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Abstract
A Software Product Line (SPL) is a software development paradigm in which a family of 
software products shares a set of core assets. Testing has a vital role in both single-system 
development and SPL development in identifying potential faults by examining the be-
havior of a product or products, but it is especially challenging in SPL. There have been 
many research contributions in the SPL testing field; therefore, assessing the current state 
of research and practice is necessary to understand the progress in testing practices and to 
identify the gap between required techniques and existing approaches. This paper aims to 
survey existing research on SPL testing to provide researchers and practitioners with up-
to-date evidence and issues that enable further development of the field. To this end, we 
conducted a Systematic Literature Review (SLR) with seven research questions in which 
we identified and analyzed 118 studies dating from 2003 to 2022. The results indicate that 
the literature proposes many techniques for specific aspects (e.g., controlling cost/effort in 
SPL testing); however, other elements (e.g., regression testing and non-functional testing) 
still need to be covered by existing research. Furthermore, most approaches are evaluated 
by only one empirical method, most of which are academic evaluations. This may jeopar-
dize the adoption of approaches in industry. The results of this study can help identify gaps 
in SPL testing since specific points of SPL Engineering still need to be addressed entirely.

Keywords  Software product lines · Software testing · Software quality · Systematic 
literature review
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1  Introduction

Software Product Line (SPL) engineering has proven to be an efficient and effective strategy 
to decrease implementation costs, reduce time to market, and improve the quality of derived 
products (Denger and Kolb 2006; Northrop et al. 2007). SPLs and Configurable Systems 
(Alves Pereira et al. 2020) are two approaches used in software engineering to manage 
and create software with varying levels of customization and flexibility. While both SPLs 
and configurable systems share the goal of offering flexibility and customization, they dif-
fer in their core approach. SPLs primarily emphasize the systematic reuse of components, 
architectures, and design patterns across a range of related software products. In contrast, 
configurable systems are single software products designed to be adaptable, enabling users 
to configure them to meet their unique requirements. We decided to limit the scope on SPL 
to keep the review focused.

Testing is an essential part of SPL Engineering (SPLE) to identify potential faults (Pohl 
and Metzger 2006). This activity examines core assets shared among many products, prod-
uct-specific parts, and the interaction among them (McGregor 2001). Therefore, SPL testing 
includes activities from the validation of initial requirements to the acceptance testing of a 
specific product by customers (Da Mota Silveira Neto et al. 2011).

As the adoption of the SPL approach by companies has grown (Weiss 2008), many 
researchers have made contributions in the SPL testing field to provide efficient and effec-
tive approaches that can satisfy specific needs of the industry (e.g., controlling the cost/
effort of SPL testing). This resulted in many publications on different aspects of SPL testing. 
Therefore, analyzing research conducted in this field using well-known empirical methods 
is required to provide an overview of state-of-the-art testing practices and assess the effec-
tiveness of the proposed approaches. To this end, Systematic Literature Reviews (SLR) and 
Systematic Mapping Studies (SMS) were conducted on SPL testing, but the most recent 
one dates back to 2014 (do Carmo Machado et al. 2014). While some recent research has 
focused on reviewing specific aspects of SPL testing, such as model-based testing of SPLs 
(Petry et al. 2020), test case prioritization for SPL (Kumar 2016), and combinatorial interac-
tion testing for software product lines (Lopez-Herrejon et al. 2015), there has not been an 
SLR or SMS since 2014 that provides a comprehensive overview of the current state of SPL 
testing in a general context. Therefore, there is a need to update existing literature reviews 
(Mendes et al. 2020) to identify up-to-date evidence and issues that enable further develop-
ment of the SPL testing field.

This paper presents an SLR to analyze interesting aspects of SPL testing that are formal-
ized as research questions. An SLR is a rigorous and systematic method to identify, evalu-
ate, and interpret all available research relevant to a particular research question, topic area, 
or phenomenon of interest (Cruzes and Dybä 2011). The specific aspects based on which we 
analyzed relevant studies are:

	● Characteristics of the studies focused on SPL testing.
	● Test levels executed throughout the SPL lifecycle.
	● Creating test assets by considering commonalities and variabilities.
	● Dealing with configuration-aware software testing.
	● Preserving traceability between test assets and other artifacts.
	● Testing non-functional requirements in an SPL.
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	● Controlling cost/effort of SPL testing.

The SLR process was conducted from June 2022 to the end of 2022. While some of the find-
ings derived from this SLR align with the conclusions of previous SLRs, such as the identi-
fication of existing gaps in non-functional testing for SPLs and the necessity for more robust 
and user-friendly testing tools, our review uncovered specific insights and unaddressed gaps 
in this domain that were not fully explored in prior SLRs. These include:

1.	 Variability control, referring to the disciplined management and regulation of feature 
variations within SPLs, alongside modeling and tracing, presents persistent challenges 
that require attention throughout the testing process. Variability control involves imple-
menting strategies, such as configuration and change management, to ensure consis-
tency and predictability in the diverse configurations of products derived from the SPL.

2.	 Novel approaches are needed for regression test selection, prioritization, and minimiza-
tion, along with architecture-based regression testing, to effectively manage regression 
testing in SPLs.

3.	 Promoting the adoption of SPL testing practices in industrial settings necessitates 
addressing practical challenges, such as offering guidance for industry-specific SPL 
testing, and conducting industrial evaluations.

4.	 Exploring the details of test levels across the SPL lifecycle and highlighting the conse-
quences of neglecting a particular test level can offer valuable insights for practitioners.

5.	 Studies focusing on testing SPLs rarely address traceability explicitly. Considering fea-
ture variability and configuration management, more efficient methods for modeling 
and representing traceability relationships are required.

The remainder of this paper is organized as follows: Sect. 2 provides background informa-
tion required to understand SPL and SPL testing concepts; Sect. 3 describes how the SLR 
methodology has been applied; the results of the SLR are reported in Sect.  4; potential 
threats to the validity of this study and the strategies employed to mitigate them are dis-
cussed in Sect. 5; Sect. 6 presents a summary of the research and examines the main find-
ings; Sect. 7 provides a survey of the related research; Sect. 8 presents concluding remarks 
and further research.

2  Background

This section provides a concise background on the SPL development process, variability 
management, and testing approaches and levels as a basis for the remainder of this article.

2.1  SPL development process

SPL is a software development paradigm to achieve economies of scale and scope by ana-
lyzing product commonalities and variabilities. As this paradigm has specific benefits such 
as substantial cost savings, reduction of time to market, and high productivity, many orga-
nizations, including Philips, Nokia, Cummins, and Hewlett-Packard, have adopted it (Cle-
ments and Northrop 2002). In SPL, a set of core assets (e.g., reference architecture and 
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reusable components) is first developed. Specific products are then built by configuring 
and composing the core assets in a prescribed way with product-specific features to satisfy 
particular market segments (Clements and Northrop 2002).

The SPL development process/lifecycle can be divided into two distinct phases: Domain 
Engineering and Application Engineering. According to Czarnecki and Eisenecker (2000, p. 
20), Domain Engineering is “the activity of collecting, organizing, and storing experience in 
building systems or parts of systems in a particular domain in the form of reusable assets, as 
well as providing an adequate means for reusing these assets when building new systems.” 
Application Engineering is focused on deriving specific products from the core assets cre-
ated during Domain Engineering; in this phase, specifics of the products are added to com-
mon parts to satisfy the particular needs of a product (Clements and Northrop 2002). Of 
these two phases, Domain Engineering demands significant resources and time. If not man-
aged effectively, it can lead to the failure of the entire SPL (Pohl et al. 2005, p. 9–10). Three 
common approaches are employed for constructing an SPL, and each of these approaches 
directly influences the implementation of Domain Engineering (Apel et al. 2013):

	● Proactive approaches start with a comprehensive and thorough scoping of the domain 
to anticipate all requirements. Subsequently, all these requirements are implemented as 
assets, and SPL experts typically carry out this task.

	● Extractive approaches follow an automated process, utilizing a set of existing product 
variants as input. The SPL is constructed by extracting features from these variants. 
Features are identified and retrieved through feature location techniques (AL-Msie’deen 
et al. 2013; Rubin and Chechik 2013).

	● Reactive approaches follow an incremental process. They take as input an existing SPL 
version (SPLi) and a set of new requirements about a new product. This process results 
in the creation of SPLi+1, which can produce the new product.

2.2  Variability Management in SPL

In SPL engineering, variability mechanisms are fundamental for managing diversities across 
products. These mechanisms, as classified by Apel et al. (2013), include annotative mecha-
nisms, transformative mechanisms (delta-oriented), and feature-oriented mechanisms. 
Annotative mechanisms involve marking or annotating code to denote variability points, 
while transformative mechanisms, such as delta-oriented programming, describe changes 
required to transform one product variant into another. Feature-oriented mechanisms orga-
nize variability around features and their interactions. These variability mechanisms can be 
applied across all stages of the software lifecycle.

A Feature Model is commonly used in Domain Engineering to present different com-
binations of features. A feature model is a formal representation and graphical notation 
that describes the variability and relationships among features in an SPL. Feature models 
typically consist of features (functionalities or characteristics), feature hierarchies (repre-
senting parent-child relationships between features), and constraints (rules governing the 
valid combinations of features) (Pohl et al. 2005). Due to the presence of numerous optional 
features, the configuration space in feature models may exponentially increase (reaching 2n 
possible configurations, where n represents the number of optional features without further 
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constraints) (Chen and Babar 2011). A specific product can be derived once a complete 
feature configuration is established.

Although proactive approaches emphasize systematic upfront planning, modeling vari-
abilities with feature and configuration models, and high asset reusability, reactive methods 
can also use feature models to represent variabilities introduced by new requirements. Con-
figuration files or mechanisms are often used in reactive approaches to specifying how vari-
abilities are configured in reaction to new requirements (Ghanam et al. 2010). Furthermore, 
extractive approaches may employ feature models to represent and visualize variabilities 
discovered in existing products. Configuration scripts or files may be used to document and 
manage variabilities found in the codebase (Parra et al. 2012).

2.3  Testing approaches and levels

There exist diverse approaches to software testing, including (Luo 2001; Jorgensen 2013):

	● Manual testing: Testers create and execute test cases manually to evaluate the behavior 
of a software application or system without using automated testing tools or scripts.

	● Automated Testing: Specialized testing tools and scripts are used to automate the ex-
ecution of test cases and the verification of software applications or systems.

	● Functional testing: Focuses on verifying software functions according to specified re-
quirements. This approach includes different levels of testing, including:

	– Unit Testing is conducted at the lowest level, focusing on the fundamental unit of 
software, referred to interchangeably as “unit,” “module,” or “component.“

	– Integration Testing takes place when two or more tested units are integrated into 
a larger structure. This testing assesses the interactions between components and 
evaluates the quality of the overall structure when the properties cannot be deter-
mined solely from its individual components.

	– System Testing aims to validate the comprehensive quality of the entire system, 
covering end-to-end functionality. This type of testing typically aligns with the 
functional and requirement specifications of the system. Additionally, it assesses 
non-functional quality attributes like reliability, security, and maintainability.

	– Acceptance Testing occurs when the developers deliver the completed system to 
the customers or users. The primary goal of acceptance testing is to give confidence 
that the system functions correctly rather than to uncover errors.

	● Non-functional testing: Focuses on evaluating the attributes of a software system that 
are not directly related to its functional behavior. Instead, non-functional testing as-
sesses the system’s performance, reliability, scalability, security, usability, and other 
qualities that impact the overall user experience and the system’s ability to meet non-
functional requirements.

	● Regression testing: Focuses on verifying that recent changes or updates to a software 
application have not introduced new defects or negatively affected existing functional-
ity.

	● Model-based testing: Test cases are derived from models representing the software’s 
expected behavior. Different models can be used to generate test cases systematically, 

1 3

Page 5 of 61    146 



Empirical Software Engineering          (2024) 29:146 

including graphical representations, mathematical models, or formal notations.

SPL testing is an essential activity in SPLE to identify potential faults (Pohl and Metzger 
2006). Exhaustive testing in SPL is usually infeasible due to a combinatorial explosion in 
the number of products. Following Tevanlinna et al. (2004), Reuys et al. (2005), Käköla and 
Dueñas (2006), there are specific differences between single-system testing and SPL testing:

1)	 Testing is a part of both phases: Domain Engineering and Application Engineering. 
Domain testing is focused on testing domain artifacts (e.g., requirements, features, and 
source code); however, as domain artifacts include variability, completely testing the 
domain artifacts in domain testing is impossible. Application testing aims to detect 
remaining faults in a derived product mainly caused by unexpected interactions.

2)	 Test assets created in Domain Engineering (e.g., test cases, test scenarios, test results, 
and test data) are reused in Application Engineering to test instantiated products. To this 
end, test assets should be created by considering variability, which we call variant-rich 
test assets.

3  Systematic literature review methodology

To carry out this SLR, we followed guidelines for performing SLRs in software engineering 
(Kitchenham and Charters 2007). The steps followed in conducting this SLR are developing 
a review protocol, conducting the review, analyzing the results, reporting the results, and 
discussing the findings. The review protocol used in this SLR is explained in the follow-
ing subsections. The protocol includes the formulation of research questions to achieve the 
objective (Sect. 3.1), identification of sources to extract the research papers, the search cri-
teria and principles for selecting the relevant studies (Sect. 3.2), specifying a set of criteria 
to assess the quality of each study remained for data extraction (Sect. 3.3), and developing 
the template used for extracting data (Sect. 3.4).

3.1  Research questions

As previously stated, this study aims to investigate how the existing approaches deal with 
testing in SPL. To formulate research questions, we examined topics addressed by previous 
research on SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da Mota Silveira 
Neto et al. 2011; do Carmo Machado et al. 2014). Some of the research questions were com-
pletely reused from previous research – i.e., RQ1, RQ2, RQ3, RQ6, and RQ7 – and some of 
them were formulated by analyzing specific aspects that have not been investigated in detail 
in previous research – i.e., RQ4 and RQ5.

We reuse RQs to contrast and compare the newer research contributions with the results 
of previous SLRs. Yet, we identified two unique, interesting aspects: Because testing every 
potential configuration of an SPL is often impractical, it becomes essential to employ spe-
cific approaches for identifying valid and invalid configurations. We have examined the 
techniques utilized or proposed in RQ4 to address this issue. Maintaining traceability 
between test assets and other SPL artifacts offers substantial advantages, including enhanced 
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reusability, impact analysis, and change management. Consequently, we designed RQ5 to 
investigate the techniques employed for preserving traceability. Answering these questions 
led to a detailed investigation of the identified studies to specify practical and research 
issues regarding SPL testing; therefore, the results of this study can support both industrial 
and academic activities. The research questions are as follows:

	● RQ1. How is the research on SPL testing characterized? This question intends to 
discuss the bibliometrics of the primary studies and the evidence available to adopt the 
proposed approaches.

	● RQ2. What levels of tests are usually executed throughout the SPL lifecycle (i.e., 
Domain Engineering and Application Engineering)? There are different levels of 
tests, and each level is associated with a specific development phase, including unit, 
integration, system, and acceptance tests (Ammann and Offutt 2008; Jaring et al. 2008). 
This question aims to specify different test levels usually executed throughout the SPL 
lifecycle.

	● RQ3. How are test assets created by considering commonalities and variabilities? 
The large number of variation points and variants in an SPL increases the number of 
possible testing combinations. Creating test assets for all combinations of functionality 
is almost impossible in practice; therefore, test assets must be created by considering 
commonality and variability so that they can be reused as much as possible. Further-
more, an undetected error in common core assets of an SPL can be spread to all instanc-
es depending on those assets (Pohl and Metzger 2006); therefore, creating test assets by 
considering commonalities and variabilities and testing common aspects as early as pos-
sible is essential. Answering this question led to investigating how testing approaches 
handle commonality and variability throughout creating/executing test assets.

	● RQ4. How do SPL approaches deal with configuration-aware software testing? 
Testing all functionality combinations in an SPL is impossible and unnecessary since 
some combinations are invalid based on the constraints defined between configuration 
parameters. This question is intended to specify ways/techniques to detect valid and 
invalid combinations of configuration parameters.

	● RQ5. How is the traceability between test assets and other artifacts of SPL pre-
served throughout the SPL lifecycle? The reusability of test assets is essential to man-
age the complexity of SPL testing; preserving traceability between test assets and re-
quirements/implementation can enhance the reusability of test assets. In this sense, this 
question is intended to identify specific ways/techniques to achieve traceability between 
test assets and other artifacts throughout the SPL lifecycle.

	● RQ6. How are Non-Functional Requirements (NFRs) tested in SPL? NFRs such as 
security, reliability, and performance are very important for SPLs, and ignoring these 
requirements can lead to negative results (e.g., economic loss) (Nguyen 2009). There-
fore, systematically testing NFRs by considering commonalities and variabilities is an 
important aspect of SPLE. This question is intended to investigate how tests of NFRs 
are performed in an SPL.

	● RQ7. What mechanisms have been used for controlling cost/effort of SPL testing? 
As SPL testing is more expensive than single-system testing, identifying specific tech-
niques to reduce effort can provide the reader with an initial list of techniques identi-
fied by analyzing the selected studies. The specified list can be enriched regarding new 
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publications about SPL testing.

3.2  Identification of relevant literature

The process of gathering and selecting primary studies has been performed in three 
stages: in the first stage, we investigated previously published literature reviews on 
SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da Mota Silveira Neto 
et al. 2011; do Carmo Machado et al. 2014) to identify the initial set of papers that 
have been published up to 2013. In the second stage, we updated the list of papers 
by searching for new papers published between 2013 and 2022; in this stage, we 
performed forward and backward snowballing (Webster and Watson 2002) to identify 
missing relevant papers. In the third stage, we applied inclusion and exclusion criteria 
to each potential primary study identified through stages one and two. Each of the 
three stages is explained in detail in the following subsections. We must note that we 
chose studies that could address at least one of the RQs while selecting primary stud-
ies. For instance, certain studies focusing on SPL verification were included because 
they could provide insights relevant to questions such as RQ4. An Excel file was cre-
ated to be shared among the authors to document the various steps of the SLR process. 
This file1 contains all the details about how we gathered and selected primary studies 
and how we extracted data from the chosen studies.

3.2.1  Analysis of existing reviews

By searching for existing SLRs or Systematic Mapping Studies (SMSs) on SPL test-
ing, we found four SLRs (Engström and Runeson 2011; Da Mota Silveira Neto et 
al. 2011, Pérez et al. 2009; do Carmo Machado et al. 2014). Engström and Runeson 
(2011) conducted an SMS to identify useful approaches and needs for future research; 
in this study, 64 papers published up to 2008 were surveyed. Da Mota Silveira Neto 
et al. (2011) performed an SMS to investigate state-of-the-art testing practices in SPL 
testing; this study analyzed a set of 45 publications from 1993 to 2009. Pérez et al. 
(2009) conducted an SLR to identify experience reports and initiatives carried out 
in the SPL testing area; in this study, 23 primary studies published up to 2009 were 
analyzed. do Carmo Machado et al. (2014) conducted an SLR by analyzing 49 studies 
published up to 2013. As the four studies followed a systematic process to gather and 
select the primary studies, we are confident that they covered all the primary studies 
in the SPL testing field published up to 2013.
Using the list of primary studies in the four SLR/SMS, a set of 181 potentially rel-
evant papers was identified, shown as stage 1.1 in Fig. 1. By reading the titles and 
abstracts of the publications, papers that addressed none of the research questions 
were excluded. Furthermore, duplicated papers were removed, i.e., those included 

1  Replication package available on https://zenodo.org/doi/https://doi.org/10.5281/zenodo.10018266.
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in more than one literature review. At the end of this stage, 97 studies were finally 
selected, shown as stage 1.2 in Fig. 1.

3.2.2  Gathering recent publications

In the second stage of the search process, we updated the list of primary studies by analyzing 
papers published between 2013 and 2022 using the following databases: IEEE Xplore, Sco-
pus, ACM DL, Springer, and Wiley online library. To answer the stated research questions, 
we identified the keywords that had to be used in the search process. Variants of the terms 
“software product line”, “software product family”, and “software testing” were applied to 
compose the search query, as follows:

Fig. 1  The process of gathering and selecting primary studies
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(Software Product Line OR Software Product Lines OR Software Product Family OR 
Software Product Families) AND (Test OR Testing).

To evaluate the search string, we first performed a limited manual search to see whether 
the results of that search were among the results obtained by running the search string. 
The search string was adapted based on the syntax requirements of each data source used. 
Table 13 in Appendix A shows the forms of search strings applied to different engines and 
the number of papers extracted from each data source.

We obtained a set of 2,608 papers by running the search string on the search engines, 
shown as stage 2.1 in Fig. 1. We excluded 161 papers as duplicates since they were retrieved 
from multiple search engines. Furthermore, by reading the titles and abstracts of the remain-
ing papers, a set of 2,125 papers was identified as irrelevant since they considered testing 
from a single-system development perspective, not an SPL point of view. At the end of this 
step, we had 322 papers, shown as stage 2.2 in Fig. 1.

In the next step, we conducted both backward and forward snowballing by examining 
the reference lists of all the identified papers and exploring the papers that have cited these 
identified papers, respectively. Following this step, 70 additional papers (20 via backward 
snowballing and 50 via forward snowballing) were added to the previously identified set of 
papers, shown as stage 2.3 in Fig. 1. At the end of stage 2, we had a set of 392 new publica-
tions, shown in Fig. 1 as stage 2.4.

3.2.3  Primary study selection strategy

By merging the results of the two previous stages, a set of 477 papers was composed, shown 
as stage 3.1 in Fig. 1. Throughout the merging process, we identified 12 papers as duplicates 
because the year 2013 was considered in both the SLR conducted by do Carmo Machado 
et al. (2014) and in the automated search stage. We defined a set of inclusion and exclusion 
criteria to assess each potential primary study; the criteria are presented in Table 1. These 
criteria were applied to the titles and abstracts of the identified papers. The first author 
performed this stage. However, to reduce the researcher bias, the results of this stage were 
validated by the second and third authors of this paper.

At this stage, we initially applied inclusion criteria to select papers meeting all of the 
specified criteria for inclusion. Following this, we applied exclusion criteria to exclude 
papers that met one or more of the specified exclusion criteria. We included only papers 
evaluated via at least one empirical method, including Case study, Survey, Experiment, and 
Observational study (Wohlin et al. 2003; Sjoberg et al. 2007; Zhang et al. 2018). At the end 
of this stage, a set of 161 papers were selected to be subject to full-text reading, depicted in 
Fig. 1 as stage 3.2. The analysis results of the papers, conducted based on the inclusion and 
exclusion criteria, are accessible within the replication package.

3.3  Quality assessment

Quality assessment of candidate studies is recommended to be performed to ensure that 
studies are impartially assessed for quality (Kitchenham et al. 2016). To this end, we used 
a set of quality criteria to examine the studies, shown in Table 14 in Appendix B. These 
criteria were reused from the criteria proposed by Dybå and Dingsøyr (2008) and cover four 
main aspects related to quality, including:
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	● Reporting: Reporting of the study’s rationale, aims, and context.
	● Rigor: Has a thorough and appropriate approach been applied to key research methods 

in the study?
	● Credibility: Are the findings well-presented and meaningful?
	● Relevance: How useful are the findings to the software industry and the research com-

munity?

We used a weighting approach to examine the candidate studies in which two optional 
answers with their respective score were given for each question: “Yes” = 1, and “No” = 0. 
Then, we assigned a quality assessment score to each study by summing up the scores given 
to all the questions; the total quality score for each study ranged from 0 (very poor) to 11 
(very good). The two authors assessed the papers, and any discrepancies were resolved by 
holding sessions with all the authors.

The first three criteria shown in Table 14 in Appendix B were used as the minimum qual-
ity threshold of the review to exclude non-empirical research papers. To this end, if question 
1, or both of questions 2 and 3, received a “0” response, we did not continue the quality 
assessment process, and the paper was excluded. The results of the quality assessment for 
each paper are available in the replication package. Consequently, 43 papers were excluded, 
and 118 were selected as primary studies, shown in Fig. 1 as stage 3.3. The list of primary 
studies is presented in Table 15 in Appendix C.

The analysis of the studies based on quality assessment criteria is explained in more 
detail in Appendix E. In summary, concerning Reporting, most of the studies performed 
well. While the context description could be better in some studies, approximately 82% 
have clear research objectives, and all studies are based on research. On average, the studies 

Type Criteria
Inclusion 
criteria

Papers written in English
Papers that present an approach for SPL testing and/
or answer at least one of the RQs
Papers that have been evaluated by at least one 
empirical evaluation method

Exclusion 
criteria

Secondary studies (these papers are presented in the 
Related Work section)
Extended studies (only the most complete version of 
a study is kept and the others is excluded)
Papers available only in the form of abstracts or 
PowerPoint presentations
Technical reports and white papers
Graduation projects, Master’s theses and PhD 
dissertations
Textbooks, both print and electronic
Papers published in doctoral symposia
Comparative studies, with no additional contribution
Position or philosophical papers that only present an 
anecdotal evidence of SPL testing
Papers available only in the form of abstracts or 
PowerPoint presentations
Papers that do not directly address testing, instead 
they generally consider SPL

Table 1  Inclusion and exclusion 
criteria
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performed reasonably well in terms of Rigor. Researchers have justified the research design 
in almost 62% of studies to accomplish the research’s goals. A base approach has been com-
pared with the proposed approach in around 60% of studies, with the researchers attempting 
to prove that the selected controls reflect a defined population. Despite these promising 
findings, 32% of the studies fail in rigor. According to the credibility issue, around 95% of 
the studies discuss the results in relation to the research questions and highlight the study’s 
limitations. Most studies, however, need to establish relationships between the researcher 
and participants and the data collection that addresses the research problem. Regarding 
Relevance, about 97% of studies explicitly discuss SPL testing and how it contributes to 
existing knowledge, identifies new areas for research, and explains how the results can be 
used. Nevertheless, practitioner-based guidelines are present in about 15% of cases, indicat-
ing that more practical guidance is needed to strengthen industry adoption of SPL testing.

3.4  Data extraction and analysis

Data was extracted from each of the 118 primary studies during this stage. To this end, we 
used a predefined extraction form that enabled us to record the full details of the studies and 
be specific in answering research questions. The extraction form is shown in Table 2. The 
first two authors conducted the process of reading and completing the extraction form; the 
data were extracted and stored in a spreadsheet after reading each paper and shared with 
all the authors. We followed the content structuring / theme analysis approach of Mayring 
(2014) to analyze the data. The types of extracted data from the extraction form already 
provided us with a list of themes and the corresponding extracted data for these themes. 
This step was deductive. In the next step, we inductively created categories in the themes to 
summarize them. All the authors held multiple sessions to discuss the intermediate results 
and resolve any potential discrepancies.

4  Results

In the following sections, the data extracted from the primary studies is used to answer the 
research questions. An overview of the primary studies is first provided in Sect. 4.1. Then, 
we answer each RQ via the extracted data.

4.1  Characteristics of the studies (RQ1)

This section discusses the bibliometrics of the primary studies, the evidence available to 
adopt the proposed approaches, and the results of the evaluations conducted based on the 
quality assessment criteria.

4.1.1  Bibliometrics

In this section, we analyze annual trends and distribution per venue type of the studies 
selected.
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Extracted item Type of data
General 
information

Author(s) Free text
Year of publication Free text
Venue Free text
Publication type Predefined list of venues, 

including Journal article, 
conference proceeding, 
symposiums, workshop, 
and book chapter

Complete reference Free text
Empirical 
evaluation 
method

The type of em-
pirical evaluation 
method(s) used to 
validate the proposed 
approach

Predefined list of existing 
methods for empirical 
evaluation, including Case 
study, Survey, Experi-
ment, and Observational 
study (Wohlin et al. 2003; 
Sjoberg et al. 2007; Zhang 
et al. 2018)

RQ1 Characteristics of the 
primary studies

Predefined list of char-
acteristics including the 
bibliometrics of the studies 
and the evidence available 
to adopt the proposed 
approaches

RQ2 Level of tests usually 
executed throughout 
the SPL lifecycle

Predefined list of test lev-
els, including unit, integra-
tion, system and acceptance 
tests (Ammann and Offutt 
2008; Jaring et al. 2008)

RQ3 Mechanisms/tech-
niques used to create 
test assets by consid-
ering commonality 
and variability

List of mechanisms/tech-
niques gradually completed 
by studying primary studies

RQ4 Mechanisms/
techniques used to 
configuration-aware 
software testing

List of mechanisms/tech-
niques gradually completed 
by studying primary studies

RQ5 Mechanisms/tech-
niques used to pre-
serve the traceability 
between test assets 
and other artifacts 
of SPL

List of mechanisms/tech-
niques gradually completed 
by studying primary studies

RQ6 Mechanisms/
techniques used to 
test non-functional 
requirements in SPL

List of mechanisms/tech-
niques gradually completed 
by studying primary studies

RQ7 Mechanisms/tech-
niques used to con-
trol the cost/effort of 
SPL testing

List of mechanisms/tech-
niques gradually completed 
by studying primary studies

Table 2  Data extraction template 
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Annual trend:  The distribution of the primary studies according to publication year is shown 
in Fig. 2. No publication prior to 2003 focuses on SPL testing. However, after 2003, there 
was at least one paper per year, except for 2004. As seen in Fig. 2, the number of published 
papers in this field has generally increased over time (2003–2019). This indicates that the 
SPL Testing field has attracted the attention of many researchers in the last few years. Fur-
thermore, it shows increasing attention to the use of empirical methods to assess the value of 
proposed approaches since we only included empirically evaluated studies in our review. As 
we excluded some of the papers based on the quality assessment criteria, there is no primary 
study published in 2004 that satisfies the minimum quality threshold of the review. Further-
more, the number of papers published in some years (e.g., 2013) was actually higher than 
the ones presented in Fig. 2; however, some of those papers were excluded throughout the 
assessment of quality criteria. It is worth mentioning that many studies might not be made 
available by search engines until the time the search was performed (August 2022), and 
thus, we did not consider these studies in this study. We have specified these studies in the 
replication package. The overall trend that the number of publications increases is quantified 
by all entries in DBLP for each year, as shown in Fig. 2 for comparison. As we see in this 
figure, the trend in SPL testing is well above in several years (2014, 2016, 2017, and 2019). 
However, this trend has been decreasing in recent years.

Distribution per venue:  Most of the primary studies were published in conferences; of 65 
conference papers, 17 papers (∼ 26%) were published in SPLC2, which is the most repre-
sentative conference for the SPL engineering area. This indicates that SPLC is an important 

2  SPLC stands for Software Product Line Conference.

Fig. 2  Distribution of primary studies by year
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venue for SPL research, and most primary studies in this field are presented in SPLC. Also, 
31% of studies were published in journals, 7% in symposiums, and 5% in workshops.

4.1.2  Analyzing the evidence available to adopt the proposed approaches

As reported in the title or the text of the studies, case studies, experiments, and expert sur-
veys are the specific methods that have been used for evaluating primary studies. Most of 
the primary studies were evaluated by conducting an experiment (∼ 58%). It is worth men-
tioning that five studies applied more than one evaluation method, including case study and 
expert survey (Bucaioni et al. 2022), case study and experiment (Akbari et al. 2017; Fragal 
et al. 2019), experiment and expert survey (Hervieu et al. 2016), and case study, experiment, 
and expert survey (Wang et al. 2017). Table 3 shows the primary studies that have used each 
type of evaluation method.

Although the studies reported that their proposed approaches were evaluated by using the 
mentioned empirical methods, we need to analyze the strength of the evidence available to 
adopt the proposed approaches. The results of this analysis can help researchers to find new 
topics for empirical studies, and practitioners to assess the maturity of a proposed approach. 
Kitchenham and Charters (2007) classified the study design into five levels, based on the 
evidence presented in medical research.

Alves et al. (2010) revised the classification to be applicable in their study; the revised 
classification is fully applicable in our review. The following hierarchy is used in our study 
(from weakest to strongest):

1.	 No evidence.
2.	 Evidence obtained from demonstration or working out toy examples.
3.	 Evidence obtained from expert opinions or observations.
4.	 Evidence obtained from academic studies, e.g., controlled lab experiments.
5.	 Evidence obtained from industrial studies, e.g., causal case studies.
6.	 Evidence obtained from industrial practice.

Based on the evidence evaluation scheme explained, the results of the evaluation on how 
much evidence is available to adopt the proposed approaches are presented in Table 16 in 
Appendix D. All the studies have been evaluated by one kind of evaluation method. Aca-
demic studies (Lev4) are the most used evaluation method (60%), where open-source repos-
itories are usually utilized to assess the proposed approaches. Following is Demonstration 
(Lev2) (∼ 17%). Only a small number of studies have been evaluated by using industrial 
systems or real data sets (∼ 16%) (Industrial studies, Lev5), or by applying the proposed 
methods to industrial settings and by involving industrial professionals (∼ 13%) (Industrial 
practice, Lev6). This analysis shows an overall low level of evidence in the SPL testing field 
that is in line with the results of the SLR conducted by do Carmo Machado et al. (2014).

Evaluation method Studies
Experiment S1-S64, S111, S112, S114, S115, S117, S118
Case study S33, S48, S64-S110, S113, S116
Expert survey S61, S64, S85

Table 3  Distribution of primary 
studies by the type of evaluation 
method
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4.2  Test levels executed throughout the SPL lifecycle (RQ2)

We divided SPL testing according to the two common phases of SPLE: Domain Engineer-
ing and Application Engineering. Based on the analysis of the studies, there are two types of 
testing activities that are performed during Domain Engineering: (1) developing test assets 
so they can be instantiated in Application Engineering, (2) applying tests to assets produced 
during Domain Engineering to detect faults in common core assets as soon as possible. By 
analyzing studies that are focused on the second activity, we identified two levels of tests 
usually performed in Domain Engineering; distribution of studies based on the test levels 
is shown in Table 4:

	● Unit testing: Out of 118 studies, three studies are only focused on this level of testing 
(Jaring et al. 2008; Kim et al. 2011, 2012). Jaring et al. (2008) classified test levels based 
on the binding time of variabilities. Based on this study, unit tests are performed before 
variant binding; therefore, we included this study in this classification since Application 
Engineering is the phase in which variabilities are bounded to derive a specific product. 
Kim et al. (2011) and Kim et al. (2012) proposed specific methods in which analysis on 
the code level is performed to generate test suits for testing common parts of an SPL in 
Domain Engineering.

	● Integration testing: Execution of integration tests in Domain Engineering are exam-
ined in the studies by Reis et al. (2007), Neto et al. (2010) and Akbari et al. (2017). 
Reis et al. (2007) proposed a model-based, automated technique for integration testing 
in Domain Engineering. In the proposed technique, integration test case scenarios are 
generated to support the test of interactions between the components of an integrated 
sub-system; placeholders are also created for necessary variable parts and all compo-
nents that are not part of the integrated sub-system. Neto et al. (2010) presented a regres-
sion testing approach for SPL architectures to maintain the correctness and reliability 
of the architecture after modifications; as the main purpose of the approach is to verify 
the integration among modules and components that compose the SPL architecture, we 
included this study in this classification. Akbari et al. (2017) proposed a method for 
prioritized selection and execution of integration test cases in both Domain Engineering 
and Application Engineering.

Phase Studies
Domain 
Engineering

Unit testing S6, S16, S66
Integration 
testing

S2, S10, S48

Application 
Engineering

Unit testing S23, S54, S62, S99, S106, S113
Integration 
testing

S3, S9, S11, S13, S23, S33, S38, 
S40, S43, S46, S47, S48, S58, S62, 
S65, S66, S71, S74, S87, S88, S90, 
S93, S94, S96, S99, S110, S113

System/
Acceptance 
testing

S1, S20, S32, S43, S46, S47, S49, 
S65, S66, S67, S68, S69, S70, S71, 
S72, S74, S79, S80, S81, S82, S83, 
S84, S85, S86, S89, S90, S102, 
S112

Table 4  Distribution of primary 
studies by the testing level
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Specific testing activities that are conducted in Application Engineering are: Creating spe-
cific product test assets by selecting and instantiating domain test assets, designing addi-
tional product-specific tests, and executing tests (Da Mota Silveira Neto et al. 2011). It is 
worth mentioning that some of the studies are focused on reducing the number of products 
that need to be tested by using specific techniques like pairwise testing (e.g., Matnei et al. 
2016). In addition, some studies are focused on product prioritization to enhance the effi-
ciency of SPL testing (e.g., Parejo et al. 2016). Once a set of configurations/products are 
selected/prioritized for testing, their behavior needs to be tested using a specific mechanism, 
e.g. executable unit tests (Parejo et al. 2016). Studies that are focused only on the first step 
(selecting/prioritizing configurations) do not usually consider a specific level of test. The 
testing levels usually performed in Application Engineering, as shown in Table 4, are as 
follows:

	● Unit testing: Some of the studies considered executing unit tests in Application En-
gineering (Bürdek et al. 2015; Li et al. 2018; Souto and d’Amorim 2018; Jung et al. 
2019, 2020; Lochau et al. 2014). Bürdek et al. (2015) proposed a white-box test-suit 
derivation mechanism for SPLs, specifically for unit testing, in which test specifica-
tions are extended with a presence condition. A presence condition constrains the set of 
configurations for which a specific test case is valid; this information is used for testing 
configurations in Application Engineering. Li et al. (2018) investigated test cases gen-
erated for one product that are reused for another product of the SPL by applying two 
categories of structure-based criteria, control-flow and data-flow. Souto and d’Amorim 
(2018), Jung et al. (2019) and Jung et al. (2020) identify unit test cases to be selected 
for regression testing.

	● Integration testing: As shown in Table 4, this level of testing has been considered in 
a greater number of studies (27 studies). Some studies have not explicitly mentioned 
this level of testing; however, they mentioned that the untested parts of the framework 
are tested during Application Engineering (Scheidemann 2006; Al-Dallal and Sorenson 
2008; Jaring et al. 2008). Some of the studies consider the selection of integration test 
cases during Application Engineering (e.g., Jung et al. 2019).

	● System /Acceptance testing: This level of testing has also been considered in a greater 
number of studies (28 studies), as shown in Table 4. In most studies, test models de-
signed throughout Domain Engineering are instantiated to derive specific system test 
cases (e.g., Olimpiew and Gomaa 2009). Arrieta et al. (2015) split the lifecycle of cyber-
physical systems product lines into three phases: Domain Engineering, Application En-
gineering, and Simulation phases. Execution of system test cases are performed in the 
simulation phase; however, as we classified SPL lifecycle into Domain Engineering and 
Application Engineering, we included this study in this category.

4.3  Creating test assets by considering commonalities and variabilities (RQ3)

Creating test assets by considering commonality and variability to enhance their reusability 
and to reduce the probability of undetected errors in common core assets by testing them as 
early as possible is essential in SPL testing. Out of 118 papers, 25 primary studies (∼ 21%) 
provide contributions to handle variability in a range of different manners. We conducted 
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an exploratory analysis to identify shared characteristics among the approaches and subse-
quently categorized them. We identified three categories of approaches, including model-, 
specification-, and requirements-based approaches. The distribution of studies based on 
these categories is shown in Table 5.

	● Model-based approaches: In model-based approaches, a set of techniques is used to 
design and execute tests for SPLs by leveraging formal or semi-formal models of the 
SPL’s variability. In the examined studies, the subsequent methods are employed to 
incorporate variability into test models:

	– Adaptation of UML models or integrating them with the feature model to pro-
duce test models including variability: In studies (Reuys et al. 2005, 2006; Reis 
et al. 2007; Olimpiew and Gomaa 2009), activity diagrams are extended using spe-
cific mechanisms (e.g., stereotyping specific elements) to contain variabilities and 
then used as test models to create domain test case scenarios. Ebert et al. (2019) 
developed a common platform in Domain Engineering that contains all elements 
required for producing products. This study uses the SMArDT methodology (Drave 
et al. 2019) to elaborate each functionality defined in the platform via an extended 
version of activity diagram; generic test cases are then created for each functionality 
based on the SMArDT methodology. Reis et al. (2006) propose the ScenTED-PT 
technique in which the requirements and the architecture of the system are specified 
by UML models supplemented with performance requirements; then, they create a 
test model from which performance test case scenarios are derived.

Lochau et al. (2012a) and Lackner et al. (2014) proposed to use the statechart mod-
eling approach as a basis for capturing commonalities and variabilities of product 
implementations in an SPL; a 150% statechart model and the feature model is inte-
grated to produce a reusable test model. The 150% statechart model is a model that 
contains the behavioral specification fragments of every feature without considering 
constraints between features, and the 100% statechart model is a specific instantia-
tion of the 150% model by considering the dependencies and constraints (Lochau 
et al. 2012a).

	– Using/defining different modeling notations to capture variabilities and using 
them to produce test assets: In this category of model-based approaches, specific 
modeling notations have been used or defined to create variant-rich test models. 
Tuglular et al. (2019) introduced Featured Event Sequence Graphs (FESGs) to 
explicitly capture behavioral variability in SPLs. Gebizli and Sözer (2016) used 
hierarchical Markov chains to model system usage; as this model captures all 

Approaches Studies
Model-based S2, S32, S33, S46, S47, 

S68, S70, S71, S72, S74, 
S76, S81, S84, S85, S90, 
S94, S95, S113

Specification-based S12, S69
Requirement-based S1, S49, S67, S80, S102

Table 5  Distribution of primary 
studies to answer RQ3
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possible usage scenarios for a family of systems, it is considered as a reference test 
model. Bucaioni et al. (2022) define specific metamodels and languages to cap-
ture test variabilities, including SPL metamodel (SPLmm), Products metamodel 
(Pmm), Weaving metamodel (Wmm) to link features and signals in Pmm to those in 
SPLmm, Test case DSL (TcDSL), and Test Script generation Transformation (TsT). 
Fragal et al. (2019) use Featured Finite State Machines (FFSMs) to represent the 
abstract behavior of an SPL; in this study, the HSI method (Luo et al. 1995) has 
been extended to generate a single configurable test suite for an SPL. Luthmann et 
al. (2019a) extended the concept of Timed Automata (TA) by feature constraints 
and configurable parameters to facilitate efficient verification of real-time proper-
ties for SPLs. Lochau et al. 2012b), Lachmann et al. (2016), and Lity et al. (2019) 
apply the principles of delta modeling (Schaefer et al. 2010) to state machine test 
models to explicitly capture behavioral commonality and variability between prod-
uct variants and then their test assets. In delta-oriented testing techniques, a product 
is considered as a base product and delta modules specify changes that should be 
applied to the base product to produce new ones (Schaefer et al. 2010). Beohar and 
Mousavi (2016) introduce the concept of Input-Output Featured Transition Systems 
(IOFTSs); IOFTSs are labeled transition systems with logical constraints on the 
presence or absence of features and are used as test models. In the work by Lochau 
et al. (2014), they introduced delta-oriented architecture test modeling as a means to 
systematically reuse common component and integration test elements across vari-
ous system variants. They employed delta-oriented test artifact reuse and regression 
test planning to facilitate the systematic evolution of variable test elements among 
incrementally tested versions and/or variants of a software system.

	● Specification-based approaches: In these approaches, specific links are defined be-
tween different configurations of an SPL and, therefore, between test cases designed for 
both shared and variable components of the products. Mishra (2006) uses the process 
algebraic specification language CSP-CASL (Roggenbach 2006) to formally specify 
the system; then, enhancement relationships are established between the specifications 
of products. In this way, test cases generated for the common parts are reused between 
products, and new test cases are generated for the differences in the specification. Uzun-
caova et al. (2010) describe properties of features as first-order logic formulas in Alloy 
(Jackson 2012); by considering a product as a base, test cases are generated for the base 
product using Alloy Analyzer. For each new product, the test cases from previous prod-
ucts are reused/refined based on the differences in the specifications.

	● Requirement-based approaches: In these approaches, variability is considered as 
early as possible so that it can be used to design test cases. In several primary stud-
ies, use case modeling is the approach used for representing requirements (Nebut et al. 
2006; Araújo et al. 2017; Hajri et al. 2020). Nebut et al. (2006) enhance use cases with 
parameters and contracts used for presenting variability at the level of requirements; 
test-related artifacts (e.g., test objectives, test scenarios, and behavioral test patterns) 
are produced based on the enhanced use cases. Araújo et al. (2017) express use case 
specifications in a controlled natural language by considering variabilities; the specifica-
tions are then used for generating test procedures and their input and output. Hajri et al. 
(2020) propose to use the Product line Use case modeling Method (PUM) that supports 
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variability modeling in use case diagrams; by using the requirement traceability mecha-
nism, test cases for a new product are generated by reusing/adapting existing test cases 
or by defining new test cases.

Kang et al. (2015) propose a method called Systematic Software Product Line Test - 
Data (SSPLT-D) in which a set of platform test requirements are first defined throughout 
Domain Engineering and then platform test scenarios, platform test cases, and platform 
test data are created based on test requirements. Nebut et al. (2003) propose to derive a 
set of behavioral test patterns from the requirement model and then use them to produce 
product-specific test cases.

4.4  Dealing with configuration-aware software testing (RQ4)

Dealing with configuration-aware software testing, i.e., detecting valid and invalid com-
binations of configuration parameters, is paramount in SPL approaches because testing all 
combinations of SPL functionalities would be impossible and unnecessary. In our investiga-
tion, 41 out of 118 papers (∼ 35%) have addressed this. These papers have employed three 
methods to distinguish between valid and invalid configurations; distribution of studies 
based on these methods is shown in Table 6:

	● Using/proposing specific approaches/algorithms/tools to produce valid configu-
rations: Some studies utilize constraint programming, which is used for solving and 
modeling constraint satisfaction problems, to generate configurations that satisfy all 
cross-tree constraints imposed by the feature model (Hervieu et al. 2011; Marijan et al. 
2013). In the same way, Kim et al. (2013) and Akbari et al. (2017) propose a constraint 
handling approach to produce valid configurations; as an example, an algorithm called 
SPLat is proposed in study (Kim et al. 2013) that dynamically prunes irrelevant configu-
rations by handling constraints.

Using formal methods to check cross-tree constraints defined in feature models to check 
the relations between features is another way to find and produce valid configurations 
(Lackner et al. 2014; Lopez-Herrejon et al. 2014; Beohar and Mousavi 2016; Parejo et 
al. 2016; Ferrer et al. 2017, 2021; Akimoto et al. 2019; Arrieta et al. 2019; Jakubovski 
Filho et al. 2019; Luthmann et al. 2019b; Ibias et al. 2022). For example, Lackner et 
al. (2014) transform a feature model into propositional formulas so that any variable 
assignment that satisfies the formula is a valid configuration for the product line.

Approaches Studies
Specific methods/algorithms S4, S7, S14, S15, S17, 

S25, S29, S32, S33, S34, 
S39, S41, S45, S46, S48, 
S51, S52, S53, S56, S57, 
S58, S61, S74, S77, S79, 
S91, S95, S100, S101, 
S103, S106, S108, S112, 
S117, S118

Runtime analysis S71, S111, S113, S114
Manual analysis S72, S73

Table 6  Distribution of primary 
studies to answer RQ4
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Several studies suggest the utilization of sampling algorithms and techniques to gener-
ate valid configurations (Oster et al. 2010; Lochau et al. 2012a; Patel et al. 2013; Yu 
et al. 2014; Al-Hajjaji et al. 2016, 2019; Lee and Hwang 2019). Combinatorial Inter-
action Testing (CIT) is among the commonly used sampling algorithms to exclude 
invalid interactions between features; in CIT, design-time decisions for variability are 
considered to exclude invalid interactions between features. For example, Oster et al. 
(2010) and Lochau et al. (2012a) propose a pairwise algorithm in which dependencies 
and constraints between each pair of features are considered to generate all possible 
products that cover all valid pairs of features and their potential interactions. In a study 
conducted by Saini et al. (2022), they introduced a distance-based method for recog-
nizing invalid configurations. This approach involves an initial phase where specific 
CIT algorithms are employed to generate real configurations. Following that, desired 
configurations are created, considering the availability of features in the configurations. 
The approach distinguishes valid from invalid configurations by applying a comparison 
technique to assess the differences between the actual and desired configurations.
Additionally, several studies proposed tool support for their specific approaches. They 
used SAT solvers to generate configurations to satisfy the feature model constraints 
which, in turn, reduces the configuration space to be tested (Henard et al. 2013, 2014a, 
b; Galindo et al. 2016; Hervieu et al. 2016; Souto and d’Amorim 2016; Fragal et al. 
2019; Luthmann et al. 2019a; Krieter et al. 2020; Xiang et al. 2022). Using or imple-
menting a tool or toolkit to produce valid configurations has been proposed by Ensan 
et al. (2012), Al-Hajjaji et al. (2016), Arrieta et al. (2016), Al-Hajjaji et al. (2019) and 
Arrieta et al. (2019). For example, FeatureIDE has been used in studies by Al-Hajjaji 
et al. (2016), Arrieta et al. (2016), Al-Hajjaji et al. (2019), and Arrieta et al. (2019); this 
tool can generate valid configurations manually and automatically.

	● Runtime analysis: An alternative category of methods employs runtime analysis to 
differentiate intended from unintended interactions. In these methodologies, rather than 
relying on pre-established specifications to detect interactions, they examine runtime 
data to distinguish valid and invalid interactions (Reuys et al. 2006; Lochau et al. 2014; 
Rocha et al. 2020; Vidal Silva et al. 2020). As an example, in a study by Rocha et al. 
(2020), they introduced an iterative technique called VarXplorer to inspect interactions 
as they emerge. When provided with a test case consisting of system inputs, VarXplorer 
generates a Feature Interaction Graph (FIG), which is a concise representation of all 
pairwise interactions among features. This FIG offers a visual depiction of the features 
that interact, the contextual data, and the relationships between features, including cases 
where one feature suppresses another. By employing an iterative approach to interaction 
detection, developers and testers can thoroughly analyze the FIG derived from all the 
test cases within a test suite.

It is worth mentioning that some studies only stated that the feature model is manually 
analyzed to consider feature dependencies and feature grouping constraints (Olimpiew and 
Gomaa 2009; Cabral et al. 2010).
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4.5  Preserving traceability between test assets and other artifacts (RQ5)

One of the essential factors in SPL testing is the preservation of the traceability between test 
assets and other artifacts throughout the SPL lifecycle. This is due to enhancing the reus-
ability of test assets for managing the SPL testing complexity. However, in this regard, a few 
papers take preserving traceability into account, only 14 out of 118 (∼ 12%). We categorized 
these papers according to the type of the artifacts linked to test assets; distribution of studies 
based on this classification is shown in Table 7:

	● Preserving traceability between requirements and test assets: In the majority of the 
studies, traceability is established between requirements, often represented using UML 
models (primarily use cases), and various test assets. These papers have utilized vari-
ous methods, encompassing the gradually refinement of UML models into test models, 
direct mapping of requirements to test assets, annotation-based traceability, and the ap-
plication of specific tools for automated tracing.

Reuys et al. (2005), Nebut et al. (2006), Reis et al. (2007) and Olimpiew and Gomaa 
(2009) use UML models to preserve the traceability between requirements and test case 
scenarios. In the same way, Reuys et al. (2006) enabled the traceability between dif-
ferent artifacts (use cases, use case scenarios, architecture scenarios, and test case sce-
narios) by refining use case scenarios into test case scenarios.
The manual definition of links between use cases and system test cases was mentioned 
by Hajri et al. (2020). Lackner et al. (2014), Gebizli and Sözer (2016) and Wang et 
al. (2017) created mapping relationships between variabilities modeled via the feature 
model and the test model to preserve traceability between requirements and test assets. 
Bucaioni et al. (2022) employed a metamodel to create a link between the product mod-
els and the SPL model. In this approach, the shared functionalities of the SPL are repre-
sented through a class diagram, and test cases are generated explicitly for these shared 
functionalities.
Adding annotations to test assets to specify their relationship with other artifacts is the 
approach proposed by Marijan et al. (2017); in this approach, test cases were manually 
annotated using tags and related to one or more test requirements; this traceability infor-
mation is then used to assess the quality of test cases with respect to the requirements 
coverage.
In some studies, specific tools are used for automated tracing (Reis et al. 2006; Lochau 
et al. 2012a). Reis et al. (2006) use a tool named Mercury TestDirector to preserve the 
traceability between requirements specification, domain performance test case scenar-
ios, and application performance test case scenarios.  Lochau et al. (2012a) employed 
Rhapsody ATG to enable traceability between requirement models and test artifacts in 
an automated manner.

Approaches Studies
Traceability between Requirements and Test Assets S1, S2, S32, 

S64, S68, S70, 
S71, S72, S74, 
S84, S85, 
S102, S110

Traceability between Configurations and Test Assets S69

Table 7  Distribution of primary 
studies to answer RQ5
 

1 3

  146   Page 22 of 61



Empirical Software Engineering          (2024) 29:146 

	● Preserving traceability between configurations and test assets: The solution pro-
posed by Mishra (2006) is the definition of enhancement relationships between specifi-
cations of systems (different configurations of the SPL) and, therefore, their test cases.

It is also worth mentioning that some studies have emphasized the importance of preserving 
traceability between test assets and other artifacts, but they provide no mechanism in this 
regard (Kang et al. 2015; Aduni Sulaiman et al. 2019).

4.6  Testing non-functional requirements in SPL (RQ6)

In addition to functional requirements, there are non-functional requirements which should 
be tested in SPL, but only 3 out of 118 studies consider them. Various categories of NFRs 
have been addressed in these studies, including load testing and performance profiling (Reis 
et al. 2006), NFRs at the hardware-in-the-loop level (Arrieta et al. 2016), and real-time 
properties (Luthmann et al. 2019a).

Reis et al. (2006) propose a technique which concentrates on load testing and perfor-
mance profiling. They employ the Object Management Group’s UML Profile (Fomel 2002) 
to model performance aspects. Testing NFRs as a critical aspect of cyber-physical systems 
is investigated at the hardware-in-the-loop level by Arrieta et al. (2016); these requirements 
(e.g., the usage of memory and CPU) are modeled via the feature model and their cover-
age is considered by using selected test cases and the simulation process.  Luthmann et al. 
(2019a) present configurable parametric timed automata to extend the expressiveness of 
featured timed automata to enable efficient family-based verification of real-time proper-
ties (e.g., synchronization and execution time behaviors); the proposed modeling formalism 
aims to represent the behavioral variability of time-critical product lines and consider the 
minimum/maximum delay coverage.

4.7  Controlling cost/effort of SPL testing (RQ7)

As the cost/effort of SPL testing remains a significant concern within SPLE, numerous stud-
ies have proposed various techniques to address this issue. However, the lack of a standard-
ized classification for these techniques has made it challenging to analyze them effectively. 
One notable exception is the extensive research conducted on product sampling techniques, 
which has been categorized into specific sub-techniques, including automatic selection, 
semi-automatic selection, and coverage (Varshosaz et al. 2018). In our analysis, we utilized 
these established categories to organize the diverse range of techniques proposed in the 
literature.

While reviewing the papers, we identified other approaches that offer potential solutions 
to managing the cost and effort associated with SPL testing. These approaches were catego-
rized based on their primary contributions and grouped into distinct categories. Some of the 
identified approaches focus on the reuse of test assets, either from a core asset base or from 
previously tested products. Others provide varying degrees of automation, ranging from 
the implementation or utilization of specialized tools to the automation of specific testing 
processes, such as specification-based approaches.

Additionally, a subset of studies explored strategies for prioritizing the execution order of 
SPL configurations or products and the associated test cases. Another category of research 
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aimed to minimize the size of the test suite required for testing a particular product, thereby 
reducing overall testing effort.

It is important to note that these techniques can often be combined. For example, test 
prioritization and minimization techniques can be used with sampling techniques to further 
optimize the cost and effort associated with SPL testing. Furthermore, the list of techniques 
can be enriched concerning new publications regarding SPL testing. In the rest of this sec-
tion, the details of these five techniques are provided:

	● Reusing test assets: Based on the analysis of studies, test assets (e.g., test cases and test 
results) are reused in two ways, including:

	– Reusing test assets from a core asset base: In some studies, domain test scenarios 
containing variabilities are created in Domain Engineering; some of these scenarios 
are reused, and some of them are adapted based on the application requirements 
(Nebut et al. 2003; Reuys et al. 2005, 2006; Reis et al. 2006). Some other studies 
are focused on reusing test cases by selecting them from a repository based on the 
application requirements (Arrieta et al. 2016; Wang et al. 2017; Lima et al. 2020) 
or by binding variabilities defined in abstract test cases based on specific criteria 
(e.g., coverage criteria) (Al-Dallal and Sorenson 2008; Olimpiew and Gomaa 2009; 
Lackner et al. 2014; Bürdek et al. 2015; Kang et al. 2015; Ebert et al. 2019; Fragal 
et al. 2019; Luthmann et al. 2019a).

	– Reusing test assets between products: In some studies, test assets are reused 
between products by analyzing differences between the current product and pre-
viously tested products (Mishra 2006; Uzuncaova et al. 2010; Neto et al. 2010; 
Lochau et al. 2012b, 2014; Xu et al. 2013; Lachmann et al. 2015, 2016; Beohar and 
Mousavi 2016; Fragal et al. 2017; Li et al. 2018; Ebert et al. 2019; Lity et al. 2019; 
Luthmann et al. 2019a; Tuglular et al. 2019; Hajri et al. 2020). The technique usu-
ally used in these studies is the delta-oriented testing technique, based on regression 
testing principles and delta modeling concepts. By considering delta modules, test 
cases and test results from previously tested products can be reused and adapted for 
the new product.

	● Providing a specific level of automation: We found two ways by which the studies 
provide a particular level of automation:

	– Implementing/using a specific tool(s): In 49 studies, authors claimed that their 
proposed approach is automatically performed using specific tools. However, the 
majority of these studies fail to provide any details regarding the specific tools 
employed for this purpose (e.g., Reis et al. 2006; Olimpiew and Gomaa 2009; Cal-
vagna et al. 2013; Li et al. 2018; Safdar et al. 2021). Table 8 shows that only 19 
of these studies have provided online access to their tools. It is worth noting that 
most of these tools are in the form of research prototypes. Instead of developing 
a novel tool tailored to their proposed approach, some studies utilize a set of pre-
existing tools at various stages of their approach. For instance, in the case of Parejo 
et al. (2016), the Combinatorial tool and Feature Model Testing System (FMTS), 
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Study Name of 
the tool 
implemented

Link License Year of 
publication

Con-
tinued

S3 JFramework 
Re-Tester

NA* NA 2008 NA

S4 PACOGEN http://people.rennes.inria.fr/Arnaud.Gotlieb/
resources/Pacogen/Pacogen.html

CeCI-
LL-C

2011 NA

S17 SPLat NA NA 2013 NA
S18 VANE https://github.com/ViViD-DiverSE/VANE None** 2014 No***

SRTST https://github.com/psjung/
SRTST_experiments

None 2019 No

S25 LOOKUP NA NA 2014 NA
S32 SPLTestbench NA NA 2014 NA
S33 ConFTGen https://github.com/vhfragal/ConFTGen-tool None 2017 No
S38 FORMAT https://github.com/brcoztn/

AgileSWDevelopment
None 2017 No

S41 FeatureIDE 
(extended)

https://featureide.github.io/ L-GPL 2020 NA

S46 CoPTA https://www.es.tu-darmstadt.de/es/team/
lars-luthmann/copta-analysis

NA 2019 No

S47 IMoTEP http://www.dfg-spp1593.de/imotep/ NA 2019 NA
S49 CARNAUbA https://sites.google.com/site/

use2testswithcnl/
NA 2017 No

S51 FeatureIDE 
(extended)

https://github.com/FeatureIDE/FeatureIDE/
tree/develop/plugins/de.ovgu.featureide.
fm.core

L-GPL 2016 NA

S54 CPA/TIGER https://www.sosy-lab.org/research/cpa-tiger/ NA 2015 No
S55 Flower/C NA NA 2016 NA
S61 PACOGEN 

(extended)
http://people.rennes.inria.fr/Arnaud.Gotlieb/
resources/Pacogen/Pacogen.html

CeCI-
LL-C

2016 NA

S62 CPLTE NA NA 2020 NA
S63 FMTS NA NA 2017 NA
S64 IPT NA NA 2017 NA
S68 ScenTED-

DTCD
NA NA 2005 NA

S78 CIA Tool 
Suite

https://cloud.tu-braunschweig.de/s/
fl-fiEgKYFwPAnciei651aGBg5A

NA 2020 No

S83 SPL-AT-Gher-
kin Feature 
File Generator

https://github.com/esg4aspl MIT 2020 No

S96 DELTARX NA NA 2015 NA
S101 CoPTA 

(extended)
https://www.es.tu-darmstadt.de/es/team/
lars-luthmann/copta-analysis

NA 2019 No

S102 PUMConf https://sntsvv.github.io/PUMconf/ None 2016 No
S104 TEMSA NA NA 2015 NA
S108 FeatureIDE 

(extended)
https://featureide.github.io/ L-GPL 2019 NA

S109 VIBeS https://projects.info.unamur.be/vibes/ NA 2017 NA

Table 8  The list of tools implemented in the studies (last accessed October 2023)
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as introduced by Ferreira et al. (2013), were employed to derive pairs and calculate 
solution fitness, respectively.

	– Using specific techniques that help automate the testing process. Specification-
based testing was used in some studies (e.g., Mishra 2006) as an appropriate step in 
automating the testing process because of its precise nature in describing the desired 
properties of the system under test by using a formal language. Model-based testing 
is another approach that helps automate the testing process. For example, Bucaioni 
et al. (2022) introduced a model-based approach in which test scripts are generated 
from shared SPL features by model transformation.

	● Handling the selection of products to test: Testing all possible combinations of fea-
tures is almost impossible in terms of resources and execution time (Cohen et al. 2006). 
Specific approaches have been proposed to determine a minimal set of configurations so 
that the correctness of the entire family can be inferred by successful verification of this 
set. Through our examination of the studies, we have identified diverse techniques for 
choosing a subset of products. These techniques have been categorized according to the 
provided categories for product sampling in study (Varshosaz et al. 2018). Distribution 
of studies based on these techniques are shown in Table 9:

	– Automatic selection: There are two general types of automatic selection tech-
niques, including Greedy and Meta-heuristic search:

	– Greedy: Greedy algorithms (Vazirani 2001) are focused on finding an optimal 
solution by an iterative approach. In the context of SPLs, the optimal solu-
tion is the configuration most close to the optimum. Specific measures are used 

Studies
Automatic 
selection

Greedy S24, S51, S65, S73, S101, S105
Meta-
heuristic 
search

S14, S15, S21, S25, S27, S28, S35, 
S37, S42, S45, S50, S52, S53, S55, 
S59, S60

Semi-automatic selection S19, S58, S61, S100, S117
Coverage S4, S5, S6, S7, S8, S18, S29, S31, 

S32, S39, S41, S44, S56, S72, S73, 
S74, S75, S77, S87, S97, S115, S116

Table 9  Distribution of primary 
studies based on the techniques 
used for product sampling

 

Study Name of 
the tool 
implemented

Link License Year of 
publication

Con-
tinued

S110 TITAN NA NA 2017 NA
S115 FeatureIDE 

(extended)
https://featureide.github.io/ L-GPL 2022 NA

* Unidentified; no information was found
** The license has been designated as “none” on GitHub
*** Discontinued

Table 8  (continued) 
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to determine a configuration as an optimum solution in each iteration (e.g., 
requirements/feature coverage).

	– Meta-heuristic search: In this category, the problem of identifying a subset of 
products is considered as an optimization problem. Meta-heuristic algorithms 
are designed to target this problem by employing computational search within 
the configuration space to find an optimal subset of products (Varshosaz et al. 
2018). Some studies have applied Evolutionary Algorithm, Random Search, 
and Genetic Algorithm by using an aggregation function of different objectives 
such as cost, number of products, number of revealed faults, pairwise cover-
age, and mutation score (e.g., Ensan et al. 2012). Some other studies propose to 
use multi-objective algorithms (e.g., Matnei et al. 2016). Hyper-heuristics are 
another category of approaches that have been explored in some studies to solve 
the problem of product sampling (e.g., Strickler et al. 2016). A hyper-heuristic 
is a methodology that can help automate configuration of heuristic algorithms 
and determine low-level heuristics (Jakubovski Filho et al. 2018). To consider 
user preferences throughout the selection of products as well as to make use 
of benefits of hyper-heuristic approaches, a preference-based hyper-heuristic 
approach has been proposed by Jakubovski Filho et al. (2018); this approach is 
an example of algorithms proposed in the field called Preference and Search-
Based Software Engineering (PSBSE) (Ferreira et al. 2017b).

	– Semi-automatic selection: In semi-automated selection, various factors are con-
sidered, including the desired number of generated products, the allocated sampling 
time, and the level of coverage, such as coverage of feature interactions. Moreover, 
the complete sample set or an initial set produced by other sampling techniques 
may serve as a starting point for the sampling process (Varshosaz et al. 2018). As an 
example, Reuling et al. (2015) propose a framework for fault-based (re-)generation 
of configuration samples based on feature-diagram mutation. The underlying ratio-
nale for this approach is rooted in the recognition that subsets of products generated 
by CIT approaches can often contain numerous redundant or less significant feature 
combinations. Furthermore, these approaches may overlook crucial or error-prone 
combinations beyond t-wise, primarily due to their black-box nature, which typi-
cally lacks consideration of domain-specific knowledge, including the fault history 
associated with feature combinations. The authors argue that the integration of their 
proposed approach with pairwise CIT sampling can potentially enhance the effi-
ciency and effectiveness of SPL testing.

	– Coverage: Coverage criteria are frequently employed to ensure the quality of prod-
uct sampling. One commonly utilized criterion is the coverage of feature interactions 
(Varshosaz et al. 2018). CIT techniques are focused on the interactions between dif-
ferent features or configuration options, as these interactions often lead to defects in 
software systems. These techniques are classified as greedy by Cohen et al. (2007) 
since they are focused on selecting a subset of configurations where each configura-
tion covers as many uncovered combinations as possible. However, it is categorized 
separately in some other studies (e.g., Cmyrev and Reissing 2014). We also prefer to 
separate this category of techniques from greedy algorithms since they are specially 
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focused on covering feature interactions. The studies that provide details of either a 
process or an algorithm for CIT are shown in Table 9.

The most popular kind of CIT is pairwise testing (2-wise), a specialized notion of 
t-wise coverage; in t-wise testing, configurations are selected in a way that guarantees 
that all combinations of t features are tested. Kuhn et al. (2004) showed that 80% of 
bugs can be revealed by investigating interaction between two variables. Furthermore, 
for solving problems of large complexity, pairwise has proven to be most effective 
since finding inconsistencies in a model including only two features might be easier 
than investigating all combinations of features at once (do Carmo Machado et al. 
2014). However, Steffens et al. (2012) revealed that the interaction of three or more 
features usually occurs in the SPL testing field; therefore, considering the combination 
of high-strength can have an important role in revealing faults. To this end, some stud-
ies claimed that their proposed approach for t-wise coverage can work with any value 
of t (e.g., Krieter et al. 2020). However, high-strength (t > 3) feature interaction can 
lead to a large number of valid configurations and therefore complicate the problem of 
t-wise coverage (Qian et al. 2018). Therefore, selecting a specific value for t is usually 
a trade-off between cost and efficiency to reveal faults.

	● Prioritizing configurations/test cases: Test case prioritization is focused on defining 
the execution order of test cases that attempts to increase their effectiveness at meeting 
some performance goals (Li et al. 2007; Catal and Mishra 2012). By investigating stud-
ies, we found two categories of studies in this regard:

	– Several studies propose approaches for prioritizing SPL configurations/products to 
be tested; these approaches are usually used as a complement for product selection/
sampling techniques. In some of these studies, one or more objectives are defined 
for configuration prioritization (e.g., high failure rate and high overall requirement 
coverage) (Scheidemann 2006; Sánchez et al. 2014; Wang et al. 2014; Galindo et al. 
2016; Parejo et al. 2016; Akimoto et al. 2019; Hierons et al. 2020; Pett et al. 2020; 
Ferrer et al. 2021); results of the evaluations conducted by Parejo et al. (2016) indi-
cate that multi-objective prioritization typically leads to faster fault detection than 
mono-objective prioritization. In another category of studies, similarity between 
configurations with respect to feature selections is considered as a criterion for prod-
uct prioritization (similarity-based prioritization) (Arrieta et al. 2015; Al-Hajjaji et 
al. 2017a, 2019). In these approaches, configurations are prioritized based on the 
dissimilarity between them so that the configuration that has the lowest value of 
similarity compared to previously selected configurations in terms of feature selec-
tions is chosen.  Al-Hajjaji et al. (2017b) propose a delta-oriented product prioritiza-
tion method as similarity-based prioritization techniques do not consider all actual 
differences between products; in this approach, instead of comparing products to 
select features, delta-modeling artifacts (Clarke et al. 2010) are used to prioritize 
products.

	– Some studies are focused on prioritizing test cases for products. Lima et al. (2020) 
propose a learning-based approach is proposed to prioritize test cases in the Con-
tinuous Integration (CI) cycles of Highly Configurable Systems (HCI). Arrieta et 
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al. (2015), Marijan et al. (2017), Markiegi et al. (2017), Arrieta et al. (2019) and 
Hajri et al. (2020) use specific criteria to prioritize the test cases (e.g., Fault detec-
tion capability, Test execution time, or Test case appearance frequency). In another 
category of studies, similarity-based approaches are proposed to prioritize test cases 
(e.g., Devroey et al. 2017; Lachmann et al. 2015; Lachmann et al. 2016). As an 
example, Devroey et al. (2017) propose an algorithm to generate and sort dissimi-
lar tests to achieve good fault finding; to this end, a distance function is calculated 
based on the actions executed by the test case. Furthermore, to provide a good cov-
erage of a large number of products, prioritizing test cases is also performed based 
on the products that may execute a test case.

	● Minimizing test suite: This technique is focused on minimizing the test suite size for 
testing a product, while preserving fault detection capability and testing coverage of 
the original test suite. Al-Dallal and Sorenson (2008), Stricker et al. (2010), Kim et al. 
(2012) and Beohar and Mousavi (2016) discuss approaches in which test cases already 
covered during Domain Engineering or test cases related to common parts that have 
already been executed in previous products are ignored. Other studies propose specific 
approaches to reduce redundant test executions for SPL regression testing by pruning 
tests that are not impacted by changes (Lachmann et al. 2016; Jung et al. 2019, 2020, 
2022; Souto and d’Amorim 2018).

There are studies focused on improving test generation process to produce minimal set 
of test cases while achieving specific objectives (e.g., coverage and cost/time) (Patel et 
al. 2013; Wang et al. 2015; Gebizli and Sözer 2016; Akbari et al. 2017; Marijan et al. 
2017; Aduni Sulaiman et al. 2019; Markiegi et al. 2019; Rocha et al. 2020). As an exam-
ple, Akbari et al. (2017) propose a method in which features in feature model are priori-
tized based on the domain engineer’s decisions and the constraints that exist between 
features; integration test cases are then produced by considering specified priorities. 
Furthermore, there are approaches that are not directly focused on test suit minimiza-
tion; however, they help reduce redundant execution of tests for unnecessary configura-
tions (Kim et al. 2013; Souto and d’Amorim 2018). These approaches are focused on 
removing the valid configurations that are unnecessary for the execution of each test.
The distribution of studies based on the identified techniques is presented in Table 10. 
As observed, the majority of the studies (∼ 62%) are focused on proposing a specific 
level of automation. However, many of these studies do not offer details regarding 
the specific tools utilized for this purpose. The second most researched category of 
approaches pertains to handling the selection of products to test (∼ 39%). Following 
this are techniques involving reusing test assets (∼ 25%), prioritizing configurations/test 
cases (∼ 18%), and minimizing test suite size (∼ 15%).
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5  Threats to validity

In this section, we discuss the main threats associated with the validation of this study, 
classified according to the categorization proposed by Ampatzoglou et al. (2019). These 
particular threats are categorized into three categories: study selection validity, data validity, 
and research validity.

5.1  Study selection validity

One of the main threats to any secondary study is its inability to guarantee the inclusion of 
all relevant articles in the field. To mitigate this threat, a meeting involving all researchers 
was conducted to discuss and refine the search scope and keywords. Then, we evaluated the 
validity of the search string by conducting a limited manual search to see whether the results 
of that manual search show up in the results obtained by running the search string.

To ensure the comprehensive identification of all relevant studies in our search process, 
we rigorously followed the guidelines provided by Kitchenham and Charters (2007). We 
conducted a bibliographic search of published literature reviews in the SPL testing field. 
We updated the list of studies by applying a search string to multiple digital libraries and 
performed the backward and forward snowballing process. Therefore, we are confident that 
we have provided good coverage of studies in the SPL testing field.

During the primary study selection process, to minimize potential bias in applying inclu-
sion/exclusion criteria, these criteria were clearly defined and regularly updated in our 
protocol. The first author applied inclusion and exclusion criteria. However, to reduce the 
researcher bias, the results of this stage were validated by the second and third authors of 
this paper.

Regarding quality assessment, we used a set of quality criteria to examine the studies. 
These criteria were reused from those proposed by Dybå and Dingsøyr (2008). Two research-

Approaches Studies
Reusing test 
assets

S3, S10, S12, S13, S22, S32, S33, S40, S46, S47, 
S54, S64, S67-S72, S76, S79, S80, S81, S90, 
S94, S95, S96, S99, S102, S113

Providing a 
specific level of 
automation

S1, S3-S8, S11, S12, S14, S17, S18, S19, S21, 
S23, S25, S26, S27, S32, S33, S37, S38, S41, 
S42, S45, S46, S47, S49, S50, S51, S53, S54, 
S55, S57, S59, S61, S62, S63, S64, S67, S68, 
S69, S70, S72, S74, S75, S76, S77, S78, S82, 
S83, S85, S86, S87, S89, S93-S104, S108, S109, 
S110, S112, S113, S115

Handling the 
selection of prod-
ucts to test

S4-S8, S14, S15, S18, S19, S21, S24, S25, S27, 
S28, S29, S31, S32, S35, S37, S39, S41, S42, 
S44, S45, S50, S51, S52, S53, S55, S56, S58, 
S59, S60, S61, S65, S72, S73, S74, S75, S77, 
S87, S97, S100, S101, S105, S115, S116, S117

Prioritizing 
configurations/
test cases

S20, S26, S30, S34, S36, S39, S40, S42, S57, 
S65, S78, S94, S96, S98, S100, S102, S103, 
S107, S108, S109, S110

Minimizing test 
suite

S3, S11, S16, S17, S23, S43, S48, S62, S84, S88, 
S92, S94, S95, S104, S106, S110, S111, S112

Table 10  Distribution of primary 
studies to answer RQ7
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ers participated in the application of quality assessment criteria. We also conducted regular 
meetings to address and resolve any conflicts that arose during the process effectively.

5.2  Data validity

One of the main threats regarding data validity is data extraction bias. Subjective bias during 
the data extraction process has the potential to lead to an inconsistent interpretation of the 
extracted data by researchers. To mitigate this risk, two researchers collaborate during the 
data extraction phase, conducting resolution sessions to address any emerging ambiguities. 
Nevertheless, due to certain studies needing more explicit details on specific aspects of SPL 
testing, such as test levels, we had to make subjective interpretations based on information 
scattered throughout these studies.

Subjective bias may also lead to the misclassification of data in response to RQ3–RQ7. 
Since no predefined categories were available, we adopted an exploratory approach, scru-
tinizing the extracted data and identifying pertinent categories. To mitigate this potential 
issue, we introduced a structured data extraction form, conducted quality assessments on 
the chosen studies, and maintained ongoing discussions to ensure consistency in the data 
extraction process and category definitions. However, it is essential to acknowledge the 
potential influence of researcher bias on data extraction and presentation within this study.

5.3  Research validity

Research validity encompasses threats identified at all stages of our SLR.
We extensively searched secondary studies, as detailed in Sect.  3.2. This approach 

enabled us to identify research gaps, consider the scope and definition of RQs, and gain 
insights into the current state-of-the-art within the domain of SPL testing.

In our exploration of potential threats to the repeatability of this SLR, we acknowledge 
the complexity inherent in replicating research. Specifically, we highlight the concern that 
other researchers may not repeat the SLR with precisely the same results. To mitigate this 
threat, we provided the details of the SLR methodology so that other researchers can rep-
licate the study; furthermore, we have made all the data collected during the SLR process 
available online. However, as subjectivity in the studies analysis is one major issue in con-
ducting a literature review, we cannot guarantee that researchers can achieve exactly the 
same results.

One serious threat to the validity of the SLR is the inability to generalize the study’s 
results to other scenarios and application domains. We included only the studies empirically 
evaluated in our analysis to handle this threat. However, as most evaluations do not refer to 
real-world practice, the results and classifications presented in this study may not fully apply 
to practical settings. Moreover, our SLR intentionally focused exclusively on SPLs. This 
deliberate choice was made to answer specific questions tailored for SPL testing. While this 
focus enhances the depth of our insights into SPL testing practices, it inevitably limits the 
applicability of our findings to the broader context of configurable systems. The decision not 
to include configurable systems was strategic, considering the extensive body of literature 
on configurable system testing, which would have required substantial additional time and 
effort for comprehensive analysis.
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6  Discussion

In this study, we presented a systematic review of testing approaches proposed in the SPLE 
field. We have investigated seven RQs:

	● RQ1: How is the research on SPL testing characterized?

The analysis indicates that the SPL testing field has attracted significant attention from 
researchers in recent years, with an increase in empirically evaluated studies. Although 
the overall number of publications has grown, recent years have seen a decline. Most 
primary studies are published in conferences, with case studies, experiments, and expert 
surveys being the common evaluation methods. However, the strength of evidence sup-
porting the proposed approaches varies, with academic studies (60%) being the most 
common, followed by demonstrations (17%). Only a small number of studies involve 
industrial systems or real data sets (16%) or industrial practice (13%), indicating an 
overall low level of evidence in the field.

	● RQ2. What levels of tests are usually executed throughout the SPL lifecycle (i.e., 
Domain Engineering and Application Engineering)?

In Domain Engineering, testing activities include developing test assets for later use and 
testing assets to detect faults early. In Application Engineering, activities involve creat-
ing specific product test assets, designing additional product-specific tests, and execut-
ing tests. Some studies focus on reducing the number of products tested or prioritizing 
products to enhance testing efficiency. The distribution of studies based on test levels 
shows that in Application Engineering, integration testing and system/acceptance test-
ing are the most commonly reported levels. In contrast, unit testing is less frequently 
reported in both phases. This indicates a strong focus on higher levels of testing in the 
SPL testing field, particularly in the Application Engineering phase.

	● RQ3. How are test assets created by considering commonalities and variabilities?

Creating test assets to address commonality and variability in SPL testing is cru-
cial for enhancing reusability and minimizing faults in core assets. Our analysis cat-
egorized these approaches into three groups: model-based, specification-based, and 
requirement-based.
Model-based approaches utilize formal or semi-formal models of SPL variability to 
design and execute tests. Specification-based approaches define specific links between 
different SPL configurations and test cases. Requirement-based approaches prioritize 
considering variability early in test case design. The distribution of studies across these 
categories indicates that model-based techniques are the most commonly used in the 
examined studies.

	● RQ4. How do SPL approaches deal with configuration-aware software testing?
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Dealing with configuration-aware software testing, particularly in distinguishing valid 
and invalid combinations of configuration parameters, is crucial in SPL approaches. 
Testing all possible combinations of SPL functionalities is not only impractical but also 
unnecessary. The studies have employed three main methods to distinguish between 
valid and invalid configurations: Using/proposing specific approaches, algorithms, or 
tools, runtime analysis, and manual analysis. The distribution of studies across these 
methods indicates that the majority of the studies have either proposed specific methods 
or algorithms or have utilized already available tools.

	● RQ5. How is the traceability between test assets and other artifacts of SPL pre-
served throughout the SPL lifecycle?

Preservation of traceability between test assets and other artifacts is a crucial factor in 
SPL testing as it enhances the reusability of test assets and manages the complexity of 
SPL testing. However, only a few papers consider preserving traceability throughout 
the SPL lifecycle. The papers are categorized based on the types of artifacts associated 
with test assets, focusing on preserving traceability between requirements and test assets 
as well as between configurations and test assets. The distribution of primary studies 
addressing this aspect highlights that most of the studies focus on preserving traceability 
between requirements and test assets.

	● RQ6. How are Non-Functional Requirements (NFRs) tested in SPL?

Testing NFRs in SPLs has been rarely examined by researchers, with only three studies 
addressing this aspect. These studies cover various categories of NFRs, such as load 
testing, performance profiling, NFRs at the hardware-in-the-loop level, and real-time 
properties.

	● RQ7. What mechanisms have been used for controlling cost/effort of SPL testing?

Various techniques have been proposed to manage the cost and effort associated with 
SPL testing. However, the lack of a standardized classification for these techniques has 
made their analysis challenging. Notably, research on product sampling techniques has 
been extensively categorized into sub-techniques such as automatic selection, semi-
automatic selection, and coverage. Beyond sampling techniques, other approaches have 
emerged, categorized based on their primary contributions, including reusing test assets, 
providing different levels of automation, handling product selection for testing, priori-
tizing configurations/test cases, and minimizing the test suite size.
These techniques are often combinable, as seen in the use of test prioritization and mini-
mization techniques alongside sampling techniques to optimize testing cost and effort 
further. Moreover, the list of techniques continues to evolve with new publications on 
SPL testing. The distribution of studies reveals that the majority focus on proposing a 
specific level of automation (∼ 62%). However, many studies lack details on the specific 
tools used for this purpose. The second most researched category involves handling the 
selection of products to test (∼ 39%). Additionally, techniques related to reusing test 
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assets (∼ 25%), prioritizing configurations/test cases (∼ 18%), and minimizing test suite 
size (∼ 15%) are also explored.

We only included studies empirically evaluated in our analysis. In this discussion, we 
emphasize the maturity of evaluations conducted in these studies, highlight the contribu-
tions of the studies in addressing the research questions, present the main findings, and 
propose research directions to address identified gaps. It is important to note that our SLR 
intentionally focused exclusively on SPLs. We deliberately excluded the broader context of 
configurable systems from our analysis to have a clear focus for our article. Therefore, all 
the findings and research gaps reported in this section are based on our analysis within the 
SPL testing area. We acknowledge that this might lead to missing synergies with contribu-
tions from the broader field of configurable systems. Still, we hope this SLR can be the basis 
for exploring these aspects in future work.

6.1  Overview of evaluation maturity and studies’ contributions

Proposed approaches have been evaluated using three types of evaluation methods, including 
case studies, experiments, and expert surveys. However, there is variation in the scope and 
type of SPLs employed in these evaluations. Different types of SPLs have been employed in 
the evaluations, representing diverse application domains, such as embedded systems (e.g., 
automotive and medical systems), web-based systems, banking systems, and smartphone 
and vendor machine SPLs. We categorized the scope of applications employed in the evalu-
ations into three main groups: Industrial systems with real data sets, SPLs sourced from 
online repositories (e.g., SPLOT repository) or extracted from existing sources, and the 
development of a demonstrator. It is important to note that some studies utilized more than 
one category of applications, for instance, both industrial SPLs and SPLs available online. 
Approximately 60% of the studies (71 studies) conducted evaluations using SPLs available 
online or derived from prior research. Around 17% (20 studies) involved the development 
of a demonstrator for assessing the proposed approach. Only 29% (34 studies) utilized an 
industrial-scale SPL (Industrial study or Industrial practice) for evaluating their approach. 
This issue may jeopardize the adoption of the proposed approaches in industry; therefore, 
proposed approaches for SPL testing need to improve from their evaluation perspective.

Discussing threats to validity is crucial in research since it helps researchers and read-
ers understand the limitations and potential challenges associated with the study. However, 
an analysis of the included studies reveals that only 32 primary studies (∼ 27%) exten-
sively discussed threats to validity. In approximately 42 studies (∼ 36%), the examination 
of threats to validity was brief. Notably, 44 studies (∼ 37%) entirely neglected to address 
this crucial aspect.

Another aspect that is worth analyzing is the distribution of the studies based on their 
contribution to the research questions. Figure 3 represents the frequencies of studies accord-
ing to the research questions addressed by them. It should be mentioned that some studies 
covered more than one topic; therefore, the total amount shown in Fig. 3 exceeds the total 
number of studies selected for final analysis. As seen in Fig. 3, most studies address the 
questions RQ7 (Controlling cost/effort of SPL testing) and RQ2 (Test levels in SPL test-
ing). Moreover, there is notable research interest in the area of configuration-aware testing 
(RQ4), followed by a substantial focus on variability-aware creation of test assets (RQ3). 
However, some aspects of SPL testing have rarely been considered and, therefore, need 
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new solutions, including RQ5 (Traceability between test assets and other artifacts) and RQ6 
(Non-functional testing).

6.2  Main findings

We analyzed the data based on the content structuring/theme analysis approach of Mayring 
(2014). Initially, the data extracted from the extraction form provided us with a list of key 
challenges and sub-themes. In the next step, we inductively created categories within the 
themes to summarize them (analytical themes). The results of this analysis are shown in 
Table 11. In the rest of this section, we present various gaps and concerns that necessitate 
further exploration and attention from both researchers and practitioners:

	● Variability management: Effective variability management in SPLs is crucial, yet it 
introduces complexities that can pose challenges to testing (Sect. 4.3). One facet that 
needs further exploration is the challenges associated with variability control. It de-
mands a more in-depth investigation to identify and analyze challenges arising from 
the diverse features and configurations inherent in SPLs. These challenges encompass 
the complexities introduced by numerous potential combinations and the possibility of 
unforeseen interactions among variable elements. While this aspect has been previously 
examined, the key concern lies in the applicability of the proposed solutions and ap-
proaches in real-world scenarios. For example, one of the most investigated solutions 
involves selecting a subset of products for testing. However, the potential for unseen 
interactions between features in new products to result in faults raises doubts. Further-
more, many of the proposed approaches have only been evaluated at a proof-of-concept 
level, necessitating a more in-depth investigation into their suitability for industrial SPL 

Fig. 3  Distribution of studies by the contribution to the research questions
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applications.

Another crucial aspect involves examining variability modeling. This includes an 
analysis of the current state of variability modeling in SPL testing and an exploration 
of opportunities to enhance modeling techniques to address testing challenges. While 
model-based approaches, commonly used to create variant-rich test assets, have shown 

Key Challenges Sub-themes/
challenges 
(Descriptive 
themes)

Analytical themes (Insights)

Testing types Non-functional 
testing

– Diverse nature of non-func-
tional requirements (e.g., S70)
– Impact on testing strategies 
(e.g., S79)
– Resource intensiveness (e.g., 
S79)
– Integration with functional 
testing (e.g., S46)

Regression 
testing

– Impact of SPL evolution on re-
gression testing (e.g., S10, S78)
– Efficiency gains through 
automated regression testing 
(e.g., S23)
– Traceability challenges in 
regression testing (e.g., S23)
– Selective regression testing 
strategies (e.g., S10, S13, S78)

Tool support 
and empirical 
evaluations

Tool support – Effectiveness and efficiency of 
SPL testing tools
– Adaptability to evolving SPL 
configurations (e.g., S3)
– User experience and usability 
of testing tools

Industrial 
evaluations

– Industrial evaluations for the 
proposed approaches
– Providing guidance for 
industry-specific SPL testing

SPL lifecycle 
and testing

Test levels 
throughout 
SPL lifecycle

– Integration of test levels across 
SPL phases (S20)
– Impact of product line vari-
abilities on test levels (S1, S23)
– Adaptation of test Levels to 
changing requirements (e.g., 
S1, S10)

Preserving 
traceability

– Challenges in traceability 
across configurations in SPL 
testing (e.g., S69)
– Automated traceability tools in 
SPL testing (e.g., S1)

Variability 
management

– Variability control challenges 
(e.g., S74)
– Modeling variability for test-
ing (e.g., S71)
– Improving model-based ap-
proaches (e.g., S1, S74)

Table 11  The results of the 
analysis based on qualitative 
content analysis
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promise in SPL testing, there is still room for improvement in automating the genera-
tion of test cases and ensuring comprehensive coverage based on variability models. 
Utilizing model-based approaches can automate the process of transforming high-level 
test assets (e.g., test scenarios) and generating low-level test assets (e.g., test cases and 
test data).

	● Non-functional testing: Despite the fact that functional testing of SPLs has been exten-
sively investigated, non-functional testing aspects need greater focus and specific meth-
odologies (Sect. 4.6). This particular gap has already been acknowledged in previous 
literature reviews. Non-functional requirements encompass diverse dimensions, includ-
ing but not limited to performance, security, usability, and scalability. While some stud-
ies have explored aspects such as real-time behaviors and performance, there remains a 
need for further research to comprehensively address diverse facets within this domain. 
Moreover, the inherent nature of non-functional requirements significantly shapes test-
ing strategies. Considering their distinct characteristics and evaluation criteria, it is cru-
cial to investigate how distinct testing approaches are essential for various aspects like 
performance testing, security testing, and usability testing.

Non-functional testing, particularly in critical areas such as performance and secu-
rity, poses challenges due to its resource-intensive nature. Investigating the challenges 
associated with acquiring and allocating resources for thorough non-functional testing 
throughout the SPL lifecycle is crucial for effective quality assurance.
The complexities of seamlessly integrating non-functional testing with functional test-
ing necessitate further exploration. Examining how the interplay between these two test-
ing dimensions influences the overall quality assurance process will contribute valuable 
insights to the field.

	● Tool support: Given the substantial testing effort required for SPLs, the availability 
of tools specifically designed for SPL testing is crucial (Sect. 4.7). The analysis of the 
studies with respect to automation provided by the tools indicates that most of the tool 
implementations are proof-of-concept prototypes developed for validating the proposed 
approach. Therefore, developing more robust and user-friendly tools can significantly 
help practitioners in their testing efforts. This particular challenge has previously been 
discussed in prior literature reviews.

Some specific areas need further exploration. Evaluating the effectiveness and efficiency 
of existing SPL testing tools explores capabilities, limitations, and areas for improve-
ment in tools designed for various testing activities within the SPL lifecycle. Analyzing 
how well testing tools adapt to changes in SPL configurations includes investigating 
their ability to accommodate evolving feature sets, configurations, and architectural 
variations, ensuring continued effectiveness. Assessing the user experience and usabil-
ity of SPL testing tools explores how user-friendly and accessible tools are for practi-
tioners involved in SPL testing, considering factors such as ease of use, learning curve, 
and user satisfaction.

	● Regression testing: Effectively handling regression testing in SPLs, where modifica-
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tions to one product can affect others, presents an intricate challenge (Sect. 4.7). Regres-
sion test selection/prioritization/minimization and architecture-based regression testing 
are potential points for future research. Test case selection is focused on choosing a 
set of relevant test cases to test the modified version of the system, and the aim of test 
minimization is to remove the redundant/irrelevant test cases from the existing test suit. 
Test case prioritization aims at ordering and ranking test cases based on specific criteria 
such as importance and likelihood of failure. All these techniques aim to reduce the 
cost/effort of SPL testing after applying any change to products or the SPL architecture.

An important aspect is analyzing how changes and evolutions in the SPL architecture 
impact regression testing strategies. This investigation includes understanding the chal-
lenges of maintaining test suites across evolving SPL configurations and the need for 
adaptive regression testing approaches.
Additionally, exploring the benefits and challenges of implementing automated regres-
sion testing within the SPL context is crucial. This requires an analysis of efficiency 
gains, potential pitfalls, and strategies to optimize the effectiveness of automated regres-
sion testing in SPL scenarios.
Moreover, investigating challenges related to maintaining traceability between evolving 
codebase versions and regression test suites is critical. This requires exploring strategies 
to preserve traceability links, ensuring that regression testing aligns with the dynamic 
nature of SPL development.

	● Industrial evaluations: Encouraging the adoption of SPL testing practices in indus-
trial settings requires addressing practical challenges (Sect. 3.3 and 4.1). This includes 
offering guidance tailored for industry-specific SPL testing and conducting industrial 
evaluations.

To enhance the industry adoption of SPL approaches, offering practical insights and rec-
ommendations is essential. This involves providing tailored guidance to help organiza-
tions navigate the unique challenges and requirements of adopting SPL testing methods 
in their specific industry domains. Additionally, there is a need to move beyond proof-
of-concept evaluations and conduct practical assessments to verify the feasibility, scal-
ability, and effectiveness of proposed SPL testing methods in diverse industrial contexts.

	● Test levels throughout the SPL lifecycle: Exploring the details of a test level through-
out the SPL lifecycle and illustrating the challenges associated with neglecting a par-
ticular test level would provide valuable insights for practitioners (Sect. 4.2). Two lev-
els of tests are commonly executed throughout Domain Engineering: Unit testing and 
Integration testing. Although testing common core assets of an SPL is vital to detect 
faults as soon as possible, a few studies have considered the execution of tests in domain 
engineering. Therefore, it would be useful to conduct further investigations regarding 
how to execute a specific level of test in Domain Engineering and the consequences of 
not performing it. In Application Engineering, three levels of tests are usually executed: 
Unit testing, Integration testing, and System/acceptance testing. The two last levels have 
been investigated in most of the studies. It is worth mentioning that Unit testing has 
been investigated as a level of test in Application Engineering in a few studies published 
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in recent years. In contrast, previous literature reviews have not reported this level of 
test in Application Engineering (e.g., Pérez et al. 2009). This indicates no consensus on 
the test levels executed during Domain Engineering and Application Engineering.

Another aspect that needs further exploration involves examining the influence of vari-
abilities inherent in SPLs on different test levels. This requires understanding how the 
presence of variable features across products affects test activities, including planning, 
design, and execution at each testing level. Additionally, there is a need to investigate 
how test levels adapt to requirements and feature set changes throughout the SPL life-
cycle. This requires exploring the challenges and opportunities associated with main-
taining effective testing strategies in response to the dynamic nature of evolving product 
configurations.

	● Preserving the traceability between test assets and development artifacts: Preserv-
ing traceability between test assets and development artifacts in SPLs is particularly 
challenging due to the complex relationships between product variants and the shared 
assets (Sect.  4.5). Studies that target testing SPLs (very) rarely consider traceability 
explicitly. Examining the challenges associated with preserving traceability is crucial, 
especially when dealing with evolving product configurations within the SPL testing en-
vironment. While researchers have proposed certain methods, such as Reis et al. (2007) 
which preserved the traceability between requirements and test case scenarios using 
UML models and by refining use case scenarios into test case scenarios, Reuys et al. 
(2006) enabled traceability between artifacts, there remains a necessity to investigate 
more efficient approaches for modeling and representing traceability relationships, con-
sidering feature variability and configuration management. Furthermore, exploring the 
creation of automated tools and techniques for establishing and consistently updating 
traceability links in response to the evolving nature of SPLs presents an engaging area 
for future research.

To compare findings with previous SLRs, Table 12 presents a summary of the findings from 
both the current study and prior literature reviews (Pérez et al. 2009; Engström and Runeson 
2011; Da Mota Silveira Neto et al. 2011; do Carmo Machado et al. 2014).

7  Related work

This research aims to provide researchers and practitioners with an overview of state-of-the-
art testing practices applied to SPL and identify the gaps between required techniques and 
existing approaches. Accordingly, we conducted an SLR to analyze existing approaches to 
SPL testing. Therefore, SLRs and SMSs on SPL testing can be considered as works related 
to this research. To the best of our knowledge, four papers have systematically analyzed 
approaches focused on SPL testing (Pérez et al. 2009; Engström and Runeson 2011; Da 
Mota Silveira Neto et al. 2011; do Carmo Machado et al. 2014).

Pérez et al. (2009) conducted an SLR to identify experience reports and initiatives car-
ried out in the SPL testing area. In this work, primary studies were classified into seven 
categories: Unit testing, Integration testing, functional testing, SPL Architecture testing, 
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Embedded system testing, testing process and testing effort in SPL. Then, they presented a 
summary of each area. The similarity of this SLR to our work is testing levels investigated 
in both works; however, our work is broader in scope than this SLR since we investigated 
more aspects of SPL testing.

Engström and Runeson (2011) conducted an SMS by analyzing papers published up 
to 2008. The authors mapped studies into seven categories based on their research focus: 
Test organization and process, Test management, Testability, System and acceptance testing, 
Integration testing, Unit testing, and Test automation. They also identified challenges in SPL 
testing and needs for future research. This SMS has similarities with our work regarding 

Table 12  Comparison of findings between current study and prior literature reviews
Findings Current Study Previous LRs
Non-function-
al testing

Emphasizes the need for greater focus and specific 
methodologies in addressing non-functional testing 
aspects in SPLs. Highlights diverse dimensions such 
as performance, security, usability, and scalability, 
with challenges in resource allocation and integration 
with functional testing

Emphasized the need to explore 
various non-functional require-
ments and the trade-offs between 
quality attributes like modularity 
and testability. However, they did 
not discuss challenges related to 
resource allocation and the in-
tegration of non-functional with 
functional testing

Regression 
testing

Identifies challenges such as the impact of SPL evolu-
tion on regression testing, efficiency gains through 
automated regression testing, traceability challenges 
in regression testing, and selective regression testing 
strategies

Challenges related to integration 
testing were not reported in detail

Tool support Emphasizes the critical importance of tool support 
for SPL testing, highlighting the need for more robust 
and user-friendly tools. Specific areas for further 
exploration include evaluating tool effectiveness and 
efficiency, adaptability to changes in SPL configura-
tions, and user experience/usability

Underscored the importance 
of tool support for SPL testing, 
without detailed exploration of 
specific challenges and recom-
mendations for improvement

Industrial 
evaluations

Emphasizes the need for industrial evaluations of pro-
posed approaches and guidance for industry-specific 
SPL testing

Acknowledged similar challenges

Test levels 
throughout 
SPL lifecycle

Identifies challenges related to integrating test levels 
across SPL phases, the impact of product line vari-
abilities on test levels, and the adaptation of test levels 
to changing requirements

Identified the challenge of not 
examining the effects of not 
performing a test level in SPL 
testing. The current study, 
however, provides more detailed 
insights into specific challenges 
associated with test levels

Preserving 
traceability

Underscores the difficulties in maintaining traceability 
between test assets and development artifacts within 
SPLs due to complex relationships and the oversight 
of traceability in SPL testing. It stresses the necessity 
for improved methodologies and automated tools to 
establish and maintain traceability links effectively

Highlighted also the difficul-
ties of maintaining consistency 
between models and test code 
artifacts as systems evolve, 
stressing the significance of 
updating traceability links

Variability 
management

Highlights the challenges associated with variabil-
ity control in SPLs, emphasizing the complexities 
introduced by numerous potential combinations and 
the possibility of unforeseen interactions among 
variable elements. Identifies a need for more efficient 
approaches and automated tools for managing vari-
ability throughout the SPL lifecycle

Identified similar challenges 
related to variability control, such 
as handling test design at differ-
ent levels of abstraction. Empha-
sized also the need for automated 
tools to manage the maintenance 
effort of variable test assets

1 3

  146   Page 40 of 61



Empirical Software Engineering          (2024) 29:146 

specific SPL aspects investigated, including testing levels and test automation. However, the 
research questions designed by Engström and Runeson (2011) are more general, focusing 
on specifying challenges and topics investigated in SPL testing.

Da Mota Silveira Neto et al. (2011) conducted an SMS to investigate state-of-the-art test-
ing practices by analyzing a set of 45 publications dated from 1993 to 2009. Primary studies 
are mapped into nine categories: Testing strategy, Static and dynamic analysis, Testing lev-
els, Regression testing, Non-functional testing, Commonality and variability testing, Vari-
ant binding time, Effort reduction, and Test measurement. Some of the research questions 
designed by Da Mota Silveira Neto et al. (2011) are similar to the ones investigated in our 
work (e.g., testing SPLs while considering commonalities and variabilities). However, our 
work is broader in scope since we analyzed 110 papers published up to 2022. Furthermore, 
we only included empirically evaluated studies in our review.

do Carmo Machado et al. (2014) conducted an SLR by analyzing 49 studies published 
up to 2013; this SLR aimed to identify testing strategies that could achieve higher defect 
detection rates and reduced quality assurance effort. Identifying strategies to handle the 
selection of products to test has been investigated in both (do Carmo Machado et al. 2014) 
and our work. Furthermore, similar to our work, the initial set of primary studies in study 
(do Carmo Machado et al. 2014) has been identified by investigating previously conducted 
SLRs or SMSs, published up to the year 2009; also, the authors of this SLR only included 
empirically evaluated studies. However, our work investigates more aspects of SPL testing 
(e.g., preserving traceability between test assets and other artifacts) and analyzes more stud-
ies (110 papers).

Literature reviews also specifically focused on analyzing one aspect of SPL testing. As an 
example, Lopez-Herrejon et al. (2015) conducted an SMS to identify techniques that have 
been applied for combinatorial interaction testing of SPLs. However, our work is broader in 
scope since we did not limit the studies to a specific technique.

In general, the previous literature reviews and our work complement each other regard-
ing the research questions addressed. Some aspects of SPL testing have not been considered 
in detail in previous reviews: techniques used for preserving traceability between test arti-
facts and other artifacts, techniques employed for identifying valid and invalid configura-
tions, and different ways to control cost/effort of SPL testing were not covered in an extent 
that makes it possible to identify the current status of research and practice from the per-
spective of those aspects.

8  Conclusions and future work

The goal of SPLE is to improve the effectiveness and efficiency of software development 
by managing commonalities and variabilities among products. Testing is an essential part 
of SPLE to achieve the benefits of an SPL. It is focused on detecting potential faults in 
core assets created during Domain Engineering and products created during Application 
Engineering by reusing core assets. This paper presents the results of a systematic literature 
review of testing in SPLE. The SLR aimed to investigate specific aspects of SPL testing that 
were formulated as seven research questions, identify gaps, and address specific points of 
SPLE that still need to be fully addressed.
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The analysis that we conducted based on 118 studies from 2003 to 2022 has uncovered 
a range of issues and considerations that researchers and practitioners can work on. It is 
shown that managing variability in SPL testing is vital but can complicate the testing pro-
cess. Model-based methods show promise in generating test assets, but there is room for 
improvement in automating test case creation and ensuring comprehensive coverage. Non-
functional testing aspects like performance, security, and usability require more attention 
and specific methodologies. Having the right tools is important, but most tool implementa-
tions are still in the proof-of-concept stage. Regression testing poses a complex challenge, 
and future research should concentrate on areas like regression test selection, prioritization, 
minimization, and architecture-based regression testing. Establishing benchmark datasets 
and standard evaluation criteria for SPL testing methods would simplify comparing and 
adopting various techniques.

Exploring test levels throughout the SPL lifecycle and illustrating the challenges of 
neglecting a particular test level would offer valuable insights. Additionally, studies focus-
ing on testing SPLs need to address traceability explicitly. Maintaining traceability between 
test assets and development artifacts is especially difficult due to the intricate relationships 
between product variants and shared assets, which requires effective approaches. It is also 
worth mentioning that, throughout selecting studies for final analysis, we included only 
the studies empirically evaluated. By analyzing the evaluation conducted in the studies, 
we noticed that most of the studies were assessed by applying only one empirical method. 
Furthermore, most of the assessments undertaken do not refer to real-world practice. This 
indicates the need to evaluate SPL testing approaches not in academia but in industry.

Based on the findings of this SLR, further research in the SPL testing field can be 
expended on specific areas we identified throughout this research as the potential points for 
future research (e.g., SPL regression testing). Furthermore, empirical assessment of exist-
ing techniques for the investigated aspects (e.g., selection of products to test or creating 
reusable test assets) to compare those techniques would be helpful for both researchers and 
practitioners, mainly if those techniques are applied to real-world and large-scale scenarios. 
Furthermore, this research can be strengthened by examining studies published in the field 
of testing configurable systems. Such analysis can investigate how techniques from this 
broader domain might be applied to SPL testing to address existing deficiencies in this area.

Appendix A

Table 13  Search strings and results
Engine Search String Results
IEEE Xplore (“All Metadata”:“software product line” OR “All Metadata”:“software 

product lines” OR “All Metadata”:“software product family” OR “All 
Metadata”:“software product families""”) AND (“All Metadata”:“test” OR “All 
Metadata”:“testing”)
Filters Applied:
2013–2022

173
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Table 13  Search strings and results
Engine Search String Results
Scopus TITLE-ABS-KEY ( ( "Software Product Line"  OR  "Software Prod-

uct Family"  OR  "Software Product Lines"  OR  "Software Product 
Families" )  AND  ( “Test”  OR  “Testing” ) )  AND  ( LIMIT-TO ( DOC-
TYPE ,  “cp” )  OR LIMIT-TO ( DOCTYPE ,  “ar” ) )  AND  ( LIM-
IT-TO ( SUBJAREA ,  “COMP” ) )  AND  ( LIMIT-TO ( LAN-
GUAGE ,  “English” ) )  AND  ( LIMIT-TO ( PUBYEAR ,  2022 )  OR 
LIMIT-TO ( PUBYEAR ,  2021 )  OR LIMIT-TO ( PUBYEAR ,  2020 )  OR 
LIMIT-TO ( PUBYEAR ,  2019 )  OR LIMIT-TO ( PUBYEAR ,  2018 )  OR 
LIMIT-TO ( PUBYEAR ,  2017 )  OR LIMIT-TO ( PUBYEAR ,  2016 )  OR 
LIMIT-TO ( PUBYEAR ,  2015 )  OR LIMIT-TO ( PUBYEAR ,  2014 )  OR 
LIMIT-TO ( PUBYEAR ,  2013 ) )

333

ACM DL [[Full Text: “software product line”] AND [Full Text: “test”]] OR [[Full 
Text: “software product lines”] AND [Full Text: “test”]] OR [[Full Text: 
“software product family”] AND [Full Text: “test”]] OR [[Full Text: “soft-
ware product line”] AND [Full Text: “testing”]] OR [[Full Text: “software 
product lines”] AND [Full Text: “testing”]] OR [[Full Text: “software 
product family”] AND [Full Text: “testing”]] AND [Publication Date: 
(01/01/2013 TO 31/12/2022)]

866

Springer ‘(“Software Product Line” OR “Software Product Famil*)”AND (Test*)’
within English, Computer Science, 2013–2022

1016

Wiley online 
library

“(“software product line” OR “software product lines” OR “software product 
family” OR “software product families”) AND (test OR testing)” anywhere

220

Appendix B

Table 14  Quality assessment criteria (Dybå and Dingsøyr 2008)
No Question Issue
1 Is this a research paper? Reporting
2 Is there a clear statement of the aims of the research? Reporting
3 Is there an adequate description of the context in which the proposed approach has been 

applied?
Reporting

4 Was the research design appropriate to address the aims of the research? Rigor
5 Was there a control group with which to compare the treatments? Rigor
6 Was the data collected in a way that addressed the research issue? Rigor
7 Was the data analysis sufficiently rigorous? Rigor
8 Has the relationship between researcher and participants been considered to an ad-

equate degree?
Credibility

9 Is there a clear statement of findings? Credibility
10 Is the study of value for research or practice? Relevance
11 Are there any practitioner-based guidelines? Relevance
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Appendix C

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S1] System testing of product lines: From requirements 

to test cases
(Nebut et al. 
2006)

Book Chapter: Soft-
ware Product Lines

[S2] Integration testing in software product line engineer-
ing: A model-based technique

(Reis et al. 2007) FASE

[S3] Testing software assets of framework-based product 
families during application engineering stage

(Al-Dallal and 
Sorenson 2008)

J Softw

[S4] PACOGEN: Automatic generation of pairwise test 
configurations from feature models

(Hervieu et al. 
2011)

ISSRE

[S5] Properties of realistic feature models make combina-
torial testing of product lines feasible

(Johansen et al. 
2011)

MODELS

[S6] Reducing combinatorics in testing product lines (Kim et al. 2011) AOSD
[S7] Automated incremental pairwise testing of software 

product lines
(Oster et al. 
2010)

SPLC

[S8] Automated and scalable t-wise test case generation 
strategies for software product lines

(Perrouin et al. 
2010)

ICST

[S9] Integration testing of software product lines using 
compositional symbolic execution

(Shi et al. 2012) FASE

[S10] A regression testing approach for software product 
lines architectures

(Neto et al. 2010) SBCARS

[S11] Avoiding redundant testing in application 
engineering

(Stricker et al. 
2010)

SPLC

[S12] Incremental test generation for software product 
lines

(Uzuncaova et al. 
2010)

IEEE Trans Softw 
Eng

[S13] Continuous test suite augmentation in software 
product lines

(Xu et al. 2013) SPLC

[S14] Evolutionary search-based test generation for soft-
ware product line feature models

(Ensan et al. 
2012)

CAiSE

[S15] Multi-objective test generation for software product 
lines

(Henard et al. 
2013)

SPLC

[S16] Shared execution for efficiently testing product lines (Kim et al. 2012) ISSRE
[S17] SPLat: Lightweight dynamic analysis for reducing 

combinatorics in testing configurable systems
(Kim et al. 2013) ESEC/FSE

[S18] A variability-based testing approach for synthesizing 
video sequences

(Galindo et al. 
2014)

ISSTA

[S19] Fault-based product-line testing: Effective sample 
generation based on feature-diagram mutation

(Reuling et al. 
2015)

SPLC

[S20] Test control algorithms for the validation of cyber-
physical systems product lines

(Arrieta et al. 
2015)

SPLC

[S21] Recommending faulty configurations for interacting 
systems under test using multi-objective search

(Safdar et al. 
2021)

ACM Trans Softw 
Eng Methodol

[S22] Reducing the concretization effort in FSM-based 
testing of software product lines

(Fragal et al. 
2017)

ICSTW

[S23] Automated code-based test selection for software 
product line regression testing

(Jung et al. 2019) J Syst Softw

[S24] Supporting software product line testing by optimiz-
ing code configuration coverage

(Vidács et al. 
2015)

ICSTW

[S25] Combinatorial test generation for software product 
lines using minimum invalid tuples

(Yu et al. 2014) HASE
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Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S26] A comparison of test case prioritization criteria for 

software product lines
(Sánchez et al. 
2014)

ICST

[S27] Product selection based on upper confidence bound 
MOEA/D-DRA for testing software product lines

(do Nascimento 
Ferreira et al. 
2016)

CEC

[S28] Selecting products for high-strength t-wise testing of 
software product line by multi-objective method

(Qian et al. 2018) PIC

[S29] Bypassing the combinatorial explosion: Using simi-
larity to generate and prioritize t-wise test configura-
tions for software product lines

(Henard et al. 
2014a)

IEEE Trans Softw 
Eng

[S30] Efficient product-line testing using cluster-based 
product prioritization

(Al-Hajjaji et al. 
2017a)

AST

[S31] Weighted rank ant colony metaheuristics optimi-
zation-based test suite reduction in combinatorial 
testing for improving software quality

(Bharathi and 
Sangeetha 2018)

ICICCS

[S32] Model-based test design of product lines: Raising 
test design to the product line level

(Lackner et al. 
2014)

ICST

[S33] Extending HSI test generation method for software 
product lines

(Fragal et al. 
2019)

Comput J

[S34] A prioritization method for SPL pairwise testing 
based on user profiles

(Akimoto et al. 
2019)

APSEC

[S35] Balancing soundness and efficiency for practical 
testing of configurable systems

(Souto et al. 
2017)

ICSE

[S36] Delta-oriented product prioritization for similarity-
based product-line testing

(Al-Hajjaji et al. 
2017b)

VACE

[S37] Incorporating user preferences in a software product 
line testing hyper-heuristic approach

(Jakubovski 
Filho et al. 2018)

CEC

[S38] FORMAT: A tool for adapting test models based on 
feature models

(Ergun et al. 
2017)

COMPSAC

[S39] CMSA algorithm for solving the prioritized pairwise 
test data generation problem in software product 
lines

(Ferrer et al. 
2021)

J Heuristics

[S40] Learning-based prioritization of test cases in con-
tinuous integration of highly-configurable software

(Lima et al. 
2020)

SPLC

[S41] YASA: Yet another sampling algorithm (Krieter et al. 
2020)

VaMoS

[S42] Many-objective test suite generation for software 
product lines

(Hierons et al. 
2020)

ACM Trans Softw 
Eng Methodol

[S43] Derivation of test cases for model-based testing of 
software product line with hybrid heuristic approach

(Aduni Sulaiman 
et al. 2019)

IRICT

[S44] Optimize SPL test cases with adaptive simulated 
annealing genetic algorithm

(Yan et al. 2019) ACM TURC

[S45] Preference based multi-objective algorithms applied 
to the variability testing of software product lines

(Jakubovski 
Filho et al. 2019)

J Syst Softw

[S46] Minimum/maximum delay testing of product lines 
with unbounded parametric real-time constraints

(Luthmann et al. 
2019a)

J Syst Softw

[S47] Retest test selection for product-line regression test-
ing of variants and versions of variants

(Lity et al. 2019) J Syst Softw

[S48] A method for prioritizing integration testing in soft-
ware product lines based on feature model

(Akbari et al. 
2017)

Int J Softw Eng 
Knowl Eng

[S49] Generating test cases and procedures from use cases 
in dynamic software product lines

(Araújo et al. 
2017)

SAC

1 3

Page 45 of 61    146 



Empirical Software Engineering          (2024) 29:146 

Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S50] Deriving products for variability test of feature 

models with a hyper-heuristic approach
(Strickler et al. 
2016)

Appl Soft Comput

[S51] IncLing: Efficient product-line testing using incre-
mental pairwise sampling

(Al-Hajjaji et al. 
2016)

ACM SIGPLAN 
Not

[S52] Mutation-based generation of software product line 
test configurations

(Henard et al. 
2014b)

SSBSE

[S53] A parallel evolutionary algorithm for prioritized 
pairwise testing of software product lines

(Lopez-Herrejon 
et al. 2014)

GECCO

[S54] Facilitating reuse in multi-goal test-suite generation 
for software product lines

(Bürdek et al. 
2015)

FASE

[S55] Software product line test suite reduction with con-
straint optimization

(Carlsson et al. 
2016)

ICSOFT

[S56] Hybrid algorithms based on integer programming 
for the search of prioritized test data in software 
product lines

(Ferrer et al. 
2017)

EvoCOP

[S57] Effective product-line testing using similarity-based 
product prioritization

(Al-Hajjaji et al. 
2019)

Softw Syst Model

[S58] Using ant colony optimisation to select features hav-
ing associated costs

(Ibias et al. 2022) ICTSS

[S59] A multi-objective test data generation approach for 
mutation testing of feature models

(Matnei et al. 
2016)

J Softw Eng Res 
Dev

[S60] Multi-objective test suite optimization for incremen-
tal product family testing

(Baller et al. 
2014)

ICST

[S61] Practical minimization of pairwise-covering test 
configurations using constraint programming

(Hervieu et al. 
2016)

Inf Softw Technol

[S62] Efficient regression testing of software product lines 
by reducing redundant test executions

(Jung et al. 2020) Appl Sci

[S63] Software product line testing based on feature model 
mutation

(Ferreira et al. 
2017a)

Int J Softw Eng 
Knowl Eng

[S64] Automated product line test case selection: Indus-
trial case study and controlled experiment

(Wang et al. 
2017)

Softw Syst Model

[S65] Optimizing the selection of representative configura-
tions in verification of evolving product lines of 
distributed embedded systems

(Scheidemann 
2006)

SPLC

[S66] Modeling variability and testability interaction in 
software product line engineering

(Jaring et al. 
2008)

ICCBSS

[S67] Automated requirements-based generation of test 
cases for product families

(Nebut et al. 
2003)

ASE

[S68] Model-based system testing of software product 
families

(Reuys et al. 
2005)

CAiSE

[S69] Specification based software product line testing: A 
case study

(Mishra 2006) CS&P

[S70] A reuse technique for performance testing of soft-
ware product lines

(Reis et al. 2006) SPLiT

[S71] The scented method for testing software product 
lines

(Reuys et al. 
2006)

SPLC

[S72] Reusable model-based testing (Olimpiew and 
Gomaa 2009)

ICSR

[S73] Improving the testing and testability of software 
product lines

(Cabral et al. 
2010)

SPLC

[S74] Model-based pairwise testing for feature interaction 
coverage in software product line engineering

(Lochau et al. 
2012a)

Softw Qual J
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Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S75] Combinatorial testing for feature models using 

CitLab
(Calvagna et al. 
2013)

ICSTW

[S76] Incremental model-based testing of delta-oriented 
software product lines

(Lochau et al. 
2012b)

TAP

[S77] Practical pairwise testing for software product lines (Marijan et al. 
2013)

SPLC

[S78] Risk-based compatibility analysis in automotive 
systems engineering

(Pett et al. 2020) MODELS

[S79] Search-based test case selection of cyber-physical 
system product lines for simulation-based validation

(Arrieta et al. 
2016)

SPLC

[S80] Systematic software product line test case derivation 
for test data reuse

(Kang et al. 
2015)

COMPSAC

[S81] Featured event sequence graphs for model-based 
incremental testing of software product lines

(Tuglular et al. 
2019)

COMPSAC

[S82] Heterogeneous modeling and testing of software 
product lines

(Belli et al. 2021) QRS-C

[S83] Behavior-driven development of software product 
lines

(Tuglular and 
Coşkun 2021)

DSA

[S84] Model-based software product line testing by cou-
pling feature models with hierarchical markov chain 
usage models

(Gebizli and 
Sözer 2016)

QRS-C

[S85] Model-based generation of test scripts across prod-
uct variants: An experience report from the railway 
industry

(Bucaioni et al. 
2022)

J. Softw. Evol. Pro-
cess

[S86] Executable test case generation from specifica-
tions written in natural language and test execution 
environment

(Aoyama et al. 
2021)

CCNC

[S87] Using combinatorial testing for distributed automo-
tive features: Applying combinatorial testing for 
automated feature-interaction-testing

(Dominka et al. 
2018)

CCWC

[S88] Reducing redundant test executions in software 
product line testing—A case study

(Jung et al. 2022) Electronics

[S89] Design and implementation of a test automation 
framework for configurable devices

(Soe et al. 2022) APIT

[S90] Applying product line testing for the electric drive 
system

(Ebert et al. 
2019)

SPLC

[S91] Combinatorial test design using design-time deci-
sions for variability

(Lee and Hwang 
2019)

Int J Softw Eng 
Knowl Eng

[S92] Test case selection using structural coverage in 
software product lines for time-budget constrained 
scenarios

(Markiegi et al. 
2019)

SAC

[S93] Risk-based integration testing of software product 
lines

(Lachmann et al. 
2017)

VaMoS

[S94] Fine-grained test case prioritization for integration 
testing of delta-oriented software product lines

(Lachmann et al. 
2016)

FOSD

[S95] Input–output conformance testing for software 
product lines

(Beohar and 
Mousavi 2016)

J Log Algebr Meth-
ods Program

[S96] Delta-oriented test case prioritization for integration 
testing of software product lines

(Lachmann et al. 
2015)

SPLC

[S97] PROW: A pairwise algorithm with constraints, order 
and weight

(Lamancha et al. 
2015)

J Syst Softw

[S98] Multi-objective test prioritization in software prod-
uct line testing: An industrial case study

(Wang et al. 
2014)

SPLC
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Table 15  Primary studies investigated in the SLR
No. Title Author(s)/Year Venue
[S99] Genetic algorithm-based test generation for software 

product line with the integration of fault localization 
techniques

(Li et al. 2018) Empir Softw Eng

[S100] Testing variability-intensive systems using auto-
mated analysis: An application to Android

(Galindo et al. 
2016)

Softw Qual J

[S101] Sampling strategies for product lines with unbound-
ed parametric real-time constraints

(Luthmann et al. 
2019b)

Int J Softw Tools 
Technol Transf

[S102] Automating system test case classification and 
prioritization for use case-driven testing in product 
lines

(Hajri et al. 2020) Empir Softw Eng

[S103] Multi-objective test case prioritization in highly 
configurable systems: A case study

(Parejo et al. 
2016)

J Syst Softw

[S104] Cost-effective test suite minimization in product 
lines using search techniques

(Wang et al. 
2015)

J Syst Softw

[S105] Efficient and effective testing of automotive software 
product lines

(Cmyrev and 
Reissing 2014)

Appl Sci Eng Prog

[S106] Time-space efficient regression testing for configu-
rable systems

(Souto and 
d’Amorim 2018)

J Syst Softw

[S107] Search-based product line fault detection allocating 
test cases iteratively

(Markiegi et al. 
2017)

SPLC

[S108] Search-based test case prioritization for simulation-
based testing of cyber-physical system product lines

(Arrieta et al. 
2019)

J Syst Softw

[S109] Dissimilar test case selection for behavioural soft-
ware product line testing

(Devroey et al. 
2017)

SPLC

[S110] Titan: Test suite optimization for highly configurable 
software

(Marijan et al. 
2017)

ICST

[S111] A semi-automated iterative process for detecting 
feature interactions

(Rocha et al. 
2020)

SBES

[S112] Combinatorial interaction testing with multi-per-
spective feature models

(Patel et al. 2013) ICSTW

[S113] Delta-oriented model-based integration testing of 
large-scale systems

(Lochau et al. 
2014)

J Syst Softw

[S114] Functional Testing of Conflict Detection and Diag-
nosis Tools in Feature Model Configuration: A Test 
Suite Design

(Vidal Silva et al. 
2020)

ConfWS

[S115] Generic Solution-Space Sampling for Multi-domain 
Product Lines

(Hentze et al. 
2022)

GPCE

[S116] Predicting higher order structural feature interac-
tions in variable systems

(Fischer et al. 
2018)

ICSME

[S117] Search-based diverse sampling from real-world 
software product lines

(Xiang et al. 
2022)

ICSE

[S118] Software Product Line Testing—A Proposal of 
Distance-Based Approach

(Saini et al. 2022) AISE
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Appendix D

Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S1 Yes
S2 Yes
S3 Yes
S4 Yes
S5 Yes
S6 Yes
S7 Yes
S8 Yes
S9 Yes
S10 Yes
S11 Yes
S12 Yes
S13 Yes
S14 Yes
S15 Yes
S16 Yes
S17 Yes Yes
S18 Yes
S19 Yes
S20 Yes
S21 Yes
S22 Yes
S23 Yes
S24 Yes
S25 Yes
S26 Yes
S27 Yes
S28 Yes
S29 Yes
S30 Yes
S31 Yes
S32 Yes
S33 Yes
S34 Yes
S35 Yes
S36 Yes
S37 Yes
S38 Yes
S39 Yes
S40 Yes
S41 Yes
S42 Yes
S43 Yes
S44 Yes
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Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S45 Yes
S46 Yes
S47 Yes
S48 Yes
S49 Yes
S50 Yes
S51 Yes
S52 Yes
S53 Yes
S54 Yes
S55 Yes Yes
S56 Yes
S57 Yes
S58 Yes
S59 Yes
S60 Yes
S61 Yes Yes
S62 Yes
S63 Yes
S64 Yes Yes
S65 Yes
S66 Yes
S67 Yes
S68 Yes
S69 Yes
S70 Yes
S71 Yes
S72 Yes
S73 Yes
S74 Yes
S75 Yes
S76 Yes
S77 Yes
S78 Yes
S79 Yes
S80 Yes
S81 Yes
S82 Yes
S83 Yes
S84 Yes
S85 Yes
S86 Yes
S87 Yes
S88 Yes
S89 Yes
S90 Yes
S91 Yes
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Table 16  Evidence level of the studies
Study Lev1 Lev2 Lev3 Lev4 Lev5 Lev6
S92 Yes
S93 Yes
S94 Yes
S95 Yes
S96 Yes
S97 Yes
S98 Yes Yes
S99 Yes
S100 Yes
S101 Yes
S102 Yes
S103 Yes
S104 Yes Yes
S105 Yes
S106 Yes
S107 Yes
S108 Yes Yes
S109 Yes
S110 Yes
S111 Yes
S112 Yes
S113 Yes
S114 Yes
S115 Yes
S116 Yes
S117 Yes
S118 Yes
Lev1: No evidence, Lev2: Toy examples, Lev3: Expert opinions, Lev4: Academic studies, Lev5: Industrial 
studies, Lev6: Industrial practice

Appendix E

Table 17 shows the results of the evaluation based on the quality assessment criteria, described 
in Table 14 in Appendix B. Regarding the issue Reporting (QA1-QA3 in Table 14), most of 
the studies performed well; all the studies are based on research and almost 82% of them 
have a clear statement of the aims of the research. However, the description of the context 
is bad in some of the studies (∼ 30%); this compromises the validity of these studies since, 
without enough information about the subjects of the study, it is usually difficult to specify 
whether the selected case is suitable to evaluate different aspects of the proposed approach.

In terms of rigor (QA4-QA7), the studies performed, on average, fairly well. In 77 stud-
ies (∼ 62%), the researchers have justified the research design so that it can address the aims 
of the research. In 71 studies (∼ 60%), the proposed approach has been compared with a 
base approach; the researcher(s) has tried to justify that the selected controls are representa-
tive of a defined population. The way data collected is satisfactory in 85 studies (∼ 72%) 
since the researchers have clearly defined the measure(s) selected and justified their selec-
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tion. Furthermore, the data has been analyzed rigorously in 80 studies (68%) by providing 
sufficient data to support the findings. Although these findings are promising, 32% of the 
studies, overall, fail in rigor; this compromises the validity and usefulness of these studies 
since failing in rigor, as a key issue in Evidence-Based Software Engineering, indicates that 
the empirical methods have been applied in an informal way.

Regarding the issue Credibility, 95% of the studies provide a clear statement of the find-
ings (QA9) by discussing the findings in relation to the research questions and also pre-
senting the limitations of the study. However, most studies perform poorly in establishing 
relationships between the researcher(s) and participants and the data collected to address the 
research issue (QA8); this quality attribute is considered in only 12 studies (∼ 10%). This 
can threaten the quality of the research due to not considering potential bias and influence of 
the researcher(s) during the formulation of research questions, data collection, and analysis 
and selection of data for presentation.

In terms of Relevance, 114 studies (∼ 97%) explicitly deal with SPL testing and dis-
cuss the contributions the study makes to existing knowledge, identify new areas in which 
research is necessary, and discuss the ways in which the research can be used (QA10). This 
result is in line with the nature of the research goals, described as inclusion and exclusion 
criteria in Sect. 3.2. However, only 18 studies (∼ 15%) present practitioner-based guide-
lines (QA11). This indicates that the SPL testing field needs more practical guidance to 
strengthen the adoption of industry.

Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S1 1 1 0 0 0 0 0 0 1 1 0
S2 1 1 1 1 0 1 1 0 1 1 0
S3 1 1 1 1 0 1 1 0 1 1 0
S4 1 1 1 1 1 1 1 0 1 1 0
S5 1 0 1 1 0 0 0 0 0 1 0
S6 1 1 1 0 0 1 0 0 1 1 0
S7 1 0 1 0 0 1 1 0 0 1 0
S8 1 1 1 1 0 1 1 0 1 1 0
S9 1 1 1 1 0 1 1 0 1 1 0
S10 1 1 1 1 0 1 1 1 1 1 0
S11 1 1 1 1 0 1 1 0 1 1 0
S12 1 1 1 1 1 1 1 0 1 1 0
S13 1 1 1 1 1 1 1 1 1 1 0
S14 1 1 1 1 0 1 1 0 1 1 0
S15 1 1 1 1 1 1 1 0 1 1 0
S16 1 0 1 0 1 0 1 0 1 1 0
S17 1 1 1 1 1 1 1 0 1 1 0
S18 1 1 1 1 0 1 1 0 1 1 0
S19 1 1 1 1 0 1 1 0 1 1 0
S20 1 1 0 0 0 1 1 0 1 1 0
S21 1 1 1 1 1 1 1 0 1 1 1
S22 1 1 0 0 0 0 1 0 1 1 0
S23 1 1 1 1 1 1 1 0 1 1 1
S24 1 0 1 1 0 1 1 0 1 1 0
S25 1 0 1 0 1 0 0 0 1 1 0
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Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S26 1 1 0 1 0 1 1 0 1 1 0
S27 1 1 1 0 0 1 1 0 1 1 0
S28 1 1 1 1 1 1 1 0 1 1 0
S29 1 1 1 1 1 1 1 1 1 1 1
S30 1 1 0 1 1 1 1 0 1 1 0
S31 1 1 0 0 1 1 1 0 1 1 0
S32 1 0 1 0 0 0 0 0 1 1 0
S33 1 1 0 1 1 0 0 0 1 1 0
S34 1 1 0 0 1 0 0 0 0 1 1
S35 1 1 0 1 1 1 1 0 1 1 0
S36 1 1 1 1 1 0 0 0 1 1 0
S37 1 1 1 1 1 1 1 0 1 1 0
S38 1 1 0 1 1 1 1 0 1 1 0
S39 1 1 1 1 1 1 1 0 1 1 0
S40 1 1 1 1 1 1 1 0 1 1 0
S41 1 1 1 1 1 1 0 1 1 1 0
S42 1 1 1 1 1 1 1 0 1 1 0
S43 1 1 0 0 1 0 0 0 1 0 0
S44 1 0 1 0 1 0 0 0 1 0 0
S45 1 1 1 1 1 1 1 1 1 1 0
S46 1 1 1 1 1 1 1 0 1 1 0
S47 1 1 1 1 1 1 1 0 1 1 0
S48 1 1 0 1 1 1 1 0 1 1 0
S49 1 1 0 0 0 0 0 1 1 1 0
S50 1 1 1 1 1 1 1 0 1 1 0
S51 1 1 0 1 1 1 1 0 1 1 0
S52 1 1 1 1 1 1 1 0 1 1 0
S53 1 1 1 1 1 1 1 0 1 1 0
S54 1 0 1 0 1 0 0 0 0 1 0
S55 1 1 0 0 1 0 0 0 1 1 0
S56 1 0 1 1 1 0 0 0 1 1 0
S57 1 1 1 1 1 1 1 0 1 1 0
S58 1 1 0 0 1 0 0 0 1 1 0
S59 1 1 1 1 0 1 1 0 1 1 0
S60 1 1 0 0 1 0 0 0 1 1 0
S61 1 1 1 1 1 1 1 0 1 1 0
S62 1 1 1 1 1 1 1 0 1 1 0
S63 1 1 0 0 1 0 0 0 1 1 0
S64 1 1 1 1 1 1 1 1 1 1 1
S65 1 0 1 0 0 0 0 0 1 1 0
S66 1 1 1 1 0 1 1 1 1 1 0
S67 1 0 1 0 0 0 0 0 1 0 0
S68 1 0 1 0 0 1 1 0 1 1 0
S69 1 0 1 0 0 1 0 0 1 1 0
S70 1 0 1 0 0 1 0 0 1 1 0
S71 1 1 1 1 0 1 1 0 1 1 0
S72 1 1 0 0 0 0 0 0 1 1 1
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Table 17  Evaluation of the studies based on the Quality Assessment (QA) criteria
Study QA1 QA2 QA3 QA4 QA5 QA6 QA7 QA8 QA9 QA10 QA11
S73 1 1 1 1 1 1 1 0 1 1 0
S74 1 0 1 0 0 1 1 0 1 1 0
S75 1 1 0 0 1 1 1 0 1 1 0
S76 1 0 1 0 1 0 0 0 1 1 0
S77 1 1 1 1 1 1 1 0 1 1 0
S78 1 1 1 1 1 1 1 1 1 1 0
S79 1 1 0 1 1 1 1 0 1 1 0
S80 1 1 0 0 0 0 0 0 1 1 0
S81 1 0 1 0 0 0 0 0 1 0 0
S82 1 1 0 0 0 0 0 0 1 1 0
S83 1 0 1 0 0 1 1 0 1 1 0
S84 1 1 0 0 0 1 0 0 0 1 0
S85 1 1 1 0 1 1 1 1 1 1 0
S86 1 1 0 1 1 0 0 0 1 1 0
S87 1 1 0 0 0 1 0 0 0 1 0
S88 1 1 1 1 1 1 1 0 1 1 1
S89 1 1 0 0 0 0 0 0 1 1 0
S90 1 1 0 0 0 1 1 0 1 1 0
S91 1 1 0 0 0 1 1 0 1 1 0
S92 1 1 1 1 0 1 1 0 1 1 0
S93 1 1 1 1 1 1 1 0 1 1 0
S94 1 1 1 1 1 1 1 0 1 1 0
S95 1 1 0 0 0 1 1 0 1 1 0
S96 1 0 1 0 0 0 0 0 1 1 0
S97 1 1 0 0 1 1 1 0 1 1 0
S98 1 1 0 1 1 1 1 0 1 1 0
S99 1 1 1 1 1 1 1 1 1 1 1
S100 1 1 1 1 1 1 1 0 1 1 0
S101 1 1 0 1 0 0 0 0 1 1 0
S102 1 1 1 1 0 1 1 1 1 1 1
S103 1 1 1 1 1 1 1 0 1 1 1
S104 1 1 1 1 1 1 1 0 1 1 1
S105 1 1 0 0 0 0 0 0 1 1 0
S106 1 1 0 1 1 1 1 0 1 1 0
S107 1 1 1 1 1 1 1 0 1 1 0
S108 1 1 1 1 1 1 1 0 1 1 1
S109 1 1 1 1 1 0 0 0 1 1 0
S110 1 0 1 1 1 0 0 0 1 1 0
S111 1 1 1 1 0 1 1 0 1 1 1
S112 1 1 1 1 1 1 1 0 1 1 0
S113 1 1 1 1 1 1 1 0 1 1 1
S114 1 0 1 1 0 1 0 0 1 1 1
S115 1 1 1 1 1 1 1 0 1 1 0
S116 1 1 1 1 1 1 1 0 1 1 1
S117 1 1 1 1 1 1 1 0 1 1 1
S118 1 1 1 1 1 0 0 0 1 1 0
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