically analyzed
approaches focused on SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da
Mota Silveira Neto et al. 2011; do Carmo Machado et al. 2014).

Pérez et al. (2009) conducted an SLR to identify experience reports and initiatives car-
ried out in the SPL testing area. In this work, primary studies were classified into seven
categories: Unit testing, Integration testing, functional testing, SPL Architecture testing,

1 3

Page 39 of 61  146

Empirical Software Engineering (2024) 29:146

Embedded system testing, testing process and testing effort in SPL. Then, they presented a
summary of each area. The similarity of this SLR to our work is testing levels investigated
in both works; however, our work is broader in scope than this SLR since we investigated
more aspects of SPL testing.

Engström and Runeson (2011) conducted an SMS by analyzing papers published up
to 2008. The authors mapped studies into seven categories based on their research focus:
Test organization and process, Test management, Testability, System and acceptance testing,
Integration testing, Unit testing, and Test automation. They also identified challenges in SPL
testing and needs for future research. This SMS has similarities with our work regarding

Table 12  Comparison of findings between current study and prior literature reviews
Findings Current Study Previous LRs
Non-function-
al testing

Emphasizes the need for greater focus and specific
methodologies in addressing non-functional testing
aspects in SPLs. Highlights diverse dimensions such
as performance, security, usability, and scalability,
with challenges in resource allocation and integration
with functional testing

Emphasized the need to explore
various non-functional require-
ments and the trade-offs between
quality attributes like modularity
and testability. However, they did
not discuss challenges related to
resource allocation and the in-
tegration of non-functional with
functional testing

Regression
testing

Identifies challenges such as the impact of SPL evolu-
tion on regression testing, efficiency gains through
automated regression testing, traceability challenges
in regression testing, and selective regression testing
strategies

Challenges related to integration
testing were not reported in detail

Tool support Emphasizes the critical importance of tool support
for SPL testing, highlighting the need for more robust
and user-friendly tools. Specific areas for further
exploration include evaluating tool effectiveness and
efficiency, adaptability to changes in SPL configura-
tions, and user experience/usability

Underscored the importance
of tool support for SPL testing,
without detailed exploration of
specific challenges and recom-
mendations for improvement

Industrial
evaluations

Emphasizes the need for industrial evaluations of pro-
posed approaches and guidance for industry-specific
SPL testing

Acknowledged similar challenges

Test levels
throughout
SPL lifecycle

Identifies challenges related to integrating test levels
across SPL phases, the impact of product line vari-
abilities on test levels, and the adaptation of test levels
to changing requirements

Identified the challenge of not
examining the effects of not
performing a test level in SPL
testing. The current study,
however, provides more detailed
insights into specific challenges
associated with test levels

Preserving
traceability

Underscores the difficulties in maintaining traceability
between test assets and development artifacts within
SPLs due to complex relationships and the oversight
of traceability in SPL testing. It stresses the necessity
for improved methodologies and automated tools to
establish and maintain traceability links effectively

Highlighted also the difficul-
ties of maintaining consistency
between models and test code
artifacts as systems evolve,
stressing the significance of
updating traceability links

Variability
management

Highlights the challenges associated with variabil-
ity control in SPLs, emphasizing the complexities
introduced by numerous potential combinations and
the possibility of unforeseen interactions among
variable elements. Identifies a need for more efficient
approaches and automated tools for managing vari-
ability throughout the SPL lifecycle

Identified similar challenges
related to variability control, such
as handling test design at differ-
ent levels of abstraction. Empha-
sized also the need for automated
tools to manage the maintenance
effort of variable test assets

1 3

 146   Page 40 of 61

Empirical Software Engineering (2024) 29:146

specific SPL aspects investigated, including testing levels and test automation. However, the
research questions designed by Engström and Runeson (2011) are more general, focusing
on specifying challenges and topics investigated in SPL testing.

Da Mota Silveira Neto et al. (2011) conducted an SMS to investigate state-of-the-art test-
ing practices by analyzing a set of 45 publications dated from 1993 to 2009. Primary studies
are mapped into nine categories: Testing strategy, Static and dynamic analysis, Testing lev-
els, Regression testing, Non-functional testing, Commonality and variability testing, Vari-
ant binding time, Effort reduction, and Test measurement. Some of the research questions
designed by Da Mota Silveira Neto et al. (2011) are similar to the ones investigated in our
work (e.g., testing SPLs while considering commonalities and variabilities). However, our
work is broader in scope since we analyzed 110 papers published up to 2022. Furthermore,
we only included empirically evaluated studies in our review.

do Carmo Machado et al. (2014) conducted an SLR by analyzing 49 studies published
up to 2013; this SLR aimed to identify testing strategies that could achieve higher defect
detection rates and reduced quality assurance effort. Identifying strategies to handle the
selection of products to test has been investigated in both (do Carmo Machado et al. 2014)
and our work. Furthermore, similar to our work, the initial set of primary studies in study
(do Carmo Machado et al. 2014) has been identified by investigating previously conducted
SLRs or SMSs, published up to the year 2009; also, the authors of this SLR only included
empirically evaluated studies. However, our work investigates more aspects of SPL testing
(e.g., preserving traceability between test assets and other artifacts) and analyzes more stud-
ies (110 papers).

Literature reviews also specifically focused on analyzing one aspect of SPL testing. As an
example, Lopez-Herrejon et al. (2015) conducted an SMS to identify techniques that have
been applied for combinatorial interaction testing of SPLs. However, our work is broader in
scope since we did not limit the studies to a specific technique.

In general, the previous literature reviews and our work complement each other regard-
ing the research questions addressed. Some aspects of SPL testing have not been considered
in detail in previous reviews: techniques used for preserving traceability between test arti-
facts and other artifacts, techniques employed for identifying valid and invalid configura-
tions, and different ways to control cost/effort of SPL testing were not covered in an extent
that makes it possible to identify the current status of research and practice from the per-
spective of those aspects.

8  Conclusions and future work

The goal of SPLE is to improve the effectiveness and efficiency of software development
by managing commonalities and variabilities among products. Testing is an essential part
of SPLE to achieve the benefits of an SPL. It is focused on detecting potential faults in
core assets created during Domain Engineering and products created during Application
Engineering by reusing core assets. This paper presents the results of a systematic literature
review of testing in SPLE. The SLR aimed to investigate specific aspects of SPL testing that
were formulated as seven research questions, identify gaps, and address specific points of
SPLE that still need to be fully addressed.

1 3

Page 41 of 61  146

Empirical Software Engineering (2024) 29:146

The analysis that we conducted based on 118 studies from 2003 to 2022 has uncovered
a range of issues and considerations that researchers and practitioners can work on. It is
shown that managing variability in SPL testing is vital but can complicate the testing pro-
cess. Model-based methods show promise in generating test assets, but there is room for
improvement in automating test case creation and ensuring comprehensive coverage. Non-
functional testing aspects like performance, security, and usability require more attention
and specific methodologies. Having the right tools is important, but most tool implementa-
tions are still in the proof-of-concept stage. Regression testing poses a complex challenge,
and future research should concentrate on areas like regression test selection, prioritization,
minimization, and architecture-based regression testing. Establishing benchmark datasets
and standard evaluation criteria for SPL testing methods would simplify comparing and
adopting various techniques.

Exploring test levels throughout the SPL lifecycle and illustrating the challenges of
neglecting a particular test level would offer valuable insights. Additionally, studies focus-
ing on testing SPLs need to address traceability explicitly. Maintaining traceability between
test assets and development artifacts is especially difficult due to the intricate relationships
between product variants and shared assets, which requires effective approaches. It is also
worth mentioning that, throughout selecting studies for final analysis, we included only
the studies empirically evaluated. By analyzing the evaluation conducted in the studies,
we noticed that most of the studies were assessed by applying only one empirical method.
Furthermore, most of the assessments undertaken do not refer to real-world practice. This
indicates the need to evaluate SPL testing approaches not in academia but in industry.

Based on the findings of this SLR, further research in the SPL testing field can be
expended on specific areas we identified throughout this research as the potential points for
future research (e.g., SPL regression testing). Furthermore, empirical assessment of exist-
ing techniques for the investigated aspects (e.g., selection of products to test or creating
reusable test assets) to compare those techniques would be helpful for both researchers and
practitioners, mainly if those techniques are applied to real-world and large-scale scenarios.
Furthermore, this research can be strengthened by examining studies published in the field
of testing configurable systems. Such analysis can investigate how techniques from this
broader domain might be applied to SPL testing to address existing deficiencies in this area.

Appendix A

Table 13  Search strings and results
Engine Search String Results
IEEE Xplore (“All Metadata”:“software product line” OR “All Metadata”:“software

product lines” OR “All Metadata”:“software product family” OR “All
Metadata”:“software product families""”) AND (“All Metadata”:“test” OR “All
Metadata”:“testing”)
Filters Applied:
2013–2022

173

1 3

 146   Page 42 of 61

Empirical Software Engineering (2024) 29:146

Table 13  Search strings and results
Engine Search String Results
Scopus TITLE-ABS-KEY (("Software Product Line" OR "Software Prod-

uct Family" OR "Software Product Lines" OR "Software Product
Families") AND (“Test” OR “Testing”)) AND (LIMIT-TO (DOC-
TYPE , “cp”) OR LIMIT-TO (DOCTYPE , “ar”)) AND (LIM-
IT-TO (SUBJAREA , “COMP”)) AND (LIMIT-TO (LAN-
GUAGE , “English”)) AND (LIMIT-TO (PUBYEAR , 2022) OR
LIMIT-TO (PUBYEAR , 2021) OR LIMIT-TO (PUBYEAR , 2020) OR
LIMIT-TO (PUBYEAR , 2019) OR LIMIT-TO (PUBYEAR , 2018) OR
LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR
LIMIT-TO (PUBYEAR , 2015) OR LIMIT-TO (PUBYEAR , 2014) OR
LIMIT-TO (PUBYEAR , 2013))

333

ACM DL [[Full Text: “software product line”] AND [Full Text: “test”]] OR [[Full
Text: “software product lines”] AND [Full Text: “test”]] OR [[Full Text:
“software product family”] AND [Full Text: “test”]] OR [[Full Text: “soft-
ware product line”] AND [Full Text: “testing”]] OR [[Full Text: “software
product lines”] AND [Full Text: “testing”]] OR [[Full Text: “software
product family”] AND [Full Text: “testing”]] AND [Publication Date:
(01/01/2013 TO 31/12/2022)]

866

Springer ‘(“Software Product Line” OR “Software Product Famil*)”AND (Test*)’
within English, Computer Science, 2013–2022

1016

Wiley online
library

“(“software product line” OR “software product lines” OR “software product
family” OR “software product families”) AND (test OR testing)” anywhere

220

Appendix B

Table 14  Quality assessment criteria (Dybå and Dingsøyr 2008)
No Question Issue
1 Is this a research paper? Reporting
2 Is there a clear statement of the aims of the research? Reporting
3 Is there an adequate description of the context in which the proposed approach has been

applied?
Reporting

4 Was the research design appropriate to address the aims of the research? Rigor
5 Was there a control group with which to compare the treatments? Rigor
6 Was the data collected in a way that addressed the research issue? Rigor
7 Was the data analysis sufficiently rigorous? Rigor
8 Has the relationship between researcher and participants been considered to an ad-

equate degree?
Credibility

9 Is there a clear statement of findings? Credibility
10 Is the study of value for research or practice? Relevance
11 Are there any practitioner-based guidelines? Relevance

1 3

Page 43 of 61  146

Empirical Software Engineering (2024) 29:146

Appendix C

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S1] System testing of product lines: From requirements

to test cases
(Nebut et al.
2006)

Book Chapter: Soft-
ware Product Lines

[S2] Integration testing in software product line engineer-
ing: A model-based technique

(Reis et al. 2007) FASE

[S3] Testing software assets of framework-based product
families during application engineering stage

(Al-Dallal and
Sorenson 2008)

J Softw

[S4] PACOGEN: Automatic generation of pairwise test
configurations from feature models

(Hervieu et al.
2011)

ISSRE

[S5] Properties of realistic feature models make combina-
torial testing of product lines feasible

(Johansen et al.
2011)

MODELS

[S6] Reducing combinatorics in testing product lines (Kim et al. 2011) AOSD
[S7] Automated incremental pairwise testing of software

product lines
(Oster et al.
2010)

SPLC

[S8] Automated and scalable t-wise test case generation
strategies for software product lines

(Perrouin et al.
2010)

ICST

[S9] Integration testing of software product lines using
compositional symbolic execution

(Shi et al. 2012) FASE

[S10] A regression testing approach for software product
lines architectures

(Neto et al. 2010) SBCARS

[S11] Avoiding redundant testing in application
engineering

(Stricker et al.
2010)

SPLC

[S12] Incremental test generation for software product
lines

(Uzuncaova et al.
2010)

IEEE Trans Softw
Eng

[S13] Continuous test suite augmentation in software
product lines

(Xu et al. 2013) SPLC

[S14] Evolutionary search-based test generation for soft-
ware product line feature models

(Ensan et al.
2012)

CAiSE

[S15] Multi-objective test generation for software product
lines

(Henard et al.
2013)

SPLC

[S16] Shared execution for efficiently testing product lines (Kim et al. 2012) ISSRE
[S17] SPLat: Lightweight dynamic analysis for reducing

combinatorics in testing configurable systems
(Kim et al. 2013) ESEC/FSE

[S18] A variability-based testing approach for synthesizing
video sequences

(Galindo et al.
2014)

ISSTA

[S19] Fault-based product-line testing: Effective sample
generation based on feature-diagram mutation

(Reuling et al.
2015)

SPLC

[S20] Test control algorithms for the validation of cyber-
physical systems product lines

(Arrieta et al.
2015)

SPLC

[S21] Recommending faulty configurations for interacting
systems under test using multi-objective search

(Safdar et al.
2021)

ACM Trans Softw
Eng Methodol

[S22] Reducing the concretization effort in FSM-based
testing of software product lines

(Fragal et al.
2017)

ICSTW

[S23] Automated code-based test selection for software
product line regression testing

(Jung et al. 2019) J Syst Softw

[S24] Supporting software product line testing by optimiz-
ing code configuration coverage

(Vidács et al.
2015)

ICSTW

[S25] Combinatorial test generation for software product
lines using minimum invalid tuples

(Yu et al. 2014) HASE

1 3

 146   Page 44 of 61

Empirical Software Engineering (2024) 29:146

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S26] A comparison of test case prioritization criteria for

software product lines
(Sánchez et al.
2014)

ICST

[S27] Product selection based on upper confidence bound
MOEA/D-DRA for testing software product lines

(do Nascimento
Ferreira et al.
2016)

CEC

[S28] Selecting products for high-strength t-wise testing of
software product line by multi-objective method

(Qian et al. 2018) PIC

[S29] Bypassing the combinatorial explosion: Using simi-
larity to generate and prioritize t-wise test configura-
tions for software product lines

(Henard et al.
2014a)

IEEE Trans Softw
Eng

[S30] Efficient product-line testing using cluster-based
product prioritization

(Al-Hajjaji et al.
2017a)

AST

[S31] Weighted rank ant colony metaheuristics optimi-
zation-based test suite reduction in combinatorial
testing for improving software quality

(Bharathi and
Sangeetha 2018)

ICICCS

[S32] Model-based test design of product lines: Raising
test design to the product line level

(Lackner et al.
2014)

ICST

[S33] Extending HSI test generation method for software
product lines

(Fragal et al.
2019)

Comput J

[S34] A prioritization method for SPL pairwise testing
based on user profiles

(Akimoto et al.
2019)

APSEC

[S35] Balancing soundness and efficiency for practical
testing of configurable systems

(Souto et al.
2017)

ICSE

[S36] Delta-oriented product prioritization for similarity-
based product-line testing

(Al-Hajjaji et al.
2017b)

VACE

[S37] Incorporating user preferences in a software product
line testing hyper-heuristic approach

(Jakubovski
Filho et al. 2018)

CEC

[S38] FORMAT: A tool for adapting test models based on
feature models

(Ergun et al.
2017)

COMPSAC

[S39] CMSA algorithm for solving the prioritized pairwise
test data generation problem in software product
lines

(Ferrer et al.
2021)

J Heuristics

[S40] Learning-based prioritization of test cases in con-
tinuous integration of highly-configurable software

(Lima et al.
2020)

SPLC

[S41] YASA: Yet another sampling algorithm (Krieter et al.
2020)

VaMoS

[S42] Many-objective test suite generation for software
product lines

(Hierons et al.
2020)

ACM Trans Softw
Eng Methodol

[S43] Derivation of test cases for model-based testing of
software product line with hybrid heuristic approach

(Aduni Sulaiman
et al. 2019)

IRICT

[S44] Optimize SPL test cases with adaptive simulated
annealing genetic algorithm

(Yan et al. 2019) ACM TURC

[S45] Preference based multi-objective algorithms applied
to the variability testing of software product lines

(Jakubovski
Filho et al. 2019)

J Syst Softw

[S46] Minimum/maximum delay testing of product lines
with unbounded parametric real-time constraints

(Luthmann et al.
2019a)

J Syst Softw

[S47] Retest test selection for product-line regression test-
ing of variants and versions of variants

(Lity et al. 2019) J Syst Softw

[S48] A method for prioritizing integration testing in soft-
ware product lines based on feature model

(Akbari et al.
2017)

Int J Softw Eng
Knowl Eng

[S49] Generating test cases and procedures from use cases
in dynamic software product lines

(Araújo et al.
2017)

SAC

1 3

Page 45 of 61  146

Empirical Software Engineering (2024) 29:146

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S50] Deriving products for variability test of feature

models with a hyper-heuristic approach
(Strickler et al.
2016)

Appl Soft Comput

[S51] IncLing: Efficient product-line testing using incre-
mental pairwise sampling

(Al-Hajjaji et al.
2016)

ACM SIGPLAN
Not

[S52] Mutation-based generation of software product line
test configurations

(Henard et al.
2014b)

SSBSE

[S53] A parallel evolutionary algorithm for prioritized
pairwise testing of software product lines

(Lopez-Herrejon
et al. 2014)

GECCO

[S54] Facilitating reuse in multi-goal test-suite generation
for software product lines

(Bürdek et al.
2015)

FASE

[S55] Software product line test suite reduction with con-
straint optimization

(Carlsson et al.
2016)

ICSOFT

[S56] Hybrid algorithms based on integer programming
for the search of prioritized test data in software
product lines

(Ferrer et al.
2017)

EvoCOP

[S57] Effective product-line testing using similarity-based
product prioritization

(Al-Hajjaji et al.
2019)

Softw Syst Model

[S58] Using ant colony optimisation to select features hav-
ing associated costs

(Ibias et al. 2022) ICTSS

[S59] A multi-objective test data generation approach for
mutation testing of feature models

(Matnei et al.
2016)

J Softw Eng Res
Dev

[S60] Multi-objective test suite optimization for incremen-
tal product family testing

(Baller et al.
2014)

ICST

[S61] Practical minimization of pairwise-covering test
configurations using constraint programming

(Hervieu et al.
2016)

Inf Softw Technol

[S62] Efficient regression testing of software product lines
by reducing redundant test executions

(Jung et al. 2020) Appl Sci

[S63] Software product line testing based on feature model
mutation

(Ferreira et al.
2017a)

Int J Softw Eng
Knowl Eng

[S64] Automated product line test case selection: Indus-
trial case study and controlled experiment

(Wang et al.
2017)

Softw Syst Model

[S65] Optimizing the selection of representative configura-
tions in verification of evolving product lines of
distributed embedded systems

(Scheidemann
2006)

SPLC

[S66] Modeling variability and testability interaction in
software product line engineering

(Jaring et al.
2008)

ICCBSS

[S67] Automated requirements-based generation of test
cases for product families

(Nebut et al.
2003)

ASE

[S68] Model-based system testing of software product
families

(Reuys et al.
2005)

CAiSE

[S69] Specification based software product line testing: A
case study

(Mishra 2006) CS&P

[S70] A reuse technique for performance testing of soft-
ware product lines

(Reis et al. 2006) SPLiT

[S71] The scented method for testing software product
lines

(Reuys et al.
2006)

SPLC

[S72] Reusable model-based testing (Olimpiew and
Gomaa 2009)

ICSR

[S73] Improving the testing and testability of software
product lines

(Cabral et al.
2010)

SPLC

[S74] Model-based pairwise testing for feature interaction
coverage in software product line engineering

(Lochau et al.
2012a)

Softw Qual J

1 3

 146   Page 46 of 61

Empirical Software Engineering (2024) 29:146

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S75] Combinatorial testing for feature models using

CitLab
(Calvagna et al.
2013)

ICSTW

[S76] Incremental model-based testing of delta-oriented
software product lines

(Lochau et al.
2012b)

TAP

[S77] Practical pairwise testing for software product lines (Marijan et al.
2013)

SPLC

[S78] Risk-based compatibility analysis in automotive
systems engineering

(Pett et al. 2020) MODELS

[S79] Search-based test case selection of cyber-physical
system product lines for simulation-based validation

(Arrieta et al.
2016)

SPLC

[S80] Systematic software product line test case derivation
for test data reuse

(Kang et al.
2015)

COMPSAC

[S81] Featured event sequence graphs for model-based
incremental testing of software product lines

(Tuglular et al.
2019)

COMPSAC

[S82] Heterogeneous modeling and testing of software
product lines

(Belli et al. 2021) QRS-C

[S83] Behavior-driven development of software product
lines

(Tuglular and
Coşkun 2021)

DSA

[S84] Model-based software product line testing by cou-
pling feature models with hierarchical markov chain
usage models

(Gebizli and
Sözer 2016)

QRS-C

[S85] Model-based generation of test scripts across prod-
uct variants: An experience report from the railway
industry

(Bucaioni et al.
2022)

J. Softw. Evol. Pro-
cess

[S86] Executable test case generation from specifica-
tions written in natural language and test execution
environment

(Aoyama et al.
2021)

CCNC

[S87] Using combinatorial testing for distributed automo-
tive features: Applying combinatorial testing for
automated feature-interaction-testing

(Dominka et al.
2018)

CCWC

[S88] Reducing redundant test executions in software
product line testing—A case study

(Jung et al. 2022) Electronics

[S89] Design and implementation of a test automation
framework for configurable devices

(Soe et al. 2022) APIT

[S90] Applying product line testing for the electric drive
system

(Ebert et al.
2019)

SPLC

[S91] Combinatorial test design using design-time deci-
sions for variability

(Lee and Hwang
2019)

Int J Softw Eng
Knowl Eng

[S92] Test case selection using structural coverage in
software product lines for time-budget constrained
scenarios

(Markiegi et al.
2019)

SAC

[S93] Risk-based integration testing of software product
lines

(Lachmann et al.
2017)

VaMoS

[S94] Fine-grained test case prioritization for integration
testing of delta-oriented software product lines

(Lachmann et al.
2016)

FOSD

[S95] Input–output conformance testing for software
product lines

(Beohar and
Mousavi 2016)

J Log Algebr Meth-
ods Program

[S96] Delta-oriented test case prioritization for integration
testing of software product lines

(Lachmann et al.
2015)

SPLC

[S97] PROW: A pairwise algorithm with constraints, order
and weight

(Lamancha et al.
2015)

J Syst Softw

[S98] Multi-objective test prioritization in software prod-
uct line testing: An industrial case study

(Wang et al.
2014)

SPLC

1 3

Page 47 of 61  146

Empirical Software Engineering (2024) 29:146

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S99] Genetic algorithm-based test generation for software

product line with the integration of fault localization
techniques

(Li et al. 2018) Empir Softw Eng

[S100] Testing variability-intensive systems using auto-
mated analysis: An application to Android

(Galindo et al.
2016)

Softw Qual J

[S101] Sampling strategies for product lines with unbound-
ed parametric real-time constraints

(Luthmann et al.
2019b)

Int J Softw Tools
Technol Transf

[S102] Automating system test case classification and
prioritization for use case-driven testing in product
lines

(Hajri et al. 2020) Empir Softw Eng

[S103] Multi-objective test case prioritization in highly
configurable systems: A case study

(Parejo et al.
2016)

J Syst Softw

[S104] Cost-effective test suite minimization in product
lines using search techniques

(Wang et al.
2015)

J Syst Softw

[S105] Efficient and effective testing of automotive software
product lines

(Cmyrev and
Reissing 2014)

Appl Sci Eng Prog

[S106] Time-space efficient regression testing for configu-
rable systems

(Souto and
d’Amorim 2018)

J Syst Softw

[S107] Search-based product line fault detection allocating
test cases iteratively

(Markiegi et al.
2017)

SPLC

[S108] Search-based test case prioritization for simulation-
based testing of cyber-physical system product lines

(Arrieta et al.
2019)

J Syst Softw

[S109] Dissimilar test case selection for behavioural soft-
ware product line testing

(Devroey et al.
2017)

SPLC

[S110] Titan: Test suite optimization for highly configurable
software

(Marijan et al.
2017)

ICST

[S111] A semi-automated iterative process for detecting
feature interactions

(Rocha et al.
2020)

SBES

[S112] Combinatorial interaction testing with multi-per-
spective feature models

(Patel et al. 2013) ICSTW

[S113] Delta-oriented model-based integration testing of
large-scale systems

(Lochau et al.
2014)

J Syst Softw

[S114] Functional Testing of Conflict Detection and Diag-
nosis Tools in Feature Model Configuration: A Test
Suite Design

(Vidal Silva et al.
2020)

ConfWS

[S115] Generic Solution-Space Sampling for Multi-domain
Product Lines

(Hentze et al.
2022)

GPCE

[S116] Predicting higher order structural feature interac-
tions in variable systems

(Fischer et al.
2018)

ICSME

[S117] Search-based diverse sampling from real-world
software product lines

(Xiang et al.
2022)

ICSE

[S118] Software Product Line Testing—A Proposal of
Distance-Based Approach

(Saini et al. 2022) AISE

1 3

 146   Page 48 of 61

Empirical Software Engineering (2024) 29:146

Appendix D

Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S1 Yes
S2 Yes
S3 Yes
S4 Yes
S5 Yes
S6 Yes
S7 Yes
S8 Yes
S9 Yes
S10 Yes
S11 Yes
S12 Yes
S13 Yes
S14 Yes
S15 Yes
S16 Yes
S17 Yes Yes
S18 Yes
S19 Yes
S20 Yes
S21 Yes
S22 Yes
S23 Yes
S24 Yes
S25 Yes
S26 Yes
S27 Yes
S28 Yes
S29 Yes
S30 Yes
S31 Yes
S32 Yes
S33 Yes
S34 Yes
S35 Yes
S36 Yes
S37 Yes
S38 Yes
S39 Yes
S40 Yes
S41 Yes
S42 Yes
S43 Yes
S44 Yes

1 3

Page 49 of 61  146

Empirical Software Engineering (2024) 29:146

Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S45 Yes
S46 Yes
S47 Yes
S48 Yes
S49 Yes
S50 Yes
S51 Yes
S52 Yes
S53 Yes
S54 Yes
S55 Yes Yes
S56 Yes
S57 Yes
S58 Yes
S59 Yes
S60 Yes
S61 Yes Yes
S62 Yes
S63 Yes
S64 Yes Yes
S65 Yes
S66 Yes
S67 Yes
S68 Yes
S69 Yes
S70 Yes
S71 Yes
S72 Yes
S73 Yes
S74 Yes
S75 Yes
S76 Yes
S77 Yes
S78 Yes
S79 Yes
S80 Yes
S81 Yes
S82 Yes
S83 Yes
S84 Yes
S85 Yes
S86 Yes
S87 Yes
S88 Yes
S89 Yes
S90 Yes
S91 Yes

1 3

 146   Page 50 of 61

Empirical Software Engineering (2024) 29:146

Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S92 Yes
S93 Yes
S94 Yes
S95 Yes
S96 Yes
S97 Yes
S98 Yes Yes
S99 Yes
S100 Yes
S101 Yes
S102 Yes
S103 Yes
S104 Yes Yes
S105 Yes
S106 Yes
S107 Yes
S108 Yes Yes
S109 Yes
S110 Yes
S111 Yes
S112 Yes
S113 Yes
S114 Yes
S115 Yes
S116 Yes
S117 Yes
S118 Yes
Lev1: No evidence, Lev2: Toy examples, Lev3: Expert opinions, Lev4: Academic studies, Lev5: Industrial
studies, Lev6: Industrial practice

Appendix E

Table 17 shows the results of the evaluation based on the quality assessment criteria, described
in Table 14 in Appendix B. Regarding the issue Reporting (QA1-QA3 in Table 14), most of
the studies performed well; all the studies are based on research and almost 82% of them
have a clear statement of the aims of the research. However, the description of the context
is bad in some of the studies (∼ 30%); this compromises the validity of these studies since,
without enough information about the subjects of the study, it is usually difficult to specify
whether the selected case is suitable to evaluate different aspects of the proposed approach.

In terms of rigor (QA4-QA7), the studies performed, on average, fairly well. In 77 stud-
ies (∼ 62%), the researchers have justified the research design so that it can address the aims
of the research. In 71 studies (∼ 60%), the proposed approach has been compared with a
base approach; the researcher(s) has tried to justify that the selected controls are representa-
tive of a defined population. The way data collected is satisfactory in 85 studies (∼ 72%)
since the researchers have clearly defined the measure(s) selected and justified their selec-

1 3

Page 51 of 61  146

Empirical Software Engineering (2024) 29:146

tion. Furthermore, the data has been analyzed rigorously in 80 studies (68%) by providing
sufficient data to support the findings. Although these findings are promising, 32% of the
studies, overall, fail in rigor; this compromises the validity and usefulness of these studies
since failing in rigor, as a key issue in Evidence-Based Software Engineering, indicates that
the empirical methods have been applied in an informal way.

Regarding the issue Credibility, 95% of the studies provide a clear statement of the find-
ings (QA9) by discussing the findings in relation to the research questions and also pre-
senting the limitations of the study. However, most studies perform poorly in establishing
relationships between the researcher(s) and participants and the data collected to address the
research issue (QA8); this quality attribute is considered in only 12 studies (∼ 10%). This
can threaten the quality of the research due to not considering potential bias and influence of
the researcher(s) during the formulation of research questions, data collection, and analysis
and selection of data for presentation.

In terms of Relevance, 114 studies (∼ 97%) explicitly deal with SPL testing and dis-
cuss the contributions the study makes to existing knowledge, identify new areas in which
research is necessary, and discuss the ways in which the research can be used (QA10). This
result is in line with the nature of the research goals, described as inclusion and exclusion
criteria in Sect. 3.2. However, only 18 studies (∼ 15%) present practitioner-based guide-
lines (QA11). This indicates that the SPL testing field needs more practical guidance to
strengthen the adoption of industry.

Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S1 1 1 0 0 0 0 0 0 1 1 0
S2 1 1 1 1 0 1 1 0 1 1 0
S3 1 1 1 1 0 1 1 0 1 1 0
S4 1 1 1 1 1 1 1 0 1 1 0
S5 1 0 1 1 0 0 0 0 0 1 0
S6 1 1 1 0 0 1 0 0 1 1 0
S7 1 0 1 0 0 1 1 0 0 1 0
S8 1 1 1 1 0 1 1 0 1 1 0
S9 1 1 1 1 0 1 1 0 1 1 0
S10 1 1 1 1 0 1 1 1 1 1 0
S11 1 1 1 1 0 1 1 0 1 1 0
S12 1 1 1 1 1 1 1 0 1 1 0
S13 1 1 1 1 1 1 1 1 1 1 0
S14 1 1 1 1 0 1 1 0 1 1 0
S15 1 1 1 1 1 1 1 0 1 1 0
S16 1 0 1 0 1 0 1 0 1 1 0
S17 1 1 1 1 1 1 1 0 1 1 0
S18 1 1 1 1 0 1 1 0 1 1 0
S19 1 1 1 1 0 1 1 0 1 1 0
S20 1 1 0 0 0 1 1 0 1 1 0
S21 1 1 1 1 1 1 1 0 1 1 1
S22 1 1 0 0 0 0 1 0 1 1 0
S23 1 1 1 1 1 1 1 0 1 1 1
S24 1 0 1 1 0 1 1 0 1 1 0
S25 1 0 1 0 1 0 0 0 1 1 0

1 3

 146   Page 52 of 61

Empirical Software Engineering (2024) 29:146

Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S26 1 1 0 1 0 1 1 0 1 1 0
S27 1 1 1 0 0 1 1 0 1 1 0
S28 1 1 1 1 1 1 1 0 1 1 0
S29 1 1 1 1 1 1 1 1 1 1 1
S30 1 1 0 1 1 1 1 0 1 1 0
S31 1 1 0 0 1 1 1 0 1 1 0
S32 1 0 1 0 0 0 0 0 1 1 0
S33 1 1 0 1 1 0 0 0 1 1 0
S34 1 1 0 0 1 0 0 0 0 1 1
S35 1 1 0 1 1 1 1 0 1 1 0
S36 1 1 1 1 1 0 0 0 1 1 0
S37 1 1 1 1 1 1 1 0 1 1 0
S38 1 1 0 1 1 1 1 0 1 1 0
S39 1 1 1 1 1 1 1 0 1 1 0
S40 1 1 1 1 1 1 1 0 1 1 0
S41 1 1 1 1 1 1 0 1 1 1 0
S42 1 1 1 1 1 1 1 0 1 1 0
S43 1 1 0 0 1 0 0 0 1 0 0
S44 1 0 1 0 1 0 0 0 1 0 0
S45 1 1 1 1 1 1 1 1 1 1 0
S46 1 1 1 1 1 1 1 0 1 1 0
S47 1 1 1 1 1 1 1 0 1 1 0
S48 1 1 0 1 1 1 1 0 1 1 0
S49 1 1 0 0 0 0 0 1 1 1 0
S50 1 1 1 1 1 1 1 0 1 1 0
S51 1 1 0 1 1 1 1 0 1 1 0
S52 1 1 1 1 1 1 1 0 1 1 0
S53 1 1 1 1 1 1 1 0 1 1 0
S54 1 0 1 0 1 0 0 0 0 1 0
S55 1 1 0 0 1 0 0 0 1 1 0
S56 1 0 1 1 1 0 0 0 1 1 0
S57 1 1 1 1 1 1 1 0 1 1 0
S58 1 1 0 0 1 0 0 0 1 1 0
S59 1 1 1 1 0 1 1 0 1 1 0
S60 1 1 0 0 1 0 0 0 1 1 0
S61 1 1 1 1 1 1 1 0 1 1 0
S62 1 1 1 1 1 1 1 0 1 1 0
S63 1 1 0 0 1 0 0 0 1 1 0
S64 1 1 1 1 1 1 1 1 1 1 1
S65 1 0 1 0 0 0 0 0 1 1 0
S66 1 1 1 1 0 1 1 1 1 1 0
S67 1 0 1 0 0 0 0 0 1 0 0
S68 1 0 1 0 0 1 1 0 1 1 0
S69 1 0 1 0 0 1 0 0 1 1 0
S70 1 0 1 0 0 1 0 0 1 1 0
S71 1 1 1 1 0 1 1 0 1 1 0
S72 1 1 0 0 0 0 0 0 1 1 1

1 3

Page 53 of 61  146

Empirical Software Engineering (2024) 29:146

Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S73 1 1 1 1 1 1 1 0 1 1 0
S74 1 0 1 0 0 1 1 0 1 1 0
S75 1 1 0 0 1 1 1 0 1 1 0
S76 1 0 1 0 1 0 0 0 1 1 0
S77 1 1 1 1 1 1 1 0 1 1 0
S78 1 1 1 1 1 1 1 1 1 1 0
S79 1 1 0 1 1 1 1 0 1 1 0
S80 1 1 0 0 0 0 0 0 1 1 0
S81 1 0 1 0 0 0 0 0 1 0 0
S82 1 1 0 0 0 0 0 0 1 1 0
S83 1 0 1 0 0 1 1 0 1 1 0
S84 1 1 0 0 0 1 0 0 0 1 0
S85 1 1 1 0 1 1 1 1 1 1 0
S86 1 1 0 1 1 0 0 0 1 1 0
S87 1 1 0 0 0 1 0 0 0 1 0
S88 1 1 1 1 1 1 1 0 1 1 1
S89 1 1 0 0 0 0 0 0 1 1 0
S90 1 1 0 0 0 1 1 0 1 1 0
S91 1 1 0 0 0 1 1 0 1 1 0
S92 1 1 1 1 0 1 1 0 1 1 0
S93 1 1 1 1 1 1 1 0 1 1 0
S94 1 1 1 1 1 1 1 0 1 1 0
S95 1 1 0 0 0 1 1 0 1 1 0
S96 1 0 1 0 0 0 0 0 1 1 0
S97 1 1 0 0 1 1 1 0 1 1 0
S98 1 1 0 1 1 1 1 0 1 1 0
S99 1 1 1 1 1 1 1 1 1 1 1
S100 1 1 1 1 1 1 1 0 1 1 0
S101 1 1 0 1 0 0 0 0 1 1 0
S102 1 1 1 1 0 1 1 1 1 1 1
S103 1 1 1 1 1 1 1 0 1 1 1
S104 1 1 1 1 1 1 1 0 1 1 1
S105 1 1 0 0 0 0 0 0 1 1 0
S106 1 1 0 1 1 1 1 0 1 1 0
S107 1 1 1 1 1 1 1 0 1 1 0
S108 1 1 1 1 1 1 1 0 1 1 1
S109 1 1 1 1 1 0 0 0 1 1 0
S110 1 0 1 1 1 0 0 0 1 1 0
S111 1 1 1 1 0 1 1 0 1 1 1
S112 1 1 1 1 1 1 1 0 1 1 0
S113 1 1 1 1 1 1 1 0 1 1 1
S114 1 0 1 1 0 1 0 0 1 1 1
S115 1 1 1 1 1 1 1 0 1 1 0
S116 1 1 1 1 1 1 1 0 1 1 1
S117 1 1 1 1 1 1 1 0 1 1 1
S118 1 1 1 1 1 0 0 0 1 1 0

1 3

 146   Page 54 of 61

Empirical Software Engineering (2024) 29:146

Funding  This work was funded by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württem-
berg in the Innovation Campus Mobility of the Future, projects SWUpCar and TESSOF.
Open Access funding enabled and organized by Projekt DEAL.

Data availability  All data generated during this study are available in the “Zenodo” repository: https://
zenodo.org/doi/10.5281/zenodo.10018266.

Declarations

Conflict of interest  The authors declare that they have no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aduni Sulaiman R, Jawawi DN, Halim SA (2019) Derivation of test cases for model-based testing
of software product line with hybrid heuristic approach. In: IRICT’19, pp 199–208. https://doi.
org/10.1007/978-3-030-33582-3_19

Akbari Z, Khoshnevis S, Mohsenzadeh M (2017) A method for prioritizing integration testing in soft-
ware product lines based on feature model. Int J Softw Eng Knowl Eng 27(04):575–600. https://doi.
org/10.1142/S0218194017500218

Akimoto H, Isogami Y, Kitamura T, Noda N, Kishi T (2019) A prioritization method for SPL pairwise testing
based on user profiles. In: APSEC’19, pp 118–125. https://doi.org/10.1109/APSEC48747.2019.00025

Al-Dallal J, Sorenson PG (2008) Testing software assets of framework-based product families during appli-
cation engineering stage. J Softw 3(5):11–25

Al-Hajjaji M, Krieter S, Thüm T, Lochau M, Saake G (2016) IncLing: efficient product-line test-
ing using incremental pairwise sampling. ACM SIGPLAN Not 52(3):144–155. https://doi.
org/10.1145/3093335.2993253

Al-Hajjaji M, Krüger J, Schulze S, Leich T, Saake G (2017a) Efficient product-line testing using cluster-
based product prioritization. In: AST’17, pp 16–22. https://doi.org/10.1109/AST.2017.7

Al-Hajjaji M, Lity S, Lachmann R, Thüm T, Schaefer I, Saake G (2017b) Delta-oriented product prioritization
for similarity-based product-line testing. In: VACE’17, pp 34–40. https://doi.org/10.1109/VACE.2017.8

Al-Hajjaji M, Thüm T, Lochau M, Meinicke J, Saake G (2019) Effective product-line testing using sim-
ilarity-based product prioritization. Softw Syst Model 18(1):499–521. https://doi.org/10.1007/
s10270-016-0569-2

AL-Msie’deen RF, Seriai A, Huchard M, Urtado C, Vauttier S, Salman HE (2013) Feature location in a col-
lection of software product variants using formal concept analysis. In: ICSR’13, pp 302–307. https://
doi.org/10.1007/978-3-642-38977-1_22

Alves V, Niu N, Alves C, Valença G (2010) Requirements engineering for software product lines: a system-
atic literature review. Inf Softw Technol 52(8):806–820

Alves Pereira J, Acher M, Martin H, Jézéquel JM (2020) Sampling effect on performance prediction of con-
figurable systems: A case study. In: ICPE’20, pp 277–288. https://doi.org/10.1145/3358960.3379137

Ammann P, Offutt J (2008) Introduction to software testing. Cambridge University Press, Cambridge. https://
doi.org/10.1017/CBO9780511809163

Ampatzoglou A, Bibi S, Avgeriou P, Verbeek M, Chatzigeorgiou A (2019) Identifying, categorizing and miti-
gating threats to validity in software engineering secondary studies. Inf Softw Technol 106:201–230

Aoyama Y, Kuroiwa T, Kushiro N (2021) Executable test case generation from specifications written in
natural language and test execution environment. In: CCNC’21, pp 1–6.https://doi.org/10.1109/
CCNC49032.2021.9369549

1 3

Page 55 of 61  146

https://zenodo.org/doi/10.5281/zenodo.10018266
https://zenodo.org/doi/10.5281/zenodo.10018266
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-030-33582-3_19
https://doi.org/10.1007/978-3-030-33582-3_19
https://doi.org/10.1142/S0218194017500218
https://doi.org/10.1142/S0218194017500218
https://doi.org/10.1109/APSEC48747.2019.00025
https://doi.org/10.1145/3093335.2993253
https://doi.org/10.1145/3093335.2993253
https://doi.org/10.1109/AST.2017.7
https://doi.org/10.1109/VACE.2017.8
https://doi.org/10.1007/s10270-016-0569-2
https://doi.org/10.1007/s10270-016-0569-2
https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1007/978-3-642-38977-1_22
https://doi.org/10.1145/3358960.3379137
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1017/CBO9780511809163
https://doi.org/10.1109/CCNC49032.2021.9369549
https://doi.org/10.1109/CCNC49032.2021.9369549

Empirical Software Engineering (2024) 29:146

Apel S, Batory D, Kästner C, Saake G (2013) Feature-oriented software product lines: concepts and imple-
mentation. Springer, Berlin

Araújo IL, Santos IS, Filho JB, Andrade RM, Neto PS (2017) Generating test cases and proce-
dures from use cases in dynamic software product lines. In: SAC’17, pp 1296–1301. https://doi.
org/10.1145/3019612.3019790

Arrieta A, Sagardui G, Etxeberria L (2015) Test control algorithms for the validation of cyber-physical sys-
tems product lines. In: SPLC’15, pp 273–282. https://doi.org/10.1145/2791060.2791095

Arrieta A, Wang S, Sagardui G, Etxeberria L (2016) Search-based test case selection of cyber-physi-
cal system product lines for simulation-based validation. In: SPLC’16, pp 297–306. https://doi.
org/10.1145/2934466.2946046

Arrieta A, Wang S, Sagardui G, Etxeberria L (2019) Search-based test case prioritization for simulation-
based testing of cyber-physical system product lines. J Syst Softw 149:1–34. https://doi.org/10.1016/j.
jss.2018.09.055

Baller H, Lity S, Lochau M, Schaefer I (2014) Multi-objective test suite optimization for incremental product
family testing. In: ICST’14, pp 303–312. https://doi.org/10.1109/ICST.2014.43

Belli F, Tuglular T, Ufuktepe E (2021) Heterogeneous modeling and testing of software product lines. In:
QRS-C’21, pp 1079–1088. https://doi.org/10.1109/QRS-C55045.2021.00162

Beohar H, Mousavi MR (2016) Input–output conformance testing for software product lines. J Log Algebr
Methods Program 85(6):1131–1153. https://doi.org/10.1016/j.jlamp.2016.09.007

Bharathi M, Sangeetha V (2018) Weighted rank ant colony metaheuristics optimization-based test suite
reduction in combinatorial testing for improving software quality. In: ICICCS’18, pp 525–534. https://
doi.org/10.1109/ICCONS.2018.8663102

Bucaioni A, Di Silvestro F, Singh I, Saadatmand M, Muccini H (2022) Model-based generation of test
scripts across product variants: an experience report from the railway industry. J Softw Evol Process
34(11):e2498. https://doi.org/10.1002/smr.2498

Bürdek J, Lochau M, Bauregger S, Holzer A, Rhein AV, Apel S, Beyer D (2015) Facilitating reuse in
multi-goal test-suite generation for software product lines. In: FASE’15, pp 84–99. https://doi.
org/10.1007/978-3-662-46675-9_6

Cabral I, Cohen MB, Rothermel G (2010) Improving the testing and testability of software product lines. In:
SPLC’10, pp 241–255. https://doi.org/10.1007/978-3-642-15579-6_17

Calvagna A, Gargantini A, Vavassori P (2013) Combinatorial testing for feature models using CitLab. In:
ICSTW’13, pp 338–347. https://doi.org/10.1109/ICSTW.2013.45

Carlsson M, Gotlieb A, Marijan D (2016) Software product line test suite reduction with constraint optimiza-
tion. In: ICSOFT’16, pp 68–87. https://doi.org/10.1007/978-3-319-62569-0_4

Catal C, Mishra D (2012) Test case prioritization: a systematic mapping study. Softw Qual J 21(3):445–478.
https://doi.org/10.1007/s11219-012-9181-z

Chen L, Babar MA (2011) A systematic review of evaluation of variability management approaches in soft-
ware product lines. Inf Softw Technol 53(4):344–362. https://doi.org/10.1016/j.infsof.2010.12.006

Clarke D, Helvensteijn M, Schaefer I (2010) Abstract delta modeling. ACM SIGPLAN Not 46(2):13–22.
https://doi.org/10.1145/1942788.1868298

Clements P, Northrop L (2002) Software product lines: practices and patterns. Addison-Wesley, Boston
Cmyrev A, Reissing R (2014) Efficient and effective testing of automotive software product lines. Appl Sci

Eng Prog 7(2):53–57. https://doi.org/10.14416/j.ijast.2014.05.001
Cohen MB, Dwyer MB, Shi J (2006) Coverage and adequacy in software product line testing. In:

ROSATEA’06, pp 53–63. https://doi.org/10.1145/1147249.1147257
Cohen MB, Dwyer MB, Shi J (2007) Interaction testing of highly-configurable systems in the presence of

constraints. In: ISSTA’07, pp 129–139. https://doi.org/10.1145/1273463.1273482
Cruzes DS, Dybä T (2011) Research synthesis in software engineering: a tertiary study. Inf Softw Technol

53(5):440–455. https://doi.org/10.1016/j.infsof.2011.01.004
Czarnecki K, Eisenecker UW (2000) Generative programming: methods, tools and applications. Addison-

Wesley, New York
Da Mota Silveira Neto PA, do, Carmo Machado I, McGregor JD, De Almeida ES, de Lemos Meira SR (2011)

A systematic mapping study of software product lines testing. Inf Softw Technol 53(5):407–423. https://
doi.org/10.1016/j.infsof.2010.12.003

Denger C, Kolb R (2006) Testing and inspecting reusable product line components: First empirical results.
In: ISESE’06, pp 184–193. https://doi.org/10.1145/1159733.1159762

Devroey X, Perrouin G, Legay A, Schobbens PY, Heymans P (2017) Dissimilar test case selection for behav-
ioural software product line testing, In: SPLC’17, pp 1–9

do Carmo Machado I, McGregor JD, Cavalcanti YC, De Almeida ES (2014) On strategies for testing soft-
ware product lines: a systematic literature review. Inf Softw Technol 56(10):1183–1199. https://doi.
org/10.1016/j.infsof.2014.04.002

1 3

 146   Page 56 of 61

https://doi.org/10.1145/3019612.3019790
https://doi.org/10.1145/3019612.3019790
https://doi.org/10.1145/2791060.2791095
https://doi.org/10.1145/2934466.2946046
https://doi.org/10.1145/2934466.2946046
https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1016/j.jss.2018.09.055
https://doi.org/10.1109/ICST.2014.43
https://doi.org/10.1109/QRS-C55045.2021.00162
https://doi.org/10.1016/j.jlamp.2016.09.007
https://doi.org/10.1109/ICCONS.2018.8663102
https://doi.org/10.1109/ICCONS.2018.8663102
https://doi.org/10.1002/smr.2498
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-662-46675-9_6
https://doi.org/10.1007/978-3-642-15579-6_17
https://doi.org/10.1109/ICSTW.2013.45
https://doi.org/10.1007/978-3-319-62569-0_4
https://doi.org/10.1007/s11219-012-9181-z
https://doi.org/10.1016/j.infsof.2010.12.006
https://doi.org/10.1145/1942788.1868298
https://doi.org/10.14416/j.ijast.2014.05.001
https://doi.org/10.1145/1147249.1147257
https://doi.org/10.1145/1273463.1273482
https://doi.org/10.1016/j.infsof.2011.01.004
https://doi.org/10.1016/j.infsof.2010.12.003
https://doi.org/10.1016/j.infsof.2010.12.003
https://doi.org/10.1145/1159733.1159762
https://doi.org/10.1016/j.infsof.2014.04.002
https://doi.org/10.1016/j.infsof.2014.04.002

Empirical Software Engineering (2024) 29:146

do Nascimento Ferreira T, Kuk JN, Pozo A, Vergilio SR (2016) Product selection based on upper confi-
dence bound MOEA/D-DRA for testing software product lines. In: CEC’16, pp 4135–4142. https://doi.
org/10.1109/CEC.2016.7744315

Dominka S, Mandl M, Dübner M, Ertl D (2018) Using combinatorial testing for distributed automotive
features: Applying combinatorial testing for automated feature-interaction-testing. In: CCWC’18, pp
490–495. https://doi.org/10.1109/CCWC.2018.8301632

Drave I, Hillemacher S, Greifenberg T, Kriebel S, Kusmenko E, Markthaler M, Orth P, Salman KS, Richen-
hagen J, Rumpe B, Schulze C (2019) SMArDT modeling for automotive software testing. Softw Pract
Exp 49(2):301–328. https://doi.org/10.1002/spe.2650

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review. Inf Softw
Technol 50(9–10):833–859. https://doi.org/10.1016/j.infsof.2008.01.006

Ebert R, Jolianis J, Kriebel S, Markthaler M, Pruenster B, Rumpe B, Salman KS (2019) Applying product line
testing for the electric drive system. In: SPLC’19, pp 14–24. https://doi.org/10.1145/3336294.3336318

Engström E, Runeson P (2011) Software product line testing–A systematic mapping study. Inf Softw Technol
53(1):2–13. https://doi.org/10.1016/j.infsof.2010.05.011

Ensan F, Bagheri E, Gašević D (2012) Evolutionary search-based test generation for software product line
feature models. In: CAiSE’12, pp 613–628. https://doi.org/10.1007/978-3-642-31095-9_40

Ergun B, Gebizli CŞ, Sözer H (2017) FORMAT: A tool for adapting test models based on feature models. In:
COMPSAC’17, pp 66–71. https://doi.org/10.1109/COMPSAC.2017.134

Ferreira JM, Vergilio SR, Quináia MA (2013) A mutation approach to feature testing of software product
lines. In: SEKE’13, pp 231–237

Ferreira JM, Vergilio SR, Quinaia MA (2017a) Software product line testing based on feature model muta-
tion. Int J Softw Eng Knowl Eng 27(05):817–839. https://doi.org/10.1142/S0218194017500309

Ferreira TN, Vergilio SR, de Souza JT (2017b) Incorporating user preferences in search-based software
engineering: a systematic mapping study. Inf Softw Technol 90:55–69. https://doi.org/10.1016/j.
infsof.2017.05.003

Ferrer J, Chicano F, Alba E (2017) Hybrid algorithms based on integer programming for the
search of prioritized test data in software product lines. In: EvoCOP’17, pp 3–19. https://doi.
org/10.1007/978-3-319-55792-2_1

Ferrer J, Chicano F, Ortega-Toro JA (2021) CMSA algorithm for solving the prioritized pairwise test data
generation problem in software product lines. J Heuristics 27(1):229–249. https://doi.org/10.1007/
s10732-020-09462-w

Fischer S, Linsbauer L, Egyed A, Lopez-Herrejon RE (2018) Predicting higher order structural feature inter-
actions in variable systems. In: ICSME’18, pp 252–263. https://doi.org/10.1109/ICSME.2018.00035

Fomel S (2002) Object management group: UML profile for schedulability, performance and time specifica-
tion. OMG Doc 2(03):1–101

Fragal VH, Simao A, Endo AT, Mousavi MR (2017) Reducing the concretization effort in FSM-based testing
of software product lines. In: ICSTW’17, pp 329–336. https://doi.org/10.1109/ICSTW.2017.61

Fragal VH, Simao A, Mousavi MR, Turker UC (2019) Extending HSI test generation method for software
product lines. Comput J 62(1):109–129. https://doi.org/10.1093/comjnl/bxy046

Galindo JA, Alférez M, Acher M, Baudry B, Benavides D (2014) A variability-based testing approach for
synthesizing video sequences. In: ISSTA’14, pp 293–303. https://doi.org/10.1145/2610384.2610411

Galindo JA, Turner H, Benavides D, White J (2016) Testing variability-intensive systems using auto-
mated analysis: an application to Android. Softw Qual J 24(2):365–405. https://doi.org/10.1007/
s11219-014-9258-y

Gebizli CS, Sözer H (2016) Model-based software product line testing by coupling feature models with hierar-
chical markov chain usage models. In: QRS-C’16, pp 278–283. https://doi.org/10.1109/QRS-C.2016.42

Ghanam Y, Andreychuk D, Maurer F (2010) Reactive variability management in agile software development.
In: 2010 Agile Conference, pp 27–34. https://doi.org/10.1109/AGILE.2010.6

Hajri I, Goknil A, Pastore F, Briand LC (2020) Automating system test case classification and prioritization
for use case-driven testing in product lines. Empir Softw Eng 25(5):3711–3769. https://doi.org/10.1007/
s10664-020-09853-4

Henard C, Papadakis M, Perrouin G, Klein J, Traon YL (2013) Multi-objective test generation for software
product lines. In: SPLC’13, pp 62–71. https://doi.org/10.1145/2491627.2491635

Henard C, Papadakis M, Perrouin G, Klein J, Heymans P, Le Traon Y (2014a) Bypassing the combinatorial
explosion: using similarity to generate and prioritize t-wise test configurations for software product
lines. IEEE Trans Softw Eng 40(7):650–670. https://doi.org/10.1109/TSE.2014.2327020

Henard C, Papadakis M, Traon YL (2014b) Mutation-based generation of software product line test configu-
rations. In: SSBSE’14, pp 92–106. https://doi.org/10.1007/978-3-319-09940-8_7

Hentze M, Pett T, Sundermann C, Krieter S, Thüm T, Schaefer I (2022) Generic Solution-Space Sampling
for Multi-domain Product Lines. In: GPCE’22, pp 135–147. https://doi.org/10.1145/3564719.3568695

1 3

Page 57 of 61  146

https://doi.org/10.1109/CEC.2016.7744315
https://doi.org/10.1109/CEC.2016.7744315
https://doi.org/10.1109/CCWC.2018.8301632
https://doi.org/10.1002/spe.2650
https://doi.org/10.1016/j.infsof.2008.01.006
https://doi.org/10.1145/3336294.3336318
https://doi.org/10.1016/j.infsof.2010.05.011
https://doi.org/10.1007/978-3-642-31095-9_40
https://doi.org/10.1109/COMPSAC.2017.134
https://doi.org/10.1142/S0218194017500309
https://doi.org/10.1016/j.infsof.2017.05.003
https://doi.org/10.1016/j.infsof.2017.05.003
https://doi.org/10.1007/978-3-319-55792-2_1
https://doi.org/10.1007/978-3-319-55792-2_1
https://doi.org/10.1007/s10732-020-09462-w
https://doi.org/10.1007/s10732-020-09462-w
https://doi.org/10.1109/ICSME.2018.00035
https://doi.org/10.1109/ICSTW.2017.61
https://doi.org/10.1093/comjnl/bxy046
https://doi.org/10.1145/2610384.2610411
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1007/s11219-014-9258-y
https://doi.org/10.1109/QRS-C.2016.42
https://doi.org/10.1109/AGILE.2010.6
https://doi.org/10.1007/s10664-020-09853-4
https://doi.org/10.1007/s10664-020-09853-4
https://doi.org/10.1145/2491627.2491635
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1007/978-3-319-09940-8_7
https://doi.org/10.1145/3564719.3568695

Empirical Software Engineering (2024) 29:146

Hervieu A, Baudry B, Gotlieb A (2011) PACOGEN: Automatic generation of pairwise test configurations
from feature models. In: ISSRE’11, pp 120–129. https://doi.org/10.1109/ISSRE.2011.31

Hervieu A, Marijan D, Gotlieb A, Baudry B (2016) Practical minimization of pairwise-covering test con-
figurations using constraint programming. Inf Softw Technol 71:129–146. https://doi.org/10.1016/j.
infsof.2015.11.007

Hierons RM, Li M, Liu X, Parejo JA, Segura S, Yao X (2020) Many-objective test suite generation for
software product lines. ACM Trans Softw Eng Methodol 29(1):1–46. https://doi.org/10.1145/3361146

Ibias A, Llana L, Núñez M (2022) Using ant colony optimisation to select features having associated costs.
In: ICTSS’22, pp 106–122. https://doi.org/10.1007/978-3-031-04673-5_8

Jackson D (2012) Software abstractions: logic, language, and analysis. MIT Press
Jakubovski Filho HL, Ferreira TN, Vergilio SR (2018) Incorporating user preferences in a software product

line testing hyper-heuristic approach. In: CEC’18, pp 1–8. https://doi.org/10.1109/CEC.2018.8477803
Jakubovski Filho HL, Ferreira TN, Vergilio SR (2019) Preference based multi-objective algorithms applied

to the variability testing of software product lines. J Syst Softw 151:194–209. https://doi.org/10.1016/j.
jss.2019.02.028

Jaring M, Krikhaar RL, Bosch J (2008) Modeling variability and testability interaction in software product
line engineering. In: ICCBSS’08, pp 120–129. https://doi.org/10.1109/ICCBSS.2008.9

Johansen MF, Haugen Ø, Fleurey F (2011) Properties of realistic feature models make combinatorial testing
of product lines feasible. In: MODELS’11, pp 638–652. https://doi.org/10.1007/978-3-642-24485-8_47

Jorgensen PC (2013) Software testing: a craftsman’s approach. Auerbach Publications
Jung P, Kang S, Lee J (2019) Automated code-based test selection for software product line regression test-

ing. J Syst Softw 158:110419. https://doi.org/10.1016/j.jss.2019.110419
Jung P, Kang S, Lee J (2020) Efficient regression testing of software product lines by reducing redundant test

executions. Appl Sci 10(23):8686. https://doi.org/10.3390/app10238686
Jung P, Kang S, Lee J (2022) Reducing redundant test executions in software product line testing—A case

study. Electronics 11(7):1165. https://doi.org/10.3390/electronics11071165
Käkölä T, Dueñas JC (2006) Research issues in software product lines—Engineering and management.

Springer, Heidelberg
Kang S, Baek H, Kim J, Lee J (2015) Systematic software product line test case derivation for test data reuse.

In: COMPSAC’15, pp 433–440. https://doi.org/10.1109/COMPSAC.2015.174
Kim CH, Batory DS, Khurshid S (2011) Reducing combinatorics in testing product lines. In: AOSD’11, pp

57–68. https://doi.org/10.1145/1960275.1960284
Kim CH, Khurshid S, Batory D (2012) Shared execution for efficiently testing product lines. In: ISSRE’12,

pp 221–230. https://doi.org/10.1109/ISSRE.2012.23
Kim CH, Marinov D, Khurshid S, Batory D, Souto S, Barros P, d’Amorim M (2013) SPLat: Lightweight

dynamic analysis for reducing combinatorics in testing configurable systems. In: ESEC/FSE’13, pp
257–267. https://doi.org/10.1145/2491411.2491459

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in software engi-
neering. Technical Report, Keele University and Durham University

Kitchenham B, Budgen D, Brereton P (2016) Evidence-based software engineering and systematic reviews.
CRC Press

Krieter S, Thüm T, Schulze S, Saake G, Leich T (2020) YASA: Yet another sampling algorithm. In:
VaMoS’20, pp 1–10. https://doi.org/10.1145/3377024.3377042

Kuhn DR, Wallace DR, Gallo AM (2004) Software fault interactions and implications for software testing.
IEEE Trans Softw Eng 30(6):418–421. https://doi.org/10.1109/TSE.2004.24

Kumar S (2016) Test case prioritization techniques for software product line: A survey. In: ICCCA, pp 884–
889. https://doi.org/10.1109/CCAA.2016.7813841

Lachmann R, Lity S, Lischke S, Beddig S, Schulze S, Schaefer I (2015) Delta-oriented test case pri-
oritization for integration testing of software product lines. In: SPLC’15, pp 81–90. https://doi.
org/10.1145/2791060.2791073

Lachmann R, Lity S, Al-Hajjaji M, Fürchtegott F, Schaefer I (2016) Fine-grained test case prioritization
for integration testing of delta-oriented software product lines. In: FOSD’16, pp 1–10. https://doi.
org/10.1145/3001867.3001868

Lachmann R, Beddig S, Lity S, Schulze S, Schaefer I (2017) Risk-based integration testing of software prod-
uct lines. In: VaMoS’17, pp 52–59. https://doi.org/10.1145/3023956

Lackner H, Thomas M, Wartenberg F, Weißleder S (2014) Model-based test design of product lines: Rais-
ing test design to the product line level. In: ICST’14, pp 51–60. https://doi.org/10.1109/ICST.2014.16

Lamancha BP, Polo M, Piattini M (2015) PROW: a pairwise algorithm with constraints, order and weight. J
Syst Softw 99:1–19. https://doi.org/10.1016/j.jss.2014.08.005

Lee J, Hwang S (2019) Combinatorial test design using design-time decisions for variability. Int J Softw Eng
Knowl Eng 29(08):1141–1158. https://doi.org/10.1142/S0218194019400138

1 3

 146   Page 58 of 61

https://doi.org/10.1109/ISSRE.2011.31
https://doi.org/10.1016/j.infsof.2015.11.007
https://doi.org/10.1016/j.infsof.2015.11.007
https://doi.org/10.1145/3361146
https://doi.org/10.1007/978-3-031-04673-5_8
https://doi.org/10.1109/CEC.2018.8477803
https://doi.org/10.1016/j.jss.2019.02.028
https://doi.org/10.1016/j.jss.2019.02.028
https://doi.org/10.1109/ICCBSS.2008.9
https://doi.org/10.1007/978-3-642-24485-8_47
https://doi.org/10.1016/j.jss.2019.110419
https://doi.org/10.3390/app10238686
https://doi.org/10.3390/electronics11071165
https://doi.org/10.1109/COMPSAC.2015.174
https://doi.org/10.1145/1960275.1960284
https://doi.org/10.1109/ISSRE.2012.23
https://doi.org/10.1145/2491411.2491459
https://doi.org/10.1145/3377024.3377042
https://doi.org/10.1109/TSE.2004.24
https://doi.org/10.1109/CCAA.2016.7813841
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1145/2791060.2791073
https://doi.org/10.1145/3001867.3001868
https://doi.org/10.1145/3001867.3001868
https://doi.org/10.1145/3023956
https://doi.org/10.1109/ICST.2014.16
https://doi.org/10.1016/j.jss.2014.08.005
https://doi.org/10.1142/S0218194019400138

Empirical Software Engineering (2024) 29:146

Li Z, Harman M, Hierons RM (2007) Search algorithms for regression test case prioritization. IEEE Trans
Softw Eng 33(4):225–237. https://doi.org/10.1109/TSE.2007.38

Li X, Wong WE, Gao R, Hu L, Hosono S (2018) Genetic algorithm-based test generation for software prod-
uct line with the integration of fault localization techniques. Empir Softw Eng 23(1):1–51. https://doi.
org/10.1007/s10664-016-9494-9

Lima JA, Mendonça WD, Vergilio SR, Assunção WK (2020) Learning-based prioritization of test cases
in continuous integration of highly-configurable software. In: SPLC’20, pp 1–11. https://doi.
org/10.1145/3382025.3414967

Lity S, Nieke M, Thüm T, Schaefer I (2019) Retest test selection for product-line regression testing of vari-
ants and versions of variants. J Syst Softw 147:46–63. https://doi.org/10.1016/j.jss.2018.09.090

Lochau M, Oster S, Goltz U, Schürr A (2012a) Model-based pairwise testing for feature interaction cov-
erage in software product line engineering. Softw Qual J 20(3):567–604. https://doi.org/10.1007/
s11219-011-9165-4

Lochau M, Schaefer I, Kamischke J, Lity S (2012b) Incremental model-based testing of delta-oriented soft-
ware product lines. In: TAP’12, pp 67–82. https://doi.org/10.1007/978-3-642-30473-6_7

Lochau M, Lity S, Lachmann R, Schaefer I, Goltz U (2014) Delta-oriented model-based integration testing of
large-scale systems. J Syst Softw 91:63–84. https://doi.org/10.1016/j.jss.2013.11.1096

Lopez-Herrejon RE, Javier Ferrer J, Chicano F, Haslinger EN, Egyed A, Alba E (2014) A parallel evolution-
ary algorithm for prioritized pairwise testing of software product lines. In: GECCO’14, pp 1255–1262.
https://doi.org/10.1145/2576768.2598305

Lopez-Herrejon RE, Fischer S, Ramler R, Egyed A (2015) A first systematic mapping study on combina-
torial interaction testing for software product lines. In: ICSTW’15, pp 1–10. https://doi.org/10.1109/
ICSTW.2015.7107435

Luo L (2001) Software testing techniques. Institute for Software Research International Carnegie Mellon
University. Pittsburgh PA 15232(19):1–19

Luo G, Petrenko A, Bochmann GV (1995) Selecting test sequences for partially-specified nondeterministic
finite state machines. In: IFIP WG, pp 95–110. https://doi.org/10.1007/978-0-387-34883-4_6

Luthmann L, Gerecht T, Stephan A, Bürdek J, Lochau M (2019a) Minimum/maximum delay testing of
product lines with unbounded parametric real-time constraints. J Syst Softw 149:535–553. https://doi.
org/10.1016/j.jss.2018.12.028

Luthmann L, Gerecht T, Lochau M (2019b) Sampling strategies for product lines with unbounded para-
metric real-time constraints. Int J Softw Tools Technol Transf 21(6):613–633. https://doi.org/10.1007/
s10009-019-00532-4

Marijan D, Gotlieb A, Sen S, Hervieu A (2013) Practical pairwise testing for software product lines. In:
SPLC’13, pp 227–235. https://doi.org/10.1145/2491627.2491646

Marijan D, Liaaen M, Gotlieb A, Sen S, Ieva C (2017) Titan: Test suite optimization for highly configurable
software. In: ICST’17, pp 524–531. https://doi.org/10.1109/ICST.2017.60

Markiegi U, Arrieta A, Sagardui G, Etxeberria L (2017) Search-based product line fault detection allocating
test cases iteratively. In: SPLC’17, pp 123–132. https://doi.org/10.1145/3106195.3106210

Markiegi U, Arrieta A, Etxeberria L, Sagardui G (2019) Test case selection using structural coverage in
software product lines for time-budget constrained scenarios. In: SAC’19, pp 2362–2371. https://doi.
org/10.1145/3297280.3297512

Matnei Filho RA, Vergilio SR (2016) A multi-objective test data generation approach for mutation testing of
feature models. J Softw Eng Res Dev 4(1):1–29. https://doi.org/10.1186/s40411-016-0030-9

Mayring P (2014) Qualitative Content Analysis: Theoretical Foundation, Basic Procedures and Software
Solution. Klagenfurt. Available at Social Science Open Access Repository (SSOAR) https://nbn-resolv-
ing.de/urn:nbn:de:0168-ssoar-395173 (accessed 04 June 2024)

McGregor JD (2001) Testing a software product line. Technical Report, Carnegie Mellon University
Mendes E, Wohlin C, Felizardo K, Kalinowski M (2020) When to update systematic literature reviews in

software engineering. J Syst Softw 167:110607. https://doi.org/10.1016/j.jss.2020.110607
Mishra S (2006) Specification based software product line testing: A case study. In: CS&P’06, pp 243–254
Nebut C, Pickin S, Le Traon Y, Jézéquel JM (2003) Automated requirements-based generation of test cases

for product families. In: ASE’03, pp 263–266. https://doi.org/10.1109/ASE.2003.1240317
Nebut C, Traon YL, Jézéquel JM (2006) System testing of product lines: from requirements to test cases. In:

Käköla T, Duenas JC (eds) Software Product lines. Springer, Berlin, Heidelberg, pp 447–477. https://
doi.org/10.1007/978-3-540-33253-4_12

Neto PA, do Carmo Machado I, Cavalcanti YC, De Almeida ES, Garcia VC, de Lemos Meira SR (2010) A
regression testing approach for software product lines architectures. In: SBCARS’10, pp 41–50. https://
doi.org/10.1109/SBCARS.2010.14

Nguyen QL (2009) Non-functional requirements analysis modeling for software product lines. In: ICSE’09,
pp 56–61. https://doi.org/10.1109/MISE.2009.5069898

1 3

Page 59 of 61  146

https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1007/s10664-016-9494-9
https://doi.org/10.1145/3382025.3414967
https://doi.org/10.1145/3382025.3414967
https://doi.org/10.1016/j.jss.2018.09.090
https://doi.org/10.1007/s11219-011-9165-4
https://doi.org/10.1007/s11219-011-9165-4
https://doi.org/10.1007/978-3-642-30473-6_7
https://doi.org/10.1016/j.jss.2013.11.1096
https://doi.org/10.1145/2576768.2598305
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1109/ICSTW.2015.7107435
https://doi.org/10.1007/978-0-387-34883-4_6
https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1007/s10009-019-00532-4
https://doi.org/10.1145/2491627.2491646
https://doi.org/10.1109/ICST.2017.60
https://doi.org/10.1145/3106195.3106210
https://doi.org/10.1145/3297280.3297512
https://doi.org/10.1145/3297280.3297512
https://doi.org/10.1186/s40411-016-0030-9
https://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173
https://doi.org/10.1016/j.jss.2020.110607
https://doi.org/10.1109/ASE.2003.1240317
https://doi.org/10.1007/978-3-540-33253-4_12
https://doi.org/10.1007/978-3-540-33253-4_12
https://doi.org/10.1109/SBCARS.2010.14
https://doi.org/10.1109/SBCARS.2010.14
https://doi.org/10.1109/MISE.2009.5069898

Empirical Software Engineering (2024) 29:146

Northrop L, Clements P, Bachmann F, Bergey J, Chastek G, Cohen S, Donohoe P, Jones L, Krut R, Little R
(2007) A framework for software product line practice, version 5.0. Technical report, Carnegie Mellon
University

Olimpiew EM, Gomaa H (2009) Reusable model-based testing. In: ICSR’09, pp 76–85. https://doi.
org/10.1007/978-3-642-04211-9_8

Oster S, Markert F, Ritter P (2010) Automated incremental pairwise testing of software product lines. In:
SPLC’10, pp 196–210. https://doi.org/10.1007/978-3-642-15579-6_14

Parejo JA, Sánchez AB, Segura S, Ruiz-Cortés A, Lopez-Herrejon RE, Egyed A (2016) Multi-objective test
case prioritization in highly configurable systems: a case study. J Syst Softw 122:287–310. https://doi.
org/10.1016/j.jss.2016.09.045

Parra C, Giral L, Infante A, Cortés C (2012) Extractive SPL adoption using multi-level variability modeling.
In: SPLC’12, pp 99–106. https://doi.org/10.1145/2364412.2364429

Patel S, Gupta P, Shah V (2013) Combinatorial interaction testing with multi-perspective feature models. In:
ICSTW’13, pp 321–330. https://doi.org/10.1109/ICSTW.2013.43

Pérez B, Polo M, Piatini M (2009) Software product line testing-A systematic review. In: ICSOFT’09, pp 1–8
Perrouin G, Sen S, Klein J, Baudry B, Le Traon Y (2010) Automated and scalable t-wise test case generation

strategies for software product lines. In: ICST’10, pp 459–468. https://doi.org/10.1109/ICST.2010.43
Petry KL, OliveiraJr E, Zorzo AF (2020) Model-based testing of software product lines: mapping study and

research roadmap. J Syst Softw 167:110608. https://doi.org/10.1016/j.jss.2020.110608
Pett T, Eichhorn D, Schaefer I (2020) Risk-based compatibility analysis in automotive systems engineering.

In: MODELS’20, pp 1–10. https://doi.org/10.1145/3417990.3421263
Pohl K, Metzger A (2006) Software product line testing. Commun ACM 49(12):78–81. https://doi.

org/10.1145/1183236.1183271
Pohl K, Böckle G, Van Der Linden F (2005) Software product line engineering: foundations, principles, and

techniques. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-28901-1
Qian Y, Zhang C, Wang F (2018) Selecting products for high-strength t-wise testing of software product line

by multi-objective method. In: PIC’18, pp 370–378. https://doi.org/10.1109/PIC.2018.8706270
Reis S, Metzger A, Pohl K (2006) A reuse technique for performance testing of software product lines. In:

SPLiT’06, pp 5–10
Reis S, Metzger A, Pohl K (2007) Integration testing in software product line engineering: a model-based

technique. In: FASE’07, pp 321–335. https://doi.org/10.1007/978-3-540-71289-3_25
Reuling D, Bürdek J, Rotärmel S, Lochau M, Kelter U (2015) Fault-based product-line testing: Effec-

tive sample generation based on feature-diagram mutation. In: SPLC’15, pp 131–140. https://doi.
org/10.1145/2791060.2791074

Reuys A, Kamsties E, Pohl K, Reis S (2005) Model-based system testing of software product families. In:
CAiSE’05, pp 519–534. https://doi.org/10.1007/11431855_36

Reuys A, Reis S, Kamsties E, Pohl K (2006) The scented method for testing software product lines. In:
SPLC’06, pp 479–520. https://doi.org/10.1007/978-3-540-33253-4_13

Rocha L, Machado I, Almeida E, Kästner C, Nadi S (2020) A semi-automated iterative process for detecting
feature interactions. In: SBES’20, pp 778–787. https://doi.org/10.1145/3422392.3422418

Roggenbach M (2006) CSP-CASL—A new integration of process algebra and algebraic specification. Theor
Comput Sci 354(1):42–71. https://doi.org/10.1016/j.tcs.2005.11.007

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Reinhartz-Berger I, Sturm A, Clark
T, Cohen S, Bettin J (eds) Domain Engineering. Springer, Berlin, Heidelberg, pp 29–58. https://doi.
org/10.1007/978-3-642-36654-3_2

Safdar SA, Yue T, Ali S (2021) Recommending faulty configurations for interacting systems under test using
multi-objective search. ACM Trans Softw Eng Methodol 30(4):1–36. https://doi.org/10.1145/3464939

Saini A, Rajkumar, Kumar S (2022) Software Product Line Testing—A Proposal of Distance-Based
Approach. In: AISE’20, pp 187–198. https://doi.org/10.1007/978-981-16-8542-2_15

Sánchez AB, Segura S, Ruiz-Cortés A (2014) A comparison of test case prioritization criteria for software
product lines. In: ICST’14, pp 41–50. https://doi.org/10.1109/ICST.2014.15

Schaefer I, Bettini L, Bono V, Damiani F, Tanzarella N (2010) Delta-oriented programming of software prod-
uct lines. In: SPLC’10, pp 77–91. https://doi.org/10.1007/978-3-642-15579-6_6

Scheidemann KD (2006) Optimizing the selection of representative configurations in verification of evolv-
ing product lines of distributed embedded systems. In: SPLC’06, pp 75–84. https://doi.org/10.1109/
SPLINE.2006.1691579

Shi J, Cohen MB, Dwyer MB (2012) Integration testing of software product lines using compositional sym-
bolic execution. In: FASE’12, pp 270–284. https://doi.org/10.1007/978-3-642-28872-2_19

Sjoberg DI, Dyba T, Jorgensen M (2007) The future of empirical methods in software engineering research.
In: FOSE’07, pp 358–378. https://doi.org/10.1109/FOSE.2007.30

1 3

 146   Page 60 of 61

https://doi.org/10.1007/978-3-642-04211-9_8
https://doi.org/10.1007/978-3-642-04211-9_8
https://doi.org/10.1007/978-3-642-15579-6_14
https://doi.org/10.1016/j.jss.2016.09.045
https://doi.org/10.1016/j.jss.2016.09.045
https://doi.org/10.1145/2364412.2364429
https://doi.org/10.1109/ICSTW.2013.43
https://doi.org/10.1109/ICST.2010.43
https://doi.org/10.1016/j.jss.2020.110608
https://doi.org/10.1145/3417990.3421263
https://doi.org/10.1145/1183236.1183271
https://doi.org/10.1145/1183236.1183271
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1109/PIC.2018.8706270
https://doi.org/10.1007/978-3-540-71289-3_25
https://doi.org/10.1145/2791060.2791074
https://doi.org/10.1145/2791060.2791074
https://doi.org/10.1007/11431855_36
https://doi.org/10.1007/978-3-540-33253-4_13
https://doi.org/10.1145/3422392.3422418
https://doi.org/10.1016/j.tcs.2005.11.007
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1007/978-3-642-36654-3_2
https://doi.org/10.1145/3464939
https://doi.org/10.1007/978-981-16-8542-2_15
https://doi.org/10.1109/ICST.2014.15
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1109/SPLINE.2006.1691579
https://doi.org/10.1109/SPLINE.2006.1691579
https://doi.org/10.1007/978-3-642-28872-2_19
https://doi.org/10.1109/FOSE.2007.30

Empirical Software Engineering (2024) 29:146

Soe NT, Wild N, Tanachutiwat S, Lichter H (2022) Design and implementation of a test automation frame-
work for configurable devices. In: APIT’22, pp 200–207. https://doi.org/10.1145/3512353.3512383

Souto S, d’Amorim M (2018) Time-space efficient regression testing for configurable systems. J Syst Softw
137:733–746. https://doi.org/10.1016/j.jss.2017.08.010

Souto S, d’Amorim M, Gheyi R (2017) Balancing soundness and efficiency for practical testing of configu-
rable systems. In: ICSE’17, pp 632–642. https://doi.org/10.1109/ICSE.2017.64

Steffens M, Oster S, Lochau M, Fogdal T (2012) Industrial evaluation of pairwise SPL testing with MoSo-
PoLiTe. In: VaMoS’12, pp 55–62. https://doi.org/10.1145/2110147.2110154

Stricker V, Metzger A, Pohl K (2010) Avoiding redundant testing in application engineering. In: SPLC’10, pp
226–240. https://doi.org/10.1007/978-3-642-15579-6_16

Strickler A, Lima JA, Vergilio SR, Pozo AT (2016) Deriving products for variability test of feature mod-
els with a hyper-heuristic approach. Appl Soft Comput 49:1232–1242. https://doi.org/10.1016/j.
asoc.2016.07.059

Tevanlinna A, Taina J, Kauppinen R (2004) Product family testing: a survey. ACM SIGSOFT Softw Eng
Notes 29(2):12–12. https://doi.org/10.1145/979743.979766

Tuglular T, Coşkun DE (2021) Behavior-driven development of software product lines. In: DSA’21, pp 230–
239. https://doi.org/10.1109/DSA52907.2021.00035

Tuglular T, Beyazıt M, Öztürk D (2019) Featured event sequence graphs for model-based incremen-
tal testing of software product lines. In: COMPSAC’19, pp 197–202. https://doi.org/10.1109/
COMPSAC.2019.00035

Uzuncaova E, Khurshid S, Batory D (2010) Incremental test generation for software product lines. IEEE
Trans Softw Eng 36(3):309–322. https://doi.org/10.1109/TSE.2010.30

Varshosaz M, Al-Hajjaji M, Thüm T, Runge T, Mousavi MR, Schaefer I (2018) A classification of product
sampling for software product lines. In: SPLC’18, pp 1–13. https://doi.org/10.1145/3233027.3233035

Vazirani VV (2001) Approximation algorithms. Springer, Berlin. https://doi.org/10.1007/978-3-662-04565-7
Vidács L, Horváth F, Mihalicza J, Vancsics B, Beszédes Á (2015) Supporting software product line test-

ing by optimizing code configuration coverage. In: ICSTW’15, pp 1–7. https://doi.org/10.1109/
ICSTW.2015.7107478

Vidal Silva C, Galindo Duarte JÁ, Benavides Cuevas DF (2020) Functional testing of conflict detection and
diagnosis tools in feature model configuration: a test suite design. In: ConfWS’20, pp 17–24

Wang S, Buchmann D, Ali S, Gotlieb A, Pradhan D, Liaaen M (2014) Multi-objective test prioritiza-
tion in software product line testing: an industrial case study. In: SPLC’14, pp 32–41. https://doi.
org/10.1145/2648511.2648515

Wang S, Ali S, Gotlieb A (2015) Cost-effective test suite minimization in product lines using search tech-
niques. J Syst Softw 103:370–391. https://doi.org/10.1016/j.jss.2014.08.024

Wang S, Ali S, Gotlieb A, Liaaen M (2017) Automated product line test case selection: industrial case study and
controlled experiment. Softw Syst Model 16(2):417–441. https://doi.org/10.1007/s10270-015-0462-4

Webster J, Watson RT (2002) Analyzing the past to prepare for the future: writing a literature review. MIS
Q 26(2):xiii–xxiii

Weiss DM (2008) The product line hall of fame. In: SPLC’08, pp 39. https://doi.org/10.1109/SPLC.2008.56
Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering. Empiri-

cal methods and studies in Software Engineering-experiences. Springer, Berlin, Heidelberg, pp 7–23.
https://doi.org/10.1007/978-3-540-45143-3_2

Xiang Y, Huang H, Zhou Y, Li S, Luo C, Lin Q, Yang X (2022) Search-based diverse sampling from real-
world software product lines. In: ICSE’22, pp 1945–1957. https://doi.org/10.1145/3510003.3510053

Xu Z, Cohen MB, Motycka W, Rothermel G (2013) Continuous test suite augmentation in software product
lines. In: SPLC’13, pp 52–61. https://doi.org/10.1145/2491627.2491650

Yan L, Hu W, Han L (2019) Optimize SPL test cases with adaptive simulated annealing genetic algorithm. In:
ACM TURC’19, pp 1–7. https://doi.org/10.1145/3321408.3326676

Yu L, Duan F, Lei Y, Kacker RN, Kuhn DR (2014) Combinatorial test generation for software product lines
using minimum invalid tuples. In: HASE’14, pp 65–72. https://doi.org/10.1109/HASE.2014.18

Zhang L, Tian JH, Jiang J, Liu YJ, Pu MY, Yue T (2018) Empirical research in software engineering-A litera-
ture survey. JCST 33(5):876–899. https://doi.org/10.1007/s11390-018-1864-x

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 61 of 61  146

https://doi.org/10.1145/3512353.3512383
https://doi.org/10.1016/j.jss.2017.08.010
https://doi.org/10.1109/ICSE.2017.64
https://doi.org/10.1145/2110147.2110154
https://doi.org/10.1007/978-3-642-15579-6_16
https://doi.org/10.1016/j.asoc.2016.07.059
https://doi.org/10.1016/j.asoc.2016.07.059
https://doi.org/10.1145/979743.979766
https://doi.org/10.1109/DSA52907.2021.00035
https://doi.org/10.1109/COMPSAC.2019.00035
https://doi.org/10.1109/COMPSAC.2019.00035
https://doi.org/10.1109/TSE.2010.30
https://doi.org/10.1145/3233027.3233035
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1109/ICSTW.2015.7107478
https://doi.org/10.1109/ICSTW.2015.7107478
https://doi.org/10.1145/2648511.2648515
https://doi.org/10.1145/2648511.2648515
https://doi.org/10.1016/j.jss.2014.08.024
https://doi.org/10.1007/s10270-015-0462-4
https://doi.org/10.1109/SPLC.2008.56
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1145/3510003.3510053
https://doi.org/10.1145/2491627.2491650
https://doi.org/10.1145/3321408.3326676
https://doi.org/10.1109/HASE.2014.18
https://doi.org/10.1007/s11390-018-1864-x

	﻿Software product line testing: a systematic literature review
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿SPL development process
	﻿2.2﻿ ﻿Variability Management in SPL
	﻿2.3﻿ ﻿Testing approaches and levels

	﻿﻿3﻿ ﻿Systematic literature review methodology
	﻿﻿3.1﻿ ﻿Research questions
	﻿﻿3.2﻿ ﻿Identification of relevant literature
	﻿﻿3.2.1﻿ ﻿Analysis of existing reviews
	﻿﻿3.2.2﻿ ﻿Gathering recent publications
	﻿3.2.3﻿ ﻿Primary study selection strategy

	﻿3.3﻿ ﻿Quality assessment
	﻿3.4﻿ ﻿Data extraction and analysis
	﻿﻿4﻿ ﻿Results
	﻿﻿4.1﻿ ﻿Characteristics of the studies (RQ1)
	﻿4.1.1﻿ ﻿Bibliometrics
	﻿4.1.2﻿ ﻿Analyzing the evidence available to adopt the proposed approaches

	﻿﻿4.2﻿ ﻿Test levels executed throughout the SPL lifecycle (RQ2)
	﻿﻿4.3﻿ ﻿Creating test assets by considering commonalities and variabilities (RQ3)
	﻿4.4﻿ ﻿Dealing with configuration-aware software testing (RQ4)
	﻿﻿4.5﻿ ﻿Preserving traceability between test assets and other artifacts (RQ5)
	﻿﻿4.6﻿ ﻿Testing non-functional requirements in SPL (RQ6)
	﻿﻿4.7﻿ ﻿Controlling cost/effort of SPL testing (RQ7)
	﻿﻿5﻿ ﻿Threats to validity
	﻿5.1﻿ ﻿Study selection validity
	﻿5.2﻿ ﻿Data validity
	﻿5.3﻿ ﻿Research validity

	﻿﻿6﻿ ﻿Discussion
	﻿6.1﻿ ﻿Overview of evaluation maturity and studies’ contributions
	﻿6.2﻿ ﻿Main findings

	﻿﻿7﻿ ﻿Related work
	﻿﻿8﻿ ﻿Conclusions and future work
	﻿Appendix A
	﻿Appendix B
	﻿Appendix C
	﻿Appendix D
	﻿Appendix E
	﻿References

